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Abstract—The proliferation of emergent network ap-
plications (e.g., telesurgery, metaverse) is increasing the
difficulty of managing modern communication networks.
These applications entail stringent network requirements
(e.g., ultra-low deterministic latency), which hinders net-
work operators to manage their resources efficiently. In
this article, we introduce the network digital twin (NDT),
a renovated concept of classical network modeling tools
whose goal is to build accurate data-driven network models
that can operate in real-time. We describe the general
architecture of the NDT and argue that modern machine
learning (ML) technologies enable building some of its core
components. Then, we present a case study that leverages
a ML-based NDT for network performance evaluation
and apply it to routing optimization in a QoS-aware
use case. Lastly, we describe some key open challenges
and research opportunities yet to be explored to achieve
effective deployment of NDTs in real-world networks.

I. INTRODUCTION

In the last years, the digital transformation of
both society and industry has led to the emergence
of novel network applications. These applications
have complex requirements that cannot be easily
met by traditional network management solutions at
a reasonable cost, such as network over-provisioning
or admission control. For example, novel forms of
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communication (e.g., AR/VR, holographic telepres-
ence) require ultra-low deterministic latency, while
recent industrial developments (e.g., Vehicular Net-
works) need to adapt to ever-changing network
topologies in real-time. At the same time, the
number of connected devices is growing massively,
making modern networks highly dynamic and het-
erogeneous. As a result, communication networks
are becoming increasingly complex and costly to
manage.

Other industry sectors have recently adopted the
digital twin (DT) paradigm [1] to model com-
plex dynamic systems. A DT can be understood
as a virtual model of a physical object, system,
or phenomenon that is represented in the digital
world. The main advantage of DTs is that they can
accurately model complex systems. Nowadays, DT
applications include enabling smart manufacturing
in Industry 4.0, improving the performance of com-
plex engineering products (e.g., engine design) or
modeling physical interactions (e.g., gravitational
systems).

This article makes the case for the network digital
twin (NDT) as a key enabler for efficient control and
management of modern communication networks.
NDTs can be applied to many fundamental net-
working applications. As an example, they allow
network operators to perform online network opti-
mization, what-if analysis, troubleshooting, or plan
network upgrades considering the expected natural
growth of the network. The interaction with the
NDT does not require access to the real network,
so the aforementioned operations can be performed
without jeopardizing the physical network.

Recent machine learning (ML) models have
shown outstanding capabilities for modeling com-
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Fig. 1: General network digital twin architecture.

plex systems. For example, in communication net-
works ML has already been successfully applied to
network modeling [2], traffic optimization in data
centers [3], [4], network slicing [5], or resource
allocation in wireless networks [6]. In this context,
we argue that modern ML techniques are a key
enabler to build core components of the NDT.

NDTs aim to achieve accurate data-driven net-
work models operating in real-time [7], [8]. In
this vein, the use of ML enables training network
models directly with real network data, avoiding
the strong assumptions of analytical models (e.g.,
queueing theory). ML models can thus help achieve
similar accuracy to traditional computationally-
expensive modeling tools (e.g., packet-level sim-
ulation) while keeping a limited execution cost
similar to lightweight analytical models. This allows
network operators to accurately control the network
at much shorter timescales.

There is a growing interest in the networking
community in building NDTs. In particular, stan-
dards development organizations (SDO), such as
the IETF or the ITU, have started to work on the
definition of a NDT [7], [8]. While their work
focuses on defining the main concepts and interfaces
of a NDT, this article focuses on the technologies
and research challenges involved in implementing a
ML-based NDT, complementing the work of SDOs.

II. THE NETWORK DIGITAL TWIN

NDTs are referred to as a new generation of
network modeling tools that leverage ML techniques
to build an accurate data-driven digital network rep-
resentation [7], [8]. To train these network models,
we can use data from real-world networks, dedicated
network testbeds, or network simulation tools. This

Application Example Use case

Trouble-
shooting

Network operators can replicate past network
scenarios with the NDT to find the root cause
that produced a service disruption.

What-If
Analysis

The NDT acts as a safe sandbox where differ-
ent configurations can be applied to understand
their impact on the network performance.

Network
Planning

The NDT can help estimate when an existing
network will need a network upgrade.

Anomaly
Detection

When the behavior of the real-world network
deviates from normal operational scenarios, the
NDT can identify specific anomalies and point
to some potential root causes.

TABLE I: Overview of networking use cases en-
abled by NDTs.

data should be diverse enough to cover a wide rep-
resentation of potential scenarios that the network
operator wants to mimic (e.g., various congestion
levels, link failures). In this context, recent deep
learning (DL) techniques are of interest as they
enable building accurate digital models of complex
network environments [2], [3].

Figure 1 presents the reference architecture of the
NDT. The central component of the architecture is
the DT, which implements a network model that
mimics the physical network. This model takes as
input a network state description (e.g., traffic, topol-
ogy, routing, scheduling policies) and outputs some
network-related metrics or features (e.g., utilization,
delay, anomalies).

Since the NDT is a faithful copy of the real-world
network, the network operator can test any input
values, even if these values might cause service
disruptions. This is because the NDT is executed
in a safe environment isolated from the real-world
network. The outputs can be of multiple types
depending on the applications of the NDT (e.g.,
time series, link-level predictions, global network-
level metrics). Note that the example depicted in
Fig. 1 illustrates the case of a NDT applied to a
fixed network, while analogous architectures could
be applied to other kinds of networks, such as
wireless/cellular networks. As an example, Table I
shows a description of some generic networking use
cases that can take advantage of NDTs for efficient
network control and management.

A. Leveraging machine learning to Build NDTs

In this article, we argue that ML techniques are
a key enabler to build core components of the
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NDT. Especially, recent DL models offer several
advantages with respect to traditional network mod-
eling tools (e.g., simulators, queueing theory). As an
example, DL-based models have shown state-of-the-
art performance when modeling fixed networks [2],
outperforming well-known analytical models based
on queuing theory. In addition, they are easy to
parallelize and have a low execution cost compared
to traditional network simulation tools (e.g., OM-
Net++, ns-3).

Graph neural networks (GNN) are a DL-based
architecture recently proposed by the ML com-
munity to model relational information [9]. GNNs
capture graph dependencies using a message passing
algorithm between the graph’s entities (nodes and
edges). Since communication networks are funda-
mentally represented as graphs, GNNs offer unique
advantages for network modeling when compared
to traditional NN architectures (e.g., multilayer per-
ceptron, recurrent NN). In the last years, GNNs
have demonstrated outstanding performance to solve
a wide variety of network-related problems [2],
[6], [10], [5], [11]. In this context, GNNs may
be a central technology to enable the construction
of ML-based network models that can generalize
to different network topologies, configurations, and
traffic distributions.

B. Network Optimization with the NDT
The NDT can be combined with a network opti-

mizer to solve different tasks (e.g., traffic engineer-
ing, network anomaly detection, network planning).
Specifically, optimizers can use the NDT to obtain
immediate network performance estimations during
an optimization process. Figure 2 summarizes this
process. First, the network operator uses a declar-
ative language to define the network requirements
(e.g., load balancing). The optimizer is in charge
of searching for the best network configuration that
fulfills the predefined requirements (step 2). If the
performance metrics from the NDT indicate that
the solution is not good enough (step 3), then
the network optimizer continues the search until a
stopping condition is met. Lastly, the best solution
found so far can be applied to the real network
(step 4). Notice that the optimization process can
be implemented as a closed-loop, with no human
intervention required.

Real-world networks are highly dynamic as their
traffic, applications, resource utilization and topol-
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Fig. 2: Network optimization with the NDT.

ogy constantly changes over time. For example,
physical links may break due to external factors, or
network users can have different behavior patterns
that cause difficult-to-predict spikes in the utiliza-
tion of network resources. Therefore, to enable
efficient network management, it is important for
the optimizer to adapt to such changes in real-time.

In this context, deep reinforcement learning
(DRL) is a key technology that has shown great
capabilities for efficient network operation in dy-
namic scenarios [4], [3], [11]. However, in complex
optimization problems DRL often produces sub-
optimal solutions. For example, in resource allo-
cation problems it can be challenging to find the
optimal network configuration that optimizes some
performance metrics. This is because the solution
space (i.e., the number of possible actions) might
be very large, and more comprehensive exploration
strategies are needed to find the optimal solution.
Several works started combining DRL with tra-
ditional optimization methods (e.g., integer linear
programming) to improve the optimization perfor-
mance [10].

III. TRAINING THE DIGITAL TWIN

Building a NDT requires collecting a dataset that
contains relevant information of the network. The
NDT’s accuracy highly depends on the quality of
the data, requiring the training dataset to contain a
representative set of samples with different network
characteristics. For example, if the goal is to model
the delay of network traffic, then the dataset has
to include a wide range of network scenarios and
its impact on the delay. This may include different
routing configurations, topologies, scheduling and
traffic loads. Likewise, the dataset should cover edge
cases that may negatively impact the delay, such as
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link and interface failures, misconfigurations, highly
congested scenarios, etc.

Another important aspect to consider is, how do
we generate this dataset? Fundamentally, the dataset
can be obtained from real-world networks, non-
production dedicated testbeds, or simulation tools.
However, generating such training sets in production
environments may be impractical. As mentioned
previously, the dataset must contain edge cases that
may be unacceptable to reproduce in real-world
networks as they could cause service interruptions.
As a result, we envision that it is more practical
to produce the training dataset in non-production
environments, such as dedicated network testbeds
or simulators. In these controlled environments, the
network can be configured with different traffic
profiles, failures, misconfigurations and errors, as
well as covering a wide range of valid configura-
tions without disrupting the normal operation of the
network.

The main challenge of generating the dataset
is that the NDT has been trained in a specific
network environment, but when deployed it has to
operate on an unseen customer network. In other
words, the NDT has to operate in scenarios that
are not explicitly included in the training set. As
an example, the topology and traffic profile of
the customer network might be different from the
ones seen during training in the controlled network
environment. In the ML domain, the capability of a
model to operate in unseen scenarios is referred to
as generalization.

IV. CASE STUDY: PERFORMANCE EVALUATION
IN FIXED NETWORKS

ML has already been validated for network mod-
eling and optimization in many different scenarios
(e.g., fixed networks [2], data centers [3], [4], wire-
less networks [5], [6]). In this section we present
a case study that aims to analyze in more detail
the application of a state-of-the-art ML-based NDT
for performance evaluation in fixed IP networks. In
addition, we perform some experiments where we
leverage a ML-based NDT for routing optimization
in a QoS-aware optimization use case.

A. Predicting End-to-End Delay
We take as a reference RouteNet-E [2], a state-of-

the-art GNN-based model that accurately predicts

Technology Description

Recurrent NN

For each path, the RNN iterates over the se-
quence of links it traverses (represented by
feature vectors). Link vectors are initialized
with their capacity and traffic load. Then, a
multilayer perceptron is used to compute the
final delay per path.

Graph NN
(RouteNet-E)

This GNN model represents the network as
a set of paths and links. Then, it performs a
message passing algorithm between the state
of paths and links (represented by vectors),
according to the input network topology and
routing configuration [2]. A multilayer percep-
tron at the end predicts the final path delays.

Queueing the-
ory

Each link is modeled as a finite M/M/1/b
model. An iterative algorithm is repeated until
the algorithm converges to a fixed point. Fi-
nally, the delay is computed for each path using
standard queuing theory [12].

Network sim-
ulator

Packet-level network simulator (OMNet++). It
takes as input a network topology, a traffic ma-
trix and a routing configuration, and simulates
the mean per-packet delay for all paths. It is
used as a ground truth for the experiments.

TABLE II: Description of the baseline methods.

delays in networks. This model takes as input a
network state description defined by: a network
topology, a traffic matrix, and a routing policy. As a
result, it mimics the network behavior and produces
end-to-end delay predictions for all paths.

To train this model, we generate a dataset
with 100,000 samples in topologies with 25-50
nodes simulated with an accurate packet-level net-
work simulator (OMNet++). Then, we generate a
test dataset with 500 samples from considerably
larger topologies, with 50-300 nodes uniformly dis-
tributed. Network topologies are synthetically gen-
erated using the power-law out-degree algorithm,
where the α and β parameters have been extrap-
olated from real-world topologies of the Internet
Topology Zoo repository [13]. Traffic loads and
link capacities are scaled to cover a broad range
of congestion levels, with a maximum packet loss
of ≈3%. As reference baselines, we use a state-of-
the-art analytical model based on queueing theory
(QT) and a recurrent neural network (RNN). A
detailed description of these baselines can be found
in Table II.

Figure 3 shows the evaluation results of the
aforementioned models on topologies with up to
300 nodes. The y-axis represents the mean absolute
percentage error of the predictions made by the
different methods with respect to the ground truth
labels produced by the network simulator. Error
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Fig. 3: Comparison of several state-of-the-art meth-
ods for network performance evaluation.

bars represent the 15/85 percentiles. If we look at
the results in topologies of similar size to those
of the training (25-50 nodes), we can observe that
the two ML-based methods (RouteNet-E and RNN)
achieve lower error than the analytical QT baseline,
particularly in the case of RouteNet-E.

In this context, a potential limitation of ML-based
solutions is that their accuracy is expected to drop
when evaluated on out-of-distribution data. In this
case, out-of-distribution data refers to topologies,
traffic matrices and routing configurations different
to those seen by the ML model during training.
Figure 3 shows the evolution of the prediction errors
as we increment the network size with respect
to the networks seen during training (with 25-
50 nodes). We can observe that the RNN model
significantly degrades its performance as networks
become larger. In contrast, RouteNet-E shows a ro-
bust behavior when facing samples of considerably
larger networks. This is thanks to its internal GNN-
based architecture, which enables it to effectively
model the relational information within networks
and generalize well to larger topologies.

In addition, we compute the inference cost of all
methods on off-the-shelf hardware (processor AMD
Ryzen 9 3950X with 3.5GHz) on topologies with
250-300 nodes. As a result, we observe an average
execution time of ≈0.16, ≈5.1 and ≈6.47 seconds
for RNN, QT and RouteNet-E respectively, while
the packet-level network simulator takes ≈3 hours
and 39 minutes on average.

Overall, the previous results show the potential
benefits of modern ML models to produce perfor-
mance estimates with similar accuracy to simulation
methods, while keeping the limited cost of analyti-
cal models (e.g., QT), thus enabling fast operation.

1000 1200 1400 1600 1800 2000
Traffic Intensity

10

20

30

40

De
la

y 
(m

s)

Shortest Path
RouteNet-E
based Optimizer

Fig. 4: Delay-aware routing optimization using a
ML-based NDT (RouteNet-E).

B. QoS-aware Routing Optimization

In this section we aim to showcase the potential
application of NDTs for optimization in QoS-aware
scenarios. To this end, we use the RouteNet-E
model used in the previous section. We define
the optimization problem as finding the routing
configuration that minimizes the average end-to-
end delay on paths. We consider a destination-
based OSPF routing scheme, where the initial rout-
ing configuration is the shortest path (i.e., equal
weights on all links). To achieve optimization, we
follow the reference workflow depicted in Fig. 2.
Particularly, RouteNet-E represents the digital twin,
while the network optimizer is implemented as an
algorithm based on evolutionary strategies [14]. In
this architecture, the network optimizer generates
variations of the shortest path (i.e., different link
weights), and RouteNet-E is intended to predict
the resulting delay on paths for those alternative
configurations. Thus, the optimizer compares the
delay predictions produced by RouteNet-E and it
finally takes the routing configuration that results in
minimum average end-to-end delay.

We evaluate the resulting optimizer in a synthet-
ically generated topology of 25 nodes. Traffic ma-
trices cover a wide range of traffic intensities (from
low traffic load to highly congested networks). Fig-
ure 4 shows the results of the optimization. Traffic
intensity values (x-axis) represent the average traffic
volume on paths (in bits per second). The final delay
values (y-axis) are computed with the network sim-
ulator, used as ground truth in the previous section
(see Table II). As the network congestion increases
(i.e., more traffic intensity), the network optimizer
achieves higher delay reduction with respect to the
initial shortest path. These results show that the
NDT-based optimizer used in the experiments is
able to effectively reduce the end-to-end delay on
networks.
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V. OPEN CHALLENGES AND OPPORTUNITIES

This article has discussed that modern ML tech-
niques can be key enablers for building core compo-
nents of NDTs, as well as described some potential
applications of NDTs for a broad variety of net-
working use cases (see earlier). However, there are
several open challenges that need to be addressed by
the research community to enable the deployment
of NDTs in real-world networks. Below we present
some key open challenges and opportunities yet to
be explored before achieving production-ready NDT
solutions.

Data collection and storage: In a networking
context, collecting and processing data is chal-
lenging and expensive. This is because it often
requires the use of costly telemetry systems to
gather relevant network state data. Moreover, data
is only valuable if it has a common data format
or labeling. However, in real-world networks data
typically comes from different sources and has
different formats. Thus, it is important to define
standard representations and interfaces that can be
applicable to different monitoring sources.

One limitation of gathering network-related data
is that it can require large amounts of storage.
For example, in modern data center networks (with
thousands of servers) most traffic flows have a very
short duration [15]. Therefore, to consider per-flow
records can involve large amounts of data, making
their storage and processing unfeasible.

In this context, monitoring platforms often use
general-purpose compression methods to reduce the
storage needs (e.g., GZIP). However, these methods
do not exploit characteristics of traffic traces (e.g.,
temporal correlations), resulting in poor compres-
sion ratios. This calls for the design of special-
purpose compression methods that can further help
reduce the size of network monitoring data.

Generalization and scalability to real networks:
The NDT should be able to perform well on differ-
ent network scenarios than those seen during train-
ing. Generalization is important because training a
NDT is not immediate, and network changes can
happen very fast (e.g., link failure), so it is not
possible to finish the training process before there is
a new network event. One way to improve general-
ization of NDTs is using well-known ML techniques
such as regularization or dropout. However, these
methods can impact the performance or introduce

a bias in the model. In addition, when the network
scenario changes drastically, the NDT can lead to
performance degradation. This presents an opportu-
nity for the research community to develop new ML
models that may lead to more solid generalization.
In this context, GNN models have recently shown
promising results for generalization across network-
related data structured as graphs [2], [6].

Modern communication networks are often larger
than the network environments used to generate
the training datasets, raising a scalability challenge
for ML models. NDTs should generalize well to
networks considerably larger than those seen dur-
ing training (e.g., 1-2 orders of magnitude larger).
However, it often involves facing out-of-distribution
values (e.g., larger traffic volumes and link ca-
pacities), which may degrade the performance of
the NDT. Consequently, building scalable NDTs is
an open issue that should be addressed to achieve
production-ready solutions.

Fine-grained control and management: In order
to perform efficient network operation it is neces-
sary to model network traffic at a low granularity
(e.g., flow-based operation). However, communica-
tion networks carry a large number of flows simul-
taneously [15], which may raise scalability issues
for ML-based methods. Some networking systems
tackle the flow scalability issue by applying traffic
sampling or aggregation techniques. This enables
the network operator to set a tradeoff between the
sampling rate used and the accuracy of the statistics
collected from the network. Therefore, building
flow-based NDT models that can operate at a flow
granularity and at short time scales is a relevant
open challenge for the networking community.

Dealing with uncertainty: Neural network-based
models are typically seen as a black-box, which hin-
ders the deployment of DL solutions in real-world
networks. When a neural network-based model is
evaluated, it is difficult to assess how certain the
model is about the predictions made. Given the crit-
ical nature of communication infrastructures, such
limitations are important as network operators need
robust and reliable methods that can be applied
to real-world networks without compromising their
normal behavior. In this vein, existing works from
the ML community attempt to solve this issue by
modeling posterior probability distributions on DL
models (e.g., Bayesian neural networks). Another
alternative is to design comprehensive testing pro-
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cedures in controlled network environments to sys-
tematically determine the safe operational ranges of
DL models (e.g., supported traffic volumes), before
deployment on customer networks.

VI. CONCLUSION

This article has introduced the NDT concept
and its reference architecture. We have argued that
NDTs enable the development of more efficient
network control and management tools for modern
communication networks. In this context, recent
advances in ML permit to build NDTs that can ac-
curately mimic the behavior of real-world networks.
In this article we focused on GNNs and DRL but
we do not limit the application of other existing ML
techniques to build market-ready NDTs. However,
there are still some open challenges to be addressed
for a full-scale NDT deployment in real networks.
We encourage the networking community to explore
innovative solutions to these challenges.
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