
 © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/PDP55904.2022.00043

Analyzing the performance of hierarchical
collective algorithms on ARM-based multicore

clusters
Gladys Utrera

Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona, Spain
gutrera@ac.upc.edu

Marisa Gil
Computer Architecture Department

Universitat Politècnica de Catalunya
Barcelona, Spain

marisa@ac.upc.edu

Xavier Martorell
Computer Architecture Department

Universitat Politècnica de Catalunya
Barcelona, Spain

xavim@ac.upc.edu

Abstract— MPI is the de facto communication standard
library for parallel applications in distributed memory
architectures. Collective operations performance is critical in
HPC applications as they can become the bottleneck of their
executions. The advent of larger node sizes on multicore clusters
has motivated the exploration of hierarchical collective
algorithms aware of the process placement in the cluster and the
memory hierarchy. This work analyses and compares several
hierarchical collective algorithms from the literature that do not
form part of the current MPI standard. We implement the
algorithms on top of OpenMPI using the shared-memory facility
provided by MPI-3 at the intra-node level and evaluate them on
ARM-based multicore clusters. From our results, we evidence
aspects of the algorithms that impact the performance and
applicability of the different algorithms. Finally, we propose a
model that helps us to analyze the scalability of the algorithms.

Keywords—MPI, shared-memory, collectives, HPC

I. INTRODUCTION

The message-passing model is the foundation of HPC
performance and MPI [1], the de facto library now and in the
future decade as it seems. The performance of collective
operations is under continuous research as they can become
the performance bottleneck of HPC applications. For
example, in their work, Chunduri et al. [2] characterize HPC
applications running on a production supercomputer and
identify MPI_Allreduce and MPI_Bcast as the two most time-
consuming operations. In addition, nodes in multicore
clusters are becoming significantly large enough to be treated
separately within hierarchical collective algorithms. In
particular, the availability of a shared-memory and faster
interconnection network within a node makes the adaptation
of those algorithms attractive.

There are some proposals done in the area which have not
been included yet in the MPI standard [3][4][5]. The design
of the algorithms is aware of the process placement in the
cluster and try to take advantage of shared memory and the
available parallelism within a node. In this work, we analyze
those proposals for the Broadcast operation (MPI_Bcast).
Our main objective is to detect the parameters that make them
more suitable depending on the scenario. In addition, we
define a model to compare the different strategies and explain
their behaviour. We build the implementations on top of
OpenMPI [6] and use the shared-memory facility provided by
the MPI-3 [1] at the intra-node level.

ARMs [7] architectures are designed to optimize the
execution with low energy costs, providing many cores by a
node to achieve this goal without performance loss. For this
reason, we considered this architecture as an exciting target
to perform our evaluations.

In summary, the main contributions of this work are:
• Implementation, evaluation and comparison of three

different hierarchical collective algorithms: Multi-
leader, Multi-lane and Hier. We evaluate their
performance varying several parameters like number of
leaders, number of lanes, message sizes. The
comparisons are made against the native OpenMPI
broadcast algorithm (Binomial in our case).

• Implementation of a hierarchical algorithm that makes
use of the MPIWin facility from MPI-3 standard.

• Construction of a model to compare the algorithms and
explain their behavior.

Our first results seem to confirm that hierarchical
algorithms that are aware of the underlying platform are
needed. We confirm that the currently available MPI libraries
demonstrate severe problems in that sense [5]. However, the
hierarchical algorithm needs to adapt to parameters other than
the size of nodes, like memory hierarchy and interconnection
networks.

The rest of the document is organized as follows: first, we
present other works related to the design and evaluation of
collective algorithms. Then, we explain our methodology and
describe the algorithms implemented and evaluated as well as
our model proposal. After that, we describe the evaluations
carried out and our findings. Finally, we present our
conclusions and future work.

II. RELATED WORK

There is a vast amount of research on the design of MPI
collective algorithms. We limit to enumerate some relevant
works related to the algorithms we compare and other
characteristics like MPI-3 shared memory. The authors in [3]
suggest reducing the bandwidth for the collectives, using
leader processes within a node. These leader processes are in
charge of collecting the information from all the group
processes through shared memory (implemented via mmap).
The approach works well for messages up to 256 Kbytes. The
mechanism is improved later for larger message sizes by
introducing pipelining [4].

The work presented by [5] indicates considerable room for
improvement with the MPI collectives in current libraries,
using multi-lane communication. Zhou et al. [8] demonstrate
that the use of shared-memory windows introduced by the

This work has been supported by the Spanish Ministry of Education
(PID2019-107255GB-C22) and the Generalitat de Catalunya (2017-SGR-
1414).

MPI-3 standard may improve the performance of the MPI
collective operations. Mamidala et al. [9] propose sharing
buffers for intra-node and inter-node communication to avoid
extra copies of data. They claim that they also achieve some
kind of overlap with network communication. The basic idea
seems promising. They show improvements of up to 43% for
messages up to 16 Kbytes.

III. METHODOLOGY
In this section, we describe first the algorithms evaluated

and our proposed model. Then we present the experimental
platform.

A. Hierarchical algorithms evaluated
We explore recently proposed algorithms that consider at

least one of the following characteristics: large node sizes,
shared-memory facility, use of available parallelism. The
selected algorithms are:

1) Multi-leader. This algorithm proposed by Bayatpour
et al. [3][4] organize collectives in groups of processes with a
leader process in charge of the “inter-group communication”.
In their work, they suggest adjusting the size of the group to a
socket. Communication within the processes of the group is
performed through shared memory. Figure 1 shows a
graphical representation of the algorithm with two groups with
four processes each. The entire message is copied onto the
shared-memory region and also sent to the other groups. Non-
root processes copy back the result from the shared-memory
region.

2) Multi-lane. This algorithm proposed by J. Traff et al.
[5] suggests having multiple lanes per group. The message is
partitioned and scattered among the processes of the group.
Then each partition is broadcasted between homologous
processes in other groups. Finally, the original message is built
within each group by an allgather operation. Figure 2 shows
the mechanism.

3) Hier. This algorithm is another alternative to Multi-
lane proposed in the work by J. Traff et al. [5] as well. It is
very similar to Multi-leader, but without using explicitly
shared memory. The collective is decomposed into two
broadcast operations: one “intra-group” and another “inter-
group”. Figure 3 shows how the algorithm works.

We explored several possibilities of group sizes within a
node for each case: one group (96 processes) to 16 groups (6
processes each group). We studied their performance and
selected the best configuration for the comparison.

B. Model
The motivation to construct a model is to compare the

algorithms and to explain the differences in the performance
of them. In addition, the model serves us to study scalability
to large clusters.

Figure 1. Multi-leader representation with two groups and four

processes per group

Figure 2. Multi-lane representation with two groups and four

processes per group (4 lanes)

Figure 3. Hier representation with two groups and four processes

per group.

C. Experimental platform

The experiments are carried out on a mini-cluster with 4
ARM-based nodes, each with two Cavium Thunder-X 88XX
CPUs, supporting the Arm AArch64 architecture and fully
compliant with the ARMv8 (64 bit) instruction set. Each CPU
has 48 cores at a frequency of 1.9 GHz, being the core’s cache
coherent by using the Cavium Coherent Processor
Interconnect. Each core has a private level 1 instruction cache
of 78 Kbytes and a private data cache of 32Kbytes. Each chip
has a 16 Mbytes shared L2 cache for instructions and data.
The node has a single NUMA node with 32 GB of RAM.
Nodes are interconnected through the integrated 10GBit
Ethernet devices provided by Cavium on the node boards.

The node runs Ubuntu 20.04.1 LTS, and for the
experiments, we have used gcc version 9.3.0 to compile the
applications, and OpenMPI version 3.2 To test the
MPI_Bcast collective algorithms, we use the Intel MPI.
Benchmarks version 2019 with the option “cache off” to
avoid distortion of results from repeated executions. We
repeat at least four times each experiment.

IV. EXPERIMENTAL RESULTS
In this section, we present the results of our evaluations.

Let’s us first take a look at the performance results when
selecting the best configuration for each algorithm. After that,
we proceed with the comparison.

A. Configuration at intra-node level of the collective
algorithms evaluated
We describe which configuration we choose for each of

the collective algorithms considered and the reasons for that.
In addition, we present an expression for each algorithm to
model the execution time of the critical path.

1) Hier
The critical path of this algorithm is composed of two

broadcast operations. Both operations are of the entire
message, so the lesser the number of broadcasts, the better the
performance.

 In this configuration, we can describe the time Th taken
by this operation using Eq. 1, where m is the message size, s
the number of allocated processes per node and n the total
number of nodes. The sum of the functions intraNodeBcast(x,
y) and interNodeBcast(x, y) is the cost of MPI_Bcast, a

root

leader leader

2.Inter-node
MPI_Bcast

shared-
memory

shared-
memory

1.copy copy

leader leader

Inter-node
2.MPI_Bcast1.MPI_Scatter 3.MPI_Allgather3.MPI_Allgather

root

root

leader leader

1.Inter-node
MPI_Bcast2.Intra-node

MPI_Bcast
2.Intra-node
MPI_Bcast

message of x size to y processes, at intra- and inter-node level,
respectively.
𝑇" = 2	𝑥	𝑖𝑛𝑡𝑟𝑎𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑠) + 𝑖𝑛𝑡𝑒𝑟𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑛) (Eq. 1)

2) Multi-leader
This algorithm in our experiments showed its best

performance when configuring one leader per node and one
shared-memory group per node. Consequently,
communication at the intra-node level is performed only
through shared memory.

The critical path executing this algorithm is composed of
one memory copy from the root process to the shared-
memory region, a broadcast operation to all the other leaders,
a copy of the message to the shared-memory region and then
a copy back of the result by each process of the group. In this
way, there are always three memory copies of the whole
message, no matter the number of processes (no matter then,
the number of leaders within a node). The impact on
scalability is determined only by the number of target
processes in the broadcasting (the number of nodes). As
expected, the lesser the number, the better the performance.

The broadcast operation does not suffer a lack of
scalability as the allgather and scatter operations when
varying the number of processes at the intra-node level. For
example, the degrading in performance for the MPI_Bcast
between 6 and 16 processes for message sizes up to 4Mbytes
is 3x.

Eq. 2 shows the expression to model the critical path of
this operation, where m is the message size, and n is the total
number of nodes. The memcpy (x) function is the cost of
copying a message of size x bytes and interNodeBcast(x, y)
as before, the cost of time of MPI_Bcast of a message of size
x to y processes in different nodes.

𝑇8 = 3	𝑥	𝑚𝑒𝑚𝑐𝑝𝑦	(𝑚) + 𝑖𝑛𝑡𝑒𝑟𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(𝑚, 𝑛)					(Eq. 2)

3) Multi-lane
In this case, the best configuration we obtained was when

choosing 16 groups of 6 processes each.
The critical path of the multi-lane algorithm is composed

of one scatter, one allgather and a broadcast operation. The
scatter and allgather operations can become the performance
bottleneck at the intra-node level when increasing the number
of participating processes. We have observed for
MPI_Allgather between 6 and 16 processes at the intra-node
level a variation up to 50x in the performance.

For this reason, these two operations perform notably
better on small groups, even though the message size would
be more significant.

In this configuration, Eq. 3 is the expression that models
the execution time of the collective using the multi-lane
algorithm. The sum of the functions scatter(x, y) and
allgather(x, y) represents the cost of MPI_Scatter and
MPI_Allgather respectively of a message of size x and y
processes. The variable s is the total number of processes per
node, and g is the number of groups per node. The sum of the
function intraNodeBcast (x, y) and interNodeBcast (x, y)
represents the cost of MPI_Bcast of a message of size x bytes
to y processes intra and inter-node level, respectively.

𝑇< = 𝑠𝑐𝑎𝑡𝑡𝑒𝑟	 =𝑚, >
?
@ + 𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟	 =𝑚, >

?
@ +

																						𝑖𝑛𝑡𝑟𝑎𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	 =D
?
, >
?
@ + 𝑖𝑛𝑡𝑒𝑟𝑁𝑜𝑑𝑒𝐵𝑐𝑎𝑠𝑡	(D

?
, 𝑛) (Eq. 3)

B. Performance comparison results
This section presents the comparison results of the three

collective algorithms using their best configuration described
in Section A and the native OpenMPI algorithm (Binomial)
from the current MPI library in use.

We can see in Figure 4, Figure 5, Figure 6 the average
execution times for the MPI_Bcast operation when using the
IMB Benchmarks, for the message ranges: 4bytes-256bytes,
512bytes-64Kbytes and 128Kbytes-4Mbytes respectively.
The hierarchical Hier algorithm works better for message
sizes up to 2Kbytes. As can be seen in the figures, the Multi-
leader algorithms obtain the best performance for message
sizes between 4Kbytes and 64Kbytes; the Multi-lane gets the
best performance for message sizes greater or equal
128Kbytes.

Let’s analyze closer the results by comparing their critical
path. In the case of the Hier and Multi-leader algorithms, the
difference is related to the message distribution among
processes at the intra-node level. There is a broadcast
operation using the MPI native library in the first case, so
performance is strictly dependent on the MPI current library
in use. In the second case, the distribution is performed
through shared memory. Moreover, the copy back of the
messages are done in parallel, i.e. each process within a group
makes its copy from shared-memory to the output buffer. For
larger message sizes, a parallel copy seems to be a better
option than broadcasting.

The comparison between the performance of the multi-
leader and multi-lane can be divided into two parts. During
the first part (up to message size 64Kbytes), we observe that
multi-leader overperforms multi-lane. There is a cost that
depends only on the message size and is related to the
operations at the intra-node level: memory copies (multi-
leader) and the scatter + allgather operations (multi-lane).
The other operations (broadcast) depend on the message size
and the number of inter-node-level processes. In addition,
taking a look at the performance of individual executions of
the participating collectives, we observe that for message
sizes lesser or equal to 64 Kbytes, the cost of the scatter and
the allgather cannot compensate for the difference in
broadcasting a smaller message size than in the multi-leader
case. For message sizes over 64 Kbytes, the cost of
broadcasting larger message sizes makes multi-lane more
attractive. Recall that in the multi-lane algorithm, the
message is partitioned among the processes members of the
group, having parallel “lanes” of smaller messages to
broadcast.

We perform our evaluations in a mini-cluster with only
four nodes, which prevent us from making conclusions about
scalability. However, from the results and the model already
presented, we can extrapolate some reasoning. When
incrementing the number of nodes, for a message size given,
at the intra-node level, the cost of time of the operations is
constant. For this reason, the impact depends on the inter-
node operations exclusively. When comparing multi-leader
and multi-lane, we can guess that the tendency of having
better performance with multi-lane is consolidated, as this
option always has smaller message sizes. There would be a
trade-off in terms of bandwidth, but as stated in [5], many
modern, high-performance systems can offer the facility for
multi-lane communication.

 Figure 4. MPI_Bcast average execution time comparison (more
minor is better) for messages sizes between 4 bytes and 256 bytes

using 384 processes distributed in 4 nodes.

Figure 5. MPI_Bcast average execution time comparison (more

minor is better) for messages sizes between 512 bytes and 64
Kbytes using 384 processes distributed in 4 nodes.

Figure 6. MPI_Bcast average execution time comparison (more
minor is better) for messages sizes between 128 Kbytes and 4

Mbytes using 384 processes distributed in 4 nodes.

V. CONCLUSIONS AND FUTURE WORK
There is a lot of research focused on the performance of

MPI collective operations. They have been demonstrated to
be the bottleneck of HPC applications in high-performance
computing systems. In addition, the increasing number of
cores per node in multicore clusters deserve to have a unique
role in the hierarchy of the collective algorithms. The
availability of shared memory and faster interconnection
networks within a node claim to adapt those existing
algorithms.

Recently there have been many efforts in that direction.
In this work, we focused on the broadcasting operation. To
that aim, we have selected three hierarchical approaches,
which we implemented, evaluated and compared with the
OpenMPI default algorithm (Binomial). They are Multi-
leader, Multi-lane and Hier collective algorithms. We
evaluated several configurations for them, varying, for
example, the number of intra-node groups. The first one at
the intra-node level communicates through shared memory
which we implemented using the MPIWin facility from MPI-
3. The other two just decompose the collective into other

collectives differentiating between intra- and inter-node
communication.

Our evaluations on an ARM-based mini-cluster
demonstrated that Hier is a good option for small message
sizes with 2x over the native. At the same time, Multi-leader
can be a good choice for medium-sized messages with an
average gain of 60% over the second-best. The Multi-lane
approach works very well with large message sizes (30%
better than the second-best), as the communication performs
in parallel by partitioning the message.

We have built an analytical model to express the different
elements that impact the performance of the different
approaches and explain the algorithms’ behavior. Using this
model, we also make some reasonings about the scalability of
the techniques. In particular, we confirm the tendency of the
Multi-lane approach to overperform the other algorithms
evaluated when increasing the number of nodes, especially
for large message sizes.

We plan to extend our evaluations to a more significant
number of nodes and other MPI libraries. In addition, we
would like to increase the accuracy of our model by including
architectural parameters like bandwidth and memory
latencies.

ACKNOWLEDGEMENT
The authors acknowledge the support of the BSC

(Barcelona Supercomputing Centre), especially to Filippo
Mantovani and his team.

REFERENCES
[1] MPI. Forum. Available at: https://www.mpi-forum.org (2021).
[2] Chunduri,S.,Parker,S.,Balaji,P.,Harms,K.,Kumaran, K.:

Characterization of mpi usage on a production supercomputer. In:
SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 386–400 (2018). DOI
10.1109/SC.2018.00033

[3] Bayatpour, M., Chakraborty, S., Subramoni, H., Lu, X., Panda, DKD:
Scalable reduction collectives with data partitioning-based multi-
leader design. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’17.
Association for Computing Machinery, New York, NY, USA (2017).
DOI 10.1145/3126908.3126954. URL ht-
tps://doi.org/10.1145/3126908.3126954

[4] Bayatpour, M., Maqbool Hashmi, J., Chakraborty, S., Subramoni, H.,
Kousha, P., Panda, DK: Salar: Scalable and adaptive designs for large
message reduction collectives. In: 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 12–23 (2018). DOI
10.1109/CLUSTER.2018.00014

[5] J. L. Träff and S. Hunold, “Decomposing MPI. Collectives for
Exploiting Multi-lane Communication,” 2020 IEEE International
Conference on Cluster Computing (CLUSTER), 2020, pp. 270-280,
doi: 10.1109/CLUSTER49012.2020.00037.

[6] OpenMPI. Available at: https://www.open-mpi.org// (2021).
[7] ARM architecture. Available at: https://www.arm.com (2021).
[8] Zhou, H., Gracia, J., Schneider, R.: Mpi collectives for multicore

clusters: Optimized performance of the hybrid mpi+mpi parallel codes.
In: Proceedings of the 48th International Conference on Parallel
Processing: Workshops, ICPP 2019. Association for Computing
Machinery, New York, NY, USA (2019). DOI
10.1145/3339186.3339199. URL ht-
tps://doi.org/10.1145/3339186.3339199

[9] Mamidala, A.R., Vishnu, A., Panda, DK: Efficient shared memory and
rdma based design for mpi allgather over infiniband. In: B. Mohr, J.L.
Tr ̈aff, J. Worrin- gen, J. Dongarra (eds.) Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 66–75. Springer
Berlin Heidelberg, Berlin, Heidelberg (2006)

0

50

100

150

200

250

300

350

4 8 16 32 64 128 256

tim
e (

mi
cro

se
co

nd
s)

message size (bytes)

native multi-leader multi-lane hier

0

500

1000

1500

2000

2500

3000

512 1024 2048 4096 8192 16384 32768 65536

tim
e (

mi
cro

se
co

nd
s)

message size (bytes)

native
multi-leader
multi-lane
hier

0

10000

20000

30000

40000

50000

60000

131072 262144 524288 1048576 2097152 4194304

tim
e (

mi
cro

se
co

nd
s)

message size (bytes)

native
multi-leader
multi-lane
hier

