
Algorithms to prevent attacks in
Active Directory environments

Albert Ibars Cubel

Supervisor: Maria José Serna

Department of Computer Science

Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of

Computing

Facultat d’Informàtica de Barcelona October 2022

Acknowledgements

I want to express my deep gratitude to Professor Maria Serna from the Department of
Computer Science of UPC for having directed my Bachelor’s Thesis. This project would not
have been possible without her patient guidance, enthusiastic encouragement, and valuable
critiques of this research work.
I would also like to thank my GEP tutor Javier Morales for his advice and assistance in
planning the project’s beginning.
Finally, I wish to thank my parents and brother for their support and encouragement through-
out my study.

Abstract

Microsoft Active Directory is the default management system for Windows domain networks,
so convenient that it is used in many organizations worldwide. Because of this popularity, AD
has been a focused cyberattack target. An Active Directory environment could be described
as an attack graph in which nodes represent users, computers, groups, and services. The
problem is formulated with an attacker who has managed to infiltrate the network to a certain
number of nodes (entry nodes) and seeks to reach the most privileged node. On the other
hand, the defender’s objective will be to maximize the attacker’s shortest path length.

In this paper, we have conducted a study of the AD-blocking style graph. We have
observed that the attack graphs of this Microsoft service have small maximum attack path
lengths and are tree-like. The problem is computationally difficult. Six different algorithms
have been formulated to solve the problem. Firstly, the problem of blocking only the
most vital edge of the attack graph has been investigated, where two algorithms have been
formulated and will later become greedy algorithms. An FPT algorithm and three heuristic
algorithms have also been developed: a Hill Climbing, a Simulated Annealing, and a genetic
algorithm. With these algorithms, we will help IT admins identify high-risk edges in practical
Active Directory environments.

Keywords: Active Directory; Graph algorithms; Shortest path; Most vital edges

Table of contents

List of figures xi

List of tables xiii

1 Context and scope 1
1.1 Context . 1

1.1.1 Introduction . 1
1.1.2 Concepts . 2
1.1.3 Problem to be resolved . 4
1.1.4 Stakeholders . 4

1.2 Justification . 4
1.2.1 Related work . 5

1.3 Scope . 6
1.3.1 Objectives . 6
1.3.2 Requirements . 7
1.3.3 Potential obstacles and risks . 7

1.4 Methodology and rigour . 8
1.4.1 Methodology . 8
1.4.2 Monitoring tools and validation 8

1.5 Work delay . 9

2 Project planning 11
2.1 Task definition . 11
2.2 Resources . 13

2.2.1 Human resources . 13
2.2.2 Material resources . 14

2.3 Risk management . 15

viii Table of contents

2.3.1 Deadline of the project . 15
2.3.2 Bad decision to describe AD attack graphs parameters 15
2.3.3 Create a program for the experiment 16
2.3.4 Computational power . 16

2.4 Gantt chart . 17

3 Budget and sustainability 19
3.1 Budget . 19

3.1.1 Identification of costs . 19
3.1.2 Cost estimates . 20
3.1.3 Management control . 23

3.2 Sustainability . 24
3.2.1 Self-assessment . 24
3.2.2 Economic dimension . 24
3.2.3 Environmental dimension . 25
3.2.4 Social dimension . 26

4 Formal definition and preliminaries 27
4.1 Preliminaries . 27

4.1.1 Basic definitions of graph theory 27
4.1.2 Basic algorithms . 30

5 Problem formulation 33
5.1 Model description . 33
5.2 The complexity of the problem . 34
5.3 Most vital edge problem . 37

6 Algorithms 39
6.1 Solving the MVE problem . 39

6.1.1 Basic sequential algorithm . 39
6.1.2 A more efficient solution . 40

6.2 A Greedy-based algorithm implementation 42
6.3 An FPT-based algorithm implementation 44

6.3.1 Parameterized complexity . 44
6.3.2 Solving the problem with an FPT algorithm 45

Table of contents ix

7 Heuristics 47
7.1 Introduction to local search optimization 47

7.1.1 Hill Climbing . 47
7.1.2 Simulated Annealing . 48

7.2 Representation of the problem as a local search problem 49
7.3 Genetic Algorithm . 51
7.4 Representation of the problem as a genetic algorithm 51

8 Experimentation 57
8.1 Development specifications . 57
8.2 Parameter and function selection . 57

8.2.1 Justification of Simulated Annealing parameters 58
8.2.2 Justification of genetic algorithm parameters 61

8.3 Experimentation of the proposed algorithms 65
8.3.1 Experimentation with a small AD attack graph 65
8.3.2 Experimentation with a medium AD attack graph 67
8.3.3 Experimentation with a big AD attack graph 69

9 Final words 73
9.1 Conclusion . 73
9.2 Future work . 74

References 75

Appendix A Handle with DBCreator data 77

Appendix B Parameter selection tables 81

List of figures

1.1 Kanban board using Asana . 8

2.1 Gantt chart . 17

4.1 Graphical representation of a graph. 28

5.1 Simple graphical representation of the problem. 34
5.2 The reduction . 35

6.1 Ms0(u) and Ns0(u) . 41
6.2 Example graph, where the MVE is not found among the b most vital edges

for b > 1. 43
6.3 Example of a graph with substitutable block-worthy edges. 44

7.1 Simulated Annealing vs. Hill Climbing strategy 49
7.2 Crossover example for the N queens problem. 52
7.3 Crossover without overlap . 53
7.4 Crossover with overlap . 53

8.1 The BloodHound attack graph design . 57

A.1 DBCreator console display. 77
A.2 DBCreator graph representation using neo4j. 78

List of tables

2.1 Summary of the tasks to be performed . 13

3.1 Budget structure . 20
3.2 The total cost of human resources . 21
3.3 Amortization costs for the hardware resources 21
3.4 The general cost of the project . 22
3.5 Incidental cost of the project . 23
3.6 Total project cost . 23

8.1 Comparison of two initial generators solution of Hill Climbing 58
8.2 Determination of the number of iterations in Simulated Annealing 59
8.3 Temperature determination in Simulated Annealing 60
8.4 Comparison of crossover operators . 61
8.5 Determination of the initial population of the genetic algorithm 62
8.6 Determination of the maximum population of the genetic algorithm 63
8.7 Determination of the number iterations of the genetic algorithm 63
8.8 Determination of mutation rate . 64
8.9 Determination of crossover rate . 65
8.10 The small AD attack graph results where all edges are blockable and contain

unweighted edges. 66
8.11 The small AD attack graph results where not all edges are blockable and

contain unweighted edges. 66
8.12 The small attack graph AD results where not all edges are blockable and

contain weighted edges (w(e)≤ 15). 67
8.13 The medium AD attack graph results where all edges are blockable and

contain unweighted edges. 68

xiv List of tables

8.14 The medium AD attack graph results where not all edges are blockable and
contain unweighted edges. 68

8.15 The medium attack graph AD results where not all edges are blockable and
contain weighted edges (w(e)≤ 15). 69

8.16 The big AD attack graph results where all edges are blockable and contain
unweighted edges. 70

8.17 The big AD attack graph results where not all edges are blockable and contain
unweighted edges. 70

8.18 The big attack graph AD results where not all edges are blockable and contain
weighted edges (w(e)≤ 15). 71

Chapter 1

Context and scope

1.1 Context

This work is a computer engineering Degree Final Project (TFG), specialization in Computer
Science, done at the Facultat d’Informàtica de Barcelona of the Universitat Politècnica de
Catalunya, supervised by Maria Jose Serna Iglesias.

1.1.1 Introduction

Today, almost all information is stored electronically using computers and networks. With the
emergence of the Internet, computers were connected through this global network, increasing
the efficiency of information exchange and availability. However, the Internet was not
primarily built to be secure; it was supposed to communicate between trusted computers and
trusted networks. Computers are more vulnerable to information security being attacked and
compromised. At the same time, applications and services rely on computers to store their
information. For this reason, the importance of information security in computer networks is
only growing.

In April 2015, John Lambert described the challenges facing today’s defense security
teams and introduced a perspective on network attacks [1]. While defenders deal with lists of
assets and databases, attackers pay attention to their relationships. Lambert paraphrases this
imbalance by stating:

"Defenders think in lists. Attackers think in graphs.

As long as this is true, attackers win."

—John Lambert, Microsoft Threat Intelligence Center

2 Context and scope

Cyber attack graphs model the chain of events to produce a successful attack. After
performing reconnaissance (research, search for information, weak points, etc.), an attacker’s
first step is to breach a network, extend control, and reach other services or resources. Then
move through the network undetected to locate the highest-privilege account, called the
Domain Admin DA.

This thesis focuses specifically on protecting against attackers in an Active Directory
environment. The problem is formulated as a Stackelberg game between a defender and an
attacker. The defender has a budget to block sure edges of the attacker’s graph movement. In
contrast, the attacker knows which edges have been secured1 and intends to find the shortest
path to the Domain Admin. For a coordinated attack, the Bloodhound tool allows you to
enumerate, collect information and show the domain structure from graphs. One of the main
functionalities of BloodHound is to automatically generate the shortest attack path from the
attacker’s entry node to DA, where the distance is defined as the number of relations. Before
the invention of BloodHound, attackers explored network environments blindly, hoping to
discover a privilege escalation pathway. The defender seeks to maximize the attacker’s
expected shortest path length.

1.1.2 Concepts

This part introduces some Active Directory-specific notions to understand the project better
and a software tool for analyzing and visualizing AD environments.

Active Directory

Active Directory (AD) is a technology belonging to Microsoft company that provides a
service for managing Windows domain networks [2]. Small, mid-sized businesses and large
enterprises commonly use it. Active Directory centralizes the management of users and
resources, providing an integrated environment that allows organizations to maintain a virtual
representation of themselves.

Administrators can manage domains, users, groups, computers, services, and applications.
For example, an administrator account can create a group of users authorized to specific server
resources. The administrator can also take control of local resources at any time simply by
changing the user’s rights and permissions. All this Active Directory data is stored as objects
on the network. AD uses a structured data store to form a logical, hierarchical organization

1In practice, Active Director attackers can use a tool called SharpHound to scan the entire environment and
obtain information from all edges.

1.1 Context 3

of directory information. However, it can be difficult for administrators to monitor users’
access data and permissions as a network grows. To solve this, Active Directory offers a way
to organize users into logical groups and subgroups while providing access control at each
level [3].

The Active Directory structure comprises three main components: domains, trees, and
forests. Specifically, a domain tree is a collection of domains, and a forest is a collection of
trees. The central component of an Active Directory network is the Active Directory Domain
Controller (DC). The DC is a computer running a Windows Server operating system. It is
the most privileged computer, as it authenticates and manages communication between users
and computers in the network and enforces access policies.

BloodHound

BloodHound is a graphical viewer that uses graph theory to reveal the hidden and often
unintended relationships within an Active Directory environment. It is used by attackers (red
teams) and defenders (blue teams) [4]. Attackers can use BloodHound to identify complex
attack paths that would be impossible to locate quickly. Defenders can use BloodHound
to identify, eliminate, or block those same attack paths. BloodHound is a tool that can
automatically enumerate a domain, collect information, and provide a deeper understanding
of privileged relationships in an Active Directory environment. Bloodhound is composed of
2 main parts:

• Ingestors are the applications responsible for enumerating the domain and extracting
all the information. The best-known example is SharpHound [5].

• The visualization application shows all the previously collected information and offers
different ways to escalate privileges in the domain. This application is built with
Javascript with a Neo4j database.

DBCreator

The BloodHound team provided a randomly synthetic database generator called DBCreator
[6] to test use cases of a real-world Active Directory environment. It consists of a python
script that generates a randomized data set for testing BloodHound features and analysis. It
allows you to modify the characteristics and size of the database as a parameter. The resulting
graph will simulate an accurate AD environment. With this tool, we created all the attack
graphs for the investigation.

4 Context and scope

1.1.3 Problem to be resolved

Microsoft Active Directory is the default management system for Windows domain networks,
which is so convenient that it is used in many organizations worldwide. Because of this
popularity, AD has been a focused cyberattack target. An Active Directory environment
could be described as an attack graph in which nodes represent users, computers, groups, and
services. If an attacker manages to gain access to the system, it will usually be by obtaining
a user account, either by social engineering, phishing, or any other technique. The attacker
then starts with low privileges and will try to increase those privileges by moving to a highly
privileged node. This type of attack is called identity snowball attacks [7], so we will try to
prevent this attack and formulate it as a Stackelberg game between an attacker and a defender.
The problem consists of an attack graph containing a target node and multiple entry nodes.
The defender chooses which edges of the graph to block, limited by his budget. The attacker
aims to reach the highest-privileged node, the Domain Controller (DC), from the shortest
unblocked attack path. The defender’s goal is to maximize the expected shortest path length
for the attacker. So, in this thesis, we will take the blue team role and study the problem of
the most vital edges to help IT admins identify high-risk edges in practical Active Directory
environments.

1.1.4 Stakeholders

The main stakeholders that will benefit from the project are users that use Active Directory
environments. These organizations will strengthen network security to protect their data from
adversaries and security threats from this project. Also, a powerful guild that will benefit is
IT administrators tasked with improving safety to those most vital edges of the attacker’s
shortest paths. Computing the most vital edges will enable network designers to construct
networks with better robustness.

On the other hand, indirectly involved stakeholders would be the scientific community,
which gains access to the study and can use the information and conclusions for further
studies in blocking edges in attack graphs.

1.2 Justification

As discussed, Active Directory is the most widely used technology for managing identities
in modern enterprises. The Active Directory service controls entire domains, making it an
ideal target for attackers. Currently, many studies focus on blocking or removing a certain

1.2 Justification 5

number of edges to maximize the attacker’s shortest path. However, apart from studies, we
have not seen tools on the market that provide similar capabilities to the ones studied. We
believe it would be good to implement this search for the most vital edges as an add-on to
BloodHound, thus strengthening Active Directory environments.

In this project, a new open-source tool called BlueHound [8] has emerged. It helps blue
teams identify security issues (vulnerabilities) and uses attack graphs like BloodHound. So
the addition of finding the most vital edges would be a perfect fit for this new tool as it is
more of a defensive tool than BloodHound, which is more of an attacker’s utensil.

1.2.1 Related work

The problem of blocking or eliminating a certain number of edges to maximize the attacker’s
shortest path appears in the literature under many names. Most authors hold it as the most

vital edges, arcs, or links problem [9–11]; other contributors call it bounded cut [12–14]
or edge interdiction problems [15]. There is also a variant in which only one link can be
removed, sometimes named with the prefix single.

Ball et al. [16] is the first to define and motivate the most vital edges in a network in the
context of directed graphs with non-negative cost c(e) of removing. They show this problem
to be NP-Hard. They show that a closely related issue, whose solution provides a lower
bound on the value of the optimal solution of the most vital arc problem, is polynomially
solvable.

Golovach and Thilikos [14] focus on blocking b edges to ensure that the shortest path
is more significant than a parameter l. They proposed a parameterized algorithm for the
bounded length cut problem family and demonstrated that the problem with unit-length edges
is W[1]-hard respect to k. The authors also showed that the problem is fixed-parameter
tractable if the maximum path length and the budget are small.

Bazgan et al. [17] also studied the perspective of parameterized complexity. He studied
the single-source single-destination shortest path edge interdiction. The author proposed a
kernelization algorithm including feedback edges as one of his parameters.

Dvořák and Knop [13] also show that the studied bounded length cut is W[1]-hard with
a parameterized algorithm. They proposed an FPT algorithm concerning l and the graph’s
treewidth w with complexity O(l′12w2

n).
Finally, the article inspired us to do this project and create a version of it. Mingyu

Go et al. [18] proposed three fixed-parameter algorithms and a GCN-based approach for

6 Context and scope

defending Active Directory-style attack graphs. The observation is that attack graphs have
small maximum attack path lengths and are similar to trees.

1.3 Scope

In this section, we will define the main objectives of the theoretical and practical parts, the
requirements, and possible obstacles and risks that may arise in the realization of the thesis.

1.3.1 Objectives

The project aims to understand how attackers attack an Active Directory environment. We
provide edge-blocking algorithms to prevent these attacks and establish the complexity of the
associated computational problem. We adopt parameterized complexity analysis, heuristics
techniques, greedy design, and fixed-parameter tractable algorithms. Finally, we compare
the results on different attack graphs using our program built from the topology created by
DBCreator.

Theoretical Part

• Study Active Directory environments, BloodHound, and DBCreator.

• Present the model description of the attack graph.

• Propose and study the computational complexity of the algorithms for three different
versions of the model and the different algorithms used.

– All edges are blockable with unit-length edges.

– Not all edges are blockable with unit-length edges.

– Not all edges are blockable and have a different weight.

Practical Part

• Program the algorithms studied.

• Modify and extract the DBCreator topology for our experiment.

• Compare the results obtained for the different algorithms studied for the three versions.

• Conclude the results.

1.3 Scope 7

1.3.2 Requirements

Some requirements are needed to ensure the quality of the project.

• Create Active Directory attack graphs with small maximum attack path lengths and
structurally close to trees.

• Define the comparison algorithms that are going to be used.

• Use good programming practices with a readable style of the algorithms studied.

• Possess sufficient computational power to handle algorithms on graphs with many
nodes.

1.3.3 Potential obstacles and risks

Throughout the project’s development, there may be possible obstacles and risks that could
delay the realization of the project, and if this is the case, we will have to deal with them.
Here we put some examples:

• Deadline of the project. We must achieve the project deadline. Therefore, it will be
necessary to sufficiently organize and plan the project’s development to finish it on
time.

• Bad decision to describe Active Directory attack graphs parameters. We need
to adopt a list of appropriate parameters that facilitate and describe a natural Active
Directory environment to develop the algorithms and their respective experiments.

• Create a program for the experiment. The experiments in this project will be carried
out with synthetic graphs generated using DBCreator, from which we will extract
the topology to carry out the study. Creating a program that takes advantage of the
topology created and allows us to apply criteria and modify the attack graph will be
challenging.

• Computational power. Large organizations with natural Active Directory environ-
ments contain an extensive network of computers, groups, and users, thus involving
many nodes in the attack graph. Applying the algorithms to these networks will affect
much computational power, slowing down the work if we cannot guarantee sufficient
computational power.

8 Context and scope

1.4 Methodology and rigour

In this section, we will define the methodology, monitoring tools, and validation methods we
will use to visualize the detailed workflow and performance of the project.

1.4.1 Methodology

KanBan is the methodology we have considered adopting, which provides a visual represen-
tation of our process flow, allowing us to be more efficient. With the KanBan methodology,
we will control the tasks through a division by phases until their completion. This division of
graphic cards will be completed through the following online board 1.1.

Fig. 1.1 Kanban board using Asana

We have used the web application Asana to create the methodology because it is very
flexible and easy to use. As shown in the figure, we have created a table with different fields.
Each field contains the tasks to be done, the tasks in progress, the tests, and the completed
assignments. Also, for each card, we can define a description of the task, write comments
and even create a list of subtasks.

1.4.2 Monitoring tools and validation

We will use a GitHub repository as a storage and control tool. We will create a main branch
that will include tested and updated code and a development branch that will consist of all
the code under development or testing. We will perform several tests to check the correct

1.5 Work delay 9

functioning of the implemented code and algorithms. In creating the Active Directory attack
graph, we will only consider three types of edges: AdminTo, MemberOf, HasSession. These
three types of edges are the default in BloodHound. The optimal parameters of the Active
Directory environment shall be selected using some model validation technique, such as
cross-validation. And each experiment is performed five times, and some results will be
averaged.

Lastly, we have created a Gmail space with the supervisor where we can easily commu-
nicate via chat, pass files, and plan meeting times. We will meet with the tutor every two
weeks to discuss the project status and check that everything is OK. If we have a problem,
we will create an extraordinary meeting session to deal with it.

1.5 Work delay

For work reasons, finishing the project for the first reading shift has not been possible. The
project has been postponed for a couple of months. So last month’s planning for the first
delivery has been moved to mid-August for the completion of the project in the second
available delivery.

Chapter 2

Project planning

This project started in early February 2022 and is planned to be completed by June. This
thesis will have an approximate working time of 610 hours, spread over 125 days. So I have
to distribute the hours devoted to each task to ensure the project is completed successfully.
The time spent per week will be around 25-30 hours, although this may vary due to external
factors.

2.1 Task definition

In this section, we will explain how the project is scheduled. It will be divided into five group
tasks: project planning, theoretical, practical implementation, experimentation/analysis, and
project documentation.

Project planning (T1) is a significant step in carrying out a project. It helps us establish
each activity’s priority and better control the time to execute a project with the desired quality
and success. This part is divided into five parts:

• Context and scope of the project (T1.1): It defines the scope of the project in the
context of its study. It also specifies the objectives, the relevance of the area, and how
the project is developed.

• Temporal planning (T1.2): It plans the work’s entire execution, describing the phases,
resources, and requirements needed.

• Budget and sustainability (T1.3): It is essential to keep track of the costs and the
impact of the project development. This phase describes the budget, economic viability,
and environmental sustainability.

12 Project planning

• Final project definition (T1.4): Create a document grouping all previously performed
tasks, modifying those wrong parts.

• Meetings (T1.5): We will meet with the tutor every two weeks to discuss the project’s
status and evolution.

Before starting with the project’s development, a fundamental task is the research of
previous studies. Search for applications, papers, and articles on the internet and cite them in
our work.

In the theoretical part (T2), we will focus on describing the Active Directory model
used and the realization of the proposed algorithms for blocking edges of an attack graph.

• Model description (T2.1): Describe the Active Directory attack graph, define the
parameter list, and demonstrate the algorithmic complexity of the problem.

• Algorithms edge-blockable (T2.2): The idea is to propose five or more shortest
path edge interdiction algorithms (greedy, FPT, heuristic techniques ...) for defending
Active Directory. We will perform this task on the environment version where all edges
are lockable with unit-length edges.

• Algorithms, not all edge-blockable (T2.3): Same as in the previous task, but not all
edges are blockable this time.

• Algorithms, not all edge-blockable with costs (T2.4): Finally, we will do the last
algorithms in an environment where not all edges are blockable and edges have different
weights.

The practical part (T3) is the most important, as this project needs to test the algorithms
implemented in the theoretical part on different attack graphs.

• Program skeleton (T3.1): Program everything necessary so that all that remains is
to add the functions that execute the algorithms proposed in the theoretical practice.
It will be required to program the extraction of the graph’s topology created with
DBCreator, program the shortest path from one point to another in an attack graph,
and more.

• Program algorithms edge-blockable (T3.2): Program algorithms where all edges are
blockable with unit-length edges.

2.2 Resources 13

• Program algorithms are not all edges-blockable (T3.3): Program algorithms where
not all edges are blockable with unit-length edges.

• Program algorithms not all edges-blockable with costs (T3.4): Program algorithms
where not all edges are blockable, and edges have different weights.

The next stage will experiment, analyze, and collect data (T4) from the created
algorithms. We will compare the results with the different versions on different attack graphs
and conclude.

During the project’s entire development, it will be documented (T5.1) in parallel. And
finally, we will have to prepare for the oral defense (T5.2) for the project presentation.

ID Name Time(h) Dependencies Resources
T0 Research 60 PC, articles, papers, books
T1 Project planning 70
T1.1 Context and scope 24 PC, Overleaf, Atenea
T1.2 Temporal planning 10 T1.1 PC, Overleaf, Atenea, Asana, GanttProject
T1.3 Budget and sustainability 10 T1.2 PC, Overleaf, calculator
T1.4 Final project definition 18 T1.1, T1.2, T1.3 PC, Overleaf
T1.5 Meetings 8 PC, Google Meet
T2 Theoretical part 140
T2.1 Model description 20 PC, articles, books
T2.2 Algorithms edge-blockable 40 T2.1 PC, articles, books
T2.3 Algorithms not all edge-blockable 40 T2.2 PC, articles, books
T2.4 Algorithms not all edge-blockable with costs 40 T2.3 PC, articles, books
T3 Practical implementation 180
T3.1 Program skeleton 50 PC, Python, git, VSCode
T3.2 Program alg. edge-blockable 40 T2.2, T3.1 PC, Python, git, VSCode
T3.3 Program alg. not all edge-blockable 40 T2.3, T3.1 PC, Python, git, VSCode
T3.4 Program alg. not all edge-blockable with costs 50 T2.4, T3.1 PC, Python, git, VSCode
T4 Experimentation and analysis 30
T4.1 Experimenting with algorithms 10 T3 PC, attack graphs created
T4.2 Obtain and compare results 20 T4.2 PC, results obtained
T5 Project documentation 110
T5.1 Documentation 80 PC, Overleaf, project resources
T5.2 Oral defense preparation 30 T5.1 PC, Overleaf, results obtained
Total 590

Table 2.1 Summary of the tasks to be performed

2.2 Resources

We will use the following human and material resources to realize this project.

2.2.1 Human resources

Three human resources are involved in this project. Firstly, the researcher is in charge
of developing the whole project. His role will be to plan, define concepts, conduct an

14 Project planning

experimental study, analyze, and document it. On the other hand, the supervisor supervises
and guides the researcher to stay on track in the project’s development. Finally, the GEP
tutor will be in control of correcting the researcher’s project management during the first
month of the project.

2.2.2 Material resources

Research projects are based on previous studies; therefore, searching for knowledge on the
internet, books or articles will be necessary. In addition, we will need the following hardware
and software resources to realize the whole project.

Software resources

• Overleaf. We decided to use LATEX as it is a clean, neat, and tidy text format widely
used in academia to communicate and publish scientific documents in many fields,
including mathematics, computer science, and engineering. We will use the online text
editor Overleaf, as it does not require installation, and you can share the document.

• Atenea. We will use it to obtain material to help manage the project and communicate
and have feedback with the GEP tutor. It is also the site where deliverables are
uploaded.

• Visual Studio Code. We will use Microsoft’s Visual Studio Code IDE to program the
experimental part for its efficiency and versatility.

• Github. We will use a GitHub repository as a storage and control tool due to its
accessibility.

• BloodHound/DBCreator.We will use BloodHound in the experimental part to observe
the topology created with the DBCreator tool.

Hardware resources

Our hardware specs are Intel® Core™ i7-8700K 3.7GHz, 32GB of RAM, and a GPU GTX
1080 8GB computer desktop.

2.3 Risk management 15

2.3 Risk management

During the project’s development, obstacles and risks may appear that could delay the
realization of the project. The potential risks and barriers have been introduced previously.
This section will look at the degree of risk of each problem that may arise, how they may
affect the project, and what alternative tasks we could use to mitigate these setbacks.

2.3.1 Deadline of the project

One of the problems with planning before starting the project is that we may not have
distributed the hours spent on each task correctly and may need more than planned. Hence, it
can cause chaos in the project plan and delay completing tasks.

• Impact: Medium.

• Solution: Adapt the project plan to the new situation and recalculate the hours needed
for each task. We will create new planning at a later point in the project. If the new plan
has been unsuccessful for any external reason, we can continue solving the problem by
applying more daily hours. If things get too complicated and we need more time, we
can use an extension to deliver the project later (a few more months), but that is not the
plan.

2.3.2 Bad decision to describe AD attack graphs parameters

Getting it wrong to decide on the model description parameters that describe an Active
Directory environment to do the experiments can be a big problem as they are the project’s
foundation.

• Impact: Medium.

• Solution: We can apply the same list of parameters from the article [18] that inspired
this paper as a solution. We ensure that we create a model suitable for Active Directory
environments. We could also apply the parameters used in other articles on blocking
the most vital edge problems style.

16 Project planning

2.3.3 Create a program for the experiment

The experiments of this project will be carried out with synthetic graphs generated with
DBCreator, from which we will extract the topology to carry out the study. In case of not
taking advantage of this tool, it can be a substantial project delay.

• Impact: High.

• Solution: Suppose we cannot take advantage of DBCreator. In that case, we will have
to create our network generator from scratch, making it as similar as possible to an
Active Directory attack graph. This process will delay the experimental part of the
project.

2.3.4 Computational power

There are vast Active Directory environments with an extensive network of computers,
groups, and users, thus involving many nodes in the attack graph. This project will attempt
to create pretty large networks, and applying relatively complex algorithms to these graphs
can require a lot of computing power.

• Impact: Low.

• Solution: We will exercise two solutions; the first would be to look for online alterna-
tives such as Google Collaborative that will run the code for as long as it takes. And
the second option would be to reduce the number of nodes in the graph to make it
smaller so that the algorithm can finish in a reasonable time.

2.4 Gantt chart 17
2.

4
G

an
tt

ch
ar

t

Fi
g.

2.
1

G
an

tt
ch

ar
t

Chapter 3

Budget and sustainability

This chapter will calculate the costs of all elements used in the planning. We will have
human, hardware, software, and indirect costs. Moreover, we will consider management
control mechanisms to control deviations that may arise in the project due to unforeseen
events. Finally, we will answer a series of questions on the project’s sustainability.

3.1 Budget

3.1.1 Identification of costs

To identify the project’s costs, we first have to calculate the cost of each task defined in
Section 2.1. The cost of each labor is calculated by adding the worker’s worth. Each worker’s
salary is calculated by multiplying their hourly wage by the number of hours performing
an activity. Four staff roles will carry out this project, each hourly cost. The first role is the
Project Manager, who will be in charge of planning, executing, and monitoring the project
and making all the decisions to achieve each phase’s objectives. The supervisor, the GEP
tutor, and I will take this role’s reins. The next role is the Researcher, who will study edge
blocking for defending Active Directory style attack graphs and propose algorithms to solve
it and its computational complexity. I will play this role and the following ones. Once the
researcher has the algorithms, the Programmer will have to program them and see that they
work correctly. Finally, there is a role in charge of all the project documentation. I will also
be a Technical Writer.

We must also remember that material resources, such as software, hardware, and work-
place resources, must be amortized.

20 Budget and sustainability

3.1.2 Cost estimates

In this section, we will calculate the approximate cost of the project. In Table 3.1, we can see
a complete summary of the different expenses calculated.

Name Cost(C) Comments
Tasks

T0.1 - Research 1,140.00 Researcher, 60 hours
T1.1 - Context and scope 576.00 Project Manager, 24 hours
T1.2 - Temporal planning 240.00 Project Manager, 10 hours
T1.3 - Budget and sustainability 240.00 Project Manager, 10 hours
T1.4 - Final project definition 432.00 Project Manager, 18 hours
T1.5 - Meetings 192.00 Project Manager, 8 hours
T2.1 - Model description 380.00 Researcher, 20 hours
T2.2 - Algorithms edge-blockable 760.00 Researcher, 40 hours
T2.3 - Algorithms not all edge-blockable 760.00 Researcher, 40 hours
T2.4 - Algorithms not all edge-blockable with costs 760.00 Researcher, 40 hours
T3.1 - Program skeleton 800.00 Programmer, 50 hours
T3.2 - Program alg. edge-blockable 640.00 Programmer, 40 hours
T3.3 - Program alg. not all edge-blockable 640.00 Programmer, 40 hours
T3.4 - Program alg. not all edge-blockable with costs 800.00 Programmer, 50 hours
T4.1 - Experimenting with algorithms 160.00 Programmer, 10 hours
T4.2 - Obtain and compare results 380.00 Researcher, 20 hours
T5.1 - Documentation 1,520.00 Technical Writer, 80 hours
Total CPA (Costs per activity) 10,420.00

Software
Visual Studio Code 0.00
Github 0.00
Overleaf Software 0.00
GanttProject 0.00
BloodHound 0.00
DBCreator 0.00

Hardware
Desktop Computer 283.64 590 hours. Resource price: 1,923C
PC Peripherals 209.75 590 hours. Resource price: 711C

Workplace
Electricity 40.41 0.3233C per day. Project duration of 125 days
Internet 66.66 80C per month. Project duration of 5 months
Total CG (General Costs) 600.46
Contingency Margin 1,322.46 Inclusion of a 12% contingency margin

Incidents
Deadline of the project 178.50 Cost: All roles, 30 hours. Risk 35%
Bad decision to describe AD attack graphs 38.00 Cost: Researcher, 10 hours. Risk 20%
Program creation 288.00 Cost: Programmer, 40 hours. Risk 45%
Computational power 8.00 Cost: Cluster use, 5 hours. Risk 10%
Total incidents 512.50
TOTAL 12,855.42

Table 3.1 Budget structure

3.1 Budget 21

Human resources budget

As described above, there are five roles during the project: Project Manager, Researcher,
Programmer, and Technical Writer. The salaries have been taken from the GlassDoor [19]
page, which provides the average salary for the different jobs in a year. The hourly rate
has been calculated based on 1888 hours worked in a year. To define the overall personnel
cost, we have to multiply the cost per hour by each employee’s number of project hours. In
Table 3.2, we see the cost of recruitment, known as Costs per Activity (CPA).

Role Cost(C)/h Project hours Cost(C)

Project Manager 24.00 70 1,680
Researcher 19.00 220 4,180
Programmer 16.00 190 3,040
Technical Writer 19.00 80 1,520
CPA cost 10,420

Table 3.2 The total cost of human resources

General Costs

We consider hardware, software, and workplace resources to calculate the General Costs
(CG). A part of the economic cost will be given by the amortization of the resources used
in the project. We will carry out the project on a desktop computer with some peripherals.
We will calculate the project’s depreciation, considering that the project uses utterly free
software tools. We must believe that we will work approximately 4 hours daily for 125 days.
The formula we will apply to calculate the amortization is as follows 3.1:

Amortization = Resource price× 1
Li f espan

× 1
Work days

× 1
Hours per day

×Hours used

(3.1)

Hardware Price(C) Lifespan (years) Amortization(C)

Desktop Computer 1,923.00 8 283.64
PC Peripherals 711.00 4 209.75
Total cost 493.39

Table 3.3 Amortization costs for the hardware resources

22 Budget and sustainability

To finalize the CG costs, we must count the electricity and internet. An essential factor
also considered is the transport cost, but we will carry out this project online, so there will be
no transport cost.

• Electric cost: Currently, the cost of electricity is relatively high. The actual price
per kWh is 0.3233C [20]. The computer desktop uses an average of 250 Watt hours
(including peripherals). Assuming that the computer is on for four hours a day, the
total electricity cost of the project will be (0.3233C/kWh)×250Wh×125days×4h.
Total = 40.41C

• Internet cost: The internet rate costs 80C per month. Considering that the project
lasts five months and the working hours per day are four, the internet cost is 5months×
(80C/month)× (4h/24h). Total = 66.66C

Adding all previous costs, the estimated generic cost for this project is available in Table 3.4.

Concept Cost(C)

Amortization 493.39
Electric cost 40.41
Internet cost 66.66
CG cost 600.46

Table 3.4 The general cost of the project

Contingency

The contingency budget is an amount of money we will include to cover potential and
unforeseen events. To the total costs of the items described above, we will add a contingency
margin of 12%. So the total cost ascends to (CPA+CG)×1.12 = 12342.92C.

Incidents costs

The last thing to consider is the cost of implementing alternative plans in case of unforeseen
events during the project. Section 1.3.3 lists all possible risks that may appear. So, we will
have to spend more on salary costs in case of delays. Table 3.5 below shows the total cost of
resolving these incidents by risk probability.

3.1 Budget 23

Incident Estimated cost(C) Risk(%) Cost(C)

Deadline of the project (30 hours) 510.00 35 178.50
Bad decision to describe AD attack graphs (10 hours) 190.00 20 38.00
Program creation (40 hours) 640.00 45 288.00
Computational power (5 hours) 80.00 10 8.00
Total cost 512.50

Table 3.5 Incidental cost of the project

Final budget

The project’s total budget with the calculations made in previous sections is shown in
Table 3.6.

Concept Cost(C)

CPA cost 10,420.00
CG cost 600.464
Contingency 1,322.46
Incidents cost 512.50
Total 12,855.42
Table 3.6 Total project cost

3.1.3 Management control

In this section, we will report the procedures to control the budget. To prevent deviations in
the budget during the project development, we will calculate the actual cost assumed at the
end of each task, adding the additional resources used and the possible unforeseen events that
may have arisen. We will obtain the difference between the actual and estimated resources
consumed by following the formulas below to calculate the deviation.

Cost deviation = (Ce−Cr)×Hr (3.2)

Efficiency deviation = (He−Hr)×Ce (3.3)

– Ce = Estimated cost

– Cr = Real cost

– He = Estimated hours

– Hr = Real hours

24 Budget and sustainability

3.2 Sustainability

3.2.1 Self-assessment

After completing the sustainability self-assessment survey of EDINSOST, I realized that I
have a vague idea of most sustainability concepts. It is difficult to answer questions related
to environmental experiences from previous projects, as this project is the first one I have
considered.

On the one hand, I am aware of the social and ecological effects produced by the
development of the technology industry and why we should strive to make it sustainable.
Every project impacts society, so this influence must be measured and considered from
the outset. We should thoroughly analyze all possible factors of the project and its impact.
However, I do not have enough knowledge to accurately measure the result of a project
economically, socially, and environmentally.

I must point out that I did not know I had to consider many indicators when carrying out
a sustainable project. Making these indicators at the beginning of a project can benefit the
impact as we will know what sustainable impact we are facing and how we could improve it
or solve it in case of problems.

As far as the economic field is concerned, I have a general idea of assessing the viability
of a project and how this field is directly related to the environmental and social impact.
Although there were concepts like amortization that I had to remember, I think it is essential
to take them into account to understand the project’s impact. Finally, I have delved a little into
the world of sustainability. It has made me reflect on the importance of taking sustainability
into account when planning and organizing a large-scale project from the point of view of
the three different dimensions.

3.2.2 Economic dimension

Regarding PPP: Reflection on the cost you have estimated for the completion of the
project:

Reflection on the estimated costs is explained in detail in Section 3.1 of the document.
In this project, we have evaluated the price of human and material resources, including
contingency and incidental cost estimates for the entire project.

Regarding Useful Life: How are currently solved economic issues (costs...) related
to the problem you want to address (state of the art)?

3.2 Sustainability 25

The lifetime costs of the project are the least significant in the life cycle and are difficult
to estimate. As an algorithmic research project studying blocking edges of attack graphs,
they will not undergo substantial changes to solve it. Therefore, the only cost will be the
maintenance and updates of the created program during its lifetime. One way to reduce
the economic cost of the project would be to reuse programs for the generation of Active
Directory attacking graphs, such as DBCreator. By doing this, we will reduce programming
time, which will reduce the total economic cost. Another essential detail is to build the
algorithms as efficiently as possible to reduce computation time and thus reduce energy
consumption, which reduces the financial cost of electricity.

Regarding Useful Life: How will your solution improve economic issues (costs...)
concerning other existing solutions?

By proposing algorithms to identify high-risk edges in practical Active Directory envi-
ronments, we will achieve better performance against competitors by leveraging the cost of
resources for those AD relationships potentially at risk, thus better-distributing costs across
the different edges.

3.2.3 Environmental dimension

Regarding PPP: Have you estimated the project’s environmental impact?
We have not fully estimated the environmental impact of the project. This is because

this project does not waste material resources; the only environmental impact is electricity
consumption for the whole project.

Regarding PPP: Did you plan to minimize its impact, for example, by reusing
resources?

The only environmental impact that influences us is electric consumption. To minimize
the effect, we aim to build efficient algorithms and create not very large graphs, thus reducing
the time needed and, therefore, the environmental footprint. We prioritize computational
efficiency to reduce overall energy consumption, and we use a single computer, minimizing
consumption compared to more energy-demanding computers.

Regarding Useful Life: How is currently solved the problem that you want to address
(state of the art)? How will your solution improve the environment concerning other
existing solutions?

As mentioned above, we will identify high-risk edges in AD environments. Our solution
will help IT administrators find the weak points in the network and thus better allocate
resources to strengthen them and decrease the ecological footprint.

26 Budget and sustainability

3.2.4 Social dimension

Regarding PPP: What do you think you will achieve -in terms of personal growth- from
doing this project?

This project will allow me to introduce myself to research and present it with rigor. It
will also allow me to properly organize and plan tasks and avoid minor scale issues. Finally,
I consider it an excellent starting point for future projects. It has taught me to assess the
possible repercussions of the measures taken during the project and the sustainable aspects
of a project.

Regarding Useful Life: How is currently solved the problem that you want to address
(state of the art)? How will your solution improve the quality of life (social dimension)
concerning other existing solutions? Is there a real need for the project?

From a social point of view, we approach this project similarly to other cutting-edge
projects in this field: collaborative research. Our contribution will be of great use to society
as a whole as it allows us to understand the most vital relationships in an Active Directory
environment. This study and its experiments will improve security in this type of network,
which will even serve similar studies in the future.

Chapter 4

Formal definition and preliminaries

4.1 Preliminaries

This section introduces notation, definitions, and properties of graph theory used throughout
the document to better use this work.

4.1.1 Basic definitions of graph theory

Definition 4.1.1 (Graph). A graph G = (V,E) consists of a finite, non-empty vertex set V

and an edge set E of unordered 2-element subsets of V .

Elements of V are called vertices (or nodes), and elements of E are called edges (or links).
If e = {u,v} is an edge, then u and v are ad jacent to each other, and u and v are each incident
to the edge e. To abbreviate the notation, we would write e = uv instead of e = {u,v}.

The order of a graph is the number of vertices of G, i.e. the cardinal of V denoted by
|V (G)|; the size of G is its number of edges denoted by |V (E)|.

Example. Given the graph G = (V,E), where

V = {1,2,3,4,5,6} and E = {{1,2},{1,3},{2,3},{2,4},{2,5},{3,4},{4,5}},

the order of G is 6, and its size is 7. As far as adjacencies are concerned, it is observed
that, for example, 1 and 2 are adjacent, but 1 and 4 are not. These relations can be seen
immediately if the graph is represented by a drawing where the vertices are points and the
edges are lines joining vertices. The above graph G is depicted in Figure 4.1.

Definition 4.1.2 (Digraph). A digraph G = (V,E) is a finite, non-empty vertex set V and an
edge set E of ordered 2-element subsets of V .

28 Formal definition and preliminaries

12

3

4 5

6

Fig. 4.1 Graphical representation of a graph.

In a directed graph (digraph), elements of V are called vertices (or nodes), and E elements
are called arcs or edges. Note that in the case that uv ∈ E(G) does not imply vu ∈ E(G) how
it was for the graph G above.

Definition 4.1.3 (Subgraph). A graph G′ = (V ′,E ′) is a subgraph of G = (V,E) if V ′ ⊆V

and E ′ ⊆ E.

Definition 4.1.4 (Induced subgraph). If G = (V,E) is a graph and S is a subset of V , the
subgraph induced by S, denoted by < S >, is the graph < S >= (S,E ′), where the elements
of E ′ are the edges of G joining the vertices of S, i.e.

E ′ = {uv ∈ E | u ∈ S and v ∈ S}

In case S =V−{v}, the induced subgraph, denoted by G−v, is obtained by deleting from
G the vertex v and the edges incident to this vertex. On the other hand, the suppression of an
edge e of a graph G = (V,E) gives rise, by definition, to the subgraph G− e = (V,E−{e}),
i.e., edge e is deleted but not the incident vertices of this edge.
An important concept is a node’s neighbors since there are no edges without neighbors.

Definition 4.1.5 (Neighborhood). For an undirected graph G = (V,E), the neighbourhood

NG(u) of a vertex v ∈V is its set of all neighbors of v, i.e., NG(v) = {u | {u,v} ∈ E(G)}. For
a directed graph we use N+

G {v} to indicate the set of out-neighbors and N−G {v} to indicate
the set of in-neighbors of v.

Definition 4.1.6 (Degree). The degree of a vertex v ∈V in a graph G = (V,E), denoted by
dG(v), is the size of the neighbourhood |NG(v)|.

Definition 4.1.7 (Path). A u− v path of length l of graph G = (V,E) is a sequence of
vertices u0,u1...ul−1,ul , with u0 = u, ul = v and ui−1ui ∈ E for i = 1,2, ...l, i.e. each pair of

4.1 Preliminaries 29

consecutive vertices are adjacent. Note that paths are not unique. There may exist multiple
paths between two nodes. We denote it as PG(u,v).

We must clearly understand the following concepts of distances and shortest paths as they
are the mainstay of the work.

Definition 4.1.8 (Distance). The distance between two vertices u and v of G = (V,E),
denoted by dG(u,v), is the minimum of the lengths of the u− v paths of G.

Definition 4.1.9 (Shortest Path). A shortest path SPG(s,d) from s to d in G = (V,E), in a
weighted graph is defined as a s− d path which minimizes the sum of the weights of the
edges along the s−d path. In an unweighted graph, it is the minimum length of s−d paths
of G. In this case, |SPG(s,d)|= dG(s,d).

Definition 4.1.10 (Cycle). In a directed graph, a cycle is a path that starts and ends at the
same vertex. A simple cycle is a cycle v1v2...vlv1 that has l different v1,v2, ...,vl vertices.

Definition 4.1.11 (Trees and forests). An undirected graph with no cycles is called a forest.
A connected forest is called a tree. A directed graph is a tree (or forest). If all edges are
converted to undirected edges, it is an undirected tree (or forest).

Definition 4.1.12 (Spanning Tree). If G is a connected graph on n vertices, a spanning tree

for G is a subgraph of G that is a tree on n vertices.

Theorem 4.1.1. Every connected graph contains a spanning tree.

Proof. By induction on the number of edges.

• If G′ is connected and |E(G)|= 0, it is a single vertex, so G is already a spanning tree.

• |E(G)| ≥ 1 edges. If G has no cycles, it is its spanning tree. If G has cycles, remove
one edge from each cycle. The resulting graph G′ is still connected and cycles free,
containing all the vertices of G. This is also a spanning tree for G.

Definition 4.1.13 (Shortest Path Tree). Given a graph G, the shortest path tree rooted at
vertex u is a spanning tree T of G, such that the path distance from root u to any other vertex
v in T is the shortest path distance from u to v in G.

Definition 4.1.14 (Cut Edge). Let G be a connected graph. A cut edge (bridge) is an edge e

that G− e results in a disconnected graph. Therefore two or more graphs are formed.

30 Formal definition and preliminaries

4.1.2 Basic algorithms

This subsection will detail basic graph algorithms, which will help us carry out the practice.

Breadth First Search (BFS)

A breadth-first search (BFS) is a search algorithm that traverses the nodes of a graph, starting
with a root node1 and explored all the neighbors of that node. Then, for each neighboring
node, its adjacent neighbors are examined, and so on until the entire graph (nodes that share
the same connected component as the root node) is traversed.

The implementation of the breadth-first search algorithm in pseudocode is shown below
Algorithm 1. We initialize the list of visited nodes to false and the distance vector as infinite.
Then we traverse the graph nodes starting with the neighbors and then the child nodes.
Each time we visit a node, that node is set to true in the visited list, and the distance is
updated. Since we are doing a breadth-first traversal, the data structure used is a queue since
it processes the nodes that first arrive at the queue.

Algorithm 1 Breadth-First Search’s algorithm
BFS(G,s)
Input: A graph G = (V,E) and a node s of G
Output: d is a vector of size |V | whose components are the distances from node s to all
graph vertices.

1: for each node v ∈V (G) do
2: visited[v]← f alse
3: d[v]← ∞

4: visited[s]← true
5: d[s]← 0
6: Q := a queue data structure, initialized with v
7: while Q is not empty do
8: u← remove node from the front of Q
9: for each v adjacent to u do

10: if not visited[v] then
11: visited[v]← true
12: d[v]← d[u]+1
13: insert v to the end of Q
14: return d

This algorithm takes O(V) time to initialize the distance and predecessor for each node.
We discover all its neighbors for each node by traversing its adjacency list, so each node is

1In the case of a non-tree, we chose some node as a root

4.1 Preliminaries 31

enqueued at most once. Since we explore the edges incident on a vertex only when we visit
from it, each edge is examined at most twice, one for each of the vertices it’s on. Thus, BFS
spends O(|V |+ |E|) time.

Dijkstra

Dijkstra’s algorithm is a well-known graph search algorithm that solves the single-source
shortest path problem for a graph with non-negative edge path weight. This algorithm is very
similar to BFS, but Dijkstra uses a priority queue instead of a queue. Thus, when visiting the
unvisited neighbors of a node, we insert it into the priority queue using the distance from the
edge. The priority queue will first extract the node with the least distance from the source.
The implementation of Dijkstra’s algorithm in pseudocode is shown below Algorithm 2.

Dijkstra finds the path with the lowest cost (i.e., the shortest path) between one node and
every other node in the graph. The algorithm can also use for finding the costs of the shortest
paths from a node to a destination node. Once the algorithm finds its way to the destination
node, the algorithm stops.

Algorithm 2 Dijkstra’s algorithm
DIJKSTRA(G,source, target)
Input: A graph G = (V,E), a source node and a target node of G
Output: variable d as SPG(source, target)

1: Q := a priority queue, initialized with s with priority 0
2: visited := empty set of node
3: while Q is not empty do
4: (n,d)← extract (node,distance) from Q
5: if n = target then
6: return d
7: add n to visited
8: for each arc from node n to some node n′ with weight w do
9: if n′ not in visited then

10: insert n′ with priority d +w in Q
11: raise NodeNotFound

We can implement Dijkstra’s algorithm more efficiently by storing the graph in adjacency
lists and using a search tree, binary heap, or a Fibonacci heap as a priority queue to extract
the minimum efficiently. This will produce a running time of O(|E|+ |V | log |V |).

Chapter 5

Problem formulation

5.1 Model description

An Active Directory attack graph is defined on a directed graph G = (V,E) with |V | = n

vertices and |E| = m edges, with a positive weight w(e) associated with each edge e ∈ E.
The graph contains a set of entry nodes where the attacker will start the attack. In our model,
we study a case where the entry nodes are the nodes the attacker has already compromised
(probably from phishing attack victims), so he can initiate the attack from any of those nodes.

Let s be the total number of entry nodes. Given a entry node si and a destination node d, a
shortest path attack SPG(si,d) from si to d in G is defined as a path which minimizes the sum
of the weights1 of the edges along the path from si to d. We consider only one destination
node2 as the Domain Controller. The distance between two vertices u,v ∈ V (G) (i.e., the
length of SPG(u,v)) is denoted by dG(u,v).

In this problem, the defender has a limited budget for blocking edges to protect themselves
from attacks and delay the attacker’s movement. They must decide the b edges to secure,
where b is the defensive budget. We use B to denote the set of edges blocked. Once the
edges are blocked, the graph is denoted as G−B, where G−B = (V,E \B). As mentioned in
Section 1.1.1, attackers know which edges have been blocked by defenders, so they perform
a best-response attack. This best-response attack consists of the shortest path attack to the
DC, denoted by SPG−B(si,DC). Thus, the stage environment is as follows:

Scenario: The attackers have compromised the entry nodes. The attacker can start the
attack at any of the entry nodes. Therefore, knowing that the attacker will perform a shortest

1We work with weighted (w(e)≥ 0) and unweighted graphs (w(e) = 1).
2There is usually more than one node with high privileges (Domain Admins). We merge all the administra-

tion nodes into a single node and call it Domain Controller.

34 Problem formulation

path attack, the defense will focus on finding b blockable edges {e1,e2, ...,eb}= B whose
blocking is such that the sum of the weights of SPG−B(si,DC) is maximum. These edges are
recognized as the b most vital edges.

We experiment with three distinct graph characteristics. First, we focus on studying a
graph with no weights (w(e) = 1). In the second, we add a property to the edges: there will
be a set of edges that can be blockable (others cannot) to protect against AD attacks, denoted
by Eb ⊆ E. And finally, the third type of graph is with weights(w(e)≥ 0), and not all edges
are blockable.

We are interested in the scenario where the goal is to block some edges so that the shortest
s− t path gets longer in the resulting attack graph. These problems are motivated by obvious
applications in investigating robustness and critical infrastructure in network design.

The following figure 5.1 is a simple representation of the problem network. Nodes A and
B are the entry nodes, and node K is the Domain Controller. The attacker’s objective will be
to get from one of the red nodes to the green node as quickly and efficiently as possible.

A

B

C D

E

F
G

H

I

J

K

Fig. 5.1 Simple graphical representation of the problem.

5.2 The complexity of the problem

In this section, we prove that finding the most vital edges (MVEs) problem is NP-hard3 with
any weight, even when w(e) = 1, by showing that the decisional problem is NP-complete.
Baruch Schieber et al. [9] proved this proof in 1995. We will name the corresponding
problem D-MVEs (decision most vital edges). D-MVE is:

3A problem X is NP-hard if there is an NP-complete problem Y , such that Y is reducible to X in polynomial
time.

5.2 The complexity of the problem 35

INPUT: A directed graph G = (V,E), with a positive w(e) associated with each edge
e ∈ E; entry node s and a target DC where s,DC ∈V ; budget b≥ 0 and a threshold T ≥ 0.

OUTPUT: Yes, if there are b edges whose blocking is such that the sum of the weights of
SPG(s,DC) is at least T ; no otherwise.

It is apparent that if there were a polynomial algorithm to solve the MVEs problem, this
would imply the existence of a polynomial algorithm for the D-MVEs problem. Next, we
show that the D-MVEs is NP-Complete by reducing the decisional vertex cover problem
(D-VC). D-VC is known to be NP-Complete [21], and it is often used in computational
complexity theory as a starting point for NP-hardness proofs:

INPUT: A graph G = (V,E), and a positive integer k.
OUTPUT Yes, if G have a vertex cover of size at most k, i.e., is there a subset U ⊆V with

|U | ≤ k such that for each edge (u,v) ∈ E at least one of u and v belongs to U ; no otherwise.

The challenge is to prove D-MVEs ≤p D-VC. The proof proceeds as follows. Given a
instance of D-MVEs, we associate a graph G′ = (V ′,E ′). Each graph node of G′ is part of
one of the "parts" the graph will contain. Each part of the graph consists of 2 parallel paths
comprised of 5 edges with the same endpoints. Figure 5.2 shows the graph we want to form
to reduce the problem. Where the parts explained above are these kinds of decagons4 found
in the graph G′ (in the example image, 2 parts are observed). The first part corresponds to
node i and the second part to node j. We will call these "parts" decagon/decagons for a
better understanding. We should also note that each decagon’s end (or rightmost) node is the
same as the next decagon’s first (or leftmost) node.

li r j
ri l j

lili

xi yi y jx j
bypass(i, j)

Fig. 5.2 The reduction

It is worth mentioning that the initial graph G = (V,E), contains |V |= n nodes labeled
1,2, ...,n. For each edge (i, j) ∈ E, i < j, we have added to the graph G′ a path/edge of

4In geometry, a decagon is a ten-sided polygon.

36 Problem formulation

weight 5(j− i)−2 from node yi to node x j. (See Figure 5.2). This alternative path we have
just specified will be called bypass (i, j).

In this graph, for each decagon i, only the edge (xi,yi) is blockable (the thinnest lines in
Figure 5.2). More characteristics of the entry of the graph G′: node s is the first node of the
first decagon (the leftmost entry node of the graph), and node DC is the last node (rn) (the
rightmost node of the graph). The parameter b is set to be k, and the threshold T is set to be
5n.

We prove the following property about graph G′, which will be helpful later:

Lemma 5.2.1. Let G′′ be a subgraph of G′ obtained by removing some blockable/removable
edges, and let SPG′′(s,DC) be the shortest path. Then all the edges in SPG′′(s,DC) are
traversed from left to right.

Proof. Let (i, j), i < j, be a bypass in G′. Baruch Schieber et al. [9] found the following
observations from the alternative bypass (i, j) path of length 5(j− i)−2.

Observation 1. The path from ri to x j uses only the upper edges from decagons i+ 1 to
j−1, and when it reaches the decagon j, it uses the lower edges l j, ...,x j; total path length is
5(j− i)−3. Any other path between these two nodes and using the bypass (i, j), its length
is at least 5(j− i).

Observation 2. The path from yi to l j uses only the lower edges in the decagon i, and then
from ri to l j uses only the upper edges; therefore its path length is 5(j− i)−3. Any other
path between these two nodes and using the bypass (i, j), its length is at least 5(j− i).

Back to the reduction.

Lemma 5.2.2. There exists a vertex cover for G of size at most k = b if and only if there are
b edges in G′ whose removal increases the length of SPG′(s,DC) to 5n.

Proof. ⇐) Now assume a vertex cover on the graph G of size at most k = b. For each
decagon of the graph G′, we block the blockable edge (x,y). Then, once the n edges are
removed (one for each decagon), it is easy to observe that SPG′(s,DC) results in 5n. For the
sake of proving, let us assume the contrary and exists a SPG′(s,DC)< 5n.

Bypasses had to be used at least once for the shortest path to be smaller than 5n. Suppose
the bypass (i, j), since either i or j are in the vertex cover for G, we blocked the blockable
edge in decagon i or the blockable edge in gadget j, or we blocked the two edges. As a result,
the SPG′(s,DC) must use some bypass (i, j), but it finds that the path is blocked, and has to

5.3 Most vital edge problem 37

pull back or go from right to left from x j to l j or from ri to yi. So it contradicts the previously
described lemma 5.2.1.
⇒) Now suppose that there are b edges in the graph G′, such that blocking them does

SPG′(s,DC) = 5n. Recall that we can only block edges of the style (xi,yi) and that they
each belong to a decagon. We can claim that the set of nodes U ⊆ G corresponding to these
decagons is a vertex cover of G. Now let us assume the contrary, given the edge (i, j) with
nodes i and j, both i and j are not in U . This would imply that in the graph G′, neither (xi,yi)

nor (x j,y j) edges are blocked in their respective decagons. Not blocking these edges causes
the shortest path to use the uppermost portions of all the decagons, except decagon i and j

that use the bypass (i, j), therefore the SPG′(s,DC) is of length 5n−1; a contradiction to our
assumption.

5.3 Most vital edge problem

This study starts by studying the case where the budget equals one, i.e., we can block only
one edge. In the past, researchers have studied the problem of finding an edge in a graph
such that removing it (in our case, blocking it) from the graph results in the greatest increase
in the shortest path length between two given nodes s and t. Such an edge is called the most

vital edge; there is only one edge in the graph, and it must belong to the path SPG(s, t). The
following simple observation is straightforward.

Observation 3. The most vital edge concerning the shortest s− t path of a graph G must lie
on the shortest s− t path.

Strictly speaking, the problem is to find an edge e (most vital edge) of the shortest path, such
that dG−e(s, t)≥ dG−e′(s, t) for every edge e′ of the graph G, where G− e = (V,E− e).

These problems are essential in network applications to identify sections of a network that
need to be protected, such as our defensive problem model in Active Directory environments.
Let’s consider the following conflict situation in a two-point communication network: There
is a defender who seeks to find the weakest road in the network to reinforce it against possible
attacks. While on the other side, an attacker seeks to destroy the road resulting in the most
significant increase of the shortest path distance through the network between two given
points. This situation is an example of possible network application problems different from
the one we have formulated. This type of problem, where the goal of increasing the shortest
path distance is sought, will be referred to as the MVE (the most vital edge) problem for
brevity and ease of reference.

38 Problem formulation

One thing to bear in mind is that if graph G contains bridges (i.e. is not 2-edge connected)
and for some edge e in SPG(s, t) does not have an alternative path. With Tarjan’s first
algorithm for finding bridges, we can solve the MVE problem with linear complexity
O(m) [22]. That is, if s and t are not 2-edges connected, then any edge whose removal results
in the separation of s from t is a single most vital edge of G.

Chapter 6

Algorithms

In this chapter, the different algorithms implemented will be presented. We will begin by
describing two algorithms for resolving the most vital edge, which will become part of a
greedy algorithm, and we will finish by implementing an FPT algorithm. In our scenario,
the attackers have compromised specific entry nodes and can decide which node to start
attacking. The defender aims to block the edges to maximize the shortest path. You should
note that this chapter does not explain the local search and heuristics algorithms implemented,
as these have their explanation in chapter 7.

6.1 Solving the MVE problem

We will propose different ways of calculating the MVE problem in the following. It is evident
that the most vital edge of the graph belongs to each shortest path. We use this observation
to develop algorithms, some more efficient than others, to solve this problem.

6.1.1 Basic sequential algorithm

First, we will start with a basic algorithm, the typical algorithm that runs through our heads.
We begin by calculating the shortest path from the entry nodes to the Domain Controller. If
there is more than one entry node s > 1, we add an auxiliary node s0 to the attack graph and
connect s0 to each entry node with a zero-weight edge. Now we can calculate SPG(s0,DC) by
applying Dijkstra’s algorithm in O(m+n logn) time in case we deal with a weighted graph 1

or by using a modified Breadth-first search in O(m+n) time otherwise.

1In our model, there are no negative weights in the attack graph.

40 Algorithms

After obtaining the shortest attack path, we block (remove at the graph level) sequentially
all edges e = (u,v) along SPG(s0,DC) and computing at each step SPG−e(s0,DC), we are
left with that edge ei such that SPG−ei(s0,DC) is maximum. This way of solving the problem
is quite expensive in general terms, but the maximum attack path length in Active Directory
graphs is relatively short 2. Applying Dijkstra for O(n) edges in SPG(s0,DC), the algorithm
gives a total amount of time of O(nm+ n2 logn). In the following algorithms, we will
improve this time.

6.1.2 A more efficient solution

Let us now solve the MVE problem more refinedly, avoiding computing Dijkstra for each
edge of the shortest path. This algorithm was discovered by Malik, Mittal, and Gupta [23].
In this paper, we explain the algorithm and perform our implementation. As in the previous
algorithm, if there is more than one entry node, we use the single auxiliary node s0 as the
source. Let SPG(s0,DC) be the shortest path from the auxiliary entry node s0 to the Domain
Controller DC at G = (V,E). We calculate the single-source shortest path trees from s0 and
DC to all the nodes, denoted as STG(s0) and STG(DC), respectively. With the time complexity
of O(m+ n logn), we can calculate the shortest paths tree [24]. As mentioned above, the
most vital edge with the described properties must belong to the set of edges of the shortest
s− p path. The following result was identified in [23].

Observation 4. An edge (u,v) is on a shortest s− t path if and only if

d(s, t) = d(s,u)+w(u,v)+d(t,v) =

min
(x,y)∈E

{d(s,x)+w(x,y)+d(t,y)}

If any edge (u,v) ∈ SPG(s0,DC), with u closer to s0 than v, is cut from ST , then two
subtrees are created. Let the first set of the subtree Ms0(u) denote the set of nodes reachable
in STG(s0) from s0 without passing through the edge (u,v) and let Ns0(u) =V −Ms0(u) be
the remaining nodes. By removing the edge e, we notice that the distance from s0 to the
other Ms0(u) nodes does not change, while the distance from s0 to the other Ns0(u) nodes
may increase because of removing e.

An erroneous claim made in [23] was corrected by Bar Noy et al. [9]. The corrected
claim is as follows:

2There are short paths because it comes from the idea that all people are six or fewer social connections
away from each other: Six degrees of separation.

6.1 Solving the MVE problem 41

Fig. 6.1 Ms0(u) and Ns0(u)

Observation 5. Let ST (s0) the single-source shortest path tree rooted at s0 and let SPST (s0,DC)

the shortest path in ST (s0). If some edge (u,v) ∈ SPST (s0,DC) is removed from ST (s0),
dividing the node set V into Ms0(u) and Ns0(u) such that s0 ∈Ms0(u) and DC ∈ Ns0(u), then
there exists shortest paths from all other nodes in Ns0(u) to DC that do not use the edge (u,v).

Proof. By contradiction. We consider a node i ∈ Ns0(u), and we have stated that u cannot be
on the path SPST (i,DC). Suppose u does lie on that path. Then there are shortest paths from
u to i and from u to DC paths in ST (s0). Since DC, i ∈ Ns0(u), it turns out that these paths
use the edge (u,v). Hence SPST (i,DC) is not simple, which contradicts the assumption that
it is a shortest path.

Let the partition of V into Ms0(u) and Ns0(u) defines a cut in G− e, and

Qs0(u) = {(x,y) ∈ E− (u,v) | x ∈Ms0(u)∧ y ∈ Ns0(u)} (6.1)

is the set of crossing edges3. Since Qs0(u) is a (s0,DC)-cut, it is clear that the shortest path
SPG−e(s0,DC) must have an edge in the crossing edges. Thus, such edge and the length
of the shortest s0−DC path in G− e can be identified using the previous observations by
computing

dG−e(s0,DC) = min
(x,y)∈Qs0(u)

{dG−e(s0,x)+w(x,y)+dG−e(y,DC)} (6.2)

3A crossing edge is an edge from a node u to a node v such that the subtrees rooted at u and v are distinct.

42 Algorithms

By having STG(s0) and STG(DC) calculated, we can obtain all the terms of the above
expression in O(1) time. In fact dG−e(s0,x) = dG(s0,x), since x ∈Ms0(u), therefore, from
the shortest tree path STG(s0), we can get the distance in time O(1). Then, w(x,y) is the
weight of the edge with vertices x and y, the obtaining is immediate. Finally, we have the
term dG−e(y,DC), which can be extracted from STG(DC), as it complies:

Lemma 6.1.1. Let (x,y) ∈ Qs0(u). Then, we have that y ∈MDC(u).

Proof. By contradiction. Suppose y /∈MDC(u), i.e., y ∈ NDC(u).

If we compute the formula 6.2 for every (u,v) ∈ SP(s0,DC), we can spot the most vital
edge. Finding the most vital edge concerning the s0−DC path will thus require O(m|P|)
time. Using Fibonacci heaps, Malik reduced this to O(m+nlogn).

Algorithm 3 Most vital edge algorithm
MVE(G)
Input: Attack graph G = (V,E)
Output: The edge that, when removed, results in the greatest increase in the SP(s0,DC)

1: Compute STG(s0) and STG(DC)
2: Initialize dist = 0; lst(i) = ∞, i ∈ E
3: for blockable edge e in SP(s0,DC) do
4: for each (u,v) ∈ E do
5: if lst(v)> dG−e(s0,u)+w(u,v)+dG−e(DC,v) then
6: if lst(v) = ∞ then
7: HEAP_INSERT (v,dG−e(s0,u)+w(u,v)+dG−e(DC,v)
8: else
9: HEAP_DECREASE (v,dG−e(s0,u)+w(u,v)+dG−e(DC,v)

10: if HEAP_FINDMIN > dist then
11: dist = HEAP_FINDMIN

12: edge = e
13: HEAP_DELETE(e),∀i ∈ Ni \Ni−1

return edge

6.2 A Greedy-based algorithm implementation

Once the most vital edge is obtained, given the budget b, we will repeat the MVE algorithm
b times. We will modify the graph each iteration by removing the most vital edge for a more
straightforward resolution.

6.2 A Greedy-based algorithm implementation 43

Algorithm 4 Greedy Maximize the Shortest Path
GREEDYSP(G,b)

1: repeat
2: vital_edge := MV E(G)
3: remove vital_edge to G
4: decrease the budget b by one unit
5: Record vital_edge in B
6: until no more budget b
7: return SPG−B(si,DC)

Observation 6. GREEDYSP is the optimal algorithm if graph G is exactly a tree.

Proof. This is straightforward to see. Because when you block an edge, it occurs on different
branches of the tree, and they are independent of each other. Given the edge e1,e2 ∈G, if the
path e1 to DC passes trough e2, then GREEDYSP will always block e2.

Another property, easy to observe, is that problem MVES is not equivalent to sequentially
performing the MVE algorithm. In fact, the most vital edge may not be amongst the b most
vital edges for b > 1.

We can make a stronger statement with the example graph Fig.6.2 proposed in [23].

DCs0 sX

(b+1)

(b)

(1)

(2)

0

0

0

0

0

0

Fig. 6.2 Example graph, where the MVE is not found among the b most vital edges for b > 1.

Suppose the graph G is the one in Figure 6.2. We have a blocking budget of b−1 edges
with s0 as the entry node and DC as the Domain Controller. The result will be the same
starting from node s, since from s0 to s the distance will be 0. Therefore, edges 1,2, ...,b+1
will not be vital edges. On the other hand, the edges 1,2, ...,b are the b most vital edges
when X is highly large. So with that example, we have seen that the most vital edge may not
be among the b most vital edges when b > 1.

44 Algorithms

Furthermore, the greedy algorithm does not work well with substitutable block-worthy
edges. To make it more visible, let’s assume the following graph 6.3:

1

2

3

4

5

6

0

Fig. 6.3 Example of a graph with substitutable block-worthy edges.

Let nodes 1,2,3 be the entry nodes, and node 0 be the Domain Controller. If the budget
b is 2, it is easy to see that the optimal defense would be to block edges {4,5} and {4,6},
or {5,0} and {6,0}. However the greedy MVE algorithm would block two edges from the
set {{1,4},{2,4},{3,4}}. The algorithm would block none of the previously mentioned
optimal blocking edges. The most optimal solution of this graph is ∞ (we cannot reach the
DC). While the Greedy algorithm has not improved the defense, it still has the same shortest
path weight as before we ran the algorithm.

6.3 An FPT-based algorithm implementation

In this section, we briefly review some fundamental concepts of parameterized complexity.
We implement an FPT algorithm for our problem.

6.3.1 Parameterized complexity

The idea behind fixed-parameter tractability is that starting from an NP-hard problem, we
try to separate the algorithmic complexity into two pieces. One part depends purely on the
size of the input (in our case, the size of the graph G), and the other depends only on some
parameter of the problem (in our case, the b budget). One part scales polynomially to the
input size but can exponentially scale the problem from a parameter. More technically, an
instance of a parameterizable problem is a pair (I,k) where I is the main part of the problem
input, and k is the parameter. An FPT algorithm is an algorithm that decides any instances
(I,k) in time f (k)|I|O(1) where f is a computable function solely depending on k and |I|
denotes the size of I.

6.3 An FPT-based algorithm implementation 45

Let’s look at an example of an algorithm that belongs to this class and is considered one
of the best-studied problems in parameterized complexity, the P-VERTEX COVER algorithm
that requires O(|E(G)|2k) time. Let’s look at the algorithm that solves the parameterized
vertex coverage problem:

Algorithm 5 p-Vertex Cover
P-VC(G,k)
Input: a graph G and a positive integer k (parameter)
Output: does G contain a vertex cover of size at most k?

1: if |E(G)|= 0 then
2: return true
3: if k = 0 then
4: return false
5: Select and edge e = u,v ∈ E(G)
6: return P-VC(G−u,k−1) or P-VC(G− v,k−1)

We stop a tree branch if we reach a node labeled with (G′,k′) such that either k′ = 0 or G′

has no edges. It is easy to see that this bounded search tree4 algorithm is correct and decides
P-VC in time O(|2k|n) for graphs with n vertices.

6.3.2 Solving the problem with an FPT algorithm

We now explain the proposed FPT algorithm (MVEsFPT). This exhaustive algorithm solves
all possible configurations blocking b edges along graph G, maximizing the attacker’s shortest
path. As with the previous algorithms, if there is more than one entry node s > 1, we add an
auxiliary non-blockable node s0 to the attack graph and connect s0 to each entry node with a
zero-weight edge. We repeatedly compute SP(s0,DC) to generate all combinations. After
blocking (removing) an edge, we reduce the budget to 1. When the budget is 0, we return the
shortest path (as well as the blocked edges). When the budget is 1, we compute the shortest
path in linear time, and this cost is distributed over d combinations (since there are at most
d edges of the shortest path to block). When the budget is 2, the cost is distributed in d2

combinations and so on, successively db. Therefore, having the number of combinations db,
the algorithm’s complexity would be O(db(m+n logn)) where d is |SPG(s0,DC)|. Below is
the code in pseudocode:

4The idea of the bounded search tree technique is to bound the search tree’s degree of branching and depth
by the parameter k.

46 Algorithms

Algorithm 6 Fixed-parameter tractable algorithm
MVESFPT(G,b)
Input: Attack graph G, budget b
Output: The SP(s0,DC) of the most significant increase occurs in eliminating b edges.

1: p = SPG(s0,DC)
2: if b = 0 then
3: return p
4: for blockable edge e in p do
5: Get G′ by removing e
6: Record MVESFPT(G′,b−1)
7: Revert back to G
8: return max(recorded value)

Chapter 7

Heuristics

7.1 Introduction to local search optimization

Local search is a heuristic method for solving computationally difficult optimization problems.
The basic principle of local search is to find a better solution from a given initial solution.
Using what we will call operators, the algorithm moves from solution to solution in the space
of candidate solutions by applying local changes. Each solution evaluates several solutions
(from heuristic function) and uses the most suitable move to take the step to the next solution.
This procedure is repeated until an optimal solution or a time limit is reached. This project
uses one heuristic method to address the problem.

7.1.1 Hill Climbing

The Hill Climbing algorithm is the most straightforward local search algorithm used. The
problem is that it is somewhat optimistic and assumes that there is a relatively direct path to
local optima. This does not have to be the case when we face challenging problems. More
specific strategies are needed, managing to explore more nodes and knowing how to exploit
the information that is located along the way.

The hHill Climbing algorithm starts with an initial solution to the problem and tries to
improve it by making local transformations. The algorithm moves between neighboring
processors using the operators and then evaluates the generated solution from that move.
If the change is positive, the movement is accepted and moves to the new configuration.
Otherwise, the old configuration is kept. This process is repeated until no more change occurs,
i.e., a local minimum has been found, and there is no more improvement. The algorithm can
be pictured as follows.

48 Heuristics

Algorithm 7 Steepest Ascent Hill Climbing
HILL CLIMBING

1: generate an initial configuration S0 (S← S0)
2: repeat
3: S′← calculate a neighboring configuration by a local move in S
4: if cost(S′) < cost(S) then
5: S← S′

6: until there is no better move

7.1.2 Simulated Annealing

The algorithm is similar to Hill Climbing, except instead of picking the best move, it chooses
a random action most of the time. The Simulated Annealing algorithm works as follows.

The algorithm performs a total number of local random transformations to reach the
temperature equilibrium. The temperature value decreases by a certain amount, starting from
an initial temperature and reaching zero in the last phase. This algorithm will be necessary to
choose the most suitable initial temperature and the best way to decrease it.

This algorithm can adapt very well to combinatorial optimization problems and escape
from an ample search space in which many local optima surround the optimum. Simulated
Annealing offers a way to overcome Hill Climbing’s major drawback, but the computational
time is longer. The algorithm can be pictured as follows.

Algorithm 8 Simulated Annealing
SIMULATED ANNEALING

1: generate an initial configuration S0 (S← S0)
2: while the temperature is not zero do
3: for a preset number of iterations do
4: generate and compute a random neighboring configuration S′

5: ∆E← cost(S′) − cost(S)
6: if ∆E > 0 then
7: S′← S
8: else
9: with probability e∆E/T : S′← S

10: temperature decrease

Figure 7.1 shows how Simulated Annealing would behave compared to Hill Climbing.
As we can see, Hill Climbing gets stuck at the first local minimum (or maximum), while
Simulated Annealing can explore more solution space and is more likely to find a good

7.2 Representation of the problem as a local search problem 49

solution. But this only is possible if we determine well the values of the parameters required
by this algorithm. These parameters vary depending on the problem.

Fig. 7.1 Simulated Annealing vs. Hill Climbing strategy

7.2 Representation of the problem as a local search problem

We will use local search algorithms to address the problem in the following. We have had
to think about how to represent the states, which operators to use to generate the successor
states, the initial solution generators, and the quality functions that will measure how good a
solution is and allow us to guide our search. We will look at how the problem behaves using
Hill Climbing and Simulated Annealing. We will then describe how we have designed the
elements necessary to perform a local search adapted to the problem we want to solve.

Problem state

First, we need to know how to implement and represent a state so that it is comfortable enough
to work with, create operators, generate an initial solution, and facilitate the calculation of
the heuristic function. So, the state is represented by the attack graph class. It allows us to
access the edges, blockable edges, nodes, entry nodes, and required information.

Operators and successor generating function

Once we have the representation of the states, we choose which operators to use. Since
we start from a solution graph, the attack graph contains b blocked edges where b is the

50 Heuristics

defensive budget. The reader should notice that implementing a simple operator "block_edge"
would not be valid since the algorithm would give indications to block all the edges of the
graph when it would not be possible as the budget limits it. Moreover, we would go from
a solution state to a non-solution state in one move since we would have b+ 1 blocked
edges. Something similar would happen with implementing an operator unblocking an edge
"unblock_edge". The local algorithm would not use this operator as it would give solutions
equal to or worse than the previous solution. We are interested in blocking b fair edges.

So, the most logical operator we implement is the operator: move_edge. Its function is a
combination of the two operators dictated above. Starting from a blocked edge, it unblocks
it and blocks a different edge. When applying these operators, we have to verify that these
movements are valid, that is, only block blockable edges and never exceed the b blocking
edges.

Heuristic function

We will now discuss the heuristic function implemented to guide the algorithm toward the
objective of the proposed problem. Our problem focuses on blocking b edges to maximize
the sum of weights of the shortest attack path from the entry nodes to the Domain Controller.
Therefore, the heuristic function in this scenario is SPG−B(si,DC). This heuristic is valid as
it will guide the algorithm toward the best route to maximize the shortest attack path. As
previously mentioned, the cost of this heuristic function is O(m+n logn).

Initial state generation

For Hill climbing and Simulated Annealing to work, it has to start with a random solution to
our problem. From there, it can generate neighboring solutions and begin the optimization
process. The two very similar strategies implemented for initial state generation are:

• generate_init_solution_1: Our situation described in the model is based on blocking
one of the edges of the shortest attack path. This first initial solution calculates the
shortest path to the DC in time complexity of O(m+ n logn) and randomly blocks
one of the blockable edges of the path. The edges that remain blocked are randomly
distributed throughout the attack graph.

• generate_init_solution_2: This proposed initial solution is simply random. It randomly
blocks b blockable edges of the attack graph.

7.3 Genetic Algorithm 51

7.3 Genetic Algorithm

This section explains our latest heuristic algorithm, named Genetic Algorithm. Genetic
algorithms are based on the analogy of natural selection as a mechanism of adaptation of
living beings. This analogy comes from the idea that living beings adapt to their environments
thanks to characteristics inherited from their progenitors, thus creating more competent
generations to survive. As will be seen later, this concept of genetics and natural selection
can be translated into a genetic algorithm. As in the previous algorithms, it will help us to
find a near-optimal solution to problems where a polynomial solution is infeasible.

Genetic algorithms are more complex than the previous ones and require more parameters
for their configuration, so good experimentation of the parameters is necessary. Here are
some procedures to be performed:

• Decide the number of individuals of the initial generation.

• Have a coherent codification of the solutions.

• As in Hill Climbing and Simulated Annealing, create a function that measures the
quality of the solution. This function is called the fitness score.

• Perform operators that combine solutions to obtain new solutions (crossover) and
perform slight variations to the individual’s genetic code (mutation).

Each of these elements we implemented is detailed in the following section.

7.4 Representation of the problem as a genetic algorithm

We use genetic algorithms to address the problem in the following. We must correctly
implement the above requirements for the algorithm to work. Next, we detail the steps taken
to operate the genetic algorithm.

Codification

The solutions, which are the individuals in the population, are represented in a particular
way so we can combine them. Individuals are usually coded as bit strings; by analogy, this
coding is called a gene. Each bit or group of bits in the line encodes a characteristic of the
solution. The good thing about using a bit string is that the operators and modifications of
the individuals are elementary to implement.

52 Heuristics

However, not constantly encoding the individuals in a binary way is the most appropriate;
our algorithm does not use it. Binary encoding of individuals for our problem could be as
follows:

Given the attack graph G = (V,E) with |V |= n nodes and |E|= m edges, we create a list
of edges e where e[i] = 0 or 1 for all i ∈ 0,1,2, ...,m−1; Those edges that are at 1 mean that
they are blocked, otherwise they are not blocked; It is obvious that sum(e) = b should be
satisfied, where b is the budget.

This binary representation could be valid, but it will not be helpful since we work with
many edges, most of which will be zero. So at the time of combining and mutating them
(passing some edge from non-blocked to blocked or vice versa), it is very likely to generate
non-solution generations.

Our individuals contain information only about the blocked edges, i.e., a list of b blocked
edges. This encoding makes it easier for us to operate, and we store less memory since every
individual has only b edges, where b is usually a relatively low number.

Operators

Two types of operators in these genetic algorithms cause different possible solutions:
crossover and mutation. Crossover operators are applied to a pair of individuals to cre-
ate their successors. Their effect is to exchange part of the coding information between
individuals. There are multiple ways to combine these pairs; the simplest is to choose a
random point in the coding and exchange the two individuals’ bits (or edges in our case) from
that point. For a better understanding, the following Figure 7.2 shows a possible crossover
for the famous N queens problem with binary codification:

Fig. 7.2 Crossover example for the N queens problem.

In our algorithm, we use two methods. The first method is the same method used in the N
queens example, choose a random point from the list of blocked edges and swap the halves

7.4 Representation of the problem as a genetic algorithm 53

formed from that randomly chosen point. An example of this crossover is shown below
(Figures 7.3 and 7.4). The other crossover is purely random. We take the edges according to
two solutions, mix them, and distribute them to the following two new generation individuals.

With just these operators, it can happen that in the next generation, an individual inherits
the same edge from their parents, thus creating what we call overlapping. When we detect an
overlap, the technique we use to prevent it is that the individual inherits all the edges of one
of its parents.

Figure 7.3 and 7.4 show an example of a crossover when b = 4. In figure 7.3, when a
one-point crossover occurs between two individuals p1 and p2, offspring, c1 and c2, are
generated with codification inherited from the parent p1 and codification inherited from the
parent p2. Figure 7.4 shows the example that the offspring c1 is generated by inheriting ma

and mb from p1 and inheriting mk and ma from p2, it is observed that the factor ma overlaps.
As a result, the offspring c1 inherits all edges directly from p1 to avoid the overlap.

p1 = ma mb mc md p1 = ma mb mc md

c1 = ma mb mk ml c2 = mi m j mc md

p2 = mi m j mk ml p2 = mi m j mk ml

Fig. 7.3 Crossover without overlap

p1 = ma mb mc md p1 = ma mb mc md

c1 = ma mb mc md c2 = mi m j mc md

p2 = mi m j mk ma p2 = mi m j mk ml

Fig. 7.4 Crossover with overlap

On the other hand, mutation operators are applied to a single individual and consist of
randomly changing one of its factors. In this study, the overlap with the mutation is avoided
since, at the moment of changing an edge for another blockable edge, this list of blockable
edges does not contain the edges contained in the individual itself, so an overlap can’t occur.

These operators have an associated application probability, a parameter of the algorithm.
The crossover probability indicates when a chosen pair of individuals exchange their infor-
mation to create the next generation, the successor also will have a possibility of mutation.
In general, the crossover probability is much higher than the mutation probability. If the
crossover probability is very high, the next generation will have a large population. This
situation can be good because the exploration is done faster, but it tends to cause the patterns
not to stabilize appropriately.

On the other hand, if the probability is very low, the solution exploration will be slower
and may cause a delay in convergence. Something similar happens with mutation. Therefore,
the choice of these parameters is fundamental for the correct functioning of the algorithm.

54 Heuristics

Fitness Function

As stated in the previous section, the fitness function evaluates how close a given individual
is to the optimum solution of the problem. As during the last local search algorithms, it
is a heuristic that determines how fit a solution is. Given the attack graph G = (V,E) with
|V |= n nodes and |E|= m edges, entry node si and destination node DC; B denotes the set
of edges blocked. The fitness function used in this study is:

max | SPG(si,DC)−SPG−B(si,DC) | (7.1)

With objective function 7.1, we can expect that the greater the fitness value is, the more
vital it is.

More details to bear in mind

The genetic algorithm must start with an initial population. We call the population the set of
solutions obtained at a specific time. Suppose, at a given time, the population is too large. In
that case, the cost per iteration can be prohibitive, so it is advisable to have a parameter that
controls the maximum number of individuals (there can be no more than x individuals). In
addition, if the number of individuals is too small, we will be prone not to obtain reasonable
solutions, as we will not have visited enough solution space.

At each iteration of the algorithm, individuals pair up and give rise to new individuals,
thus forming what we call a generation. When developing the algorithm, we must choose
how we decide how the individuals are matched. There are many ways, in our study, we
gather the individuals with the best solution, pass them to the next generation, and kill the
rest. This method represents natural selection, where the fittest are more likely to reproduce,
and the less fit may not produce offspring.

The steps performed by the genetic algorithm are summarized below.

1. We create an initial random population.
2. From the fitness function, we chose the N fittest individuals.
3. We pair the individuals, and for each pair:

(a) We apply the crossover operator with a probability Pcross, and two new individuals
appear in the next generation; otherwise, the original pair passes to the next
generation.

(b) With a probability Pmutat , the individuals that have been crossed are mutated.

7.4 Representation of the problem as a genetic algorithm 55

4. We replace the current population with the new generation.
5. We go to point two until the population has converged or several generations have

passed.

Chapter 8

Experimentation

8.1 Development specifications

This chapter details the experiments performed for each of the algorithms. All these experi-
ments have been performed on a desktop computer. The hardware specs are an Intel® Core™
i7-8700K at 3.7GHz, 32GB of RAM, and an 8GB GTX 1080 GPU, with Windows 11 as the
operating system. All algorithms are written in Python.

We performed all the experiments on the topology of Active Directory attack graphs
generated by DBCreator. This BloodHound generator uses different types of edges; in our
case, we only consider the three default edge types: MEMBEROF, ADMINTO, HASSESSION.

User Computer

Group Group

User
AdminTo HasSession

M
em

be
rO

f

MemberOf

AdminTo

Fig. 8.1 The BloodHound attack graph design

8.2 Parameter and function selection

In this section, we determine which parameters and functions of the local search algorithms
give the best results in order to compare the algorithms with the rest later. All choices occur

58 Experimentation

in the third version, i.e., we experiment with weighted attack graphs, in which some edges
are non-blockable.

All the subsections of this section are realized in an attack graph with 605 nodes1 and
2316 edges, where 500 edges are not blockable. The graph contains 7 entry nodes s and a
budget b of 12 edges to block. All tables with the justification for the choice of parameters
are included in the annexes. For the tables in the annexes, the same selection criteria are used
as described in the following sub-sections.

8.2.1 Justification of Simulated Annealing parameters

Initial solution generator

In this first experiment, we must determine the best initial solution generation between the
proposed two similar functions 7.2. We hypothesize that the initial solution generators are
equal to or better than the other. The method by which the experiment will be performed is
as follows: We will use the Hill Climbing algorithm. We will run ten tests for each initial
function, where the entry nodes and blockable edges will vary, but the attack graph will be
the same. We will measure the SPG−B(s,DC) length of the final solution for comparison.

Test |SP|ini1 |SP|ini2 Time[s]1 Time[s]2

1 34 34 17.4958 17.4806
2 ∞ ∞ 6.6918 7.4329
3 62 62 16.4502 16.3228
4 45 29 7.2480 1.5162
5 74 74 10.4523 10.7929
6 ∞ ∞ 11.1669 11.5445
7 42 42 10.6115 10.1371
8 31 31 12.9074 12.8229
9 44 44 20.9352 24.1442

10 52 52 16.3839 16.2595

Table 8.1 Comparison of two initial generators solution of Hill Climbing

The attached table 8.1 shows the information from the above experiment. As we can see,
practically all the results are the same, so there is almost no difference between the two initial
generators in this case. It makes sense since the two initial generators start randomly, leading

1Out of 9000 nodes (users, groups, computers), only 605 nodes can reach the Domain Controller.

8.2 Parameter and function selection 59

to poor results. However, in Test 4 (marked in red), we see a discrepancy; it turns out that
function 1 has better results than function 2. If we recall, generator one blocks first any edge
of the shortest path and blocks b−1 random edges, while generator two is purely random;
it blocks b random edges. This leads us to think that in init solution 1, we have avoided a
possible local maximum by securing an edge of the shortest path. This is because we found
at least two shortest paths after the initial generator 2. So we cannot further improve the
solution with the move operator, thus finding a local maximum. However, with function 1,
we have eliminated one of these shortest paths (leaving one remaining). Then, with the move
operator, we managed to block the remaining shortest path, improving the solution. As for
the time, no appreciable difference is found between the two functions. From the results
obtained, as they are very similar to the results and time, we have decided to stay with the
first initial solution generator for the subsequent experiments.

Number of iterations

Simulated Annealing, unlike Hill Climbing, performs a fixed number of iterations before
returning a result. Being N the number of iterations passed as a parameter to the algorithm,
we must determine an appropriate number of iterations. We will experiment with the same
graph by applying a different number of iterations, repeating it 5 times.

It is intuitive to think that too few iterations will not allow the shortest path result to
converge to a local maximum. At the same time, too many iterations will perform redundant
work by not improving the solution for the optimal number of iterations.

Keeping the same attack graph and with a temperature of 150, we have tried successive
numbers of iterations. We have obtained the following results, consistent with our initial
intuition of how they would vary the solution.

N |SP|min |SP|avg |SP|max Time[s]avg

500 4 21 32 0.1156
2500 4 35 38 0.5441
5000 21 38 38 2.2580
10000 38 67 70 4.2928
15000 38 50 78 9.4559
20000 38 91 ∞ 8.9661
25000 116 ∞ ∞ 10.1561
50000 ∞ ∞ ∞ 17.6046

Table 8.2 Determination of the number of iterations in Simulated Annealing

60 Experimentation

In table 8.2, we note that we achieved the best result once with 20,000 iterations, where
we even managed to block the attacker’s path to the Domain Controller. With 500 iterations,
due to the size of the graph, we observe that the result is much worse. Moreover, the result
has not improved after the initial generator. This is because the algorithm does not have
enough iterations to converge. Whereas with 50,000 iterations, there is no difference in the
maximum result (no further improvement is possible) compared to 20,000 iterations, and
the time taken is twice as long. But with 50,000 iterations, we have achieved the best result
in all tests. Since with 25,000 iterations, we almost achieve the optimum in all tests, the
minimum result is excellent, and it is 50% faster than with 50,000 iterations. We have chosen
N = 25,000 for the next experiments.

Temperature

As mentioned above, Simulated annealing attempts to solve the problem using a physical
analogy. Where we find an energy function that measures the solution and a control parameter
called temperature, which allows us to control the algorithm’s operation; depending on the
temperature and the difference in quality between the current candidate and the successor,
it will choose the behavior of the successors. The higher the temperature, the higher the
probability of creating a worse successor, but unlike Hill Climbing, this will allow us to jump
from local optimal.

As the iterations pass, the temperature value will decrease by a certain amount, which
is called the cooling strategy. It starts from an initial temperature and goes to zero in the
last phase. When the temperature is shallow, Simulated Annealing becomes a Hill Climbing.
Keeping the same graph from the previous experiment, and with 20.000 iterations to observe
more variety of results, we have tried different temperatures. We have obtained the following
results:

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 38 82 99 11.3516
25 39 78 ∞ 10.7649
50 39 144 ∞ 10.2808

100 74 79 ∞ 11.8815
150 70 75 79 11.5023
200 78 78 ∞ 9.7433
300 38 101 ∞ 9.5038

Table 8.3 Temperature determination in Simulated Annealing

8.2 Parameter and function selection 61

At least once, we have reached the optimum result at different temperatures, except at
temperatures 1 and 150. It is observed that the worst effects are due to low temperatures.
It makes sense because they work as Hill Climbing2. However, with temperature 300, the
algorithm jumps from one worst solution to another in the solution space, causing tests with
bad results. These results are very variable (especially if your initial solution is random), so
it does not change much in the long run to choose an average temperature. Therefore, we
selected 200 as the temperature since we observed the best results.

8.2.2 Justification of genetic algorithm parameters

Crossover function

We have defined crossover as a function responsible for exchanging coding information
between individuals. In our case, we have implemented two crossover types, a one-point
crossover and a random crossover. For this experimentation, we start with 1000 initial
individuals, capped at 10,000 individuals, sufficiently large to have valuable results. We have
created one hundred generations of individuals, of which there is a 70% probability that
individuals will exchange their information and a 20% probability that an individual will
mutate.

0 20 40 60 80 100 120 140 160

Test 1

Test 2

Test 3

Test 4

Test 5

31

80

62

28

64

59

49

SPG−B(s,DC) length

one-point crossover
random crossover

Table 8.4 Comparison of crossover operators

The following table 8.4 shows the difference in results for each crossing, where if the
frame cuts the bar, it means it is infinite. Five tests have been used on the same graph,

2Simulated Annealing is considered to have better results than Hill Climbing.

62 Experimentation

varying the entry nodes and the non-blocking edges. As we can see in all tests, the one-point
function gives better results than a completely random solution. The cause of this behavior
is that individuals tend to have the most vital edges at the beginning of their genes. So in
the creation of successors, the random function is more likely to cause overlapping, which
makes the generations very similar to their ancestors and does not improve the solutions as
fast as the one-point crossover. We have decided to keep the one-point crossover function for
the subsequent experiments from these results.

Initial population

In this second genetic algorithm experiment, we must decide the initial number of individuals.
The maximum number of individuals is 5,000, and there is a maximum of 100 generations,
70% crossover, and 20% mutation.

Nini |SP| Time[s]

50 62 500.6845
100 78 486.3106
250 69 470.4661
500 67 484.9114
1000 67 480.5552

Table 8.5 Determination of the initial population of the genetic algorithm

Looking at the table, we find 100 as the best number of initial individuals. Therefore, the
remaining experimentation is performed with an initial population of 100.

Maximum population

Once the initial population is determined, we must decide the maximum number of individu-
als. The population size is an essential parameter in genetic algorithms since it influences
the search space’s ability to search for solutions. Having many individuals gives us a greater
probability of obtaining the optimal solution. However, an excessive population can delay the
algorithm. In our case, in each generation, we have to calculate the shortest path produced by
each individual, and having a large population makes the algorithm more expensive. So it is
essential to find a large population number to give good results and small enough not to take
too long.

8.2 Parameter and function selection 63

N |SP| Time[s]

500 62 50.0259
1000 67 97.4221
2000 67 192.8298
3000 67 289.2561
5000 64 475.4167

Table 8.6 Determination of the maximum population of the genetic algorithm

The best results have been obtained with 1000, 2000, and 3000 maximum populations
(See Fig. 8.6). Looking at the time taken to complete the algorithm, a better time is achieved
with a lower maximum population. So we decided to take 1000 as the maximum population.

Number of generations

We now turn to determine how many iterations are necessary to get as close as possible to the
optimal solution. Increasing the generation number can improve the final result. But many
generations may slow down the algorithm and cause many generations without improvement.
The algorithm has been executed five times (test1,test2..,test5) in the same attack graph with
the parameters that have been collected.

0 20 40 60 80 100 120 140 160 180 200
20

40

60

80

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table 8.7 Determination of the number iterations of the genetic algorithm

The table 8.7 shows how the solution evolves through the generations for the different
tests. In the first generations, many new solutions appear, but as the generations go by,

64 Experimentation

the population converges, and it becomes more difficult to find better solutions. After 200
generations, no better solutions have been found in a reasonable time, so it has been decided
that there will be a maximum of 200 generations/iterations.

Mutation rate

The mutation rate is usually applied in genetic algorithms because the algorithm needs to
explore parts of the search space that we could not reach by combining the initial solutions.
This mutation rate is usually relatively low; otherwise, it may cause the exploration to fail to
converge by altering the solutions. Experiments have been conducted with percentages of
less than 50 percent.

Mutation rate |SP| Time[s]

0.1 ∞ 46.4807
0.2 78 180.2610
0.3 52 212.4913
0.4 39 236.6045

Table 8.8 Determination of mutation rate

Table 8.9 shows how this is fulfilled, and the mutation percentage must be low. We will
remain as 10% mutation.

Crossover rate

We now experiment with different percentages of combining genetic information from two
parents to generate new offspring. Usually, the crossover probability is much higher than the
mutation probability. However, suppose the crossover probability is very high. In that case,
each generation will have many new individuals, which may make the exploration larger and
faster. Still, depending on the problem, it may also make the solutions unable to stabilize. If
the probability is minimal, the exploration will be slower and may take time to converge. In
contrast to the mutation rate, we will study percentages above 50 percent.

We have found the optimal solution for all tests with different crossover percentages. So
the choice of the rate will be based on the time spent. Finally, we chose 0.7 as the crossover
rate.

8.3 Experimentation of the proposed algorithms 65

Crossover rate |SP| Time[s]

0.6 ∞ 78.2471
0.7 ∞ 59.8753
0.8 ∞ 66.7604
0.9 ∞ 59.9824

Table 8.9 Determination of crossover rate

8.3 Experimentation of the proposed algorithms

This section focuses on comparing the results of the algorithms developed during the project.
It will focus on studying three Active Directory attack graphs generated by DBCreator. For
the smallest of the three graphs, we set up 1500 computers, and the resulting graph contains
a total of 4505 nodes (users + computers + groups, etc.) and 19014 edges. The second attack
graph includes a capacity of 9006 nodes and 47408 edges. Finally, the most significant attack
graph we experiment with has a total of 30006 nodes and 188393 edges. All these attack
graphs are then simplified to only those nodes that can reach the Domain Controller.

The section is subdivided into three subsections. The first part compares the algorithms
with the three different graphs but with no edge weights, and all edges are blockable. In the
second subsection, we compare the weighted graphs’ algorithms; all edges are blockable.
Finally, in the last part, the algorithms are compared to the graphs with weights, and not all
edges are blockable. All of our experiments are repeated 5 times.

8.3.1 Experimentation with a small AD attack graph

This first experiment compares the different algorithms studied on relatively small Active
Directory attack graphs. The simplified graph contains 280 nodes, 850 edges, 5 random entry
nodes, and a budget b of 10 edges to block. For graphs where all edges are not blockable, we
have blocked 150 edges. The blockable edges and the entry nodes are not changed in the five
repetitions.
Table 8.10. Version 1: Note that FPT ALGORITHM is optimal. #Opt shows how many
times the algorithm produces the optimal results (among 5 trials). We observe that the greedy
algorithms consistently achieved the optimal result with the most accessible attack graph we
will experiment with. This result makes us understand that the AD graph formed does not
contain many cycles, does not have substitutable block-worthy edges, or it may be that the
graph is quite tree-like. Both algorithms are high-speed.

66 Experimentation

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM ∞ ∞ ∞ 0.0180 5
COMPLEX GREEDY ∞ ∞ ∞ 0.1766 5
FPT ALGORITHM ∞ ∞ ∞ 343.9228 5
HILL CLIMBING 4 4 4 0.6919 0
SIMULATED ANNEALING 4 7 ∞ 3.3642 2
GENETIC ALGORITHM 7 ∞ ∞ 46.4945 3

Table 8.10 The small AD attack graph results where all edges are blockable and contain
unweighted edges.

Regarding the local algorithms, HILL CLIMBING gets the worst result. This is because,
being a unit-length edges graph and in AD there are many relations, we find many shortest
paths. This causes the plateaus to abound since the values of the neighboring nodes to the
current one have equal values. Avoiding these problems requires extending the search beyond
the neighbors to obtain enough information to route the search. An alternative is SIMULATED

ANNEALING which, if we look at the results, has managed to avoid plateaus and find better
results. The algorithm has found two times the optimum. However, the time spent was five
times longer, but it compensates for the results obtained. On the other hand, the GENETIC

ALGORITHM had outstanding results (3 times the optimum), but the time taken was quite
long.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM 6 ∞ ∞ 0.02552 4
COMPLEX GREEDY 8 ∞ ∞ 0.1727 4
FPT ALGORITHM ∞ ∞ ∞ 408.9983 5
HILL CLIMBING 5 5 ∞ 1.9712 1
SIMULATED ANNEALING 5 ∞ ∞ 4.2326 4
GENETIC ALGORITHM 10 ∞ ∞ 9.9265 4

Table 8.11 The small AD attack graph results where not all edges are blockable and contain
unweighted edges.

Table 8.11. Version 2: For this second version, where non-blocking edges have been added.
No algorithm (except for FPT, which is always optimal) has been able to give the optimum in
all repetitions. It is observed that the COMPLEX GREEDY algorithm has achieved a slightly
better result than the GREEDY ALGORITHM. This is because, in the shortest path, there can
be more than one vital edge, and depending on which edge we block, we can influence the
result in the long run. But both algorithms still work very well for these types of graphs. On
the other hand, there is an improvement in HILL CLIMBING. This version has been able to

8.3 Experimentation of the proposed algorithms 67

handle better with the plateaus, that there are edges that are not blockable has helped and,
in a test, has managed to reach the optimum (probably from a very good initial solution).
SIMULATED ANNEALING and the GENETIC ALGORITHM have managed to improve their
results, especially the time of the GENETIC ALGORITHM, where if we see in the annexes has
been imposed less number of generations and therefore less computational work.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM 21 60 ∞ 0.0259 1
COMPLEX GREEDY 21 53 60 0.1890 0
FPT ALGORITHM ∞ ∞ ∞ 352.7984 5
HILL CLIMBING 21 21 21 2.3243 0
SIMULATED ANNEALING 21 42 54 3.4919 0
GENETIC ALGORITHM 54 54 54 119.2117 0

Table 8.12 The small attack graph AD results where not all edges are blockable and contain
weighted edges (w(e)≤ 15).

Table 8.12. Version 3:: When applying weights to the edges, it is observed that fewer
algorithms have reached the optimum in this case; only the GREEDY ALGORITHM (apart
from the FPT) has achieved it. Between the two greedy algorithms, the results continue to be
very similar. HILL CLIMBING is still stuck at local maxima, and as expected, SIMULATED

ANNEALING gets better results in some tests. On the other hand, the GENETIC ALGORITHM

remains constant with its near-optimal result. However, the parameters chosen for this
algorithm (maximum population and number of generations) have caused a significant
increase in time, unlike the two previous experiments.

8.3.2 Experimentation with a medium AD attack graph

This second experiment compares the different algorithms studied on relatively medium
Active Directory attack graphs. The simplified graph contains 605 nodes, 2316 edges, 7
random entry nodes, and a budget b of 15 edges to block. For graphs where all edges are
not blockable, we have blocked 500 edges. The blockable edges and the entry nodes are not
changed in the five repetitions. In this section, the FPT algorithm has only been repeated
once. The algorithm takes much longer to execute as the size and budget have increased. The
result will always be optimal since it is an FPT algorithm, and we will only look at the time
spent.
Table 8.13. Version 1: We start with a new attack graph more than twice as large as the
previous experiment, so we would expect the times to be longer. In this first version, we find

68 Experimentation

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM ∞ ∞ ∞ 0.0661 5
COMPLEX GREEDY 14 14 14 1.6637 0
FPT ALGORITHM ∞ ∞ ∞ 80334.3641 5
HILL CLIMBING 4 4 4 5.1561 0
SIMULATED ANNEALING 4 8 8 4.9655 0
GENETIC ALGORITHM 8 8 10 177.4144 0

Table 8.13 The medium AD attack graph results where all edges are blockable and contain
unweighted edges.

an oddity; the GREEDY ALGORITHM consistently achieves the optimum, while the other
more complex version never reaches the optimum. As explained above, choosing the shortest
path may contain different vital edges. In this case, the COMPLEX GREEDY usually blocks
an edge that conditions it and makes it unable to reach the optimum. Even so, it achieves
an excellent result, almost optimal. As the budget increases and the attack graph is bigger
than the previous one, the time of the FPT algorithm scales exponentially. It has gone from
running in a few minutes in experiment one to taking hours to run for experiment two.

On the other hand, with the local algorithms, something similar to what happened in
version one of the previous experiment happens. HILL CLIMBING does not improve because
it encounters many plateaus and cannot improve the result. SIMULATED ANNEALING

achieves a better outcome without ever reaching the optimum. The GENETIC ALGORITHM

gets the best heuristics results; however, it takes much execution time compared to the other
algorithms.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM ∞ ∞ ∞ 0.0548 5
COMPLEX GREEDY 10 ∞ ∞ 1.0286 4
FPT ALGORITHM ∞ ∞ ∞ 78744.3228 5
HILL CLIMBING 5 8 10 17.6444 0
SIMULATED ANNEALING 5 10 ∞ 14.3545 1
GENETIC ALGORITHM 14 ∞ ∞ 120.5418 4

Table 8.14 The medium AD attack graph results where not all edges are blockable and
contain unweighted edges.

Table 8.14. Version 2: In this second version of the attack graph. The greedy algorithms
have reached the optimum, unlike the previous version, as there are non-blocking edges; the
COMPLEX GREEDY algorithm has not been so conditioned. HILL CLIMBING has improved
the result without reaching the optimum, but it is still below SIMULATED ANNEALING

8.3 Experimentation of the proposed algorithms 69

in impact and time. Surprisingly the GENETIC ALGORITHM has almost always got the
optimum except in one which has achieved an outstanding result. Also, the time is less than
in the previous version; however, the time is still high.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM 35 78 ∞ 0.0602 1
COMPLEX GREEDY 68 74 74 1.2823 0
FPT ALGORITHM ∞ ∞ ∞ 90913.3806 5
HILL CLIMBING 37 37 38 17.4699 0
SIMULATED ANNEALING 67 ∞ ∞ 12.5043 4
GENETIC ALGORITHM ∞ ∞ ∞ 68.0134 5

Table 8.15 The medium attack graph AD results where not all edges are blockable and
contain weighted edges (w(e)≤ 15).

Table 8.15. Version 3:: In this version, surprisingly, the only algorithm that has achieved
the optimum (apart from the FPT) is the GENETIC ALGORITHM, even though the time has
improved with respect to previous experiments. It turns out that heuristic algorithms perform
better than greedy algorithms in this setting. SIMULATED ANNEALING has achieved four
times the optimum; however, HILL CLIMBING is still stuck at local maxima, so it does not
reach the optimum. Unlike all previous experiments, the greedy algorithms have not achieved
a good result, but their time is still very good.

8.3.3 Experimentation with a big AD attack graph

This last experiment compares the different algorithms studied on relatively big Active
Directory attack graphs. The simplified graph contains 1808 nodes, 6390 edges, 12 random
entry nodes, and a budget b of 20 edges to block. For graphs where all edges are not
blockable, we have blocked 650 edges. The blockable edges and the entry nodes are not
changed in the five repetitions. We can no longer afford to run the FPT ALGORITHM in this
experiment.
Table 8.16. Version 1: With a large AD attack graph, we have expanded the number of
edges to block to 20, so we can no longer run the FPT ALGORITHM. The algorithm grows
exponentially by the budget, and we can see that in the time of experiment one (b = 10)
compared to experiment two (b = 15), there is almost a day difference in time.

In this third experiment, we observe a behavior opposite to version 2 of the second
experiment in the greedy algorithms. In this case, the COMPLEX GREEDY algorithm achieves

70 Experimentation

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM 14 14 14 0.6987 0
COMPLEX GREEDY ∞ ∞ ∞ 8.5967 5
FPT ALGORITHM - - - - -
HILL CLIMBING 5 5 5 206.3225 0
SIMULATED ANNEALING 5 5 5 27.9632 0
GENETIC ALGORITHM 7 8 9 653.0331 0

Table 8.16 The big AD attack graph results where all edges are blockable and contain
unweighted edges.

the optimum in the five repetitions. In contrast, the GREEDY ALGORITHM remains at the
gates of the optimum.

On the other hand, HILL CLIMBING continues not to give the expected results; in this case,
even SIMULATED ANNEALING has not been able to surpass the results of HILL CLIMBING.
This result is because we have a solution space with many plateaus, so it isn’t easy for local
algorithms to find good local maxima. However, SIMULATED ANNEALING achieves a much
better time than HILL CLIMBING since SIMULATED ANNEALING is performed for a low
finite number of iterations. The GENETIC ALGORITHM does not achieve bad results, but the
execution time is still prohibitive.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Opt
GREEDY ALGORITHM 12 14 14 0.4973 0
COMPLEX GREEDY 12 ∞ ∞ 8.8598 3
FPT ALGORITHM - - - - -
HILL CLIMBING 5 5 7 185.2132 0
SIMULATED ANNEALING 5 5 5 8.2025 0
GENETIC ALGORITHM 8 8 9 674.9348 0

Table 8.17 The big AD attack graph results where not all edges are blockable and contain
unweighted edges.

Table 8.17. Version 2: The complex greedy algorithm achieves the best results in this second
version as in the previous version. However, it is observed that the complex algorithm takes
much longer to execute when this algorithm should be somewhat faster in theory. This may
be due to two causes: As an AD graph contains few cycles and concise paths, this graph
benefits the GREEDY ALGORITHM more. The other cause could be an inappropriate data
structure or poor implementation of the Fibonacci heap.

On the other hand, surprisingly, HILL CLIMBING has performed better in this version
than in all iterations of SIMULATED ANNEALING. But the time is still much longer. Per-

8.3 Experimentation of the proposed algorithms 71

haps applying more repetitions in SIMULATED ANNEALING would have achieved better
results than HILL CLIMBING. The GENETIC ALGORITHM is still the third-best-performing
algorithm, but the time is still bad.

Algorithm |SP|min |SP|avg |SP|max Time[s] #Win
GREEDY ALGORITHM 78 82 82 0.3714 4
COMPLEX GREEDY 78 82 82 4.4829 4
FPT ALGORITHM - - - - -
HILL CLIMBING 53 53 53 272.9882 0
SIMULATED ANNEALING 53 61 63 53.0645 0
GENETIC ALGORITHM 78 82 82 687.1644 4

Table 8.18 The big attack graph AD results where not all edges are blockable and contain
weighted edges (w(e)≤ 15).

Table 8.18. Version 3::In the last experiment, it is observed that no algorithm has succeeded
in blocking b edges such that there is no path SPG−B(si,DC). Therefore, as we do not know
the optimal result since it is unfeasible to calculate it with FPT, it has been decided to change
#Opt by #Win, which indicates the number of times that the highest result of the experiment
has been reached. This version shows that GREEDY and GENETIC ALGORITHM have reached
the highest mark in four repetitions. The ratio of times is very similar to those of previous
experiments (greedy high-speed, genetic algorithm very slow). SIMULATED ANNEALING

finally achieved better results and time than HILL CLIMBING in this experiment.

Chapter 9

Final words

9.1 Conclusion

We studied edge blocking for defending Active Directory-style attack graphs—specifically,
different versions for solving the problem of finding the b most vital edges.

First of all, we studied the problem theoretically. We observed that the problem is
computationally difficult. To begin, we investigated the problem of blocking only the most
vital edge of the attack graph, where two algorithms have been formulated. In the end, we
proposed six algorithms to solve the b most vital edges problem.

Secondly, we made an experimental study of the problem for different sizes of AD attack
graphs. For each attack graph size, three different versions have been experimented with. In
the first version, the attack graph was unweighted. In the second version, there were edges
we could not block; in the last version, not all edges were blockable in a weighted attack
graph.

The FPT ALGORITHM consistently achieves the optimal result but can only be applied
when the budget is small. The greedy algorithms have been found to give the best results
in all versions. This event is because Active Directory graphs are very similar to a tree
graph, and almost no substitutable blockable-worthy edges are found (See 6.3). However,
the GREEDY ALGORITHM managed to run the algorithm with less time than the COMPLEX

ALGORITHM when we thought the complex would be faster according to the theoretical
part. This discrepancy may be due to two reasons: As an AD graph contains few cycles and
concise paths, this graph benefits the GREEDY ALGORITHM more. The other most likely
cause is that the data could not be adequately structured and may have been due to poor
implementation of the Fibonacci heap.

74 Final words

On the other hand, heuristic algorithms have not been as good as expected. In the HILL

CLIMBING algorithm in versions one and two, being unweighted graphs, many short paths
are found, which causes a lot of plateau in the solution space generating the algorithm to
stay in not very good local maxima. However, as expected, SIMULATED ANNEALING has
been shown to perform better than HILL CLIMBING and shorter times. Finally, the GENETIC

ALGORITHM has performed exceptionally well in all the experiments. The problem is that it
has required a lot of population and generations, causing the execution time to be very high.

9.2 Future work

We could extend this work by adding more algorithms, new model description strategies,
and more descriptive parameters. We could also generate a graphical interface such as
BloodHound, where we can view the attack graph with its shortest paths and most vital
edges. A future option would be to add these algorithms to the new open-source tool called
BlueHound, which helps blue teams identify security issues (vulnerabilities) and uses attack
graphs like BloodHound.

Although this work was oriented to the study of Active Directory graphs, it would be
interesting to observe the behavior of the algorithms in completely different graphs, where
perhaps, greedy algorithms would not perform so well. Another possible study would be
that each edge contains a blocking cost, so there will be expensive edges to block, and the
defender will have to think better about which edges to block. Perhaps blocking a high-cost
edge gets a better result than securing five lower-cost edges.

Finally, this version has studied the problem starting from a series of input nodes com-
promised by the attacker. From this information, the defender blocks the most vital edges to
maximize the shortest path of the attacker. Another study version could be that the attacker
has not yet compromised any node, but the defender knows that there are potentially vulnera-
ble computers or users (entry nodes). At this point, the defender decides to block a series of
edges to prevent the minimum damage if an attacker manages to infiltrate these entry nodes.
In this situation of uncertainty, the smartest thing to do would be to block those edges that
minimize the attacker’s success, a more focused study on average. An example of such a
study is the one done in the paper by Mingyu Go et al. [18].

References

[1] John Lambert. Defenders think in lists. Attackers think in graphs. As long as
this is true, attackers win. https://docs.microsoft.com/es-es/archive/blogs/johnla/
defenders-think-in-lists-attackers-think-in-graphs-as-long-as-this-is-true-attackers-win.

[2] Active Directory Domain Overview. https://docs.microsoft.com/en-us/windows-server/
identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview.

[3] Per Christensson. Active Directory Definition. https://techterms.com/definition/active_
directory, 2017.

[4] Rohan Vazarkar, Will Schroeder, and Andrew Robbins. Bloodhound: Six degrees of do-
main admin. BloodHoundAD, 2016. https://github.com/BloodHoundAD/BloodHound.

[5] BloodHound. SharpHound. Collectors. https://github.com/BloodHoundAD/
SharpHound.

[6] BloodHound. DBCreator. BloodHound-Tools. https://github.com/BloodHoundAD/
BloodHound-Tools/tree/master/DBCreator.

[7] John Dunagan, Alice X Zheng, and Daniel R Simon. Heat-ray: Combating identity
snowball attacks using machinelearning, combinatorial optimization and attack graphs.
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pages 305–320, 2009.

[8] Zero Networks. BlueHound. 2022. https://github.com/zeronetworks/BlueHound.

[9] Baruch Schieber, Amotz Bar-Noy, and Samir Khuller. The complexity of finding most
vital arcs and nodes. Technical Reports from UMIACS, 1995.

[10] André, Niedermeier Rolf Bazgan Cristina, and Nichterlein. A refined complexity
analysis of finding the most vital edges for undirected shortest paths. Algorithms and
Complexity, pages 47–60, 2015.

[11] Enrico Nardelli, Guido Proietti, and Peter Widmayer. Finding the most vital node of a
shortest path. Theoretical Computer Science, 296:167–177, 2003.

[12] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej
Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM
Trans. Algorithms, 7, 2010.

https://docs.microsoft.com/es-es/archive/blogs/johnla/defenders-think-in-lists-attackers-think-in-graphs-as-long-as-this-is-true-attackers-win
https://docs.microsoft.com/es-es/archive/blogs/johnla/defenders-think-in-lists-attackers-think-in-graphs-as-long-as-this-is-true-attackers-win
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://techterms.com/definition/active_directory
https://techterms.com/definition/active_directory
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/SharpHound
https://github.com/BloodHoundAD/SharpHound
https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator
https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator
https://github.com/zeronetworks/BlueHound

76 References

[13] Pavel Dvořák and Dušan Knop. Parameterized complexity of length-bounded cuts and
multi-cuts. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 9076:441–452, 2015.

[14] Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optimization, 8:72–86, 2011.

[15] Yash Raj Guo Jiong and Shrestha. Parameterized complexity of edge interdiction
problems. Computing and Combinatorics, pages 166–178, 2014.

[16] Michael O Ball, Bruce L Golden, and Rakesh V Vohra. Finding the most vital arcs in a
network. Operations Research Letters, 8:73–76, 1989.

[17] Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and Maximilian
Stahlberg. A more fine-grained complexity analysis of finding the most vital edges for
undirected shortest paths. Networks, 73:23–37, 2019.

[18] Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, and Hung Nguyen. Practi-
cal fixed-parameter algorithms for defending active directory style attack graphs. arXiv,
2021.

[19] Glassdoor. https://www.glassdoor.es/index.htm.

[20] Tarifaluzhora. https://tarifaluzhora.es/.

[21] D.S. Johnson M. Garey. Computers and intractability: A guide to the theory of np-
completeness. W.H: Freeman, San Francisco, CA, 1979.

[22] R. Endre Tarjan. A note on finding the bridges of a graph. Information Processing
Letters, 2:160–161, 4 1974.

[23] K Malik, A K Mittal, and S K Gupta. The k most vital arcs in the shortest path problem.
Operations Research Letters, 8:223–227, 1989.

[24] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, jul 1987.

[25] Neo4j. Neo4j Documentation. 2007. https://neo4j.com/docs/.

https://www.glassdoor.es/index.htm
https://tarifaluzhora.es/
https://neo4j.com/docs/

Appendix A

Handle with DBCreator data

DBCreator

DBCreator consists of a python script that generates random data simulating an Active Direc-
tory environment. It is often used for testing BloodHound features and analysis. DBCreator
is the tool that has been used to create an attack graph topology for the investigation of this
project. Once we have started and authenticated our database with neo4j, we proceed to run
DBcreator.exe in our terminal. Figure A.1 shows the commands available to create the attack
graph.

Fig. A.1 DBCreator console display.

Commands

Here is a brief description of each command: dbconfig - DB configuration command. Set
the credentials and URL for the database we want to connect. connect - Connect to the

78 Handle with DBCreator data

established database. setnodes - Set the number of nodes to generate. setdomain - Set the
domain name. cleardb - Clears the database. generate - Once we have specified how we
want the graph, it generates random data in the database.

Import the attack graph into our program

Once we have the data created by DBCreator in our database, we proceed to import it into our
program. The figure A.2 below shows a small example of an Active Directory environment
created by DBCreator visualized with neo4j. Users are shown in pink, computers in green,
groups in orange, and the Domain Controller in blue.

Fig. A.2 DBCreator graph representation using neo4j.

The neo4j database has a console available where we can use command consoles. Using
a query that returns all the contents of the graph, we observe that the result contains the
following structure for the nodes and relations:
The nodes are stored as follows; here is an example:

79

<Node i d =987 l a b e l s = f r o z e n s e t ({ ’ Base ’ , ’ Computer ’ })
p r o p e r t i e s ={ ’name ’ : ’COMP00018 . ALBERT . TFG’ , ’
o p e r a t i n g s y s t e m ’ : ’ Windows S e r v e r 2008 ’ , ’ o b j e c t i d ’ : ’S
−1 −5 −21 −883232822 −274137685 −4173207997 −1017 ’ , ’ enab led ’ :
True } >) t y p e = ’AdminTo ’ p r o p e r t i e s ={}>

We see that this node is a computer that contains a 2008 windows server and has privileges
concerning other nodes since it is of type AdminTo.
On the other hand, the relationships have this form:

<Relationship id=3438 nodes= ...

The ellipses contain a list of the nodes that creates this relationship.

Python script

To finish with the import of the attack graph, we have created a python script to make the
graph adapt to our program. We should note that the entire project uses the Python graph
package, NetworkX. From the neo4j documentation [25], the script first connects to the
database, then executes a query to return all the data, and iterating; we filter the properties of
the nodes we are interested in (id, type, DC?) and the relationships between nodes. Once
collected all the information, we will only keep the edges of type: ADMINTO, MEMBEROF,
HASSESSION since these edges are the default of BloodHound. Once the attack graph is
complete, we will optimize it by eliminating all those nodes that do not exist a path to the
Domain Controller. Also, if there is more than one administrative node, we merge them into
the DC.

Appendix B

Parameter selection tables

This appendix shows all the parameter justification tables for all the studied attack graphs and
their respective versions. For a better understanding of the criteria for selecting parameters,
see chapter 8. The selected parameter is in bold.

Graph of 280 nodes and 850 edges

This section justifies the choice of parameters for an attack graph of 280 nodes, 850 edges, 5
entry nodes, and a budget b of 10 edges to block. For versions 2 and 3: 150 edges are not
blockable. For version 3: edges contain a weight with a maximum of 15.

Version 1: All edges are blockable, and edges have no weight.

N |SP|min |SP|avg |SP|max Time[s]avg

500 2 4 4 0.0160
2500 5 6 ∞ 0.6491
5000 2 8 ∞ 0.4408
10000 37 38 ∞ 1.1779
15000 2 ∞ ∞ 0.5301
20000 4 ∞ ∞ 1.3711
25000 8 ∞ ∞ 3.2596
50000 8 ∞ ∞ 8.2317

Table B.1 Determination of the number of iterations in Simulated Annealing

82 Parameter selection tables

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 4 4 ∞ 5.4769
25 6 7 ∞ 6.6080
50 4 6 7 5.4181

100 ∞ ∞ ∞ 5.4181
150 7 ∞ ∞ 5.7589
200 7 7 ∞ 5.4474
300 6 7 ∞ 6.1994

Table B.2 Temperature determination in Simulated Annealing

Table B.3 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 ∞ 32.2186
100 ∞ 54.4510
250 ∞ 94.2197
500 ∞ 39.2583

1000 ∞ 70.6713

(b)

N |SP| Time[s]

250 9 12.7621
500 ∞ 15.3575
1000 ∞ 32.9339
2500 ∞ 20.6026
5000 ∞ 53.0855

0 10 20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.4 Determination of the number of iterations of the genetic algorithm

83

Table B.5 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 ∞ 15.8069
0.2 ∞ 6.5533
0.3 ∞ 9.3660
0.4 7 21.7615

(b)

Crossover rate |SP| Time[s]

0.6 ∞ 14.2889
0.7 ∞ 7.7961
0.8 ∞ 8.1753
0.9 ∞ 14.4782

Version 2: Not all edges are blockable, and edges have no weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 2 2 4 0.0529
2500 2 4 5 0.2733
5000 2 5 8 0.9194
10000 2 5 ∞ 1.8810
15000 2 5 ∞ 2.3910
20000 2 8 ∞ 3.8959
25000 4 ∞ ∞ 5.0160
50000 5 ∞ ∞ 12.2027

Table B.6 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 5 ∞ ∞ 1.4366
25 5 ∞ ∞ 3.4478
50 2 ∞ 7 2.8665

100 ∞ ∞ ∞ 2.9566
150 ∞ ∞ ∞ 4.7969
200 ∞ ∞ ∞ 4.3452
300 2 ∞ ∞ 3.8729

Table B.7 Temperature determination in Simulated Annealing

84 Parameter selection tables

Table B.8 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 ∞ 36.4552
100 ∞ 59.5460
250 ∞ 41.0704
500 ∞ 28.8872

1000 ∞ 57.4960

(b)

N |SP| Time[s]

500 ∞ 4.3472
1000 ∞ 9.7241
2000 ∞ 30.065
3000 ∞ 32.1817
5000 ∞ 60.3846

0 10 20 30 40 50 60 70 80

6

8

10

12

14

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.9 Determination of the number of iterations of the genetic algorithm

Table B.10 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 ∞ 8.4325
0.2 ∞ 7.6395
0.3 9 14.1891
0.4 6 14.6700

(b)

Crossover rate |SP| Time[s]

0.6 ∞ 6.1945
0.7 ∞ 5.3535
0.8 ∞ 5.6043
0.9 ∞ 9.3402

85

Version 3: Not all edges are blockable, and edges contain weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 18 21 35 0.1397
2500 14 41 ∞ 0.3921
5000 30 60 ∞ 0.6232
10000 45 ∞ ∞ 1.1882
15000 59 ∞ ∞ 1.4543
20000 41 ∞ ∞ 2.2273
25000 41 ∞ ∞ 3.0122
50000 59 ∞ ∞ 8.0023

Table B.11 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 21 21 54 4.9098
25 21 50 54 3.9941
50 21 30 54 3.7174

100 21 21 54 4.5541
150 21 37 54 3.9920
200 37 54 54 3.1957
300 21 42 53 3.7892

Table B.12 Temperature determination in Simulated Annealing

Table B.13 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 37 202.9619
100 42 203.4066
250 37 211.4207
500 37 217.2348

1000 37 195.9877

(b)

N |SP| Time[s]

1000 37 41.6799
2000 49 82.0874
3000 37 125.6158
5000 42 193.3331
10000 42 380.3287

86 Parameter selection tables

0 20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.14 Determination of the number of iterations of the genetic algorithm

Table B.15 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 54 140.2869
0.2 50 168.0182
0.3 30 226.9280
0.4 22 233.5391

(b)

Crossover rate |SP| Time[s]

0.6 54 142.6651
0.7 54 143.1758
0.8 54 147.0654
0.9 54 154.7707

Graph of 605 nodes and 2315 edges

This section justifies the parameters for an attack graph of 605 nodes, 2315 edges, 7 entry
nodes, and a budget b of 15 edges to block. For version 2: 500 edges are not blockable. For
version 3: see chapter 8.

87

Version 1: All edges are blockable, and edges have no weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 2 2 2 0.0309
2500 2 2 4 0.4169
5000 2 4 4 0.8971
10000 4 4 4 1.8443
15000 4 4 8 5.4017
20000 4 4 8 6.1443
25000 4 8 8 10.1561
50000 4 4 10 24.6075

Table B.16 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 4 4 8 5.4559
25 4 4 7 4.1886
50 4 4 8 5.2759

100 4 8 8 8.8079
150 4 4 8 8.9531
200 4 4 4 3.3487
300 8 8 8 4.5077

Table B.17 Temperature determination in Simulated Annealing

Table B.18 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 8 503.7324
100 8 523.4037
250 10 522.8672
500 8 516.6230

1000 8 497.0724

(b)

N |SP| Time[s]

1000 8 90.9157
2000 8 187.7226
3000 8 294.3626
5000 8 453.8934
10000 8 953.5680

88 Parameter selection tables

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.19 Determination of the number of iterations of the genetic algorithm

Table B.20 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 8 75.1658
0.2 8 96.7004
0.3 8 104.8896
0.4 7 125.1525

(b)

Crossover rate |SP| Time[s]

0.6 8 77.9593
0.7 8 102.9991
0.8 8 112.3581
0.9 7 131.1609

89

Version 2: Not all edges are blockable, and edges have no weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 2 3 4 0.2026
2500 3 3 5 0.3289
5000 3 4 5 1.7863
10000 3 7 9 4.7788
15000 3 8 8 8.5310
20000 3 8 9 6.1443
25000 6 8 8 14.1488
50000 4 7 ∞ 20.1665

Table B.21 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 1 2 5 0.0261
25 2 2 5 0.6602
50 5 8 10 10.6105

100 5 5 ∞ 13.5580
150 5 10 11 12.8404
200 5 10 ∞ 12.5966
300 5 8 ∞ 12.4427

Table B.22 Temperature determination in Simulated Annealing

Table B.23 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 12 460.5475
100 12 454.1463
250 10 464.1610
500 12 455.6477

1000 11 497.0426

(b)

N |SP| Time[s]

1000 11 93.2333
2000 9 190.3044
3000 11 272.7374
5000 12 462.0874
10000 11 894.9110

90 Parameter selection tables

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

14

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.24 Determination of the number of iterations of the genetic algorithm

Table B.25 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 ∞ 44.1547
0.2 11 166.7264
0.3 8 218.5639
0.4 6 234.2360

(b)

Crossover rate |SP| Time[s]

0.6 ∞ 99.5938
0.7 ∞ 140.6951
0.8 10 166.7659
0.9 ∞ 133.0485

Graph of 1808 nodes and 6390 edges

This section justifies the choice of parameters for an attack graph of 1808 nodes, 6390 edges,
12 entry nodes, and a budget b of 20 edges to block. For versions 2 and 3: 650 edges are not
blockable. For version 3: edges contain a weight with a maximum of 15.

91

Version 1: All edges are blockable, and edges have no weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 3 5 5 0.4169
2500 3 5 5 0.9134
5000 4 5 7 3.5465
10000 4 7 7 28.4919
15000 5 7 7 42.4495
20000 5 7 7 51.2079
25000 5 7 7 77.6580
50000 5 7 7 153.0311

Table B.26 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 7 2 5 0.0261
25 2 2 5 0.6602
50 5 8 10 10.6105

100 5 5 ∞ 13.5580
150 5 10 11 12.8404
200 5 10 11 12.8404
300 5 8 ∞ 12.4427

Table B.27 Temperature determination in Simulated Annealing

Table B.28 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 8 1863.3750
100 8 1904.2818
250 8 1900.9318
500 8 1930.7742

1000 8 1931.2976

(b)

N |SP| Time[s]

1000 8 186.1749
2000 7 376.7624
3000 8 762.1881
5000 8 1132.3904

10000 8 1878.8279

92 Parameter selection tables

0 20 40 60 80 100 120 140 160 180 200
3

4

5

6

7

8

9

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.29 Determination of the number of iterations of the genetic algorithm

Table B.30 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 8 305.0469
0.2 7 377.8842
0.3 6 454.2839
0.4 6 535.5353

(b)

Crossover rate |SP| Time[s]

0.6 9 321.5169
0.7 7 320.7297
0.8 6 293.3425
0.9 8 348.3359

93

Version 2: Not all edges are blockable, and edges have no weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 3 4 4 0.1874
2500 3 4 4 0.4991
5000 3 4 5 0.7874
10000 4 5 5 7.9814
15000 5 5 7 19.3729
20000 4 5 7 49.1790
25000 4 5 7 62.4890
50000 4 7 7 125.6599

Table B.31 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 5 5 5 61.9058
25 5 5 7 65.5495
50 4 5 7 63.0062

100 5 5 5 62.3408
150 5 5 5 61.8128
200 5 5 5 61.0004
300 5 7 7 60.5375

Table B.32 Temperature determination in Simulated Annealing

Table B.33 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 8 1805.3773
100 8 1802.6214
250 8 1840.4259
500 8 1828.4445

1000 8 1841.0294

(b)

N |SP| Time[s]

1000 7 380.4275
2000 8 798.3553
3000 8 1194.0691
5000 8 1981.8827

10000 8 3908.6475

94 Parameter selection tables

0 10 20 30 40 50 60 70 80 90 100 110
3

4

5

6

7

8

9

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.34 Determination of the number of iterations of the genetic algorithm

Table B.35 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 8 765.2727
0.2 8 862.1863
0.3 7 1048.2778
0.4 6 1269.8225

(b)

Crossover rate |SP| Time[s]

0.6 9 321.5169
0.7 7 320.7297
0.8 6 293.3425
0.9 8 348.3359

95

Version 3: Not all edges are blockable, and edges contain weight

N |SP|min |SP|avg |SP|max Time[s]avg

500 9 27 42 1.2135
2500 9 31 42 2.9261
5000 9 37 45 8.3453
10000 9 42 43 16.8698
15000 25 41 51 23.1075
20000 21 53 57 49.7552
25000 37 55 58 61.6041
50000 40 55 55 120.3975

Table B.36 Determination of the number of iterations in Simulated Annealing

Temperature |SP|min |SP|avg |SP|max Time[s]avg

1 43 53 58 73.8345
25 51 57 63 72.7002
50 55 58 63 78.2895

100 50 58 63 73.2655
150 53 53 63 74.8848
200 53 63 63 61.7822
300 51 53 56 71.7075

Table B.37 Temperature determination in Simulated Annealing

Table B.38 Initial and maximum population of the genetic algorithm

(a)

Nini |SP| Time[s]

50 53 2494.8181
100 53 2553.8511
250 58 3263.9850
500 57 3466.9833

1000 57 2492.9392

(b)

N |SP| Time[s]

1000 53 459.9254
2000 56 908.8167
3000 53 1356.3812
5000 53 2150.8860

10000 56 3812.8331

96 Parameter selection tables

0 10 20 30 40 50 60 70 80 90 100 110
20

25

30

35

40

45

50

55

60

Population generation

SP
le

ng
th

test 1
test 2
test 3
test 4
test 5

Table B.39 Determination of the number of iterations of the genetic algorithm

Table B.40 Mutation and crossover rate

(a)

Mutation rate |SP| Time[s]

0.1 64 627.1817
0.2 53 845.1675
0.3 51 1050.7880
0.4 45 1284.3395

(b)

Crossover rate |SP| Time[s]

0.6 63 734.9426
0.7 63 779.6364
0.8 63 812.8000
0.9 56 833.7995

	Table of contents
	List of figures
	List of tables
	1 Context and scope
	1.1 Context
	1.1.1 Introduction
	1.1.2 Concepts
	1.1.3 Problem to be resolved
	1.1.4 Stakeholders

	1.2 Justification
	1.2.1 Related work

	1.3 Scope
	1.3.1 Objectives
	1.3.2 Requirements
	1.3.3 Potential obstacles and risks

	1.4 Methodology and rigour
	1.4.1 Methodology
	1.4.2 Monitoring tools and validation

	1.5 Work delay

	2 Project planning
	2.1 Task definition
	2.2 Resources
	2.2.1 Human resources
	2.2.2 Material resources

	2.3 Risk management
	2.3.1 Deadline of the project
	2.3.2 Bad decision to describe AD attack graphs parameters
	2.3.3 Create a program for the experiment
	2.3.4 Computational power

	2.4 Gantt chart

	3 Budget and sustainability
	3.1 Budget
	3.1.1 Identification of costs
	3.1.2 Cost estimates
	3.1.3 Management control

	3.2 Sustainability
	3.2.1 Self-assessment
	3.2.2 Economic dimension
	3.2.3 Environmental dimension
	3.2.4 Social dimension

	4 Formal definition and preliminaries
	4.1 Preliminaries
	4.1.1 Basic definitions of graph theory
	4.1.2 Basic algorithms

	5 Problem formulation
	5.1 Model description
	5.2 The complexity of the problem
	5.3 Most vital edge problem

	6 Algorithms
	6.1 Solving the MVE problem
	6.1.1 Basic sequential algorithm
	6.1.2 A more efficient solution

	6.2 A Greedy-based algorithm implementation
	6.3 An FPT-based algorithm implementation
	6.3.1 Parameterized complexity
	6.3.2 Solving the problem with an FPT algorithm

	7 Heuristics
	7.1 Introduction to local search optimization
	7.1.1 Hill Climbing
	7.1.2 Simulated Annealing

	7.2 Representation of the problem as a local search problem
	7.3 Genetic Algorithm
	7.4 Representation of the problem as a genetic algorithm

	8 Experimentation
	8.1 Development specifications
	8.2 Parameter and function selection
	8.2.1 Justification of Simulated Annealing parameters
	8.2.2 Justification of genetic algorithm parameters

	8.3 Experimentation of the proposed algorithms
	8.3.1 Experimentation with a small AD attack graph
	8.3.2 Experimentation with a medium AD attack graph
	8.3.3 Experimentation with a big AD attack graph

	9 Final words
	9.1 Conclusion
	9.2 Future work

	References
	Appendix A Handle with DBCreator data
	Appendix B Parameter selection tables

