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Abstract— In this study, we proposed an automatic detector
for obstructive apnea episodes using only ECG-based time-
series from a single-ECG channel. Several obstructive apnea
episodes were provoked for different separated sequences of 15
minutes in anesthetized Sprague-Dawley rats. In this recurrent
obstructive sleep apnea (OSA) model, each episode lasted 15
s, while the number of total events per sequence was ran-
domly selected. The beat-to-beat interval (RR) and the R-wave
amplitude (Ra) time-series were extracted and processed for
each sequence, and used to train Dynamic Bayesian Networks
with different lags. An optimal trade-off between the lag (L)
and RMSE values was considered to select the best model to
be used when detecting apnea episodes. The selected models
were then used to estimate the occurrence probability of apnea
episodes, p(At), by using a filtering approach. Finally, the time-
series of the estimated probabilities were post-processed using
non-overlapped 15-s epochs, to determine whether they are
classified as apneic or non-apneic segments. Results showed
that those lagged models with orders greater than 5, presented
suitable RMSE values and become more sensitive as the order
increased. A detection threshold of 0.2 seems to provide the best
apnea detection performance overall, with Acc=0.81, Se=0.83
and Sp=0.79, using two ECG parameters and L = 10.

Clinical relevance— Dynamic Bayesian Networks represent
a powerful tool to develop personalized models for apnea
detection and diagnosis in OSA patients.

I. INTRODUCTION

Recurrent apnea during patients’ sleep are caused by
repetitive obstructive sleep apnea (OSA) episodes, resulting
in sustained exposure to intermittent hypoxia (IH). This
condition has been linked to some cardiovascular conse-
quences, including among others, systemic hypertension,
heart failure, coronary artery disease and stroke [1], [2],
[3]. On the other hand, patients suffering from OSA usually
present excessive daytime drowsiness and non-restorative
sleep, tiredness, reduced learning capabilities, and significant
social problems caused by poor mental performance.

Although the links between cardiovascular diseases and IH
are unclear, an elevated sympathetic tone of autonomic con-
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trol has been suggested as an important contributing factor.
Moreover, during OSA, the muscles of the respiratory system
increase the mechanical effort to overcome the occlusion.
This additional respiratory effort can influence other periph-
eral systems such as the cardiovascular system. In particular,
the surface electrocardiogram (ECG) can be very informative
about apneic events and has been widely used for apnea
detection. In general, patientS’ breathing information can
be extracted from: the fluctuations observed in the beat-to-
beat interval time-series, named heart rate variability (HRV)
and; the morphological ECG changes caused by breathing
modulation, through the analysis of ECG-derived respiratory
(EDR) signals.

Several studies have proposed automatic approaches for
OSA patients’ diagnosis and sleep apnea detection. These
works usually employ a large set of features extracted from
polysomnographic (PSG) recordings, and apply machine
learning, neural networks, or deep learning techniques to
detect and classify apnea episodes in the night-sleep record-
ings [4]. Other studies have used only ECG-based features
for the same purpose [5], but most of them use segmented
intervals or epoch, typically of one-minute duration, to train
the models and performing the prediction task in an off-line
fashion. However, designing a more simple predictive model,
with higher time resolution and potentially useful for online
predictions, could be of great interest for home monitoring
systems, wearable devices, and healthcare in OSA patients.

The study aimed to detect the occurrence of apnea
episodes based on the effects caused by respiratory obstruc-
tion on different ECG markers. Specifically, we exploited
the subtle changes occurring in the heart rate and ECG
amplitude during apnea episodes using an experimental rat
model. To this end, beat-to-beat time-series of the aforemen-
tioned markers along with apnea information were used to
train individual Dynamic Bayesian Networks (DBN), able to
detect apnea segments using short epochs of 15 s.

II. MATERIALS AND METHODS
A. Experimental data

The study dataset comprises three male Sprague-Dawley
rats anesthetized with urethane (1g/1kg) and with an average
weight of 437±27 g. The animals were connected to a
system, where a nasal mask with two tubes was used to
induce obstructive apneas. One of these tubes was open
to the atmosphere, and the other was connected to a pos-
itive pressure pump to prevent the animal from rebreathing.
Recurrent apnea was simulated by closing the airways in
the tubes through controlled electrovalves. The nasal mask



and electrodes were placed on the anesthetized animals
after shaving the specific positions. The experimental model
was approved by the Institutional Animal Care and Ethics
Committee of the Hospital Clı́nic, Barcelona.

During the experiments, several physiological signals were
recorded including among others, two ECG channels (leads I
and II) using Biopac® Systems, and two respiratory-related
signals such as flow and pressure [6], [7].

B. Experimental Protocol

The experiment setup consisted of several recurrent apnea
sequences provoked for periods of 15 min, preceded, and
followed by 15-min periods of normal respiration. Apnea
episodes were simulated at fixed rates for each sequence,
using 20, 40, or 60 events/hour. Each individual episode
lasted 15 s, while the order of the applied rates was randomly
selected for each rat. Therefore, a total of 30 apnea episodes
were induced in each animal (90 for the dataset) during those
45 min, although the entire record had a total of 115 min
when including the normal respiratory periods.

C. ECG analysis

ECG signals analysis included baseline drift attenuation,
low-pass filtering at 45 Hz (bidirectional 4th order Butter-
worth filter) to remove high-frequency noise, and QRS com-
plex detection using a wavelet-based technique [8] followed
by a visual inspection to exclude abnormal beats. Then, the
R-wave peak amplitude (Ra) and RR interval time-series
were extracted for further analysis and modeling.

D. Bayesian networks to detect apnea episodes

Obstructive apnea episodes affect several physiological
variables from different interacting systems including the
cardiac, respiratory, and neural systems. Such variables re-
flect different responses through amplitude variations and
time duration and may help to detect apnea occurrence
if their relationships can be modeled. In this study, these
variables are represented as univariate time-series that can
affect each other via unknown relationships. To model these
relationships, hybrid DBNs that combine continuous and
categorical variables were used to approximate their temporal
interactions during normal respiration and apnea episodes.

BNs are a type of probabilistic graphical model represent-
ing the conditional independences among random variables
with directed acyclic graphs (DAGs) [9]. They can man-
age both discrete and continuous variables simultaneously
(hybrid BNs), but also only discrete (multinomial BNs) or
continuous nodes (Gaussian BNs). Each node in the DAG
has an associated conditional probability distribution (CPD)
that defines the probability distribution of the node given its
parents in the DAG. In general, for a BN with N variables
X = {X1, ..., XN}, the joint distribution factorizes as:

P (X) =

N∏
i=1

P (Xi|pa(Xi)) (1)

where pa(Xi) denoting the configuration of the set of parents
of Xi in the network.

Specifically, in a hybrid BN, the models are constructed
as a set of Conditional Linear Gaussian (CLG) distribution
models [10]. Here, discrete nodes are not permitted to have
continuous parents, and their conditional distribution given
its parents are multinomial. In the case of continuous nodes,
the conditional distribution Z ∈ XC with discrete parents
ZD ⊆ XD and continuous parents ZC ⊆ XC , is given by:

f(z|pa(z) = {zD, zC}) = N (z;α(zD)+β(zD)T zC , σ
2(zD))

(2)
for all ZD ⊆ XD and ZD ⊆ XD, where α and β are
the coefficients of a linear regression model of Z given
its continuous parents. Note that this model can differ for
each configuration of the discrete variables ZD. After fixing
any configuration of the discrete variables XD, the joint
distribution of any set of continuous variables XC is a
multivariate Gaussian.

1) DBNs: DBNs usually assume a first-order Markovian
(i.e., future states are independent of the past, given the
present) for the underlying process they model. However,
the nature of many biological processes requires relaxing this
assumption to include additional past information in order to
improve model prediction of future states.

In DBN, the time is discretized into slices for a given
period. For each time slice, there is a static BN that has
parents in the previous slices in addition to those of the actual
slice. In our study, each time slice is associated with each
heartbeat occurrence. Here, the joint probability distribution
accounts for all time slices from a certain time T:

p(X0:T ) = p(X0)

T−1∏
t=0

(Xt+1|X0:t) (3)

where Xt = X1t, X2t, . . . , Xnt represents all the nodes in
a time slice t for t = 0, 1, . . . , T . In this equation, it is
required all the previous time slices to be taken into account
to calculate the product. This can be simplified by using the
Markov assumption [9]. On the other hand, the Markovian
order defines the number of time slices required to assume
that the present is independent of the past. Increasing the
Markovian order implies more arcs appearing from earlier
lags to the present, and thus, a greater complexity when
learning the network structure [11].

E. Structure and parameter learning in DBNs

The structure of the DBNs can be learned in two steps:
(1) the intra-slice arcs (static structure) of the network are
learned with the max-min hill-climbing (MMHC) algorithm;
(2) followed by learning the inter-slice arcs (transition struc-
ture). MMHC is a hybrid learning method that searches for
possible network structures with a local search and then
directs the arcs and scores the networks with the Bayesian
information criterion (BIC) [12]. Specifically, a modified
version of the MMHC algorithm named dynamic MMHC
(DMMHC) was applied [13]. Once the network structure
is learned, the next step consists in estimating the network
parameters for each node. This is performed based on the



maximum likelihood estimator (MLE), whose specific form
depends on the parents having each node, and the assumed
distribution for each variable.

F. Statistical inference with DBNs

After learning the parameters of the network, it is possible
to make inferences about any unobserved nodes or system
states by providing some evidence to the DBN. For instance,
we can predict the most likely state of the system (i.e., apnea
episode or not) over the actual interval. The evidence pro-
vided from past time slices should be used to predict the next
time slice for a particular node, but also to estimate the actual
value for some unobserved parameter. For Markovian orders
higher than one, the prediction task consists in providing
some evidence of the observed nodes for the preceding time
slices and predicting the state of the desired nodes at t:

p(Xi,t+1|Y:,0:t) (4)

where Xi,t+1 represents the predicted variable at time t +
1 and Y:,0:t represents the evidence (observed or known
variables) from t = 0 to T . A special case like filtering,
p(Xi,t|Y:,0:t), can also be of particular interest and was
applied in this study [14]. In this case, Xi,t represents the
i-th hidden variables at time t.

The inference tasks usually consist of two types of queries,
conditional probability (CP) and the maximum a posteriori
(MAP) [15]. A CP query is performed when some evidence
E = {Xi1, . . . , Xik} from the set X is available, allowing
to estimate the conditional probability of an event involving
other variables Q = {Xj1, . . . , Xjk}. In the case of MAP
queries, the goal is to find the best combination of values
q∗ for some variables in the BN defined by Q that has the
highest probability given some evidence E.

G. Data preprocessing

The time-series used in the study were preprocessed before
entering the DBN to train the models. A detrend step, based
on a moving average filter, was applied for each marker to
remove slow oscillations and trends that affect the overall
performance of the models. As we are interested in detecting
only apnea episodes (two-stage regime), we do not care about
the actual amplitude of the markers, which can be quite
different from one recording to another. To perform this step,
a 500-beat segment length was selected.

H. Model training and selection

1) Univariate conditional Lagged models: The starting
point when training the DBNs was the first-order Markovian
model (L = 1), where only the RR or Ra time-series was
used together with the apnea information, Ap = {1, 0}.
Then, the Markovian order was gradually increased up to
L=15 to obtain more complex, but higher predictive models.

2) Multivariate conditional Lagged models: The same
strategy described above was followed to train DBNs using
both markers together. In this case, the apnea detection
rate can be substantially improved at the expense of more
complex networks (more arcs between variables/nodes) but

with smaller lags. Figure 1 shows an example of a DBN
obtained for L = 3.

Fig. 1. Dynamic Bayesian network obtained for third-order (L=3) Markov
process using both the RR and Ra markers.

The different models described above were trained for
each 15-min recurrent apnea sequence simulated in each rat.
This allows us to explore the best sequence providing the
more predictive model for a particular animal. The RMSE
and BIC values served as model’s quality measures during
training while used to select the optimal lag for the network.

I. Model assessment

After training the obtained DBNs in each animal and
sequence, the next step is to compute the filtering density
p(xt|y0:t) recursively, where y can be either the RR, the
Ra or both markers, while x represent the apnea occurrence
at time t. The obtained conditional probability time-series
was then smoothed to reduce spurious peaks, using a mov-
ing average filter of 40-sample length. Figure 2 shows an
example of this methodology for a particular sequence of five
apnea episodes. This smoothed probability signal was then
segmented in 15-s epochs, to decide whether it is classified
as a normal or apneic segment. To do this, the RMS values
were computed in each epoch and used as the final decision
measure. Finally, the sensitivity (Se), specificity (Sp), and
accuracy (Acc) of the models were computed and averaged
for all analyzed sequences of recurrent apnea.
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Fig. 2. Example of the conditional probability time-series obtained with
a trained DBN (L=10), and considering both the RR and Ra markers as
the only observed variables.

III. RESULTS AND DISCUSSION
Figure 3 illustrates the RMSE values obtained for each

lag and sequence in two particular recordings. It can be
observed that, from L = 1 to L = 5, the RMSE values
in the upper graphs decreased rapidly, and then remain at
very similar values up to L = 15. Here, a similar pattern
is reflected for the three sequences. However, the bottom
graphs show quite different behavior for the second sequence



compared to the others. Notably, depending on the analyzed
recording, the sequences with the smaller RMSE values
along with the lag parameter, suggest being the best sequence
to train the final model. Among several potential factors, the
number of apnea episodes and the noise level present in the
time-series obtained for each sequence may influence the
overall quality of the models.

Fig. 3. Root mean square error obtained for Ra and RR when fitting the
DBNs with different lags in the three apnea sequences (seq) of two rats.

Figure 4 shows the average results (Ācc, S̄e, S̄p) obtained
for the models’ performance analysis. Different threshold
values, γ = {0.1, 0.2, ..., 0.9}, were used to predict the
presence/absence of apnea in a particular epoch based on
their RMS estimates. A clear and fast drop of the Se values
is observed as the threshold increases, unlike the slower
increase of Acc and Sp, which is a bit expected. For both
cases, the best threshold was 0.2 based on the Euclidean
distance between one unit and the average Se and Sp values,
with Acc = 0.81, Se = 0.80, Sp = 0.80 for L = 5, and Acc
= 0.81, Se = 0.90, Sp=0.78 for L = 15. Here, the higher
the Markov order, the better the sensitivity values, at the
expense of greater model complexity. Therefore, the smaller
lag (L=5) would be a more suitable choice for the model.

Finally, the above results were obtained for DBNs trained
with both the RR and Ra markers. When using only one
of these parameters, the overall performance deteriorates
drastically, suggesting the importance of multivariate models
when dealing with prediction problems. Further works are
needed in order to obtain similar and personalized models in
humans, where OSA detection and diagnosis is much more
challenging, as compared to controlled experimental models.
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Fig. 4. Average performance metrics (Acc: accuracy, Se: sensitivity, Sp:
specificity) obtained for L = 5 (top) and L = 15 (bottom) as a function
of the detection threshold.
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