

Degree Project in Computer Science and Engineering,

First cycle, 15 credits

Student understanding of Go,
Concurrency and Parallelism
Analysis using Concept Maps

ALEXANDRE VILANOVA

Stockholm, Sweden 2022

Student understanding of Go,
Concurrency and Parallelism.
Analysis using Concept Maps

ALEXANDRE VILANOVA

Bachelor in Computer Science and Engineering
Date: June 8, 2022
Supervisor: Richard Glassey
Examiner: Pawel Herman
School of Electrical Engineering and Computer Science
Swedish title: Elevernas förståelse för Go, Samtidighet och
Parallellitet - Analys med hjälp av Begreppskartor

iii

Abstract
In this report we have used concept maps to analyze student understanding
of the Go programming language, concurrency and parallelism. We designed
two concept mapping exercises, one about Go and the other one about concur-
rency and parallelism. We sent them to college students after taking a course
about parallel and concurrent programming in introduction to computer sci-
ence and collected their takes. We interpreted the concept maps as directed
graphs and analyzed their connections. We were able to perceive some com-
mon connection patterns within the concept maps. Most students got the really
basic connections right but struggled to differentiate fundamental concepts
such as Go data types. We saw different ways of thinking when it takes to
concurrency and parallelism concepts.

iv

Sammanfattning
I den här rapporten har vi använt begreppskartor för att analysera elevernas
förståelse av programmeringsspråket Go, samtidighet och parallellitet. Vi ut-
formade två konceptkartläggningsövningar, en om Go och en om samtidighet
och parallellism. Vi skickade dem till högskolestudenter efter att ha läst en
kurs om parallell och samtidig programmering i introduktion till dataveten-
skap och samlade in deras svar. Vi tolkade begreppskartorna som riktade gra-
fer och analyserade deras kopplingar. Vi kunde uppfatta vissa gemensamma
kopplingsmönster inom konceptkartorna. De flesta studenterna fick de riktigt
grundläggande kopplingarna rätt men hade svårt att särskilja grundläggande
begrepp som Go-datatyper. Vi såg olika sätt att tänka när det gäller samtidighet
och parallellitet.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Research questions . 2
1.3 Scope . 2

2 Background 3
2.1 Computer science education 3

2.1.1 Concurrency and parallelism 4
2.2 Concept maps . 4
2.3 The Go programming language 5
2.4 Previous work . 6

3 Methods 7
3.1 Research participants . 7
3.2 Data collection . 8

3.2.1 CMTask . 8
3.2.2 Concept map exercises 9
3.2.3 Programming experience survey 12

3.3 Data analysis . 14
3.4 Limitations . 14

4 Results 15
4.1 Programming experience survey 15
4.2 Concept map exercises . 17

4.2.1 Go programming language exercise 18
4.2.2 Concurrency and parallelism exercise 21

5 Discussion 24
5.1 Results . 24

v

vi CONTENTS

5.1.1 Programming background within participants 24
5.1.2 Misconceptions about types in Go (RQ1) 25
5.1.3 Perception of concurrency and parallelism (RQ2) . . . 25
5.1.4 Influence of prior programming knowledge (RQ3) . . 26

5.2 Method . 26
5.2.1 CMTaks success . 26
5.2.2 Number of participants 27
5.2.3 Data quality . 27

6 Conclusions 28

Bibliography 29

Chapter 1

Introduction

Parallel and distributed computing has become a core area in computer sci-
ence majors. However, introducing it in early curriculum stages may bring
several cognitive and technical challenges that can be particularly difficult to
tackle.

This project is a concept map analysis on the learning outcomes of first year
computer science students when it takes to the Go programming language,
concurrency and parallelism.

Concept maps can be seen as directed graphs where each node is labeled with
the name of a concept and each edge is labeled with what describes the rela-
tionship between the endpoints.

Encoding concept maps as graphs leads to multiple interesting ways to evaluate
knowledge. Graph similarity algorithms and graph properties can be used to
find common patterns within the maps.

The results from this degree project can be useful to enhance teaching method-
ologies when it takes to new programming languages, concurrency and paral-
lelism. It also provides new insights about the use of concept maps as a tool
to evaluate understanding.

1.1 Context
This work is a a final thesis for the Bachelor Degree in Informatics Engineering
(computing specialization) from Universitat Politècnica de Catalunya (Facultat
d’Informàtica de Barcelona).

1

2 CHAPTER 1. INTRODUCTION

It is written, supervised and evaluated abroad at KTH Royal Institute of Tech-
nology (School of Electrical Engineering and Computer Science) in Stock-
holm.

The supervisor for this degree project is Richard James Glassey, member of
the KTH Technology Enhanced Learning research group.

The project is related to topics like computer science education, programming
languages, concurrency and parallelism, concept maps and knowledge mea-
surement.

1.2 Research questions
This project aims to provide answers to:

• RQ1: What are some common student misconceptions when learning
the concepts of Go?

• RQ2: How do students perceive concurrency and parallelism concepts
in introductory computer science?

• RQ3: How does previous knowledge in different programming lan-
guages like Python and Java influence student understanding of Go?

1.3 Scope
The research on this project is focused on describing learning outcomes from
a group of students regarding the Go programming language, concurrency and
parallelism. It is not within the scope of the project to provide a solution or
alternative teaching methodologies in any of the analyzed topics.

Chapter 2

Background

In this chapter, information relevant in different parts of the project will be
contextualized. These are the topics that will be covered:

• Computer science education.

• Concurrency and parallelism in computer science education.

• Concept maps.

• The Go programming language.

Here it is defined some key terminology used in the report:

CM Concept Map
CS Computer Science
DG Directed Graph
TA Teacher Assistant
TEL Technology Enhanced Learning
UI User Interface

2.1 Computer science education
Computer science education is the sub-discipline of pedagogy that addresses
topics like what should be taught and how should we teach this in the field of
CS [1]. It studies the impact of CS in society and the intersections between CS
and other disciplines such as philosophy, psychology, linguistics and mathe-
matics.

3

4 CHAPTER 2. BACKGROUND

CS education was born together with modern computing and thus, it is a much
younger field if we compare it to mathematics and science education. [2]

2.1.1 Concurrency and parallelism
Now that we have reached the point multi-core processors have become the
norm for computers and smartphones, it is important to take advantage of the
possible additional computer power by developing optimal software. For this
reason, curricula guidelines have been proposed in order to target the com-
plexities that parallel and distributed computing involve [3].

CS20131 started recognizing this with a dedicated parallel and distributed
computing knowledge area with core hours, as well as dispersing parallelism
concepts across other fundamental knowledge areas [4].

2.2 Concept maps
Concept maps are a schematic representation of a network of concepts or ideas
related by linking words (propositions). They provide learners and instructors
alike with opportunities to share, discuss and revise understanding and mean-
ingful integration of concepts. [5]

They can be seen as directed graphs where each node is labeled with the name
of a concept and each edge is labeled with what describes the relationship
between the endpoints.

Concept maps have been useful to measure knowledge in a wide variety of
areas in the past, including computer science [6].

1The Computer Science Curricula 2013 is the yearly update to the undergraduate com-
puting programs guidelines published by the Association for Computing Machinery and the
IEEE Computer Society in 2013.

CHAPTER 2. BACKGROUND 5

Figure 2.1: Concept Map example2

2.3 The Go programming language
The Go programming language was created at Google by Robert Griesemer,
Rob Pike, and Ken Thompson in 2009. Ever since it was released, users of
traditional compiled languages have found it to be a refreshing change due to
it’s simplicity and high-quality libraries [7].

It aims to be a great language for systems programming with support for multi-
processing and a fresh and lightweight take on object-oriented design. Google
described it as an attempt to combine the development speed of working in a
dynamic language like Python with the performance and safety of a compiled
language like C or C++.

Go provides rich support for concurrency using goroutines and channels:

• A goroutine is a function that is capable of running concurrently
with other functions.

• The chanel type provides a way for two goroutines to communicate
with one another and synchronize their execution.

2Image source: Concept Maps: Definition, Structure, and Scoring [5].

6 CHAPTER 2. BACKGROUND

2.4 Previous work
There have been previous studies in the past where the use of concept maps
as a method to assess understanding has been useful. The research domains
include human resource development [8], biology [9] and training in dental
medicine [10].

Computer science and software development have also been fields of study
where concept mapping techniques have been applied in the past. There have
been studies where concept maps assessments have been used for teaching
computer programming [11]. Furthermore, concept mapping techniques have
also been used in the field of object-oriented programming [12].

Chapter 3

Methods

In this chapter we show the methodologies used throughout the project. We
describe the context and background from the research participants that con-
tributed to the analysis. We list the requirements we considered important
when it takes to the data collection and we go over the taken approach. Finally
we explain the tools and methods used in the data analysis.

3.1 Research participants
The participants that provided the data used in this research are students from
a KTH course named Parallel and Concurrent Programming in Introduction
to Computer Science that goes by the code DD1396.

In DD1396, students learn about the theory under concurrency and parallelism
in a CS background. They also put the theory into practice and learn how to
design and implement simple concurrent programs using Go.

The students do not necessarily come from the same academic path. Depend-
ing on the previously taken courses they might have already programmed in
Java or Python. Given that DD1396 is part of the KTH courses in introductory
computer science, we assume most student will be relatively new to program-
ming.

It is important to note that research participants had just finished taking DD1396
the moment the data was collected. In fact, the data was collected just after
their final exam.

7

8 CHAPTER 3. METHODS

3.2 Data collection
In order to carry out the data collection for the project, we requested research
participants to:

• Solve CM exercises about Go, concurrency and parallelism.

• Answer a short survey about their programming background.

CMs can be represented both in physical formats (e.g. using pen and paper)
and digital environments (e.g. using CM editors). When collecting the data
from research participants, it is important to keep a consistency in the way
CMs are gathered. This makes the analysis process easier while also adds
value to the collected data since all participants are being provided with the
same tools.

In the case of this project, keeping the data collection in a digital environ-
ment seemed more suitable than opting for a physical format. Automating the
parsing from a drawn CM to digital formats such as JSON is easy to do when
the CMs are collected through a digital platform. It helps saving time when
processing the data and it eases the analysis part overall. Moreover, hosting
on-site tests is substantially more complicated.

It is important that the platform in which the data is collected is as user friendly
as possible. Choosing a CM editor with lots of features would be confusing
so it is positive that the chosen editor is as simple as possible.

Requiring to install a program is an unnecessary extra step. Keeping the pro-
cess web-based and easy to follow is a priority.

To conclude, key requirements for the data collection were the following:

• The platform in which the data is collected is web-based.

• The chosen CM editor has an intuitive and minimalist UI.

• It is possible to parse the collected CM to a digital format such as JSON
with no manual work required.

3.2.1 CMTask
After searching for a while, we could not find any platform that allowed us to
host online concept mapping exercises. For this reason we decided to develop
CMTask, a simple web-app that helped us do the job.

CHAPTER 3. METHODS 9

The chosen stack for CMTask was React for the front-end together with tl-
draw1 as an embedded CM editor, Go for the backend and Digital Ocean on
the hosting side.

A wide variety of CM editors were considered but tldraw turned out to be the
most appealing. It has embedded support that supports disabling advanced
features (not needed for the exercises), it is free, open-source, functional and
minimalist. It also has an active community supporting the project.

React was chosen for the frontend because it can easily integrate tldraw. Go
was used for the backend because it allows creating a simple web-server in
very few lines of code and we were already familiar with the language. Digital
Ocean was selected for the hosting because we already had an up and running
server which we ended up re-using.

In figure 3.1 there is a toy example drawn in CMTask together with a screenshot
showing the corresponding JSON encoding.

Figure 3.1: CMTask demo map together with the parsed output

3.2.2 Concept map exercises
When it takes to the CM exercises there were two options to consider. The first
one was asking students to draw maps from scratch given specific topics. The
second one was giving students previously defined incomplete maps about
specific topics together with bags of related concepts they were expected to
incorporate.

We went for the second option as we thought it would narrow the variance
in the results making the whole analysis more interesting. If we had made the

1The tldraw project repository can be found at github.com/tldraw/tldraw

https://github.com/tldraw/tldraw
https://github.com/tldraw/tldraw

10 CHAPTER 3. METHODS

analysis on a bigger crowd of participants, the first alternative would have been
interesting to consider.

Figure 3.2: Programming in Go exercise statement

Figure 3.3: Concurrency and Parallelism exercise statement

Find the statements for the Go exercise and the concurrency and parallelism
one in figures 3.2 and 3.3 respectively. The concepts from the concurrency

CHAPTER 3. METHODS 11

and parallelism exercise were taken from DD1396 slides. The concepts from
the Go task were taken from both DD1396 slides and the Go programming
language documentation2.

The meaning of the colors in CMTask exercises is the following:

• Blue: concepts and arrows that form the pre-defined map. Participants
should build on top of it and they should neither delete nor change it’s
concepts and connections.

• Orange: bag of concepts disconnected from the map. Participants are
responsible of adding the necessary (black) arrows that link them to the
blue concepts.

• Black: this is the color participants are allowed to use when adding new
concepts and arrows to the map.

Figure 3.4: Programming in Go exercise solution

2The Go programming language documentation can be found at go.dev/doc

https://go.dev/doc/

12 CHAPTER 3. METHODS

Figure 3.5: Concurrency and Parallelism exercise solution

Find our proposed solutions for the Go exercise and the concurrency and par-
allelism one in figures 3.4 and 3.5 respectively. Given the freedom provided
by the CM format there is not one single good solution but lots of them. These
are our takes.

3.2.3 Programming experience survey
Running small survey after the two CM exercises was useful to gather infor-
mation about the programming experience from the research participants. The
survey consisted of 5 questions.

The first question was about previously taken KTH courses. As mentioned in
section 3.1, not all research participants came from the same academic path.
DD1396 organizers provided a list with the relevant previous programming
courses their students might had taken. The question in the survey was a simple
checkbox where students could check which courses they had been registered
to. Find a list of all the possible options in table 3.1.

CHAPTER 3. METHODS 13

Code Title Language
DD1337 Programming Java
DD1338 Algorithms and Data Structures Java
DD1310 Programming Techniques Python
DD1380 Java Programming for Python Programmers Java
DD1331 Fundamentals of Programming Python

Table 3.1: Previous programming courses participants might have taken

The second question was about programming experience in general. The ques-
tion itself was For how long have you been programming?. This question was
useful to see the general programming background from research participants.
They could have prior extracurricular experience or be self-taught at program-
ming. The possible answers were:

• Less than one year.

• One to two years.

• Three to four years.

• More than four years.

The third and fourth questions were about confidence when using Python and
Java respectively. We planned to use this information to find possible relations
between the languages students had previously learnt and the CM exercises.
The possible answers for both the Python and Java questions were:

• I have never used it.

• I have used it a couple of times.

• I have used it multiple times, I usually use it and I’m confident using it.

Finally, the last question was What is your level in Go programming?. We used
this question to filter students that already knew Go before taking DD1396.
The possible answers were:

• I used it for the first time in DD1396.

• I had already used it before taking DD1396 but not that much.

• I have used it multiple times, I usually use it and I’m confident using it.

14 CHAPTER 3. METHODS

3.3 Data analysis
In the data analysis part we used Python together with Jupyter. Some useful
Python modules were Pandas, Matplotlib, NetowrkX, GMatch4Py, SciPy and
NumPy.

We created a CSV file that contained the answers from the programming ex-
perience survey. We used Pandas to read the data set and then Matplotlib to
plot the results.

We already had the CMs encoded in JSON files. In order to properly analyze
them we needed to parse them to directed graph data structures so we created
a custom parser that transforms the JSON graphs obtained from CMTask to
NetowrkX directed graphs.

Once we had the CMs interpreted as directed graphs we were able to analyze
their properties and get an overall view on the student understanding.

Given that CM exercises have an open-ended set of correct solutions, we did
not compare the student maps to our solutions showed in section 3.2.2 or any
other kind of predefined master map. We approached our research in a ana-
lytical way, analyzing what the students actually know instead of ranking their
knowledge.

3.4 Limitations
There are some potential inconveniences that can negatively affect the quality
of the results.

The first one is the number of participants contributing to the study. Given
that the CM exercises and the programming experience survey will be optional
extra-curricular tasks, it is likely that some students skip them.

The total number of participants being low can be a problem as very few results
may not lead to interesting and meaningful discussion topics.

Finally, the data quality is another important factor to take into account. Par-
ticipants not being familiar with concept mapping can be a limitation and so
can be participants delivering rushed and effortless takes.

Chapter 4

Results

In this chapter we show plots and tables containing the results fruit of the data
analysis. We begin giving an insight on the programming background from
our research participants. Then we proceed providing the results from the CM
exercises. We got data from a total of 53 students out of the 290 students that
were taking DD1396.

4.1 Programming experience survey
In table 4.1 there are all the participants grouped by the set of previous KTH
programming courses they have taken. Check table 3.1 to see the information
for each course code.

Group Participants DD1337 DD1338 DD1310 DD1380 DD1331
1 28 D D
2 15 D
3 3 D D D
4 2 D D
5 1 D
6 1 D
7 1 D D
8 1 D D D
9 1 D D D D D
Table 4.1: Participant grouped by previous KTH programming courses

15

16 CHAPTER 4. RESULTS

The groups are listed in descending order. The first one is made of the 52.83%
of the total participation while the second one includes the 28.3%. Groups
from 3 to 9 hold the resting 18.87%. We can see how most research partici-
pants (81.13%) are within the first two groups.

In figure 4.1 there are 4 plots showing the results from the programming ex-
perience part of the survey. All the questions, together with the corresponding
answers are explained in section 3.2.3. These plots take into account all the
53 research participants that contributed to the analysis.

Figure 4.1: Participant programming experience charts

Given that the majority of research participants are grouped within groups 1
and 2, we decided to generate plots and find out which was the programming
experience in these groups in particular.

Figures 4.2 and 4.3 contain plots showing the programming experience in both
Python and Java from groups 1 and 2 respectively.

CHAPTER 4. RESULTS 17

Figure 4.2: Python and Java experience charts from Group 1

Figure 4.3: Python and Java experience charts from Group 2

4.2 Concept map exercises
In this section we show tables containing connections from both the Go exer-
cise and the concurrency and parallelism one filtered under different parame-
ters. We also provide some of the solutions within the data from the partici-
pants.

For the tables in this section it is important to consider the following:

• We took into account the CMs from all the research participants (53 in
total).

• The tables include the connections together with the set of edge labels

18 CHAPTER 4. RESULTS

participants used and the total number of occurrences. In the labels
column "" means unlabeled edge.

• Concept names and connection labels in these tables follow the color
code defined in section 3.2.2: orange concepts are the ones that were
disconnected (and for students to connect), blue concepts are the ones
that were part of the predefined concept map in the statement.

4.2.1 Go programming language exercise
In table 4.2 it is possible to find the most frequent connections in the Go exer-
cise.

Connection Labels Occ.
strings ← basic types {""} 35

compiler based ← Go programming language {"", "is"} 31
channels ← reference types {""} 21
channels ← aggregate types {""} 8
arrays ← reference types {""} 15
arrays ← aggregate types {""} 12
arrays ← slices {"", "constant size"} 11
arrays ← basic types {""} 7

functions ← Go programming language {"", "uses", "also features"} 14
functions → methods {""} 12
functions ← aggregate types {""} 9
functions ← reference types {""} 7

values → variables {"", "given to"} 10
values ← variables {"", "has", "store", "stores"} 10
values → constants {"", "given to", "and can be"} 7

memory addresses ← pointers {""points to", ", "needs"} 22
memory addresses ← reference types {""} 11

constants ← basic types {"", "are often"} 13
constants → data types {"", "store"} 12
methods ← Go programming language {""} 9

type inheritance ← Go programming language {"", "has"} 8
type inheritance ← structs {""} 8

Table 4.2: Most frequent connections in the Go exercise

Tables 4.3, 4.4, 4.5 and 4.6 show the most frequent connections when it takes to

CHAPTER 4. RESULTS 19

concepts "array", "channels", "functions" and "type inheritance" respectively
in the Go exercise.

Connection Labels Occ.
arrays ← reference types {""} 15
arrays ← aggregate types {""} 12
arrays ← basic types {""} 7

Table 4.3: Most frequent connections for "array" in the Go exercise

Connection Labels Occ.
channels ← reference types {""} 21
channels ← aggregate types {""} 8
channels ← basic types {""} 6

Table 4.4: Most frequent connections for "channels" in the Go exercise

Connection Labels Occ.
functions ← Go programming language {"", "uses", "also features"} 14
functions → methods {""} 12
functions ← aggregate types {""} 9
functions ← reference types {""} 7

Table 4.5: Most frequent connections for "functions" in the Go exercise

Connection Labels Occ.
type inheritance ← Go programming language {"", "has"} 8
type inheritance ← structs {""} 8
type inheritance ← data types {""} 5

Table 4.6: Most frequent connections for "type inheritance" in the Go exercise

Figures 4.4 and 4.5 show two examples of solutions for the Go exercise pro-
vided by two of the research participants.

20 CHAPTER 4. RESULTS

Figure 4.4: Go exercise solution (example 1)

Figure 4.5: Go exercise solution (example 2)

CHAPTER 4. RESULTS 21

4.2.2 Concurrency and parallelism exercise
In table 4.7 it is possible to find the most frequent connections in the concur-
rency and parallelism exercise.

Connection Labels Occ.
read ← channels {""} 39
read → channels {""} 7

deadlocks ← issues {""} 28
deadlocks ← blocking {"", "may lead to", "causes"} 9
deadlocks ← goroutines {"", "can cause"} 8

race conditions ← issues {""} 24
race conditions ← shared data {"", "causes"} 5
non-blocking ← goroutines {""} 23
non-blocking ← channels {"", "is buffered", "with buffer"} 8

multiple threads ← multiple processors {"", "use"} 19
multiple threads ← concurrent programs {"", use} 11
multiple threads ← parallel programs {"", "can use", "use"} 7
multiple threads ← goroutines {""} 7
multiple threads ← multiple tasks {"", "using", "on"} 5
multiple threads → multiple tasks {""} 5

shared data ← channels {"", "contains", "enables"} 11
shared data ← mutex {"", "enables"} 5
shared data ← concurrent programs {""} 5

critical section ← mutex {"", "are used in a"} 8
typed values ← channels {"", "use"} 8

Table 4.7: Most frequent connections in the concurrency exercise

Tables 4.8 and 4.9 show the most frequent connections when it takes to con-
cepts "non-blocking" and "multiple threads" respectively in the concurrency
and parallelism exercise.

Connection Labels Occ.
non-blocking ← goroutines {""} 23
non-blocking ← channels {"", "with buffer", "is buffered"} 8

Table 4.8: Most frequent connections for "non-blocking" in the concurrency
and parallelism exercise

22 CHAPTER 4. RESULTS

Connection Labels Occ.
multiple threads ← multiple processors {"", "use"} 19
multiple threads ← concurrent programs {"", "use"} 11
multiple threads ← parallel programs {"", "can use", "use"} 7
multiple threads ← goroutines {""} 7

Table 4.9: Most frequent connections for "multiple threads" in the concurrency
and parallelism exercise

Figures 4.6 and 4.7 show two examples of solutions for the concurrency and
parallelism exercise provided by two of the research participants.

Figure 4.6: Concurrency and parallelism exercise solution (example 1)

CHAPTER 4. RESULTS 23

Figure 4.7: Concurrency and parallelism exercise solution (example 2)

Chapter 5

Discussion

In this chapter we discuss the main outcomes we have reached with the re-
search and the approaches used when collecting and analyzing the data. First
we comment on the results seen in the previous chapter, then we reflect on the
used methodologies throughout the project execution.

5.1 Results

5.1.1 Programming background within participants
Looking at the plots from figure 4.1 we can get an idea on the overall program-
ming experience from the research participants. We can also see which are the
languages research participants are more comfortable with.

Even though almost half of the students (41.5%) just picked up programming
this year, 7 students have been programming for more than 4 years and 24 of
them in between 1 and 4. We can also see that most students had never used
Go before the course but on the other hand most students had used Java and/or
Python.

Analyzing the previously taken programming courses from the research partic-
ipants, we were able to differentiate 9 student groups (check table 4.1). We can
see how most research participants (81.13%) are within the first two groups.
The groups from 3 to 9 are not significant as most of them consist of only one
single participant.

24

CHAPTER 5. DISCUSSION 25

5.1.2 Misconceptions about types in Go (RQ1)
As seen in table 4.2, most students (35 and 21 respectively) connected "ba-
sic types" to "strings" and "Go programming language" to "compiler based".
This shows that most students got these two trivial connections right as Go
is a compiler based language and the string type is grouped within the basic
types of the language (together with numbers and booleans). However, not all
students agree when it takes to less intuitive concepts.

If we take a look at table 4.3 we can see some students related "arrays" to
"reference types", others related it to "aggregate types" and others to "basic
types". In the Go programming language, arrays together with structs are ag-
gregate types. This shows a misconception when it takes to arrays and data
types.

Similar misconceptions are found looking at tables 4.4 and 4.5. In the case
of "channels", 21 students related the concept to "reference types". This is
a connection that makes sense, given that channels are one of the reference
types that can be found in the language. However, 8 and 6 students related
the concept to "aggregate types" and "basic types" respectively, which shows
again a misconception when it takes to data types in Go.

Most participants related "functions" with "Go programming language" or
"methods" instead of relating it to one of the types. Only 7 students related
"functions" with "reference types".

In table 4.6 we see that the three most common connections when it takes to the
"type inheritance" concepts are within the range of 8 and 5 occurrences. This
shows that students connected the "type inheritance" concept in many different
ways, also some of them might not have connected it at all. Overall we can
see students are confused about the "type inheritance" concept. One of the
main aspects of Go (and one of the main differences from Java) is that it does
not feature type inheritance. However, students connected "Go programming
language" to "type inheritance" and some of them used connection labels such
as "has".

5.1.3 Perception of concurrency and parallelism (RQ2)
In table 4.7 we find a list with the most frequent connections in the concurrency
and parallelism exercise. Again, we can see how most students connected the
really basic concepts the same way. The most common connection is "chan-
nels" connected to "read", this is a predictable one given that in the exercise

26 CHAPTER 5. DISCUSSION

statement "write" was already connected to "channels". "issues" connected to
"deadlocks" and "race conditions" are in second and third place with 23 and
24 connections respectively.

However, when taking a look at other concepts such as "multiple threads", we
find a more variate set of connections. If we take a look at table 4.9, we see
how most participants connected "multiple processors" to "multiple threads",
some of them using the connection label "use". Participants also connected
"multiple threads" from "concurrent programs" and "parallel programs" - us-
ing again connection labels such as "can use" or "use" - as well as "goroutines".
All these connections make sense and could be considered valid. This shows
how differently students can think about concepts and their relations.

5.1.4 Influence of prior programming knowledge (RQ3)
We tried to use data mining approaches and graph similarity algorithms in or-
der to analyze the data. We were trying to cluster the participant takes based
on different types of structures within the maps and see if the previous pro-
gramming knowledge was somehow related to the results.

However, we could not get interesting or meaningful outcomes out of this part
of the analysis. This types of techniques are really useful when the amount of
data is very big [13]. Our final data-set being too small might be the reason
we had to discard these methods in our analysis.

5.2 Method

5.2.1 CMTaks success
Developing CMTask took two weeks of work but it saved us a lot of time
during the data collection.

The collected CMs were saved in JSON format by default. This helped us
reduce big amounts of potential manual work related to CM transcription and
encoding. After downloading all the CM files, parsing them from JSON to
directed graphs was an intuitive and fast task.

Since the tool was being developed by us, we were able to fine-tune it as much
as we felt necessary. We tried to make it as user-friendly as possible given the
short amount of time we had. Some students noticed this and gave us positive
feedback about the concept mapping exercises.

CHAPTER 5. DISCUSSION 27

The website was up and running non-stop during the entire data collection
process and all research participants were able to solve the CM exercises and
answer the programming experience survey successfully with no technical is-
sues at all.

5.2.2 Number of participants
We received data from a total of 71 research participants. Within these 71
participants there were 59 students and 12 TAs. We did not end up using the
TA data as it was not significant enough. As far as the students, we had to
remove data from 6 of them due to their CMs being vaguely defined. So we
ended up using data from 53 students.

There were 290 students coursing DD1396. The 53 research participants are
a 18.27% of all students taking the course. Getting data from more of them
would have been useful in order to carry out a more data-driven analysis.

5.2.3 Data quality
Not all the CMs we received from research participants are equally detailed.
While some of them were really detailed with abundant edge-labeling and ad-
ditional concepts, there were also a considerable amount of vaguely-defined
maps. Most students did not label edges (or labeled very few of them).

It is possible that different concept mapping familiarity levels among students
has been the reason behind the quality gap within the data. Some students
taking less time to work on the task than others can also be part of the prob-
lem.

Chapter 6

Conclusions

In this project we developed a web-based tool useful for the design and assess-
ment of concept mapping exercises. We used the tool to carry out a concept
map analysis on computer science student understanding of the Go program-
ming language, concurrency and parallelism.

On the one hand we found some common student misconceptions when it takes
to the Go programming language data-types. On the other hand we saw how
differently students relate concepts such as threads and processors within the
field of concurrency and parallelism. We were not able to find a meaning-
ful relationship between student programming background and their concept
mapping exercise takes.

From the concept mapping tooling perspective, future work after this project
could be expanding the development of CMTask into a production ready plat-
form with additional features where everyone could design and assess their
own concept mapping exercises. Instead of just gathering the concept maps
as JSON, it would be interesting to provide data analysis features within the
same platform.

From the experiment perspective, it would be interesting to evaluate it within
a bigger crowd of participants. This could lead to interesting results when
analyzing the programming experience influence. Graph similarity and sub-
graph matching could be properly executed and potentially give meaningful
insights.

28

Bibliography

[1] Malini Mistry. “Computer science education: perspectives on teaching
and learning in school”. eng. In: Education 3-13 48.2 (2020), pp. 253–
254.

[2] Matti Tedre, Simon, and Lauri Malmi. “Changing aims of computing
education: a historical survey”. eng. In: Computer Science Education
28.2 (2018), pp. 158–186.

[3] Nasser Giacaman and Joel Adams. “Introductory Concurrency and Par-
allelism Education”. In: Proceedings of the ACM Conference on Global
Computing Education. CompEd ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 171. isbn: 9781450362597.

[4] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Pro-
grams in Computer Science. Association for Computing Machinery,
2013. isbn: 9781450323093.

[5] Dario M Torre, Steven J Durning, and Barbara J Daley. “Concept Maps:
Definition, Structure, and Scoring”. eng. In: Academic medicine 92.12
(2017), pp. 1802–1802. issn: 1040-2446.

[6] Vinicius dos Santos et al. “Analyzing the Use of Concept Maps in Com-
puter Science: A Systematic Mapping Study”. eng. In: Informatics in
Education 16.2 (2017), pp. 257–288. issn: 1648-5831.

[7] Alan A. A Donovan and Brian W Kernighan. The Go Programming
Language. eng. Addison-Wesley Professional Computing Series. Addison-
Wesley Professional, 2015. isbn: 9780134190570.

29

30 BIBLIOGRAPHY

[8] Barbara J Daley et al. “Integrative Literature Review: Concept Map-
ping: A Strategy to Support the Development of Practice, Research,
and Theory Within Human Resource Development”. eng. In: Human
Resource Development Review 9.4 (2010), pp. 357–384. issn: 1534-
4843.

[9] Ian M. Kinchin. “Concept mapping in biology”. eng. In: Journal of bi-
ological education 34.2 (2000), pp. 61–68. issn: 0021-9266.

[10] I. M Kinchin and L. B Cabot. “An introduction to concept mapping in
dental education: the case of partial denture design”. eng. In: European
journal of dental education 13.1 (2009), pp. 20–27. issn: 1396-5883.

[11] Jeroen Keppens and David Hay. “Concept map assessment for teach-
ing computer programming”. eng. In: Computer science education 18.1
(2008), pp. 31–42. issn: 0899-3408.

[12] Kate Sanders et al. “Student understanding of object-oriented program-
ming as expressed in concept maps”. eng. In: Proceedings of the 39th
SIGCSE technical symposium on computer science education. SIGCSE
’08. ACM, 2008, pp. 332–336. isbn: 1595937994.

[13] Andreas Mühling. “Concept Landscapes: Aggregating Concept Maps
for Analysis”. eng. In: Journal of educational data mining 9.2 (2017),
p. 1. issn: 2157-2100.

TRITA – XXX-XXX 20XX:XX

www.kth.se

	Introduction
	Context
	Research questions
	Scope

	Background
	Computer science education
	Concurrency and parallelism

	Concept maps
	The Go programming language
	Previous work

	Methods
	Research participants
	Data collection
	CMTask
	Concept map exercises
	Programming experience survey

	Data analysis
	Limitations

	Results
	Programming experience survey
	Concept map exercises
	Go programming language exercise
	Concurrency and parallelism exercise

	Discussion
	Results
	Programming background within participants
	Misconceptions about types in Go (RQ1)
	Perception of concurrency and parallelism (RQ2)
	Influence of prior programming knowledge (RQ3)

	Method
	CMTaks success
	Number of participants
	Data quality

	Conclusions
	Bibliography

