UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

Exploring opportunities in TinyML
A study into TinyML-ODL and its future

Author Director
Juan Diego Rubio Serrano Dr. Felix Freitag
Department of Computer Architecture

A thesis submitted in fullfillment of the requirements for the degree of
Informatics Engineering specializing in Computing

Barcelona, September 2022

Abstract

Internet of Things (IoT) has acquired useful and powerful advances thanks to the
Machine Learning (ML) implementations. But the implementation of Machine
Learning in IoT devices with data centers has some serious problems (data pri-
vacy, network bottleneck, etc). Tiny Machine Learning (TinyML) arose in order to
have an independent edge device executing the ML program without the necessity
of any data center. But there is still the need for high performance computers to
train the ML model. But, can this situation improve?

This project goes through TinyML and two TinyML techniques capable to train
the ML model on-device (what we call TinyML On-Device Learning or TinyODL):
TinyML with Online-Learning (TinyOL) and Federated Learning (FL). We study

both techniques in a theoretical analysis and try to develop one TinyODL app.

Resum: Internet of Things (IoT) ha
obtingut uns forts avantatges molt us-
ables gracies a les implementacions del
Machine Learning (ML). Pero la imple-
mentacié del Machine Learning en dis-
positius IoT utilitzant centres de dades
porta una serie de problemes a tenir en
compte (privacitat de les dades, el coll
d’ampolla de la xarxa, etc.). Tiny Ma-
chine Learning (TinyML) va sorgir amb
I’objectiu de tenir dispositious IoT inde-
pendents executant el programa d’ML
sense la necessitat d'un centre de dades.
Pero encara hi ha la necessitat de fer
servir ordinadors d’alta poteéncia per
poder entrenar el model d’ML. Aixi i
tot, es pot millorar aquesta situacio?

Aquest projecte estudia el TinyML i
dues de les seves tecniques, del que
anomenem TinyML On-Device Learn-
ing o TinyODL, capaces d’entrenar el
model d’'ML en el mateix dispositiu (on-
device learning): TinyML with Online-
Learning (TinyOL) i Federated Learn-
ing (FL). S’estudien les dues teécniques
des d’una analisi teorica i provem de de-
senvolupar una aplicacié TinyODL.

Resumen: Internet of Things (IoT)
ha obtenido unas muy buenas y usables
mejoras gracias a las implementaciones
del Machine Learning (ML). Pero la im-
plementacion de Machine Learning en
dispositivos ToT utilizando centros de
datos conlleva una serie de problemas a
tener en cuenta (privacidad de los datos,
el cuello de botella de la red, etc.). Tiny
Machine Learning (TinyML) surgi6 con
el objetivo de tener dispotivios IoT in-
dependientes ejecutando el programa de
ML sin la necesidad de un centro de
datos. Pero ain existe la necesidad de
usar ordenadores de alta potencia para
poder entrenar el modelo de ML. Aun
asi, se puede mejorar esta situacién?

Este proyecto estudia el TinyML y dos
de sus técnicas, de lo que llamamos
TinyML On-Device Learning o Tiny-
ODL, capaces de entrenar el model
de ML en el mismo dispotivio (on-
device learning): TinyML with Online-
Learning (TinyOL) y Federated Learn-
ing (FL). Se estudian las dos técnicas
desde un andisis tedrico y probamos de
desarrollar una aplicacién TinyODL.

Contents

1 Introduction and Context

1.1

1.2

1.3

2.1
2.2

2.3
24
2.5
2.6

3.1

3.2

4.1

4.2

Introduction
1.1.1 Context e
1.1.2 Concepts definition oL 0oL
The Problem
1.2.1 Stakeholders
1.2.2 Justification
Objectives
1.3.1 Project objectives o
1.3.2 Potential obstacles and risks

Project Planning

Methodology e
Resources L
221 Staff
2.2.2 Material resources
2.2.3 Software resources
2.2.4 Software tools for project management
Time management o
Task definition
Task planning Lo
Risk management oL oL oL

Budget and Sustainability

Budget management oL oL
3.1.1 Personnel costs
3.1.2 Material costs
3.1.3 Indirect costs
3.1.4 Contingency o e
3.1.5 Incidental costs
3.1.6 Totalcosto
Sustainability oL o
3.2.1 Environment influence
3.2.2 Economic influence
3.2.3 Social influenceo
3.2.4 So, is this project sustainable?

Study of TinyML context

Arduino Portenta H7o oo
4.1.1 Specifications o0
4.1.2 Why choose Arduino Portenta H7 7
4.1.3 Arduino programs review
4.1.4 LED Program
4.1.5 Camera Program
TinyML study
4.2.1 How it works & Why?
4.2.2 Problems and obstacles
4.2.3 Steps to develop a TinyML app
4.2.4 TinyML Wake Word app

12
12
12
12
13
13
14
14
17
20
20

21
21
21
22
23
23
24
24
24
24
25
25
25

5 TinyODL techniques
51 TinyOLstudy o o
5.1.1 Howitworks o o
51.2 Whyitworks o
5.1.3 Steps to develop a TinyOL app
5.1.4 Tools to develop a TinyOL app
5.1.5 Benefits & disadvantages
5.2 Federated Learning study
5.2.1 Howitworks
5.2.2 StepstodevelopaFLapp.
5.2.3 Benefits & disadvantages
6 Develop TinyOL app
6.1 Why we chose TinyOL?
6.2 Image classificationapp L.
6.2.1 Appdefinition o
6.22 Tools
6.3 Development
6.3.1 TinyML app
6.3.2 TinyOL system
6.4 Results.
7 Develop Federated Learning app
7.1 Adjust image classification appo
7.1.1 Tools
7.2 Development e
7.2.1 Similar NN implementations
7.2.2 Layer implementation
7.2.3 Loss function implementation
7.2.4 NN class implementation, ...
7.2.5 Dual-Core communication
7.3 Results.
8 Conclusion
8.1 Project conclusions
8.2 Personal conclusions Lo Lo
8.3 Future of TinyODL o
9 Annexes
9.1 Task planning tableo
9.2 Gantt chart
9.3 Figures
Acronyms
Bibliography

39
39
39
40
41
41
42
43
44
44
45

47
47
47
47
48
48
48
51
o1

52
52
52
92
53
53
54
95
95
56

57
o7
o7
o7

58
58
59
61

80

81

1 Introduction and Context

1.1 Introduction

Internet of Things (IoT) has acquired useful and powerful advances thanks to the
Machine Learning (ML) implementations. IoT devices (e.g. smartphones, house
alarms) collects data through its sensors (e.g. cameras, microphones), which are
sent to data centers. These data centers can offer high computing power, so they
process all the data, execute the ML algorithm and sends back the result to its cor-
responding edge device. This approach allows high computing power applications
to be used by low-powered devices, but it has some disadvantages and require-
ments that cannot be met in all scenarios. For instance, the edge devices and data
centers must have internet connection to send data between them. Also sending
data to separate locations can cause some latency in the execution and the possible
exposure to data privacy (data leakage).

TinyML is a Machine Learning field where its goal is to execute the ML algorithms
inside low-powered devices. TinyML consists of' training an ML model with pre-
collected data and flash it into an MCU so it can execute the algorithm by itself
and get an answer nearly as accurate as using a remote ML model. This allows
ToT devices to respond to its tasks without sending any data outside the device
and can reduce the response time without worsen the device’s performance.

As TinyML evolves, new applications are found but obstacles may arise. For exam-
ple, the ML model’s flexibility or the dependency with high performance computers.
New approaches with on device learning, like TinyOL or Federated Learning, are
developed or researched to solve these obstacles.

1.1.1 Context

This Bachelor’s thesis is submitted in fulfillment of the requirements of the degree
in Informatics Engineering specialising in Computing, coursed in the Barcelona
School of Informatics of the Polytechnic University of Catalonia. The thesis is
authored by Juan Diego Rubio Serrano and supervised by Felix Freitag.

1.1.2 Concepts definition

This thesis works with a deep knowledge in Machine Learning and microcontrollers.
Therefore, the reader should be familiar with the next concepts to understand the
thesis correctly.

Microcontroller

A microcontroller (MCU) is an integrated circuit device designed to govern
a specific operation in an embedded system. It is important not to confuse a
microcontroller with a microprocessor, as the latter is used in general-purpose
computers. Microcontrollers typically include a processor (CPU), memory and
input/output peripherals. Microcontrollers are ubiquitous and can be found in a
wide range of devices (e.g., washing machines, cars, stove, etc.).

ILater in this thesis one can find a methodical understanding of what TinyML is and how it
works

Machine Learning

Being one of the most important and known fields inside Artificial Intelligence,
Machine Learning (ML) [1] is devoted to understand and build methods that can
learn. That is, methods that leverage data to improve performance on some set of
tasks.

Machine Learning algorithms build models based on sample data, or training data.
This data serves as experience and the model’s goal is to generalize from it. In this
context generalize means to perform accurately on new, unseen examples/tasks
after having experienced a training dataset.

ML approaches have different ways to be divided, but traditionally they are split
into these three broad categories, which correspond to learning paradigms depend-
able on the nature of the data available to the learning system:

e Supervised learning: The model receives example inputs and their desired
outputs. Its goal is to learn a general rule in order to map inputs to outputs.

o Unsupervised learning: Unlike the supervised learning, no outputs are given,
leaving it on its own to find structure in its input. This can be a goal itself
(discover hidden patterns in data) or a mean towards an end.

o Reinforcement learning: The program must to perform a certain goal in a
dynamic environment. As it navigates its problem space, the program is pro-
vided with feedback analogous to rewards, with the goal to maximize.

We can find a lot of ML algorithms like Clustering, Linear regression, Random
forests, Support Vector Machines (SVM), K-Nearest Neighbour (KNN), etc. In
this project, though, we focus our attention in the supervised learning algorithms,
concretely in Artificial Neural Networks.

Artificial Neural Network

Artificial Neural Networks (ANN) [2] or simply Neural Networks (NN) are com-
puting systems inspired by the biological neural networks that constitute animal
brains. They are a type of Machine Learning algorithm that work in all learning
paradigms, but mainly used in supervised learning.

An ANN consists of connected units of nodes called artificial neurons, which loosely
model the neurons in a biological brain. Each artificial neuron receives signals, then
processes them and can signal neurons connected to it, like the synapses. The con-
nections are called edges, which typically have a weight that adjusts as learning
proceeds. This weight increases or decreases the strength of the signal.

) .
axon
i terminals
in,
. out
5| f
n,
bias

Figure 1: Representation of a neuron and an artificial neuron.

An ANN is formed by a set of layers, which are a set of non-connected neurons, that
are connected between them sequentially. We can differentiate 3 types of layers:
the input layer, which receives the signals from the program instead from another
layer, the output layer, which sends the signals to the program instead to another
layer, and the hidden layers, which receives the signals from the previous layer and
sends the signal to the next layer.

7 A KA
REBERLBERE
Gy

I =3 E=

Figure 2: Representation of an artificial neural network.

On one hand, input and output layers are essential to the network, since both read
the outside data and shows the results. On the other hand, hidden layers are not
essentially required in a neural network, although ANN with no hidden layers are
developed to do easy tasks. Even networks with one hidden layer are for easy tasks
as AND and OR functions, but the XOR function can not be generalized with one
hidden layer.

The workflow of an artificial neuron is simple: takes all the values from the incom-
ing edges, multiplies them with its respective weight (associated to the edge) and
sums them all into a unique value. Then a function called activation function takes
the resulting value as input and decides whether the neuron outputs or not a signal.

The network works as follows: Each input value is stored in each neuron from the
input layer. The layer sends all its values to the next layer, concretely to the next
layer’s neurons the outgoing edges are connected to. After processing the values
inside the neurons, this processed is repeated until reaching the output layer, where
after processing the values it returns the resulting outputs to the program.

1.2 The Problem

As stated before, TinyML tries to implement ML applications on MCUs. There-
fore, the main challenge is to develop ML algorithms for low-powered devices. This
is no easy task since we need to handle with some MCU constraints against the
Machine Learning trend:

Hardware constraints

Low power Low power consumption is one of the defining features of TinyML sys-
tems. But TinyML devices can consume different amounts of power, which
makes maintaining accuracy across the range of devices difficult. Hence makes
things even difficult for benchmarking. Not only that, but it is difficult to
determine when data paths and pre-processing steps can vary significantly
between devices. Then there are other factors like chip peripherals and un-
derlying firmware can impact the measurements. [3]

Limited memory While traditional ML systems like smartphones cope with re-
source constraints in the order of a few GBs, TinyML systems are typically
coping with resources that are two orders of magnitude smaller. This also
complicates the deployment of a benchmarking suite as any overhead can
significantly impact power consumption or even make the benchmark too big
to fit. A variety of benchmarks should be chosen such that the diversity of
the field is supported. [4]

Processor capacity Majority of tiny edge devices have 10-1000 MHz clock fre-
quency. Although it is acceptable for other applications, it can restrict the
complex learning models from running efficiently at the edge. [5]

Software constraints

One of the greatest obstacles TinyML faces is the lack of flexibility of the ML
model. We train the ML model outside the device because of its constraints (low
power, limited memory). This means the resulting program needs to be updated
every time the execution environment has new data the device can collect. For
example, when the monitored environment (or machine) reaches a new unknown
state and needs to be classified as a dangerous situation.

Machine Learning trends

In a recent paper called "Compute Trends Across Three Eras of Machine Learn-
ing’ [6], the authors have studied the compute, data, and algorithmic advances that
eventually guide the progress of Machine Learning. It can be seen in the next fig-
ure, the training compute of models increases exponentially. This is because of
the improvement in performance of newer computers and the complexity the ML
models are getting into. For example, GPT-3 has more than 175 billion parameters
(nearly 800GB of memory) [7] and DALL-E 2 trained with 250 million images. [8]

Training compute (FLOPSs) of milestone Machine Learning systems over time
n=102

P
W
o
g A rsay o
D A ASNEATI D LA
| s
-3 e 7y “®
7 L Z o = 9
g 1oz g i TS
B 124 AT
- U5 o O (z‘c‘, D
™ B oM o
® = é 0. ~SLAiBHEEES 41O
= -)
o > -)
a o e BRI @y ess 50
£ o o | 0= e o
o oREsg -7 I o © o
p . i O
g! o OR o N -
2 o _OwiizQ
© - O d
£ ; <

Publication date

Figure 3: Trends in training compute of n102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.

Figure 3: Training compute (FLOPs) of milestone Machine Learning systems over time

All the previous constraints makes TinyML hard to evolve. But is it possible to
relax at least one of the constraints? Trying to answer this question a new TinyML
subfield arise. Although it has no specific name, its main purpose is to prove ML
models can be trained inside the TinyML devices obtaining (nearly) the same
results relaxing the flexibility constraint. In this thesis this subfield is going to be
referred as TinyML-ODL (TinyML On Device Learning) or TinyODL directly.

1.2.1 Stakeholders

e Research team: By the end of this thesis the research team will have
become an expert of TinyML and its new subfield TinyML-ODL, which it is
expected to be decisive for the future of Machine Learning.

e Companies: TinyML undoubtedly has interesting and useful applications
in our daily tasks. Being able to not only prepare programs to resolve some
tasks but to solve new unknown situations is what these applications lack.
TinyODL models capable to solve this obstacle will impact positively to com-
panies that invest and research about it.

e Scientific community: With this thesis we hope it inspires new TinyODL
approaches, even new general purpose ML approaches.

1.2.2 Justification

TinyML became popular with its deployment of ML applications in edge devices
with no transmission data. Training the model previously in a high performance
computer and deploy it in the edge device makes possible to solve all the transmis-
sion data obstacles we found so far. But this new approach has some obstacles as
well. We are still dependable of high performance computers to create and update
the model. Also updating the ML model could be a hard task or even impossi-
ble being subject to the edge device’s accessibility. This results in a static model,
hard to adapt to new data and impossible to adjust for different scenarios, which
impedes the flexibility of the Internet of Things.

TinyML is a recent field in the industry of Machine Learning, so solutions to that
field are more expected to find that already found. Nevertheless, some researchers
started to investigate for new approaches in TinyML with on device training. These
new approaches seem promising, but they are very recent and still pending to
evolve.

1.3 Objectives
1.3.1 Project objectives

This thesis aims to study two of the known techniques in TinyODL we mentioned
previously: TinyOL? and Federated Learning. Two main objectives emerge from
it:

O1: The off-device training of TinyML

To be capable to understand how TinyODL techniques work and what needs serve
we must know what TinyML is and how it works first. This objective can be broken
down into the next sub-objectives:

o Understand the TinyML approach
o Understand the steps to develop a TinyML app

e Develop a TinyML app

0O2: The on-device training of TinyML

This objective aims to get to know both TinyOL and Federated Learning techniques
to its core theoretically. Then choose one of them to develop and see practical
results. It encompasses the next goals:

e Learn TinyOL technique
e Learn Federated Learning technique
o Compare both techniques

e Develop a TinyODL app

2Clarification: TinyODL and TinyOL are not the same. TinyODL stands for the set of
techniques that trains the TinyML model inside the edge device, while TinyOL is an example of
a TinyODL technique.

10

1.3.2 Potential obstacles and risks

TinyODL techniques are a very recent working field in TinyML. That is why we
can encounter some software errors. This could happen due to software that is not
updated to its final version or because of software not ready to work in a TinyML
environment or with TinyODL techniques. All these possible problems can come
from the fact that ML software is not prepared to work with low powered devices
or vice versa.

Similar to the previous possible obstacle, we can find ourselves in a situation where
no software was developed to program our desired application. The risk to develop
an app with new libraries to develop for the field can deeply slow us down.

To end with these ’young field’ related problems, all the information we can find
about the field is very limited. Moreover, some data can be biased or not firm
enough. This fact can lead us into some dead ends or open questions we will not
be able to solve in this project.

One more obstacle we find is the debugging of code in MCUs. Since we are work-
ing with low powered devices and high performance programs it is possible to have
some debugging restrictions, for example with memory usage or print logs to con-
sole.

To enclose this section, the main problem we face in this project is the time avail-
able. It is required be software and embedded-hardware expertise just to develop
TinyML applications. Furthermore, a machine learning expertise is demanded with
TinyODL techniques. Thereby, the time invested in the previous study to master
them can affect the quality of the work, and hence the objectives mentioned before.

11

2 Project Planning

We introduced the thesis, defined the problem and point out the objectives we
work. In this section we write down how we plan to perform this thesis. We ex-
plain a methodology and the resources we are provided to work with, we define all
the tasks we should complete to achieve our objectives and how are they distributed
in our limited time. Finally we explain how to handle the potential obstacles and
risks we mentioned in the previous section.

2.1 Methodology

For this thesis we considered the Agile methodology would be a good base method
to develop the project. The Agile methodology, as stated in its manifesto [9], work
with short iterations (normally a fortnight long) consisting of the phases of analy-
sis, planning, development, testing, review and maintaining.

But for this project we take the idea of a two-week review. Instead, we will de-
fine the project tasks to work on each fortnight and review how it went, check
the doubts and problems and entrust the next tasks to work on. All the tasks
are going to be stored in a Kanban board where we can easily see its status and
check its progress and obstacles (in the next section we define which tools we use
to accomplish this).

2.2 Resources

The next resources were used to develop this thesis.

2.2.1 Staff
Here there are all the jobs titles needed for the project:

e MAN - Project Manager: The project manager looks out for the project
and makes the decisions for it. The project manager is in charge of organizing
the project to meet the content and deadlines.

e RE - Researcher: This is the assigned person (or people) to investigate the
field and its latest news.

e PR - Programmer: This member is needed to implement and execute the
models correctly.

e DA - Data analyst: This member is responsible for all the data analysis
of the project, from machine learning data analysis for a good model to the
analysis of the results given by the experimentation.

12

2.2.2 Material resources

Here are exposed all the materials needed for the project:

PC - Computer: A computer was needed to train the model outside the
microcontroller at first and if needed create the model. My laptop model is
Huawei Matebook 14 AMD RyzenTM 5 4600H 16GB + 512GB [10], but any
computer capable to support the software and processing needed, and with
a USB port, fit the necessities.

PHY7 - Arduino Portenta H'7: Obviously without a microcontroller where
to execute the model it is impossible to perform the project. In our case we
used an Arduino Portenta H7, which has a 2MB flash memory, 8MB SDRAM,
a STM32H747 Dual-Core processor (cores M7 and M4) with a 480MHz clock,
5V of input voltage and 3.3V operating voltage, etc. You can find all the
specifications here [11].

VS - Arduino Portenta Vision Shield - LoRa: Added to the Portenta
H7, this module consists of a Himax camera, a microphone and LoRa con-
nection [12].

USB - USB type C - USB type A cable: To flash code from the laptop to
the Arduino a cable is needed. In our case we operated with a cable with both
a USB type A male for the laptop and a USB type C male for the Portenta H7.

2.2.3 Software resources

The next software resources were used to develop the practical parts of this project.
It may not be necessary to obtain all software frameworks to replicate some results
in this project.

GCO - Google Colaboratory Colaboratory or Colab [13] is a product from
Google Research where one can develop, test and debug Python code through
the browser. Based on Jupyter [14] it allows to use and share Jupyter note-
books without downloading, installing or running anything in one’s computer.
We use this website to develop and train NN models in Python. Evidently
Jupyter is a good alternative.

TFL - Tensorflow Lite Google developed an end-to-end open source plat-
form called Tensorflow [15] to develop ML models. Later, they added to it
what is called Tensorflow Lite [16], a mobile library for deploying models on
mobile, microcontrollers and other edge devices. In this project we employ
this platform to develop and deploy TinyML models.

EI - Edge Impulse One way to develop TinyML models easily is by using
a framework, for example Edge Impulse. Edge Impulse [17] is a development
platform for machine learning on edge devices. One of the TinyML apps in
this project was done using this platform.

PIO - Visual Studio Code + PlatformIO As we work with an Arduino,
a framework to develop and flash code to is required. We decided to employ
PlatformIO [18], a VS Code [19] extension for embedded development.

IDE - Arduino IDE Arduino IDE [20] is the main IDE to develop and
flash Arduino code. Although not being our IDE for development, we made
use of it.

13

e GIT - Git € GitHub For the code implementation and usage it is essen-
tial to work with Git [21], a free and open source distributed version control
system designed to handle everything from small to very large projects with
speed and efficiency. Moreover, with GitHub [22] we upload the code to the
Internet, being capable to download the code from wherever computer we
want to and share our progress with other people if we want to.

2.2.4 Software tools for project management

The next software resources were used to manage the project.

e NO - Notion To manage all the tasks inside the project we used Notion
[23], a project management and note-taking software.

o GCA - Google Calendar To manage the available time and meeting ap-
pointments we used Google Calendar [24], a time-management and scheduling
calendar service developed by Google.

e GM - Google Meet We make use of the Google Meet service to do the
meetings.

¢ GAN - Gantter To do the Gantt chart and all the tasks management it is
useful to use a tool like Gantter [25].

e OV - Overleaf Finally, to write this document we used Overleaf [26] web
service, a collaborative cloud-based LaTeX editor.

2.3 Time management

The period to develop the project started February 14th of 2022, but due to some
personal situations the project actually started March 17th of 2022. Its final de-
livery was planned to be June 27th of 2022 and the presentation between the final
delivery and June 31st, but after starting June we decided to extend the period to
next semester until September 17th of 2022, and make the presentation between
October 17th and 21st. Nevertheless, we first explain our time distribution based
on the first deadline, and afterwards we add the extra period.

First period (March 17th - April 24th)

There is a total of 102 days between March 17th and June 27th. From it, we
need to substract 14 days due to a competition I ® had to assist between May 1st
and 7Tth and its preparation one week before it. That leaves us with 84 days. We
expected to dedicate 4 hours per day from March 17th until April 24th. This is no
arbitrary number, since is the time we thought we would had available to work on
the project while working on the competition’s project and the Data Mining (DM)
subject I enrolled. That is 39 days working 4 hours/day, a total of 156 hours. The
figure below represents the weekly distribution of time during this first period.

3This document is written by Juan Diego, who I’ refers to.

14

GMT+02

10AM

1AM

12PM
2PM

Figure 4: Timetable from March 17th until April 24th in Google Calendar.

TFG
Bam - 12pm

[PUCRA VEX
|4 - 8pm

TUE WED THU FRI SAT

TFG TFG ITFG ITFG TFG
[8am — 12pm 8am — 12pm 8am — 12pm 8am - 12pm Bam - 12pm

DM class PUCRA VEX PUCRA VEX PUCRA VEX
4 - 6pm 4 - 8pm 4 — 8pm 4 — 8pm
PUCRA VEX

6 - 8pm

’Treball Final de Grauw’ which is Final Degree Thesis in Catalan.

Second period (May 8th - June 27th)

TFG
[8am — 12pm

TFG stands for

After the competition, starting May 8th, the expected time to invest in the project

is 8 hours per day on average.

Since our first idea was to end June 27th, we

should be working 50 days and 8 hours/day, which is 400 hours. The figure below
represents the weekly distribution of time of this second period. The missing hours
(for example Wednesday evenings) would be distributed during the week.

GMT+02

10AM

1AM

12PM

2PM

4PM

5PM

6 PM

7PM

8 PM

Figure 5: Timetable from March 17th until April 24th in Google Calendar.

TUE WED THU FRI SAT

TFG ITFG
8am - 12pm 8am — 12pm

DM class
2 -4pm

TF
4 - 8pm

> Treball Final de Graw’ which is Final Degree Thesis in Catalan.

15

TFG stands for

Summing up, we expected to invest 156+400 = 556 hours in the project. That is
a quite optimistic value and not realistic at all, that is why we narrowed it down
to 500 hours approximately. Albeit being a fairly high number, it served us to see
which tasks we were and were not able to accomplish.

Third period (June 28th - September 17th)

Starting June, we began to realize we were running out of time for developing the
final steps of the project. Since we were in that situation due to some personal
issues, we thought it would be interesting to extend the working period to all sum-
mer. That is why we added a third period to the previous time distribution. From
June 28th until September 17th we decided to work 5 hours a day, 5 days a week.
Also we would meet in July to see the advancements and leave August to end the
project and write this document.

The next figure represents an approximate distribution during this period. Since
this period is located in summer vacations we could not define which exact days

we were working on it, but at least there was 5 days per week.

MON TUE WED THU FRI

GMT+02

10 AM

TFG TFG TFG TFG TFG
10am - 12pm 10am - 12pm 10am - 12pm 10am — 12pm 10am — 12pm

11 AM

12PM
4PM
TFG
4 — 7pm
5PM
6 PM
7PM

Figure 6: Timetable from March 17th until April 24th in Google Calendar. TFG stands for
*Treball Final de Grau’ which is Final Degree Thesis in Catalan.

In this period we expected to work 55 days and 5 hours/day, which is 275 hours.
Similar to the previous periods, this could be an optimistic value, so we narrowed
it down to 230 hours.

To conclude, this project was expected to took 5004230 = 730 hours to develop,
manage and report.

2.4 Task definition

In this section we break down all the project goals and management into tasks. To
make easier to understand the tasks we decided to group them.

Project Management (PM)

This group contains all the tasks related to project management and report.
That is, all tasks that are not study or development of the objectives presented
above. By accomplishing all these tasks it is expected to organize and present
correctly the project.

PM-1 Scope We must define the extension of the project. That is what we want
to do, what we do not want to do and what we set aside.

PM-2 Planning To achieve our goals it is mandatory to make a good planning
about the resources we dispose, the tasks we need to complete and the time
available and its distribution.

PM-3 Budget management We plan the budget we need to develop the project
and the budget we can spend.

PM-4 Sustainability We perform a study about how sustainable is this project
so the reader has an idea.

PM-5 Meetings As stated in our methodology, we meet each two weeks approx-
imately to see the project advancements and make decisions.

PM-6 Final report Written document explaining the project definition and its
development, with conclusions and references used.

PM-7 Final presentation Visual document used as an auxiliar tool for the final
presentation of the project.

Previous Study (PS)

Before go deep into the project subject we first need to learn the basic tools
and concepts.

PS-1 Research Arduino Portenta H7 specifications This task consists of re-
search about Arduino Portenta H7 specifications so we know what it is ca-
pable of.

PS-2 Arduino environment adaptation Since it is our first time working with
Arduino we need to have some previous knowledge about its tools. We break
down this task into:

e PS-2.1 Arduino IDE environment adaptation: Get basic knowledge and
practice to work with Arduino IDE.

e PS-2.2 PlatformIO environment adaptation: Get basic knowledge and
practice to work with PlatformIO.

PS-3 Develop LED program We develop a program where we practice the Por-
tenta’s LED usage.

17

PS-4 Develop camera program Program where we practice the Portenta’s cam-
era usage. We can divide this task into two:

o PS-4.1 Research Portenta’s camera usage

e PS-4.2 Develop camera program

TinyML approach (TML)

Once we completed the previous study we can move on with our first assignment:
To study TinyML and develop a TinyML app. We divided it as follows:

TML-1 Define TinyML First of all we have to fully understand what the TinyML
approach is. This task does an exhaustive research about TinyML and its
workflow.

TML-2 Define steps to develop a TinyML application This task’s purpose
is to research and understand the steps to develop a TinyML application.

TML-3 Define TinyML app to develop Definition and design of the TinyML
app we want to develop.

TML-4 TinyML environment adaptation We research the TinyML tools needed
to develop the app and practice with them.

TML-5 Develop a TinyML model We create the ML model for the app and
convert it into a TinyML model. We break the task down:

e TML-5.1 Collect and preprocess data
e TML-5.2 Design ML model
e TML-5.3 Train & test ML model

o TML-5.4 Research how to convert model into TinyML model: We study
how to convert a ML model into a TinyML model.

e TML-5.5 Convert model into TinyML model: We convert our model
into a TinyML model.

TML-6 Develop € Test TinyML app Final steps to complete our TinyML
app where we develop a program that uses the TinyML model inside the
Portenta H7 and test it.

Study of TinyOL (TOL)

Another assignment consists of a theoretical study about one of the on-device
learning approaches: TinyOL. It contains the next tasks:
TOL-1 Define and understand TinyOL technique Introduction to what is
the TinyOL technique and its theoretical justification to work correctly.

TOL-2 Steps to develop a TinyOL application Step by step about how one
can develop a TinyML application with the TinyOL technique.

TOL-3 Research tools to develop a TinyOL application We research the tools
we can or need to use to develop a TinyOL application.

TOL-4 Benefits é Disadvantages We list all the benefits and disadvantages
about this technique, its usage and its development.

18

Study of Federated Learning (FL)

One more assignment is the theoretical study of the Federated Learning tech-
nique. Similar to the TinyOL study we define the next tasks:

FL-1 Define and understand Federated Learning technique Introduction to
what is the Federated Learning technique and its theoretical justification to
work correctly.

FL-2 Steps to develop a Federated Learning application Step by step about
how one can develop a TinyML application with the Federated Learning tech-
nique.

FL-3 Research tools to develop a Federated Learning application We re-
search the tools we can or need to use to develop a Federated Learning ap-
plication.

FL-4 Benefits € Disadvantages We list all the benefits and disadvantages about
this technique, its usage and its development.

Development of a TinyODL app (ODL)

Last but not least, we develop and analyse one of the techniques we studied.
We can break it down into the following tasks:

ODL-1 Choose a TinyODL technique Compare the TinyODL techniques and
choose one to develop explaining the choice.

ODL-2 TinyODL environment adaptation We practice with the tools to de-
velop a TinyML app using the TinyODL technique.

ODL-3 Define application Description about the application we want to de-
velop.

ODL-4 Develop € Test TinyML application We develop the desired TinyML
application without the TinyODL technique. The steps to develop a TinyML
application can be seen above in the TinyML approach section.

ODL-5 Develop TinyODL application We develop the TinyML application
with the TinyODL technique. Depending on the selected technique this task
contains different sub-tasks.

ODL-6 Deploy € Test TinyODL application Flash the application to Por-
tenta H7 and train the model.

ODL-7 Compare results Analyse the TinyML and TinyODL application oup-
tuts. Compare the model’s accuracy and loss, the outputs obtained when
running inference, their performance inside the Portenta H7 and any inter-
esting data.

19

2.5 Task planning

Once we defined all the tasks to develop the project, we made a table with the du-
ration, dependencies 4, the people assigned and the resources from each task. You
can find the table in the Annexes section. Below the table we can find the Gantt
chart. where we exemplify the task planning in a calendar with their dependencies
and time we expected to spend. It is important to point out that the Gantt chart
was developed before requesting the project extension.

2.6 Risk management

Previously we stated the obstacles we can find during the project. In this section
we are going to explain how we prevent or manage them.

Lack of TinyODL software tools

The developed software related to TinyODL techniques is an obstacle out of our
range of prevention. To manage it, we shall try to squeeze the TinyML and ML
tools to its limits to develop our TinyODL app, and try to develop an app not too
complex.

Lack of information

Same goes to the information we can find about TinyODL techniques. Moreover,
we can take advantage of the situation to contribute new knowledge to the field.

Debug inside the MCU

To debug inside the microcontroller a good option is to test each function inde-
pendently of the rest of the code, with a test control for each function. When
debugging the TinyML model and the TinyODL technique we first make sure they
work correctly in our computer, trying to simulate as best as we can the microcon-
troller environment. Then we flash the app and run it in our microcontroller, and
we compare the results obtained with the ones from the computer.

Time availability

The time available is one of the biggest problems. What we can do to prevent it
is try to work as parallel as possible all the non-dependent tasks, try to analyse
other solutions when facing a development problem and make periodic reviews of
the project to adapt the tasks to the time left.

4Dependencies are recursive. For example, if task C depends on B and B depends on A this
means that C depends also on A.

20

3 Budget and Sustainability

3.1 Budget management

In this section we propose the expected budget to do the project. This can be
broken down into 5 parts.

3.1.1 Personnel costs

In this project 4 roles are required in order to fulfill all the tasks correctly, which
are the Project Manager, the Researcher, the Programmer and the Data analyst.
Since we are performing this project in the FIB in Barcelona, we can make an
approximation of their salaries by analysing the mean salaries in Barcelona.

Project Manager salary: We find the mean annual salary for this job in Barcelona
is up to 37.000€, which is nearly 19€ per hour.

Researcher salary: Similarly the researcher job has an approximate 20.400€
annual salary, translated as a 10.50€ per hour.

Programmer salary: ’Programmer’ is not the best word to describe a job, so
we decided the best job that fits this position is the Software Engineer. We get a
mean of 36.000€ yearly, but in this case we are talking about experienced software
engineers like seniors, but with standard or junior software engineers we can find
a mean of 30.000€ yearly, or 15.50€ hourly.

Data analyst salary: With the data analyst salary we can find some differing
information, from 27.000€ to 34.000€. In that case we take an approximation
to these values but trying to take the higher values in order to be prepared. In
conclusion, we take a salary of 32.000€ yearly, 16.50€ hourly.

All the salaries, yearly and hourly, were round up. We collect all the salaries in
the next table:

Personnel Annual salary (€) ‘ Hourly salary (€)
Project Manager 37.000 19
Researcher 20.400 10.50
Programmer 30.000 15.50

Data analyst 32.000 16.50

Table 1: Personnel salaries by year and hour. Own creation.

The next table breaks down by each task its personnel cost.

21

Task Time (h) People Assigned Cost (€)
PM 93 - 2.052
PM-1 5 MAN 95
PM-2 12 MAN 228
PM-3 3 MAN 57
PM-4 3 MAN 57
PM-5 15 MANx2 570
PM-6 40 MAN 760
PM-7 15 MAN 285
PS 38 - 949,5
PS-1 6 RE 63
PS-2 10 PR 155
PS-2.1 3 PR 46,5
PS-2.2 7 PR 108,5
PS-3 5 PR 77,5
PS-4 17 PR 263,5
PS-4.1 5 RE 52,5
PS-4.2 12 PR 186
TML 93 - 3.420
TML-1 6 RE 63
TML-2 8 RE 84
TML-3 3 MAN, PR, DA 127,5
TML-4 13 PR 201,5
TML-5 48 - 1.232
TML-5.1 10 PR, DA 320
TML-5.2 8 PR 124
TML-5.3 12 PR, DA 384
TML-5.4 8 RE 84
TML-5.5 10 PR, DA 320
TML-6 15 PR, DA 480
TOL 47 - 741
TOL-1 10 RE 105
TOL-2 10 RE 105
TOL-3 12 RE 126
TOL-4 15 RE, DA 405
FL 47 - 741
FL-1 10 RE 105
FL-2 10 RE 105
FL-3 12 RE 126
FL-4 15 RE, DA 405
ODL 176 - 4.991,5
ODL-1 10 MAN 190
ODL-2 25 PR 387,5
ODL-3 3 MAN, PR, DA 153
ODL-4 48 PR, DA 1.536
ODL-5 55 PR, DA 1.760
ODL-6 25 PR, DA 800
ODL-7 10 DA 165
TOTAL 494 - 12.895

Table 2: Personnel cost breakdown.

3.1.2 Material costs

As related to the costs for the materials and software tools listed in the Resources
subsection, we describe the next budget. The amortization cost is calculated as
the cost per hour of the material times the hours we used the material

Material Price (€) | Cost per hour (€/h)
Huawei MateBook 14 AMD 2020 699,00 0.016
Arduino Portenta H7 99,00 0.214

Vision Shield Lo-Ra 60,00 0.15

USB cable 7,21 0.04

Total 865,21 -

Table 3: Material costs: Prices.

22

Material Used hours | Amortization (€)
Huawei MateBook 14 AMD 2020 469 7,48
Arduino Portenta H7 115 24,61
Vision Shield Lo-Ra 110 16,5

USB cable 115 4,6

Total - 53,19

Table 4: Material costs: Amortization cost.

In our case we used a Huawei MateBook 14 AMD 2020 laptop, but any computer
capable of running the software tools and frameworks used and with a USB port
shall work as well.

Related to the software tools, all the tools we used are open source software or free
to use frameworks, so there is no need to spend any budget in order to replicate
the project. Nevertheless, some of the tools have a subscription option to obtain
more access to it.

3.1.3 Indirect costs

Here we make a budget about the some indirect costs the project has.
e Work space: The project has been developed remotely, with a monthly rent
of approximately 400€. The project has a total of 494 hours, so its cost is:
1

t=4
Wi5Cos 00 30days * 24hours

* 494 = 329,33

e Electricity: Since the average price of the electricity is very variable, we
estimate an approximation of 0,226 €/kWh. The laptop we used for this
project consumes 56 Wh, in a total of 494 hours this goes up to:

ECost =494 % 0,226 * 56 = 6,252

e Internet: There is a monthl cost of 48€. Average of 6 working hours and
494 project hours.

1

[Cost =48« 30days * 8hours

%494 = 98,8

Resource | Cost (€)
Work space 329,33

Electricity 6,252
Internet 98,8
Total 434,382

Table 5: Indirect costs

3.1.4 Contingency

Unforeseen events are common in any project. To prevent them we need to adapt
our budget. We decided to set a 18% of the sum of the personnel, material amor-
tization and indirect costs seen before. This results in:

(12.895 + 53,19 + 434, 382) % 0.18 = 2.408, 86

23

3.1.5 Incidental costs

We also take into account the obstacles we may encounter while working on the
project. Similar to the contingency, we need to add a plus in the general budget
to mitigate the consequences. The next table shows the possible incidents and the
added budget for every one.

Incident Estimated cost (€) | Risk (%) | Cost (€)
Debug time 20.687,35 20 4137,47
Material damage 865,21 10 86,521

Total - - 4.223,97

Table 6: Incidental costs

3.1.6 Total cost

Finally, we represent all the previous costs in a final table.

Activity Cost (€)
Personnel costs 12.895
Material costs 865,21
Indirect costs 434,382
Contingency 2.408,86
Incidental costs 4.223,97
Total 20.827,422

Table 7: Summary of costs

3.2 Sustainability

A project is not just plan and develop. We must be aware how the project will
affect our environment, economy and society. In this section we talk about this
project influence, concluding with the final question: is this project sustainable?

3.2.1 Environment influence

The environmental footprint of this project is measured by how many resources
we used to make it happen. On one hand we need to think about the energy we
consumed by the light office, powering the computers, etc. We also have to take
into account all the raw material and energy to create of the used products.

We can calculate the footprint of the energy consumed during the project. Using a
computer that consume an average of 56W a total time of 469 hours, that gives us
a total of 26,26KWh or 6,1Kg of CO2. The microcontroller power usage is about
1A in sleep mode, which will be most of the time.

24

3.2.2 Economic influence

The project has a total cost of 20.827€, which is a considerable amount to invest
in a project. Moreover, this total cost can vary. At first, it does not seem a good
invest.

But on the other hand we avoid to have a high computer to train the model and all
the process to get access to the microcontroller in order to flash the model. That
in the long term saves us a lot of money.

3.2.3 Social influence

First, I want to explain my personal experience, since this project has taught me
new concepts and helped me to understand better the artificial neural networks. I
also learned about microcontrollers and its capabilities with ML, which made me
understand this field has very interesting projects.

The influence this project has in our society can seem null, but the possibility of
edge devices being able to train ML models in order to accomplish complex tasks
is a big step, bigger if we think about the accessibility of edge devices to anyone.

But all that glitters is not gold. Being able to work with ML models could also
become one thing to fear. That is why with this technology shall be accompanied
with awareness.

3.2.4 So, is this project sustainable?

Yes, although the economical aspect seems a bit much, but in general terms this
project not only does not affect severe in the environment, but a lot of economical
and social benefits come with it.

25

4 Study of TinyML context

In this section we explain all the knowledge we obtained before doing the true goal
of this project.

4.1 Arduino Portenta H7

We go deep into what we learned about the Arduino Portenta H7 during the pre-
vious study. Also we explain the applications we developed to get in touch with
the environment.

The Arduino Portenta H7[27][28] is a microcontroller that follows the Arduino
MKR form factor, but enhanced with the Portenta family 80 pin high-density con-
nector. Designed by Arduino [29], it can run high level code with some real time
tasks thanks to its two processors working in parallel and capable of communicate
with each other.

4.1.1 Specifications

Here we show some of the specifications this Arduino has and we thought were
interesting to point out. Figures 17, 18, 19 shows the hardware of Arduino Portenta
H7 and its Vision Shield.

ST STM32H747XI Processor

e Dual-Core:

— ARM Cortex-M7 core up to 480MHz with double precision FPU
— ARM 82-bit Cortex-Mj core up to 240MHz with FPU

Flash memory 2MB: with read-while-write support
e SRAM 1MB

On-chip GPU Chrom-ART Accelerator (DMA2D)

Up to 35 communication peripherals

11 analog peripherals

External memories
¢ SDRAM 8MB than can go up to 64MB
e Flash QSPI 16MB than can go up to 128MB

WiFi/BT module Murata 1DX
o WiFi 802.11b/g/n 65 Mbps

e Bluetooth 5.1 BR/EDR/LE

26

Others
e 10/100 Ethernet PHY

High Speed USB PHY

Crypto Chip

UFL Antenna option

DisplayPort over USB-C

5V Input - 3.3V Operating

Portenta Vision Shield

Moreover, we had the opportunity to add to the Portenta H7 its Vision Shield. It
has the next technical specifications:

e Camera module Himax HM-01BO0

— Ultra Low Power Image Sensor

High sensitivity 3.6n BrightSenseTM pixel technology

Supports QQVGA (160x120) at 15, 30, 60 and 120 FPS (1.1mW at 30
FPS)

— Supports QVGA (320x240) at 15, 30, 60 and 120 FPS (2mW at 30 FPS)

¢ PDM Digital Microphone 2x MP34DT06JTR MEMS

— 64 dB signal-to-noise ratio
— Omnidirectional sensitivity
— —26 dBFS + 1 dB sensitivity

e LoRa connectivity: LoRa Module with ARM Cortex-M0+ working at
868/915Mhz

e Micro SD card slot

4.1.2 Why choose Arduino Portenta H7 ?

Thanks to the dual core processor and low-power capabilities, Portenta supports a
wide array of applications.

Machine Vision: In combination with the Portenta Vision Shield it can run ma-
chine vision applications. This allows to detect the presence or movement of
objects in a video stream.

AT & Machine Learning: Thanks to the power of the two cores it can simulta-
neously read data from sensors or other devices on one core while the other
core processes the data stream and uses machine learning to make sense of
the data. When used with the Portenta Vision Shield its camera module or
the two directional microphones can be used as data sources

27

Connectivity: The Portenta features on-board Bluetooth and WiFi capabilities
which makes it the perfect candidate for reliable IoT applications. When used
together with the Portenta Vision Shield it enables LoRa communication in
places where it needs to communicate efficiently over a long distance. The
Vision Shield also features an Ethernet port that allows for wired networking
applications.

4.1.3 Arduino programs review

We can now start with the development of Portenta programs, but first we are
going to review how an Arduino program works.
An Arduino program consists of three essential parts:

o #include ”Arduino.h”: This line of code makes available all the basic
Arduino functions.

e setup() function: Function executed at first
e loop() function: Function executed indefinitely in an infinite loop.

Alternatively we can write an arduino program execution as follows:
#include ” Arduino.h”

setup()
while do not stop do

| loop()
end

Nevertheless, the program can be stopped by keyboard (Ctrl+-c), by an error or
exception when executing the code or by unplugging the microcontroller.

Once we have written our code inside the setup and loop functions we flash the
code with our preferred IDE. In this project we used both PlatformIO for devel-
opment and Arduino IDE to support some development situations. Inside both it
can be found a button called Upload to compile and flash the code to the plugged
microcontroller.

4.1.4 LED Program

In order to get to know how to work with Portenta and its development tools we
developed an easy program. This program consisted of making the LED blink as
we wanted to.

Tools to develop

To develop this program we used the next tools:
e Portenta H7
e USB cable
e PlatformlIO

28

Development

The program is pretty easy, since most of the Portenta management is done by the
Arduino functions. Inside the setup() function we start the LED with a function
called pinMode. Then inside the loop() function we change the state of the LED
(light or not) with the digitalWrite function.

When flashing code to the Portenta we found out that when pressing the button
twice it enters into the Bootload mode, where the RGB LED blinks green with
fading. By observing this we tried to recreate this fading.

To make a LED fade in Arduino we thought we just needed to change the digital-
Write function to the analogWrite function and put a number between 0 and 255
as an argument along with the LED pin. But that did not work, and after some
tries and a lot of research we could not find a solution or an alternative to it.

Here one can find all the source code for this program - [link to github (pending)]

Problems & Errors

Facing the fade program, we found that there is not a lot of information about this
microcontroller. The Arduino documentation is pretty complete, but outside from
it we could not find much more information.

Albeit it is not a problem, it is worth pointing out that we could not make the
LED fade. Seems like this option it is not available for developers since the Pinout
document does not clarify if the LED pins are analog.

4.1.5 Camera Program

Next, we developed a program to control the Portenta’s Vision Shield camera in
order to adapt ourselves to the Vision Shield environment. The goal of the program
was to show on screen the images captured by the camera.

Tools to develop

We started developing this program inside the PlatformIO environment but we got
some library problems with the camera, so in order to not slow us down we decided
to develop it in the Arduino IDE and afterwards solve that problem. Moreover, we
used OpenMYV IDE to ease us all the graphical tasks for showing the image. To
sum up, we use the next tools:

e Portenta H7
USB cable

Arduino IDE

OpenMV IDE

29

https://openmv.io/pages/download

Development

The problem’s complexity upgraded compared to the one before. This time we
were using the Arduino IDE (or PlatformIO) to initialize the camera and pick up
the images from it, while the OpenMV IDE collect the images and show them in
Java! But, the good thing is that an OpenMV code had already been programmed
to collect and show the images, so our worries should been focused in the camera
usage.

Arduino code: First the camera.h and himax.h need to be included, where all the
camera and image management functions are declared. Next the camera is
initialized. Inside the setup() function the Serial is started and the camera
is started with some specifications (resolution, image format, framerate). Fi-
nally, the loop() function reads from the camera and sends the image via the
Serial connection.

OpenMYV code: As a simple review, the OpenMV code initializes the Serial object,
receives the images from it and shows them inside the IDE. You can find the
code here [link to github] and here its explanation.

Problems & Errors

As stated before, we had problems with the library dependencies with PlatformIO
and the camera and himax library. This was because PlatformIO could not find
the libraries, they were not inside the Arduino libraries. After adding libraries
from the PlatformIO option, we decided the best option was to add the libraries
ourselves to the code and the problem was solved.

Another obstacle was the need to work with OpenMV if we wanted to see the
images. This hinders the usage, not only by sending the data between IDEs, but
because a previous Java knowledge is demanded if we want the program work with
the camera specifications we declared.

Finally, we must mention the final code did not worked properly. There were some
running attempts that the images were not shown (although the camera did get
images and sent them via Serial) or the video froze. When debugging the codes it
seemed the problem was coming from the OpenMV code, so we decided to set it
aside.

30

https://docs.arduino.cc/tutorials/portenta-vision-shield/getting-started-camera
https://docs.arduino.cc/tutorials/portenta-vision-shield/getting-started-camera

4.2 TinyML study

Before starting to study the TinyODL techniques we first needed to be familiar
with Tiny Machine Learning. That is what this section is for. We are going to
explain TinyML, deepen into its workflow and try to develop an app to show what
we learned.

Tiny Machine Learning is broadly defined as a fast growing field of machine learning
technologies and applications including hardware, algorithms and software capable
of performing on-device sensor data analytics at extremely low power, typically in
the mW range and below, and hence enabling a variety of always-on use-cases and
targeting battery operated devices.

The goal of TinyML is to bring ML inference to ultra-low-power devices, typically
under a mW, and thereby break the traditional power barrier preventing widely
distributed machine intelligence. This area is committed to democratizing deep
learning for all pervasive MCUs. While TinyML will not replace current high
performance Al-based services, it will complement them with machine learning ca-
pability within the ToT.

4.2.1 How it works & Why?

TinyML works on pushing the IoT devices to their limits by storing in the mem-
ory a trained Machine Learning model. The problem TinyML faces is the model’s
size in comparison with the device’s memory size. By optimizing the model’s size
and performance, the model fits the memory size so the program can work with it.
The model is trained, optimized and then flashed into the device with the program.

One way to accomplish this is by designing and training an ML model as usual.
Then the model data is optimized and reviewed to check the model performs as we
expect. A common technique to optimize is [quantization], where each model value
is transform into an 8-bit value, reducing the size of the data and so the model’s
size. But as we modify the values we need to make sure the model still works as
we want to, which the review part is for.

Another option is reversing the steps: quantize the model data and then train it.
For example, instead of designing a model with weights as float values (16 or 32
bit long) we restrict the weights as 8-bit integer values. Then, the model will train
inside the size range we want it to be.

4.2.2 Problems and obstacles

TinyML has a lot of advantages in IoT applications. But it is not perfect, and has
some obstacles to face when developing. Starting with the memory constraint, it
is one problem from the IoT field that still drags. The main efforts developing a
TinyML program are focused on fitting the model into the memory size, which can
be a really hard task, even impossible in some situations. Furthermore, the extra
space the model leaves in memory can be very small, even to force us to change
the application workflow if it is not enough space left.

31

https://es.mathworks.com/discovery/quantization.html

Related to the memory constraint, the Machine Learning models designed and
trained for TinyML applications shall be reduced in space, which usually makes
the model pretty simple. This means that hard tasks or complex situations will
not be faced correctly by the model. Or even it cannot face the task it was design
to by its simplicity, a more complex model and bigger in size is needed.

Once the model is working inside the low-powered device it runs inference as we
expect to in the program, but it does not train. This is not an obstacle to deal
with any TinyML program, but it can be decisive in some circumstances. Being
the model able to adapt to new scenarios can lead to a better performance, and its
non-flexibility can lead to untrue answers and inaccurate actions.

Another obstacle found during this research is that most of the TinyML programs
are oriented to Neural Network models, concretely Multi-Layer Perceptron and
deep learning models, which is good if we want to develop one, but we can find
more useful to develop other ML models (for example, Random Forests, SVM, etc)
for some problems.

4.2.3 Steps to develop a TinyML app

Developing a TinyML app is pretty much developing an ML model and create a
program that works with the model. We now explain step by step how that works
once we defined what the app is for. In this steps we explain the development of a
supervised model, which is what work on this project.

Data collection Our first step is always collect all the data we can for the model.
This is an essential step to know in what environment the model is going to
work. Sometimes instead of collecting the data by ourselves it is interesting
to search for a useful dataset.

Data preprocessing Not all the data we have is valid, and maybe the data is
represented by unreadable values or ranges that will make the training invalid.
To convert our dataset into a readable and useful dataset for the model we
process it by what it is called preprocessing. Although it is not stritcly defined
how all datasets must be preprocessed, there are some guides to check in our
dataset:

o Missing values: We shall inspect the dataset for missing or null values
and decide what to do with those examples. We can toss them, or fill
them with the probabilistic distribution of other valid values (for exam-
ple, the normal distributon).

e Handle outliers: The dataset can have some values that extremely dif-
fers with the vast majority of the data. This values can affect our model
performance by biasing the output by learning them. To prevent that,
a search and process of these values is done. Normally we treat these
values similar as missing values, changing them with the normal distri-
bution of valid values for example.

32

https://www.ibm.com/cloud/learn/supervised-learning#:~:text=Supervised%20learning%2C%20also%20known%20as,data%20or%20predict%20outcomes%20accurately.
https://en.wikipedia.org/wiki/Normal_distribution

e Mizxed data types: Inside a dataset two main types of data can be found:
numerical values and categorical values. Some models can handle both,
but there are others that just can handle one type. To solve this ob-
stacle we can transform all data to the type we want or the model needs.

e Feature extration: Sometimes our dataset can have some implicit infor-
mation it is interesting to extract as new values to our dataset.

o Standarization: Usually our data is stored in a range that can bias the
training. To prevent that we standarize the values. One common stan-
darization is normalization.

Model design The next step is to design our ML model. In this step we de-
cide the structure of the model and its hyperparameters. This step can (and
probably will) be revisited to improve the model’s training or its structure
depending on the training and testing results.

Train & Test Once our model is designed we can start training it with a subset
of the previous dataset. Once the training ended successfully we shall test
the model with a subset of the previous dataset that was not used for train-
ing so we can simulate the model performance in the work environment. It
is important to check the accuracy and loss of the model so they are in our
expected range to work correctly. Also it is interesting to store those values
to compare them with the TinyML model.

What we explained so far is the same as developing a Machine Learning model.
Next, we explain the TinyML steps.

Convert to TinyML By now the model shall be prepared to be deployed in a
ML app. Our goal now is to fit the model inside the microcontroller we
want to use. To do so we can use the quantization technique, where the
bits are reduced. Normally this technique maps decimal values into integer
values, which can result into a bad performance of the model. That is why
we shall test again the model and compare its accuracy and loss with the
non-quantized model.

Create the app The TinyML model is completely developed. Now we just need
to create the program we want and add the model to it. This step can be
accomplished by different options: developing a code that uses the model
weights or using a website that handles all that.

Flash the app Lastly, we flash the app into the microcontroller and check that
everything works as we want. We can also check the energy consumption.

33

https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)

4.2.4 TinyML Wake Word app

To familiarize us with TinyML we developed a Wake Word app. The goal of the
app is to recognise whether a yes or no is said and print it on screen. To develop
the app we used the framework Edge Impulse, which eases the development of a
TinyML app.

As stated in the TinyML steps to develop, first we need to collect data. This can
be done with the Edge Impulse option Data acquisition, where by plugging our
Portenta H7 with the Vision Shield module we can record our own voice, trim it
and label it as training or testing data. As one can suppose, all data preprocessing
is managed by Edge Impulse, but we can also decide if some records are not valid
for the dataset.

== EDGE IMPULSE

MOUIELIREY Testdata | Dataexplorer | Uploaddata Export data

W Didyou Know? Vot an capture data o any e o devepEnt D03, o PR Your XN st <o cprons

DATA COLLECTED o TRAIN TEST SPLIT & Record new data
1h24m1s L 1 79%/21% &

S moN w0

Collected data

Click on a sample to load...
VesffbB6d3c_nohash.0

I
I
I
I
I
Jun
3
wn

yes fcb25a78 _nohash 0

Figure 7: Edge Impulse framework: Data acquisition

Next, we design our ML model. Inside the Impulse design option we can create the
structure by just selecting and placing processing blocks. In our case we add an
Audio (MFE) block, to process the audio data, and a Classification (Keras) block,
a pre-established model to classify data into groups. In our example we have 4
groups: yes, no, unknown and noise.

34

— £poE IMPULSE e / vakeviors o ®

and then usesa

. Time series data Audio (MFE) o Classification (Keras) o [T
Input axes Name Name 5 (Bon dia, no. noise, unknown, yes)

audio Audio (MFE) NN Classifier

Window size
-

Input axes (1) Input features.

audo 9] Audio ey

Window increase
Output features

- 5 (Bon dia. o, noise, urknown, yes)

Frequency (H)

- -

P — Zero-pad data

GETTING STARTED.

Add 2 processing block u Add alearning block

== EDGE IMPULSE

ol)|

fwox ow oo

Figure 8: Edge Impulse framework: Impulse design

Once the model is ready to train, we can choose two train options inside Edge
Impulse. The first one is Retrain model, which is simply training the model, and
it shows some data about the training results. The other option is called EOT
Tuner, which runs multiply training executions with different hyperparameters,
and shows some interesting data from its performance (accuracy, latency, RAM
and ROM used, etc). At first we used the first option, but as soon as we found the
EOT Tuner we used it to train the model and know its best hyperparameters.

35

= EDGE IMPULSE

Retrain model with known parameters

we Audio (MFE)

e NN Classifier

©2022 Edgelmpulse Inc. Al rights reserved

Juan Diego / sk Vo oz

= EDGE IMPULSE

@ EoNTuner

fwmox e 0

@ EONTuner

Figure 9: Edge Impulse framework: Retrain model & EOT Tuner

To end with the model development, we test it with the Model testing option, which
is a Retrain model option but with the test dataset. Alternatively, there is the Live
classification option, that can simulate how the model will work by inserting new
data.

36

— eoce MPULSE S — o

i st l et dat.You an anagethis dtathrough Data scquision

Test data ; Model testing output .

Set the "expect for eact

yes frdzbaze_no.

yes.fbessd n.. yes 1s
YesfobS63Sn... yes
yesfTebdsin... yes

- . yes.foclete no... yes

Mogel testing yesfacTdecan... yes

P Versioning yes.f568162b n... yes

@ Deployment yesfizasizen.. yes
yesfo273a21.n.

GETTING STARTED.

@ Documentation ves.fes17a86.n.

& Forums ves.f5626af6 no... yes 1s

Juan Diego / W

== EDGE IMPULSE

o vk Did you know? Capture dta from any deice - Show options
o
PR Classify new data Classify existing test sample
s o ion
Device @ No devices connected v yes.fia2ba2t_nohash.2 (yes) v
-
Sensor v
sampi ength (ms)) m
Frequency v
®
2 e dassification
©2022 Edgelmpuise Inc. Al ights reserved
¥ Versioning
@ Deployment

GETTING STARTED.
& Documentation

Figure 10: Edge Impulse framework: Model testing & Live classification

Finally, we deploy the model with the Deployment option, to choose the library
and firmware desired, build and deploy the model. This step without Edge Impulse
would have been more complex since we would have had to create an Arduino pro-
gram, transform the model into an array of weights and more.

37

= EDGE IMPULSE

co m brainchip P
& ospomen: s
’ binsryfor your ceveiopment soard thet ncludes your mpuize
-
& k2 ®

Figure 11: Edge Impulse framework: Deployment

The resulting app worked as planned. The Portenta started the app and printed
noise when we were not speaking. Then when saying yes or no the model printed
them respectively, and with other words it just printed unknown. In a not too
noisy environment the app worked as expected.

Furthermore, to prove ourselves we understood how to develop a TinyML app and
use the Edge Impulse framework we added a new label, Bon dia (which is Good
morning in Catalan) to see if we can make the app recognise the word.

We restarted the development but this time adding the Bon dia dataset. The model
hyperparameters were not very different from the ones we found previously. The
final app worked fine as well, it detected the Bon dia words and had no error. The
development of a TinyML app was a success. Now we can move on to the next part.

38

5 TinyODL techniques

This section dives into the two techniques of TinyODL we propose: TinyOL and
Federated Learning. We explain for each one how it works, its steps and how to
develop them.

5.1 TinyOL study

In TinyML we pre-train the model before deploying it into the microcontroller,
which only performs inference. This strategy treats the model as a static object,
making the deployment of TinyML in the industry environment a challenging task:

e (Costly updates: Updating each one of the edge devices can be really costly
considering its enormous amount, and some of them being in hard accessible
places.

e Inconsistency: Every machine is different, and so the models trained in dif-
ferent machines, even though they use the same dataset.

e Data transmission: Transmitting the field data to the data center is expensive
and can cause delay.

e Concept drift: The ML model’s performance will drop if the input data dis-
tribution evolves.

To tackle these challenges, Haoyu Ren, Darko Anicic and Thomas Runkler in his
paper [30] proposed a novel system called TinyOL, which means TinyML with
Online-Learning.

TinyOL is a system where an additional layer is attached to existing networks.
By updating the layer’s weights or modifying its structure the application can ac-
commodate to new data classes, and there is no need to store historical data for
training since incremental learning is applied. The model is always up to date and
can thus deal with the concept drift.

5.1.1 How it works

The TinyOL system proposed starts having a TinyML NN model. This model
shall work as usual: it receives data stream, inference every input and returns the
predicted results. Then the TinyOL system is attached to the existing model. This
attachment can be accomplished by modifying the last layer of the model or adding
an extra layer after the model’s output. To explain the system easily we talk about
the second one, albeit its structure can vary.

The core of the TinyOL system is the additional layer, consisting of several neurons
that can be customized, initialized and updated on the fly. It works as the new
last layer of the model. Since this layer runs in the RAM it can be trained, unlike
the flashed NN model uploaded as a C array, similar to transfer learning.

39

https://arxiv.org/pdf/2103.08295.pdf

The workflow of the system can be defined as in the algorithm below. We first ini-
tialize the TinyML model and the TinyOL system. Then, for each input received
from the streaming data we first inference it, obtaining the output of the model.
This output is passed as an input to the TinyOL system making the prediction.
But first we can accumulate the mean and variance and standardize the input de-
pending on the tasks.

If a corresponding label is available, the evaluation metrics and the weights in
the additional layer will be adapted using online gradient descent algorithms, e.g.,
stochastic gradient descent (SGD). Thus the training and prediction steps are inter-
leaved. Once the neurons are updated, the sample pairs can be discarded effectively.
In other words, at a time, only one data pairs of the stream live in the memory,
and there is no need to store the historical data.

Seems like the main goal of this technique is to convert static NN models already
developed for MCUs into flexible ones. We also must point out that the robustness
obtained against concept drift implies that the field data’s statistical properties
might vary over time. Moreover, since the model cannot foresee changes in the
training face its performance will drop significantly without post-training.

5.1.2 Why it works

But is this technique giving a solution to the challenges TinyML faces? Does it
work properly with just training a layer or is it just a theoretical proposition? In
the paper we can see a practical example and the mathematical demonstration
about how it works.

At first it seems like a non-valid solution since we are running a model that cannot
adapt to the environment and we expect a single layer to do so. But the truth is
that this approach works and this is why.

Suppose a NN classification model as our TinyML model. We are given a stream
of inputs that each one of them is inferred by the model, returning us an array of
probabilities for each class the model learned. These probabilities are clue to our
training, because when facing unknown classes for the model they will tell some
details about them. For example, when recognising animals in images, a cheetah
class can be represented with high probability values in tiger and zebra classes,
while a platypus might have high probability values in duck and mole classes.

The model output (and its implicit feature extraction) is passed to the TinyOL
system. Training the layer with the expected output works as a normal NN model,
so there is no need to prove the training algorithm is correct. Also, proving the
system does not work correctly (or at least as expected) with one layer is no obsta-
cle, since it only shows the need to add more than one layer to the system, which
can be plausible depending on the RAM space left and the total performance.

We encourage the readers to take a look at the practical example proposed in the
paper [30]. It is simple and eases the task to understand this technique. In a few
words, the practical example shows an TinyML model that tells the state of a fan
depending on its performance. The tilted and struck states are not known by the
model, and using TinyOL they study its adjustment.

40

5.1.3 Steps to develop a TinyOL app

Previously we talked about how the TinyML with Online-Learning technique works
and why, and the steps to develop a TinyOL have been nearly exposed. Never-
theless, we find interesting to enumerate the tasks needed to apply this technique
serving as a guide to anyone interested in developing a TinyOL app.

1. Create a NN model: This technique was planned to work as an extension of
Neural Network models in TinyOL. That is why we shall design an NN model.

2. Train & Test: We train and test the model with the representative dataset
of the environment.

3. Convert to TinyML model: Once the model is ready to be deployed we con-
vert it into a TinyML model so it can be executed inside our microcontroller.

4. Design the TinyOL extension: After having the TinyML model, we design
the structure of the trainable part inside the app. This step is normally re-
visited at least once to improve the final model’s training performance.

5. Deploy the TinyOL app: Then, we develop the app and deploy it inside the
MCU so we can test it.

6. Train & Test the TinyOL system: Finally, we check the app works as ex-
pected and the TinyOL system learns new data and adapts correctly. If the
system performance is not enough we may revisit the previous steps.

To sum up, developing a TinyOL app is in fact developing a TinyML app and add
a TinyOL system. This idea reminds us about the idea of developing a TinyML
app, which is developing an ML model and convert it into a TinyML one.

5.1.4 Tools to develop a TinyOL app

This technique is very recent, so there are no useful tools to develop these type of
apps more than the TinyML tools. In fact, the tools used to develop TinyML apps
can be useless in situations where we need to modify the model’s last layer. Of
course though, the best potential for this technique is to add a layer (or layers) as
an extension to the existing model.

To develop the model’s extension it may be useful to search for a C library that

eases the development. In this case Python’s packages for modelling ML models
would be very useful.

41

5.1.5 Benefits & disadvantages

Now, we are going to process all the information we obtained from the study and
conclude the advantages and obstacles or problems this technique entails.

Benefits

o Flexibility: This technique makes our program capable of adapting to changes
in the environment. The model can learn new data and respond with a con-
siderable accuracy.

o Adaptability: One of the main advantages, and probably the most iconic,
is the possibility of converting normal TinyML static programs into dy-
namic ones with just adding a TinyOL system. This characteristic makes
the TinyOL technique very powerful.

e Simplicity: Another improvement is that there is no need to know new algo-
rithm or concepts to apply this technique. With just knowing how to develop
a Neural Network model we can make our own TinyOL system.

Disadvantages

e Limited to NN: TinyOL is still young and it only has been proven with Neu-
ral Network models. Although a lot of TinyML models are artificial Neural
Network, some other useful ML models cannot be implemented with this
technique.

o Complex to develop: There are not any keras or pandas packages in C to de-
sign NN models, so here the technique takes a level of complexity. Moreover,
we can face some situations where it is required to develop the structure from
scratch.

e High performance training: It is true that TinyOL uses a reduced model to
train, but we are still performing high computation (the model update) in-
side the microcontroller, which restricts the possible TinyOL systems to very
simple NN models.

e High computing dependency: Countering the benefit of converting existing
TinyML models, the TinyOL technique cannot model complex and flexible
ML from scratch, and one of the reasons for it is the previous obstacle. In
some situations we will still require a powerful computer to create our TinyML
model.

42

5.2 Federated Learning study

Federated Learning [31] is a Machine Learning technique that trains an algorithm
across multiple decentralized edge devices or servers holding local data samples,
without exchanging them. This approach stands in contrast to traditional central-
ized machine learning techniques where all the local datasets are uploaded to one
server, as well as to more classical decentralized approaches which often assume
that local data samples are identically distributed.

Its general principle consists in training local models on local data samples and
exchanging parameters between these local nodes at some frequency to generate a
global model shared by all nodes. This technique allows for smarter models, lower
latency and less power consumption, all while ensuring privacy.

The main difference between Federated Learning and distributed learning lies in the
assumptions made on the properties of the local datasets, as distributed learning
originally aims at parallelizing computing power where federated learning originally
aims at training on heterogeneous datasets. The local datasets are not assumed
to be independent and identically distributed or roughly the same size. Instead,
they are typically heterogeneous and different size that can vary in several orders
of magnitude.

To sum up, the idea is to train a model as a combination of models pre-trained
with local datasets. We can find variations in the Federated Learning settings:

Centralized Federated Learning A central server is used to orchestrate the
different steps of the algorithms and coordinate all the participating nodes
during the learning process.

Decentralized Federated Learning the nodes are able to coordinate themselves
to obtain the global model, preventing single point failures as the model up-
dates are exchanged only between interconnected nodes. This is the best
setting when performing in a collection of edge devices.

Heterogeneous Federated Learning It can enable the training of heteroge-
neous local models with dynamically varying computation and non-iid data
complexities while still producing a single accurate global inference model.
This technique was recently proposed to address heterogeneous clients equipped
with very different computation and communication capabilities.

43

5.2.1 How it works

The Federated Learning technique relies on an iterative process broken up into
what is called as a federated learning rounds. Each round works as follows:

1. Initialization: A Machine Learning model is chosen to be trained on local
nodes and initialized. The local nodes are activated and wait for the central
server.

2. Selection: A subset of the local nodes is selected to train local models. The
current global model state is transmitted to the participating local nodes.

3. Local training: Each node trains a local model with its local dataset and
produces a set of potential model updates.

4. Reporting: The local updates are sent to the central server to be aggregated
and processed into a single global update. The central server also handles
failures for disconnected nodes or lost model updates. This global update is
sent back to the local nodes.

We repeat the process until a condition is met, where the central server aggregates
the global update into the global model and ends the Federated Learning technique.

The steps above are explained with a central server orchestrating all the participat-
ing nodes and global states and updates. But with a peer-to-peer approach (using
gossip or consensus methodologies) we can get the same results. For example, this
paper converts a centralized FL algorithm to work without a central server with
peer-to-peer settings.

In a decentralized FL the main idea is to train the local models inside the local
nodes. A concept known as knowledge learning steps in. The knowledge learning
is simply input random data from the domain (known as a transfer vector) to,
lets say, two local models, and use the output of one model as th expected output
to train the other model. To do so, at least one model shall be pre-trained to ensure

We can find variations of the Federated Learning technique like Federated Stochastic
Gradient Descent, Federated averaging, Federated Learning with Dynamic Regular-
1zation, etc.

5.2.2 Steps to develop a FL app

To develop a TinyML app with Federated Learning we first need to define the
model design and its specifications. It is also important to define the Federated
Learning settings, since some model specifications may vary for a better adapta-
tion. Next we design the model based on the previous decisions.

Unlike TinyOL, we do not need to focus in the model composition, but the al-
gorithm used to train it. We start the program development before the model

training because the program itself is the training.

One thing to define before developing the program is the communication method,
which depends on the available resources and the Federated Learning settings.

44

https://www.diva-portal.org/smash/get/diva2:1569479/FULLTEXT01.pdf

Centralized FL
With a centralized setting we need to develop:

1. Central server program: This is the main program since it is the one who will
call the local nodes to train and infer. We shall aim to develop a fast model
update aggregation and an optimized node selection function (if needed). In
this paper we can find some robust aggregation algorithms.

2. Local node program: In this program we train a local model with a local
dataset that can be either in memory or obtained by the device sensors.

3. Communication: A well defined and optimized communication is desired since
this is our bottleneck.
Decentralized FL

A decentralized setting demands to develop the next functions for the node pro-
gram:

e Model initialization: We shall initialize the local model. We can initialize
the model from scratch or as a pre-trained model. This decision is up to the
developer.

e Model training: The training algorithm for a local dataset.
e Inference: A function to infer the received data.
We also need to develop the main program with:

e Communication between nodes: A peer-to-peer communication shall be well
defined and optimized in order to reduce the bottleneck.

e The knowledge learning function: First we need to obtain the random data,
which can be accomplished with the device sensors. Then with the training
and inference functions we communicate models outputs in order to train.

5.2.3 Benefits & disadvantages

Given the previous information, we can define the next advantages and conflicts:

Benefits

o Distributed training: In a well distributed node system the cost of training
the model is divided by the training of local models and their aggregation.

e Model learning: Federated Learning is applied to the model that infers the
data, whereas in TinyOL we create an extended system to learn.

e Heterogeneity: Since the local models are trained with different datasets with
no previous assumption we develop different models that learn to respond
better in some situations than others, but in general there is at least one
model with a good response.

o Adaptability: Unlike TinyOL, this technique is available to any supervised ML
model. Furthermore, it can be adapted to reinforcement learning if needed.

45

https://arxiv.org/pdf/2205.10864.pdf

Disadvantages

o Complex development: Although the training of local models have no dif-
ficulty, its aggregation to a general model and the communication between
nodes makes the development even more complex.

o Communication bottleneck: Communication between devices can be a severe
bottleneck in the performance of the algorithm.

o Lack of libraries: There are not developed libraries for applying this tech-
nique, which makes harder its programming.

46

6 Develop TinyOL app

Once we studied both TinyOL and FL techniques, understood its steps to develop
and listed their benefits and problems, we decide to make some practical study.
The main purpose is to develop a TinyML application and apply the TinyODL
technique to compare results. Albeit developing both technique would be ideal,
the time constraint of this project force us to decide which technique develop.

6.1 Why we chose TinyOL?

Our goal is to see how a TinyODL technique improves the program adaptability.
We want to develop the program as quick as possible and TinyOL is, by far, faster
to develop than a TinyML with FL program. We do not need to worry about
communication between nodes or a central program, and more.

We want to compare the outputs between a TinyML and a TinyODL app. Since
TinyOL needs first a TinyML model to be developed, it seems the best option since
we do both apps simultaneously.

6.2 Image classification app

Image classification in edge devices is really demanded these days. There are al-
ready models capable of classify images or detect people [32][33], but they are static
models incapable of learn new data. That is why developing a TinyOL image clas-
sification app was an interesting opportunity we do not want to waste.

6.2.1 App definition

We want to develop a program that when executed inside our Portenta H7 it can
classify objects with the Vision Shield camera. First we want the program to clas-
sify easy objects, fruits at first, and try to raise the difficulty to more complex
objects when the fruits classifier works.

The workflow of the app will be as follows: First, an image is captured from the
camera. Then it is preprocessed and inferred into the TinyML model and the
TinyOL system. The output is shown to the user and it can decide whether tell
the program the expected output or just restart the process with a new image. In
case of taking the first action, the expected output is read by the TinyOL system
with the output inferred previously, and trains the TinyOL system.

To create the TinyOL app we first need a TinyML app that works. Here two op-
tions arise: create our own TinyML app or take one already created. At first it
seemed obvious to not waste time in creating the app ourselves, but thought twice
we decided it is best to know how the model is designed and being able to tune it
to our interest. The final decision is to create the TinyML app ourselves. Image
classification models are currently modeled as a Convolutional Neural Network,
and so is our model.

47

6.2.2 Tools

Previously in this document, we created a TinyML model with Edge Impulse. In
this case, though, we want to deeply know the inner structure of the model, so we
design and train the model with the next tools:

e Tensorflow Lite: Tensorflow helps us to design a CNN and tune parameters
and hyperparameters easily. With Tensorflow Lite we convert our model into
a TinyML model. Inside Tensorflow Lite we can find Tensorflow Lite for Mi-
crocontrollers, which helps the development of TinyML apps with Tensorflow
models.

e Google Colab: Our preferred editor to create the TinyML model.

o zzd[34]: To transform the TinyML model into a C array for the microcon-
troller.

e PlatformlIO: Editor to develop the TinyML and TinyOL apps.

6.3 Development

We are going to split this part in two. First we explain the development of the
TinyML app and finally we explain how we develop and add the TinyOL system
to the TinyML app so it can train.

All the source code to develop the TinyOL app can be found at my GitHub
repository: juandiegorubio/TinyODL-TFG®, inside the TinyOL /image-recognition
folder.

6.3.1 TinyML app

We learned in the TinyML study that TinyML models are just ML models opti-
mized for edge devices. Our first task is to develop a Convolutional Neural Network
capable of classify fruits in images.

The fruits dataset we used for the training is from Kaggle, called Fruits 360%. This
dataset has up to 133 different fruits, so our model is going to classify from 133
different classes.

We first try some CNN models with the Keras package in Tensorflow. With the
Convolutional layers we tried to lower down the parameters to train. By testing
models we ended up with the below model structure. Albeit it has quite few con-
volutional layers it had the best accuracy and the lowest loss compared to all the
other models, so we move on with this one. We can always turn back to this step
if the model will not fit the microcontroller limitations.

Shttps://github.com/juandiegorubio/ TinyODL-TFG
Shttps://www.kaggle.com /datasets/moltean/fruits

48

https://github.com/juandiegorubio/TinyODL-TFG
https://github.com/juandiegorubio/TinyODL-TFG/tree/main/TinyOL/image-recognition
https://www.kaggle.com/datasets/moltean/fruits
https://github.com/juandiegorubio/TinyODL-TFG
https://www.kaggle.com/datasets/moltean/fruits

[

TFLiteConverter”.

Model: "sequential"

Layer (type) Output Shape Param #
conVZd:EzonVZD} ::?None, 98, 98, 16;___ 448
max_pooling2d (MaxPooling2D (MNone, 33, 33, 18) 5]

)

dropout (Dropout) (None, 33, 33, 18) 5]
conv2d_1 (Conw2D) (None, 31, 31, 32) 4648
max_pooling2d 1 (MaxPooling (MNone, 15, 15, 32) 5]

2D)

dropout_1 (Dropout) (None, 15, 15, 32) 5]
conv2d_2 (Conv2D) (None, 13, 13, &4) 18496
max_pooling2d 2 (MaxPooling (None, 6, 6, 64) 5]

20)

dropout_2 (Dropout) (None, 6, 6, B4) 5]
conv2d_3 (Convw2D) (None, 4, 4, 128) 73856
max_pooling2d 3 (MaxPooling (None, 2, 2, 128) 5]

2D)

dropout_3 (Dropout) (None, 2, 2, 128) 5]
flatten (Flatten) (None, 512) 5]
dense (Dense) (None, 188@) 51300
dropout_4 (Dropout) (None, 100) 5]
dense_1 (Dense) (None, 7@) 7078

Total params:
Trainable params: 155,818
Non-trainable params: @

155,810

Figure 12: Image classification model structure

Next, the model is trained and converted into a TinyML model.
Tensorflow model into a TinyML model we use the Tensorflow Lite object called
In our case we just want the model to be quantized, so the
default optimizer is a good option. With that defined, we can convert the model
with the convert function of the object, which returns us our CNN model as a
TinyML model.

"https://www.tensorflow.org/api_docs/python/tf/lite/ TFLiteConverter

49

To convert a

https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter
https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter

° converter = tf.lite.TFLiteConverter.from_saved model("CNN_image classification™)
converter.optimizations = [Ef.lite.t]ptimize.DEFAJ.JLT]l
tflite_guant_model = converter.convert()

Figure 13: Convert CNN model into a TinyML model

Up until now we have a TFLite model, which is what we want. But there is one
problem, we have the model readable for Python and the microcontroller works in
C. To make the model readable for C programming we want to use the xxd com-
mand, which transforms our TFLite model into a C array of weights, our TinyML
model representation in C.

o # Install xxd if it is not available
lapt-get -ggq install xxd
Save the file as a C source file
'wxd -i cnn_image_classification.tflite > cnn_image_classification.cc
Print the source file
!cat cnn_image_classification|.cc

Figure 14: Convert TFLite model into a C array

Now we just need to develop our TinyML app in PlatformIO. This is done by
using the TFLite for microcontrollers (in this document we also call it TFLite
Micro) library developed by the TensorFlow team. Luckily, we have some exam-
ples of how a TFLite Micro app shall be. In this example we can find the next files:

output_handler.cc : File with the HandleOutput function. The function receives
the resulting output of our model. In figure 20 the output values are shown
with the TF_LITE_REPORT_ERROR function.

main.cpp : The principal code, where we initialize the model and other objects,
take the input, get the model’s output and call the output handler function.
Below we explain in more detail this program. See figure 21.

constants.cc : Some constants for the main code.

We also add our C array model file into the src folder. The C array model will be
called in the main.cc code. We now explain how the main code works.

How the TFLite Micro main program works:

We want the main program to initialize all the objects, read the input, infer the
output and handle that output. To do all this we first need to prepare the memory
space where the model will store the values and do all its work. First, some TFLite
Micro global objects for the model management are declared. Then we define what
is called the TensorArena and its size, which is the reserved memory space for the
model to do its calculations.

50

Inside the setup function we initialize all the global objects, we create our model
object with the function tflite::GetModel(model_array-name), which takes as pa-
rameter the C array name of the model we converted previously with the zzd
command. Finally, we initialize a Microlnterpreter object with all the model vari-
ables we initalized earlier (the model object, the tensor arena, etc). Last but not
least, we store in TFLiteTensor objects the input and output tensor of our model.

Finally, the loop function (figure 23) reads an input, it stores the input inside the
input tensor, takes resulting value from the output tensor and calls the Handle OQup-
tut function to handle the model’s output.

Seems pretty easy to develop, so we followed all the steps to do so. Here is when
problems start to arise. After some difficulties to learn how to work with the en-
vironment, we encounter a problem of dependencies. When compiling the project
the compiler tells us that the utility.h file is not found from a TFLite Micro file.

With some research we find this file comes from an essential library in C program-
ming, called asio, inside the boost library. Stranged by the situation, we try to add
it in any way possible by installing the library via PlatformIO, downloading our-
selves the library and adding it to the project and more. But none of them worked.

6.3.2 TinyOL system

We did not have the chance to develop any TinyOL system due to the previous
problem.

6.4 Results

The development of the TinyML model was impressively easy taking into account
that we made the model from scratch. Also its adaptability to a C program is
pretty useful, being able to transform any ML model into a C array TFLite model.

We also found pretty simple to work with TFLite Micro, but we got disappointed
when a dependency problem from the TFLite Micro library arose. We tried our
best to solve the problem but solving the dependency problem got us many more
dependency problems, which became in an endless loop.

Since we arrived to this end point at the beginning of July, we thought it would be
interesting to exploit the rest of the summer in developing our other TinyODL tech-
nique: Federated Learning. This can be found in the Develop Federated Learning
app section.

51

7 Develop Federated Learning app

At this point of the project we encountered a dead end in the TinyOL app devel-
opment and were a few weeks from the final delivery. So we decided it would be
interesting to dig into the Federated Learning technique and try to develop an app
with it.

As planned previously, we proposed an image classification app to run and learn
inside the Portenta H7. Below we explain the idea and structure of the app. All
the source code can be found at my GitHub repository: juandiegorubio/TinyODL-
TFG®, inside the F'L_with. CNN folder.

7.1 Adjust image classification app

Our app goal is the same, to classify fruits based on real-time execution samples.
The workflow will be quite similar, since an image will be captured, processed to
be classified and either end here or used the input to train the model °.

A change we find in this app development is that we do not need a TinyML model
trained previously to work with it, since Federated Learning trains the model di-
rectly (unlike TinyOL that trains an add-on model), being able to develop directly
the FL. model without redoing steps previously studied.

7.1.1 Tools

As stated before in this document, there were not many software tools to develop
TinyODL techniques, so most of our development was from scratch. Here are the
tools we used to develop the app:

e PlatformIO: To develop, flash and debug the project.

e RPC library: Arduino library to connect both M7 and M4 cores and talk
with each other.

We also support our implementation with Nil’s Federated Learning implementation
[35] inside the project Federated Learning on embedded devices [36].

7.2 Development

First things first, the app needs a CNN model. That is why our first task is to
develop a CNN model in C. There were a few libraries in C to develop ML models
10" (for example OpenCV [37] or the Microsoft Cognitive Toolkit CNTK [38]), but
none of them were libraries to work with edge devices. That is why we decided
to code our own CNN model as simple as we can, fitting the model size to the
microcontroller capacities.

8https://github.com/juandiegorubio/TinyODL-TFG

91t is important to point out that these similarities makes the possibility for both techniques
to be adapted with each other and work together as idea and future proposals.

10Tn https://hackernoon.com /top-cc-machine-learning-libraries-for-data-science-nl183wol one
can find more examples.

52

https://github.com/juandiegorubio/TinyODL-TFG
https://github.com/juandiegorubio/TinyODL-TFG
https://github.com/juandiegorubio/TinyODL-TFG/tree/main/FL_with_CNN
https://github.com/juandiegorubio/TinyODL-TFG
https://hackernoon.com/top-cc-machine-learning-libraries-for-data-science-nl183wo1

7.2.1 Similar NN implementations

A quick review in Nil’s implementation, we see at first the class Neural Network
consists of two layers, the hidden and the output layer (see figure 24). Both have
3 types of arrays to store information:

e HiddenWeights / Output Weights: Stores the weights and biases of the layers.
e Hidden / Output: Stores the resulting value of each neuron in the layer.

o ChangeHiddenWeights / ChangeOutput Weights: Stores the changes added
to the weights. This data is used only for training the network.

Additionally, the number of neurons of each layer, the input size and the maximum
and minimum values of each weight are declared as global variables. About the
functions, first some basic functions to initialize the network correctly with ran-
dom weights inside the range of values (figure 25). Also some basic getters'! are
declared.

Next, the forward function, in figure 26, consist of simply the vectorial product
of the input and the hidden layer weights, and the hidden layer’s output and the
output layer weights. The error is calculated while calculating the output values
and returned. Each for loop stands for each of the layer’s products we do, in this
case two because we only have the hidden and output layers.

Finally, the backward function, in figures 27-28, first infers the input to the net-
work, the same as the forward function. Once the output is obtained the gradients
of the layer weights are calculated to change the weight values.

Once we confirmed that Nil’s project worked correctly its time to develop our own
neural network, in our case a Convolutional Neural Network. Since we do not know
exactly the model structure we need to develop a code the number and type of lay-
ers can be easily exchangeable. Taking that into account, we decided to develop a
code capable to simulate the workflow of developing a ML model in TensorFlow.

7.2.2 Layer implementation

A NN is simply a set of layers, which is why our first step is to declare a layer
class (figure 29), which will be a common parent to all the layers we want to de-
velop. This class essentially contains the ReLu and Sigmoid activation functions,
the forward and backward function as virtual'?, and some common values as the
input and output size, a function to get random integers and random float values,
and more. The activation function derivative is also stored in order to calculate
the output gradient.

The forward function starts taking the layer’s input as argument and returns a
pointer to the output obtained from inferring the input. Meanwhile, the backward
function takes the layer’s input and the gradient of the output, and returns the
gradient of the previous layer’s output.

LA getter is a common word to denote those functions which goal is to let the user obtain
some private information about the object.

12A wirtual function [39] is a member function which is declared within a base class and is
re-defined (overridden) by a derived class.

53

Dense layer implementation

First we start with the dense layer, which we store as an array of weights as we see
in the figures 30-31. We first initialize the weights as random values (either float
or integer values, depending on the microcontroller capacity).

The forward function simply consists of calculating the product of the input and
weights, resulting into the layer’s output, which is returned. The backward func-
tion just takes the layer’s input and gradient passed as arguments in order to
calculate the changes in the weights to train the layer and get the output gradient
of the previous layer. Finally the output gradient of the previous layer is returned.
Both functions are in figure 32. To compute the change values we use the same
calculations as Nil’s implementation.

Convolutional layer implementation

As expected in a Convolutional Neural Network we need to develop a Convolutional
layer. I never had the chance to study the convolutional layer implementation, so
a previous study was needed. After understanding and contrasting information
[40][41], we came up with the next implementation. For a deepen explanation of

how a convolutional layer works we recommend to take a peek in these websites
[42][43][44][45].

We store each filter and kernel as a unique array of weights (figure 33), similar
to a dense layer. To access each filter and kernel we just need to multiply the
desired filter or (either the first one 0, the last one n-1, etc) with the filter size or
kernel size, respectively. Differing from the dense layer implementation, the bias
values are stored in another array as a pure decision to make the code lighter to
understand. We initialize the kernels and bias values with random values as well
(figure 34).

The forward function (figure 35) is the matrix product of the input and the kernel
plus bias values. When it comes to the backward function (in figure 36, the compu-
tation of the change values is more complex. We strongly recommend to visit the
previously cited web pages. In a summarized explanation, we compute the output
gradient of the previous layer, the gradient of the kernels to change the weights,
and the gradient of the bias values to change them.

The kernel and bias gradients are computed as the dense layer, but to compute
the previous gradient we first need to convolve gradient of the actual layer and the
kernel values (previous to be modified). In figure 37 one can see how this convolve
function is implemented in order to obtain the previous gradient.

7.2.3 Loss function implementation

Similar to the layer class, we define in figure 38 the Loss class as parent of all the
loss functions we want to develop. The class only contains two virtual functions:
the loss function and the derivative of the loss function. We decided that for our
initial necessities implementing the Mean Squared Error (MSE) function [46] was
sufficient, and in future cases we could implement new loss functions just by cre-
ating new loss derived classes.

54

7.2.4 NN class implementation

With the loss function and layers implemented we can now move to the network
implementation. The class essentially stores a set of layers systematically ordered,
the model’s error and the loss function used to compute it.

The add function is a public function to add a new layer as the last layer of the
model. The forward function is a private function that given an input computes
the model’s output. Its implementation consists of a loop where we call all the
model layer’s forward function and take the output as the input for the next layer.
When we get to the last layer, the final output is returned. The implementation is
shown in figures 39-40.

The backpropagate function, also private, works similar to the forward function:
we visit inversely the model layers and call the backward function, which returning
gradient serves as the output gradient for the previous layer.

The test and predict functions (figure 42) are both public functions of the class.
The predict is to infer inputs to the model and obtain an output, whereas the test
infers a set of inputs and returns the resulting output loss for each inference.

Finally, the train function (in figure 41) is the public function in charge of training
the model given a set of inputs and expected outputs, the epochs and batch size.
The function does for each epoch (number of inputs)/(batch size) batches inferring
all the inputs in each batch.

Once the batch is completed, the backpropagate function is called in order to train
the model from all the gradients obtained from the predicted outputs and expected
outputs in the batch. Finally, at the end of the epoch the error is weighted and
shown if we want to.

7.2.5 Dual-Core communication

During the neural network implementation we also started to study how to com-
municate both M7 and M4 cores in the Portenta H7. To do so, we studied Nil’s im-
plementation of a Dual-Core program and the RPC' library from Arduino. Thanks
to it we were able to develop two simple codes: a simultaneous LED blinking and a
program able to call functions from one core to another. Here are some interesting
results we got when developing both programs.

Dual-Core LED blinking

The program had the M7 core blinking the green LED while the M4 core was
blinking the red LED.

e We were able to made them blink both with different periods.

e The vatheriable storing the LED port can be global and modified inside each
core functions with the CORE_CM7 and CORE_CM} macros.

e We were not able to share data between cores, for example by sharing the
same variable or memory address.

55

Calling Cores

The program consisted of two loops, one for each core. Each core had to compute
a value calling the function to the other core, and show the resulting value via the
serial port. This program used the RPC library and a thread object in order to
run both loops.

e We are not able to print values from the M4 core direclty to the serial port,
but with the RPC read and printin function we can.

e We are still not able to share data between cores, but functions can called in
both cores as separate executions.

e A thread is not required to call functions in both cores, but it is required
when executing parallel.

7.3 Results

Once September came we were unable to continue developing those implementa-
tions. Here, we point out some interesting results we made so far.

First of all, the model network instance worked correctly, except for the training
part. Either the train, backward or backpropagate function was not implemented
correctly, so all the weights went to 0, infinite or non-representable numbers.

When testing the network class we confirmed the flexibility and commodity of cre-
ating and modifying the model structure.

The M7-M4 cores were able to work parallel and interact with each other, but an

important restriction is that we could not find a way to share variables or memory
between them. We would need more time to find a usable option.

56

8 Conclusion

8.1 Project conclusions

We have seen a TinyML application is easy to develop and deploy, and available
to anyone interested since we just need an edge device and the free tools used in
this project. When it comes to TinyODL techniques things got more complicated,
since there is a previous knowledge required to develop the training technique.

With TinyOL we found out that developing the model is easier that expected
thanks to TensorFlow Lite for Microcontrollers, but some ANN structure and work-
ing knowledge is demanded for the C development of the app. A challenge one can
find, though, when developing a TinyOL app is facing dependency errors.

As for the Federated Learning development section we found out we can develop
our own layers for ANN in order to find the most efficient and fast execution,
adapting the model to our necessities. More time was needed in order to complete
the model and develop the technique. We focused in analyse the technique.

8.2 Personal conclusions

I find both techniques interesting to develop and push beyond their limits. On one
hand, I think TinyOL is the best option to develop easy TinyODL apps and it does
not require a lot of knowledge as in FL. On the other hand, I think FL is the best
option for professional TinyODL applications, by developing a model more exact
to solve the task given the device and environment restrictions.

This project has been a hole new experience for me. I have been able to merge
hardware and high level software into one objective. I also learned a lot of new
concepts and techniques I expect to use in my new projects. One example is Edge
Impulse, a framework to easily develop TinyML apps. Or the Federated Learning
technique which can be useful for normal ML training in some projects, like the
robot project I am working nowadays.

8.3 Future of TinyODL

Just by reading some of this project one can see TinyODL techniques have just
started their way. The lasts August 31st and September 1st there was a forum [47)
from the tinyML foundation [48] where they talked about new possible techniques
for on-device learning. We can also find interesting papers like On-Device Training
of Deep Learning Models on Edge Microcontrollers [49], where a novel Echo State
Network model enabled on-device training on STM32 MCUs with good results.

Moreover, all TinyODL techniques are oriented to ANN, but other ML approaches
are not visited, which can be a new path to follow. Either way, we see TinyODL
has a lot to research for and seems the new step edge devices need to take for this
new technology era.

57

89

9 Annexes

9.1 Task planning table

Task Time (h) Task Dependencies Resources People Assigned
PM 93 - PC, NO, GAN, GM, GCA, OV MAN, RE, PR, DA
PM-1 5 - PC MAN
PM-2 12 PM-1 PC, NO, GAN MAN
PM-3 3 PM-1, PM-2 PC, NO MAN
PM-4 3 PM-1, PM-2, PM-3 PC MAN
PM-5 15 - PC, GM, GCA MANx2
PM-6 40 PM-1, PM-2, PM-3, PM-4 PC, OV MAN
PM-7 15 PM-6 PC MAN

PS 38 - PC, IDE, PIO, PH7, VS, US, GIT RE, PR
PS-1 6 - PC RE

PS-2 10 - PC, IDE, PIO PR
PS-2.1 3 - PC, IDE PR
PS-2.2 7 - PC, PIO PR

PS-3 5 PS-1, PS-2 PC, IDE/PIO, PH7, USB, GIT PR

PS-4 17 PS-1, PS-2 PC, IDE/PIO, PH7, VS, USB, GIT PR
PS-4.1 5 PS-1 PC RE
PS-4.2 12 PS-1, PS-2, PS-4.1 PC, IDE/PIO, PH7, VS, USB PR
TML 93 - PC, EI, PH7, VS, USB, GIT PM, RE, PR, DA
TML-1 6 - PC RE
TML-2 8 TML-1 PC RE
TML-3 3 TML-1, TML-2 PC MAN, PR, DA
TML-4 13 - PC PR
TML-5 48 TML-2, TML-3, TML-4 PC, EI, PH7, VS, USB, GIT PR, DA
TML-5.1 10 - PC, EI PR, DA
TML-5.2 8 TML-2, TML-3 PC, EI PR
TML-5.3 12 TML-5.1, TML-5.2 PC, EI PR, DA
TML-5.4 8 TML-2 PC RE
TML-5.5 10 TML-2, TML-5.(2,3,4) PC, EI, PH7, VS, USB PR, DA
TML-6 15 PS, TML-4, TML-5 PC, EI, PH7, VS, USB, GIT PR, DA
TOL 47 TML-1, TML-2 PC RE, DA
TOL-1 10 TML-1, TML-2 PC RE
TOL-2 10 TML-2, TOL-1 PC RE
TOL-3 12 TOL-2 PC RE
TOL-4 15 TOL-1, TOL-2, TOL-3 PC RE, DA
FL 47 TML-1, TML-2 PC RE, DA
FL-1 10 TML-1, TML-2 PC RE

FL-2 10 TML-2, FL-1 PC RE

FL-3 12 FL-2 PC RE

FL-4 15 FL-1, FL-2, FL-3 PC RE, DA
ODL 176 TOL, FL, TML-5, TML-6 PC, GCO, TFL, PIO, PH7, VS, USB PM, PR, DA
ODL-1 10 TOL-4, FL-4 PC MAN
ODL-2 25 (TOL/FL), ODL-1 (GCO,TFL / -) PR
ODL-3 3 ODL-1, ODL-2 PC MAN, PR, DA
ODL-4 48 TML-5, TML-6, ODL-3 PC, PIO, PH7, VS, USB PR, DA
ODL-5 55 (TOL-2/FL-2), ODL-2, ODL-3 PC, (GCO,TFL / -), PIO PR, DA
ODL-6 25 ODL-5 PC, PIO, PH7, VS, USB PR, DA
ODL-7 10 ODL-4, ODL-6 PC DA
TOTAL 494 - - -

Table 8: Project tasks breakdown.

69

9.2 Gantt chart

Nombre

B Project Management (PM)

2 -1

3 PM-2

4 -3

5 PM-4

6 PI-5

7 PM-6

8 -7

9 OPrevious Study (PS)
L] PS-1

n Eps2

12 PS21
13 PS22
i PS3

15 Eps4

16 PS4.1
L PS42
18 | ETinyML approach (TML)
19 ML

20 L2

21 TML3

22 THL-4

23 BTMLS
24 TMLS.1
25 TML-5.2
26 TMLS3
27 THL-5.4
28 TMLSS
29 TMLS

30 |3 Study of TinyOL (TOL)
El ToL

32 ToL2

33 ToL3

3 ToL4

35 | O Study of Federated Leaming (FL)
36 FL-1

ar FL2
38 FL3
kL] FL-4

40 | EDevelopment of a TinyODL app (ODL)
N 0oDL-1
a2 oDL-2
43 ODL-3

Inicio

03/17/2022
031772022
03/18/2022
03/24/2022
03/25/2022
0317/2022
03/28/2022
08/20/2022
03/17/2022
0317/2022
0318/2022
03/18/2022
0318/2022
03/23/2022
03/23/2022
03/23/2022
03/29/2022
03/21/2022
03/21/2022
03/22/2022
03/24/2022
03/23/2022
03/29/2022
03/29/2022
03/29/2022
04/04/2022
03/31/2022
04/06/2022

04/08/2022
04/11/2022
04/11/2022
0411472022
04/19/2022
05/09/2022
04/11/2022
04/11/2022
04/14/2022
04/19/2022
05/09/2022
05/11/2022
05/11/2022
05/12/2022
05/17/2022

Fin

06/27/2022
118/2022

03/23/2022
03/24/2022
03/25/2022
06/17/2022
06/17/2022
06/27/2022
04/04/2022
03/18/2022
03/22/2022
03/22/2022
03/22/2022
03/25/2022
04/04/2022
03/28/2022

04/12/2022

03/22/2022

/2022
03/25/2022

03/28/2022 |

04/08/2022
04/01/2022
04/01/2022
04/06/2022
04/06/2022
04/08/2022
047122022
05/10/2022
04/13/2022
04/18/2022
04/22/2022
05/10/2022
05/10/2022
04/13/2022
04/18/2022
04/22/2022
05/10/2022
06/17/2022
05/12/2022

05/16/2022

Mar 14 - Mar 2022

L

M

X

Mar 21 - Mar 2722

Mar 28 - Abr 322 Abr 4 - Abr 1022 Abr11 - Abr 17722 Abr 18 - Abr 2422 Abr 75 - May 1°22 May 2 - May 822 May 9 - May 1522

J[v[s]o|[c[m[x]a]v]s]o|[L[m[x]a[v]s[o|[c[m[x[a]v]s|o|c[m[x[a[v]s[o[cL]m[x[a]v[s[o|c]m[x[a]v][s[o[c]m][x[a]v][s[o|[L[m[x[a]V]s
PA-1
PH-2
Fld-3
P-4
R L —————5—5———.
, R Previous Study (PS)
Ps-21
Ps-22
S PS-3
Ps-4
PS-4.1
] i [ps-a2
TinyML approach (TML
THL-1
h_—‘ THML-2
l»j‘ il
ML
TML-5
TML-5.1
TML-5.2
o TML-5.3
! ITML-5.4
| TML-5.5
| N TML-6

1

tudy of TinyOL (T

I TOL-1
b TOL-2
b TOL-3
] TOL-4
iy of Federated
FLe1
H FL-2
b FL-3
] FL-4
oDL-1

Figure 15: Gantt chart: First period.

09

Nombre

OProject Management (PM)
PI-1
PI-2
PI-3
PM-4
PII-S
PI-6
PM-T
ElPrevious Study (PS)
ElTinyML approach (TML)
TMLA
™L2
T™L3
™LA
EITMLS
TML5.1
TML5.2
TMLS.3
TML5.4
TMLS.5
T™ML6
I study of TinyOL (TOL)
ToL1
ToL2
ToL3
ToL4
El Study of Federated Leaming (FL)
FL
FL2
FL3
FL4
ElDevelopment of a TinyODL app (ODL)
ODL-1
obL-2
oDL3
oDL-4
oDL5
0DL6&
oDL7

Inicio

03/17/2022
03/17/2022
03/18/2022
03/24/2022
03/25/2022
03/17/2022
03/28/2022
0/2022
03/17/2022
03/21/2022

08/

03/21/2022
03/22/2022
03/24/2022
03/23/2022
03/29/2022
03/29/2022
03/29/2022
04/04/2022
03/31/2022
04/06/2022
04/08/2022
04/11/2022
04/11/2022
04/14/2022
04/19/2022
05/09/2022
04/11/2022
04/11/2022
04/14/2022
04/19/2022
05/09/2022
05/11/2022
05/11/2022
0s/12/2022
05/17/2022
05/18/2022
05/23/2022
06/09/2022
06/15/2022

Fin

06/27/2022
03/18/2022
03/23/2022
03/24/2022
03/25/2022
06/17/2022
D6/17/2022
06/27/2022
04/04/2022
04/12/2022
03/22/2022
03/24/2022
03/25/2022
03/28/2022
04/08/2022
04/01/2022
04/01/2022
04/06/2022
04/06/2022
04/08/2022
04/12/2022

051012022

04/13/2022
04/18/2022
04/22/2022
05/10/2022
05/10/2022
04/13/2022
04/18/2022
04/22/2022
05/10/2022
06/17/2022
05/12/2022
05/16/2022
05/17/2022
05/30/2022
06/08/2022
06/15/2022
06/17/2022

¥2-May8'22 May 9 - May 15'22 May 16 - May 2222 May 23 - May 2922 May 30 - Jun 5'22 Jun 6 - Jun 12°22 Jun 13- Jun 1922
M{X[J[V[S|D|L[M[X[J[V[S[D|L[M|[x|J[V[S[D|L[M[X|J[V[S[D|[L[M[x|J[v[s[D|L|[M[x[J[V[S[D|L|mM[x][J[V][sS][D

Jun 20 - Jun 26°22 Jun 27 - Jul 3722
L{m[x[aJv[s[p[L[M[x]a]v]s

——— '

tudy of TinyOL (TOL)

— TOL-4

of Federated Leafning (FL)

— P\

oDL-1

002
- ‘DDLVB

oDL-4

of a TinyODL app (ODL)

LJ_’JDDL-E

I St

Figure 16: Gantt chart: Second period.

Project Management (M)

D

9.3

Figures

ARDUINO
PORTENTA H7

RGB LED
S— i [a0 EECTES
{ biee | 07 [NENNTTNED)
Li-Po 3.7 V USB Type-C [o0)
Temperature m JU=0
Sensor J1-46
{ Pio | J2-36
+5V
J2-73 | Pao_c [N 015 VIN
127 X G
92-74 | pc2 [E¥H 015 {014] pas | 41-33
J2-76 | pcs MY 020] {013/ | Ppaie | 41-35
J2-78 | Pas [IXY 021] STH3ZHTATXTH) - U p12° /| PH7 J1-46
s2-62 [hms | 00§ GO T -
J2-60 S D \ oo | pc2 | J2-40
J2-67 | Poit [/ o2 om oo (oo | pri | J2-38
J2-65 | P67 | 03 {05 | pc3 | J2-42

. Ground
. Power
B e

. Internal Pin
I swp pin

[] other Pin

B pigital Pin
D Analog Pin

Default

. Microcontroller's Port

High Density Connector

orgil
Commans,

Figure 17: Arduino Portenta H7: Pinout figure

61

lensesray.
0 Box 1865, Mauntain view, CA 34042, USA

USB-C Connector
Host/Device, power in
And Display Port out

Power Management

Ethernet Transceiver

RMII 10/100

Not shown Processor
ARM Cortex M7+M4
(STM32H747XIH6)

USB-CBridge
with MIPI™ to DisplayPort™

USB 2.0 Transceiver
With OTG and circuit protection

SDRAM
64MB (4Mx16) 143MHz

Wireless Module
Wi-Fi 802.11 b/g/n
Bluetooth® v4.1

Antenna Connector

NOR Serial Flash Type: U.FL

128M-bit

Figure 18: Arduino Portenta H7: Hardware

ARDUINO
PORTENTA VISION SHIELD
with ethexnet

HMO1B0-PIN
1
2
HMO01B0-0UT mj MP34DTOG)TR-1
:
J1-18 CAM_CK_P 5 2 T
J2-22 CAM_HS 6 3 J1-66 PDM-CK
J1-46 12C3-SCL 7 s J1-68 PDM-D®
J1-44 12C3-SDA 8 s GIETED
J2-48 GPIO_1 9
oo 3 jprennnnnn
) 11
+1v5 NP I I !
@
14
@ s
J2-20 CAM_CK_N 16
J2-16 CAM_DB_N 17
J2-14 CAM_DB_P 18 MP34DT06)TR-2
J2-12 CAM_D1_N 19 1
J2-10 CAM_D1_P 20 2
J2-8 CAM_D2_N 21 3 J1-66 PDM-CK
J2-6 CAM_D2_P 22 4 J1-68 PDM-D8
J2-4 CAM_D3_N 23 s GIETED
J2-2 CAM_D3_P 24
. Ground Internal Pin Z Digital Pin Microcontroller’s Port
. Power . SWD Pin D Analog Pin High Density Connector
B Lep [] other Pin Default

Figure 19: Arduino Portenta H7 Vision Shield: Pinout figure

62

G+ output_handler.cc M X £

TinyODL-TFG > TinyOL > image-recognition > src > €+ output_handler.cc > ...
1’ #include "tensorflow/lite/micro/examples/hello_world/output_handler.h"

2

3 void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
4 float y_value) {

5 // Log the current X and Y values

6 TF_LITE_REPORT_ERROR(error_reporter, "x_value: %f, y value: %f\n",
7 static_cast<double>(x_value),

8 static_cast<double>(y_value));

9
10 }

Figure 20: output_-handler.cc file

G main.cpp 9+ X

TinyODL-TFG > TinyOL > image-recognition > src > € main.cpp > ...
1 #include <Arduino.h>

2

3 #include "constants.h"

4 #include "output_handler.h"

5 #include "mobilenet_v1_1.0_224 quant.h"

6 #include "tensorflow/lite/experimental/micro/all_ops_resolver.h"

7 #include "tensorflow/lite/experimental/micro/micro_error_reporter.h”
8 #include "tensorflow/lite/experimental/micro/micro_interpreter.h"

9 #include "tensorflow/lite/schema/schema_generated.h"
10 #include "tensorflow/lite/version.h"
11
12 // Globals, used for compatibility with Arduino-style sketches.
13 namespace {
14 tflite: :ErrorReporter* error_reporter = nullptr;
15 const tflite::Model* model = nullptr;
16 tflite::MicroInterpreter* interpreter = nullptr;
17 TfLiteTensor* input = nullptr;
18 TfLiteTensor* output = nullptr;
19 int inference_count = 0;
20
21 // Create an area of memory to use for input, output, and intermediate arrays.
22 // Finding the minimum value for your model may require some trial and error.
23 constexpr int kTensorArenaSize = 2 * 1024;
24 uint8_t tensor_arena[kTensorArenaSize];

25 } // namespace

Figure 21: main.cc file: global variables

63

G+ main.cpp 9+ X

TinyODL-TFG > TinyOL > image-recognition > src > € main.cpp > @ loop
28 void setup() {

29 Serial.begin(96€0);

30

31 // Set up logging. Google style is to avoid globals or statics because of
32 // Llifetime uncertainty, but since this has a trivial destructor it's okay.
33 // NOLINTNEXTLINE(runtime-global-variables)

34 static tflite::MicroErrorReporter micro_error_reporter;

35 error_reporter = µ_error_reporter;

36

37 // Map the model into a usable data structure. This doesn't involve any
38 // copying or parsing, it's a very lLightweight operation.

39 model = tflite::GetModel(g sine model data);

40 if (model->version() != TFLITE SCHEMA VERSION) {

41 error_reporter->Report(

42 "Model provided is schema version %d not equal "

43 "to supported version %d.",

44 model->version(), TFLITE SCHEMA VERSION);

45 return;

46 }

47

48 // This pulls in all the operation implementations we need.

49 // NOLINTNEXTLINE(runtime-global-variables)

50 static tflite::gps::micro::AllOpsResolver resolver;

51

52 // Build an interpreter to run the model with.

53 static tflite::Microlnterpreter static_interpreter(

54 model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
55 interpreter = &static_interpreter;

56

57 // Allocate memory from the tensor_arena for the model's tensors.
58 TfLiteStatus allocate_status = interpreter->AllocateTensors();

59 if (allocate_status != kTfLiteOk) {

60 error_reporter->Report(format: "AllocateTensors() failed");

61 return;

62 }

63

64 // Obtain pointers to the model's input and output tensors.

65 input = interpreter->input(@);

66 output = interpreter->output(@);

67

68 // Keep track of how many inferences we have performed.

69 inference_count = 8;

70}

Figure 22: main.cc file: setup function

64

G+ main.cpp 9+ X

TinyODL-TFG > TinyOL > image-recognition > src > € main.cpp > ...

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
1ee
lel
102
103
1e4

// The name of this function is important for Arduino compatibility.
v void loop() {

// Calculate an x value to feed into the model. We compare the current

// inference_count to the number of inferences per cycle to determine

// our position within the range of possible x values the model was

// trained on, and use this to calculate a value.

float position = static_cast<float>(inference_count) /
static_cast<float>(kInferencesPerCycle);

float x_val = position * kXrange;

// Place our calculated x value in the model's input tensor
input->data.f[@] = x_val;

// Run 1inference, and report any error
TfLiteStatus invoke status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
er‘r‘or_r‘eporter‘—)Repor‘t(- "Invoke failed on x_val: %f\n",
static_cast<double>(x_val));
return;

// Read the predicted y value from the model's output tensor
float y_val = output->data.f[e];

// Output the results. A custom HandleOutput function can be implemented
// for each supported hardware target.

HandleOutput(error_reporter, X.value: x_val, y'value:y val);

// Increment the inference_counter, and reset it if we have reached
// the total number per cycle

inference_count += 1;

if (inference_count >= kInferencesPerCycle) inference_count = 0;

Figure 23: main.cc file: loop function

65

C neural_networkh 1,M X

Portenta-Dual-Core > € neural_network.h > ...
9 static const int PatternCount = 3;
10 static const int InputNodes = 650;
11 static const int HiddenNodes = 25;
12 static const int OutputNodes = 3;
13 static const float InitialWeightMax = ©.05;
14 static const float InitialWeightMin = -©.5;
15
16 class NeuralNetwork {
17’ public:

18 NeuralNetwork();

19’ void initWeights();

20 void initialize(float LearningRate, float Momentum, int DropoutRate);
21’ // ~NeuralNetwork();

22 // void initWeights();

23 float forward(volatile float Input[], const float Target[]);

24 float backward(volatile float Input[], const float Target[]); // Input will be changed!!
257

26’ float* get_output();

27 float* get_HiddenWeights();

28’ float* get_OutputWeights();

29 float get_error();

30

31’ private:

32 float Hidden[HiddenNodes] = {};

33 float Output[OutputNodes] = {};

34 float HiddenWeights[(InputNodes + 1) * HiddenNodes] = {};

35 float OutputWeights[(HiddenNodes + 1) * OQutputNodes] = {};

36 float HiddenDelta[HiddenNodes] = {};

37 float OutputDelta[OutputNodes] = {};

38 float ChangeHiddenWeights[(InputNodes + 1) * HiddenNodes] = {};

39 float ChangeOutputWeights[(HiddenNodes + 1) * OutputNodes] = {};

40

41 float Error;

42 float LearningRate = 0.6;

43 float Momentum = 0.9;

44 // From @ to 108, the percentage of input features that will be set to @
45 int DropoutRate = 0;

46 13

Figure 24: Nil’s NN implementation: Header file

66

G+ neural_network.cpp 7 X

Portenta-Dual-Core > € neural_network.cpp > clangd > @ NeuralNetwork:forward
3 #include <arduino.h>

4 #include "neural_network.h"
5 #include <math.h>
6
7 NeuralNetwork: :NeuralNetwork() {
8 this->initWeights();
° }
10 5
11 Vil
12 * Intialize weights to random numebrs
13 4
14 void NeuralNetwork::initWeights() {
15 for(int i = @ ; i < HiddenNodes ; i++) {
16 for(int j = @ ; j <= InputNodes ; j++) {
17 ChangeHiddenWeights[j*HiddenNodes + i] = ©.0 ;
18 HiddenWeights[j*HiddenNodes + i] = random(InitialWeightMin, InitialWeightMax);
19 }
20 }
21 for(int 1 = @ ; i < OutputNodes ; i ++) {
22 for(int j = @ ; j <= HiddenNodes ; j++) {
23 ChangeOutputWeights[j*OutputNodes + i] = 0.0 ;
24 OutputWeights[j*OutputNodes + i] = random(InitialWeightMin, InitialWeightMax);
25 }
26 }
27}
28 N
29 void NeuralNetwork::initialize(float LearningRate, float Momentum, int DropoutRate) {
30 this->LearningRate = LearningRate;
31 this->Momentum = Momentum;
32 this->DropoutRate = DropoutRate;
33}
147 float* NeuralNetwork::get_output(){
148 return Output;
149 }
150
151 float* NeuralNetwork::get HiddenWeights(){
152 return HiddenWeights;
153}
154
155 float* NeuralNetwork::get_outputWeights(){
156 return OutputWeights;
157}
158
159 float NeuralNetwork::get_error(){
160 return Error;
161}

Figure 25: Nil’s NN implementation: Function implementations.

67

G+ neural_network.cpp 7, M X

Portenta-Dual-Core > €* neural_network.cpp > ...
35 v float NeuralNetwork::forward(volatile float Input[], const float Target[]){

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

float error = 0;

JRRRHERAAF A A A A A A AAAAAAA A F A FFF A AAAAAA A A A F A KK FFH K

* Compute hidden Llayer activations
st stof ol kR sk et R ek s R ks R ks R R stk s R R stk s R R ok s sk R sk sk ok /
for (int i = @; i < HiddenNodes; i++) {
float Accum = HiddenWeights[InputNodes*HiddenNodes + i];
for (int j = @; j < InputNodes; j++) {
Accum += Input[j] * HiddenWeights[j*HiddenNodes + i];

}
Hidden[i] = 1.0 / (1.0 + exp(X& -Accum));

/R R R sk Rk R s R R ks R R Rt R stk sk R sk ko sk ok kR ek ok ks ok ok o

* Compute output layer activations and calculate errors
AR A AR AR F AR F A A F AR KA H A F A A A F A KA KA A A KA KK
for (int i = @; i < OutputNodes; i++) {
float Accum = OutputWeights[HiddenNodes*OutputNodes + i];
for (int j = @; j < HiddenNodes; j++) {
Accum += Hidden[j] * OutputWeights[j*OutputNodes + i];
}
output[i] = 1.0 / (1.0 + exp(X& -Accum));
// OutputDelta[i] = (Target[i] - Output[i]) * output[i] * (1.0 - Output[i]);
error += 0.33333 * (Target[i] - Output[i]) * (Target[i] - Output[i]);
}

return error;

Figure 26: Nil’s NN implementation: Forward function.

68

G+ neural_network.cpp 7, M X

Portenta-Dual-Core > €* neural_network.cpp > clangd > @ NeuralNetwork:backward

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

// Input will be changed!!
float NeuralNetwork::backward(volatile float Input[], const float Target[]){

float error = 0;
for (int i = @; i < InputNodes; i++) {
if (rand() % 108 < this->DropoutRate) {
Input[i] = o;

}

// Forward
/**

* Compute hidden layer activations
**/
for (int i = @; i < HiddenNodes; i++) {
float Accum = HiddenWeights[InputNodes*HiddenNodes + i];
for (int j = ©; j < InputNodes; j++) {
Accum += Input[j] * HiddenWeights[j*HiddenNodes + i];

}
Hidden[i] = 1.6 / (1.0 + exp(X: -Accum));

/**
* Compute output Llayer activations and calculate errors
HRFFAEAAEFHHEF A FFH AT FFHAFAAF K AE A KK EAAAFFA KA FFA KA EFAAKF K/
for (int i = @; i < OutputNodes; i++) {
float Accum = OutputWeights[HiddenNodes*QutputNodes + i];
for (int j = ©; j < HiddenNodes; j++) {
Accum += Hidden[j] * OutputWeights[j*OutputNodes + i];
}
Output[i] = 1.0 / (1.0 + exp(X: -Accum)); // Sigmoid, from @ to 1
OutputDelta[i] = (Target[i] - Output[i]) * Output[i] * (1.© - Output[i]);
error += 1/0utputNodes * (Target[i] - Output[i]) * (Target[i] - Output[i]);
}
// End forward

Figure 27: Nil’s NN implementation: Backward function, inference part.

69

G+ neural_network.cpp 7, M X

Portenta-Dual-Core > G neural_network.cpp > clangd > @ NeuralNetwork::get OutputWeights

99 // Backward

100 /**

lel * Backpropagate errors to hidden Layer

102 **/

1e3 for(int 1 = @ ; 1 < HiddenNodes ; i++) {

1e4 float Accum = 8.0 ;

105 for(int j = @ ; j < OutputNodes ; j++) {

1062 Accum += OutputWeights[i*OutputNodes + j] * OutputDelta[j];

107 }

1082 HiddenDelta[i] = Accum * Hidden[i] * (1.6 - Hidden[i]);

109 }

1le

111 /**

112 * Update Inner-->Hidden Weights

113 **/

114 for(int i = @ ; i < HiddenNodes ; i++) {

1152 ChangeHiddenWeights[InputNodes*HiddenNodes + i] =

116? LearningRate * HiddenDelta[i] +

1172 Momentum * ChangeHiddenWeights[InputNodes*HiddenNodes + i];

1182 HiddenWeights[InputNodes*HiddenNodes + i] += ChangeHiddenWeights[InputNodes*HiddenNodes + i];

119 for(int j = @ ; j < InputNodes ; Jj++) {

128? ChangeHiddenWeights[j*HiddenNodes + i] =

121% LearningRate * Input[j] * HiddenDelta[i] +

122 ¢ Momentum * ChangeHiddenWeights[j*HiddenNodes + 1i];
iddenWeights[j*HiddenNodes + i] += ChangeHiddenWeights[j*HiddenNodes + i];

1232 HiddenWeights[j*HiddenNod i Ch HiddenWeights[j*HiddenNod i

124 }

125 }

126

127 /**

128 * Update Hidden-->Output Weights

129 **/

130 for(int 1 = @ ; i < OutputNodes ; i ++) {

1312 ChangeOutputWeights[HiddenNodes*OutputNodes + i] =

132% LearningRate * OutputDelta[i] +

1332 Momentum * ChangeOutputWeights[HiddenNodes*OutputNodes + 1i];

1342 OutputWeights[HiddenNodes*OutputNodes + i] += ChangeOutputWeights[HiddenNodes*OutputNodes + i];

135 for(int j = @ ; j < HiddenNodes ; j++) {

1362 ChangeOutputheights[j*OutputNodes + i] =

137% LearningRate * Hidden[j] * OutputDelta[i] +

138 ¢ Momentum * ChangeOutputWeights[j*OutputNodes + i];

1392 OutputWeights[j*OutputNodes + i] += ChangeOutputWeights[j*OutputNodes + i];
140 }

141 }

142

143 return error;

144)}

Figure 28: Nil’s NN implementation: Backward function, update weights.

70

G+ layerhpp 7, M X

FL_with_CNN > €* layer.hpp ? ...
6 class Layer {

7

8 5 protected:

9 int InputSize, OutputSize;

10 float* Output;

11

12 float InitialWeightMax = @©.5;

13 float LearningRate;

14 float Momentum;

15

16% float sigmoid(float value) { return (1.0 / (1.0 + exp(-value))); }
177 float ReLU(float value) { return max(@,value); }

182 float RelLU_prime(float value) { return value > © ? 1 : 0; }
19

20 virtual float activation_function(float value) {

21 return ReLU(value);

22 }

23’ virtual float activation_function_prime(float value) {

24 return RelLU_prime(value);

25 }

26

27 public:

28 int randomInt(int range=20) {

29 int rand = random(range);

30 return rand - range/2;

31 }

32 float randomFloat(int range=100) {

33 float rand = float(random(range))/float(range);

34 return 2.0 * (rand - ©.5);

35 }

36

37 virtual float* forward(const float Input[], bool verbose=false);
38 virtual float* backward(float gradient[], const float Input[], bool verbose=false);
39

40 virtual void printWeights();

41 int getInputSize() { return InputSize; }

42 int getOutputSize() { return OutputSize; }

43 }s

Figure 29: Layer class: attributes and activation functions.

71

G+ layerhpp 7, M X

FL_with_CNN > €+ layer.hpp > ...
67 v class Dense : public Layer {

68

69 public:

702 Dense(int InputSize, int OutputSize,

71§ float LearningRate=0.3, float Momentum=0.6);
72 void initWeights();

73 void printWeights();

74

75; float* forward(const float Input[],

76% bool verbose=false);

772 float* backward(float gradient[], const float Input[],
78 bool verbose=false);

79

80 private:

81 float* Weights;

82 float* ChangeWeights;

83 float* InputGradient;

84

85 };

Figure 30: Dense layer class: Header file

G layer.cpp 9+, M X

FL_with_.CNN > € layer.cpp > ...

14 Dense: :Dense(int InputSize, int OutputSize, float LearningRate, float Momentum)

15 {

16 this->InputSize = InputSize;

17 this->OutputSize = OutputSize;

18 this->LearningRate = LearningRate;

19 this->Momentum = Momentum;

20

21 Weights = new float[(InputSize+1l) * OutputSize];
22 ChangelWeights = new float[(InputSize+l) * OutputSize];
23 Output = new float[OutputSize];

24 InputGradient = new float[InputSize];

25

26 initWeights();

27}

28 void Dense::initWeights()

29 {

30 for(int i=0; i < (InputSize+l)*OutputSize; ++i) {

31 ChangeWeights[i] = 0.0;

32 Weights[i] = randomFloat() * InitialWeightMax;

33 }

34}

Figure 31: Dense layer class: Function implementations.

72

G+ layer.cpp 9+, M X
FL_with_CNN > €+ layer.cpp > ...
46 float* Dense::forward(const float Input[], bool verbose)

47 {

48 for(int 0=0; o<OutputSize; ++0) {

49 // Bias value

50’ float Accum = Weights[InputSize*OutputSize + o];

51 // Weights

52 for(int i=0; i<InputSize; ++i) {

53 R Accum += Input[i] * Weights[i*OutputSize + o];

54/ }

55 : Output[o] = activation_function(value: Accum);

56 }

57 return Output;

58 }

59

60 float* Dense::backward(float gradient[] , const float Input[], bool verbose)
61 {

62 for(int i=0; i<InputSize; ++i) {

63 InputGradient[i] = 0.0;

64 for(int 0=0; o<OutputSize; ++0) {

65 // Backward the activation function

66 gradient[o] = activation_function_prime(value: gradient[o]);

67 // Calc input gradient

68 InputGradient[i] += Weights[i*OutputSize + o] * gradient[o];

69 // Update weights

70% ChangeWeights[i*OutputSize + o] =

71% LearningRate * Input[i] * gradient[o] + Momentum * ChangeWeights[i*OutputSize + o];
72 Weights[i*OutputSize + o] = ChangeWeights[i*OutputSize + o];

73} }

74 }

75" // Update bias

76 for(int 0=0; o<OutputSize; ++o) {

77% ChangeWeights[InputSize*OutputSize + o] =

78; LearningRate * gradient[o] + Momentum * ChangeWeights[InputSize*OutputSize + o];
79 3 Weights[InputSize*OutputSize + o] = ChangeWeights[InputSize*OutputSize + o];
80 }

81 return InputGradient;

82 }

Figure 32: Dense layer class: Forward and backward functions.

G+ layerhpp 7.M X

FL_with_.CNN > €+ layer.hpp > clangd > % Layer > @ backward
89 v class Convolutional : public Layer {

90

91 public:

922 Convolutional(int InputDim[3], int KernelDim[2], int FilterSize,
932 float LearningRate=0.3, float Momentum=0.9);

94 N void initKernels();

95 float* forward(const float Input[], bool verbose=false);

96 float* backward(float gradient[], const float Input[], bool verbose=false);
97

98 private:

99 int InputHeight, InputWidth, InputDepth;

100 int KernelHeight, KernelWidth, KernelSize, FilterSize;

101 int OutputHeight, OutputWidth;

102

103 float* Bias;

104 float* Kernels;

105 float* ChangeBias;

106 float* ChangeKernels;

107

1082 void convolve(const float gradient[], const float Kernel[],
1692 float* InputGradient);

110 void correlate(float* Output, const float Input[], const float Kernel[],
111 const int InputHeight, const int KernelHeight,
112} const int InputWidth, const int KernelWidth);
13 g \

Figure 33: Convolutional layer class: Header file

73

G layer.cpp 9+ M X

FL_with_CNN > €+ layer.cpp > ...

862 Convolutional: :Convolutional(int InputDim[3], int KernelDim[2], int
87 §v float LearningRate, float Momentum)
88 {

89 this->InputHeight = InputDim[e];

L] this->InputWidth = InputDim[1];

91 this->InputSize = InputHeight*InputWidth;

92 this->InputDepth = InputDim[2];

93

94 this->KernelHeight = KernelDim[@];

95 this-»>KernelWidth = KernelDim[1];

96 this-»KernelSize = KernelHeight*KernelWidth;

97 this->FilterSize = FilterSize;

98

99 this-»>OutputHeight = InputHeight - KernelHeight + 1;

lee this->OutputWidth = InputWidth - KernelWidth + 1;

le1 this->0OutputSize = OutputHeight*OutputwWidth;

le2

1e3 this->LearningRate = LearningRate;

le4 this->Momentum = Momentum;

1es5

1ee6 Bias = new float[FilterSize * OQutputSize];

187 Kernels = new float[FilterSize * InputDepth * KernelSize];
1e8 ChangeBias = new float[FilterSize * OutputSize];

1e9 ChangeKernels = new float[FilterSize * InputDepth * KernelSize];
11e Output = new float[FilterSize * OQutputSize];

111

112 initKernels();

113}

114 void Convolutional::initKernels()

115 {

116 for(int i=@; i < FilterSize * OutputSize; ++i) {

117 float rand = float(random(lee))/10e.e;

118 Bias[i] = 2.8 * (rand - ©.5) * InitialWeightMax;

119 }

12 for(int i=@; i < FilterSize * InputDepth * KernelSize; ++i) {
121 ChangeKernels[i] = @.9;

122 float rand = float(random(lee))/1ee.e;

123 Kernels[i] = 2.8 * (rand - ©.5) * InitialWeightMax;

124 }

125 }

Figure 34: Convolutional layer class: Function implementations.

74

FilterSize,

G+ layer.cpp 9+, M @

FL_with_CNN > €* layer.cpp > ...

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

float* Convolutional::forward(const float Input[], bool verbose)

{

// For each output matrix
for(int f=0; f<FilterSize; ++f) {
// Fore each output value
for(int 0=0; o<OutputSize; ++o0) {
// First add the bias value
float Accum = Bias[f*OutputSize + o];
int row0 = o/OutputWidth, colO = o%OutputWidth;
// For each input matrix
for(int d=@; d<InputDepth; ++d) {
// For each kernel value
for(int k=0; k<KernelSize; ++k) {
int rowK = k/KernelWidth, colK = k%KernelWidth;
int inputPos = d*InputSize + (rowO+rowK)*InputWidth + (colO+colK);
// Add input value times kernel value
Accum += Input[inputPos] * Kernels[f*InputDepth*KernelSize + d*KernelSize + k];

}
Output[f*OutputSize + o] = Accum;

}
return Output;

Figure 35: Convolutional layer class: Forward function.

G+ layer.cpp 9+, M X

FL_with_CNN > G+ layer.cpp > ...
float* Convolutional::backward(float gradient[], const float Input[], bool verbose)

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
17e
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

{

float* InputGradient = new float[InputDepth * InputSize];
// For each Output matrix
for(int f=0; f<FilterSize; ++f) {
// For each Input matrix
for(int d=0; d<InputDepth; ++d) {
// Calculate Input gradient
convolve(gradient: &gradient[f*OutputSize],
Kernel: &ernels[f*InputDepth*KernelSize + d*KernelSize],
InputGradient: &InputGradient[d*InputSize]);
// Calculate Kernel gradient
for(int k=0; k<KernelSize; ++k) {
int rowK = k/KernelWidth, colK = k%KernelWidth;
float Accum = 0.0;
for(int 0=0; o<OutputSize; ++o0) {
int row0 = o/OutputWidth, col0 = o%OutputWidth;
int whichInput = d*InputSize + (rowO+rowK)*InputWidth + (colO+colK);
Accum += Input[whichInput] * gradient[f*OutputSize + o];
}
ChangeKernels[f*InputDepth*KernelSize + d*KernelSize + k] = LearningRate * Accum +
Momentum * ChangeKernels[f*InputDepth*KernelSize + d*KernelSize + k];
Kernels[f*InputDepth*KernelSize + d*KernelSize + k] =
ChangeKernels[f*InputDepth*KernelSize + d*KernelSize + k];

}
// Calculate Bias gradient
for(int 0=0; o<OutputSize; ++o) {
ChangeBias[f*OutputSize + o] = LearningRate * gradient[f*OutputSize + o] +
Momentum * ChangeBias[f*OutputSize + o];
Bias[f*OutputSize + o] = ChangeBias[f*OutputSize + o];

}
return InputGradient;
Figure 36: Convolutional layer class: Backward function.

G

75

G layer.cpp 9+, M X

FL_with_CNN > G+ layer.cpp > ...

187 void Convolutional::convolve(const float gradient[], const float Kernel[], float* InputGradient)
188 {

189 // Calc new Output Gradient matrix

190 int DimOffset = InputHeight - (KernelHeight-1);

191 float newOG[(OutputHeight + 2*DimOffset) * (OutputWidth + 2*DimOffset)];

192 // For every outer value before the inner matrix => @

193§ for(int 0=0; o < (DimOffset)*(OutputWidth + 2*DimOffset); ++o)

194 newOG[o] = @;

195 // The inner matrix is the OutputGradient matrix, the values before and after inner values => @
196 v for(int 0=0; o < (OutputHeight)*(OutputWidth + 2*DimOffset); ++o0) {

197/ if(o%(OutputWidth + 2*DimOffset) < DimOffset ||

198 é/ o%(OutputWidth + 2*DimOffset) > (OutputWidth + 2*DimOffset - 1)-DimOffset)
199 {

200 newOG[o] = 0;

201 | }

202 else newOG[o] = gradient[o-DimOffset];

203 }

204 // For every outer value after the inner matrix => @

205 for(int 0=0; o < (DimOffset)*(OutputWidth + 2*DimOffset); ++o)

206 newOG[(OutputWidth + 2*DimOffset - 1) - o] = ©;

207

208 // Correlate the Output Gradient matrix with the 186° rotated Kernel matrix

209 v for(int i=0; i<InputSize; ++i) {

210 InputGradient[i] = @;

2112 int rowI = i/InputWidth, colI = i%InputWidth;

212 v for(int k=0; k<KernelSize; ++k) {

213§ int rowK = k/InputWidth, colK = k%InputWidth;

214 int outputPos = (rowI + rowK)*(OutputWidth + 2*DimOffset) + (colIl + colK);
215 InputGradient[i] += newOG[outputPos] * Kernel[(KernelSize-1)-k];

216 }

217 }

218 | }

Figure 37: Convolutional layer class: Convolve function.

G+ loss.hpp 1M X

FL_with_CNN > €* loss.hpp > ...
1 v #ifndef LOSS
2 #define LOSS

3
4 class Loss {
5 public:
6 virtual float loss(const float output[], const float target[], int numItems) = @;
7 virtual float* loss_prime(const float output[], const float target[], int numItems) = ©;
8
9
10
11 class MSE : public Loss {
12 public:
13 MSE() {};
14 float loss(const float output[], const float target[], int numItems) {
15 float loss = 0.0;
16 for(int i=@; i<numItems; ++1i)
17 loss += (target[i]-output[i])*(target[i]-output[i]);
18 loss /= numItems;
19 return loss;
20 }
21 float* loss_prime(const float output[], const float target[], int numItems) {
22 float* gradient = new float;
23 for(int i=@; i<numItems; ++1i)
24 gradient[i] = 2 * (target[i]-output[i]) / numItems;
25 return gradient;
26 }
27}
28 #endif

Figure 38: Loss class and MSE class.

76

C ModelNN.h 3, M X

FL_with.CNN > € ModeIlNN.h > ...
4 ~ #include "loss.hpp"
#include "layer.hpp"

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21,
22
23
24
25
26
27
28
29
30
31
32

static MSE loss_function = MSE();

class ModelNN {

1

public:
int nLayers=0;

ModelNN(int maxNumLayers);
void add(Layer* layer);
void train(int nItems, float X[], float Y[],

int epochs=1, int batch_size=1, bool verbose=false);
float* test(int nItems, float X[], float Y[], bool verbose=false);
float* predict(float Input[]);

private:
float Error;

int InputSize;
int OutputSize;

Loss* loss = &(loss_function);
Layer** layers;

float* forward(float Input[], float* batchInputs[]);

void backpropagate(float* gradient, float* Input[]);

Figure 39: NN class: Header file

7

G ModelNN.cpp 9+, M X

FL_with_CNN > €* ModelNN.cpp > ..
1 v #include <Arduino.h>
2 #include "ModelNN.h"

3

4 ModelNN: :ModelNN(int maxNumLayers) {

5 layers = new Layer*[maxNumLayers];

6 3}

7

8 void ModelNN: :add(Layer* layer) {

9 layers[nLayers] = layer;

10 if(nLayers == @) InputSize = layer -> getInputSize();
11 OutputSize = layer -> getOutputSize();
12 nLayers++;

13}

14

15 float* ModelNN::forward(float Input[], float* batchInputs[]) {
16 float* output = Input;

17 bool store_inputs = batchInputs != nullptr;

18 for(int 1=0; 1 < nLayers; ++1) {

19 if(store_inputs) batchInputs[l] = output;

20 output = layers[l] -> forward(Input: output);

21 }

22}

23

24 void ModelNN: :backpropagate(float* gradient, float* Inputs[]) {
25 for(int l=nLayers-1; 1 »>= 0; --1) {

262 gradient = layers[l] -> backward(gradient,

272 Input: Inputs[nLayers - (1+1)],
28/ verbose: false);

29 }

30}

Figure 40: NN class: Function implementations

78

G+ ModelNN.cpp 8, M X

FL_with_CNN > € ModelNN.cpp > ...

32
23

ui
>

~ void ModelNN::train(int nItems, float X[], float Y[], int epochs, int batch_size, bool verbose)

float OutputGradient[OutputSize];
float* batchInputs[batch_size*nLayers];
for(int epoch=8; epoch < epochs; ++epoch) {
Error = 0.0;
for(int i=0; i < nItems; ++i) {
// Forward input
int batch = i%batch_size;
float* input = X + i*InputSize;
float* output = for‘war‘d(- input, _ batchInputs + batch*nLayers);
// Calculate error
float* target = Y + i*OutputSize;
float error = loss -> loss(output, target, _OutputSize);
Error += error;
// Calculate gradient
float* gradient = loss -> loss_prime(output, target, _OutputSize);
for(int 0=0; o < OutputSize; ++o0)
OutputGradient[o] += gradient[o];
// Backpropagate when batch is completed
if(batch+l == batch_size || i+l == nItems) {
for(int 0=0; o < OutputSize; ++0) OutputGradient[o] /= batch+1l;
for(int k=0; k < batch+l; ++k) backpropagate(_ OutputGradient,
-batchInputs + k*nLayers);
}
// Reset output gradient
if(batch == 0)
for(int 0=0; o < OutputSize; ++o0) OutputGradient[o] = 0.0;
}
// Calculate the mean errors
Error /= 2*nltems;
if(verbose) {
Serial.print("Epoch: "); Serial.print(epoch);
Serial.print(" ==> Error: "); Serial.println(double(Error));

Figure 41: NN class: Train function

G ModelNN.cpp 8, M X

FL_with_CNN > €+ ModelNN.cpp > ...
70 v float* ModelNN::test(int nItems, float X[], float Y[], bool verbose) {

71
72
73
74
75
76
77
78

»
79

80
81
82
83
84
85

float* errors = new float[nItems];
for(int i=0; i < nItems; ++i) {
float* input = X + i*InputSize;
float* output = forward(IApUt: input,

: nullptr);

// Calculate error

float* target = Y + i*OutputSize;

errors[i] = loss -> loss(output, target, NUmItems: OutputSize);
}

return errors;

float* ModelNN::predict(float Input[]) {
return forward(Input, b : nullptr);

Figure 42: NN class: Test and predict functions.

79

Acronyms

AT Artificial Intelligence. 31
ANN Artificial Neural Network. 6, 7, 57

CNN Convolutional Neural Network. 47-50, 52
CPU Central Processing Unit. 5

DL deep learning. 31, 32
FL Federated Learning. 2, 39, 43, 44, 47, 52, 57

iid independent and identically distributed. 43

IoT Internet of Things. 2, 5, 10, 28, 31

MCU Microcontroller Unit. 5, 8, 11, 31, 40, 41, 57

MCU microcontroller. 33, 39, 41, 42

ML Machine Learning. 2, 5, 6, 8, 31-33, 43, 44

NN Neural Network. 6, 13, 32, 39-42, 53

TFLite TensorFlow Lite. 50, 51

TFLite Micro TensorFlow Lite for Microncontrollers. 50, 51
TinyML Tiny Machine Learning. 2, 5, 8, 31-34, 38-42
TinyODL TinyML On-Device Learning. 2, 9, 10, 31, 39
TinyOL TinyML with Online-Learning. 2, 5, 10, 3942, 44

80

References

1]

2]

[14]
[15]

Machine learning, Oct 2022. Available at https://en.wikipedia.org/wiki/
Machine_learning.

Artificial Neural Network, Oct 2022. Available at https://en.wikipedia.
org/wiki/Artificial_neural_network.

Ram Sagar. What are the challenges of establishing a tinyml
ecosystem, Mar 2020. Available at https://analyticsindiamag.com/
tinyml-ecosystem-challenges-machine-learning-iot/.

Colby R. Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel,
Jeremy Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton
Lokhmotov, David A. Patterson, Danilo Pau, Jae-sun Seo, Jeff Sieracki, Ur-
mish Thakker, Marian Verhelst, and Poonam Yadav. Benchmarking TinyML
Systems: Challenges and Direction. CoRR, abs/2003.04821, 2020. Available
at https://arxiv.org/abs/2003.04821.

Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects, Nov
2021. Available at https://www.sciencedirect.com/science/article/
pii/S1319157821003335.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,
and Pablo Villalobos. Compute Trends Across Three Fras of Machine Learn-
ing, 2022. Available at https://doi.org/10.48550/arxiv.2202.05924.

Wikipedia contributors. GPT-3 — Wikipedia, The Free Encyclopedia,
2022. Available at https://en.wikipedia.org/w/index.php?title=GPT-3&
01did=1102671454.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.
Available at https://arxiv.org/abs/2204.06125.

Manifesto for Agile software development. Available at https://
agilemanifesto.org/.

Huawei Matebook 14 2020 AMD, Mar 2018. Available at https://consumer.
huawei.com/es/laptops/matebook-14-amd-2020/.

The Arduino Team. Portenta H7: Arduino documentation. Available at
https://docs.arduino.cc/hardware/portenta-h7.

The Arduino Team. Portenta Vision Shield: Arduino documentation. Avail-
able at https://docs.arduino.cc/hardware/portenta-vision-shield.

FAQs Google Colab. Available at https://research.google.com/
colaboratory/faq.html#:~:text=Colaboratory’%2C%200r%20%E2%80%
9CColab’E27%80%9D%20for, learning},2C%20data’20analysis’%20and’%
20education.

Project jupyter. Available at https://jupyter.org/.

Tensorflow. Available at https://www.tensorflow.org/.

81

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://analyticsindiamag.com/tinyml-ecosystem-challenges-machine-learning-iot/
https://analyticsindiamag.com/tinyml-ecosystem-challenges-machine-learning-iot/
https://analyticsindiamag.com/tinyml-ecosystem-challenges-machine-learning-iot/
https://analyticsindiamag.com/tinyml-ecosystem-challenges-machine-learning-iot/
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://doi.org/10.48550/arxiv.2202.05924
https://doi.org/10.48550/arxiv.2202.05924
https://doi.org/10.48550/arxiv.2202.05924
https://en.wikipedia.org/w/index.php?title=GPT-3&oldid=1102671454
https://en.wikipedia.org/w/index.php?title=GPT-3&oldid=1102671454
https://en.wikipedia.org/w/index.php?title=GPT-3&oldid=1102671454
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://consumer.huawei.com/es/laptops/matebook-14-amd-2020/
https://consumer.huawei.com/es/laptops/matebook-14-amd-2020/
https://consumer.huawei.com/es/laptops/matebook-14-amd-2020/
https://docs.arduino.cc/hardware/portenta-h7
https://docs.arduino.cc/hardware/portenta-h7
https://docs.arduino.cc/hardware/portenta-vision-shield
https://docs.arduino.cc/hardware/portenta-vision-shield
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education.
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education.
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education.
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education.
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education.
https://jupyter.org/
https://jupyter.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

[16]

[17]
[18]

[31]

[32]

[33]

[34]

Tensorflow Lite: ML for Mobile and edge devices. Available at https://wuw.
tensorflow.org/lite.

Edge impulse. Available at https://www.edgeimpulse.com/.

Platformio Ide - Visual Studio Marketplace. Available at https:
//marketplace.visualstudio.com/items?itemName=platformio.
platformio-ide Platformio Ide - Visual Studio Marketplace.

Microsoft. Visual studio code - code editing. redefined, Nov 2021. Available
at https://code.visualstudio.com/.

The Arduino Team. Software. Available at https://www.arduino.cc/en/
software.

Git webpage. Available at https://git-scm.comn/.

GitHub: Where the world builds software. Available at https://github.
com/.

Notion. One workspace, every team. Available at https://www.notion.so/
product?fredir=1.

About Google Calendar. Available at https://www.google.com/calendar/
about/.

Number 1 cloud-based project management software. Available at https:
//www.gantter.com/.

Overleaf, online latex editor. Available at https://www.overleaf.com/.

Arduino Pro: Portenta H7. Available at https://www.arduino.cc/pro/
hardware/product/portenta-h7.

The Arduino Team. Portenta H7: Arduino documentation. Available at
https://docs.arduino.cc/hardware/portenta-h7.

The Arduino Team. What is Arduino? Available at https://www.arduino.
cc/en/Guide/Introduction.

Haoyu Ren, Darko Anicic, and Thomas A. Runkler. TinyOL: TinyML with
Online-Learning on Microcontrollers. CoRR, abs/2103.08295, 2021. Available
at https://arxiv.org/abs/2103.08295.

Federated learning, Sep 2022. Available at https://en.wikipedia.org/
wiki/Federated_learning.

MJRoBot (Marcelo Rovai). ESP32-cam: Tinyml image classification - fruits
vs veggies, Jan 2022. Available at https://www.hackster.io/mjrobot/
esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970.

Tensorflow Lite examples: Machine Learning Mobile Apps. Available at
https://www.tensorflow.org/lite/examples.

Xxd - unix, linux command. Available at https://www.tutorialspoint.
com/unix_commands/xxd.htm.

Nil Llisterri. Nilllisterri/Portenta-dual-core. Available at https://github.
com/NilLlisterri/Portenta-Dual-Core.

82

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.edgeimpulse.com/
https://www.edgeimpulse.com/
https://marketplace.visualstudio.com/items?itemName=platformio.platformio-ide
https://marketplace.visualstudio.com/items?itemName=platformio.platformio-ide
https://marketplace.visualstudio.com/items?itemName=platformio.platformio-ide
https://marketplace.visualstudio.com/items?itemName=platformio.platformio-ide
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://git-scm.com/
https://git-scm.com/
https://github.com/
https://github.com/
https://github.com/
https://www.notion.so/product?fredir=1
https://www.notion.so/product?fredir=1
https://www.notion.so/product?fredir=1
https://www.google.com/calendar/about/
https://www.google.com/calendar/about/
https://www.google.com/calendar/about/
https://www.gantter.com/
https://www.gantter.com/
https://www.gantter.com/
https://www.overleaf.com/
https://www.overleaf.com/
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://docs.arduino.cc/hardware/portenta-h7
https://docs.arduino.cc/hardware/portenta-h7
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://arxiv.org/abs/2103.08295
https://arxiv.org/abs/2103.08295
https://arxiv.org/abs/2103.08295
https://en.wikipedia.org/wiki/Federated_learning
https://en.wikipedia.org/wiki/Federated_learning
https://en.wikipedia.org/wiki/Federated_learning
https://www.hackster.io/mjrobot/esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970
https://www.hackster.io/mjrobot/esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970
https://www.hackster.io/mjrobot/esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970
https://www.hackster.io/mjrobot/esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/examples
https://www.tutorialspoint.com/unix_commands/xxd.htm
https://www.tutorialspoint.com/unix_commands/xxd.htm
https://www.tutorialspoint.com/unix_commands/xxd.htm
https://github.com/NilLlisterri/Portenta-Dual-Core
https://github.com/NilLlisterri/Portenta-Dual-Core
https://github.com/NilLlisterri/Portenta-Dual-Core

[36]

[37]

Nil Llisterri Giménez. Federated learning on embedded devices. PhD thesis,
UPC, Facultat d’Informatica de Barcelona, Departament d’Arquitectura de
Computadors, Jan 2022. Available at http://hdl.handle.net/2117/363727.

OpenCV documentation. Available at https://docs.opencv.org/2.4/
modules/ml/doc/ml.html.

Microsoft. Microsoft/CNTEK at hackernoon.com. Available at https://
github.com/microsoft/CNTK?ref=hackernoon. com.

Virtual function in C+4++, Jul 2022. Available at https://www.
geeksforgeeks.org/virtual-function-cpp/.

Difference between “kernel” and "Filter” in CNN, Sep 1962. Avail-
able at https://stats.stackexchange.com/questions/154798/
difference-between-kernel-and-filter-in-cnn#:~:text=To%20be’
20straightforward’,3A%20A%20filter, x%20K%2D2%20x%20P%20.

Renu Khandelwal. Convolutional Neural Network: Feature map and filter
visualization, May 2020. Available at https://towardsdatascience.com/

convolutional-neural-network-feature-map-and-filter-visualization-f75012ab5a49c.

Mayank Mishra. Convolutional Neural Networks, explained,
Sep 2020. Available at https://towardsdatascience.com/
convolutional-neural-networks-explained-9cc5188c4939.

Introduction to convolutional neural networks. Available
at https://aigents.co/data-science-blog/publication/
introduction-to-convolutional-neural-networks-cnns.

Convolutional Neural Network from scratch, May 2021. Available at
https://www.youtube.com/watch?v=Lakz2MoHy6o&ab_channel=
TheIndependentCode.

Raimi Karim. 10 gradient descent optimisation algorithms,
Jan 2022. Available at https://towardsdatascience.com/
10-gradient-descent-optimisation-algorithms-86989510b5e9.

Mean squared error, Aug 2022. Available at https://en.wikipedia.org/
wiki/Mean_squared_error.

TinyML On Device Learning event. Available at https://www.tinyml.org/
event/on-device-learning/.

Home: Tinyml foundation. Available at https://www.tinyml.org/.

Fabrizio De Vita, Giorgio Nocera, Dario Bruneo, Valeria Tomaselli, and Mirko
Falchetto. Omn-Device Training of Deep Learning Models on Edge Micro-
controllers. In 2022 IEEE International Conferences on Internet of Things
(iThings) and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics), pages 62—69,
2022. Available at https://ieeexplore.ieee.org/document/9903209.

83

http://hdl.handle.net/2117/363727
http://hdl.handle.net/2117/363727
https://docs.opencv.org/2.4/modules/ml/doc/ml.html
https://docs.opencv.org/2.4/modules/ml/doc/ml.html
https://docs.opencv.org/2.4/modules/ml/doc/ml.html
https://github.com/microsoft/CNTK?ref=hackernoon.com
https://github.com/microsoft/CNTK?ref=hackernoon.com
https://github.com/microsoft/CNTK?ref=hackernoon.com
https://www.geeksforgeeks.org/virtual-function-cpp/
https://www.geeksforgeeks.org/virtual-function-cpp/
https://www.geeksforgeeks.org/virtual-function-cpp/
https://stats.stackexchange.com/questions/154798/difference-between-kernel-and-filter-in-cnn#:~:text=To%20be%20straightforward%3A%20A%20filter,x%20K%2D2%20x%20P%20.
https://stats.stackexchange.com/questions/154798/difference-between-kernel-and-filter-in-cnn#:~:text=To%20be%20straightforward%3A%20A%20filter,x%20K%2D2%20x%20P%20.
https://stats.stackexchange.com/questions/154798/difference-between-kernel-and-filter-in-cnn#:~:text=To%20be%20straightforward%3A%20A%20filter,x%20K%2D2%20x%20P%20.
https://stats.stackexchange.com/questions/154798/difference-between-kernel-and-filter-in-cnn#:~:text=To%20be%20straightforward%3A%20A%20filter,x%20K%2D2%20x%20P%20.
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns
https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns
https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns
https://www.youtube.com/watch?v=Lakz2MoHy6o&ab_channel=TheIndependentCode
https://www.youtube.com/watch?v=Lakz2MoHy6o&ab_channel=TheIndependentCode
https://www.youtube.com/watch?v=Lakz2MoHy6o&ab_channel=TheIndependentCode
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://www.tinyml.org/event/on-device-learning/
https://www.tinyml.org/event/on-device-learning/
https://www.tinyml.org/event/on-device-learning/
https://www.tinyml.org/
https://www.tinyml.org/
https://ieeexplore.ieee.org/document/9903209
https://ieeexplore.ieee.org/document/9903209
https://ieeexplore.ieee.org/document/9903209

	Introduction and Context
	Introduction
	Context
	Concepts definition

	The Problem
	Stakeholders
	Justification

	Objectives
	Project objectives
	Potential obstacles and risks

	Project Planning
	Methodology
	Resources
	Staff
	Material resources
	Software resources
	Software tools for project management

	Time management
	Task definition
	Task planning
	Risk management

	Budget and Sustainability
	Budget management
	Personnel costs
	Material costs
	Indirect costs
	Contingency
	Incidental costs
	Total cost

	Sustainability
	Environment influence
	Economic influence
	Social influence
	So, is this project sustainable?

	Study of TinyML context
	Arduino Portenta H7
	Specifications
	Why choose Arduino Portenta H7 ?
	Arduino programs review
	LED Program
	Camera Program

	TinyML study
	How it works & Why?
	Problems and obstacles
	Steps to develop a TinyML app
	TinyML Wake Word app

	TinyODL techniques
	TinyOL study
	How it works
	Why it works
	Steps to develop a TinyOL app
	Tools to develop a TinyOL app
	Benefits & disadvantages

	Federated Learning study
	How it works
	Steps to develop a FL app
	Benefits & disadvantages

	Develop TinyOL app
	Why we chose TinyOL?
	Image classification app
	App definition
	Tools

	Development
	TinyML app
	TinyOL system

	Results

	Develop Federated Learning app
	Adjust image classification app
	Tools

	Development
	Similar NN implementations
	Layer implementation
	Loss function implementation
	NN class implementation
	Dual-Core communication

	Results

	Conclusion
	Project conclusions
	Personal conclusions
	Future of TinyODL

	Annexes
	Task planning table
	Gantt chart
	Figures

	Acronyms
	Bibliography

