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Make a machine to understand what is happening on a visual recording is one of the most
ambitious goals pursued by the Computer Vision research field. This incredibly complex
task requires the application of several different techniques, from the object detection,
through the definition of the relationships that these objects can have in the scene, including
the application of knowledge that allows adding different sets of relationships to compose
abstract and compound actions (such as washing clothes or getting ready to go out on the
street).

In this context, Scene Graphs techniques have been proposed in literature. Their ap-
proach is to capture the different relations that appear in a scene with the aim of aggregating
them inside a graph which allow us to define a visual scene. Nowadays, the state-of-the-art
methods hardly rely on prior knowledge extracted from the training step, this knowledge is
clearly biased into the training set. Because of that, Scene Graph Generation models have
a hard time correctly defining relationships between previously unseen objects. In recent
years, a branch of models has emerged that attempt to apply common-sense knowledge
techniques to try to lower the dependency of Scene Graph Generation models on prior bias.

This project describes and tests the most recent Common-sense techniques applied to
scene graph generation, and then proposes a new technique: Generalized Action Graphs
(GAG). The work also implements a recently published metric that allows measuring the
generalization of a Scene Graph Generation model.
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the support they have been giving me during the project, helping me to get the focus of
the project, as well as helping me with the problems that have arisen in the technical part
of the project. Thanks to them, I have also had access to the resources of the Barcelona
Supercomputing Center (BSC) that have been vital for the experimental part of the project.

Also, I want to thank all the lecturers who have taught us during these years of master’s
degree. I can assure you that each one of them have been great teachers who put a lot of
effort into making their subjects interesting for us. At the same time, I would also like to
thank my colleagues on the master’s degree, who made up a great working group, without
whom everything would have been much more difficult.

To finish, I would like to thank my family and friends, who through their unconditional
support helped me overcome the many difficulties that have been occurring. But above all,
I would like to especially thank Camila Ramı́rez, whose tireless support has been essential,
really very grateful.





Contents

1 Introduction 1
1.1 Project scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical background 5
2.1 Scene graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scene graph generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Feature Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Relation Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Spatio-Temporal Scene Graph Generation . . . . . . . . . . . . . . . 12

2.3 Deep Learning for SGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Long Short-Term Memory networks . . . . . . . . . . . . . . . . . . 14
2.3.4 Encoder-Decoder architecture . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Message Passing Mechanism . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Knowledge Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 ConceptNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Google Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



ii CONTENTS

3 Related work 24
3.1 Faster RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Scene graph generation methods . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Graph-RCNN for Scene Graph Generation . . . . . . . . . . . . . . . 26
3.2.2 Neural motifs: Scene Graph Parsing with Global Context . . . . . . 27
3.2.3 Knowledge-Embedded Routing Network for Scene Graph Generation 28
3.2.4 Graphical Contrastive Losses for Scene Graph Parsing . . . . . . . . 29
3.2.5 HORL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Common-sense Knowledge methods . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 CogTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 GB-NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Visual Distant Supervision . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Methodology 39
4.1 Used Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Visual Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Humans Interacting with Common Objects for Detection . . . . . . 40
4.1.3 Action Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Home Action Genome . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 New method: Generalized Action Graphs . . . . . . . . . . . . . . . . . . . 43
4.2.1 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Action graph fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Pareto Optimal Points Generator . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Common-sense matrix generation and Prior freq Matrix Aggregation 52

4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Prior freq file Generation . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Commonsense Prior freq file Generation . . . . . . . . . . . . . . . . 54

4.4 Faster R-CNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 RelDN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Obtaining results from State-of-the-art methods . . . . . . . . . . . . . . . . 66
4.7 mPD metric implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Experiments and results 71
5.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Used Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS iii

6 Conclusions and future work 77
6.1 After-work Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Figures

2.1 Simple scene graph example. [28] . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Scene graph generation methods framework overview [70] . . . . . . . . . . 8
2.3 different ground truth triplets with similar spatial features. [70] . . . . . . . 9
2.4 Common-sense Knowledge strategies graphical overview. [70] . . . . . . . . 11
2.5 Example of video visual relations. [47] . . . . . . . . . . . . . . . . . . . . . 13
2.6 CNN basic structure example. [38] . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Differences between RNN and LSTM cell structure. [5] . . . . . . . . . . . . 15
2.8 LSTM cell structure, divide in 3 different stages. [6] . . . . . . . . . . . . . 16
2.9 Example of WordNet browser retrieved information. . . . . . . . . . . . . . 19
2.10 Example of ConceptNet browser retrieved information. . . . . . . . . . . . . 20
2.11 Example of Google Knowledge Graph usage, generating the infobox associated

to a Google search engine query. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 Pareto-optimal front in a bidimensional space representation. [49] . . . . . . 23

3.1 Faster R-CNN architecture overview. With the four losses generated pointed
in red. [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Graph-RCNN architecture overview. We can distinguish the three phases
of the method jointly, with the Relation Proposal Network (RelPN) used
to prune the graph connections and the Attentional Graph Convolutional
Network (aGCN) used to capture the contextual information between object
and relations. [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 MotifNet overview. [67] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 KERN overview. [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 RelDN method overview. [69] . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 HORL method Overview. [44] . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 (a) SGG model with conventional loss. (b) SGG model with CogTree proposed

cognition tree loss. [64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 The overview of CogTree loss applied to SGG models. [64] . . . . . . . . . . 34
3.9 CogTree-based class balanced (TCB) loss. [64] . . . . . . . . . . . . . . . . 35
3.10 Bridging Knowledge Graphs (GB-NET) method overview. [66] . . . . . . . 36

iv



LIST OF FIGURES v

3.11 Visual Distant Supervision (VDS) method overview. [66] . . . . . . . . . . . 37

4.1 Simple examples of scene graph generated in Visual Genome. [28] . . . . . . 41
4.2 Examples of sample annotations in HICO-DET. [9] . . . . . . . . . . . . . . 41
4.3 Object/Relation occurrences distribution inside Action Genome dataset. [24] 42
4.4 Multiple Views of HOMAGE dataset. Each sequence has one ego-view video

as well as at least one or more synchronized third person views. [39] . . . . 43
4.5 GAG method overview. Each main step is highlighted: (1) Action graphs

generation, (2) Graphs fusion between datasets, (3) Pareto Optimal Points
Generator and (4) Common-sense matrix generation and Prior freq Matrix
Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Object and relationship labels for Action Genome dataset. . . . . . . . . . . 45
4.7 Generalized Action graph generated using a chair (as object) as a base, in

GAG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Generalized action graph example . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 Action graphs, node attributes tendencies. . . . . . . . . . . . . . . . . . . . 50
4.10 Pareto optimal points extraction examples . . . . . . . . . . . . . . . . . . 51
4.11 Common-sense prior knowledge matrix construction overview . . . . . . . . 54
4.12 Faster R-CNN training and validation results for Visual Genome dataset . . 57
4.13 Faster R-CNN training and validation results for Action Genome dataset . 58
4.14 Training loss progression for Faster R-CNN model trained using Maskr-

cnn benchmark repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.15 Performance Degradation graphical representation for Visual Genome. . . . 60
4.16 Performance Degradation graphical representation for Action Genome. . . . 60
4.17 Object occurrences and Average Precision correlation for Visual Genome . . 61
4.18 Object occurrences and Average Precision correlation for Action Genome . . 62
4.19 Illustration of coupled and decoupled SGG model architecture. [19] . . . . . 63
4.20 RelDN with Prior Knowledge matrix Training losses . . . . . . . . . . . . . 64
4.21 RelDN, with Locally extracted Common-sense matrix, Training losses . . . 65
4.22 RelDN, with Globally extracted Common-sense matrix, Training losses . . . 65
4.23 mPD output example. Performance degradation of ride relation overall the

predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



List of Tables

4.1 AP50 obtained by each Faster R-CNN, Action genome (AG) and Visual
Genome (VG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Pearson correlation results obtained for each dataset. . . . . . . . . . . . . . 59
4.3 Compared state-of-the-art SGG methods. Other metric results origin column

provides the link to the origin of the metric results used for the comparison;
Could mPD be analysed? column shows for which models we are able to
measure the mPD metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Quantitative comparison between, the state-of-the-art SGG methods (Bases),
with Common Sense variations (CS adapt) and the ones proposed in this
work (GAG). All the results are based on Visual Genome dataset [28], except
the HORL method, which is based on Action Genome[24]. *The results are
extracted from the original papers of each one of the methods. . . . . . . . 74

5.2 Quantitative mPD results comparison between the state-of-the-art SGG
methods, with Common Sense variations, the ↓ means that in mPD lower is
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



List of Algorithms

1 Action graph generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2 Different datasets’ graph list aggregation. . . . . . . . . . . . . . . . . . . . . 49
3 Pareto optimal points extraction from action graph. . . . . . . . . . . . . . . 50
4 Common-sense matrix construction. . . . . . . . . . . . . . . . . . . . . . . . 52
5 Common-sense and Frequency matrix aggregation. . . . . . . . . . . . . . . . 53
6 Mean Performance Degradation Algorithm . . . . . . . . . . . . . . . . . . . 69

vii



Acronyms

aGCN Attentional Graph Convolutional Network.

AI Artificial Intelligence.

ANN Artificial Neural Network.

AP Average Precision.

BiLSTM Bidirectional Long Short-Term Memory.

CNN Convolution Neural Network.

Faster R-CNN Faster Region-based Convolutional Neural Network.

FPN Feature Pyramid Network.

GAG Generalized Action Graphs.

GB-NET Graph Bridging Network.

GNN Graph Neural Network.

HICO-DET Humans Interacting with Common Objects for Detection.

HOI Human-Object Interaction.

HOMAGE Home Action Genome.

HORL Human-Object Relation LSTM.

IoU Intersection over Union.

KERN Knowledge-Embedded Routing Network.

viii



Acronyms ix

LSTM Long Short-Term Memory.

MLP Multi-layer Perceptron.

MOO Multi-objective optimization.

mPD mean Precision Degradation.

NLP Natural Language Processing.

PredCls Predicate Classification.

RelDN Relationship Detection Network.

RelPN Relation Proposal Network.

RNN Recurrent Neural Network.

ROI Region of Interest.

RPN Region Proposal Network.

SgCls Scene Graph Classification.

SgDet Scene Graph Detection.

SGG Scene Graph Generation.

ST-SGG Spatio-Temporal Scene Graph Generation.

TCB CogTree-based class balanced loss.

VDS Visual Distant Supervision.

VGG Visual Geometry Group.



Chapter 1

Introduction

Understanding what happens around us is a vital capacity that both animals and human
beings constantly use. This activity, although it seems trivial due to the constant use we
make, requires a set of extremely complex processes.

This complexity level comes to the fore when we try to incorporate this capacity into
a machine. It is at that moment when we realize that processes such as object detection,
based on images or videos, or the determination of relationships between the objects, are
basic tasks so that the machine can develop the ability to explain what its environment is like.

In this context, Scene graph is a structural representation which can capture a se-
mantic description by explicitly representing objects (’person’, ’window’, ’banana’, etc.),
objects attributes (such as the material of an object), and the relations between paired
objects (’jumping over’, ’walk through’, etc.) [70]. Scene Graph Generation (SGG) refers to
the task of automatically mapping an image or a video into a semantic structural scene graph.

Scene graph generation (SGG) models take a visual input (e.g., an image or a video)
and generate a scene graph which explains the scene appeared in the visual input. This
generated scene graph can be used, for example, to automatically generate the image
caption, or giving a query, use the information about the objects (nodes) and the relations
between them (edges) to respond the question answered.

SGG, as a field of research is very recent, but currently it is one of the Computer
Vision fields that the research community has the spotlight on, having big advances in
the last years. Being SGG a quite recent topic, sometimes relevant aspects when we are
evaluating an Artificial Intelligence (AI) model can be neglected in pursuit of an accu-
racy improvement. We could consider one of these aspects the generalization, which
is, in SGG field, the capacity of a model to relate an action that is usually applied to

1



2 CHAPTER 1. INTRODUCTION

a specific object, to another object with a certain degree of semantic, or visual, similarity.[70]

Nowadays, the current state-of-the-art methods do not generalize appropriately [32].
We can associate this lack of generalization to the fact that some of the current techniques
contain a large prior bias, since they tend to directly use as previous knowledge, the
probability between actions and objects directly extracted from the relationships specified
as ground truth in the training dataset, either in the form of a probability matrix [69], as
in graph form [45].

1.1 Project scope

This project seeks to demonstrate that this generalization problem exists, analysing some
of the most recent models to evaluate this capacity. We also aim to demonstrate that, by
using previous knowledge stored in external knowledge bases and the ground truth labels
available for training, we can infer a certain degree of generalization that will allow the
reduction of the previous model bias.

The project’s approach belongs to the category of common-sense knowledge applied to
SGG (explained in depth in section 2.2.2). Briefly, these techniques try to reduce the bias
of the current models by applying different techniques or heuristics that can use both the
data from the training samples and use external knowledge databases. More concretely, our
approach tries to generate the action-associated objects hierarchy tree by extracting the
relevant super classes of the objects.

1.2 Objectives

The aim of this work is the proposal of a new common-sense knowledge generalization
method to avoid the current previous knowledge bias that exists in some methods, adapting
it to RelDN method [69], trying to give a better reasoning to the model. RelDN is one of
the SGG state-of-the-art. We want to compare directly the effect of the proposed method
over the model’s performance and capacity of generalization.

Another objective of this work is the analysis of the generalization. In order to apply
a qualitative analysis on the knowledge generalization in SGG, in this work the imple-
mentation of a recently published metric by [32] is used (the metric is deeply explained in 4.7)
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1.3 Hypothesis

Therefore, having in clear the project scope and objectives, the main questions that the
thesis wants to study are:

• Hypothesis 1: The state-of-the-art SGG methods have a low level of object general-
ization. In other words, the current models work with a huge bias over the most used
objects giving an action in Human-Object Interaction (HOI).

• Hypothesis 2: Using the semantic hierarchy of the objects in the dataset, this object
generalization per action can be improved, not reducing the model accuracy. The usage
of semantic information, in our case the inherited hyperonyms, can help the model to
tackle rare, or unseen relations between a person and objects.

• Hypothesis 3: Giving a richer input data to GAG method in each action analysed,
it better generalizes the final SGG model. Combining the graphs generated in GAG
method for each dataset increases the HOI examples analysed per action, producing
a better generalization to the final model.

• Hypothesis 4: Our technique can help to the model generalization, such as other
state-of-the-art common-sense techniques. Apart from the evaluation of the technique
presented in this project, we will compare the new technique results to the ones
obtained by other common-sense well known techniques.

1.4 Contributions

The master’s thesis main contributions are:

• A new common-sense technique, Generalized Action Graphs (GAG) which uses
WordNet object hierarchies and the dataset training ground truth labels to build a
generalization graph per action with the purpose to add extra previous information
to feed the model. An analysis of the effects that this new technique has on the SGG
methods is done.

• An implementation of the mean Precision Degradation (mPD) proposed metric ([32])
to use it for the analysis of the object generalization techniques in SGG

A minor contribution of the thesis is the analysis of the currently most used Common-
sense methods effects in the SGG metrics results.

In addition, this project is inspired by another method proposed in January 2022 by
another classmate, Kevin Rosales. The method proposed by Rosales (HORL)1, focuses on

1Kevin Rosales’ HORL method is described in Section 3.2.5 of this document
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ST-SGG methods, which are based on videos as inputs, having better results than other
state-of-the-art methods, and this thesis uses it as a baseline to see the current generalization
of this method.

1.5 Overview

This first chapter of the thesis has introduced the the field of study and motivations of
the work, its objectives and expected contributions to the computer vision and knowledge
community.

In Chapter 2, a detailed explanation of SGG is provided, jointly with an explanation
of other important concepts such as Knowledge Databases. In Chapter 3, a deeper study
of the related work is done, analysing the important methods for the main concept of the
thesis, such as SGG methods or state of the art common-sense methods.

Chapter 4 describes the methodology followed by the TFM, e.g., datasets used in each
part of the work, baselines, methodology followed by to create the GAG technique or the
methodology followed to run the object detector and Scene Graph Generator. In Chapter
5 all the results extracted from the evaluated methods are exposed, giving a quantitative
analysis of them.

Finally, in Chapter 6, the conclusions extracted after the realization of the work are
described, adding an after work hypothesis achievement analysis and a future work section
with some issues and lines of work that either are out of the scope or there was no time to
tackle them properly, but would be of interest..

1.6 Chapter Summary

In this first chapter, a brief introduction to the thesis topics is done, explaining the project
scope over the lack of generalization that currently affect the Scene Graphs field of research
(1.1), probably due to the short time life that has this field. Then, the main motivations of
the thesis are explained (1.2), giving rise to the hypothesis that this work wants to analyse
(1.3). Finally, the contributions of the work to the SGG field of research are exposed and a
general overview of the document chapters is done (1.4).

Now, it is time to explain the technical background that gives the basis to this work,
explaining the SGG field of research more in deep and describing the methods in which
generalization is studied.



Chapter 2

Technical background

To completely understand the project motivation and work done, firstly it is necessary
to explain the technical background of each research field relevant for this work. This
chapter is devoted to explain the related fields of research, starting with an extensive defini-
tion of the Scene Graph Generation (SGG) and all its subparts (Section 2.1), Knowledge
Databases (Section 2.4), work-context important Deep Learning concepts (Section 2.3), and
a brief context of multi-objective optimization (due to it being used in GAG, see section 4.2).

2.1 Scene graphs

A scene graph is a structured representation of an image, which can capture the semantics
that describe the picture by modelling objects, subjects, relations between objects and the
possible attributes that can distinguish an object from another [70].

Subject and Objects are considered the core block of the scene graphs, and they can
be directly located in the image, normally inside a bounding box. Each object can be
described with zero or more attributes (such as colour, material, position, etc). Relations
can be actions (e.g., swim), spatial positioning (e.g., is behind), prepositions(e.g. “with”),
descriptive verbs(e.g., wear), etc.

We can distinguish two main formats of scene graph, both of them represented as the
composition of different triplets formats: [subject, relation, objects] or [object, is, attribute].
The verb ”is”, between objects and attributes, is for uniformity, a convention. Specifically,
we can consider Human-Object Interaction (HOI), as a scene graph’s subtype in which the
subject of each relation is human, forming a triplet such as [”person-like label”, relation,
objects], e.g. labels such as woman, man, person or child are labels that can be considered
as person-like labels. Figure 2.1 shows a simple example of scene graphs, concretely the

5
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scene graph generated by the composition of three Human-Object interactions.

Figure 2.1: Simple scene graph example. [28]

From the point of view of graph theory, a scene graph is a directed graph with three
types of nodes: Objects, Subject and Attributes (represented as nodes in the graph).
The nodes are connected through Relations (represented as edges in the graph). In
some representations, objects’ attributes are not represented as nodes, instead they are
incorporated as a description list of elements inside the Object node. This fact only affects
the final representation of the graph and it makes no difference in the scene graph building
process.

Due to the fact that a scene graph usually aims to semantically establish a representation
of a real world image, we can fall in the erroneous association between Scene Graphs and
Knowledge Graphs. While Knowledge Graphs are representations of multi-relational data
with huge amount of fact triplets, Scene Graphs aim to semantically represent the visual
relationships of an image. The knowledge extracted from these visual representations highly
differs from the ones found in social networks and knowledge bases, as the relationships
generated from an image are incidental, image-specific and are not intentionally constructed.

Focusing on the possible sources from which we can generate scene graphs, we can
distinguish three main sources: firstly, and the most usual, we can generate a scene graph
from a 2D image, which is the representation of a 3D space, this fact adds a difficulty level,
the perspective of the photo, which can effect for example in the detection of the elements
of the scene if we find occlusions in it. Another source is a 3D mesh that captures a static
scene in 3D. Finally, we have videos where the visual relationships are not instantaneous,
but may change through the time. In fact, we can see digital videos as a set of images
(also called frames), which means relations can be spanned over different frames. The scene
graphs build based on videos is also referred to as Spatio-Temporal Scene Graph.
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2.2 Scene graph generation

Scene Graph Generation is the task of generating a visually-grounded scene graph that
most accurately correlates with an image. It aims to parse images, or sequences of images
(in the case of videos), to generate a structured representation that bridges the gap between
visual and semantic perception, with the intent to build a complete understanding of visual
scenes [70].

The generation of scene graphs is usually treated as a bottom-up process, where entities
are grouped into triplets, and these triplets are joined to other triplets to form the complete
scene graph. The starting point in the Visual Relationship Detection is the article presented
by Lu et al. [33]. Another catalyst for the research in the field was the release of the first
large-scale scene graph dataset Visual Genome [28].

Nowadays there exist two ways to build an SGG system. The mainstream approach is
the one that uses a two-step pipeline: a first one that detects and locates inside bounding
boxes the objects of a scene, and then solves a classification task to determine the relations
between two objects. The alternate approach is to join the objects inferring and their
relationships based on the object region proposals. But both approaches have in common
the sequence of actions to be done:

1. Detect all the objects in the scene.

2. group them into pairs.

3. use the features of their union area.

4. infer the predicate (relation) between them.

In the case of SGG methods for 2D input that use a two-step pipeline, this step sequence
can be is applied (as shown in Figure 2.2), and the following sections 2.2.1, 2.2.2, 2.2.3 and
2.2.4 will explain each step. In the case of SGG using videos as input, the pipeline is different,
and therefore section 2.2.5 will introduce Spatio-Temporal Scene Graph Generation.

2.2.1 Object Detection

Object Detection is composed by an Off-the-shelf object detector. It is responsible for
detecting the different objects, subjects, and relations inside the image, placing them within
a bounding box (asually defined by the coordinates of two opposite corners) and, therefore,
locating said elements within the image.
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Figure 2.2: Scene graph generation methods framework overview [70]

Nowadays, the most widely used model is Faster-RCNN, which generates such object
detection through Regions of interests (ROIs) [63]. Faster RCNN is the architecture chosen
for the project’s object detector, and it is further explained in section 3.1.

2.2.2 Feature Representation

The Feature Representation step aims to transform the labelled ROIs received as input, into
the form of bounding boxes with associated feature labels. Transforming the bounding box
content to a visual feature by, e.g., using a Convolution Neural Network (CNN) would not
be enough to build a reliable relation predictor most of times. In order to build sufficiently
consistent labels, we need to build a set of different features, also called Multimodal
Features. In Scene Graph Generation, the mainstream feature types used are:

• Appearance features: these features are the ones mentioned just above, they are
extracted from the part of the image inside the object/subject bounding boxes.

• Spatial features: features extracted to analyse the relative position of the object and
subject inside the image.

• Contextual features: encoded using the information extracted from the rest of the
photo outside the object/subject bounding boxes.

• Semantic features: these features differ from the rest as they are not visual features,
but features that are extracted from the labels of each ROI gathered.



2.2. SCENE GRAPH GENERATION 9

(a) man-riding-horse (b) dog-sitting on-horse

Figure 2.3: different ground truth triplets with similar spatial features. [70]

In Scene Graph Generation, data balance plays a key role in the performance due to
the use of Deep Neural Networks (which are data-dependant structures). However, because
of the long list of relations of the training sets, collecting enough training data images
and labelling all the objects and relations becomes unfeasible due to its cost in time and
resources. To tackle this issue, Prior Knowledge and Common-sense Knowledge strategies
are used.

Prior Knowledge strategies

This Prior Knowledge strategies can be seen as ”previous experiences” in human point of
view. In this type of approaches the model is helped with data extracted from previous
situations, it is widely used by the community, and we can distinguish two main categories:

• Statistical Priors: it is the simple way to use prior knowledge, the methods that use it
calculate the possibility of a triplet, e.g., in [69], the statistical co-occurrences between
pairs of objects and relations were calculated, another example can be found in [4],
where authors train their semantic module using the entire triplet absolute frequency
in the training data.

• Language Priors: the approaches behind these techniques use the semantics behind
the triplet elements to calculate the probability of the triplet, in other words, even
if the visual features extracted from Figure 2.3a and Figure 2.3b can be similar, we
know that the verb ”ride” is used in the case of humans as subject, but when in
Figure 2.3b we see a dog on a horse, semantically the best relation could be ”sitting
on”.
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Common-sense Knowledge strategies

On the other hand, Common-sense Knowledge strategies search to include information
about events that occur in time, about the effects of the actions, about objects and the
perception of these objects. The research community has proposed different approaches to
extract common-sense knowledge in order to refine object and relation features to improve
generalizability of scene graph generation.

In the case of Common-sense Knowledge strategies, we do not want to add ”previous
experiences”, as in Prior Knowledge strategies, we want to add ”generalization capacity” to
the model. There are three fundamental sub-issues of common-sense knowledge applied to
SGG (see an overview schema in Figure 2.4):

• Information source: the source of the common-sense knowledge can be internal
(extracted from the training samples), external (using external knowledge databases
such as ConceptNet 2.4.2).

• Formulation: tackle the way to incorporate the knowledge in a more efficient and
comprehensive manner. For example, using co-occurrence matrix, word embedding
vectors or adding common-sense relationships triplets, that can be used to build a
Common-sense graph.

• Usages: how we use the acquired structured knowledge to refine the original extracted
features, the mainstream approach is to use this knowledge as a guidance in the
original feature refinement, but, e.g., in [62], the authors demonstrated a framework
which can train the scene graph models in an unsupervised manner, based on the
knowledge bases extracted from the triplets of Web-scale image captions (Deeply
explanation in section 3.3.3).

2.2.3 Feature Refinement

To achieve high-quality predictions it is necessary to achieve two objectives: on one side,
information of the elements (subject, relation, object) must be integrated in order to refine
the features, but on the other side, it is important to fuse the contextual information
because the relations can be influenced by their surroundings. In [70], the authors propose
a set of three different techniques used for this task:

• Message Passing: in this approach, the features and messages are passed between
elements of a scene graph, including objects and relationships. The Message Passing
technique can be applied locally, or Local Message Passing, where the propagation
is inside the triplet elements. On the other hand, there are the global, or Global
Message Passing, where the propagation is across all the elements detected in an
image, in order to give a triplet context.
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Figure 2.4: Common-sense Knowledge strategies graphical overview. [70]
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• Attention Mechanism: attention can be used to update each object and relation
representation, or integrating the contextual information. For this reason, we can
distinguish between two types of attention mechanisms for SGG; Self-Attention
mechanism which aggregates multimodal features of an object to generate a more
comprehensive representation, and Context-Aware Attention which learns the
contextual features using graph parsing.

• Visual Translation Embeddings: in this approach the objective is to learn a composi-
tional representation for each element of the triplet (subject, object and predicate) by
learning separate visual-language embeddings spaces. Each triplet element is mapped
close to the language embedding of the associated label. Generating each triplet
element visual-semantic embedding, the architecture can learn a visual translation
vector in order to the prediction.

2.2.4 Relation Prediction

After feature refinement, we have to train a classifier in order to make it capable to use the
features, extracted from feature refinement step, to predict the relation between each pair
of objects.

2.2.5 Spatio-Temporal Scene Graph Generation

Compared to images, videos provide a more natural set of features for detecting visual
relations, due to the dynamic nature of the interactions between objects in the real world. [70]

Using videos as input, we are able to detect dynamic actions as ”put down”, or even rec-
ognize correlated actions, such as in the context of a supermarket, the triplets [woman, pay,
money] can have a correlated action ”buy”, e.g. [woman, buy, orange]. Additionally, videos
can allow us to disambiguate easily between similar actions in images, e.g., ”run” and ”walk”.

From the technical point of view, nowadays Spatio-Temporal Scene Graph Generation
(ST-SGG) relies on video object detection, which is a composition between image-based
object detection and multi-object tracking. After obtaining the object/subject trajectory,
e.g. in [47], a relationship feature extraction step is done in order to obtain the object
features over the time. After it, a relationship modelling technique is applied. An example
of video visual relations can be seen in figure 2.5.

But there are some problems that raise when we are using videos as input (that in
images are not frequent), which downstream video relationship detection, such as blur,
dynamic occlusions or camera motions.
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Figure 2.5: Example of video visual relations. [47]

2.3 Deep Learning for SGG

This section is devoted to define some Deep Learning (DL) concepts related to some of the
project‘s key points. It begins with the basic ANN (see in Section 2.3.1) to set the bases of
the other described Neural networks, CNN (Section 2.3.2) and LSTM (Section 2.3.3). Then
it continues with the attention mechanism (Section 2.3.5) and Message Passing technique
(Section 2.3.6).

2.3.1 Artificial Neural Network

Artificial neural networks [59] are a technology based on studies of the brain and nervous
system. In fact, these networks only use a reduced set of concepts from biological neural
systems, simulating the electrical activity of the brain. As a network, it is a composition of
simple elements ”neurons”, also called perceptrons. These ”neurons” are connected between
them, having inputs received from other neurons and output that they generate after the
application of a weighted sum (see Equation 2.1) where n is the number of inputs, xi are
the inputs and wi are the weights.

f =
( n∑

i=0
wixi

)
(2.1)

ANN have become popular due to their capability of learning representations of data
by learning their set of weights. Specifically, a type of ANN is the Multi-layer Perceptron
(MLP)[41] which is a feedforward ANN where the neurons are organized in layers, and the
output of the neurons of a layer is the input of the next one.



14 CHAPTER 2. TECHNICAL BACKGROUND

Backpropagation algorithm [42] is the method of fine-tuning the weights of a neural
network based on the error rate obtained in the previous iteration in a supervised manner.
[25]

2.3.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) [38] is a Deep Learning (DL) algorithm architecturally-
based on Artificial Neural Networks (ANN) that is commonly used for image-based DL.
CNNs are widely used in image based DL, instead of regular ANN, because CNN are able
to extract local patterns of data, using kernels [43].

These kernels are matrix filters applied on the images, understanding images as a big 2D,
or 3D (counting the colour channels) matrix. After applying a set of convolutional layers,
we extract the features of the structures that appeared in the image. Finally, we apply a
few fully connected layers in order to build a classifier, that uses the features created to
assign a category over a set of categories (see Figure 2.6).

Figure 2.6: CNN basic structure example. [38]

2.3.3 Long Short-Term Memory networks

Recurrent Neural Networks (RNN) are a subclass of ANN where the output of the previous
time step is used as part of the input of the next iteration. They keep information about
past inputs for an amount of time (not fixed) depending on the weights of the input data.
[7]
These properties make RNN very useful when processing sequences (text, video), as it
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is able to take into account previous perceptions (previous words or sentences, previous
video frames) to process the current perception and also give a certain resistance to the noise.

However, RNN are algorithms that require a big ammount of time and data to train.
Furthermore, they suffer from the vanishing gradient problem, which occurs when, after
some training iterations, the gradient will be vanishingly small.

Long Short-Term Memory (LSTM)[21] networks are a type of RNN that solves the two
main issues that vanilla RNN have. On one side, LSTM reduce the vanishing gradient
problem and, on the other side, LSTM are more computationally efficient.

Figure 2.7: Differences between RNN and LSTM cell structure. [5]

As it can be seen in Figure 2.7, RNN and LSTM has similar architecture, having an
input gate, an output gate and a forget gate. The main change is internal calculation flow
structure, which is much more complex in the case of LSTM.

In the case of a RNN cell (Figure 2.7(a)), it basically consists of an activation function:

ht = tanh(Whhht−1 + Wxhxt) (2.2)

Where W is weight, h is the single-hidden vector, Whh is the weight at previous hidden state,
Whx is the weight at current input state, tanh is the Activation function, that implements
a Non-linearity that squashes the activations to the range[-1,1]. The structural simplicity
of RNN cell has as drowbck that it struggles to remember long term data.[6]

On the other hand, each LSTM cell (Figure 2.7(b)) has a more complex internal structure
that can be divided in three main stages[6] (which are show in more detail in Figure 2.8):

• Forget stage, or gate: It seeks to discover what details can be discarded from memory
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using a sigmoid function. Look at the previous state, at the input and generate an
output with a range between 0 (can be omitted) or 1 (important data, save this).

• Input stage, or gate: It seeks to discover the input values that should be saved, using
a sigmoid function. The tanh function determines the weights of each value in a range
between -1 and 1 depending on its importance.

• Output stage, or gate: To decide the output, the input received and the current state
of the block are used. A sigmoid function decides which values to pass, the result
is multiplied by the result obtained in a tanh function that gives the weights to the
input values defining their importance, thus obtaining the output.

Figure 2.8: LSTM cell structure, divide in 3 different stages. [6]

2.3.4 Encoder-Decoder architecture

Encoder-Decoder architectures are based on three main actors[35]: (1) the encoder is the
actor that receives the input and generates an abstract representation of the input, (2)
hidden state, is the abstract representation of the input received, and (3) the Decoder that
will transform the abstract representation into the desired output. This structure is widely
used, e.g., in tasks such as sentiment analysis, image captioning or language translation.

If we go deeper into the concepts explained above, to design the architecture of the
encoder we would have to see what input we want to process, e.g., in the case that the
input is an image, a possible architecture would be a CNN to transform the image into a
vector of features. This vector of features would fulfil the role of abstract representation,
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which the decoder would later transform into the output.

Finally, to define the architecture of the decoder it is necessary to define the output
that is required, e.g., if we want to process that vector of features and convert it into a
caption of the image used as input, our architecture could be an RNN that generates a
sequence of words using the features.

2.3.5 Attention Mechanism

The attention mechanism[3] was introduced to improve the performance of the encoder-
decoder model(see in section 2.3.4) in the machine translation field. But a vanilla encoder-
decoder, with only one encoded feature vector, suffers with long vectors of sequences.
Intuitively, it can be seen that, as more updates are made to the same vector, the higher
the chances are the earlier inputs and updates are lost.[12]

The main idea behind attention is to allow the decoder to utilize the most relevant parts
of the input sequence. For this reason, the attention approach encodes each input element
of the vector separately, weighting each input with the relevance, with the most relevant
vectors being attributed the highest weights, being different for each output step. (see in
the equation 2.3)

Attention(Q, K, V ) = Softmax

(
QKT

√
dk

)
∗ V (2.3)

Where Q is the Query, K is the Key and V is the value. We can see attention as a function
that maps a Query to Key-Value pairs, and the result is a set of weighted values that
describe which key-value is more important to query. The result is normalized using a
softmax function, finally a dot product is applied between normalized weights and values.[1]

2.3.6 Message Passing Mechanism

Message passing mechanism [14] was born in the context of graph neural networks (GNN).
These networks receive as input graphs composed by nodes (with a feature vector) and
edges between them. Graphs differ from other data processed by the other neural networks
(e.g., images or sequences of words) because in graphs the nodes are connected, this means
that the input data is dependant. This issue makes unfeasible the graphs processing by
other kind of neural networks because input data independence is a huge assumption that
they require. [30]

Duvenaud et al. (2015) [14] propose the use of Message Passing to extract valuable
information from graph molecules and then transform it into a single feature vector. Message
passing is used to exchange information between adjacent nodes, this information from
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other nodes are summed and then mixed with the current state of the node. This procedure
is repeated over a certain number of steps, finalizing with the creation of a final feature
vector describing the whole graph. This feature vector can be then used as input to a
standard machine learning model.

2.4 Knowledge Databases

As we mentioned in section 2.2.2, Common-sense Reasoning techniques can use external
knowledge databases to infer, or generate, new knowledge to feed the model with. In this
section we will describe the main knowledge databases which are used in several different
approaches, including Natural Language Processing (NLP) approaches, including the knowl-
edge database used in our project (WordNet).

2.4.1 WordNet

WordNet [34] [36], is a large lexical database of English. Nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct
lexicalized concept. Synsets are interlinked by means of conceptual-semantic and lexical re-
lations. The resulting network of meaningfully related words and concepts can be navigated
with the browser [58]. WordNet is a free service that can be consumed thwough an API,
and it can also be downloaded directly from the official web [57] to use a local instance.

WordNet superficially resembles a dictionary, grouping its words together based on
their meanings. However, there are some important distinctions. First, WordNet is not
focused on connecting the words (the letter strings), instead it focuses on interconnecting
the senses of the words, inducing a semantic disambiguation. Second, WordNet presents
these relations between words with a variety of semantic labels.

WordNet’s most important relation is synonymy (e.g., box and package). These syn-
onyms, or words that have the same meaning in a sentence, are grouped in sets (synsets).
Each one of these sets are linked to other synsets using conceptual relations, such as,
hyperonymy, hyponymy or domain term categories. Additionally, each synset has a brief
definition and, almost all of them, have a small sentence as usage example.

In image 2.9, we can see an example of a search in WordNet browser [58]. It distinguishes
the different synsets that the word car can belong, and inside the first synset, and we
can observe the different relations available, jointly with the definition and usage example
sentence.
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Figure 2.9: Example of WordNet browser retrieved information.

2.4.2 ConceptNet

ConceptNet is a knowledge graph that connects words and phrases of natural language
(internally called terms) with labelled, weighted edges (internally named as assertions).
This freely-available semantic network has the aim to helps the computers understand the
meanings of words that people use.

ConceptNet is originated from the crowdsourcing project Open Mind Common Sense,
launched by MIT Media Lab in 1999. It has grown to include knowledge from other
resources: 1

• Open Mind Common Sense (OMCS): the knowledge extract of this project was
the first source of knowledge.

• WordNet: a large lexical database of English. Described previously in section 2.4.1.

• Wiktionary: a free-content multilingual dictionary that aims to describe all words
of all languages using definitions and descriptions in English.

• Games with a purpose: a website that hold a set of ”game with a purpose” in it.

• JMDict: a Japanese-multilingual dictionary.
1List of sources extract from ConceptNet 5.5: An Open Multilingual Graph of General Knowledge [51].
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Figure 2.10: Example of ConceptNet browser retrieved information.

• OpenCyc: a system that represents common-sense knowledge in predicate logic.

• DBPedia: a network of facts extracted from Wikipedia infoboxes.

Like WordNet, ConceptNet has been distributed in different ways: it can be downloaded
as GitHub repository ([16]), directly as a Python library that can be installed using PyPi
([26]), or can be accessed in an online browser ([11]). Image 2.10,shows the information
retrieved after questioning for the concept ”Dictionary”.

2.4.3 Google Knowledge Graph

Google Knowledge Graph is a knowledge database base directly structured as a graph. It
allows to build relevant information in an infobox beside its search results (see an infobox
retrieve example in Figure 2.11). The data is generated automatically from a variety of
sources covering a set of categories, such as books, events, persons, movies, etc. (see the
complete entity list in [23]).

This database allows the user to find the required information even before entering the
source site, but this fact, and other database key points, have been the target of some
criticism of the project, as we will see below. Google Knowledge graphs grew exponentially
since 2012, the year of database release, starting with the coverage of 570 million entities
and 3.5 billion facts [52]. By May 2020, the database had grown to cover 500 billion facts
on 5 billion entities [53].

Although Google gives public access to query the database, its structure is unknown
and cannot be downloaded. This fact is just one of the criticisms of the Google Knowledge
Graph [37], the main ones being:
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Figure 2.11: Example of Google Knowledge Graph usage, generating the infobox associated
to a Google search engine query.
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• Lack of publicly available structure information.

• Lack of source attribution, Google does not link the sources of the information
retrieved.

• Declining Wikipedia article readership, Google search results caused significant reader-
ship declines for Wikipedia, from which the panels obtained some of their information,
even Wikipedia is one of the main source of information of the database.

• Biased information, usually because of sourcing information from websites with high
search engine optimization.

2.5 Multi-objective optimization

Multi-objective optimization (MOO) is an area of multiple criteria decision-making. It has
been applied in many fields, such as economy, logistics, manufacturing or car industries.
MOO is an optimization problem that, instead of having only one single function to optimize,
it this case, more than one function have to be optimized [49].

In the case of single-objective optimization problem, the quality of a solution can be
easily determined by comparing their values in the objective functions. On the other hand,
in multi-objective optimization, we cannot compare directly the values of the different
objective functions. We have to determine a solution goodness, determining the dominance.
We can understand the dominance using a brief example; having two solutions A and B,
A is no worse than B in all objective and A is strictly better than B in at least one objective.

Having the above definition in mind, we can create 2 different sets of solutions, dominated
solutions (which have a better solution in the set of possibles solutions), and non-dominated
ones. This non-dominated set of solutions is call Pareto-optimal set: inside this solution
set, there is no best solution, if a solution A has better value than a solution B in a certain
criterion (c1A > c1B), it is worst than B solution in other criterion (c2B > c2A). Often, the
Pareto-optimal solutions can be joined by a surface, this boundary is called Pareto-optimal
front. A representation of the explained concepts in a bi-dimensional space can be seen in
Figure 2.12.

2.6 Chapter Summary

In this chapter, the relevant theoretical framework for this thesis is explained. Starting
with an explanation of scene graph generation and its differentiable conceptual parts, which
is the main topic framework of this TFM (2.2). Followed by the description with some well
known Knowledge databases, such as WordNet (used in this work), ConceptNet or Google
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Figure 2.12: Pareto-optimal front in a bidimensional space representation. [49]

Knowledge Graph. (2.4) Finally, an introduction to Pareto front theory is presented (2.5),
as it is used in the Generalized action graphs proposed technique.

In the next chapter, an analysis of the specific implemented methods for this thesis
is given. More information on the SGG state-of-the-art methods (3.2) and the latests
common-sense techniques used in SGG (3.3) will be provided, in order to give a better
framework definition to the reader.



Chapter 3

Related work

This chapter is devoted to explain a set of state-of-the-art approaches to deal with Scene
Graph Generation (SGG) and the latest Common-sense knowledge methods applied in
SGG. All the approaches covered in this Chapter are relevant to the work made in the
thesis (described in Chapter 4) to the experiments (described in Chapter 5), or both.

Section 3.1 introduces the Faster R-CNN algorithm. Then Section 3.2 provides an
overview about the research on SGG for static environments. After that, an overview of
the latest research in Common-sense knowledge methods is given in Section 3.3.

3.1 Faster RCNN

Region-based Convolutional Neural Network (R-CNN) [18] was an evolution of Convolu-
tional Neural Networks (CNN)1 based on a Selective Search, which generates around 2000
region proposals for each image, and then each region proposal is fed to the underlying
network architecture. This approach was promising but highly time, power and storage
consuming.

Fast Region-based Convolutional Neural Network (Fast R-CNN) [17] maintain the
Selective Search, but it only fed the CNN once per image. In Faster R-CNN the region
proposals generated by Selective Search are projected on to the feature map (one per image)
generated by the CNN.

Faster Region-based Convolutional Neural Network Faster R-CNN, [40] wants to tackle
the main Fast R-CNN bottleneck, the Region Proposer based on Selective Search. The
new approach substitutes the Selective Search procedure with the application of the Region

1Convolutional Neural Networks are described in Section 2.3.2 of this document.

24
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Proposal Network (RPN) approach.

Going more in detail, Faster R-CNN uses a pretrained VGG16 [50] network to generate
the ROI and the image feature map, and, the RPN module is the responsible to generate
the ROIs (in form of anchor boxes inside a blue box in Figure 3.1).

Firstly a set of fixed size slide windows are applied on the image in order to get a set of
anchor boxes, then a binary classifier is used in order to distinguish the foreground boxes
from the background boxes, eliminating the background boxes (pointed with a 1 in Figure
3.1). Then, a regressor is used in order to obtain the confidence classification of each region
proposal and rank them (pointed with a 2 in Figure 3.1). Finally getting the top-K most
confident anchor boxes.

After merging the ROIs generated by RPN, and the feature map, an object classificator
is trained with the ground-truth object labels (pointed with a 3 in Figure 3.1). And a
regressor is trained in order to generate the final object’s bounding boxes (pointed with a 4
in Figure 3.1).

Figure 3.1: Faster R-CNN architecture overview. With the four losses generated pointed in
red. [63]
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3.2 Scene graph generation methods

In this section, the most relevant approaches of generating scene graphs from images and
videos will be explained. Three image-based techniques are described: G-RCNN (Section
3.2.1), Neural Motifs (Section 3.2.2), Knowledge-Embedded Routing Network (Section 3.2.3)
and Graphical Contrastive Losses (Section 3.2.4). Then a video-based method (HOLR) is
described (Section 3.2.5).

3.2.1 Graph-RCNN for Scene Graph Generation

Yang et al. presented Graph R-CNN application for Scene Graph Generation (SGG) [61].
The method is based on the two-step structure for SGG methods 2:

• Firstly an object detector step. In this case the authors used a Faster R-CNN as
object detector3.

• The second step is devoted to the SGG construction method, which is the one which
stablishes the relations between the objects detected. The authors propose a three-
phase technique, based on: (1) object extraction, (2) relationship pruning, and (3)
graph context integration. (see the method overview in Figure 3.2)

Figure 3.2: Graph-RCNN architecture overview. We can distinguish the three phases of
the method jointly, with the Relation Proposal Network (RelPN) used to prune the graph
connections and the Attentional Graph Convolutional Network (aGCN) used to capture
the contextual information between object and relations. [61]

The first stage consists on the construction of a dense graph using the detected objects
as nodes connected between them. After that, the authors propose the usage of a Relation
Proposal Network (RelPN)[68] which aims to model the likely relationships between objects.

2SGG’s two-step pipeline is described in Section 2.2 of this document.
3Faster R-CNN is described in Section 3.1 of this document.
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To exploit these likely relations, they propose the usage of the soft class-relationships priors.
In other words, they generate a 2D matrix with the probability of each pair of objects to
be related, this probability can be calculated as:

f(p0
i , p0

j ) = ⟨Φ(p0
i ), Ψ(p0

j )⟩, i ̸= j (3.1)

where Φ(ů) and Ψ(ů) are projection functions for subjects and objects in the relationships
respectively. They use two multi-layer perceptrons MLP with identical architecture for
Φ(ů) and Ψ(ů) followed by a matrix multiplication to extract the probability values. With
this relation probability matrix, the dense graph is transformed to a sparse graph with the
non-likely relations (edges in this case) pruned.

After obtaining the sparse directed graph, an Attentional Graph Convolutional Net-
work (aGCN) [27] is used in order to integrate contextual information from neighbouring
nodes and relations using the message passing technique 4. In order to be able to ap-
ply the aGCN, a new graph is built where the nodes are the objects, the subjects and
the relationships, adding connections between them using the previously created spare
graph, additionally connections between objects are set to allow information to flow di-
rectly between object nodes. These additional connections are based in a previous work
[22] which shows that reasoning about object correlation can improve detection performance.

Finally, the final method loss can be calculated as in Equation 3.2:

P (S|I) = P (V |I) ∗ P (E|V, I) ∗ P (R, O|V, E, I) (3.2)

where S is the Scene Graph, I represents an image, V is the set of nodes corresponding
to localized object regions in image I, E denotes the edges between objects, and O and R
denote object and relationship labels respectively.

3.2.2 Neural motifs: Scene Graph Parsing with Global Context

In 2018, Zellers et al. presented a new approach in [67] where they propose the usage of
neural motifs to generate SGG. They describe motifs as regularly appearing substructures
in the scene graph.

Their approach, MotifsNet, uses a two-step schema (as the one explained in section
2.2), in which we can find a first step which consists of an object detector that extracts the
object locations inside the images (extracting the bounding boxes). In the MotifsNet case,
a Faster R-CNN[40] was chosen for this task.5 The second step is the relation predictor,
where MotifNet uses the different regions proposed previously by Faster R-CNN, these

4The Message Passing technique is described in Section 2.3.6 of this document.
5Faster R-CNN is described in Section 3.1 of this document.



28 CHAPTER 3. RELATED WORK

regions are inserted into an architecture composed of a Bidirectional LSTM, a LSTM and a
Bidirectional LSTM again. A complete method overview can be seen in Figure 3.3.

Going step by step, the first BiLSTM is used to codify the regions proposed by Faster
R-CNN, this extracted regions are organized as a sequence, and then they are codified. The
LSTM is used to decodify the object context vector created previously. With it, the method
obtains the object class commitments.

Finally, the second BiLSTM is used to codify the edge context of each possible relation
between the objects detected, it uses the object class commitments of each object of the
pair for this task. With the pair context obtained, the probability of each object pair to be
related is calculated.

Figure 3.3: MotifNet overview. [67]

3.2.3 Knowledge-Embedded Routing Network for Scene Graph Genera-
tion

In 2019, Tianshui Chen et al. described in [10] another approach based on the generation
of a knowledge graph in order to describe the co-occurrences between actions and objects.

Knowledge-Embedded Routing Network (KERN) is a two-step SGG method, which is
based on the usage of an external object detector to receive a set of region proposals. These
region proposals are used to build a graph, trying to learn a contextualized representation to
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predict the class label for each region. For each object pair with predicted labels, the authors
build another graph to correlate the given object pair with all the possible relationships
and employ a graph neural network to infer their relationship.

In KERN the statistical information of object co-occurrence is stored in a graph, which
associates the regions detected in the image with the predicted object label. For their
approach, the authors build a co-occurrence matrix McϵRC×C where C is the number of
object categories. Then, given two regions bi and bj , the authors duplicate bi C times to
obtain C nodes, with node bic denoting the correlation of region bi with category c. Finally,
a Message Passing mechanism6 is used to propagate the information between nodes. This
built graph, is used in the green labels’ step in Figure 3.4.

In the case of the relationships, and after obtaining the objects labels, another set of
graphs is created in order to map the correlations’ context of each subject, object, relationship
co-occurrence. Finally, inferring the most feasible relationship. This step is denoted with
blue labels in Figure 3.4.

Figure 3.4: KERN overview. [10]

3.2.4 Graphical Contrastive Losses for Scene Graph Parsing

In [69] Ji Zhang et al. released the Relationship Detection Network (RelDN), a SGG method
for static inputs (e.g., images). With this new method, the authors tackle two main errors
that contemporaneous SGG methods fall in:

6The Message Passing technique is described in Section 2.3.6 of this document.
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• Proximal Relationship Ambiguity: is the problem that occurs when multiple subject-
object pairs appear very close one to each other in the image and interacting with
very similar actions, (e.g., a musical band in which each member plays the instrument
close to each other).

• Entity Instance Confusion: occurs when the subject or object is related to one or
many instances of the same class, and the model fails to distinguish between the
target instance and the others.

Figure 3.5: RelDN method overview. [69]

Coming up next, the Relation Proposal Network (RelPN) method functionality can be
described with the following steps (see the overview in Figure 3.5):

1. The first stage of the RelDN exhaustively returns bounding box regions containing
every pair of elements detected in the image.

2. In the second stage is devoted to the feature extraction. For this task RelDN uses two
similar CNN (same estructure but with different parameters) each one used to: (1)
detect the features of each entity of the pair (conv body det), and (2) learn features
of the regions that strongly imply relationships. (conv body rel).

3. The third stage computes three types of features for each relationship proposal:
semantic, visual, and spatial:

• Semantic features: it conditions the predicate predictions on subject-object
class co-occurrence frequencies. These frequencies are created using the ground
truth annotations, creating a 3D matrix where for each pair subject-object the
probability of a certain predicate is specified. It is inspired by Zeller, et al. [67]
work.
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• Spatial features: it conditions the predicate class predictions on the relative
positions of the subject and the object. In order to encode the spatial information,
the method uses the box coordinates from subject-object pair using the box delta
and normalized coordinates.

• Visual features: it uses the subject and object ROI features from (conv body det)
CNN, and the extracted predicate ROI features from (conv body rel). The three
feature vectors are concatenated and passed through an MLP to attain the
predicate class logits.

Finally, the method obtains the final probability distribution over predicate classes by
using the three scores followed by softmax normalization:

ppred = softmax(fvis + fspt + fsem) (3.3)

In order to tackle the above problematic cases, the paper propose a set of four contrastive
losses which explicitly force the model to disambiguate the related and unrelated instances.
Concretely, this set of losses are:

• Predicate classes loss (L0): it is the simplest loss, and it consists on the cross-entropy
loss over the predicate classes.

• Class Agnostic (L1): It aims to maximize the affinity of the lowest scoring positive
pairing and minimize the affinity of the highest scoring negative pairing.

• Entity Class Aware (L2): it aims to address the Entity Instance Confusion by focusing
entities with the same class. This loss maximizes the margins between instances of
the same class.

• Predicate Class Aware (L3): it aims to address the Proximal Relationship Ambiguity
by focusing on entity pairs with the same potential predicate. This loss maximizes
the margins within groups of instances determined by their associated predicates.

To conclude, the final loss is expressed as:

L = L0 + λ1L1 + λ2L2 + λ3L3 (3.4)

where L0 to L3 are the above-mentioned losses, and the λi are weights to adjust the influence
of each loss in the final loss.

3.2.5 HORL

Human-Object Relation LSTM (HORL)[44] is a Spatio-Temporal Scene Graph Generation
(ST-SGG) method, designed by Kevin Rosales during its final master thesis in January
2022. An old masters’ classmate presented his video-based ST-SGG method which uses the
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context extracted from the scene graph generated in K-frames around the frame analysed
in order to refine these scene graphs using BiLSTM structure. Rosales’ HORL methodology
uses the SGG method results.

The first step is to divide each video in frames (images). After this, we have to run
on each frame the object detector, Rosales uses Faster R-CNN7, and later a SGG method
is used in order to obtain the triplets of the scene graph for each frame. Then, HORL
is used to improve each frame Fi generated triplets using the context obtained using an
attentional BiLSTM on the adjacent frames Fi±k, where k is the number of frames towards
and backwards used in BiLSTM. A complete overview is depicted in Figure 3.6.

Figure 3.6: HORL method Overview. [44]

It is important to note that Rosales’ work is focused on the Action Genome dataset8, a
video-based dataset that focuses on Human-Object Interaction (HOI) relations only. In HOI
relations the subject is always a person, so it used its premise to only work with the relation
and object of each triplet. With them, he constructed a 2D matrix where each triplet
generated in a frame is mapped into the matrix by its relation and object combination.
Then Rosales applies the attentional BiLSTM layer to generate a set of refined triplets
based on the context extracted from the other adjacent frames.

Kevin Rosales built two different HORL architectures:
• CNN-based HORL: where the main idea behind the architecture is the construction

of an encoder-decoder similar architecture.

• Linear HORL: where the key idea behind it is a implementation similar to a general
regression method. A PCA transformation is used between the frame associated
SGG matrix and attentional BiLSTM in order to reduce the dimensionality of the
matrix. After attentional BiLSTM, the features are reshaped to the original matrix
dimensions.

7Faster R-CNN is described in Section 3.1 of this document.
8The Action Genome dataset is described in Section 4.1.3 of this document.
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3.3 Common-sense Knowledge methods

This section reviews the most relevant Common-sense knowledge approaches9 applied in
SGG: CogTree (section 3.3.1), GB-NET (Section 3.3.2) and Visual Distant Supervision
(Section 3.3.3).

3.3.1 CogTree

CogTree [64], or Cognition Tree loss for SGG, is a common-sense knowledge approach based
on the creation of a hierarchical tree, which aims to decrease the model bias caused by a
poor relation-space differentiation.

In the current state-of-the-art SGG methods, a single loss is used to distinguish a long-
tailed set of actions (as can be seen in Figure 3.7(a)), and usually a complete exploration
through the relation space may require a huge ammount of training data that are not
available. CogTree proposes the construction of a hierarchical tree that allows the usage of
a 3-level loss (shown in Figure 3.7(b)), which allows better action space exploration with
fewer data.

Figure 3.7: (a) SGG model with conventional loss. (b) SGG model with CogTree proposed
cognition tree loss. [64]

9In Section 4.2 we will present our own proposal, the Generalized Action Graphs (GAG), which will be
compared with these methods in Chapter 5.
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In order to build the hierarchical graph, CogTree does not require external data from
other sources. A 3-step methodology is proposed:

1. using a trained SGG method, they predict the relations over all training images. For
each relation Ri, the method extracts the predicted relation Rj when the ground-truth
relation is Ri, obtaining the frequently predicted classes (step 1 in Figure 3.8);

2. using this statistics created based on the biased predictions, they associate each
relation with a node, and create an edge between the relation Ri and its most
predicted relation (step 2 in Figure 3.8) obtained previously (as the most predicted
relation is with itself, they actually use the second most predicted relation);

3. finally, in order to aggregate all the subtrees generated, the authors propose a
structured aggregation in four layers (step 3 in Figure 3.8):

• Root Layer: is a virtual general node.
• Concept Layer: under each node of this level, there is one previously generated

sub-graphs, so it is used to distinguish the concepts.
• Coarse-fine Layer: this layer separate the root of the generated sub-graphs from

its leafs.
• Fine-grained Layer: where the sub-graphs leafs are placed.

Figure 3.8: The overview of CogTree loss applied to SGG models. [64]

In order to define the new loss, given a sample with the ground-truth path Lpath, as
illustrated in Figure 3.9, the authors compute the class-balanced softmax cross-entropy loss
on each layer of CogTree:

ζT CB = 1
|Lpath|

∑
iϵLpath

= −wilog( exp(zi)
ΣzjϵB(i)exp(zj)) (3.5)
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where B(i) means the brothers of node i. This TCB loss forces the network to surpass
inter-concept relation noises, learning concept-specific embeddings. Finally, TCB loss is
aggregated to model loss.

Figure 3.9: CogTree-based class balanced (TCB) loss. [64]

3.3.2 GB-NET

Graph Bridging Network (GB-NET) [66] is a method that, given an image, it initializes the
object/subject (entity) and predicate as nodes of a graph, and then classifies each node by
connecting it to its class node in a common-sense graph, establishing a special edge call
bridge. This premise generates a connection between visual knowledge and generic and
common-sense knowledge.

To incorporate this combination of visual and common-sense information in the SGG
process, the authors propose a GNN, that using the message passing technique10 allows the
exchange of information between the scene and common-sense graph, as well as within each
of them. The external knowledge databases used to obtain the common-sense knowledge
are ConceptNet11 and WordNet12.

Firstly, it is important to define the main differences between each graph type mentioned
in this section:

• Knowledge graphs: defined as a set of entity and predicate nodes, with a semantic
label and a set of weighted edges of a predefined set of different types (representing
different conceptual relations).

10The Message Passing technique is described in Section 2.3.6 of this document.
11ConceptNet is described in Section 2.4.2 of this document.
12WordNet is described in Section 2.4.1 of this document.
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• Common-sense graphs: it is a subtype of Knowledge graphs proposed in by GB-NET
authors, in which each node represents both, entities and predicates but edges only
encode a subset of specific relational fact, concretely the following ones:

– SimilarTo (extracted from WordNet)
– PartOf (extracted from ConceptNet)
– RelatedTo (extracted from ConceptNet)
– IsAMannerOf (extracted from ConceptNet)
– UsedFor (extracted from ConceptNet)

The approach proposed by GB-NET starts with an intial step where an object detector,
Faster R-CNN, initializes the scene graph with entities, predicates and their connections in
the image. Then the bridges from each of the generated entity and predicate node and its
representation in the common-sense graphs are set. Then the BG-NET propagates messages
with each node features to its behaviours, including intra-graph edges and bridges between
scene and common-sense graph (as can be seen in Figure 3.10).

This process is repeated for a predefined number of steps. The final state of the bridge
determines which class each node belongs to, resulting in the output scene graph.

Figure 3.10: Bridging Knowledge Graphs (GB-NET) method overview. [66]

3.3.3 Visual Distant Supervision

Visual Distant Supervision (VDS) [62] aims to allow Scene graph Generation (SGG) models
to be trained without human-labelled data, using the common-sense knowledge database in
order to encode the possible relation candidates between objects.



3.4. CHAPTER SUMMARY 37

The approach proposed also alleviates the long-tail problem, which is the lack of enough
training samples for every relation category due to the long list of possible relations.

The main insight of VDS is the usage of visual relational triplets to directly train SGG
model when there is not human-labelled data, or in the case of having some training human-
labelled relations, use this visual distant relations to build a semi-supervised approach. To
build the triplets the authors did not use a public knowledge database (e.g., WordNet or
ConceptualNet), they propose the usage of Conceptual Captions [48], a dataset with 3.3
Million captions, in addition of a rule-based textual parser.

First, the authors propose the use of an object detector to locate the different objects
and these labels in the scene. In order to associate the object label to an element of the
common-sense knowledge base, the authors propose a distance calculation between object
label and visual supervised label.

In the case of distantly supervised framework (see the green path in Figure 3.11), after
obtaining the objects’ association, the visual distance triplets are used in order to train the
predicate loss function directly.

On the other hand, in semi-supervised framework (see the red path in Figure 3.11),
the authors propose a 2 steps methodology: first, a model is pretrained using distantly
supervised framework, as in the first case, then the human-labelled data is used to fine-tune
the model obtaining better results than other fully supervised methods. (the comparison
can be seen in [62])

Figure 3.11: Visual Distant Supervision (VDS) method overview. [66]

3.4 Chapter Summary

In Section 3.2 we have reviewed some SGG methods that are most broadly used in the
state-of-the-art. These are the models used in the experiments in Chapter 5. Additionally,
in Section 3.1 the Faster R-CNN model is explained, which is the model used as Object
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Detector in our Scene Graph Generation models experiments.

Section 3.3 describes the three currently used Common-sense techniques applied in SGG.
These techniques are important because they establish a reference to compare our proposed
Common-sense technique: the Generalized Action Graphs (GAG) which is explained in
Section 4.2.

In the following chapter, the methodology followed to build the data preprocessing, the
new proposed technique and the training of the different SGG methods are described.



Chapter 4

Methodology

This chapter the procedure used in each of the points that this work aims to explore. From
the data has been used for its development and the new model that we have created to
improve generalisation to the trained algorithms and the exploration of results obtained by
our model and other models to be able to compare them in Chapter 6.

Specifically, section 4.1 describes the datasets used for the development of the project.
Then Section 4.2 introduces the Generalized Action Graphs (GAG), which is our proposed
Common-sense technique to increse the generalization of SGG’s. Section 4.3 develops the
data preprocessing required later in sections 4.4 and 4.5 for its correct training. Section 4.6
is devoted to explain the sources used to extract the resutls of the statw-of-the-art methods.
Finally, section 4.7 explains the implementation of a recently published metric, which seeks
to measure the generalizability of an SGG model.

4.1 Used Datasets

In this section, all the datasets used will be briefly presented. Since this work is made up of
different tasks, it is important to define for which task each dataset has been used:

• Visual Genome (section 4.1.1): is used to train static SGG methods, to evaluate them
in order to compare the results. Additionally, its HOI training ground-truth triplets
are used to fill graphs in our proposed GAG method1.

• Action Genome (section 4.1.3): is used to train and evaluate the HORL method,
which is a ST-SGG video-based method. As in Visual Genome, its ground-truth
triplets are used also to generate graphs in GAG method.

1The Generalized Action Graphs method is described in section 4.2.

39



40 CHAPTER 4. METHODOLOGY

• Humans Interacting with Common Objects for Detection (section 4.1.2): is only used
to generate triplets in order to fill action graphs in GAG method.

• Home Action Genome (section 4.1.4): is used uniquely to extract its triplets from the
training ground truth annotations to generate action graphs in GAG method.

4.1.1 Visual Genome

The Visual Genome dataset [28] is an image-based dataset presented in 2015. It is considered
one of the most important datasets in the Computer Vision field in general and in the Scene
Graph Generation (SGG) field in particular. This dataset has provided an important base
of human-labelled images with the relations between the objects of each image.

Visual Genome contains 108077 images where each image has an average of 35 objects,
26 attributes, and 21 pairwise relationships between objects. It presents the following
characteristics set:

• 5.4M region descriptions.

• 1.7M visual question answers.

• 3.8M object instances.

• 2.8M attributes.

• 2.3M relationships.

• Everything Mapped to WordNet Synsets.

This last characteristic has relevance in our work because it provides the associated
WordNet synset of each relation and object label which is an important issue in GAG
method, as we will explain in section 4.2.

An example of Visual genome scene graph can be seen in Figure 4.1, where we are
able to distinguish the three types of triplets represented in this dataset: (subject, relation,
object), (object, relation, attribute) and (subject, relation, attribute)

4.1.2 Humans Interacting with Common Objects for Detection

Humans Interacting with Common Objects for Detection (HICO-DET) is a dataset for
detecting Human-Object Interaction (HOI) in images [9] released in 2018. It contains
47,776 images (38,118 in the train set and 9,658 in the test set), it is composed by 80
object categories and 117 verb classes. HICO-DET provides more than 150k annotated
human-object pairs.
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Figure 4.1: Simple examples of scene graph generated in Visual Genome. [28]

Figure 4.2: Examples of sample annotations in HICO-DET. [9]
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As can be observed in Figure 4.2, only a relationship (action) is assigned to each image,
but there can be more than one subject or more than one object.

4.1.3 Action Genome

The Action Genome dataset [24] is a video-based dataset, which is focused on the action
decomposition into spatio-temporal scene graphs. Action Genome provides the scaffold to
study the dynamics of actions as changing relationships between people and objects, so it
is centred in Human-Object Interaction (HOI). It is build on the Charades dataset [29],
which is a video-based dataset of daily indoors activities.

Action Genome contains 10000 videos and 234000 frames extrated from those videos,
where the 25% approximately are devoted to the test set. It provides 400000 objects of
36 classes (including the subject class, in this case always is person) annotated with their
bounding boxes. Moreover, it contains the annotation of 1.7M visual relationships with
their 26 action categories. The distribution of the database categories is shown in Figure
4.3.

Figure 4.3: Object/Relation occurrences distribution inside Action Genome dataset. [24]

This dataset contains low-quality videos, with poor illumination and videos with blur
or moving-camera information. Their purpose is to add difficulties to the scene graph
generation task, including very common problems of video-datasets to assist the creation of
techniques with resistance to difficult video inputs.

4.1.4 Home Action Genome

Home Action Genome (HOMAGE) [39] is a multi-view action video dataset with multiple
modalities and view-points, supplemented with hierarchical activity and atomic action
labels and scene graphs, released in 2021 by Nishant Rai1 et al., in collaboration with
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Panasonic corporation.

This dataset presents a set of different views for each different scene, plus an Ego-view
which presents a first person view of the same scene. Additionally, all the different view
videos of a same scene are synchronized between them, having a total number of at most
six different and synchronized views per scene, (see examples in Figure 4.4).

Figure 4.4: Multiple Views of HOMAGE dataset. Each sequence has one ego-view video as
well as at least one or more synchronized third person views. [39]

The authors provide labelled spatio-temporal scene graphs, with its respective bounding
boxes, for one of the views in the scene. In the same way, they provide a video-level activity
labels with its temporally localized atomic activity labels for each scene.

In general, HOMAGE presents 1,752 synchronized sequences (scenes), with 5,700 videos
in total. The sequences are split in three: 1,388 train sequences and two test splits containing
198 and 166 sequences each. For the scene graph task, there are 86 object classes (excluding
“person”), and 29 relationship classes in the dataset. Overall, there are annotations of
497,534 bounding boxes and 583,481 relationships. For atomic actions composition task,
there are 20,039 training, 2,062, and 2,468 atomic action sequences in the three splits (train,
validation and test).

4.2 New method: Generalized Action Graphs

Generalized Action Graphs (GAG) aim to increase the SGG method’s generalization, re-
ducing the knowledge bias generated by prior knowledge usage of hierarchical graphs based
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on the object inherited hyperonyms in WordNet[57]2

Figure 4.5: GAG method overview. Each main step is highlighted: (1) Action graphs
generation, (2) Graphs fusion between datasets, (3) Pareto Optimal Points Generator and
(4) Common-sense matrix generation and Prior freq Matrix Aggregation

With this generated graph for each action, it is possible to fuse the knowledge obtained
from different databases. After the graphs construction is done, the Pareto optimal points3

are searched using the two attributes of each node: (1) distance from ”entity” node, which
is the root node for objects in WordNet. (2) the number of inherited apparitions in the
ground-truth data (i.e., for each time that a tuple ⟨predicate, object⟩ appear, the apparition
is counted in the node nobject and in all the hyperonyms of this label, in the graph Gpredicate).

After obtaining the Pareto optimal points, the sub-graph under each Pareto optimal
point is gathered. For each sub-graph the graph’s leafs are extracted, each leaf node is
compared to the dataset labels and the intersections between the two sets are finally selected.

Finally, the selected labels are highlighted to a common-sense matrix, which is a 2D-
matrix that represents the most suitable objects for a specific action. In the case evaluated,
this common-sense matrix is integrated to RelDN (3.2.4) prior knowledge matrix. Finally,
with the aggregated matrix, RelDN method is applied.

This method is centred in Human-Object Interaction HOI, in this case only the relations
that have human-centred label a subject are considered, ⟨”person-like”, ”man”, ”women”⟩,
etc. A technique overview can be seen in Figure 4.5.

2WordNet is described in Section 2.4.1 of this document.
3A more detailed description of the Pareto Optimal Points Generator is provided in Section 4.2.3).
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In the following sub sections, the steps mentioned before are explained more in detail.
Starting with the action graph generation (Section 4.2.1), followed by the action graphs
fusion between different datasets (Section 4.2.2), then the Pareto Optimal points search
(Section 4.2.3) and ending with the aggregation between both, common-sense matrix and
prior knowledge matrix (Section 4.2.4).

4.2.1 Graph Generation

In order to build the action graphs it is important to identify which inputs are required
for the task. Firstly, the method requires the complete lists of objects and relations in the
dataset (see an example in Figure 4.6) and, the SGG training ground-truth scene graphs.

Figure 4.6: Object and relationship labels for Action Genome dataset.

The process to build the action graphs list can be divided into four steps, the first three
of them are input processing and the last one is the graph generation itself:

1. Generate the associated WordNet synset: for each object and relation label a WordNet
synset has to be associated, if the dataset does not bring these associations, they have
to be done manually.
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2. Generate WordNet associated hyperonyms paths: for each label-associated synset,
a recursive search is done, getting all the possible paths from the label-associated
synset to the further hyperonym (the most general concept).

3. Generate the train set triplets: using the training set ground-truth scene graphs,
standardize them in the form of triplets [subject, relation, object]. This step has to
be adapted for each dataset used as the ground truth scene-graph structure depends
on the dataset.

4. Generate Action graphs: for each action in the dataset, and using all the previously
generated data, the graph is built as can be seen in algorithm 1.

Algorithm 1: Action graph generation.
Data: sgTriplets, labelSynsetObjectMap, inheritedHyperonyms, relationLabels
Result: graphList
for action in relationLabel do

graphListaction ← emptyDirectedGraph();
for triplet in sgTriplets do

if triplet.subject = person & triplet.relation = action then
objHierarchy ← labelSynsetObjectMaptriplet.object;
for hierarchy in objHierarchy do

for object in hierarchy do
if labelSynsetObjectMapobject exists in graphListaction then

graphList[action, object].appearances+ = 1;
else

objNode← newNode(labelSynsetObjectMapobject);
objNode.appearances← newAttribute(appearances, 1);
objNode.rootD ←
newAttribute(rootD, lenght(hierachy[object :]));

graphListaction ← appendNewNode(objNode);

An important aspect of the proposed GAG method is that only takes into account the
triplets that have a person as the subject of the triplet, in other words Human-Object
Interaction HOI.

We have chosen to perform the graph generation for each action (obtaining the graph
generated by the inherited hyperonym of each object affected by the specific relation). We
explored the option of building graphs for each object (using the inherited hyperonyms of



4.2. NEW METHOD: GENERALIZED ACTION GRAPHS 47

each action that affects the object) but, this option was discarded due to the poorly infor-
mative graph generated (see an example in Figure 4.7). The graphs created are not always
fully-connected, and this issue can be explained due to the poor verb-to-verb connections
specified in WordNet.

Figure 4.7: Generalized Action graph generated using a chair (as object) as a base, in GAG
method

In the case of action-based graph, the graph generated are fully connected always. This
property is ensured because all the object synsets in WordNet have a common root synset
entity.n.01. Therefore, due to this property, we can see the generated graphs as hierarchies
with a common root node, as shown in Figure 4.8.

Another important GAG insight is the usage of ground-truth triplets in the graph
construction, allowing to count occurrences, such as in prior frequency matrix (the method
behind its construction is explained in 4.3.1), and additionally extending these occurrences
to all the inherited hyperonyms. But, as we will see in the following GAG steps, these
occurrences would not be directly used to extract the usage frequencies.

In addition to the number of occurrences per node (also called appearances), we are
able to set the distance from the root for each node, which will be an important factor in
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(a) Generalized wiping action graph example
(b) wiping action graph represented as a hierar-
chy.

Figure 4.8: Action graph example, with its representation as hierarchy.

order to stabilize the generalization, due to the crescent nature of the occurrences variable
over the hierarchy.4

4.2.2 Action graph fusion

After obtaining the list of graphs for the actions of a dataset, the next step is optional:
the aggregation of other datasets’ action graphs which allow us to fuse and extend several
dataset information.

The aim of this step is that, by aggregating knowledge from different graphs, we can
obtain a bigger scope of different objects in which we can apply the actions which may give
us the opportunity to increase the generalization capacity5 of the GAG method.

Algorithm 2 shows our proposal to implement graph fusion. From all the list of different
datasets from which we want to aggregate the information, we use one of them as a base
and then one dataset by one we aggregate each graph. The important insight here is that
for each graph that have to be aggregated we check if it already exists in the graph list, to
evaluate if a node exists we check the synset of the word in order to disambiguate it.

4We will further describe this in section 4.2.3.
5In section 5.3 we show how generalization capacity is evaluated.
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In the case that the graph to be aggregated does not exist, we append this new graph
to the list as new graph. On the other hand, if it already exists in the aggregated graph
list, the new graph is fused and the appearance attribute of each node repeated in both
fusing graphs are summed.

Algorithm 2: Different datasets’ graph list aggregation.
Data: datasetNames
Result: aggregatedGraphList
aggregatedGraphList← d1Graphs← loadDatasetGraphs(datasetNames1);
d1ActionSynsets← loadSynsets(datasetNames1);
for xName in datasetNames2−N do

dXGraphs← loadDatasetGraphs(xName);
dXActionSynsets← loadSynsets(xName);
for graph in dXGraphs do

if dXActionSynsetsgraph in d1ActionSynsets then
fuse(d1GraphsdXActionSynsetsgraph

, dXGraphsdXActionSynsetsgraph
;

else
append(d1Graphs, dXGraphsdXActionSynsetsgraph

);
d1ActionSynsetsgraph ← dXActionSynsetsgraph;

4.2.3 Pareto Optimal Points Generator

With the final list of action graphs (mixing different datasets or not), now it is time to extract
the nodes that allow us to generalize, but that, at the same time, they are still sufficiently
informative. If we have in mind the hierarchical structure of each graph, in order to obtain
these informative nodes, a first approach could be to select the nodes with more appearances,
but as this attribute always increases when we go up through the hierarchy (see Figure 4.9),
choosing the nodes with higher appereances will tend to select nodes so high in the hier-
archy (e.g., person, action) that may be too general, causing an excessive lose of information.

The solution to the problem explained above is a compromise between the number of
appearances and the distance from the most general node. In other words, we have to
search the nodes which maximizes both attributes of each node: (1) number of appearances
and, (2) number of nodes from the root.

In order to obtain this set of nodes which maximize both node attributes, we decided:
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Figure 4.9: Action graphs, node attributes tendencies.

• to represent each graph node in 2-dimensional space, where each dimension is each
one of the node attributes normalized,

• to apply on them Pareto optimization which give me the dominant points of the graph

For each graph, the Pareto optimal points (in this case each node is represented with a
synset) are extracted and will be processed, as can be seen in Algorithm 3:

Algorithm 3: Pareto optimal points extraction from action graph.
Data: graphList
Result: paretoVectorAction
paretoV ectorAction← Dictionary(empty);
actNames = names(graphList);
for action in act names do

nodeList← GetNodes(graphListaction);
normNodeList← NormalizeAttributes(nodeList);
paretoOptimal← ExtractParetoNonDominated(normNodeList);
paretoV ectorActionaction ← paretoOptimal;

Figure 4.10 shows two different examples of the Pareto optimal points on two different
images. We can see that in the case of the drive action (see Figure 4.10a(a) and (B)) some
of the selected nodes are very informative nodes (e.g., car and motor bicycle). In the case
of the writtingOn action (see Figure 4.10c(c) and (d)), a smaller graph is generated, with
selected nodes that are far more specific (e.g., book or notebook).
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(a) Drive action generated graph (b) Drive action Pareto optimal points

(c) WritingOn action generated graph (d) WritingOn action Pareto optimal points

Figure 4.10: Examples of Pareto optimal points extraction.
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4.2.4 Common-sense matrix generation and Prior freq Matrix Aggrega-
tion

After obtaining the Pareto optimal nodes (which are synset representations), now it is
time to generate a matrix, which we call common-sense matrix. This step is specific
for each dataset, because the matrix generated will have the dataset label dimension
(dim = object labels× relationship labels), initializing it full of zeros in the beginning of
the process.

For each action, the highlighted synsets as Pareto optimal solutions are used, jointly
with the Inherited hyperonyms extracted in the graph construction (as explained in section
4.2.1), to map all the graph leaf nodes under a synset denoted as Pareto optimal. For each
Pareto optimal synset, the sub-graph leafs under it are extracted.

The leaf synsets that are in the dataset are mapped in the matrix summing 1 for each
time that it appears as a leaf (see Algorithm 4). Finally, for each relation (mapped as
columns in the matrix), the values obtained are normalized, using L2 normalization.

Algorithm 4: Common-sense matrix construction.
Data: paretoNodesAction, inheritedHyperonyms, objectLab, relLab
Result: csMatrix
csMatrix← EmptyMatrix(dim : lenght(objectLab) ∗ lenght(relLab));
for action in relLab do

paretoSynsets← paretoNodesActionaction;
for synset in paretoSynset do

synsetLeafs = getLeafs(inheritedHyperonymsaction, synset);
for leaf in synsetLeafs do

if leaf in objectLab then
csMatrixaction,leaf = +1;

csMatrixaction ← L2Norm(csMatrixaction, axis = relation);

In order to use the generated common-sense matrix into RELDN (a SGG method, ex-
plained in section 3.2.4), we decided to aggregate both the prior matrix generate by RELDN
method and the Common-sense matrix in the preprocessing data step. This new matrix
has the same dimension of the original prior matrix (dim← (objects×objects×relations)).

The aggregation is done as a sum of equally dimensioned matrix in the dimensions
where a person is the subject of the relation, due to the fact that the Common-sense matrix
only affects (Human-Object Interactions). Finally, the obtained 2D matrix is normalized
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using L1Norm in the object axis. The precise process is described in Algorithm 5, where
personal are the set of object labels that represent humans in a dataset (e.g. person,
man, women) and λ is a parameter with range [0,1], useful to set the importance of the
common-sense matrix in the aggregation.

Algorithm 5: Common-sense and Frequency matrix aggregation.
Data: commonMatrix, freqMatrix, personal, λ
Result: mixMatrix
mixMatrix← freqMatrix;
for p in personal do

resMatrix← freqMatrixp + λ ∗ commonMatrix;
normMatrix← L1Norm(resMatrix, axis = object);
mixMatrixp ← normMatrix;

4.3 Data Preprocessing

Data preprocessing is one of the most important steps when training a machine learning
algorithm, if not the most. In our experiments there is not a common preprocessing step for
all the SGG models due to the fact that different repositories were used to run the different
SGG models and that some runs included common-sense reasoning techniques and some
did not.

But we can highlight that in all of the repositories used, both the images and annota-
tions did not undergo major changes, they were simply regrouped in intermediate files that
standardized the data from different datasets for each of the repositories.

Next sections focus on the process to create the base freq prior.npy file (section 4.3.1),
and its variant cs freq prior.npy (generated through the proposed GAG method, presented
in the previous section). These files are used for the RelDN method6 training in order to
feed its Semantic module.

4.3.1 Prior freq file Generation

This file contains the subject-object class co-occurrence frequencies matrix, which are
necessary for RelDN method. In order to build it, it uses the training set ground-truth
triplets. For each image, the occurrences of predicate class pred given subject and object
classes are counted. s and o are the labels in the ground-truth annotations for subject

6The Relationship Detection Network is described in in section 3.2.4 of this document.
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and object. This gives us an empirical distribution p(pred|s, o) in a 3D-matrix. This ma-
trix is stored in a NumPy or Pickle file (depending on method implementation requirements).

This distribution created has an obvious bias on the training set annotation triples,
though. Therefore, in order to decrease this bias, we propose to apply the GAG method
which generates a new matrix where common-sense abstractions and prior knowledge are
aggregated, as we will see in the next section.

4.3.2 Commonsense Prior freq file Generation

This file contains the aggregation of the common-sense knowledge obtained after the appli-
cation of GAG method presented in this work and the co-occurrences matrix, explained
just in the previous section.

As explained in Section 4.2, the GAG method extracts some common-sense knowledge,
searching for relevant object hyperonyms for each predicate. After finding them, these
relevant hyperonyms are decomposed into all their hyponyms inside the object labels. With
the obtained relevant object labels for each predicate, a 2D-matrix is created and finally
aggregated to person-like subject dimensions in the frequency prior matrix. Figure 4.11
summarizes the process to build the common-sense prior knowledge matrix.

Figure 4.11: Common-sense prior knowledge matrix construction overview

The result of this procedure is a matrix with the same dimension as the frequency
prior matrix, in which the person-like subject sub-matrices are an aggregation of the prior-
knowledge and the common-sense knowledge. As in the previous case, the matrix is stored
in a NumPy, or Pickle file (depending on method implementation requirements).
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4.4 Faster R-CNN Training

Once all the data preprocessing is done, it is time to start the training of the model. Our
approach is a two-step SGG model, which consists of a first object detection model that
will be responsible for locating and classifying the objects in each scene. This first model is
trained individually in the same dataset that will later be used to train the model that will
determine the relationships between objects.

The model chosen for our project is Faster Region-based Convolutional Neural Network
(Faster R-CNN)[63]7 because the object detector step is the most time-consuming step
and Faster R-CNN is the mainstream object detector model in the community, with many
examples of this model already pretrained (which causes a drop in estimated training time).

In the case of Faster R-CNN object detectors trained into Visual Genome[28] there
are examples of pretrained Faster Region-based Convolutional Neural Network (Faster
R-CNN) available in many repositories (e.g., [15][8][2]). But our work also aims to make
some analysis in the case of HORL, which is a ST-SGG method that uses videos as input
from the Action Genome[24]. This last dataset has a lack of pretrained object detectors
on it, so to tackle this problem, in our work we train four object detectors (two for each
dataset) based on ResNet-50 and ResNet-101, all of them used the Feature Pyramid
Network (FPN). All the four trained models use as backbone a ResNet[20] model which is
pretrained using the ImageNet dataset[13] and the COCO dataset[31]. In the case of the
trained Faster R-CNN models in Visual Genome, the one that gets better results will be
compared with the one that is already pretrained by the community, and the better one
will be chosen as the object detector for the final model.

In this stage one more data preprocessing has to be done for Action Genome dataset
annotations data, in order to completely align the data provided by the dataset and the one
required by the Detectron 2 [56], which is the repository where Faster R-CNN is implemented.
This last preprocessing only requires the change of some parameters of each object bounding
box. This was because of the format of the mentioned bounding box: the ones provided
by Action Genome have the xyhw format (top left coordinates, width and height) and
Faster R-CNN requires the xyxy format (top left coordinates and bottom right coordinates).

In order to set all the hyperparameters required by the model training, for each trained
model they are store in YAML files, which later are parsed by the repository. The parameters
set for the models based on ResNet-50 are the same for both datasets, and the same
happens in the case of the models based on ResNet-101:

7(Faster Region-based Convolutional Neural Network (Faster R-CNN) is described in Section 3.1 of this
document.
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• In the case of ResNet-101 models, the base learning rate and the epochs were set to
10−3 and 100000, respectively. The learning rate was decreased utilizing a weight
decay of 10−4 at epochs 30000 and 60000. Each batch of data consists of two images
and a checkpoint of the model is stored every 20000 epochs.

• In the case of ResNet-50 models, the base learning rate and the epochs were set to
10−3 and 150000, respectively. The learning rate was decreased utilizing a weight
decay of 10−4 at epochs 30000 and 60000. Each batch of data consists of two images
and a checkpoint of the model is stored every 20000 epochs. Since the validation step
is highly resource demandant, it was performed every 20000 epochs in both cases of
ResNet-101 and ResNet-50.

The results obtained are shown in Figure 4.12 for Visual Genome trained models and
in Figure 4.13 for Action Genome trained models. In both datasets, the best results are
obtained by the ones that have ResNet-101 as backbone. The final AP50 (50 is because
the IoU threshold is set to 0.5) for each model can be seen in table 4.1. In the case of Visual
Genome the trained model trained with Detectron 2 [56] results was incompatible with the
repository used to train the SGG models, for this reason a third Faster R-CNN model was
trained with the same hyperparameters as the previous ones but through another repository
called Maskrcnn benchmark, an older version of Detectron 2. As we had already done an
analysis In this case, only one model was trained with a ResNet-101 as backbone. The
resulting training loss progression can be seen in Figure 4.14.

Models AP50

V
G

w/ ResNet-50 backbone 24.688
Self-trained w/ ResNet-101 backbone 26.284

A
G w/ ResNet-50 backbone 25.094

w/ ResNet-101 backbone 28.246

Table 4.1: AP50 obtained by each Faster R-CNN, Action genome (AG) and Visual Genome
(VG)

After obtaining each model result metrics we are able to, at first glance, draw a couple
of conclusions:

1. models that have ResNet-101 as their backbone outperform models that are based on
ResNet-50,

2. there is substantial variability in the mean accuracy obtained for each object.
From this point on, we are only going to use the models with ResNet-101 to carry out the
subsequent the results’ analysis.
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(a) Training losses (ResNet-50) (b) Validation Average Precision (ResNet-50)

(c) Training losses (ResNet-101) (d) Validation Average Precision (ResNet-101)

Figure 4.12: Faster R-CNN training and validation results for Visual Genome dataset
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(a) Training losses (ResNet-50) (b) Validation Average Precision (ResNet-50)

(c) Training losses (ResNet-101) (d) Validation Average Precision (ResNet-101)

Figure 4.13: Faster R-CNN training and validation results for Action Genome dataset

Figure 4.14: Training loss progression for Faster R-CNN model trained using Maskr-
cnn benchmark repository.
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To be able to observe this last conclusion graphically, we are going to use a simplifica-
tion of the metric implemented in this work, mean Precision Degradation (mPD) (more
information in section 4.7). In this case, we are not going to look for the average between
all the Performance Degradation, but we are only going to look for the Performance Degra-
dation between all the average precisions obtained. This Performance degradation can be
formulated as in 4.1:

PD =
AP⟨omax⟩ − ¯APo

AP⟨omax⟩
(4.1)

Where AP⟨omax⟩ is the maximum Average Precision obtained overall object categories and
¯APo is the mean of all objects Average Precision. In this metric, the higher the result, the

greater the difference between the average precision of each object, therefore, it will be a
marker to take into account to analyse the results of the SGG method, since it could be
affected by the lack of precision of the object detector.

The Performance degradation obtained for Visual Genome categories is PD = 0.6448,
since the range of the metric is [0, 1] denotes what we expected from the Average Precision
per object observation. In the case of Action Genome, the Performance Degradation
PD = 0.653, which is similar to the Visual Genome one. In Action Genome, we decide
to quit the person category due to the fact that the dataset focuses on Human-Object
Interaction (HOI)s and, therefore, this category had a high prevalence compared to the
other categories in number of appearances and caused a notable distortion in the results.

The Performance Degradation can be represented graphically as the area percentage
of a rectangle (where the upper left point corresponds to the maximum AP and its lower
right point is the minimum AP) and the line generated by the entire set of APs. So, the
Performance Degradation graphical representation for Visual Genome can be seen in Figure
4.15 and, for Action Genome, can be seen in Figure 4.16.

After seeing the results obtained in the Performance Degradation, and to try to explain
the difference between the Average Performances obtained for each object, we looked for
a correlation between the number of occurrences and the Performance obtained. To do
this, first a tour of all the annotations of the two datasets was made, noting how many
appearances each object had. Subsequently, the Pearson correlation [46] between the vectors
of the number of appearances and AP for each object category. The results can be seen in
table 4.2

Dataset Pearson coefficient
Visual Genome 0.0619
Action Genome 0.3801

Table 4.2: Pearson correlation results obtained for each dataset.
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Figure 4.15: Performance Degradation graphical representation for Visual Genome.

Figure 4.16: Performance Degradation graphical representation for Action Genome.
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If we focus on the Pearson correlation results obtained, we can extract that in Visual
Genome there is no significant correlation between the number of occurrences and the
average precision obtained for each object category. On the other hand, in the case of
Action Genome, we can extract a significant positive correlation between occurrences and
average precision. So we can infer that, in the case of Action Genome dataset, we could
be able to obtain better detection results by adding more training instances of each object
category.

Additionally, In order to graphically observe the results obtained by Pearson correlation,
in figure 4.17 (for Visual Genome) and in figure 4.18 (for Action Genome) we propose the
following structure. For each dataset, the occurrences, and the average precision, of each
object category are counted and sorted in a decreasing order. After the data extraction step,
the sorted occurrences of each object categories is plotted. Finally, next to the previous
plot, the occurrences of each object category are plotted, but with the object class ordering
by the average precision results.

(a) Object occurrences (descending sorting) (b) Object occurrences (AP sorting)

Figure 4.17: Object occurrences and Average Precision correlation for Visual Genome
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(a) Object occurrences (descending sorting) (b) Object occurrences (AP sorting)

Figure 4.18: Object occurrences and Average Precision correlation for Action Genome

4.5 RelDN Training

With the object detection model trained (in our case a Faster RCNN model), it is time to
train the model that will establish the relationships between the objects detected by the
object detector. Our work bases its analysis on the model in the structure presented by Ji
Zhang et al. in [69] (already explained in section 3.2.4), the RelDN model.

It is important to mention that the scene graph models are computationally less ex-
pensive to train than the detector object, that is, they will not require as many resources.
Even so, RelDN, being based on a structure with four losses, is located in a range of high
iterations to be trained within the generation models of scene graphs.

To better understand the tests proposed in our approach, it is important to highlight a
couple of key aspects of the basic design of the RelDN model. The first important aspect
is that said model proposes a structure based on three branches: semantic, spatial and
visual (full explanation in section 3.2.4). In the semantic branch, RelDN proposes the
use of a three-dimensional matrix (subject, object, relationship) where the probability of
co-occurrence of said elements is established.

In previous approaches we used to use the same convolutional layers used for the detector
object to train the relationship generator. But in a recent study [19], it has been shown
that the use of different backbones helps in the final performance. In the project case, this
RelDN backbone is a ResNet-50 [20]. This structure is usually named as Decoupled SGG
model, a conceptual example of the difference between both structures can be seen in the
following Figure 4.19.
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Figure 4.19: Illustration of coupled and decoupled SGG model architecture. [19]

In relation to the treatment given to the prior knowledge matrix of the semantic branch
of the RelDN model, we proposes a set of three different RelDN models to train:

• A first model is trained with the prior knowledge matrix without any variation, that
is, as the original authors presented the structure. This model will serve as a basis to
see the influence the changes proposed by our work have.

• A second model will be trained with the modified prior knowledge matrix using
our proposed GAG technique. The GAG used in this method is only trained using
instances of the Visual Genome dataset itself. This model seeks to measure the effect
of the GAG technique.

• Finally, a third RelDN model will be trained using the prior knowledge matrix modified
with the GAG technique proposed in this work. But in this case the matrix generated
by GAG will be the one obtained through the analysis of different datasets (e.g.,
HICO, Visual Genome, Action Genome or Homage).

The three models exposed above will be trained using the same hyperparameters in
all cases, only changing the prior knowledge matrix. In order to be able to evaluate the
effect of changes in it without possible noise generated by other parameters. All of them
are trained using a learning rate and the epochs were set to 10−3 and 10000, respectively.
The learning rate was decreased utilizing a weight decay of 10−4 at epoches 2500 and 6000.
Each batch of data consists of two images and a checkpoint of the model is stored every
500 epochs. Since the validation step is highly resource demandant, it was performed not
performed during the training stage. Additionally, for each model, a batch size of 4 images
for training and 1 images for testing stage is used.

After training each RelDN model, we were able to observe that the losses during training
remained extremely constant and low, except for the loss of the relationship classifier, which
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maintained a sustained decline. We have also observed that this type of models do not
require long training times, unlike object detectors.

Figure 4.20: RelDN with Prior Knowledge matrix Training losses

So, the results of each model are shown in Figures 4.20 to 4.22: Figure 4.20 for the
RelDN trained with the prior knowledge matrix, Figure 4.21 for the RelDN model trained
with locally extracted Common-sense knowledge, and Figure 4.22 for the RelDN model
trained with globally extracted Common-sense knowledge. It is important to mention that
the epochs of each graph do not start from epoch 1, since the iterations performed during
the training of the object detector are not shown in the figures.

In each plot a set of losses are displayed. In order to understand what mean each one
it is important to remember that RelDN is composed by four losses (as it is explained by
Equation 3.4, in section 3.2.4). Therefore, each loss can be understood as:

• loss obj classifier is the one extracted from object detector.

• loss pred classifier represents RelDN L0 loss.

• loss contrastive sbj and loss contrastive obj compose RelDN L1 loss.

• loss so contrastive sbj and loss so contrastive obj describe RelDN L2 loss.
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Figure 4.21: RelDN, with Locally extracted Common-sense matrix, Training losses

Figure 4.22: RelDN, with Globally extracted Common-sense matrix, Training losses
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• loss p contrastive sbj and loss p contrastive obj represents RelDN L3 loss.

• loss is the sum of all the other losses.

In the three images we can observe very similar shapes. In general, we can highlight
the stability suffered by all the losses related to L1, L2 and L3 in which the values remain
almost constant throughout the training, with a very slight descent. On the other hand,
the loss L0, or los pred classifier, maintains a notable but sustained decline, upon reaching
epoch 8000, we can see that the loss begins to oscillate nobly, due to this fact we decided to
stop training at 10000 epochs.

It is also observable that the proposed method, GAG, does not greatly modify the
behaviour of losses during training. In any case, we can denote a very slight increase in the
oscillation of the loss pred classifier.

4.6 Obtaining results from State-of-the-art methods

In order to compare the results obtained in the exploration proposed for the project, a set of
state-of-the-art methods have been chosen with the objective of said comparison. To classify
them, we could distinguish them into two main groups: (1) vanilla state-of-the-art methods
(all of them explained in section 3.2), (2) state-of-the-art methods with modifications to
apply common-sense knowledge (explained in section 3.3).

Models Other metrics results origin Could mPD be analysed?
Neural Motifs [67] X
Graph R-CNN [61] X

KERN [15] !
motifs + CogTree [64] X

motifs + VDS (DS) [62] X
motifs + VDS (SS) [62] X

GBNET [65] !

Table 4.3: Compared state-of-the-art SGG methods. Other metric results origin column
provides the link to the origin of the metric results used for the comparison; Could mPD be
analysed? column shows for which models we are able to measure the mPD metric.

Table 4.3 summarizes the availability of results for the chosen State-of-the-art methods.
Due to the fact that during the analysis of some state-of-the-art methods we have had
problems accessing the checkpoints or/and the repositories provided, which they required
deprecated libvailability of raries, some results have been directly extracted from the meth-
ods’ original papers. At the same time, due to the above casuistry, together with the fact
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that the mPD metric was recently published, in some cases it has not been possible to
calculate the mPD metric.

4.7 mPD metric implementation

Mean Performance Degradation (mPD) [32], was proposed by Liu et al. in February 2022,
to evaluate the performance gap among compositions of different objects and the same verb.
mPD reveals that the current state-of-the-art SGG do not generalize properly.

The aim of this metric is to evaluate the degradation of the Average Precision (AP)
of each object given a relation. This particularity, allow us to compare the gap from the
better classified object to the worst. In mPD is a HOI centred metric, so it was created to
only evaluate this kind of relations between humans (subject) and objects.

As can be seen in Figure 4.23, in the plot, we are able to observe how the AP highly
decrease through the different objects, given the relation ride. Another key point that can
be observed is that even the best classified object and the worst (horse and cow, in this
case) are very close visually, and semantically, the model is not able to generalize properly.

Figure 4.23: mPD output example. Performance degradation of ride relation overall the
predictions
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So, mPD can be defined as in the following equation 4.2, extracted from [32]:

mPD = 1
|V |

∑
vϵV

AP⟨v,omax⟩ − ĀP v

AP⟨v,omax⟩
(4.2)

where, for each verb vϵV :

• the subset object categories available for v is defined as Ov,

• the average precision for a HOI composition ⟨v, o⟩ is defined as AP⟨v,o⟩,

• the object with better average precision is defined as omax, or in other words omax =
argmaxoAP⟨v,o⟩,

• and, ĀP v = 1
|Ov |

∑
oϵOv

AP⟨v,o⟩ define the mean average precision (AP) for composi-
tions ⟨v, o⟩ where o is inside Ov.

We have built an implementation of this metric to perform the calculation exposed in
the formula explained above. Additionally, two possibilities were also added that did not
come in the version given by the authors in their GitHub repository ([60]); (1) possibility
of specifying a set with the K-best predictions per image to be selected. (2) The option
of not only processing HOI, but also other types of relationships in datasets containing
other types of relationships (e.g., Visual Genome) has been enabled. Our implementation is
described in Algorithm 6.

The input parameters are composed of the ground truth triplets and bounding boxes,
the predicted triplets and bounding boxes which are separated by images. Additionally, the
k values set is required, this variable keeps the different values of K, which are the predicted
triplets’ subset, by image, that will be selected to evaluate.

The outputs extracted are the average precision matrix where for each ⟨v, o⟩ tuple the
AP is calculated. Additionally this matrix has a third dimension which corresponds to
the results extracted from each K. The following parameter called pdMatrix is generated
by calculating the Performance Degradation for each action separately with additional k
dimensions. Finally, mpd is the mean of the pdV ector for each k.

4.8 Chapter Summary

In this chapter, the methodology followed to build the experiments and all its parts are
explained. Starting with the datasets, following with the methodology used to build
prior frequence matrix and Generalized Action Graphs (GAG). Later, the Faster-RCNN
and SGG models training methodology are explained, and ending with a description of the
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Algorithm 6: Mean Performance Degradation Algorithm
Data: gtTriplets, gtBboxes, predTriplets, predBboxes, kSet, imageSet
Result: apMtx, pdMtx, mpd
Objects← Load(DatasetObjectList);
Predicates← Load(DatasetPredicateList);
hitMatrix← EmptyMatrix(dim : K ∗ dim(Objects) ∗ dim(Predicates));
nPredMatrix← EmptyMatrix(dim : K ∗ dim(Objects) ∗ dim(Predicates));
for image in imageSet do

for k in kSet do
predTripletsimage,k ← predTripletsimage[: k];
for predTriplet in predTripletsimage,k do

nPredMatrix[k, predTriplet[v], predTriplet[o]]+ = 1;
if predTriplet in gtTripletsimage then

gtTriplet← getGtTripletEqual(image, predTriplet);
IoU ← calcIoU(gtBboxesimage,, predBboxesimage,predT riplet);
if IoU = 0.5 then

hitMatrix[k, predTriplet[v], predTriplet[o]]+ = 1;

apMtx = hitMatrix/nPredMatrix;
pdMtx← EmptyMatrix(dim : K ∗ dim(Predicates));
mpd← EmptyMatrix(dim : K);
for k in kSet do

for prd in Predicates do
pdMtxk,prd ←Max(pdMtxk,prd)−Mean(pdMtxk,prd)/Max(pdMtxk,prd);

mpdk = Mean(pdMatrixk);
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mean Precision Degradation (mPD) metric algorithm that has been implemented.

The following chapter is devoted to show the experimentation results and the analysis
that we can extract from them, both quantitatively. Additionally, an explanation of the
used metrics and experiments setup is given.



Chapter 5

Experiments and results

This chapter has the objective of showing and analysing the results obtained with the
proposal presented in this project, as well as comparing the results with the methods of the
current state of the art.

To do this, in sections 5.1 and 5.2 a brief description is made of the hardware setup
used to train the different parts of the SGG model and to run the experiments, followed by
the metrics used to analyse the data. Subsequently, in sections 5.3, a quantitative analysis
of the results obtained is carried out, together with the results extracted from other models.
This analysis aims both to look at the performance of each proposal, as well as to analyse
its generalization capacity.

5.1 Experiments Setup

All the experiments were run on Mininostrum, which is a server under the Barcelona Super
Computer group domain. Mininostrum ihardware setup is composed by:

• CPU: Intel core i7 5820k

• 2 NVIDIA 3090 GTX GPU Cards.

• RAM: 64GB DDR4.

This amazing equipment, without any doubts can help with the training procedure, and
maybe can influence the final results obtained, due to the major capacity of training at our
disposal.
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5.2 Used Metrics

During the realization of the work, many different measures are used to evaluate each part
of the work. In literature the evaluation of SGG methods is made though a variety of
metrics such as Recall@K, Top@K Accuracy or No Graph Constraint Recall@K (see the
complete list in [54]), in the case of this work the evaluation is based on Recall@K, Mean
Recall@K and mPD.

Foremost, the following three predictions are used:

• Predicate Classification (PredCls): it takes the ground-truth object labels and bound-
ing boxes for relationship prediction, it only measures the predicate prediction.

• Scene Graph Classification (SgCls): it takes ground-truth bounding boxes for object
and relationship prediction.

• Scene Graph Detection (SgDet): it predicts scene graphs from scratch, without the
usage of prior knowledge, prediction the object/subject location, its classification and
predicting the predicate between them. mean Performance Degradation (mPD) uses
the same predictions as SgDet, but mPD differs on the metric building.

After the predictions are performed, for PredCls, SgCls and SgDet, the recall is calculated
(Equation 5.1):

recall = |groundTruthtriplets ∩ predictedtriplets|
groundTruthtriplets

(5.1)

Recall@K is the mostly used over all the papers but it can suffer from bias (e.g., in the
Visual Genome (4.1.1) dataset it is biased towards dominant predicates). If the 10 most
frequent predicates are correctly classified, the accuracy would reach 90% even if the rest
40 predicates are all wrong. So Chen et al. [10] and Tang et al. [55] in 2019, propose the
Mean Recall@K, which calculates Recall@K for each predicate category independently then
report their mean. (Equation 5.2)

meanrecall = 1
P

P∑
p=1

|groundTruthtripletsp ∩ predictedtripletsp|
groundTruthtripletsp

(5.2)

where p are each one of the predicate in the dataset. In the case of mPD@K, the
precision is calculated for all the predicates independently, as can be seen in Equation 5.3,
after it, the main mPD@K equation is used (see a complete explanation of mPD in Section
4.7):

meanprecision = 1
P

P∑
p=1

|groundTruthtripletsp ∩ predictedtripletsp|
predictedtripletsp

(5.3)
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where p are each one of the predicate in the dataset. Top k of predicted triplets is used
in order to avoid inserting every possible combination as a result. Usually, this k is a fix set
of [20, 50, 10], which means that only the most reliable 20, 50 or 100 predicted triplets are
used in the recall/precision formula.

In the case of the predictions SgDet and mPD that evaluate the correct localization of
the object bounding boxes, an IoU of 0.5, between predicted and ground truth bounding
boxes, is performed in order to measure that the system is identifying correctly the position.

5.3 Quantitative Analysis

After having exposed all the metrics that are going to be used to measure the results of
the different SGG algorithms in the previous section, in this section the results obtained
are going to be exposed and analysed. For this purpose, we are going to use two different
tables. In the first table, for each model included in the comparison, its results in the most
standardized metrics for the analysis of SGG models will be exposed. Subsequently, in a
second table, the results obtained in the metric implemented in this project, mPD, will be
analysed.

In table 5.1, we can see the results obtained for each model. This project has proposed
to group these models into three categories: (1) state-of-the-art models used as baselines, (2)
proposed models that contain modifications related to the field of common-sense knowledge,
and (3) models proposed in this work. A particular case is the HORL, which, although
it was proposed by Kevin Rosales[15], has also been retrained in order to obtain more
results. The results obtained for the Bases and Common-sense adaptations categories
were directly extracted from the original papers, shown in table 4.3. For each model, its
development is analysed in a total of three tasks; PredClass, SGClass and SgDetection.
For each of them, the results are shown after applying Recall and the mean Recall (which
differs from the first one in that the Recall is calculated for each relationship separately
and then the average is made). For each metric, the values of K = 50 and K = 100 are used.

In general terms, in the metrics analysed during the comparison of results, we can
observe a notable difference between the results obtained by the recall and the mean recall.
Since the mean recall is calculated by calculating the mean of the recall obtained by each
relation individually, we can observe that this value is much lower than recall due to a very
poor distribution of correct cases. In other words, in some relationships (the minority) the
value of the recall is much higher than the rest. This fact denotes the importance of each
action, the action cases available in the images, and differentiation from the rest of the
actions. Another possible explanation for this differentiation between relations may be the
training cases available in the dataset, in other words, the Long Tail problem [70], which is
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Models PredClass SGClass SgDetection
R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

Ba
se

s Neural Motifs[67] 65.2 67.1 14.0 15.3 35.8 36.5 7.7 8.2 27.2 30.3 5.7 6.6
Graph R-CNN[61] 54.2 59.1 - - 29.6 31.6 - - 11.4 13.7 - -

KERN[10] 65.8 67.6 17.7 19.2 36.7 37.4 9.4 10.0 27.1 29.8 6.4 7.3

C
S

ad
ap

t motifs + CogTree[64] 35.6 36.8 26.4 29.0 21.6 22.2 14.9 16.1 20.0 22.1 10.4 11.8
motifs + VDS (DS)[62] 53.40 56.54 37.68 41.98 26.12 27.46 17.20 18.39 23.69 25.59 13.84 15.23
motifs + VDS (SS)[62] 76.28 77.98 60.20 63.61 35.93 36.47 28.07 30.09 33.94 37.26 23.90 28.06

GBNET[66] 66.6 68.2 22.1 24.0 37.3 38.0 12.7 13.4 26.3 29.9 7.1 8.5

G
A

G

RelDN[69] 20.54 24.66 0.94 1.31 11.23 12.99 1.41 1.91 9.10 10.32 0.10 0.05
RelDN + GAG (VG) 14.12 17.80 1.71 2.57 7.63 9.31 0.94 0.49 7.63 9.31 0.94 0.49

RelDN + GAG (global) 13.80 17.27 1.64 2.46 7.45 9.10 0.85 1.23 1.64 2.39 0.20 0.38
HORL 91.59 91.80 - - 54.13 54.93 - - 47.80 56.64 - -

Table 5.1: Quantitative comparison between, the state-of-the-art SGG methods (Bases),
with Common Sense variations (CS adapt) and the ones proposed in this work (GAG). All
the results are based on Visual Genome dataset [28], except the HORL method, which is
based on Action Genome[24]. *The results are extracted from the original papers of each
one of the methods.

suffered by the datasets most used by the state of the art. This problem may occur when a
dataset has a long set of options, in this case relations, and do not present enough training
cases, or not sufficiently representative cases, to allow the models train with it, a good
classification between all of them. In short, the current models prove to have a long way to
go before obtaining promising results.

Another noteworthy aspect is that the results obtained by models that use Common-
sense knowledge are higher than in the case of the vanilla models. This fact may be due to
the fact that they are modifications of the vanilla model, they start from improving what is
already established. But we can also observe that they show a smaller difference between
the results obtained by means of the recall and the mean recall.

If we focus on the analysis of the tasks (SgDet, PredClass and SgClass) we can observe
better results in PredClass, slightly lower results in SgClass and the lowest results are
always those of SgDet. This can be explained by the parameters used to calculate each
task. In the case of PredClass, only the prediction of the relationship (label) between the
objects is evaluated, in the case of SgClass, apart from what was previously evaluated, the
classification of the objects in the scene made by the object detector is added. Finally,
SgDet evaluates both the relationship between the objects in the scene, as well as the object
class classification and their location in the image. With these results, it can be observed
that the accuracy of the object detector has an influence on the results of the SGG models.

Looking at the results obtained in this project we can see a large decrease in the values
obtained in the metrics, this fact may be due to human error due to the complexity of the
repository used as a base to carry out these experiments and a lack of material time to
execute solutions properly.
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In any case, the results obtained can be analysed internally between the base model and
the variants proposed by this work. During the experiments we have been able to observe
that the values obtained by the base model exceed those obtained by the approximations of
the work in terms of recall, but in the ore recall we see the opposite case.

In the following table 5.2, the results obtained in mean Precision Degradation (mPD)
metric will be exposed. This metric uses the Performance for each relation category instead
of the Recall (this element will be analysed later), for this project the same K values have
been used as in the previous table. Finally, mention that for some of the models included
in the previous comparison it has been impossible to carry out an evaluation of said metric,
due to the code obsolescence of the repositories made available by the authors of the papers.

Models mPD ↓
AP@50 AP@100

m
PD

Ev
al

ua
te

d KERN[10] 42.43 47.35
GBNET[66] 51.60 58.71
RelDN[69] 9.10 10.32

RelDN + GAG (VG) 12.62 14.11
RelDN + GAG (global) 10.47 10.55

Table 5.2: Quantitative mPD results comparison between the state-of-the-art SGG methods,
with Common Sense variations, the ↓ means that in mPD lower is better.

In the case of the evaluation of the mPD metric, we must consider that the lower the
value in the metric is, the better is the result. A lower value in mPD means that the
distance between the best accuracy obtained by an object in each relation and the average
accuracy in that relationship is smaller. In our case, we can observe that both RelDN and
the approximations made through GAG obtain a much better result than in comparison to
the other methods, indicating a better generalization for these models.

Entering to analyse the results between the approaches presented by this work and its
base model, we see that our approaches do not manage to improve the results obtained by
the RelDN model. Although the difference is small, especially in the case of GAG (global)
whose results are very close to those obtained by the base model. It is necessary to mention
that this result may have been affected by the results obtained by those methods in table
5.1.

After having studied the theory behind the metric, implementing it and using it in
practical cases, we can extract some positive and negative aspects of the use of the mPD
metric.

Positive aspects include:
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• the metric tries to focus on the generalization directly, explicitly evaluating that
property.

• it is easy to understand and extract interesting data from the generalizability of a
model

• the graph provided by the authors allows it to be understandable even for people
outside the field of research, a fact that would increase the interpretability of the
results for non-expert people.

On the other hand, after using the metric we can mention some of its limitations:

• being based on precision, is directly affected by the number of predictions that your
model generates. This last fact collides with the usual procedure in the SGG, in which
the models generate a fixed and high number of predictions that are later ordered by
their score, after that, a subset is selected to be evaluated (usually as K@20, K@50
and K@100 ).

• the metric focuses on the HOI analysis, so the subject of the generated triplets is left
out of the calculation, since in HOIs the subject of the relationship is always a person.
This fact conditions its use in other disciplines, such as the analysis of general SGG.

5.4 Chapter Summary

In this chapter, we have been able to carry out a complete analysis of the results that we
have obtained during the realization of the project. First, the setup where the experiments
have run has been analysed (5.1), then the metrics used to perform the different analyses
have been explained in detail (5.2). Finally, a quantitative analysis has been analysed
based on the metrics explained above, as well as comparing the results obtained with other
state-of-the-art methods (5.3).

Next chapter is devoted to the conclusions drawn after carrying out the work. Dis-
tinguishing some general conclusions, an analysis of the final state regarding the initial
hypotheses (6.1) and finally a section to expose possible extensions of the research carried
out in this project (6.2).



Chapter 6

Conclusions and future work

This chapter aims to present the conclusions of the project after its completion and analysis
of the results. These conclusions are separated into two main sections.

First, some general conclusions drawn from the realization of the project are exposed,
based on the hypotheses raised at the beginning. Observing if these hypotheses were
accomplished or if, on the contrary, they were not fulfilled, it corresponds to section 6.
Finally, in section 6.2, possible future investigations are exposed that can continue with the
one carried out in this work, as well as concepts that due to lack of time have been left
without deepening too much.

6.1 After-work Conclusions

SGG is a fascinating, as well as novel, new field of research. SGG mixes fields such as
computer vision, knowledge structuring, trying to enable the first steps to create systems
that understand what actually happens in an image or video.

On the other hand, the application of common sense knowledge to SGG is understood
by the prior bias problem suffered by the vast majority of current state-of-the-art methods,
which often base their prediction too much on knowledge extracted from the same dataset,
which generates a bias. The theory that this project has defended, located within the field
of common-sense knowledge, is the use of knowledge bases external to the dataset to infer
prior knowledge that does not contain this bias.

In particular, the technique presented in this work, GAG, sought to reduce the bias
contained in current state-of-the-art methods, reducing their dependence on the cases that
appeared directly in the analysed dataset. After the completion of this work, we can see
that GAG does not help the purpose for which it was intended, worsening the results in
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the different recalls and the mPD. This fact may be due to the fact that GAG modifies
the prior knowledge table of the model, making the probability abstractions of that table
contain more possibilities than the ones it initially had with only prior knowledge. This fact
can cause an ambiguity of different object categories instead of helping to generalize them.

Although the effort has been put into fixing the results obtained, it has been impossible
due to the short time to carry out the technical tests and the complexity of the tests to be
carried out, as well as the time necessary for each one of them. At the date of this report,
the results obtained are far from the desired ones, but they can give us an idea of how
the technique presented in this work affects the performance and the generalization of the
models modified with it. Serving, at the same time, as a first look at the mPD metric.

Making a final analysis of the hypotheses initially presented by this project, based on
the results obtained, we can describe that:

• Hypothesis 1: The state-of-the-art SGG methods have a low level of object general-
ization. We have been able to demonstrate that this hypothesis could be true since,
as we have seen in table 5.2, the state-of-the-art models obtained values greater than
50%, a fact that is not negligible.

• Hypothesis 2: Using the semantic hierarchy of the objects in the dataset, this object
generalization per action can be improved, not reducing the model accuracy. This
second hypothesis has not been fully demonstrated, since, as has been seen in the
results obtained, the GAG technique does not manage to improve the results obtained
by the base model in terms of recall. But if we see the results obtained in the mean
recall, we can see a great improvement compared to the base model.

• Hypothesis 3: Giving a richer input data to the GAG method in each action analysed,
it better generalizes the final SGG model. We have been able to see that given a
larger dataset the mPD improves, but the precision is slightly reduced, this hypothesis
has not been fully demonstrated.

• Hypothesis 4: Our technique can help to the model generalization, such as other state-
of-the-art common-sense techniques. This last hypothesis has been partially proven
since the model manages to improve the mean recall of the base model, denoting a
better approximation, but the results for the mPD are slightly worse.

Finally, it is important to mention that this field suffers from a serious code stale-
ness problem. Throughout the project we have come across countless times open source
repositories that are only two or three years old, due to library updates and hardware
incompatibilities that have delayed the progress of this project too much.
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6.2 Future work

However, after the completion of the project, some aspects have remained with questions
marks due to they require a big deviation from the scope of the project and/or lack of time
to go deeper in the investigation. These questions may be future work for future research
in the field of SGG. For example, during the project we focused on parsing the hypernyms
of each synset-object with respect to an action, but WordNet[57] provides other fields that
can also help with generalization. Such as hyponyms, definitions, examples of use or related
synsets, information also existing within WordNet[57].

Other aspects that emerged during the project were the discovery of tools that would
allow better performance and open the door for new research. In this regard, we would
highlight ConceptNet[51] knowledge graph, which stands out over WordNet because, apart
from this platform, it brings together knowledge from many different projects and plat-
forms, forming a very powerful knowledge graph. Another case would be the discovery
of HOMAGE[39] dataset, whose properties of relating different views of the same scene,
including an egocentric view, added to the definition of the scene graph and atomic actions
for each scene, position it as a more than likely basis for future work.

Finally, other aspects in which future research could delve deeper are, for example, the
use of more sophisticated optimization techniques for multi-objectives, such as evolutionary
algorithms, and analysing their performance in the GAG method. Another field in which
new avenues of research are opening up is the use of the mPD metric to analyse more SGG
methods, as well as possible adaptations so that it can be used for all aspects of possible
scene graphs and not just Human-Object Interaction.
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