
TACL: Interoperating asynchronous device APIs
with task-based programming models

David Álvarez∗†, Kevin Sala∗†, Vicenç Beltran∗
∗Barcelona Supercomputing Center, Barcelona, Spain

†Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: {david.alvarez,kevin.sala,vbeltran}@bsc.es

Keywords—Task-based Programming Models, OmpSS-2, Het-
erogeneous Computing, High-Performance Computing

I. EXTENDED ABSTRACT

Heterogeneous architectures have become commonplace in
modern HPC systems. Eight of the world’s top ten supercom-
puters have accelerators, and the up-and-coming MareNostrum
5 will feature accelerated partitions. However, programming
these heterogeneous systems is difficult, as users have to insert
data transfer operations, kernel launches and synchronizations
manually from the host system to its accelerators. This is even
more challenging in distributed heterogeneous systems, as pro-
grammers have to coordinate the previous activities with inter-
node communications between hosts. This work presents the
Task-Aware Ascend Computing Language (TACL), which in-
teroperates with the OmpSs-2 programming model and greatly
simplifies kernel execution, data transfers and synchronizations
between host and accelerators by naturally leveraging the data-
flow execution model of OmpSs-2.

A. OmpSs-2

OmpSs-2 [1] is a task-based parallel programming model
developed by the System Tools and Advanced Runtimes
(STAR) research group at BSC. OmpSs-2 programs are com-
posed of C, C++ or Fortran code annotated with compiler
directives, which can express complex computational patterns
using fine-grained data dependencies between tasks.

This programming model has limited support for heteroge-
neous systems, as implementing device tasks requires extensive
changes in the OmpSs-2 compiler and runtime. The latest
release of OmpSs-2 has support for CUDA tasks only when
used in conjunction with Unified Memory.

B. AscendCL

The Ascend Computing Language [2] encompasses a col-
lection of APIs for users to leverage and operate Huawei’s
Ascend AI Processors [3]. The Ascend AI lineup is based on
Huawei’s proprietary Da Vinci architecture, intended initially
to accelerate neural network training and inference workloads.
However, it is possible to write custom kernels to execute
directly on the accelerator hardware and thus repurpose the
architecture for HPC workloads. Moreover, the AscendCL
library exposes a small subset of BLAS subroutines, such as
gemm and gemv, for matrix multiplication.

C. TACL

TACL is a wrapper around the AscendCL library that
implements two key features to allow the interoperability of
tasks and the accelerator APIs: (1) TACL transparently handles
a pool of ACL streams for tasks to re-use intelligently and
(2) TACL can bind the release of a task’s dependencies to
the completion of all operations in an ACL stream in a non-
blocking manner. With these two capabilities, programmers
can call ACL functions from their tasks without blocking host
CPUs in synchronization functions or risking deadlocks from
inter-device communication functions. The idea to deliver non-
blocking synchronization by delaying the tasks’ dependency
release was initially pioneered by TAMPI [4], [5] for MPI
communications. In this work, we explore its applicability in
heterogeneous computing.

We will use the example in Listing 1 to illustrate the use of
TACL in task-based applications. In this example, a producer
task runs in the host, followed by an offloading step, which
will copy the relevant data to the accelerator, execute a kernel,
and then copy the data back to the host. This is a standard
workflow for most heterogeneous HPC programs.

However, this example features two problems. First, a new
device stream is created and destroyed for every offloading
task. This is done because re-using the same stream for all
tasks would serialize the execution, but creating streams is
generally an expensive operation, which should be avoided.
Moreover, in line 13, the execution of this task is suspended
until all the operations pending on stream finish. However,
in this case, the thread executing the offloading task will be
blocked in this operation, while it could be busy executing
other tasks. Therefore, we are wasting resources on blocking
synchronizations.

We can modify the code as showcased on Listing 2
to solve the problems mentioned above. We substituted
the highlighted functions with calls to the TACL library.
Substitution is one-to-one and existing code can be eas-
ily adapted. After these changes, the two previous prob-
lems no longer exist. Firstly, TACL manages a pool of re-
usable streams, amortizing stream creation costs. As such,
taclrtGetStream is a much faster operation than cre-
ating a new stream from scratch. Secondly, the call to
taclrtSynchronizeStreamAsync is a non-blocking
version of the blocking aclrtSynchronizeStream call.
The TACL call returns immediately without blocking, and the
task can proceed and return. However, the dependencies of

18



1 #pragma oss task out (A[0;size]) label("producer")
2 produceDataHost(A, size);
3

4 #pragma oss task inout(A[0;size]) label("ascend offload")
5 {
6 aclrtStream stream;
7 aclrtCreateStream(&stream);
8

9 aclrtMemcpyAsync(devA, A, ..., ACL_MEMCPY_HOST_TO_DEVICE,
stream);

10 aclopExecute(devA, ..., stream);
11 aclrtMemcpyAsync(A, devA, ..., ACL_MEMCPY_DEVICE_TO_HOST,

stream);
12

13 aclrtSynchronizeStream(stream);
14 aclrtDestroyStream(stream);
15 }
16

17 #pragma oss task in(A[0;size]) label("consumer")
18 consumeDataHost(A, size);

Listing 1. Pseudocode of an application offloading computation to an Ascend
accelerator

1 #pragma oss task out (A[0;size]) label("producer")
2 produceDataHost(A, size);
3

4 #pragma oss task inout(A[0;size]) label("ascend offload")
5 {
6 aclrtStream stream;
7 taclrtGetStream(&stream);
8

9 aclrtMemcpyAsync(devA, A, ..., ACL_MEMCPY_HOST_TO_DEVICE,
stream);

10 aclopExecute(devA, ..., stream);
11 aclrtMemcpyAsync(A, devA, ..., ACL_MEMCPY_DEVICE_TO_HOST,

stream);
12

13 taclrtSynchronizeStreamAsync(stream);
14 taclrtReturnStream(stream);
15 }
16

17 #pragma oss task in(A[0;size]) label("consumer")
18 consumeDataHost(A, size);

Listing 2. Code from Listing 1 adapted with TACL

the offloaded task (the inout(A[0;size])) will not be
released until all pending operations in the stream finish. This
allows the OmpSs-2 runtime to re-use the thread to execute
other tasks instead of wasting resources waiting for blocking
operations.

D. TACL Architecture

The architecture of the TACL library has two main com-
ponents: the stream pool, managing device streams, and the
TACL polling service, as illustrated in Figure 1.

When a program using TACL asks for a stream,
one is returned from the pool. Then, upon calling to
taclrtSynchronizeStreamAsync, the library will use
the OmpSs-2 external event API to block task dependency
release until all outstanding operations are completed. An event
is registered on the device stream to check for the completion
of enqueued operations. This event will be completed once all
previous stream operations have finished, and thus it enables
TACL to check their status. Both the device event and the
OmpSs-2 task handle are stored inside the library.

The polling service component periodically checks the
completion of events. In OmpSs-2, it is possible to have a
recurrent task that has a configurable deadline. Each time the
deadline passes, the task will be scheduled at the next possible
opportunity. This is how the polling service is implemented

User Application

TACLStream 
Pool

Polling 
Service

ACL Runtime

OmpSs-2 
OpenMP

get/return/
sync stream

delay task 
completion

record events
query
status

Fig. 1. Architectural diagram of TACL

in TACL. Internally, this polling service queries the status of
every outstanding device event. Once an event is completed,
TACL uses the OmpSs-2 external event API to notify that the
task that initially requested synchronization should no longer
wait for its offloaded operations to release its dependencies.

E. Conclusions and Future Work

We have shown how TACL can be leveraged to prevent
common problems when writing heterogeneous programs us-
ing task-based programming models. Future work is centered
around porting existing accelerated applications such as HPL-
AI to TACL and evaluating their performance.

II. ACKNOWLEDGMENT

This work has been financially supported by the Huawei-
BSC collaboration project.

REFERENCES

[1] BSC STAR Research Group, “Ompss-2 specification.” [Online].
Available: https://pm.bsc.es/ftp/ompss-2/doc/spec

[2] Huawei, “AscendCL Overview.” [Online]. Avail-
able: https://support.huawei.com/enterprise/en/doc/EDOC1100155021/
d63e3d89/ascendcl-overview

[3] ——, “Ascend 910 AI Processor.” [Online]. Available: https://e.huawei.
com/en/products/cloud-computing-dc/atlas/ascend-910

[4] K. Sala et al., “Improving the interoperability between mpi and
task-based programming models,” in Proceedings of the 25th European
MPI Users’ Group Meeting, ser. EuroMPI’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3236367.3236382

[5] K. Sala, S. Macià, and V. Beltran, “Combining one-sided communica-
tions with task-based programming models,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021, pp. 528–541.

David Álvarez received his BSc degree in Infor-
matics Engineering from UPC in 2019 and his MSc
degree in Research and Innovation in Informatics
at UPC in 2021. Since 2019, he has been with the
System Tools and Advanced Runtimes (STAR) group
of Barcelona Supercomputing Center (BSC). He is
currently a PhD Student and an Associate Part-time
Professor in the Computer Architecture Department
at UPC.

19

https://pm.bsc.es/ftp/ompss-2/doc/spec
https://support.huawei.com/enterprise/en/doc/EDOC1100155021/d63e3d89/ascendcl-overview
https://support.huawei.com/enterprise/en/doc/EDOC1100155021/d63e3d89/ascendcl-overview
https://e.huawei.com/en/products/cloud-computing-dc/atlas/ascend-910
https://e.huawei.com/en/products/cloud-computing-dc/atlas/ascend-910
https://doi.org/10.1145/3236367.3236382



