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ABSTRACT. We describe all left braces of size 8p for an odd prime p 6= 3, 7 and validate

the number given by Bardakov, Neschadim and Yadav in [2]. We give a characterization for

isomorphism classes of a semidirect product of left braces and then the description is done by first

describing left braces of size 8, as conjugacy classes of regular subgroups of the corresponding

holomorph, and then checking how many non isomorphic left braces of size 8p are obtained from

each one of them.
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1 Introduction

In [6] Rump introduced braces to study set-theoretic solutions of the Yang-Baxter equa-
tion. A left brace is a set B with two operations + and · such that (B,+) is an abelian
group, (B, ·) is a group and

a(b+ c) + a = ab+ ac,

for all a, b, c ∈ B. We call N = (B,+) the additive group and G = (B, ·) the multiplica-
tive group of the left brace.
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Let B1 and B2 be left braces. A map f : B1 → B2 is said to be a brace homomorphism
if f(b+ b′) = f(b)+ f(b′) and f(bb′) = f(b)f(b′) for all b, b′ ∈ B1. If f is bijective, we say
that f is an isomorphism. In that case we say that the braces B1 and B2 are isomorphic.

This gives the notions of brace isomorphism and isomorphic left braces.

In [1] Bachiller proved that given an abelian group N , there is a bijective correspon-
dence between left braces with additive group N , and regular subgroups of Hol(N) such
that isomorphic left braces correspond to conjugate subgroups of Hol(N) by elements
of Aut(N). In this way he established the connection between braces and Hopf-Galois
separable extensions.

In [2], Lemma 2.1, it is proved that Aut(N), as a subgroup of Hol(N), is action-closed with
respect to the conjugation action of Hol(N) on the set of regular subgroups of Hol(N).
Therefore, given an abelian group N , the non-isomorphic left braces with additive group
N are in bijective correspondence with conjugacy classes of regular subgroups in Hol(N).
In [2, Conjecture 4.2], Bardakov, Neschadim and Yadav conjectured the number b(8p) of
left braces of size 8p for p ≥ 11 a prime number:

b(8p) =







90 if p ≡ 3, 7 (mod 8),
106 if p ≡ 5 (mod 8),
108 if p ≡ 1 (mod 8).

Our aim is to describe all the isomorphism classes of braces of size 8p in order to check
the validity of this conjecture.

2 Braces of size 8p

The theory of braces mimics many of the constructions and definitions of group theory
(see [3]). If p = 5 or p ≥ 11, the Sylow p-subgroup of a group of order 8p is a normal
subgroup and therefore the group is a direct or semidirect product of the (unique) group
of order p and a group of order 8. Our aim is to prove that we have the same situation
for braces. In order to do that, let us define direct and semidirect product of braces as
in [3] or [7].

Let B1 and B2 be left braces. Then B1 ×B2 together with

(a, b) + (a′, b′) = (a+ a′, b+ b′) (a, b) · (a′, b′) = (aa′, bb′)

is a left brace called the direct product of braces B1 and B2.

Now, let τ : (B2, ·) → Aut(B1,+, ·) be a homomorphism of groups. Consider in B1 ×B2

the additive structure of the direct product (B1,+)× (B2,+)

(a, b) + (a′, b′) = (a+ a′, b+ b′)

and the multiplicative structure of the semidirect product (B1, ·)⋊τ (B2, ·)

(a, b) · (a′, b′) = (aτb(a
′), bb′)
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Then, we get a left brace, which is called the semidirect product of the left braces B1

and B2 via τ .

From [7] we know that if N is the additive group of a brace and N = N1 × · · · ×Nk is
its Sylow decomposition, then every Ni is also the additive group of a brace.

If p is an odd prime and N is an abelian group of size 8p, then N has Sylow decomposition
N = Zp × E, where E is an abelian group of order 8. For the simple group Zp we have
just the trivial brace, namely the multiplicative group is also Zp (we can use also the
notation Cp). For the abelian group of order 8 we can have several multiplicative groups
giving a left brace structure.

Proposition 1. Let p = 5 or p ≥ 11 be a prime. Every left brace of size 8p is a direct
or semidirect product of the trivial brace of size p and a left brace of size 8.

Proof. Let B be a left brace of size 8p with additive group N and multiplicative group
G. Then, N = Zp × E with E abelian of order 8 and G = Zp ⋊τ F with F a group of
order 8 and τ : F → Aut(Zp) a group homomorphism (the trivial one giving the direct
product). Let us observe that, since we are working with the trivial brace, the group of
brace automorphisms is the classical group Aut(Zp) ≃ Z∗

p .

Then,

(a1, a2)((b1, b2) + (c1, c2)) + (a1, a2) = (a1, a2)(b1 + c1, b2 + c2) + (a1, a2) =
= (a1 + τa2

(b1 + c1) + a1, a2(b2 + c2) + a2).

On the other hand,

(a1, a2)(b1, b2) + (a1, a2)(c1, c2) = (a1 + τa2
(b1) + a1 + τa2

(c1), a2b2 + a2c2).

Therefore, from the brace condition of B we obtain an equality in the second component
which tells us that we have a brace B′ of size 8 with additive group E and multiplicative
group F . Then, B is the semidirect product via τ of the trivial brace with group Zp and
this brace B′.

In terms of Hopf-Galois structures this corresponds to abelian types of induced structures
as introduced in [5].

In the sequel, for B a left brace of size 8p we shall denote by N its additive group and by
G its multiplicative group. Then, N = Zp ×E, with E an abelian group of order 8, and
G = Zp ⋊τ F , with F a group of order 8 and τ : F → Aut(Zp) a group homomorphism.

In order to classify the left braces of size 8p we can begin with the isomorphism classes of
braces of size 8 with additive group E and then construct the semidirect products with
Zp. Clearly, if we have isomorphic braces of size 8p we will have isomorphic braces of size
8, but the converse is not true, since a brace of size 8 can have different group morphisms
τ : F → Aut(Zp) giving semidirect products which are non isomorphic braces.

Note that for N = Zp × E, we have Hol(N) = Hol(Zp) × Hol(E), and G = Zp ⋊τ F

must be a subgroup of Hol(N), and in particular, F is embedded in Hol(E). Now, in
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Hol(N) = Hol(Zp)×Hol(E) we denote the elements (m, k, a, σ) with m, k integers mod p,
k 6= 0, and (a, σ) ∈ E⋊Aut(E). The element (1, 1, 0, 1) generates Zp and, for (a, σ) ∈ F ,

(0, τ(a, σ), a, σ)(1, 1, 0, 1)(0, τ(a, σ), a, σ)−1 =

= (τ(a, σ), τ(a, σ), a, σ)(0, τ(a, σ)−1 ,−σ−1(a), σ−1) = (τ(a, σ), 1, 0, 1) = (1, 1, 0, 1)τ(a,σ).

Then, once fixed a homomorphism τ : F −→ Aut(Zp),

G = {(m, τ(a, σ), a, σ) |m ∈ Zp, (a, σ) ∈ F}

is an order 8p group isomorphic to Zp ⋊τ F . Since the action on N is given by

(m, k, a, σ)(z, x) = (m+ kz, a+ σ(x))

we obtain a transitive action from transitivity in each component.

Example 2. Let p be an odd prime and let E = Z8. Then, Hol(E) has a unique
conjugacy class of regular subgroups isomorphic to Z4 ×Z2. Let F = 〈f4〉 × 〈f2〉 be one
of them. Then, we have two different group homomorphisms τ1, τ2 : F → Aut(Zp) = Z

∗
p,

with cyclic kernel of order 4. These kernels are 〈f4〉 and 〈f4f2〉.

If we write Hol(E) = Z8 ⋊ Z
∗
8, then we can take f4 = (2, 5) and f2 = (1, 7), since they

have orders 4 and 2, respectively, they commute and F = 〈f4〉× 〈f2〉 acts transitively on
Z8 via (a, l)x = a+ lx.

We have
f4f2 = (2, 5)(1, 7) = (2 + 5 · 1 mod 8, 5 · 7 mod 8) = (7, 3).

Since Z
∗
8 is abelian, conjugate elements share the same second component and we see

that the cyclic subgroups 〈f4〉 and 〈f4f2〉 are not conjugate in Hol(E).

For each i ∈ {1, 2}

Gi = {(m, τi(a, l), a, l) | m ∈ Zp, (a, l) ∈ F}

is a subgroup of Hol(N) isomorphic to the semidirect product Zp ⋊τi F . Since G1, G2

are regular subgroups of Hol(N), they correspond to two braces with addditive group N

and multiplicative group G1 and G2, respectively. To see that they are not isomorphic
braces we have to check that G1 and G2 are not conjugate in Hol(N). We have

G1 = { (m, 1, 0, 1), (m, 1, 2, 5), (m, 1, 4, 1), (m, 1, 6, 5),
(m,−1, 1, 7), (m,−1, 7, 3), (m,−1, 5, 7), (m,−1, 3, 3) }

and
G2 = { (m, 1, 0, 1), (m,−1, 2, 5), (m, 1, 4, 1), (m,−1, 6, 5),

(m,−1, 1, 7), (m, 1, 7, 3), (m,−1, 5, 7), (m, 1, 3, 3) }.

Again, since Aut(Zp) and Aut(E) are abelian groups, conjugate elements in Hol(N) have
the same values of the second and fourth components. Then, we see that G1 and G2 are
not conjugate.
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3 Braces of order 8p: direct products

Proposition 3. For an odd prime p, there are 27 left braces of size 8p which are direct
product of the unique brace of size p and a brace of size 8.

Proof. In [8] it is shown that there are 27 left braces of size 8. Then, the direct product
of each of these with the trivial brace of size p gives a left brace of size 8p.

If we want to specify the multiplicative group of each brace above, we can use Magma to
compute the conjugacy classes of regular groups of Hol(E) for the three different abelian
groups of order 8 and classify them according to the isomorphism class.

1. Hol(Z8) ≃ Z8 ⋊ V4 has 5 conjugacy classes of regular subgroups with the following
distribution of isomorphism types

Type Number
Z8 2
Z4 × Z2 1
Z2 × Z2 × Z2 0
D2·4 1
Q8 1

This gives the number of braces with additive type Zp×Z8 and multiplicative type
a direct product Zp × F , with F as in the above table.

2. Hol(Z4 × Z2) ≃ (Z4 × Z2) ⋊ D2·4 has 14 conjugacy classes of regular subgroups
with the following distribution of isomorphism types

Type Number
Z8 0
Z4 × Z2 6
Z2 × Z2 × Z2 2
D2·4 5
Q8 1

This gives the number of braces with additive type Zp×Z4×Z2 and multiplicative
type a direct product Zp × F , with F as in the above table.

3. Hol(Z2 × Z2 × Z2) ≃ F
3
2 ⋊ GL(3, 2) has 8 conjugacy classes of regular subgroups

with the following distribution of isomorphism types

Type Number
Z8 0
Z4 × Z2 3
Z2 × Z2 × Z2 2
D2·4 2
Q8 1
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This gives the number of braces with additive type Zp × Z2 × Z2 × Z2 and multi-
plicative type a direct product Zp × F , with F as in the above table.

4 Braces of size 8p: semidirect products

Proposition 4. Let p = 5 or p ≥ 11 be a prime and N = Zp × E an abelian group of
order 8p.

The conjugacy classes of regular subgroups of Hol(N) are in one to one correspondence
with couples (F, τ) where F runs over a set of representatives of conjugacy classes of
regular subgroups of Hol(E) and τ runs over representatives of conjugacy classes by
Aut(E) of group morphisms τ : F → Aut(Zp), that is τ ≃ τ ′ if and only if τ = τ ′ ◦Φν |F
where ν ∈ Aut(E) and Φν is the corresponding inner automorphism of Hol(E).

Proof. We know that groups of order 8p are semidirect products G = Zp ⋊τ F with F a
group of order 8 and τ : F → Aut(Zp) a group homomorphism.

For a given couple (F, τ) the semidirect product is

G = Zp ⋊τ F = {(m, τ(f), f) | m ∈ Zp, f ∈ F} ⊆ (Zp ⋊ Z
∗

p)×Hol(E) = Hol(N)

as in Example 2. As we pointed out there, the action on N is given by (m, k, f)(z, x) =
(m+ kz, fx). G containing Zp gives transitivity in the first component and G is regular
in Hol(N) if and only if F is regular in Hol(E).

Let us describe inner automorphisms of Hol(N) = (Zp ⋊ Z
∗
p) × (E ⋊ Aut(E)). We

write elements in Hol(N) as (m, k, a, σ) accordingly. Since we are dealing with regular
subgroups, we just have to consider conjugation by elements (i, ν) ∈ Aut(N) = Z

∗
p ×

Aut(E). Let Φ(i,ν) be the inner automorphism of (i, ν) inside Hol(N). Then,

Φ(i,ν)(m, k, a, σ) = (0, i, 0, ν)(m, k, a, σ)(0, i, 0, ν)−1 =

= (im, ik, ν(a), νσ)(0, i−1, 0, ν−1) = (im, k, ν(a), νσν−1)

If we work in Hol(E), conjugation by ν ∈ Aut(E) is

Φν(a, σ) = (0, ν)(a, σ)(0, ν−1) = (ν(a), νσν−1).

Let G = Zp ⋊τ F = {(m, τ(a, σ), a, σ) | m ∈ Zp, (a, σ) ∈ F}. Then,

Φ(i,ν)(G) = {(im, τ(a, σ), ν(a), νσν−1) | m ∈ Zp, (a, σ) ∈ F}.

Since i ∈ Z
∗
p, im runs over Zp as m does. Therefore, if (F ′, τ ′) is another pair, we have

Φ(i,ν)(G) = Zp ⋊τ ′ F ′ ⇐⇒ F ′ = Φν(F ), and τ = τ ′ ◦Φν |F .

Let us observe that in that case ker τ ′ = Φν(ker τ).

Remark 5. The same result is valid for sizes 2np with p not dividing 2n − 1, when all
groups are semidirect products of the unique p-Sylow subgroup and a 2-Sylow subgroup.
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In the previous section we have classified direct products, namely those cases with trivial
morphism τ . Now we are able to classify and count also proper semidirect products.

From section 3 we know how many conjugacy classes of regular subgroups Hol(E) has
and we have classified them according to their isomorphism types. For each type we
have to consider the possible morphisms τ and its conjugation class under Aut(E), as
specified in Proposition 4. From now on, the kernel of τ will be referred to as the kernel
of the brace (or conjugation class of regular subgroups) determined by the pair (F, τ).

4.1 F ≃ Z8

This type only occurs with E = Z8 and we use the same notations of example 2. Recall
that Aut(E) = Z

∗
8 and its nontrivial elements l have order 2.

If F is isomorphic to the cyclic group Z8 there is a unique morphism τ : F → Z
∗
p with

kernel of order 4, the one sending generators to −1 and non-generators to 1.

If p ≡ 1 mod 4, then Z
∗
p has a (unique) subgroup of order 4. Let ζ4 be a generator.

Given a generator (a, l) of F , we have two different morphisms with kernel of order 2:
τ1(a, l) = ζ4 and τ2(a, l) = ζ−1

4 . But then Φ−l(a, l) = (−la, l) = (a, l)−1 and τ1 = τ2◦Φ−l.
Every τ : F → Z

∗
p with kernel of order 2 is either τ1 or τ2 and therefore we have a unique

pair (F, τ).

If p ≡ 1 mod 8, then Z
∗
p has a (unique) subgroup of order 8. Let ζ8 be a generator. Given

a generator (a, l) of F , we have 4 different embeddings F → Z
∗
p given by τj(a, l) = ζ

j
8 for

j = 1, 3, 5, 7. But then
τ3 = τ1 ◦ Φ2+l

since Φ2+l(a, l) = ((2 + l)a, l) = ((1 + l + l2)a, l) = (a, l)3. Analogously, τ5 = τ1 ◦ Φ3+2l

and τ7 = τ1 ◦ Φ4+3l. Again, we have a unique pair (F, τ) for every F .

Proposition 6. Let p = 5 or p ≥ 11 be a prime.

1. If p ≡ 3, 7 mod 8 there are 4 left braces with multiplicative group Zp ⋊ Z8. Two of
them are direct products (kernel of order 8) and the other two have kernel of order
4.

2. If p ≡ 5 mod 8 there are 6 left braces with multiplicative group Zp ⋊ Z8. Two of
them are direct products, two of them have kernel of order 4 and the other two have
kernel of order 2.

3. If p ≡ 1 mod 8 there are 8 left braces with multiplicative group Zp ⋊ Z8. Two of
them are direct products, two of them have kernel of order 4, two of them have
kernel of order 2 and the other two have trivial kernel.

All the above braces have additive group Zp × Z8.

7



4.2 F ≃ Z4 × Z2

For E = Z8 and cyclic kernel of order 4 it is the case of example 2. We have just one F

and two non conjugate morphisms τ .

On the other hand, there is a unique morphism τ : F → Z
∗
p with kernel isomorphic to

Z2×Z2, it sends the elements of order 4 to −1 and the other elements to 1. For every E

we will have just as many semidirect products with elementary kernel as direct products.

If p ≡ 1 mod 4, then Z
∗
p has a subgroup of order 4. Let ζ4 be a generator. In this case

we have morphisms τ with kernel of order 2. Using the notation of example 2 the kernel
can be either

〈f2〉 = 〈(1, 7)〉 or 〈f2
4 f2〉 = 〈(4, 1)(1, 7)〉 = 〈(5, 7)〉

which are conjugate under Φ5. The four possible morphisms are defined by

τ1(2, 5) = τ2(2, 5) = ζ4, τ1(1, 7) = 1, τ2(1, 7) = −1,

τ3(2, 5) = τ4(2, 5) = −ζ4, τ3(1, 7) = 1, τ4(1, 7) = −1.

Since Φ5(2, 5) = (2, 5), we have τ1 = τ2 ◦ Φ5 and τ3 = τ4 ◦ Φ5 while τ1 and τ3 are not
conjugate.

Proposition 7. Let p = 5 or p ≥ 11 be a prime.

1. If p ≡ 3 mod 4 there are 4 left braces with additive group Zp×Z8 and multiplicative
group Zp⋊ (Z4×Z2). One of them is a direct product, 2 of them have cyclic kernel
of order 4 and the remaining one has kernel isomorphic to the Klein group.

2. If p ≡ 1 mod 4 there are 6 left braces with additive group Zp×Z8 and multiplicative
group Zp ⋊ (Z4 × Z2). The distribution is as in 1 plus two braces with kernel of
order 2.

Now we consider E = Z4×Z2. We already know that there are 6 braces which are direct
products and 6 which are semidirect products with kernel isomorphic to the Klein group.

The automorphism group of Z4×Z2 is the dihedral group of order 8. Using the classical
notation of rotation and symmetry for its generators we have

r(a, b) = (a+ 2b, a+ b), s(a, b) = (a, a+ b) for (a, b) ∈ Z4 × Z2.

It is easy to check that 1 + σ + σ2 + σ3 = 0 ∈ End(E) for every σ ∈ Aut(E). Therefore,
we can write

Hol(Z4 ×Z2) = (Z4 ×Z2)⋊D2·4 = {((a, b), risj) | a mod 4, b mod 2, 0 ≤ i ≤ 3, j = 0, 1}

and since ((a1, b1), σ1)((a2, b2), σ2) = ((a1, b1) + σ1(a2, b2), σ1σ2), in Hol(E) all elements
have order dividing 4.

The conjugation by elements of Aut(E) is as follows

((0, 0), ν)((a, b), σ)((0, 0), ν)−1 = (ν(a, b), νσ)((0, 0), ν−1) = (ν(a, b), νσν−1)

8



so that we can work with conjugacy classes in D2·4 and orbits under its action on E.
((2, 0), id) is invariant under conjugation since (2, 0) is fixed by Aut(E).

Since we are interested in regular subgroups we can rule out elements not acting with
trivial stabilizers. The action is ((a, b), σ)(x, y) → (a, b)+σ(x, y) and we have to rule out
elements ((a, b), σ) such that (a, b) is in the image of the endomorphism 1− σ.

We have 6 conjugacy classes of elements of order 2 acting with trivial stabilizers

#
1 ((2, 0), id)
2 ((0, 1), id), ((2, 1), id)
2 ((0, 1), r2), ((2, 1), r2)
4 ((1, 0), r2), ((1, 1), r2)), ((3, 0), r2), ((3, 1), r2)
4 ((2, 0), s), ((2, 0), r2s), ((2, 1), s), ((0, 1), r2)
4 ((1, 0), rs), ((1, 1), r3s), ((3, 0), rs), ((3, 1), r3s)

and 5 conjugacy classes of elements of order 4 acting with trivial stabilizers

#

4 ((1, 0), id), ((1, 1), id), ((3, 0), id), ((3, 1), id)
4 ((0, 1), rs), ((2, 1), rs), ((0, 1), r3s), ((2, 1), r3s)
4 ((1, 1), rs), ((3, 1), rs), ((1, 0), r3s), ((3, 0), r3s)
8 ((1, 0), s), ((1, 1), s), ((3, 0), s), ((3, 1), s),

((1, 0), r2s), ((1, 1), r2s), ((3, 0), r2s), ((3, 1), r2s)
8 ((1, 0), r), ((1, 1), r), ((3, 0), r), ((3, 1), r)

((1, 0), r3), ((1, 1), r3), ((3, 0), r3), ((3, 1), r3)

From this we have 17 subgroups of order 2 and 14 cyclic subgroups of order 4. Checking
commutation of generators and conjugacy by Aut(E), we obtain the 6 conjugacy classes
of regular subgroups of Hol(E) we are looking for:

F1 = 〈((1, 0), r)〉 × 〈((2, 0), id)〉
F2 = 〈((1, 0), id)〉 × 〈((0, 1), id)〉
F3 = 〈((1, 0), id)〉 × 〈((1, 1), r3s)〉
F4 = 〈((1, 0), s)〉 × 〈((2, 0), id)〉
F5 = 〈((0, 1), rs)〉 × 〈((1, 1), r2)〉
F6 = 〈((1, 1), rs)〉 × 〈((0, 1), r2)〉

.

Now, for each i = 1, . . . , 6, we consider morphisms τ (i) : Fi → Aut(Zp) and look for
conjugate kernels.

In case of kernel of order 4, we proceed as in Example 2 with f4 and f4f2. That is, if in
the presentation of Fi above we call f4 the order 4 element and f2 the order 2 one, we

determine morphisms τ
(i)
1 , τ

(i)
2 with kernels 〈f4〉 and 〈f4f2〉 respectively and study their

9



conjugation classes:

((1, 0), r) ((1, 0), r)((2, 0), id) = ((3, 0), r) conjugated by Φr2

((1, 0), id) ((1, 0), id)((0, 1), id) = ((1, 1), id) conjugated by Φs

((1, 0), id) ((1, 0), id)((1, 1), r3s) = ((2, 1), r3s) not conjugated
((1, 0), s) ((1, 0), s)((2, 0), id) = ((3, 0), s) conjugated by Φr2

((0, 1), rs) ((1, 0), rs)((1, 1), r2) = ((1, 0), r3s) not conjugated
((1, 1), rs) ((1, 1), rs)((0, 1), r2) = ((3, 0), r3s) conjugated by Φr2s

Note that every conjugation Φν in the above table leaves the corresponding Fi invariant.
The first non-conjugacy class derives from non-conjugacy in D2·4 of id and r3s while
the second one derives from the non-existence of automorphisms carrying (0, 1) to (1, 0).
Since a kernel of order 4 determines τ : F → Aut(Zp) we have that F3 and F5 provide
two different semidirect products inside Hol(N) and each of the other Fi provides just
one.

If p ≡ 1 mod 4 we can consider semidirect products with kernel of order 2, and we proceed
as before with possible kernels generated by f2 and f2

4 f2:

((2, 0), id) ((0, 1), r2) not conjugated
((0, 1), id) ((2, 1), id) conjugated by Φr

((1, 1), r3s) ((3, 1), r3s) conjugated by Φr2

((2, 0), id) ((0, 1), id) not conjugated
((1, 1), r2) ((3, 1), r2) conjugated by Φr2

((0, 1), r2) ((2, 1), r2) conjugated by Φr

Both cases of non-conjugacy come from 〈((2, 0), id)〉 being normal.

Let us analyze the case of F2, since the conjugation of kernels is not enough. The four
possible group homomorphisms are

τ±,± : F2 −→ Z
∗
p

((0, 1), id) → ±ζ4
((2, 1), id) → ±1

.

We have conjugations

Φr2 :
((1, 0), id) → ((1, 0), id)3 = ((3, 0), id)
((0, 1), id) → (((0, 1), id)

Φr3s :
((1, 0), id) → ((1, 0), id)
((0, 1), id) → (((2, 1), id)

Φrs :
((1, 0), id) → (((3, 0), id)
((0, 1), id) → (((2, 1), id)

which give

τ−+ = τ++ ◦ Φr2 , τ+− = τ++ ◦ Φr3s, τ−− = τ++ ◦ Φrs.

Therefore, F2 provides a unique conjugacy class. In the following table we give the
conjugations for all cases:
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F2 Φr2 Φr3s Φrs

F3 Φrs Φr3s Φr2

F5 Φrs Φr2 Φr3s

F6 Φr2 Φrs Φr3s

Therefore, each one of these groups provides exactly one conjugacy class. For F1 and
F4 a generator of order 2 is invariant under conjugation. Since we have Φs((1, 0), r)) =
((1, 1), r3) = ((1, 0), r)3 and Φr2s((1, 0), s)) = ((3, 1), s) = ((1, 0), s))3, each group pro-
vides exactly two conjugacy classes.

Proposition 8. Let p = 5 or p ≥ 11 be a prime.

1. If p ≡ 3 mod 4 there are 20 left braces with additive group Zp × Z4 × Z2 and
multiplicative group Zp⋊ (Z4×Z2). Six of them are direct products, 8 of them have
cyclic kernel of order 4 and the remaining 6 have kernel isomorphic to the Klein
group.

2. If p ≡ 1 mod 4 there are 28 left braces with additive group Zp × Z4 × Z2 and
multiplicative group Zp ⋊ (Z4 × Z2). The distribution is as in 1 plus 8 braces with
kernel of order 2.

The last additive type is E = Z2 × Z2 × Z2. We already know that there are 3 braces
which are direct products and 3 which are semidirect products with kernel isomorphic to
the Klein group.

Since we can identify the additive group with the binary vector space of dimension 3, its
automorphism group is the group of 3× 3 invertible binary matrices and Hol(Z2 ×Z2 ×
Z2) ≃ F

3
2 ⋊GL(3, 2). Therefore, we can write

Hol(Z2 × Z2 × Z2) = {(v,M) : v ∈ F
3
2, M ∈ GL(3, 2)}.

The operation is given by (v1,M1)(v2,M2) = (v1 +M1v2,M1M2) and the action on F
3
2

by (v,M)u = v +Mu. In order to act with trivial stabilizers we need v 6∈ Im(M + Id).

GL(3, 2) is a simple group of order 168 which has a unique conjugacy class of elements
of order 2, of length 21, with representative

S =





1 0 0
0 1 1
0 0 1





and a unique conjugacy class of elements of order 4, of length 42, with representative

Q =





1 1 0
0 1 1
0 0 1



 .

For S we have rank(S + Id) = 1 and Im(S + Id) ⊂ Ker(S + Id). For Q we have
rank(Q+ Id) = 2 and Id+Q+Q2 +Q3 = 0.
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The elements of order 2 in Hol(E) distribute in 3 conjugacy classes of lengths 7, 42
and 42, respectively, but only two of them correspond to elements acting with trivial
stabilizers. Since (v,M)2 = ((M + Id)v,M2), the element (v,M) has order 2 if and only
if either M = Id and v 6= 0 or M has order 2 and v = 0 or v is eigenvector of eigenvalue
1. Therefore, the elements of order 2 acting with trivial stablilizers are

(u, Id), (v1, M), (v2, M)

u 6= 0, M of order 2 and v1, v2 ∈ ker(M + Id), v1, v2 6∈ Im(M + Id).

The elements of order 4 in Hol(N) distribute in 3 conjugacy classes of lengths 84, 168,
168, respectively. Again, only two of them correspond to actions with trivial stabilizers.
Since (v,M)4 = ((M3+M2+M + Id)v,M4), we can have M of order 2 and v one of the
4 vectors not in ker(M + Id) or M of order 4 and any v, since M3 +M2 +M + Id = 0.
Now, M + Id has rank 2 and we have 4 vectors in Im(M + Id).

Let us now look for the three conjugacy classes of subgroups of Hol(E) isomorphic to
Z4 × Z2. Let us use the notation e1, e2, e3 for the canonical basis of F3

2. Since e3 is not
an eigenvector of S, the element (e3, S) has order 4 in Hol(E). Let us look for elements
of order 2 commuting with it and different from (e3, S)

2 = (e2, Id). For elements of type
(u, Id) we have

(e3, S)(u, Id) = (u, Id)(e3, S) ⇐⇒ e3 + Su = u+ e3 ⇐⇒ u ∈ ker(S + Id).

We can choose u = e1 or u = e1 + e2 but both give the same regular subgroup

F1 = 〈(e3, S)〉 × 〈(e1, Id)〉 =
= {(0, Id), (e3, S), (e2, Id), (e2 + e3, S),

(e1, Id), (e1 + e3, S), (e1 + e2, Id), (e1 + e2 + e3, S)}

with pairs of non-eigenvectors with S and eigenvectors with Id.

For elements of order 2 of type (v,M) we have

(e3, S)(v,M) = (v,M)(e3, S) ⇐⇒ e3 + Sv = v +Me3 and MS = SM

Note that we cannot take M = S because v is an eigenvector of M and e3 is not an
eigenvector of S. We need elements of order 2 in the centralizer of S in GL(3, 2), which
is a dihedral group of order 8. We take the unique possible matrix

M =





1 0 0
1 1 1
0 0 1





and v = e1+e3, which is in the kernel of M + Id but not in the image. Then, e3+S(e1+
e3) = e1 + e2 = e1 + e3 +Me3 and we obtain a regular subgroup

F2 = 〈(e3, S)〉 × 〈(e1 + e3,M)〉 =
= {(0, Id), (e3, S), (e2, Id), (e2 + e3, S),

(e1 + e3,M), (e1 + e2,MS), (e1 + e2 + e3,M), (e1,MS)}.
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Taking the other eigenvector e1 + e2 + e3 we obtain the same subgroup.

Now we take the element (e3, Q) of order 4 and search for elements of order 2 commuting
with it. If it is of type (u, Id) we need u+ e3 = e3 +Qu and we should take the unique
non-zero eigenvector of Q, which is e1. We obtain a regular subgroup

F3 = 〈(e3, Q)〉 × 〈(e1, Id)〉 =
= {(0, Id), (e3, Q), (e2, Q

2), (e1 + e2 + e3, Q
3),

(e1, Id), (e1 + e3, Q), (e1 + e2, Q
2), (e2 + e3, Q

3)}

Let us remark that the centralizer of Q in GL(3, 2) is the subgroup generated by Q and
therefore there are no elements of order 2 commuting with Q except for Q2.

The next step is once again to consider morphisms τi : Fi → Aut(Zp) and check for
conjugate kernels. Recall that conjugation by an element of Aut(E) is ΦD(v,A) =
(Dv,DAD−1).

In case of kernel of order 4 we have, respectively,

(e3, S) (e1 + e3, S) conjugated by ΦM ′

(e3, S) (e1 + e2,MS) conjugated by ΦM̃

(e3, Q) (e1 + e3, Q) conjugated by ΦQ2

where

M ′ =





1 0 1
0 1 0
0 0 1





is in the centralizer of S and

M̃ =





0 0 1
1 1 1
1 0 0





is in the centralizer of M and such that M̃ S M̃−1 = MS. Therefore, every Fi provides
a unique conjugacy class.

If p ≡ 1 mod 4 we can consider semidirect products with kernel of order 2, and we proceed
as before with possible kernels:

(e1, Id) (e1 + e2, Id) conjugated by ΦM

(e1 + e3,M) (e1 + e2 + e3,M) conjugated by ΦMS

(e1, Id) (e1 + e2, Q
2) not conjugate

Note that MS ∈ CentGL(3,2)(M) ∩ CentGL(3,2)(S).

For F1 the four possible group homomorphisms are

τ±,± : F2 −→ Z
∗
p

(e3, S) → ±ζ4
(e1, id) → ±1

.

We have
τ−+ = τ++ ◦ ΦS , τ+− = τ++ ◦ ΦMS , τ−− = τ++ ◦ ΦM .
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and F1 provides a unique conjugacy class. For F2 the four possible group homomorphisms
are

τ±,± : F2 −→ Z
∗
p

(e3, Q) → ±ζ4
(e1, Id) → ±1

.

We have
τ−+ = τ++ ◦ ΦM , τ+− = τ++ ◦ ΦMS , τ−− = τ++ ◦ ΦS .

and F2 provides also a unique conjugacy class. For F3, since ΦS leaves (e1, Id) invariant
and takes (e3, Q) to (e2 + e3, Q

3) we have τ−+ = τ++ ◦ΦS and therefore F3 provides two
different conjugacy classes of semidirect products with kernel of order 2.

Proposition 9. Let p = 5 or p ≥ 11 be a prime.

1. If p ≡ 3 mod 4 there are 9 left braces with additive group Zp × Z2 × Z2 × Z2 and
multiplicative group Zp ⋊ (Z4 × Z2). Three of them are direct products, 3 of them
have cyclic kernel of order 4 and the remaining 3 have kernel isomorphic to the
Klein group.

2. If p ≡ 1 mod 4 there are 13 left braces with additive group Zp × Z2 × Z2 × Z2 and
multiplicative group Zp ⋊ (Z4 × Z2). The distribution is as in case 1 plus 4 braces
with kernel of order 2.

4.3 F ≃ Z2 × Z2 × Z2

This case only occurs when the abelian group is Z4 × Z2 or Z2 × Z2 × Z2

When E = Z4 × Z2 in Hol(E) there are two conjugacy classes of regular subgroups
isomorphic to Z2 ×Z2 ×Z2. They are normal, therefore union of conjugacy classes, and
they intersect in the normal subgroup of order 2. Working with the conjugacy classes of
elements of order 2 described in the previous subsection we find

F1 = 〈((2, 0), id)〉 × 〈((1, 0), r2)〉 × 〈((1, 1), r2)〉
F2 = 〈((2, 0), id)〉 × 〈((0, 1), r2)〉 × 〈((1, 0), rs)〉

and we have to count classes of morphisms τ (i) : Fi → Z
∗
p with kernel of order 4, therefore

isomorphic to the Klein group. We can freely choose two elements from the nontrivial
ones and in this way we obtain 7 possible kernels and each element belongs to three
different subgroups. Since ((2, 0), id) is invariant under conjugation, kernels containing
this element cannot be conjugate to kernels not containing it. Let us see if they give a
single conjugacy class.

For F1 the three kernels containing ((2, 0), id) are

〈((1, 0), r2) , ((3, 0), r2)〉
〈((1, 1), r2) , ((3, 1), r2)〉
〈((0, 1), id) , ((2, 1), id)〉.
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Conjugation Φr takes the first to the second one. But these two groups are not conjugated
to the third one. The four kernels not containing ((2, 0), id) are

〈((1, 0), r2) , ((0, 1), id)〉
〈((1, 0), r2) , ((2, 1), id)〉
〈((3, 0), r2) , ((2, 1), id)〉
〈((3, 0), r2) , ((0, 1), id)〉

The automorphism r3s has fixed points (1, 0) and (3, 0) and exchanges (0, 1) and (2, 1),
therefore Φr3s gives conjugacy of the first with the second and the third with the fourth
one. Analogously we see that the first and third kernels are conjugate by Φrs. All
together we obtain three conjugacy classes from F1.

For F2 the three kernels containing ((2, 0), id) are

〈((0, 1), r2) , ((2, 1), r2)〉
〈((1, 0), rs) , ((3, 0), rs)〉
〈((3, 1), r3s) , ((1, 1), r3s)〉.

The first one cannot be conjugate to the other two because elements of the second
component are not conjugate in D2·4. The conjugation Φr2s takes the second to the
third one. The four kernels not containing ((2, 0), id) are

〈((0, 1), r2) , ((3, 0), rs)〉
〈((0, 1), r2) , ((1, 1), r3s)〉
〈((2, 1), r2) , ((1, 0), rs)〉
〈((2, 1), r2) , ((3, 0), rs)〉

We see that Φr2s gives conjugacy of the first and the second one, Φr2 gives conjugacy of
the third and the fourth one, and Φrs gives conjugacy of the first and the third one. All
together we obtain three conjugacy classes from F2.

Proposition 10. Let p = 5 or p ≥ 11 be a prime. There are 8 left braces with additive
group Zp×Z4×Z2 and multiplicative group Zp⋊ (Z2×Z2×Z2). Two of them are direct
products and the remaining 6 have kernel isomorphic to the Klein group.

When E = Z2 ×Z2 ×Z2 in Hol(E) ≃ F
3
2 ×GL(3, 2) there are also two conjugacy classes

of regular subgroups isomorphic to Z2 × Z2 × Z2.

One of them has length 1 and comes from the conjugacy class of elements of order 2
with identity matrix in the second component, namely from the natural embedding of
Z2 × Z2 × Z2 in its holomorph:

F1 = {(v, Id) : v ∈ F
3
2}

In order to generate a second one we need elements (u, Id), (v, S), (w,A) such that

u+ v = v + Su, u+ w = w +Au, v + Sw = w +Av, A2 = Id, AS = SA

with v ∈ Ker(S + Id) \ Im(S + Id) and w ∈ Ker(A+ Id) \ Im(A+ Id). Therefore, u 6= 0
is a common eigenvector of S and A. If A = Id, we should have 4 different elements of
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order 2 with S in the second component, but there are only 2. Therefore A should be in
the centralizer of S and have a common eigenvector u 6= 0 with S, that is, u ∈ 〈e1, e2〉.
Finally, the condition v + Sw = w +Av implies that Im(S + Id) = Im(A+ Id).

Let us take A = M , as in previous subsection, and u = e2. Then, v = e1 is a valid
eigenvector of S and w = e1 + e3 is a valid eigenvector of M . We have v + Sw =
e1 + e1 + e2 + e3 = e2 + e3 and w +Mv = e1 + e3 + e1 + e2 = e2 + e3. Therefore, we
have the second conjugacy class of regular elementary subgroups of Hol(E):

F2 = 〈(e2, Id)〉 × 〈(e1, S)〉 × 〈(e1 + e3,M)〉 =
= {(0, Id), (e2, Id), (e1, S), (e1 + e3,M),

(e1 + e2, S), (e1 + e2 + e3,M), (e2 + e3, SM), (e3, SM)}.

Again, there are 7 possible kernels of order 4 for every Fi. For F1, the first components
form a 2-dimensional vector subspace of F3

2 and GL(3, 2) acts transitively on this set of
subspaces. Therefore, any two of them are conjugated by some ΦD, with D ∈ GL(3, 2).
All these conjugations ΦD leave F1 invariant and this subgroup provides a unique con-
jugacy class of semidirect products.

Let us analyze the classes of Klein subgroups of F2. Three of them contain the element
(e2, Id), which has to be invariant under any conjugation ΦD : F2 → F2. Therefore, they
cannot be conjugated to any of the other four subgroups. Let us see that they form a
conjugacy class. These kernels are

K1 = 〈(e2, Id) , (e1, S)〉
K2 = 〈(e2, Id) , (e1 + e3,M)〉
K3 = 〈(e2, Id) , (e2 + e3, SM)〉.

Keeping the above notation, ΦM̃ leaves F2 invariant and ΦM̃ (K1) = K3. Taking

˜̃
M =





1 0 0
0 1 0
1 0 1





we have that Φ ˜̃
M

leaves F2 invariant and Φ ˜̃
M
(K1) = K2.

The remaining kernels are

K4 = 〈(e1, S) , (e1 + e3,M)〉
K5 = 〈(e1, S) , (e1 + e2 + e3,M)〉
K6 = 〈(e1 + e2, S) , (e1 + e3,M)〉
K7 = 〈(e1 + e2, S) , (e1 + e2 + e3,M)〉.

MS ∈ CentGL(3,2)(M) ∩ CentGL(3,2)(S) gives ΦMS(K4) = K7 and ΦMS(K5) = K6. On
the other hand, ΦS(K4) = K5.

Proposition 11. Let p = 5 or p ≥ 11 be a prime. There are 5 left braces with additive
group Zp ×Z2 ×Z2×Z2 and multiplicative group Zp ⋊ (Z2 ×Z2 ×Z2). Two of them are
direct products and the other 3 have kernel isomorphic to the Klein group.
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4.4 F ≃ D2·4

Let us determine dihedral subgroups of the different holomorphs. Let us observe that in
this case we never have kernels of order 2 since the unique normal subgroup of order 2 is
generated by the square of an element of order 4. Therefore, we should consider cyclic
kernels and Klein kernels, and then conjugacy of kernels by automorphisms is the unique
condition we need to classify semidirect products. Since a group F ≃ D2·4 has a unique
cyclic subgroup of order 4, for every possible F there is just one semidirect product with
cyclic kernel.

When E = Z8 in Hol(E) we have just one regular dihedral subgroup, which is normal and
therefore union of conjugacy classes. Since there is just one conjugacy class of elements
of order 2 acting with trivial stabilizers and, as we have seen, its elements commute with
(2, 5), we have to take the other conjugacy class of order 4 and length 2. We check

(1, 7)(2, 1)(1, 7) = (6, 1) = (2, 1)3

so that F = 〈(2, 1), (1, 7)〉. We have two Klein kernels,〈(1, 7), (5, 7)〉 and 〈(3, 7), (7, 7)〉,
which are conjugate by Φ3.

Proposition 12. Let p = 5 or p ≥ 11 be a prime. There are 3 left braces with additive
group Zp × Z8 and multiplicative group Zp ⋊D2·4. One is a direct product, another one
has cyclic kernel of order 4 and the third one has kernel isomorphic to the Klein group.

Next we consider E = Z4 × Z2 in whose holomorph we have 5 conjugacy classes of
regular subgroups isomorphic to D2·4. We start with the five conjugacy classes of cyclic
subgroups of order 4 obtained in subsection 4.2.

〈((1, 0), r)〉, 〈((1, 0), id)〉, 〈((1, 0), s)〉, 〈((0, 1), rs)〉, 〈((1, 1), rs)〉.

Then, for each of the subgroups 〈f4〉 we have to consider elements f2 of order 2 such that
f2f4f2 = f−1

4 . We find

((2, 0), s)((1, 0), r)((2, 0), s) = ((3, 1), r3s)((2, 0), s) = ((1, 1), r3) = ((1, 0), r)3

((0, 1), r2)((1, 0), id)((0, 1), r2) = ((3, 1), r2)((0, 1), r2) = ((3, 0), id) = ((1, 0), id)3

((1, 1), r2)((1, 0), s)((1, 1), r2) = ((0, 1), r2s)((1, 1), r2) = ((3, 1), s) = ((1, 0), s)3

((1, 0), r2)((0, 1), rs)((1, 0), r2) = ((1, 1), r3s)((1, 0), r2) = ((2, 1), rs) = ((0, 1), rs)3

((2, 1), id)((1, 1), rs)((2, 1), id) = ((3, 0), rs)((2, 1), id) = ((3, 1), rs) = ((1, 1), rs)3

Each of the corresponding regular dihedral groups Fi provides two possible Klein kernels:
〈f2

4 , f2〉 and 〈f2
4 , f4f2〉.
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K1 K2

F1 ((2, 1), r2) ((2, 0), s) ((2, 1), r2) ((3, 0), rs) Not conjugate
F2 ((2, 0), id) ((0, 1), r2) ((2, 0), id) ((1, 1), r2) Not conjugate
F3 ((2, 1), id) ((1, 1), r2) ((2, 1), id) ((2, 0), r2s) Not conjugate
F4 ((2, 0), id) ((1, 0), r2) ((2, 0), id) ((3, 1), r3s) Not conjugate
F5 ((2, 0), id) ((2, 1, id) ((2, 0), id) ((1, 0), rs) Not conjugate

Therefore, every Fi provides two non-conjugate semidirect products.

Proposition 13. Let p = 5 or p ≥ 11 be a prime. There are 20 left braces with additive
group Zp × Z4 × Z2 and multiplicative group Zp ⋊ D2·4. Five are direct products, five
have cyclic kernel of order 4 and the remaining ten have kernel isomorphic to the Klein
group.

In Hol(Z2 ×Z2 ×Z2) there are two conjugacy classes of regular subgroups isomorphic to
D2·4. A representative for one of the conjugacy classes of elements of order 4 is (e3, S).
Its square is (e2, Id) and its cube (e2+ e3, S). If we consider an element of order 2 of the
form (u, Id)

(e3, S)(u, Id) = (u, Id)(e2 + e3, S) ⇐⇒ e3 + Su = u+ e2 + e3 ⇐⇒ Su = u+ e2

We take u = e1 + e2 + e3 and the dihedral group is

F1 = {(0, Id), (e3, S), (e2, Id), (e2+e3, S), (e1+e2+e3, Id), (e1, S), (e1+e3, Id), (e1+e2, S)}

The two Klein kernels are 〈(e2, Id), (e1+e2+e3, Id))〉 and 〈(e2, Id), (e1, S)〉 and they are
not conjugate.

Since SQ = Q3S we can consider an element of order 2 with matrix S. In this way we
obtain

(e1 + e2, S)(e3, Q) = (e1 + e3, SQ) (e1 + e2 + e3, Q
3)(e1 + e2, S) = (e1 + e3, Q

3S)

and the second regular group

F2 = 〈(e3, Q), (e1 + e2, S)〉
= {(0, Id), (e3, Q), (e2, Q

2), (e1 + e2 + e3, Q
3),

(e1 + e2, S), (e1 + e3, SQ), (e1, SQ
2), (e2 + e3, SQ

3)}.

The two Klein kernels are K1 = 〈(e2, Q
2), (e1+e2, S)〉 and K2 = 〈(e2, Q

2), (e1+e3, SQ)〉.
They are not conjugate since the vectors in the elements of K1 form the subspace 〈e1, e2〉
but the vectors in the second one do not form a subspace, therefore we cannot have a
matrix carrying the first set of vectors into the second one.

Proposition 14. Let p = 5 or p ≥ 11 be a prime. There are 8 left braces with additive
group Zp×Z2×Z2×Z2 and multiplicative group Zp⋊D2·4. Two are direct products, two
have cyclic kernel of order 4 and the remaining 4 have kernel isomorphic to the Klein
group.
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4.5 F ≃ Q8

Let us determine quaternion subgroups of the different holomorphs. Let us observe that
in this case we never have kernels of order 2 since the unique normal subgroup of order
2 is generated by the square of an element of order 4. On the other hand, we neither
have Klein kernels since in a quaternion group the three different subgroups of order 4
are cyclic. Its conjugacy by automorphisms is the unique condition we need to classify
semidirect products. We denote as usual i, j for two order 4 elements generating Q8.

When E = Z8 in Hol(E) we have just a regular quaternion subgroup, which is normal,
therefore union of conjugacy classes. It is

F = 〈i = (2, 1), j = (1, 3) 〉.

We have possible cyclic kernels

〈(2, 1)〉, 〈(1, 3)〉 and 〈(7, 3)〉.

The first one cannot be conjugate to the other ones because the elements do not have
the same second component. The second and third ones are conjugate by Φ7.

Proposition 15. Let p = 5 or p ≥ 11 be a prime. There are 3 left braces with additive
group Zp × Z8 and multiplicative group Zp ⋊ Q8. One is a direct product and the other
two have cyclic kernel of order 4.

Now we look for the unique conjugacy class in Hol(Z4×Z2) of regular subgroups isomor-
phic to Q8. The “ − 1” element has to be the invariant element ((2, 0), id). Therefore,
the elements of order 4 should have either id or an element of order two in its second
component. We take the order 4 element i = ((1, 0), id) so that i2 = ((2, 0), id). Then
j = ((0, 1), rs) satisfies

j2 = ((2, 0), id), k = ij = ((1, 1), rs), k2 = ((2, 0), id).

Therefore the regular subgroup is F = 〈((1, 0), id), ((0, 1), rs)〉. The possible cyclic
kernels are

〈((1, 0), id)〉, 〈((0, 1), rs)〉 and 〈((1, 1), rs)〉.

As we can see in the table of conjugacy classes in subsection 4.2 these cyclic subgroups
are not conjugate.

Proposition 16. Let p = 5 or p ≥ 11 be a prime. There are 4 left braces with additive
group Zp × Z4 × Z2 and multiplicative group Zp ⋊ Q8. One is a direct product and the
other three have cyclic kernel of order 4.

Finally, inside Hol(Z2 × Z2 × Z2) we have also a unique conjugacy class of subgroups
isomorphic to Q8. We should take elements (v,A) with A2 = Id and v not an eigenvector.
Then (v,A)2 = (u, Id) with u the unique non-zero vector in Im(A + Id). Keeping the
previous notations, we take the order 4 element i = (e3, S) so that i2 = (e2, Id). Then
j = (e1,M) satisfies

j2 = (e2, Id), k = ij = (e1 + e3, SM), k2 = (e2, Id).
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Therefore the regular subgroup is F = 〈(e3, S), (e1,M)〉. The possible cyclic kernels are

〈(e3, S)〉, 〈(e1,M)〉 and 〈(e1 + e3,MS)〉.

Let us take the matrix of order 3

D :=





1 0 1
0 1 0
1 0 0



 .

Then DSD−1 = M and ΦD(e3, S) = (e1,M). Also DMD−1 = MS and ΦD(e1,M) =
(e1 + e3,MS). This proves that F is invariant under ΦD and that the three cyclic
subgroups are conjugate.

Proposition 17. Let p = 5 or p ≥ 11 be a prime. There are 2 left braces with additive
group Zp × Z2 × Z2 × Z2 and multiplicative group Zp ⋊Q8. One is a direct product and
the other one has cyclic kernel of order 4.

5 Total numbers

For an odd prime p 6= 3, 7 we compile in the following tables the total number of left
braces of size 8p. Recall that for p = 3, 7 this number is given in [8] and is 96 and 91,
respectively.

The additive group is Zp×E and the multiplicative group is a semidirect product Zp⋊F .
In the first column we have the possible E’s and in the first row the possible F ’s.

• If p ≥ 11 and p 6≡ 1 mod 4

Z8 Z4 × Z2 Z2 × Z2 × Z2 D2·4 Q8

Z8 4 4 0 3 3 14
Z4 × Z2 0 9 8 20 4 41

Z2 × Z2 × Z2 0 20 5 8 2 35
4 33 13 31 9 90

• If p ≡ 5 mod 8

Z8 Z4 × Z2 Z2 × Z2 × Z2 D2·4 Q8

Z8 6 6 0 3 3 18
Z4 × Z2 0 13 8 20 4 45

Z2 × Z2 × Z2 0 28 5 8 2 43
6 47 13 31 9 106

• If p ≡ 1 mod 8

Z8 Z4 × Z2 Z2 × Z2 × Z2 D2·4 Q8

Z8 8 6 0 3 3 20
Z4 × Z2 0 13 8 20 4 45

Z2 × Z2 × Z2 0 28 5 8 2 43
8 47 13 31 9 108
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