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ABSTRACT This paper proposes a decentralized control scheme that mitigates floods in urban drainage
systems (UDSs). First, we develop a partitioning algorithm of the UDS relying on a graph model of the
system. Once this is done, we design a local controller for each partition based on the replicator dynamics
model (a set of differential equations that describes the evolution of a population of players involved in a
strategic game). The decentralized nature of the proposed strategy makes it suitable for applying it in large-
scale systems. Stability of the closed-loop system is proved by using Lyapunov theory. Furthermore, we
simulate the performance of the decentralized control scheme in two case studies. One of them models part
of the Bogotá (Colombia) stormwater UDS. Finally, we compare the proposed technique with two widely
used methods for-real time control of UDSs, i.e., constrained linear quadratic regulator (LQR) and model
predictive control (MPC).

INDEX TERMS Urban drainage systems, population dynamics, decentralized control, replicator dynamics,
resource allocation.

I. INTRODUCTION For the reasons described above, flooding mitigation has
gained broad research attention. There are two main ap-
proaches: the first one consists in upgrading UDSs infras-
tructure [4] (e.g., by the construction of new sewer collectors
or re-sizing of the existing ones). The second approach is
to use real-time control techniques that take advantage of
the system’s actuators to modify flow conditions throughout
the UDS. Implementation of real-time controllers is appeal-
ing because it is more cost effective than enlarging exist-
ing drainage infrastructures. Therefore, several control tech-
niques have been proposed [5]–[9]. One common approach is
to develop simulation tools of UDSs and employing them as
black-box models in heuristic-based optimization algorithms
[10]–[13]. However, these algorithms lack a rigorous analysis
that guarantees, for example, their stability. Another strategy
relies on optimal control. For instance, [14] employs a multi-
variable linear quadratic regulator (LQR) that uses all the
available storage capacity of the system and maximizes its
outflow to treatment plants. Other authors have also used
model predictive control (MPC) for UDSs management [15]–
[19].

Urban drainage systems (UDSs) collect, store, and transport 
residual water to wastewater treatment plants and water 
bodies. UDSs are composed of an arrangement of channels 
which are connected by inspection and collection chambers. 
The wastewater flow along UDS is regulated by using mea-
suring equipment (e.g., level and flow sensors) and actuators 
(e.g., valves and gates).

Normally, UDSs are designed for critical rain and demand 
scenarios up to certain magnitude [1]. However, in some 
situations, the wastewater flow that is conveyed by the UDS 
surpasses its capacity. For this reason, the system becomes 
saturated and flooding happens. In fact, some recent stud-
ies have shown that flood risk is increasing, specially in 
large cities [2], due to several factors, e.g., an increment 
of magnitude of extreme precipitation as a result of global 
warming, a rapid growth of population that stresses drainage 
infrastructures, and construction of civil infrastructure that 
has reduced the soil capacity to absorb rainwater [3]. Floods 
have severe impacts including loss of human life, destruction 
of property, and health problems.
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A widespread problem of most of the aforementioned tech-
niques is that they require the design of a central authority
in charge of the whole UDS. This centralized controller is
responsible for handling all the actuators and processing
information from all system’s sensors. Since the size of UDSs
is generally of large-scale nature, implementing a centralized
controller is problematic. Instead, it is desirable to design
decentralized control schemes, i.e., schemes with multiple
controllers, where each one of them has partial information of
the UDS. Decentralized control of UDS has also been tackled
in the literature. For instance, using rule based controllers,
as in [20], where fuzzy logic is employed to manage the
wastewater level of storage units. Nevertheless, this approach
does not consider any coordination of storage units, which
largely reduces the benefits of the strategy [21]. On the other
hand, some authors have used distributed versions of model
predictive control to overcome the requirement of a central-
ized authority (e.g., see [22]). However, in these schemes
the computation of control signals requires high-performance
processors because of the complexity of existing algorithms.

Recently, game theory and population dynamics based
controllers have gained relevance due to their low com-
putational burden and simplicity for designing decoupled
schemes using them (e.g., see [23]–[29]). In fact, there are
multiple engineering problems that have been addressed
by means of game theory and population dynamics. For
instance, coordination of robot networks [30], wind farm
optimization [31], demand response in electrical grids [32],
traffic assignment [33], charging of large populations of
electric vehicles [34], control of epidemics [35], and so forth.
It is important to point out that population dynamics based
controllers have been applied to water allocation problems.
For instance, [36] poses a game between the water resource
manufacturers and regulators to find an efficient water alloca-
tion in a river basin. In particular, population dynamics have
also been used to control UDSs. As described in [37], this
kind of control strategy has shown suitable performance for
mitigating floods.

Population dynamics play the key role in the control strat-
egy that we propose in this article. Specifically, we develop
a decentralized architecture that divides the UDS in sub-
systems handled by local controllers. Each one of these con-
trollers implements a population dynamics algorithm, which
is designed to make an efficient wastewater allocation among
the storing units of the sub-system. Efficiency of the proposed
strategy is proved using Lyapunov analysis. Furthermore,
we test the performance of the controlled UDS by means
of simulations under two scenarios. One of them is a case
study that uses the model of part of the Bogotá (Colombia)
stormwater UDS.

It is worth mentioning that, compared to [23] and [37],
where a similar control strategy is used, our paper has three
main advantages: First, the formalization of a partitioning
algorithm that covers a wider range of UDSs topologies.
Second, the wastewater allocation process performed by each
local controller takes into account the available capacity of all

storing units of the handled sub-system (this is not the case of
the strategy proposed in [23] and [37] where only upstream
storing units are involved in the resource allocation process).
Finally, we have removed avoidable constraints on the control
signals that are often imposed when implementing popula-
tion dynamics based algorithms (specifically, in population
dynamics based controllers, the sum of control actions are
generally required to remain constant along the time). These
constraints unnecessarily reduce the degrees of freedom of
control actions.

Regarding partitioning methods that divide UDSs into sub-
systems, some procedures have been reported in the liter-
ature. For instance, [38] proposes a cascade configuration
of MPC controllers. First, the UDS is divided into sub-
systems from downstream to upstream reservoirs. Then, the
control strategy starts by computing the outputs of controllers
in charge of downstream sub-systems. Once this is done,
information is sent to upstream sub-systems so that their
controllers can compute the control signals. A drawback
of this strategy is that parallelization is not possible since
upstream controllers require the information of downstream
controllers. Another partitioning method is the one described
in [39], where the authors develop an algorithm based on the
Strahler number. The idea is to decompose the UDS in hierar-
chically interconnected sub-systems to increase the system’s
resilience. This strategy is intended to be implemented at
the planning stage of the UDS rather than in its operation
stage. Hence, the resulting partitions do not fit well with real-
time controllers. On the other hand, [40] develops a gossip-
based algorithm that coordinates local controllers in a UDS
divided into sub-systems. However, the partitioning method
employed by the authors can only be applied to UDSs with
tree topologies. Furthermore, [41] devises graph partitioning
algorithms to group sections of a UDS into semi-distributed
sub-systems. Although these algorithms perform well to ac-
celerate accurate simulations of UDSs, they are not designed
for control purposes. Other authors use a geographical prox-
imity criterion for UDSs partitioning [42], which minimizes
the cost of the communication infrastructure required by
each local controller. Nevertheless, this criterion does not
take into account the information requirements of the con-
trollers. Hence, the performance of the closed-loop system
may worsen. Another partitioning paradigm that emerges in
optimal control strategies for UDSs consists in dividing the
optimization problem into sub-problems (which are related
to sub-systems of the UDS) [22]. Each sub-problem is solved
by a local controller while all the solutions are coordinated
by means of a distributed algorithm (e.g., the alternating
direction method of multipliers (ADMM) [43]). The main
drawback of this paradigm is that coordination algorithms
require a communication network that connects all sub-
systems (generally, such networks are modeled as connected
graphs). In addition, convergence rates of distributed meth-
ods are quite lower compared to centralized approaches. Fi-
nally, some papers also propose to separate the collection of
wastewater and surface run-off at the planning stage (see e.g.,

2



[44]). This division alleviates the risk of overflows. However,
separate drainage systems require higher infrastructure and
maintenance costs [45]. Beyond the drawbacks that we have
pointed out for each of the cited partitioning methods, the
key problem is that none of these methods produces sub-
systems with topologies that fit the controller proposed in
this article. Thus, our partitioning algorithm is a central piece
in the design of the management strategy presented in this
paper. We want to highlight that our partitioning algorithm
is oriented to decompose the UDS into sub-systems that use
a local control policy, where each sub-system is capable to
compute the control signals independently of the state of
the other sub-systems. This fact offers inherent resilience to
failures (which is typical of decentralized control schemes)
because the malfunction of a subsystem does not compromise
the performance of the entire UDS.

In addition, the fact that the control strategy developed
in this paper uses population dynamics leads to advantages
compared to other decentralized methods. On the one hand,
population dynamics only requires the evaluation of a set of
algebraic expressions to update the control actions. There-
fore, compared to optimization-based techniques, our ap-
proach avoids numerical issues raised by the employment
of optimization solvers. Indeed, in Section VII, we show
by means of simulations that the strategy proposed in this
article outperforms some optimization-based approaches and
decreases the computational burden because of the different
control paradigm employed. On the other hand, the ana-
lytical nature of population dynamics allows us to perform
mathematical analysis for guaranteeing key features of the
closed-loop controlled system such as stability. This feature
is missing in some UDS control methods, especially in those
based on heuristics.

The remainder of this paper is organized as follows: Sec-
tion II covers notation and some general concepts about
population dynamics. In Section III, we describe the problem
statement and the model of the UDS employed for develop-
ing the control strategy. Sections IV and V show the parti-
tioning algorithm and the design of local controllers using
population dynamics, respectively. In addition, a stability
analysis of the controlled system is presented in Section VI.
Furthermore, Section VII discusses the simulation results
obtained when the proposed strategy is implemented in two
case studies. This section also presents comparisons with
commonly used methods for real-time control of UDSs.
Specifically, we compare our method with two optimization-
based controllers, i.e., constrained LQR and MPC. Finally,
some conclusions are drawn in Section VIII.

II. PRELIMINARIES
A. NOTATION

Nonnegative and positive real numbers are denoted by R≥0

and R>0, respectively. Finally, Rn≥0 is the set of vectors of
size n whose entries belong to R≥0.

B. REPLICATOR DYNAMICS MODEL
The problem of flooding can be mitigated if wastewater is
efficiently distributed in the storing units (chambers) of the
UDSs. Consequently, an appropriate wastewater allocation
mechanism is required. If we consider the sewage in the UDS
as a resource, traditional resource allocation methods (such as
those based on static optimization) are not suitable to address
the problem under consideration because the resource is not
static. Indeed, UDS is continuously receiving (e.g., from
rain) and discharging sewage. Thus, a dynamic resource
allocation mechanism, as the case of the replicator dynamics,
is required. Broadly speaking, replicator dynamics describe
how a mass of individuals (e.g., animals, agents) tries to
efficiently distribute itself among different strategies (e.g.,
habitats, actions). Efficiency of the distribution is measured
by means of payoff functions known as fitness functions.

For a better understanding of the role that replicator dy-
namics play in wastewater allocation, let us consider the
following analogy. Assume that the mass of individuals is the
wastewater of the UDS and the strategies are the chambers
of the system. Under these assumptions, the key idea is
to design proper fitness functions in such a way that the
replicator dynamics allocate the sewage (mass of individuals)
in emptier chambers (more efficient strategies).

Since the control strategy proposed in this article is based
on the replicator dynamics, it is necessary to describe its
mathematical model (introduced by Taylor and Jonker in
1978 [46]). The replicator equation is a classic model that
captures the natural selection process in a population of
individuals that can choose between different habitats or
strategies. The key elements of the model are: A set of
available strategies, which is denoted by S = {1, . . . , s}
(in this case we have s strategies); a population mass P ; a
set of variables p1(t), . . . , ps(t), where pi(t) describes the
portion of individuals choosing the i-th strategy at time t;
and a population state p(t) = [p1(t), . . . , ps(t)]

>. Formally,
the replicator dynamics model is given by the following
differential equation:

ṗi(t) = βpi(t)
(
fi(t)− f̄(t)

)
, i ∈ S, (1)

where fi(t) is a real-valued fitness function, which captures
the payoff perceived by the individuals playing the i-th strat-
egy, f̄(t) = 1

P

∑
j∈S pj(t)fj(t) is a weighted average fit-

ness, and β ∈ R>0 is the population growth rate. Notice that
according to (1), populations of most successful individuals
(i.e., individuals that play strategies with higher-than-the-
average fitness functions) tend to grow, while least successful
populations decrease. This behavior is closely related with
the biological mechanism of natural selection, i.e., survival-
of-the-fittest. One important property of this model is next
described in Lemma 1.

Throughout this article, bold and calligraphic letters denote 
vectors and sets, respectively. Variables that depend on time 
are explicitly written as functions of t, e.g., x(t). As usual, the 
cartesian product of two sets A and B is denoted by A × B, 
and the number of elements of the set A is denoted by |A|.
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Lemma 1 ( [47]). The simplex

∆ =

{
p(t) ∈ Rn≥0 :

∑
i∈S

pi(t) = P

}
is positively invariant under replicator dynamics (1).

The importance of Lemma 1 lies in the fact that it guar-
antees the evolution of the population state p(t) in the non-
negative orthant provided that p(0) ∈ Rn≥0. Furthermore, the
population mass P is preserved along the time. These two
properties of p(t) will be exploited in the controller design.

Another key feature of the replicator equation is that the fit-
ness functions of non-extinct strategies1 reach the same value
at equilibrium. Formally, if p∗i , p

∗
j ∈ R>0, then f∗i = f∗j ,

for all i, j ∈ S, where p∗i and f∗i denote the values of pi(t)
and fi(t) in steady-state, respectively. This fact motivates the
use of replicator dynamics in problems where the objective
is to attain consensus with respect to a certain variable. For
instance, the temperature of the rooms in a building [48], the
frequency of electric generators [49], the illuminance level
in offices with several lamps [23], or the remaining storage
capacity in multi-tank systems, which is the case of this
article.

Including Populations Upper Bounds
The population of individuals playing each one of the avail-
able strategies is lower-bounded by zero under the replicator
dynamics in (1) (cf., Lemma 1). Nevertheless, this portion is
not bounded above by any quantity lower than the population
mass P . Although upper bounds are not considered in (1),
they can be included by adding in the formulation of the
replicator equation a term related to the maximum size of
each population, i.e., a term that prevents pi(t) to exceed an
upper bound p̄i. The described modification, which has been
explored in [50], is specifically done in the fitness functions
as follows:

fi(t) = f̂i(t) + εbi(pi(t), p̄i), i ∈ S, (2)

where f̂i(t) is the payoff associated with the i-th strategy
without considering upper bound, ε ∈ R≥0 is a small
nonnegative scale factor, and bi(pi(t), p̄i) is a function that
prevents pi(t) to exceed the upper bound p̄i. Modified fitness
function has the following characteristics:
P1. bi : [0, p̄i) × (0,m) 7→ R is a Lipschitz continuous

and monotonically decreasing function with respect to
its first argument.

P2. bi(pi(t), p̄i)→ −∞ as pi(t)→ p̄i.
The behavior of the population playing the i-th strategy

(i.e., pi(t)) under the fitness functions in (2) can be analyzed
considering two cases. The first case is when the variable
pi(t) is far from p̄i. Notice that it is possible to choose a
sufficient small value for ε such that the effect of bi(pi(t), p̄i)
on the fitness fi(t) is negligible if pi(t) is far from p̄i. In

1Let δ ∈ R>0. The strategy i ∈ S is called non-extinct (resp. extinct) if
pi(t) → δ (resp. pi(t) → 0) as t→ +∞.

this case, the fitness function is quite close to the payoff
associated with the i-th strategy without considering an upper
bound, i.e., fi(t) ≈ f̂i(t) according to (2). The second case
is when pi(t) tends to the value p̄i. Under this scenario,
although the value of ε is small, the function εbi(pi(t), p̄i)
takes an arbitrarily large negative value due to P2. Therefore,
the fitness fi(t) → −∞. Notice that since fi(t) → −∞,
the payoff perceived by the i-th population is lower than the
average, i.e., fi(t) < f̄(t). Hence, ṗi(t) < 0

(
cf., (1)

)
, and

thus pi(t) does not exceed its corresponding upper bound
p̄i. Summarizing, pi(t) ∈ [0, p̄i). The previous discussion
is illustrated in Figure 1.

p̄i
pi(t)

εibi(pi(t), p̄i)

value of the
barrier function

Figure 1. Behavior of the function bi(pi(t), p̄i), which prevents the
population playing the i-th strategy moves outside its upper bound p̄i.

III. URBAN DRAINAGE SYSTEMS
A. PROBLEM STATEMENT AND OVERVIEW OF THE
PROPOSED SOLUTION
We address the problem of overflooding in UDSs. This prob-
lem occurs when the wastewater exceeds the storage capacity
of any of the UDS’s collectors. Therefore, overflooding can
be avoided if wastewater is efficiently allocated among all the
UDS’s collectors by handling the system’s actuators (valves
in our case). Reaching an efficient wastewater allocation is
the key idea of the proposed control strategy. Specifically,
we seek that all collectors have the same remaining capacity
for storing wastewater. In other words, our objective is trying
that all UDS’s collectors have the same empty space during
mostly of the time. If this happens, no collector will be
overloaded compared to the other ones. Therefore, no flood-
ing occurs provided that there is available storage capacity
in the UDS. On the other hand, UDSs are of large scale
nature. Hence, decentralized control strategies suit best for
these kinds of systems, i.e., we are looking to design a set of
controllers, where each controller is in charge of part of the
UDS. A constraint that must be satisfied by local controllers
is that they are only able to use information from the sub-
system they are handling. For attaining the control objective
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while meeting the local information constraint, we divide our
strategy in two main stages: first, the UDS is partitioned in
sub-systems that have some desired characteristics, and then
a local controller based on population dynamics is designed
for each sub-system obtained in the partitioning stage.

The partitioning stage uses a graph model of the UDS
while the controllers design is based on a dynamic model
derived from the mass conservation principle. Let us describe
these two models.

B. GRAPH MODEL OF A UDS

Using the ideas in [23], we represent each collector of the
UDS as a reservoir. A UDS with m reservoirs is modeled
as a connected and directed graph G = (V, E), where V =
{1, . . . ,m} is the set of nodes of the graph, and E ⊆ V × V
is the set of edges. In our case, the nodes are the reservoirs
of UDS, and the edges represent connections between these
reservoirs, e.g., the edge (i, j) ∈ E models that there is a
connection allowing wastewater flow from the i-th reservoir
to the j-th reservoir. We also assume that each edge has a
valve that controls wastewater flow from one reservoir to
another.

Assumption 1. The UDS does not have bidirectional flows,
i.e., if (i, j) ∈ E , then (j, i) /∈ E .

C. DYNAMIC MODEL OF RESERVOIRS
We use the Muskingum model [51], which is based on the
principle of mass conservation (this principle is widely used
in the literature for control-oriented models [52]). Specifi-
cally, we represent each channel of the UDS as a reservoir
containing a wastewater volume vi(t). Besides, we assume
that each channel has a set of output gates whose opening
percentage can be controlled. Dynamics of the wastewater
volume of the i-th reservoir can be described by the following
differential equation:

v̇i(t) = qin,i(t)− qout,i(t), (3)

where qin,i(t) and qout,i(t) are the reservoir inflow and out-
flow, respectively. Modeling of inflow and outflow depends
on the topology of the sub-system to which the reservoir
belongs. In Section V, we delve into the dynamic model of
reservoirs depending on sub-systems topologies.

It is worth noting that convergent topologies have been
addressed before in [23] and [37]. However, these papers do
not consider the possibility that a UDS has sub-systems with
divergent topology. Therefore, our approach covers a wider
range of UDSs architectures.

IV. SYSTEM PARTITIONING
Partitioning consists in dividing the whole UDS in sub-
systems belonging to the two topologies described before.
Besides, partitioning must satisfy the following constraints:
C1. All resulting sub-systems must belong to one and only

one topology (convergent or divergent). This is required
because we only design two types of controllers, one per
each topology.

C2. All reservoirs of the UDS must belong to at least one
sub-system. If one reservoir does not belong to any sub-
system, its wastewater volume would not be controlled.

C3. Each edge of the graph that models the UDS must
belong to one and only one sub-system. This constraint
prevents ambiguity in control actions as explained in
Section V.

Any partitioning algorithm satisfying these three con-
straints is suitable for the splitting of UDS. In particular,
we propose an algorithm consisting in three main steps: 1)
identification of divergent topologies; 2) removal of the edges
that belong to divergent topologies; and 3) identification of
convergent topologies.

Before stating the partitioning algorithm, let us define two
concepts related to directed graphs.

Definition 3. In-neighborhood of a node: Let G = (V, E)
be a directed graph. The in–neighborhood of the node i ∈ V ,
which is denoted byN in

i (G), is the set of nodes satisfying the
following property:

N in
i (G) = {j ∈ V : (j, i) ∈ E}.

Notice that if G is a graph that models a UDS, then N in
i (G)

is the collection of all reservoirs having an outflow that goes
to the i-th reservoir.

The UDS can be divided into sub-systems. Each sub-
system belongs to one of the following two topologies.

Definition 1. (Divergent topology) The divergent topology 
involves n + 1 reservoirs, and represents a situation in 
which there are n > 1 receptor reservoirs and only one 
source reservoir. Consequently, in a divergent topology there 
are n manipulated flows diverging from a unique source 
reservoir. Figure 2(a) shows a scheme representing such a 
topology. Formally, a sub-system with divergent topology can 
be represented as a graph where the nodes are the source 
reservoir and the receptor reservoirs, and the edges are the 
links between the source and receptor reservoirs. ♦

Definition 2. (Convergent topology) The convergent topol-
ogy involves n + 1 reservoirs, and represents a situation in 
which there are n ≥ 1 source reservoirs and only one recep-
tor reservoir. Consequently, in a convergent topology there 
are n manipulated flows converging to a unique receptor 
reservoir. Figure 2(b) shows a convergent topology. Formally, 
a sub-system with divergent topology can be represented as 
a graph where the nodes are the receptor reservoir and the 
source reservoirs, and the edges are the links between the 
source and receptor reservoirs. ♦

Remark 1. If one sub-system has only one source reservoir 
and one receptor reservoir (see Figure 2(c)), then it can be 
represented as a convergent topology. Notice that divergent 
topologies require at least two receptor reservoirs.
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. . . . . .

︸ ︷︷ ︸

n receptor reservoirs

1 source reservoir

. . . . . .

︷ ︸︸ ︷

n source reservoirs

1 receptor reservoir

1 receptor reservoir

1 source reservoir

(a) (b) (c)

Figure 2. Types of possible sub-systems: (a) divergent topology, and (b) convergent topology. (c) Special case associated with the convergent topology.

Definition 4. Out-neighborhood of a node: Let G = (V, E)
be a directed graph. The out–neighborhood of the node i ∈
V , which is denoted byN out

i (G), is the set of nodes satisfying
the following property:

N out
i (G) = {j ∈ V : (i, j) ∈ E}.

Notice thatN out
i (G) is the collection of all reservoirs having

an inflow that comes from the i-th reservoir.

Using these definitions, we describe the three stages of our
partitioning algorithm.

A. STEP 1 (IDENTIFICATION OF DIVERGENT
TOPOLOGIES)
According to Definition 1, a sub-system having divergent
topology has one source node and several (at least two) re-
ceptor nodes. Hence, for identifying all the UDS subsystems
with divergent topology, it is enough to find all the source
nodes having more than one out-neighbor.

Formally, the set of source nodes of divergent topologies,
which we denote by Vs, is

Vs =
{
i ∈ V :

∣∣N out
i (G)

∣∣ > 1
}
.

The receptor nodes associated with node i ∈ Vs areN out
i (G).

Thus, a sub-system with divergent topology associated to
the source node i ∈ Vs is the graph Gdivi =

(
Vdivi , Edivi

)
.

The nodes of Gdivi are the source node and its receptors, i.e.,
Vdivi = {i} ∪ N out

i (G). Besides, the edges of Gdivi are the
connections between the source node and its receptors, i.e.,
Edivi = {i} × N out

i (G).

B. STEP 2 (REMOVAL OF THE EDGES BELONGING TO
DIVERGENT TOPOLOGIES)
From the graph that models the UDS, we create a new
graph subtracting all edges belonging to divergent topologies.
Formally, the new graph is G′ = (V, E ′), where the set of
nodes is the same as the one of G, and the set of edges is
E ′ = E/

(⋃
i∈Vs E

div
i

)
.

C. STEP 3 (IDENTIFICATION OF CONVERGENT
TOPOLOGIES)
Similarly as in Step 1, we identify the sub-systems having
convergent topology. However, we now use the new graph
G′. We recall that a sub-system having divergent topology
has one receptor node and at least one source node (see
Definition 2). Hence, for identifying all the UDS subsystems
with convergent topology, it is enough to find all the receptor
nodes having at least one in-neighbor.

Formally, the set of receptor nodes of convergent topolo-
gies, which we denote by Vr, is

Vr =
{
i ∈ V :

∣∣N in
i (G′)

∣∣ ≥ 1
}
.

The source nodes associated with node i ∈ Vs are N in
i (G′).

Hence, a sub-system with convergent topology associ-
ated to the receptor node i ∈ Vr is the graph Gcnvi =
(Vcnvi , Ecnvi ). The nodes of Gcnvi are the receptor node and
its sources, i.e., Vcnvi = {i}∪N in

i (G′). Besides, the edges of
Gcnvi are the connections between the receptor node and its
sources, i.e., Ecnvi = {i} × N in

i (G′).
All the partitioning algorithm steps described above are

summarized in Figure 3.

D. PARTITIONING ALGORITHM EXAMPLE
To see how the partitioning algorithm works, we apply it in
the UDS example shown in Figure 4(a), whose associated
graph is depicted in Figure 4(b). The three steps of the
partitioning algorithm are illustrated in Figure 5. Next, we
describe each step.

Figure 5(a) shows the result of applying the first step of
the algorithm. All nodes having more than one out-neighbor
(in this case, nodes 1 and 4) are source nodes of a divergent
topology, i.e., Vs = {1, 4}. Receptors of node 1 are nodes 3
and 4, and receptors of node 4 are nodes 5 and 6. Therefore,
there are two sub-systems with divergent topology: Gdiv1

shown in blue, and Gdiv4 shown in red.
Figure 5(b) shows the result of applying the second step

of the algorithm. All edges of such sub-systems with diver-
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input

G (graph that models the
UDS)

step 1.1

identifiy source nodes
(nodes having more than one

out-neighbor)

identify receptor nodes
(out-neighbors of each source
node indentified in step 1.1)

step 1.2

sub-systems with divergent
topology formed by one

source node and at
least two receptor nodes

result

Step 1. Identification of

divergent topologies

Step 2. Removal of edges

of divergent topologies

input

• G

• subsystems having
divergent topology

step 2.1

remove from G all edges that
connect source nodes with

receptor nodes of sub-systems
with divergent topology

G′ (a graph equal to G but
without the edges of divergent

topologies)

result

Step 3. Identification of

convergent topologies

input

G′

step 3.1

identifiy receptor nodes
(nodes having at least one

in-neighbor)

identify source nodes
(in-neighbors of each receptor
node indentified in step 3.1)

step 3.2

sub-systems with convergent
topology formed by one
receptor node and at
least one source node

result

Figure 3. Diagram of the proposed partition algorithm. Algorithm’s outputs are enclosed in thick line boxes.

1 2

3 4

5 6

7

valve 1 valve 2 valve 3

valve 4 valve 5

valve 6 valve 7

1 2

3 4

5 6

7

G :

(a) (b)

Figure 4. (a) UDS topology of the illustrative example, and (b) its graph representation.

sub-systems with convergent topology: Gcnv4 shown in green,
and Gcnv7 shown in purple. Notice that, for this step, we use
the graph G′, which is obtained after subtracting the edges
belonging to divergent topologies from the graph that models
the UDS.

gent topology (which are depicted using dashed lines) are 
subtracted from the original graph.

Finally, Figure 5(c) shows the result of applying the third 
step of the algorithm. Nodes having at least one in-neighbor 
(in this case, nodes 4 and 7) are receptor nodes of convergent 
topologies, i.e., Vr = {4, 7}. Node 2 is the source of node 4, 
and nodes 5 and 6 are sources of node 7. Thus, there are two
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1 2

3 4

5 6

7

N out
1

(G) = {3, 4} N out
2

(G) = {4}

N out
3

(G) = ∅ N out
4

(G) = {5, 6}

N out
5

(G) = {7} N out
6

(G) = {7}

N out
7

(G) = ∅

1 2

3 4

5 6

7

G′
: 1 2

3 4

5 6

7

N in
2
(G ′

) = ∅N in
1
(G ′

) = ∅

N in
3
(G ′

) = ∅ N in
4
(G ′

) = {2}

N in
6
(G ′

) = ∅N in
5
(G ′

) = ∅

N in
7
(G ′

) = {5, 6}

(a) (b) (c)

Figure 5. Steps of the partition algorithm: (a) identification of divergent topologies; (b) removal of edges of divergent topologies; and (c) identification of convergent
topologies.

V. DECENTRALIZED CONTROL OF UDS
Once the partition of the UDS is done, a controller is syn-
thesized for each sub-system. As discussed in Section III-A,
the control goal is to prevent overflows. Hence, wastewater
must be efficiently allocated among the available reservoirs
by controlling the system’s valves. In our case, efficient
wastewater allocation is achieved when the reservoirs of UDS
have the same remaining capacity.

A. LOCAL CONTROLLERS FOR SUB-SYSTEMS WITH
FLOW DIVERGENT TOPOLOGY

1) Dynamic model of sub-systems with flow divergent
topology

As stated in Definition 1, sub-systems with flow divergent
topology have one source reservoir and n receptor reservoirs
(see Figure 2(a)). For convention, we use the indices 1, . . . , n,
for identifying receptor reservoirs, while the source reservoir
is marked with the index n+ 1.

As explained in Section III-C, we represent each collector
of the UDS as a reservoir of volume v̄i containing a wastew-
ater volume vi(t). The model assumes that the outflows of a
reservoir are proportional to its wastewater volume (for more
details see [23]).

The differential equation describing the change along the
time of the source reservoir’s wastewater volume is

v̇n+1(t) = qinn+1(t)︸ ︷︷ ︸
external inflow

− γoutn+1(t)vn+1(t)︸ ︷︷ ︸
external outflow

−
n∑
i=1

kn+1xi(t)vn+1(t)︸ ︷︷ ︸
outflow to i-th

receptor reservoir

,
(4)

where kn+1 > 0 is a parameter that depends on the geom-
etry of the source reservoir, xi(t) ∈ [0, 1] is the opening
percentage of the valve that connects the source reservoir
with the i-th receptor reservoir

(
xi(t) = 0 means the valve

is completely closed, and xi(t) = 1 means a completely
opened valve

)
, qinn+1(t) ≥ 0 is the external inflow, and

γoutn+1(t) ≥ 0 is a coefficient related to the external outflow

of the reservoir2.
The dynamic model of the receptor reservoirs’ wastewater

volume is given by

v̇i(t) = kn+1xi(t)vn+1(t)︸ ︷︷ ︸
inflow from source reservoir

+ qini (t)︸ ︷︷ ︸
external inflow

− γouti (t)vi(t)︸ ︷︷ ︸
external outflow

,

(5)
for all i = 1, . . . , n. Again, qini (t) ≥ 0 is the external inflow,
and γouti (t) ≥ 0 is a coefficient related to the external outflow
of the i-th receptor reservoir.

Figure 6 shows a schematic representation of a sub-system
with flow divergent topology. Notice that all the involved
variables and parameters of the dynamic model described
before are depicted in this figure.

vn+1(t)

x1(t) xn(t)

qinn+1(t)

v̄n+1

γ
out

n+1(t)vn+1(t)

kn+1x1(t)vn+1(t) kn+1xn(t)vn+1(t)

v1(t)

v̄1

qin1 (t)

γ
out

1 (t)v1(t)

vn(t)

v̄n

γ
out

n
(t)vn(t)

qinn (t)

Figure 6. A sub-system with divergent topology.

2External inflows and outflows are wastewater flows coming/going
from/to either other sub-systems or the environment, e.g., due to raining
events or leakages.
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2) Replicator dynamics-based controller for flow divergent
topology
Based on the replicator dynamics model introduced in
Section II-B, we design local controllers for each UDS
sub-system having a flow divergent topology. Replicator
dynamics-based controllers are fully characterized by a set
of strategies, a population mass and a set of fitness functions.
Let us define each one of these elements.

In our game, each player has two options: increase the
opening percentage of one of the tanks’ valves, or decrease
such a percentage for all the valves. If the player chooses
the first option, then it must also select one of the n valves
that connect the source tank with its n receptor tanks. Thus,
we have n + 1 available strategies, i.e., the strategy set is
S = {1, . . . , n+ 1}.

Strategies 1, . . . , n, increase the opening percentage of the
corresponding receptor tank, i.e., if a player selects the i-th
strategy, where i = 1, . . . , n, then the opening percentage
of the i-th receptor tank’s valve increases. In this regard, the
population playing this i-th strategy is exactly the opening
percentage of the i-th receptor tank’s valve, i.e., xi(t).

On the other hand, if a player adopts the strategy n+ 1, it
decreases the opening percentage of all valves. In this case,
the population playing the strategy n+ 1, i.e., xn+1(t), does
not have a physical meaning. However, it is equal to the sum
of the remaining opening percentages of all valves.

According to previous definitions, the mass of the popula-
tion involved in the replicator dynamics model is the sum
of the opening capacity of the n valves that connect the
source tank with its receptor tanks. Since we assume that
xi(t) ∈ [0, 1], for all i = 1, . . . , n, then the population mass
is equal to n.

Regarding fitness functions, the higher the remaining vol-
ume of a receptor tank, the more appealing to increase its
wastewater inflow by increasing its valve opening percent-
age. This fact is captured in the following fitness functions:

fi(t) =

{
v̄i − vi(t) + εbi (xi(t), 1) if i = 1, . . . , n
v̄i − vi(t) if i = n+ 1.

(6)
Notice that we have added a barrier term εbi (xi(t), 1) (as
explained in Section II-B) to the first n fitness functions.
In this barrier term, the upper bound of xi(t) is 1, because
it is the maximum opening percentage. Notice also that the
fitness function of the strategy n + 1 models the fact that
if the remaining capacity of the source tank is high, then it
is appealing to increase the wastewater stored in the source
tank by decreasing the opening percentage of all valves.

Under previous assumptions, the replicator dynamics-
based controller is given by the following differential equa-
tions:

ẋi(t) = βxi(t)
(
fi(t)− f̄(t)

)
, i = 1, . . . , n+ 1, (7)

where β is a tuning parameter of the controller, and f̄(t) =
1
n

∑n+1
j=1 xj(t)fj(t).

B. LOCAL CONTROLLERS FOR SUB-SYSTEMS WITH
FLOW CONVERGENT TOPOLOGY
1) Dynamic model of sub-systems with flow convergent
topology
As stated in Definition 2, sub-systems with flow convergent
topology have n source reservoirs and one receptor reser-
voir (see Figure 2(b)). For convention, we use the indices
1, . . . , n, for identifying source reservoirs, while the receptor
reservoir is marked with the index n+ 1.

The differential equations describing the change along the
time of the source reservoirs’ wastewater volume are

v̇i(t) = qini (t)︸ ︷︷ ︸
external
inflow

− γouti (t)vi(t)︸ ︷︷ ︸
external outflow

− kixi(t)vi(t)︸ ︷︷ ︸
outflow to

receptor reservoir

, i = 1, . . . , n,

(8)
where ki is a parameter that depends on the geometry of
the i-th source reservoir, and xi(t) ∈ [0, 1] is the opening
percentage of the valve that connects the i-th source reservoir
with the receptor reservoir.

On the other hand, the dynamic model of the receptor
reservoir’s wastewater volume is given by

v̇n+1(t) =

n∑
i=1

kixi(t)vi(t)︸ ︷︷ ︸
inflow form i-th
source reservoir

+ qinn+1(t)︸ ︷︷ ︸
external inflow

− γoutn+1(t)vn+1(t).︸ ︷︷ ︸
external outflow

(9)
Figure 7 shows a schematic representation of a sub-system

with flow convergent topology. Notice that all the involved
variables and parameters of the dynamic model described
before are depicted in this figure.

vn+1(t)

x1(t) xn(t)

qinn+1(t)

v̄n+1

γ
out

n+1(t)vn+1(t)

k1x1(t)v1(t) knxn(t)vn(t)

v1(t)

v̄1

qin1 (t)

γ
out

1 (t)v1(t)

vn(t)

v̄n

γ
out

n
(t)vn(t)

qinn (t)

Figure 7. A sub-system with convergent topology.

Remark 2. The variables of the divergent topology model
(see Figure 6) are the same as the ones used in the divergent
case (see Figure 7). Nonetheless, the equations that describe
both models ((4) and (5) for divergent topologies, and (8) and
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(9) for convergent ones) are different. This fact is because
while in the convergent model we have n receptor reservoirs
and one source, in the divergent model we have n sources
and only one receptor reservoir.

2) Replicator dynamics-based controller for flow convergent
topology
Let us define the parameters of the replicator dynamics-based
controller for each sub-system having a flow convergent
topology.

Similarly as in the flow divergent case, we have a strategy
set given by S = {1, . . . , n+ 1}. The population playing the
i-th strategy, where i = 1, . . . , n, is the opening percentage
of the i-th source tank’s valve, i.e., xi(t). Besides, the pop-
ulation playing the strategy n + 1, i.e., xn+1(t), is equal to
the sum of the remaining opening percentages of all valves.
Therefore, the population mass is again equal to n.

Fitness functions must capture the fact that if the remaining
volume of a source tank is low, then it is more appealing
to increase the opening percentage of its valve. Having this
idea in mind, we define the fitness functions as minus the
remaining volume of each tank, i.e.,

fi(t) =

{
− (v̄i − vi(t)) + εbi (xi(t), 1) if i = 1, . . . , n
− (v̄i − vi(t)) if i = n+ 1.

(10)
As in the flow divergent case, we have added the same barrier
term εbi (xi(t), 1) to the first n fitness functions.

Finally, the replicator dynamics-based controller for sub-
systems with flow convergent topology is given by the equa-
tions in (7), with the same average fitness.

Remark 3. The local controller of each sub-system handles
the valves that belong to the subsystem. Therefore, if a valve
(or what is the same, an edge of the graph that models the
UDS) belongs to more than one sub-system, there would be
ambiguity because more than one controller would make
decisions about the valve opening percentage. This is the
reason for the partitioning constraint C3 (see Section IV).

VI. STABILITY ANALYSIS
This section analyzes the stability of each sub-system con-
trolled via replicator dynamics. We focus our analysis in
a special case where the opening percentages of the sub-
systems’ valves satisfy the following assumptions:

Assumption 2. Let x∗i , . . . , x
∗
n, be the opening percentages

of a sub-system’s valves at equilibrium. The value x∗i > 0,
for all i = 1, . . . , n. Thus, none of the sub-system’s valves
are fully closed at equilibrium.

Assumption 3. The value of x∗i is such that the barrier terms
in (6) and (10) can be neglected in the computation of the
fitness functions. Hence, x∗i is far from being fully opened.

Furthermore, we make the following assumption on the
external inflows and outflows of sub-systems.

Assumption 4. Consider a sub-system having either conver-
gent or divergent topology. External inflows and coefficients
related to external outflows are constants, i.e., qini (t) = q̂ini
and γouti (t) = γ̂outi , for all i = 1, . . . , n+ 1.

A. FLOW DIVERGENT TOPOLOGY CASE

1) Equilibrium point

Under Assumptions 2-4, the equilibrium point of a sub-
system with flow divergent topology controlled via popula-
tion dynamics has an important property, which is given in
the following proposition.

Proposition 1. Let Assumptions 2–4 hold. If
∑n+1
i=1 xi(0) =

n, then the equilibrium point of the closed-loop system given
by (4), (5) and (7) is

v∗i = v̄i −
∑n+1
j=1

(
γ̂outj v̄j − q̂inj

)∑n+1
j=1 γ̂

out
j

, i = 1, . . . , n+ 1,

x∗i =
γ̂outi v∗i − q̂ini
kn+1v∗n+1

, i = 1, . . . , n,

x∗n+1 = n−
n∑
j=1

x∗j ,

(11)
where v∗i is the wastewater volume of the i-th reservoir
at equilibrium. Notice that the remaining capacities of all
reservoirs are the same at equilibrium, i.e., v̄i − v∗i =∑n+1

j=1 (γ̂out
j v̄j−q̂inj )∑n+1

j=1 γ̂
out
j

, for all i = 1, . . . , n+ 1.

Proof. Equilibrium condition for (4) and (5) is given by

0 = q̂inn+1 − γ̂outn+1v
∗
n+1 − kn+1v

∗
n+1

n∑
j=1

x∗j

0 = kn+1x
∗
i v
∗
n+1 + q̂ini − γ̂outi v∗i , i = 1, . . . , n,

(12)
where we have used the values of inflows and outflows given
in Assumption 4.

On the other hand, due to Assumption 2, all fitness func-
tions reach the same value at equilibrium (see (7)). Moreover,
fitness functions are equal to the remaining capacity of each
reservoir for Assumption 3 (see (6)). Therefore, all sub-
system’s reservoirs have the same remaining capacity at
equilibrium, i.e., v̄i−v∗i = v̄j−v∗j , for all i, j = 1, . . . , n+1.
Using this fact and after some algebraic manipulations on
(12), we obtain the first equations of the equilibrium point
given in (11), i.e., v∗i , for all i = 1, . . . , n+ 1, and x∗i , for all
i = 1, . . . , n. The last equation of (11), i.e., the equilibrium
state x∗n+1, is computed using the fact that

∑n+1
j=1 xj(0)

by assumption and
∑n+1
j=1 x

∗
j =

∑n+1
j=1 xj(0) (according to

Lemma 1).

The fact that all reservoirs have the same remaining capac-
ity at equilibrium implies a fairly distribution of wastewater
throughout the sub-system.
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2) Stability

The next result guarantees the stability of the equilibrium
point given in Proposition 1 for a sub-system with divergent
topology controlled via replicator dynamics.

Theorem 1. Let Assumptions 2–4 hold. Besides, assume that
kn+1 < 4γ̂outi , for all i = 1, . . . , n. If the initial conditions of
the controller in (7) satisfy

∑n+1
i=1 xi(0) = n and xi(0) > 0,

for all i = 1, . . . , n + 1, then the equilibrium point stated
in (11) is asymptotically stable under the dynamics of the
closed-loop system given in (4), (5) and (7).

Proof. The sub-system controlled via replicator dynamics,
which is given in (4), (5) and (7), can be written in error
coordinates with respect to the equilibrium point in (11) as
follows:

Σ1 :



ėvi(t) = − γ̂out
i evi(t) + kn+1evn+1(t)

(
exi(t) + x∗i

)
+ kn+1v

∗
n+1exi(t), i = 1, . . . , n,

ėvn+1(t) = − γ̂out
n+1evn+1(t)

− kn+1evn+1(t)

n∑
j=1

(
exj (t) + x∗j

)
− kn+1v

∗
n+1

n∑
j=1

exj (t),

Σ2 :



ėxi(t) = β (exi(t) + x∗i )

(
fi(t)

− 1

n

n+1∑
j=1

(
exj (t) + x∗j

)
fj(t)

)
,

i = 1, . . . , n+ 1,
(13)

where evi(t) = vi(t) − v∗i and exi
(t) = xi(t) − x∗i , for all

i = 1, . . . , n+ 1. Notice that Σ1 is the UDS sub-system and
Σ2 is the controller.

We use Lyapunov theory to prove stability of the equilib-
rium point. For Σ1, consider the positive definite function

V1

(
ev(t)

)
=

1

2kn+1v∗n+1

n+1∑
i=1

e2
vi(t),

where ev(t) =
[
ev1(t), . . . , evn+1

(t)
]>

. The derivative of

V1

(
ev(t)

)
along the trajectories of Σ1 is V̇1

(
ev(t)

)
=

Ψ1

(
ev(t)

)
+
∑n+1
i=1 evi(t)exi

(t), where

Ψ1

(
ev(t)

)
=−

γ̂outn+1

v∗n+1kn+1
e2
vn+1

(t)

− 1

v∗n+1

n∑
i=1

(
4γ̂outi − xi(t)kn+1

4kn+1

)
e2
vi(t)

− 1

v∗n+1

n∑
i=1

xi(t)
(
evn+1

(t)− evi(t)
)2

.

For computing V̇1

(
ev(t)

)
, we have used the fact that

∑n+1
i=1 xi(t) = n, for all t ≥ 0 (Lemma 1 guarantees

this property since
∑n+1
i=1 xi(0) = n by assumption). The

function Ψ1

(
ev(t)

)
is negative definite since xi(t) ∈ [0, 1]

(this constraint also follows from Lemma 1 and by the effect
of the barrier functions given in (6)) and kn+1 < 4γ̂outi by
assumption.

On the other hand, consider the following positive definite
function (which is based on the relative entropy function
[53]) for Σ2:

V2

(
ex(t)

)
= − 1

β

n+1∑
i=1

x∗i ln

(
exi

(t) + x∗i
x∗i

)
, (14)

where ex(t) =
[
ex1

(t), . . . , exn+1
(t)
]>

. Positive definite-

ness of V2

(
ex(t)

)
can be proven using Jensen’s inequality

as follows: since the logarithm function is strictly concave
and given the fact that

∑n+1
i=1 xi(t) =

∑n+1
i=1 x

∗
i = n, we

have

V2

(
ex(t)

)
≥ −

n+1∑
i=1

x∗i ln


n+1∑
i=1

exi
(t) +

n+1∑
i=1

x∗i

n+1∑
i=1

x∗i



= −n ln


n+1∑
i=1

(
xi(t)− x∗i

)
+
n+1∑
i=1

x∗i

n+1∑
i=1

x∗i


= −n ln (1) = 0.

In addition, according to Jensen’s inequality, V2

(
ex(t)

)
= 0

only at xi(t) = x∗i , for all i = 1, . . . , n+ 1. Therefore, V2 is
positive definite.

The derivative of V2

(
ex(t)

)
along the trajectories of Σ2 is

V̇2

(
ex(t)

)
= Ψ2

(
ex(t)

)
−
∑n+1
i=1 evi(t)exi(t), where

Ψ2

(
ex(t)

)
=

n∑
i=1

εi

(
bi (xi(t), 1)− bi (x∗i , 1)

)
exi

(t).

The function Ψ2

(
ex(t)

)
≤ 0 since bi (xi(t), 1) is mono-

tonically decreasing with respect to xi(t). Furthermore, al-
though the value of Ψ2

(
ex(t)

)
does not depend on exn+1(t),

Ψ2

(
ex(t)

)
is negative definite. Notice that Ψ2

(
ex(t)

)
= 0

only if exi
(t) = 0, for all i = 1, . . . , n. This condition

implies that exn+1(t) = 0 (which follows from the fact that
exn+1(t) = −

∑n
i=1 exi(t) according to Lemma 1).

Based on the results described above, we propose the Lya-
punov function candidate V

(
ev(t), ex(t)

)
= V1

(
ev(t)

)
+

V2

(
ex(t)

)
. The derivative of this function along the trajecto-

ries of the system in (13) is V̇
(
ev(t), ex(t)

)
= Ψ1

(
ev(t)

)
+
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Ψ2

(
ex(t)

)
, which is negative definite. Thus, we can con-

clude that the equilibrium point in (11) is asymptotically
stable.

Theorem 1 is relevant since it guarantees an appropriate
performance of the proposed controller. Notice that the result
stated in this theorem implies that if a reservoir has a lower
remaining capacity than the other reservoirs (e.g., if a reser-
voir is going to overflow), then the controller tries to mitigate
this undesirable situation by reallocating the wastewater in
all reservoirs of the sub-system. This wastewater reallocation
is performed in such a way that all reservoirs have the same
remaining capacity.

B. FLOW CONVERGENT TOPOLOGY CASE
For sub-systems with flow convergent topology, we have
similar results than those shown for the flow divergent case.

1) Equilibrium point
As stated in the next proposition, a sub-system with flow
convergent topology controlled via replicator dynamics has
an equilibrium point in which the remaining capacities of all
reservoirs are the same.

Proposition 2. Let Assumptions 2–4 hold. If
∑n+1
i=1 xi(0) =

n, then the equilibrium point of the closed-loop system given
by (7)–(9) is

v∗i = v̄i −
∑n+1
j=1

(
γ̂outj v̄j − q̂inj

)∑n+1
j=1 γ̂

out
j

, i = 1, . . . , n+ 1,

x∗i =
q̂ini − γ̂outi v∗i

kiv∗i
, i = 1, . . . , n,

x∗n+1 = n−
n∑
j=1

x∗j .

(15)
Notice that, in this equilibrium point, the remaining capaci-
ties of all reservoirs (i.e., v̄i − v∗i , for all i = 1, . . . , n + 1)
are the same.

Proof. The proof follows similar ideas that the ones used in
the proof of Proposition 1.

As in the flow divergent case, the equilibrium point in
(15) implies a well-balanced wastewater distribution among
the reservoirs of the sub-system. Indeed, notice that if all
reservoirs have the same remaining capacity, there are no
overflows in any reservoir.

2) Stability
The next theorem shows that the replicator dynamics based
controller drives the sub-system to the equilibrium point
given in (15).

Theorem 2. Let Assumptions 2–4 hold. In addition, let v̄ and
k be positive real values, and assume that v̄i = v̄, for all
i = 1, . . . , n + 1, and ki = k, for all i = 1, . . . , n. Further-
more, assume that k < 4γ̂out

n+1

n . If the initial conditions of the

controller in (7) satisfy
∑n+1
i=1 xi(0) = n and xi(0) > 0, for

all i = 1, . . . , n+ 1, then the equilibrium point stated in (15)
is asymptotically stable under the dynamics of the closed-
loop system given in (7)–(5).

Proof. Since all reservoir volumes are the same by assump-
tion, then there exists a positive real value v∗ such that
v∗i = v∗, for all i = 1, . . . , n+ 1 (see (15)). Taking

V
(
ev(t), ex(t)

)
=

1

2kv∗

n+1∑
i=1

e2
vi(t) + V2

(
ex(t)

)
,

where V2

(
ex(t)

)
is defined in (14), as Lyapunov function

candidate and following the same procedure of the proof of
Theorem 1, we can conclude that the derivative of V

(
ev(t)

)
along the trajectories of the closed-loop system is negative
definite. Therefore the equilibrium point is asymptotically
stable.

For the case of flow convergent topology, notice that we
impose additional constraints (compared to the flow diver-
gent case) to guarantee stability of the desired equilibrium
point. Specifically, we require that all reservoirs have the
same volumes v̄i and the same coefficients ki. These con-
straints are met for sub-systems where all reservoirs have the
same size and geometry.

Once the stability has been proven for both divergent
and convergent topology sub-systems, we test the proposed
control strategy in a case study.

VII. CASE STUDIES AND DISCUSSION
We test the performance of the proposed decentralized con-
troller in two simulation scenarios. Furthermore, we compare
our method with two techniques that have been employed
in real-time control for UDSs: decentralized LQR with con-
straints (e.g., see [14], [54]) and centralized MPC (e.g., see
[55]).

For synthesizing the decentralized LQR scheme, we use
the partitioning algorithm described in Section IV and design
local LQRs per each sub-system. On the other hand, for
designing the MPC strategy, we use the information of the
whole UDS to compute the control signals. Hence, we notice
that the technique developed in this article and the decentral-
ized LQR scheme have disadvantages compared to MPC in
terms of the information availability (i.e., local vs global).
However, there are two reasons for using centralized MPC
in our comparison. First, we want to compare our method
with another that might guarantee an optimal performance
as is the case of MPC. Second, the global information re-
quirement of centralized MPC can be relaxed by decoupling
the optimization problem that MPC solves at each step and
then using a distributed optimization algorithm (e.g., ADMM
[43]). This relaxation allows MPC to use local information at
the cost of increasing the computation time since distributed
optimization algorithms have slower convergence rates than
their centralized counterparts.
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A. CASE STUDY 1
The first scenario corresponds to the UDS shown in Figure
4(a). This UDS has seven reservoirs and four sub-systems
(as explained in Section IV-D). Half of the sub-systems
has flow divergent topology and the other half has flow
convergent topology (see Figure 5). For this case study, all
reservoirs have the same parameters, i.e., ki = 0.005 s−1 and
v̄i = 274.80 m3, for all i = 1, . . . , 7 (these parameters have
been taken from [23]). We simulate a rainfall scenario where
flooding typically occurs. The direct runoff hydrograph for
each reservoir, which models the external inflows, is shown in
Figure 8(c). These runoff hydrographs are Gaussian functions
whose parameters are randomly chosen as follows: center is
in the interval 0.5–0.75 hours, width is in the interval 0–0.5
hours, and amplitude is in the interval 0–0.6 m3/s. We also
assume that there are no leakages at reservoirs. Therefore,
external outflows of reservoirs 1, 2, 4, 5, and 6 are only
due to wastewater flowing to other sub-systems of the UDS,
while external outflows of reservoirs 3 and 7 correspond to
the wastewater flowing outside the UDS (e.g., to wastewater
treatment plants or to water bodies). In this case, we assume
that γout3 (t) = γout7 (t) = 0.005 s−1.

the cost function is defined by
∑
i v
>
i vi, where the sum is

over the reservoirs that belong to the corresponding sub-
system in the case of LQR, and over all the reservoirs of
the UDS in the case of MPC. Notice that this cost function
penalizes fuller reservoirs. For both controllers, we constraint
the opening percentage of valves to belong to the interval
[0, 1], i.e., xi ∈ [0, 1]. Moreover, the sample time is 5 seconds
for LQR, while for MPC, the sample time is 1 minute, the
prediction horizon is 60 steps, and the control horizon is 10
steps. The performance of the controlled UDS is shown in
Figure 9. Capacities of the UDS’s reservoirs are depicted
in Figure 9(a) (for LQR) and in Figure 9(b) (for MPC). In
addition, control signals are shown in Figure 9(c) (for LQR)
and in Figure 9(d) (for MPC).

Using the decentralized LQR, flooding occurs. However,
it is significantly lower than the one obtained without using
any controller. Specifically, the flooding is 18.2 m3, which
corresponds to a decrease of flooding of 75% compared to the
baseline scenario (no control). Although the system behaves
better under LQR than without control, the performance of
LQR is worse than the decentralized controller based on
replicator dynamics, which completely eliminates flooding
under the same simulation conditions.

MPC also avoids flooding. Indeed, it is worth noting that
the control signals generated when the centralized MPC is
employed (Figure 9(d)) are quite similar to those produced
under the decentralized controller based on replicator dy-
namics. This fact occurs even when the centralized MPC
uses global information (i.e., information of the whole UDS)
to compute the control inputs while the replicator dynamics
only employ local information (i.e., information of each sub-
system).

Furthermore, we want to highlight that both LQR and
MPC strategies try to equalize the remaining capacities of
reservoirs (see Figures 9(a) and 9(b)) in the same way as
the replicator dynamics do. This happens even though neither
LQR nor MPC controllers are designed using a cost function
that explicitly penalizes the differences between the remain-
ing capacities of reservoirs (the employed cost function only
penalizes fuller reservoirs as was explained when the design
parameters of LQR and MPC were presented).

Finally, to provide a quantitative comparison of the reduc-
tion of flooding using the different control techniques, i.e.,
local controllers based on replicator dynamics, decentralized
LQR and centralized MPC, we simulate the UDS of case
study 1 under the same conditions described before, but
increasing the rain intensity. To do so, we amplify the peak
of the Gaussian functions that model the rain by the factors
given in Table 1. The obtained flooding is also shown in
that table. Notice that comparing both decentralized strate-
gies, the controller based on replicator dynamics outperforms
LQR. For instance, in the heaviest rain scenario, the percent-
age of flooding reduction under replicator dynamics is 51%
compared to LQR. On the other hand, although centralized
MPC shows the best performance, the decentralized control
strategy based on replicator dynamics keeps flooding at levels

Evolution of the remaining capacities of each UDS reser-
voir is shown in Figure 8(a). In this case, all valves of 
the system are completely opened without any controller 
acting on them. If the remaining capacity of some reservoir 
reaches the dotted line, it indicates that the reservoir is full 
of wastewater. On the other hand, if the remaining capac-
ity of some reservoir is below the dotted line, it implies 
that wastewater exceeds the capacity of the reservoir, and 
thus flooding occurs. Notice that, for the uncontrolled case 
shown in Figure 8(a), there is an overflow in reservoir 7. In 
fact, the total overflow is around 71.3 m3. This undesirable 
situation is avoided by using the decentralized controllers 
based on replicator dynamics with parameters β = 0.0006, 
ε = 0.0001, and barrier functions bi = 

i 

1 . Evolution
x (t)−1

of the remaining capacities of reservoirs under the proposed 
control strategy is shown in Figure 8(b), while the control 
signals (which correspond to the opening percentages of 
system’s valves) are depicted in Figure 8(d). Notice that, 
under the replicator dynamics-based controller, there are no 
overflows in the UDS. The reason for this improved perfor-
mance is that the wastewater is properly allocated among all 
the UDS reservoirs. The key point of the achieved wastewater 
allocation is that the proposed controller takes advantage 
of the capacities of upstream reservoirs. In the uncontrolled 
scenario, upstream reservoirs are promptly emptied causing 
downstream reservoirs receive a large amount of wastewater. 
Hence, reservoir 7 gets overloaded. On the contrary, when the 
controller is applied, valves of upstream reservoirs are closed 
(e.g., see valve 1 and valve 3 in Figure 8(d)). Therefore, these 
reservoirs are more filled than in the uncontrolled scenario 
causing that the flow downstream is relieved and flooding is 
avoided.

For this case study, we also test a decentralized LQR 
scheme and a centralized MPC synthesis. For both controllers
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Figure 8. (a) Remaining capacities of the UDS reservoirs when no controller is used; (b) remaining capacities of reservoirs when the decentralized controller based
on replicator dynamics is applied; (c) rainfall at each reservoir; and (d) opening percentages of valves for the replicator dynamics based controller.

close to the optimal. At this point, it is worth mentioning that
the replicator dynamics based controller benefits from lower
computation requirements compared to MPC. In fact, the
replicator dynamics use a simple model given by a set of first-
order ordinary differential equations, while MPC requires
solving an optimization problem at each time step. Moreover,
features such as modularity provided by a decentralized
scheme also represent a key advantage from the controller
based on replicator dynamics with respect to the centralized
MPC approach. Finally, the need of merging information of
the entire system in a centralized controller could represent a
drawback with respect to a non-centralized control approach,
which does not need such a strong condition over the infor-
mation availability.

B. CASE STUDY 2
We also analyze the performance of the proposed control
technique in a case study based on a real scenario. To do that,
we simulate a portion of the Bogotá (Colombia) stormwater
UDS whose description is presented in [37]. Figure 10 shows

Table 1. Comparison of controllers’ performance for case study 1

Rain Flooding [m3]
amplifying Without Replicator LQR MPC

factor control dynamics
0.95 55.02 0 0 0
1.00 71.28 0 18.19 0
1.05 87.54 13.61 51.93 0
1.10 103.80 39.67 80.17 15.23

the structure of this UDS, which has 16 reservoirs. Parame-
ters of each reservoir are given in Table 2.

Simulation conditions reproduce a heavy rains scenario,
where the external inflow of each reservoir is due to direct
runoff. Figure 11 shows the hydrographs that models these
runoffs. Similarly as in the previous case study, hydrographs
are Gaussian functions whose parameters lie in the following
intervals: center is between 0.5–0.75 hours; width is between
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Figure 9. (a) Remaining capacities of the UDS reservoirs under decentralized LQR; (b) remaining capacities of reservoirs under centralized MPC; (c) opening
percentages of valves for decentralized LQR; and (d) opening percentages of valves for centralized MPC.

systems with flow convergent topology (each sub-system is
associated with a color in Figure 10). Table 3 summarizes
the structure of the identified sub-systems. For each one of
them, we implement a replicator dynamics based controller
with parameters β = 0.0003, ε = 5, and barrier functions

1
xi(t)−1 . Simulation results of the controlled UDS are shown
in Figure 13. Additionally, the control inputs (opening per-
centage of the reservoirs’ valves) are shown in Figure 14.
The first thing that we notice in Figure 13 is that, unlike
the uncontrolled case, there are no big differences in the
remaining capacities of reservoirs. This behavior is due to
the fact that the replicator dynamics based controllers seek
to equalize the remaining capacities as proven in Section
VI. For instance, see the behavior of reservoirs 14 (brown
line) and 15 (orange line), and their corresponding valves.
From hour 1–2, reservoir 14 has lower remaining capacity
than reservoir 15. Thus, during this time, the valve that
allows reservoir 14 to evacuate wastewater is almost fully
opened while valve of reservoir 15 is closed. This fact allows
reservoirs 14 and 15 to reach almost the same remaining

0–0.5 hours; and amplitude is between 0–0.22 m3/s. Figure 
12 shows the behavior of the UDS without control (i.e., 
reservoirs’ valves are completely open during all the time) 
for a time window of 3.5 hours. Throughout the simulation, 
wastewater only fills half of most reservoirs. In contrast, 
reservoirs 12 and 14 are overloaded during the first half of 
the simulation. Indeed, the remaining capacity of reservoir 
14 is negative during this first half implying that flooding 
occurs. The total flooding is around 797.1 m3. This situation 
is mainly due to two facts: first, reservoir 14 is a downstream 
reservoir, which receive wastewater from a big portion of 
the UDS; second, reservoir 14 is the one with the lowest 
coefficient ki, i.e., it has the lowest capacity to evacuate 
wastewater (according to (8), the larger the coefficient ki, 
the larger the outflow of the i-th reservoir trough its output 
valve).

Once the baseline (corresponding to the behavior of the 
system without control) has been established, we implement 
the control strategy proposed in Section V. First, we apply 
the partitioning algorithm of Section IV and identify 6 sub-
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Figure 11. Hydrographs modeling the direct runoff for each reservoir of the Bogotá (Colombia) case study.

capacity from hour 2 onwards. Summarizing, when using
the local controllers based on replicator dynamics, the total

capacity of the UDS is better used because wastewater is
stored in underloaded reservoirs. On the other hand, the total
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Figure 12. Evolution of the remaining capacities of reservoirs of the Bogotá (Colombia) case study when no control is applied.

Table 2. Parameters of reservoirs for the Bogotá (Colombia) case study

Reservoir Volume v̄i Coefficient ki
label [m3] [s−1]

1 114.50 0.002332
2 137.40 0.003870
3 114.50 0.003170
4 125.95 0.008239
5 274.80 0.002217
6 274.80 0.008975
7 274.80 0.005185
8 274.80 0.004764
9 274.80 0.006147

10 183.20 0.005446
11 183.20 0.020703
12 274.80 0.001693
13 274.80 0.007026
14 807.22 0.000632
15 274.80 0.006319
16 274.80 0.005782

11. The fact that flooding is spread over the UDS’s reservoirs
mitigates the impact in the zone where reservoir 14 is located.

Table 3. Sub-systems of the Bogotá (Colombia) case study

Sub-system’s Source Receptor
label reservoirs reservoir

s1 1, 2 5
s2 3, 4 8
s3 5, 6, 7, 8 9
s4 10, 11 12
s5 9, 12, 13 14
s6 14, 15 16

As in the first case study, we implement a decentralized
LQR and a centralized MPC to compare the performance
of the controller based on replicator dynamics. The design
process of LQR and MPC is the same described in case
study 1. Besides, the sample time of LQR is 2 seconds, while
MPC parameters are chosen as follows: sample time is 10
seconds, prediction horizon is 360, and control horizon is
60. Simulation results under LQR are shown in Figure 15
(reservoirs’ capacities) and Figure 16 (control signals). In
addition, simulation results under MPC are shown in Figure
17 (reservoirs’ capacities) and Figure 18 (control signals).
Finally, we implement the same quantitative comparison

flooding for the controlled case is 29.4 m3, which is only 4%
of the flooding that occurs for the uncontrolled case. Finally, 
contrary to what happens in the uncontrolled scenario where 
high flooding is concentrated in reservoir 14, the controlled 
case shows that small floods occur in reservoirs 3, 4, 8 and
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Figure 13. Evolution of the remaining capacities of reservoirs of the Bogotá (Colombia) case study under replicator dynamics based controllers.
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Figure 14. Opening percentage of reservoirs’ valves for the Bogotá (Colombia) case study under replicator dynamics based controllers.
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performed in the first case study, the results are summarized
in Table 4. Notice that we obtain similar results as the ones of
case study 1, i.e., replicator dynamics controller outperforms
LQR and its behavior is quite close to centralized MPC, but
with computational advantages as discussed next.

Table 4. Comparison of controllers’ performance for case study 2

Rain Flooding [m3]
amplifying Without Replicator LQR MPC

factor control dynamics
0.90 672.33 0 0 0
0.95 734.08 0 77.99 0
1.00 797.06 29.38 149.40 1.03
1.05 861.29 112.78 261.45 78.89
1.10 926.86 243.28 401.72 223.20

Table 5. Characteristics of the machine used for simulations

Item Value
Processor type Core i7-8700K

Processor’s cores 6
Processor’s frequency 3.7 GHz

RAM memory 32 GB DDR4
Operating system Windows 11

Simulation program Matlab R2021b
ODE solver Dormand-Prince method

Optimization method QPKWIK [56]

hand, it is worth mentioning that replicator dynamics exhibit
better scalability. Indeed, if we study the computational time
taken in case study 1 (UDS with 7 reservoirs) compared to
case study 2 (UDS with 16 reservoirs), it can be noticed
that the increment is 32 times for centralized MPC, seven
times for decentralized LQR and only 3.7 times for replicator
dynamics. The fact that LQR and replicator dynamics scale
much better than MPC is a consequence of the decentral-
ized nature of the first two controllers, whose parallelization
plays a key role (i.e., each UDS sub-system is capable of
computing its own control inputs independently). In addition,
another factor that makes replicator dynamics beat the two
optimization-based methods in terms of scalability is the
different paradigm that replicator dynamics use to update the
control inputs. Specifically, when the UDS scale increases,
optimization-based controllers require to solve minimization
problems with a larger number of decision variables (under
this situation, centralized MPC is highly penalized because
it must deal with all decision variables of the whole UDS).
On the contrary, replicator dynamics only need the evaluation
of more algebraic equations to update the control input.
As explained before, this evaluation requires significantly
lower computations than solving a constrained optimization
problem.

VIII. CONCLUSIONS
Floods can be mitigated using real time control of Urban
Drainage Systems (UDSs). Since the size of these kinds of
systems is generally of large-scale nature, designing a central
control (which drives all the actuators and has information
from all UDS’s sensors) is problematic. Instead, it is desirable
to design decentralized control schemes, i.e., schemes with
multiple controllers, where each one of them has only partial
information of the system. We have shown that graph models
and population dynamics can be employed to design local
controllers that independently handle partitions of the UDS.
The proposed scheme allocates wastewater among UDS col-
lectors (modeled as reservoirs) in an efficient way. Specif-
ically, we have proven that the designed local controllers
perform wastewater allocation in such a way that the col-
lectors of the UDS tend to reach the same remaining storing
capacity while preserving closed-loop system stability. Simu-

C. COMPUTATIONAL BURDEN COMPARISON
An important advantage of the proposed control technique is 
its low computational burden, especially when we compare 
replicator dynamics with optimization-based controllers such 
as LQR and MPC. This advantage rests on the philosophy be-
hind the controllers. While techniques based on optimization 
should minimize a cost function subject to constraints at each 
control step, replicator dynamics only require the solution of 
a set of ordinary differential equations. The key point is that 
iterative algorithms are required for solving constrained op-
timization problems. This fact implies that, for each control 
step, optimization-based controllers should perform several 
iterations, which increases the computational burden. In con-
trast, each time step of replicator dynamics only requires the 
evaluation of the right-hand side of the replicator equation 
in (7) to update the control input (using, for instance, the 
Euler approximation). Clearly, the computational complexity 
of replicator dynamics is significantly lower. To demonstrate 
this fact, we make a comparison of the computational time 
taken for simulating each case study under the three different 
control strategies implemented in Sections VII-A and VII-B, 
i.e., decentralized replicator dynamics, decentralized LQR 
and centralized MPC. To perform the simulations, we use a 
machine whose characteristics are summarized in Table 5. 
The results of the comparison are shown in Table 6. In this 
table, the sub-index of r indicates the rain scale factor, which 
is explained in the simulation conditions of both case studies 
(see Sections VII-A and VII-B). For instance, r1.10 denotes 
that the rain amplitude of the baseline case is increased 10%.

Notice that in all cases the controller based on replicator 
dynamics is the fastest. In fact, for case study 1, replicator 
dynamics is three times faster than decentralized LQR and 
14 times faster than centralized MPC (the slower method). 
These differences are higher for case study 2, where repli-
cator dynamics is six times faster than decentralized LQR 
and 122 times faster than centralized MPC. On the other

19



0 1 2 3 4

Time [hours]

0

50

100

150
R

e
m

a
in

in
g

 c
a

p
a

c
it
ie

s
 [

m
3
]

tank 1

tank 2

full tank

0 1 2 3 4

Time [hours]

0

50

100

150

R
e

m
a

in
in

g
 c

a
p

a
c
it
ie

s
 [

m
3
]

tank 3

tank 4

full tank

0 1 2 3 4

Time [hours]

0

50

100

150

200

250

300

R
e

m
a

in
in

g
 c

a
p

a
c
it
ie

s
 [

m
3
]

tank 5

tank 6

tank 7

tank 8

full tank

0 1 2 3 4

Time [hours]

-50

0

50

100

150

200

R
e

m
a

in
in

g
 c

a
p

a
c
it
ie

s
 [

m
3
]

tank 10

tank 11

full tank

0 1 2 3 4

Time [hours]

-100

0

100

200

300

R
e

m
a

in
in

g
 c

a
p

a
c
it
ie

s
 [

m
3
]

tank 9

tank 12

tank 13

full tank

0 1 2 3 4

Time [hours]

-100

0

100

200

300

400

500

R
e

m
a

in
in

g
 c

a
p

a
c
it
ie

s
 [

m
3
]

tank 14

tank 15

tank 16

full tank

Remaining capacities of reservoirs using decentralized LQR

Figure 15. Evolution of the remaining capacities of reservoirs of the Bogotá (Colombia) case study under decentralized LQR.
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Figure 16. Opening percentage of reservoirs’ valves for the Bogotá (Colombia) case study under decentralized LQR.
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Figure 17. Evolution of the remaining capacities of reservoirs of the Bogotá (Colombia) case study under centralized MPC.

Figure 18. Opening percentage of reservoirs’ valves for the Bogotá (Colombia) case study under centralized MPC.
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Table 6. Comparison of computational time taken by UDSs controllers

Computational time [s]
Controller Case study 1 Case study 2

r0.95 r1.00 r1.05 r1.10 average r0.95 r1.00 r1.05 r1.10 average
Replicator dynamics 0.56 0.56 0.55 0.55 0.55 2.01 2.07 2.06 2.15 2.07

LQR 1.82 1.80 1.80 1.86 1.82 12.68 12.75 12.78 12.80 12.75
MPC 7.78 7.84 8.03 8.09 7.93 248.36 252.21 255.78 257.83 253.54

lations have shown that the performed wastewater allocation
mitigates flooding even in the face of heavy rain scenarios.
As future work, we propose to improve the performance of
the controlled system by incorporating prediction of the UDS
state and forecasting of external inputs. Besides, we propose
to study tuning algorithms for finding the optimal parameters
of the local controllers.
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