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Abstract— MPI is the de facto communication standard 
library for parallel applications in distributed memory 
architectures. Collective operations performance is critical in 
HPC applications as they can become the bottleneck of their 
executions.  The advent of larger node sizes on multicore clusters 
has motivated the exploration of hierarchical collective 
algorithms aware of the process placement in the cluster and the 
memory hierarchy.  This work analyses and compares several 
hierarchical collective algorithms from the literature that do not 
form part of the current MPI standard.  We implement the 
algorithms on top of OpenMPI using the shared-memory facility 
provided by MPI-3 at the intra-node level and evaluate them on 
ARM-based multicore clusters. From our results, we evidence 
aspects of the algorithms that impact the performance and 
applicability of the different algorithms. Finally, we propose a 
model that helps us to analyze the scalability of the algorithms. 
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I. INTRODUCTION

The message-passing model is the foundation of HPC 
performance and MPI [1], the de facto library now and in the 
future decade as it seems. The performance of collective 
operations is under continuous research as they can become 
the performance bottleneck of HPC applications. For 
example, in their work, Chunduri et al. [2] characterize HPC 
applications running on a production supercomputer and 
identify MPI_Allreduce and MPI_Bcast as the two most time-
consuming operations. In addition, nodes in multicore 
clusters are becoming significantly large enough to be treated 
separately within hierarchical collective algorithms. In 
particular, the availability of a shared-memory and faster 
interconnection network within a node makes the adaptation 
of those algorithms attractive. 

There are some proposals done in the area which have not 
been included yet in the MPI standard [3][4][5]. The design 
of the algorithms is aware of the process placement in the 
cluster and try to take advantage of shared memory and the 
available parallelism within a node. In this work, we analyze 
those proposals for the Broadcast operation (MPI_Bcast). 
Our main objective is to detect the parameters that make them 
more suitable depending on the scenario. In addition, we 
define a model to compare the different strategies and explain 
their behaviour. We build the implementations on top of 
OpenMPI [6] and use the shared-memory facility provided by 
the MPI-3 [1] at the intra-node level. 

ARMs [7] architectures are designed to optimize the 
execution with low energy costs, providing many cores by a 
node to achieve this goal without performance loss.  For this 
reason, we considered this architecture as an exciting target 
to perform our evaluations. 

In summary, the main contributions of this work are: 
• Implementation, evaluation and comparison of three

different hierarchical collective algorithms: Multi-
leader, Multi-lane and Hier. We evaluate their
performance varying several parameters like number of
leaders, number of lanes, message sizes. The
comparisons are made against the native OpenMPI
broadcast algorithm (Binomial in our case).

• Implementation of a hierarchical algorithm that makes
use of the MPIWin facility from MPI-3 standard.

• Construction of a model to compare the algorithms and
explain their behavior.

Our first results seem to confirm that hierarchical 
algorithms that are aware of the underlying platform are 
needed. We confirm that the currently available MPI libraries 
demonstrate severe problems in that sense [5]. However, the 
hierarchical algorithm needs to adapt to parameters other than 
the size of nodes, like memory hierarchy and interconnection 
networks. 

The rest of the document is organized as follows: first, we 
present other works related to the design and evaluation of 
collective algorithms. Then, we explain our methodology and 
describe the algorithms implemented and evaluated as well as 
our model proposal. After that, we describe the evaluations 
carried out and our findings. Finally, we present our 
conclusions and future work. 

II. RELATED WORK

There is a vast amount of research on the design of MPI 
collective algorithms. We limit to enumerate some relevant 
works related to the algorithms we compare and other 
characteristics like MPI-3 shared memory. The authors in [3] 
suggest reducing the bandwidth for the collectives, using 
leader processes within a node. These leader processes are in 
charge of collecting the information from all the group 
processes through shared memory (implemented via mmap). 
The approach works well for messages up to 256 Kbytes. The 
mechanism is improved later for larger message sizes by 
introducing pipelining [4]. 

The work presented by [5] indicates considerable room for 
improvement with the MPI collectives in current libraries, 
using multi-lane communication.  Zhou et al. [8] demonstrate 
that the use of shared-memory windows introduced by the 
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MPI-3 standard may improve the performance of the MPI 
collective operations. Mamidala et al. [9] propose sharing 
buffers for intra-node and inter-node communication to avoid 
extra copies of data. They claim that they also achieve some 
kind of overlap with network communication. The basic idea 
seems promising. They show improvements of up to 43% for 
messages up to 16 Kbytes. 

III. METHODOLOGY 
In this section, we describe first the algorithms evaluated 

and our proposed model. Then we present the experimental 
platform. 

A. Hierarchical algorithms evaluated 
We explore recently proposed algorithms that consider at 

least one of the following characteristics: large node sizes, 
shared-memory facility, use of available parallelism. The 
selected algorithms are:  

1) Multi-leader. This algorithm proposed by Bayatpour 
et al. [3][4] organize collectives in groups of processes with a 
leader process in charge of the “inter-group communication”. 
In their work, they suggest adjusting the size of the group to a 
socket. Communication within the processes of the group is 
performed through shared memory. Figure 1 shows a 
graphical representation of the algorithm with two groups with 
four processes each. The entire message is copied onto the 
shared-memory region and also sent to the other groups. Non-
root processes copy back the result from the shared-memory 
region. 

2) Multi-lane. This algorithm proposed by J. Traff et al. 
[5] suggests having multiple lanes per group. The message is 
partitioned and scattered among the processes of the group. 
Then each partition is broadcasted between homologous 
processes in other groups. Finally, the original message is built 
within each group by an allgather operation. Figure 2 shows 
the mechanism. 

3) Hier. This algorithm is another alternative to Multi-
lane proposed in the work by J. Traff et al. [5] as well. It is 
very similar to Multi-leader, but without using explicitly 
shared memory. The collective is decomposed into two 
broadcast operations: one “intra-group” and another “inter-
group”. Figure 3 shows how the algorithm works. 

We explored several possibilities of group sizes within a 
node for each case: one group (96 processes) to 16 groups (6 
processes each group). We studied their performance and 
selected the best configuration for the comparison.  

B. Model 
The motivation to construct a model is to compare the 

algorithms and to explain the differences in the performance 
of them. In addition, the model serves us to study scalability 
to large clusters. 

 
Figure 1. Multi-leader representation with two groups and four 

processes per group 

 
Figure 2. Multi-lane representation with two groups and four 

processes per group (4 lanes) 

 
Figure 3. Hier representation with two groups and four processes 

per group. 

C. Experimental platform 

The experiments are carried out on a mini-cluster with 4 
ARM-based nodes, each with two Cavium Thunder-X 88XX 
CPUs, supporting the Arm AArch64 architecture and fully 
compliant with the ARMv8 (64 bit) instruction set. Each CPU 
has 48 cores at a frequency of 1.9 GHz, being the core’s cache 
coherent by using the Cavium Coherent Processor 
Interconnect. Each core has a private level 1 instruction cache 
of 78 Kbytes and a private data cache of 32Kbytes.  Each chip 
has a 16 Mbytes shared L2 cache for instructions and data. 
The node has a single NUMA node with 32 GB of RAM.  
Nodes are interconnected through the integrated 10GBit 
Ethernet devices provided by Cavium on the node boards. 

The node runs Ubuntu 20.04.1 LTS, and for the 
experiments, we have used gcc version 9.3.0 to compile the 
applications, and OpenMPI version 3.2 To test the 
MPI_Bcast collective algorithms, we use the Intel MPI. 
Benchmarks version 2019 with the option “cache off” to 
avoid distortion of results from repeated executions. We 
repeat at least four times each experiment.   

IV. EXPERIMENTAL RESULTS 
In this section, we present the results of our evaluations. 

Let’s us first take a look at the performance results when 
selecting the best configuration for each algorithm. After that, 
we proceed with the comparison. 

A. Configuration at intra-node level of the collective 
algorithms evaluated 
We describe which configuration we choose for each of 

the collective algorithms considered and the reasons for that. 
In addition, we present an expression for each algorithm to 
model the execution time of the critical path.  

1) Hier 
The critical path of this algorithm is composed of two 

broadcast operations. Both operations are of the entire 
message, so the lesser the number of broadcasts, the better the 
performance.  

 In this configuration, we can describe the time Th taken 
by this operation using Eq. 1, where m is the message size, s 
the number of allocated processes per node and n the total 
number of nodes. The sum of the functions intraNodeBcast(x, 
y) and interNodeBcast(x, y) is the cost of MPI_Bcast, a 
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message of x size to y processes, at intra- and inter-node level, 
respectively. 
𝑇" = 2	𝑥	𝑖𝑛𝑡𝑟𝑎𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑠) + 𝑖𝑛𝑡𝑒𝑟𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑛)    (Eq. 1) 

2) Multi-leader 
This algorithm in our experiments showed its best 

performance when configuring one leader per node and one 
shared-memory group per node. Consequently, 
communication at the intra-node level is performed only 
through shared memory.     

The critical path executing this algorithm is composed of 
one memory copy from the root process to the shared-
memory region, a broadcast operation to all the other leaders, 
a copy of the message to the shared-memory region and then 
a copy back of the result by each process of the group. In this 
way, there are always three memory copies of the whole 
message, no matter the number of processes (no matter then, 
the number of leaders within a node). The impact on 
scalability is determined only by the number of target 
processes in the broadcasting (the number of nodes). As 
expected, the lesser the number, the better the performance. 

The broadcast operation does not suffer a lack of 
scalability as the allgather and scatter operations when 
varying the number of processes at the intra-node level. For 
example, the degrading in performance for the MPI_Bcast 
between 6 and 16 processes for message sizes up to 4Mbytes 
is 3x. 

Eq. 2 shows the expression to model the critical path of 
this operation, where m is the message size, and n is the total 
number of nodes. The memcpy (x) function is the cost of 
copying a message of size x bytes and interNodeBcast(x, y) 
as before, the cost of time of MPI_Bcast of a message of size 
x to y processes in different nodes. 

𝑇8 = 3	𝑥	𝑚𝑒𝑚𝑐𝑝𝑦	(𝑚) + 𝑖𝑛𝑡𝑒𝑟𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑛)					(Eq. 2) 

3) Multi-lane 
In this case, the best configuration we obtained was when 

choosing 16 groups of 6 processes each.  
The critical path of the multi-lane algorithm is composed 

of one scatter, one allgather and a broadcast operation. The 
scatter and allgather operations can become the performance 
bottleneck at the intra-node level when increasing the number 
of participating processes. We have observed for 
MPI_Allgather between 6 and 16 processes at the intra-node 
level a variation up to 50x in the performance. 

For this reason, these two operations perform notably 
better on small groups, even though the message size would 
be more significant.  

In this configuration, Eq. 3 is the expression that models 
the execution time of the collective using the multi-lane 
algorithm. The sum of the functions scatter(x, y) and 
allgather(x, y) represents the cost of MPI_Scatter and 
MPI_Allgather respectively of a message of size x and y 
processes. The variable s is the total number of processes per 
node, and g is the number of groups per node. The sum of the 
function intraNodeBcast (x, y) and interNodeBcast (x, y) 
represents the cost of MPI_Bcast of a message of size x bytes 
to y processes intra and inter-node level, respectively. 
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B. Performance comparison results 
This section presents the comparison results of the three 

collective algorithms using their best configuration described 
in Section A and the native OpenMPI algorithm (Binomial) 
from the current MPI library in use. 

We can see in Figure 4, Figure 5, Figure 6 the average 
execution times for the MPI_Bcast operation when using the 
IMB Benchmarks, for the message ranges: 4bytes-256bytes, 
512bytes-64Kbytes and 128Kbytes-4Mbytes respectively. 
The hierarchical Hier algorithm works better for message 
sizes up to 2Kbytes. As can be seen in the figures, the Multi-
leader algorithms obtain the best performance for message 
sizes between 4Kbytes and 64Kbytes; the Multi-lane gets the 
best performance for message sizes greater or equal 
128Kbytes. 

Let’s analyze closer the results by comparing their critical 
path. In the case of the Hier and Multi-leader algorithms, the 
difference is related to the message distribution among 
processes at the intra-node level. There is a broadcast 
operation using the MPI native library in the first case, so 
performance is strictly dependent on the MPI current library 
in use. In the second case, the distribution is performed 
through shared memory. Moreover, the copy back of the 
messages are done in parallel, i.e. each process within a group 
makes its copy from shared-memory to the output buffer. For 
larger message sizes, a parallel copy seems to be a better 
option than broadcasting.  

The comparison between the performance of the multi-
leader and multi-lane can be divided into two parts. During 
the first part (up to message size 64Kbytes), we observe that 
multi-leader overperforms multi-lane. There is a cost that 
depends only on the message size and is related to the 
operations at the intra-node level: memory copies (multi-
leader) and the scatter + allgather operations (multi-lane).  
The other operations (broadcast) depend on the message size 
and the number of inter-node-level processes. In addition, 
taking a look at the performance of individual executions of 
the participating collectives, we observe that for message 
sizes lesser or equal to 64 Kbytes, the cost of the scatter and 
the allgather cannot compensate for the difference in 
broadcasting a smaller message size than in the multi-leader 
case. For message sizes over 64 Kbytes, the cost of 
broadcasting larger message sizes makes multi-lane more 
attractive. Recall that in the multi-lane algorithm, the 
message is partitioned among the processes members of the 
group, having parallel “lanes” of smaller messages to 
broadcast. 

We perform our evaluations in a mini-cluster with only 
four nodes, which prevent us from making conclusions about 
scalability. However, from the results and the model already 
presented, we can extrapolate some reasoning. When 
incrementing the number of nodes, for a message size given, 
at the intra-node level, the cost of time of the operations is 
constant. For this reason, the impact depends on the inter-
node operations exclusively. When comparing multi-leader 
and multi-lane, we can guess that the tendency of having 
better performance with multi-lane is consolidated, as this 
option always has smaller message sizes. There would be a 
trade-off in terms of bandwidth, but as stated in [5], many 
modern, high-performance systems can offer the facility for 
multi-lane communication. 



 

 
 Figure 4. MPI_Bcast average execution time comparison (more 
minor is better) for messages sizes between 4 bytes and 256 bytes 

using 384 processes distributed in 4 nodes. 

 
Figure 5. MPI_Bcast average execution time comparison (more 

minor is better) for messages sizes between 512 bytes and 64 
Kbytes using 384 processes distributed in 4 nodes. 

 
Figure 6. MPI_Bcast average execution time comparison (more 
minor is better) for messages sizes between 128 Kbytes and 4 

Mbytes using 384 processes distributed in 4 nodes. 

V. CONCLUSIONS AND FUTURE WORK 
There is a lot of research focused on the performance of 

MPI collective operations. They have been demonstrated to 
be the bottleneck of HPC applications in high-performance 
computing systems. In addition, the increasing number of 
cores per node in multicore clusters deserve to have a unique 
role in the hierarchy of the collective algorithms. The 
availability of shared memory and faster interconnection 
networks within a node claim to adapt those existing 
algorithms. 

Recently there have been many efforts in that direction. 
In this work, we focused on the broadcasting operation. To 
that aim, we have selected three hierarchical approaches, 
which we implemented, evaluated and compared with the 
OpenMPI default algorithm (Binomial). They are Multi-
leader, Multi-lane and Hier collective algorithms. We 
evaluated several configurations for them, varying, for 
example, the number of intra-node groups. The first one at 
the intra-node level communicates through shared memory 
which we implemented using the MPIWin facility from MPI-
3. The other two just decompose the collective into other 

collectives differentiating between intra- and inter-node 
communication.  

Our evaluations on an ARM-based mini-cluster 
demonstrated that Hier is a good option for small message 
sizes with 2x over the native. At the same time, Multi-leader 
can be a good choice for medium-sized messages with an 
average gain of 60% over the second-best. The Multi-lane 
approach works very well with large message sizes (30% 
better than the second-best), as the communication performs 
in parallel by partitioning the message. 

We have built an analytical model to express the different 
elements that impact the performance of the different 
approaches and explain the algorithms’ behavior. Using this 
model, we also make some reasonings about the scalability of 
the techniques.  In particular, we confirm the tendency of the 
Multi-lane approach to overperform the other algorithms 
evaluated when increasing the number of nodes, especially 
for large message sizes. 

We plan to extend our evaluations to a more significant 
number of nodes and other MPI libraries. In addition, we 
would like to increase the accuracy of our model by including 
architectural parameters like bandwidth and memory 
latencies. 
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