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a b s t r a c t

We introduce the multicolored graph realization problem (MGR). The input to this
problem is a colored graph (G, ϕ), i.e., a graph G together with a coloring ϕ on its vertices.
We associate each colored graph (G, ϕ) with a cluster graph (Gϕ) in which, after collapsing
all vertices with the same color to a node, we remove multiple edges and self-loops. A
set of vertices S is multicolored when S has exactly one vertex from each color class. The
MGR problem is to decide whether there is a multicolored set S so that, after identifying
each vertex in S with its color class, G[S] coincides with Gϕ .

The MGR problem is related to the well-known class of generalized network prob-
lems, most of which are NP-hard, like the generalized Minimum Spanning Tree problem.
The MGR is a generalization of the multicolored clique problem, which is known to be
W [1]-hard when parameterized by the number of colors. Thus, MGR remains W [1]-
hard, when parameterized by the size of the cluster graph. These results imply that
the MGR problem is W [1]-hard when parameterized by any graph parameter on Gϕ ,
among which lies treewidth. Consequently, we look at the instances of the problem in
which both the number of color classes and the treewidth of Gϕ are unbounded. We
consider three natural such graph classes: chordal graphs, convex bipartite graphs and
2-dimensional grid graphs. We show that MGR is NP-complete when Gϕ is either chordal,
biconvex bipartite, complete bipartite or a 2-dimensional grid. Our reductions show that
the problem remains hard even when the maximum number of vertices in a color class
is 3. In the case of the grid, the hardness holds even for graphs with bounded degree.
We provide a complexity dichotomy with respect to cluster size.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well known that graphs are important tools to model many systems in different disciplines. In particular
raph partitioning and graph clustering are key techniques in various areas of computer science, engineering, biology,
pidemiology, social science, etc. For example, when dealing with the analysis of large social nets, the modelization of
nfection spreading, route planning, community detection in social networks and high performance computing. In many of
hese applications large graphs are partitioned as to control the structural connections among the clusters (the elements
f the partition). Given a partition of the vertices into clusters, the topological notion of the graph quotient provides a way
o obtain a cluster graph as a summary of the input graph. The cluster graph provides a simpler and compact form of the
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omplex network, extracted from an adequate partition of the data, summarizing the relevant relationships among the
lustered data. Graph quotients have many applications in the study of data sets containing complex relationships (see
or example [31]) and they have motivated the study of generalized optimization problems.

Classical combinatorial optimization problems can be generalized in a natural way, by considering a related problem
elative to a given partition of the vertices of the graph. Those generalized combinatorial optimization problems have the
ollowing primary features: the graph is given together with a partition of its vertices in clusters and, when considering
he feasibility constraints of the graph problem, these are expressed in relation to the clusters, rather than as individual
ertices. Some interesting and intensively studied problems belonging to this category are as follows: the generalized
raveling sales person problem [14–16], the generalized minimum spanning tree problem [22,25], the generalized shortest
ath tree problem [1,5], the generalized vehicle routing problem [20,27], the partition graph coloring problem, [3,4],
mong others. For further references on the category of generalized combinatorial optimization problems, we point to
10,13,26] and references therein.

Further problems involving graphs and a partition are the multicolored clique and the multicolored independent set
roblems [12,24]. In this formalism a partition is seen as a coloring (which is not necessarily proper). The goal of the
roblems is to select a multicolored set having a vertex of each color, that induces a clique or an independent set,
espectively. The multicolored clique problem has been studied from the parameterized complexity point of view [12].
he problem is known to be W[1]-hard, when parameterized by the number of colors, i.e., the number of sets in the
artition.
In this paper, we introduce another generalized combinatorial problem, the multicolored graph realization problem

MGR): given a graph together with a partition of its vertices (a colored graph), decide whether there is a multicolored set
nducing the cluster graph, i.e., the quotient graph with respect to the given partition. In network applications it is quite
atural to partition the nodes into non-overlapping clusters. In communication networks such clusters may identify local-
rea subnetworks and in social networks communities of individuals. Inter cluster connections allow to infer structure of
he network in a higher level. We ask whether the high level network structure can be found at the network level. This
roblem has immediate practical motivations. For instance, in a communication network, such a realization provides a
et of nodes and links to reinforce in order to improve the cluster network, without modifying the local-area networks.
n a social network, individual representatives provide a proof that the inferred social relationship among communities
old also at the individual level. In data analysis applications, the problem is equivalent to asking whether we can obtain
articular data fulfilling all the inferred relations.
The MGR problem is solvable in O(nkpoly(n)) time, which is polynomial when the number of colors k is a constant. But,

t is W[1]-hard, when parameterized by the number of colors, as it generalizes the multicolored clique problem. Observe
hat, under this parameterization, the cluster graph has constant size, and therefore, all graph parameters on the cluster
raph are constant. We are interested in analyzing the complexity of the MGR problem when both the number of colors
nd the treewidth of the cluster graph are unbounded. Our first result, based on the complexity of the Multicolored Clique
roblem, is stated as follows (see Section 2 for the appropriate definitions and terminology):

heorem 1. The MGR problem is W[1]-hard when parameterized by the number of colors or parameterized by the treewidth
f the cluster graph.

We next focus on specific classes of graphs for which the complexity of natural problems has been widely studied. In
articular in the class of chordal graphs which form an intensively studied graph class both within structural graph theory
nd within algorithmic graph theory. Recall that several problems that are hard on other classes of graphs such as graph
oloring may be solved in polynomial time on chordal graphs [19]. We show that the MGR problem remains NP-complete
or colored graphs whose cluster graph is a chordal bipartite graph. In particular, we consider the subclasses of convex
ipartite graphs and biconvex bipartite graphs which have been used as a benchmark for complexity of homomorphism
roblems, see e.g. [6,11,21]. We show that the MGR problem is NP-complete for colored graphs whose cluster graph is
iconvex bipartite (see Section 3).

heorem 2. The MGR problem is NP-complete, for colored graph having a biconvex bipartite cluster graph, even when the
luster size is at most 3.

We extend this result to cluster graphs that are chordal (see Section 3). The hardness results also hold in case the
umber of vertices in a color class is constant.

heorem 3. The MGR problem is NP-complete, for colored graphs having a chordal cluster graph, even when the cluster size
s at most 3.

We complement this result by showing that the MGR problem belongs to FPT, for colored graphs having a convex
ipartite cluster graph, when parameterized by the size of the clusters and the maximum degree of the non ordered part.
A third family of bipartite graphs we analyze are the 2–dimensional grid graphs. We are showing the hardness result
n this case as well (see Section 4).
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Fig. 1. A convex bipartite graph.

Theorem 4. The MGR problem is NP-complete, for colored graphs whose cluster graph is a 2-dimensional grid, even when the
cluster size is 6 and the input graph has bounded degree.

In view of those results, we analyze the computational complexity of the problem with respect to the size of the color
classes. We provide a complexity dichotomy with respect to this parameter (see Section 5).

Theorem 5. The MGR problem is NP-complete, for colored graphs with cluster size s ≥ 3, and polynomial time solvable
otherwise.

We also show that the MGR problem, under the double parameterization by cluster size and treewidth of the cluster
graph belongs to FPT.

2. Definitions and preliminaries

In this section, we provide the definitions and terminology used in the paper. We follow notation and basic terminology
in graph theory from Diestel [7].

We consider finite, simple and undirected graphs G = (V , E), i.e., without multiple edges or loops. For S ⊆ V , G[S]
represents the graph induced by S, defined as G[S] = (S, E ∩

(S
2

)
).

A chordal graph is one in which all cycles of four or more vertices have a chord. A bipartite graph is represented by
G = (X ∪ Y , E), where X , Y form a bi-partition of the vertex set and E ⊆ X × Y . Given a bipartite graph G = (X ∪ Y , E),
an ordering of the vertices X has the adjacency property (or the ordering is said to be convex) if, for each vertex v ∈ Y ,
N(v) consists of vertices which are consecutive in the ordering of X . Convex bipartite graphs are the bipartite graphs
G = (X ∪ Y , E) that have the adjacency property on one of the partite sets (let us say X). Biconvex bipartite graphs are
the bipartite graphs G = (X ∪ Y , E) that have the adjacency property on both partite sets. Fig. 1 shows a convex bipartite
graph that is not biconvex. It is known that there are linear time recognition algorithms for these graphs class [23].

Treewidth. In our results involving treewidth we will use the particular kind of a decomposition called nice tree
decompositions. For definitions and notation concerning tree decompositions we refer the reader to [2].

Let (T , X) be a tree decomposition of a graph G. We can make any tree T into a rooted tree by choosing a node r ∈ V (T )
as the root, and directing all edges to the root. In this way we can convert a tree decomposition (T , X) into a rooted tree
decomposition, by fixing one node r as the root in T . A rooted tree decomposition (T , X, r) of G allows us to associate to
every node in the graph a subgraph of G as follows: For v ∈ V (T ), let RT (v) denote the set of nodes in the subtree rooted
at v (including v). For v ∈ V (T ), define V (v) = ∪w∈RT (v)Xw as the set of vertices included in any bag in the subtree rooted
at v. Finally, define the associated graph as G(v) = G[V (v)], the subgraph induced by V (v). Observe that G(r) = G and
that Xv is a separator in G.

A nice tree decomposition is a variant in which the structure of the nodes is simpler. A rooted tree decomposition (T , X)
is nice if each node u ∈ V (T ) can be classified in one of the following four types.

• start node: u has no child and |Xu| = 1.
• forget node: u has one child v and Xu ⊆ Xv and |Xu| = |Xv| − 1.
• introduce node: u has one child v and Xv ⊆ Xu and |Xu| = |Xv| + 1.
• join node: u has two children v and w with Xu = Xv = Xw .

Given a tree decomposition of width k for a graph G, a rooted nice tree decomposition with width at most k for G and a
polynomial number of nodes can be obtained in O(kn) time (see for example [2]).

Complexity classes. Many NP-complete problems can be associated with one or more parameterizations. A parameteriza-
tion is a function κ assigning a non negative integer value to each input x [17]. A fixed parameter tractable (FPT) algorithm
is an algorithm solving a problem parameterized by κ that on input x takes time

f (κ(x)) · |x|Θ(1),

where f (κ) is a (super-polynomial) function that does not depend on |x|. The Parameterized Complexity settles the

question of whether a parameterized problem is solvable by an FPT algorithm. If such an algorithm exists, we say that the
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Fig. 2. A colored graph and its cluster graph.

Fig. 3. In black a multicolored set S realizing Gϕ , for the colored graph given in Fig. 2.

parameterized problem belongs to the class FPT of fixed parameter tractable problems. In a series of fundamental papers
(see [8,9]), Downey and Fellows introduced a series of complexity classes, namely the classes FPT ⊆ W [1] ⊆ W [2] ⊆

· · · ⊆ W [SAT ] ⊆ W [P], and proposed special types of reductions such that hardness for some of the above classes makes
it rather impossible that a problem belongs in FPT.

The multicolored graph realization problem. A coloring of a graph G = (V , E) is a map ϕ : V → N. Observe that our colorings
are not necessarily proper as we do not require that adjacent vertices get different colors. However, all our results will
also hold for proper colorings. Given a coloring ϕ on G, let k(G, ϕ) be the number of different colors used by ϕ. We use
he term colored graph to refer to a pair (G, ϕ).

Given a colored graph (G, ϕ) with G = (V , E), we say that two vertices u and v are equivalent whenever they get the
ame color, i.e., u ∼ϕ v if and only if ϕ(u) = ϕ(v). This is a natural equivalence relation that partitions the vertices of G
nto non empty color classes. We use [u]ϕ (or just [u] when ϕ is clear from the context) to denote the color class of u.

Given a colored graph (G, ϕ), with color classes A1, . . . , Ak, the associated cluster graph is the graph Gϕ = ({1, . . . , k}, Eϕ)
here, for i, j ∈ {1, . . . , k} with i ̸= j, there is an edge (i, j) ∈ Eϕ whenever there is an edge (u, v) ∈ E with u ∈ Ai and

v ∈ Aj. Fig. 2 gives an example of a colored graph, each rectangle representing a color class, and its associated cluster
graph. We say that a set of vertices S ⊆ V is multicolored if, for any 1 ≤ i ≤ k, we have that |S ∩ Ai| = 1, i.e., there
is exactly one vertex in S from each color class. For a multicolored set S, we assume that S = {u1, . . . , uk} so that, for
1 ≤ i ≤ k, [ui] = Ai. A multicolored realization of Gϕ is a multicolored subset S ⊆ V such that the restriction of ϕ to S is an
isomorphism between G[S] and Gϕ , i.e., for ui, uj ∈ S, (ui, uj) ∈ E(G) if and only if (i, j) ∈ E(Gϕ). Fig. 3 shows a multicolored
set realizing Gϕ , for the colored graph given in Fig. 2.

With this notation, we can state the definition of our problem formally.

Multicolored graph realization problem (MGR)

Instance: Undirected graph G = (V , E) and a coloring ϕ of G.
Question: Is there a multicolored realization of Gϕ?

4
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Observe that, given a colored graph (G, ϕ) and a multicolored set S, we can check, in polynomial time, whether S is a
ealization of Gϕ . Therefore, the MGR problem belongs to NP.

We are interested in analyzing the computational complexity of the MGR problem under different parameterizations:
he number of used colors k(G, ϕ), the cluster size s(G, ϕ) = maxv∈V |ϕ−1(ϕ(v))|, the treewidth of the cluster graph, and
ther combinations of parameters. Although the problem is defined as usual in its decision form, the algorithms provided
n the paper are constructive, they produce a multicolored realization in case that one exists.

Our first results follow from a well known problem called the Multicolored Clique Problem (also known as the
artitioned clique problem), which according to [2], was introduced in [12,24]. We provide here a formal definition of
he problem adapted to our notation.

Multicolored clique problem (MC)
Instance: A colored graph (G, ϕ).
Question: Is there a multicolored set S such that G[S] is a clique?

he MC problem is known to be W [1]-hard parameterized by the number of colors [12]. This yields the following result
n the multicolored problem language.

heorem 1. The MGR problem is W [1]-hard when parameterized by the number of colors or parameterized by the treewidth
f the cluster graph.

roof. Observe that, in a colored graph, a necessary condition to have a multicolored clique is the cluster graph Gϕ

eing itself a clique. Therefore, the MC problem is the particular case of the MGR problem when the cluster graph Gϕ is
complete graph. On the other hand, when the number of used colors k is bounded, the cluster graph Gϕ has constant
ize, and therefore, has bounded treewidth. □

. Chordal and convex bipartite cluster graphs

In this section, we analyze the complexity of the MGR problem on colored graphs having a cluster graph that is chordal
r chordal bipartite. We start presenting the NP-hardness for the case of convex bipartite or biconvex bipartite graphs.

heorem 2. The MGR problem is NP-complete, for colored graph having a biconvex bipartite cluster graph, even when the
luster size is at most 3.

roof. As the MGR problem belongs to NP, we only have to show that the problem is NP-hard. For doing so, we provide
reduction from Monotone 1-in-3 SAT problem, which is known to be NP-complete [29]. The input formula Φ (in CNF)

s the conjunction of m clauses, C1, C2, . . . , Cm, over a set of n variables. Furthermore, each clause is the disjunction of
xactly three non-negated variables. The problem asks whether it is possible to assign a value in {0, 1} to each of the n
ariables x1, x2 . . . xn, so that, in each clause, exactly one of the three variables is set to 1. As a shorthand, we write each
lause as (x, y, z), without the use of the ∨ symbol. Furthermore, we assume that the variables in a clause are given in
ncreasing order, i.e. Cj = (xj1 , xj2 , xj3 ) with j1 ≤ j2 ≤ j3

Given an input formula Φ to the Monotone 1-in-3 SAT problem, we construct a colored graph (G, ϕ). Instead of
escribing the coloring ϕ, we provide the different color classes and the connection among their vertices. In this way,
t is easy to see that the construction provides a colored graph with a biconvex bipartite cluster graph. For each Boolean
ariable xi, 1 ≤ i ≤ n, we create a color class Xi having two vertices v0

i and v1
i . For each clause Cj, 1 ≤ j ≤ m, we create a

olor class Yj = {u100
j , u010

j , u001
j } with one vertex for each possible join assignment with only one 1.

The edge set in G is the following:

1. For a clause Cj = (xj1 , xj2 , xj3 ), we connect:

• u100
j with v1

j1
, v0

j2
and v0

j3
and with both v0

i and v1
i , for 1 ≤ i ≤ n with i ̸= j1, j2, j3;

• u010
j with v0

j1
, v1

j2
and v0

j3
and with both v0

i and v1
i , for 1 ≤ i ≤ n with i ̸= j1, j2, j3;

• u001
j with v0

j1
, v0

j2
and v1

j3
and with both v0

i and v1
i ,for 1 ≤ i ≤ n with i ̸= j1, j2, j3.

ig. 4 shows the color classes, the vertices, and the connections corresponding to a clause. Notice that Gϕ is a complete
ipartite graph and therefore biconvex bipartite.
Now we show that the construction is indeed a reduction from the Monotone 1-in-3 SAT problem to the MGR problem.

s a main argument, we translate the appearance of v0
i in a multicolored realization (if it exists) as the assignment xi = 0

nd the appearance of v1
i as the assignment xi = 1, and vice versa.

Let us assume that we have an assignment T such that T (xi) = ti ∈ {0, 1}, for 1 ≤ i ≤ n, in which exactly one variable
or each clause in Φ is assigned to 1. Consider the set

ti tj1 tj2 tj3
S = {vi | 1 ≤ i ≤ n} ∪ {uj | 1 ≤ j ≤ m}.

5
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Fig. 4. The connections representing clause Cj = (x1, x3, x5), in a formula on 5 variables, in the associated colored graph.

For a clause Cj = (xj1 , xj2 , xj3 ), by the definition of G, the vertex u
tj1 tj2 tj3
j becomes connected with all the vertices v

ti
i , for

i ∈ [j1, j3]. Therefore, S is a multicolored realization of Gϕ .
For the reverse implication, let X = ∪

n
i=1Xi. Assume that S is a multicolored realization of Gϕ and that S ∩ X =

{v
t1
1 , v

t2
2 , . . . , v

tn
n }, where ti ∈ {0, 1}, for 1 ≤ i ≤ n. Consider the assignment T (xi) = ti. By construction, the assignment T is

correct, as each variable xi gets a unique assigned value. Furthermore, observe that, if a clause Cj = (xj1 , xj2 , xj3 ) contains a
variable with assigned value 1, the other variables in Cj are assigned value 0. This is due to the fact that S is a realization
of the cluster graph. Without loss of generality, assuming that tj1 = 1, G[S] contains v1

j1
, then it must contain v0

j2
and v0

j3
as well, as u100

j must belong to S; and its neighbors must be contiguous on the interval [j1, j3]. Thus, for each clause, only
one of the three variables has assigned value 1.

Finally, observe that the graph can be constructed in polynomial time from the given formula. □

We can adapt the previous reduction to show that the MGR problem remains hard when the cluster graph is chordal.

Theorem 3. The MGR problem is NP-complete, for colored graphs having a chordal cluster graph, even when the cluster size
is at most 3.

Proof. We modify slightly the construction in the previous theorem to get a colored graph whose cluster graph is chordal.
For doing so, we just add some connections among the lower layers and among the upper layers.

1. For 1 ≤ i < n, we connect the vertices in Xi with those in Xi+1 by a complete bipartite subgraph.
2. For each 1 ≤ j < k ≤ m, we add a complete bipartite graph connecting the vertices in Yi with the vertices in Yk.

In this way, the cluster graph has a clique connecting the clause vertices, a path connecting the variable vertices, and
a complete bipartite graph connecting clauses and variable vertices. Notice that this graph is chordal. As the added
connections among clusters were all-to-all, any multicolored subset realizing the cluster graph does it in both graphs.
Therefore, the construction is a reduction from the Monotone 1-in-3 SAT problem to the MGR problem on chordal
graphs. □

Let G = (X ∪Y , E) be a convex bipartite graph that has the adjacency property with respect to X . We define the spread
of G as the maximum degree of the vertices in Y . Notice that Theorem 3 shows the hardness of the MGR problem when
the cluster size is bounded but the spread is not necessarily bounded. Our next results give an FPT algorithm solving the
MGR problem on colored convex bipartite graphs when parameterized by both the cluster size and the spread.

Proposition 1. The MGR problem belongs to FPT, for colored graphs having a convex bipartite cluster graph, when
parameterized by the cluster size and the spread.

Proof. Let (G, ϕ) be a colored convex bipartite graph, with cluster size ℓ and spread d. As there is a linear time algorithm
to recognize convex bipartite graphs [23,30], we assume that the color classes are X , . . . , X , Y , . . . , Y and that G is a
1 α 1 β ϕ

6
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b
ipartite cluster graph having the adjacency property with respect to the clusters X1, . . . , Xα . Therefore, the neighbors of
Yj are consecutive under this ordering. For 1 ≤ j ≤ β , let aj ≤ bj be such that Yj is connected to Xi, for aj ≤ i ≤ bj. We
devise a dynamic programming algorithm based on the ordering of the X clusters. Let X = ∪

α
i=1Xi and Y = ∪

β

j=1Yj. For
each i, d ≤ i ≤ α, let Pi = Xi−d+1 × · · · × Xi, of tuples formed by d vertices in consecutive layers ending at a vertex in Xi.
Let Gi be the subgraph induced in G by

Vi = (X1 ∪ · · · ∪ Xi) ∪
(
∪j|bj≤iYj

)
.

For each d ≤ i ≤ α, our dynamic programming algorithm keeps a table Mi holding a boolean value for each p ∈ Pi.
Thus the table size is |Pi|. The entry Mi(p) will be set to 1 whenever there is a multicolored set S ⊆ Vi that is a realization
for Gi,ϕ such that S contains all the vertices in p. Otherwise, the value will be 0.

When i = d, for each p ∈ Pd, we have to check whether the set of vertices in p can be extended to a multicolored
realization in Gd. For this, it is enough to check whether, for each color class Yj included in Vd, there exists a vertex uj ∈ Yj
so that it is connected to all the vertices in p belonging to layers in [aj, bj]. In this case, set Md(p) = 1, and otherwise set
Md(p) = 0.

When d < i ≤ α, for p ∈ Pi, we set Mi(p) = 1, if

(1) for any Yj with bj = i, there is a vertex in Yj connected to all the vertices in p in color classes Xi with i ∈ [aj, bj], and
(2) there exists p′

∈ Pi−1, such that the first d − 1 vertices in p appear as the last vertices in p′ and Mi−1(p′) = 1.

Observe that as the spread is d and the considered Y sets are included in Gi but not in Gi−1, condition (1) guarantees
that p can be extended to a multicolored realization with respect to the newly incorporated Y sets. On the other hand,
condition (2) guarantees that the vertices in p can be extended to a multicolored realization with respect to Gi−1, as p′

contains all the vertices in p except the one in the last X cluster.
Thus, we can conclude that the proposed algorithm correctly computes Mi(p) for each i, d ≤ i ≤ α, and p ∈ Pi.
Note that Gα = G, so if Mα(p) = 1, the set of vertices in p can be extended to a multicolored realization for G. The last

step of our algorithm just checks whether there is a p ∈ Pα having Mα(p) = 1.
For the time complexity, observe that |Pi| ≤ ℓd. Checking conditions (1) and (2) is the costliest operation. For a given j

and p, checking condition (1) takes time O(dn). Furthermore, the algorithm performs this checking once for each j. So, the
overall time is O(ℓddn). For given p ∈ Pi and p′

∈ Pi−1, checking condition (2) requires O(d) time. On the other hand, the
number of tuples that p can extend is at most |Xi−1|. This gives an overall time of O(ℓ2ℓd). The total cost is O((nd+ ℓ2)ℓd).

Using standard dynamic programming techniques, the algorithm can be adapted to produce a multicolored realization,
when one exists, within the same time bounds. □

4. Grid cluster graphs

In this section, we consider the MGR problem restricted to colored graphs (G, ϕ) for which the resulting cluster
graph Gϕ is a 2-dimensional grid. Recall that a two-dimensional grid graph is a lattice graph, obtained as the Cartesian
product of two path graphs, on n and m vertices, respectively. Formally, an n × m grid graph Ln,m has vertex set
{(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Two vertices (i, j) and (i′, j′) are adjacent if and only if |i − i′| + |j − j′| = 1. To show
that the problem is hard in this case, we again provide a reduction from the Monotone 1-in-3 SAT problem.

Theorem 4. The MGR problem is NP-complete, for colored graphs whose cluster graph is a 2-dimensional grid, even when the
cluster size is 6 and the input graph has bounded degree.

Proof. The MGR problem remains in NP when the input graph has a cluster graph which is a 2-dimensional grid. To show
that the problem is NP-hard we are going to describe a reduction from the Monotone 1-in-3 SAT problem. Assume that
Φ is a monotone SAT formula on n variables x1, . . . , xn having m clauses C1, . . . , Cm each with exactly three variables.
For simplicity, as we did before, we assume that clause j, 1 ≤ j ≤ m, has the form Cj = (xj1 , xj2 , xj3 ), with j1 < j2 < j3.
We construct a colored graph (G, ϕ) in polynomial time from Φ and will show that Φ has a valid truth assignment if and
only if Gϕ has a multicolored realization.

Our construction uses several gadgets, each one of which describes a color class of (G, ϕ), see Fig. 5. The graph G will
be formed by several copies of those gadgets. We locate them inside a 2-dimensional grid, as shown in Fig. 8. In this way,
it will be clear that Gϕ is indeed a (n + 2) × (2m + 1) 2-dimensional grid.

The gadgets. We use five basic gadgets, each used gadget constitutes a color class in G (see Fig. 5). The first kind, the Var
gadget, contains two vertices, we refer to them for their positions in the box, left and right. They are used to represent
a variable and a selection of one vertex will correspond to an assignment of value to the variable, left vertex with a 1
and the right one with a 0. The second gadget, the Cl gadget, contains 3 vertices. We refer to them as the upper, middle
and lower vertices. They are used for representing a clause. Those three nodes are used for identifying the three valid
assignment values for the variables in the clause, upper with 100, middle with 010, and lower with 001. The third and
the four gadgets, the Var-in-Cl and the Var-not-in-Cl gadgets, contain 3 and 6 vertices, respectively. The first one

is used for a variable that appears in a clause and the second when it does not appear. The three node in the Var-in-Cl

7



J. Díaz, Ö.Y. Diner, M. Serna et al. Discrete Applied Mathematics xxx (xxxx) xxx

g
c

r
a
o

T
g
v
T
F

h
b
a

b
a

C

a
o

Fig. 5. The five basic cluster gadgets.

Fig. 6. The vertical connections among contiguous Var–Var-in-Cl and Var–Var-not-in-Cl gadgets, for a clause Cj = (xj1 , xj2 , xj3 ).

will be referred as upper, middle and lower. The Var-not-in-Cl block has three groups of two vertices (upper, middle
and lower groups), inside each group, we use position (left or right) as a reference. Finally, the fifth gadget, the Pad gadget
contains only one vertex.

The color classes. We first describe the color classes of the graph (G, ϕ). Each color class corresponds to one of the basic
adgets. An example of the construction is given in Fig. 8. The cluster graph (described here as a grid of gadgets) has one
olumn for each variable (in the order x1 . . . xn) and two additional columns, first and last. The upper row starts and ends
with a Pad gadget and it has one Var gadget in each of the columns, i.e., one for each variable.

For each clause, we create two consecutive rows in the grid, following the order of the clauses C1, . . . Cm. The upper
ow associated with a clause Cj, starts and ends with a Cl gadget. At column i, we place a Var-in-Cl gadget, if xi ∈ Cj, or
Var-not-in-Cl gadget, otherwise. The lower row associated with Cj starts and ends with a Pad gadget, and contains
ne Var gadget for each variable.

he connections among vertices. The connections among vertices in the different color classes depends on the type of
adget and on whether the two color classes are connected in the grid vertically or horizontally. Let us start with the
ertical connections. The vertex in a Pad gadget is connected to all the vertices in the vertically contiguous Cl gadgets.
he vertical connections of a Var-in-Cl or a Var-not-in-Cl gadget and its upper and lower Var gadgets are given in
ig. 6.
The horizontal connections are the following: The vertex in a Pad gadget is connected to all the vertices in the

orizontally contiguous Var gadget. The vertices in two horizontally contiguous Var gadgets are connected by a complete
ipartite graph. The other horizontal connections correspond to contiguous pairs of gadgets from the types Cl, Var-in-Cl
nd Var-not-in-Cl. The connections among all the possible combinations of such pairs are described in Fig. 7.
Note that the vertical connections described in Fig. 6 guarantee that the left (right) vertex in a Var gadget is connected

y a path only to a left (right) vertex in another Var gadget in the same column. Furthermore, the horizontal connections,
s described in 7, always join vertices in the same vertical position (upper, middle or lower).

orrectness of the reduction. Observe that the graph together with the coloring can be constructed in polynomial time.
Let us start proving that when Φ is a yes instance of the Monotone 1-in-3 SAT problem, the constructed colored graph

dmits a multicolored realization. Let T be a valid assignment to Φ , i.e., letting T (xi) = ti ∈ {0, 1}, for 1 ≤ i ≤ n, exactly
ne variable in each clause in Φ is set to 1.
8
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Fig. 7. The horizontal connections among contiguous gadgets in a clause row.

We define a set S ⊆ V as follows.

• The unique vertex in any Pad gadget belong to S.
• For each Var gadget corresponding to variable xi we add to S the left vertex, if ti = 1, or the right vertex, if ti = 0.
• Consider a clause Cj = (xj1 , xj2 , xj3 ).

– From the Cl and the Var-in-Cl gadgets in the column associated with Cj, we add to S the upper vertex, if

tj1 tj2 tj3 = 100, the middle one, if tj1 tj2 tj3 = 010, or the lower one, if tj1 tj2 tj3 = 001.
– From a variable xi that does not appear in Cj, we select the upper, middle of lower block, depending on whether

tj1 tj2 tj3 is 100, 010 or 001. Inside the selected block, we add to S the left vertex if xi = 1 or the right vertex if

x = 0 to be added to S.
i

9
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Fig. 8. The colored graph obtained from the monotone formula Φ = ((x1, x2, x3), (x2, x3, x4)). The circled vertices form a multicolored realization of
the cluster graph.

Note that, S contains exactly one vertex from each color class in (G, ϕ) so, it is multicolored. It remains to show that S is
a realization of the cluster graph. Let us first look at the horizontal connections. The circled vertices in the colored graph
given in Fig. 8 are the set S associated with the assignment x1 = 0, x2 = 1, x3 = 0 and x4 = 0.

For the rows that alternate Var clauses, the connections are all to all; therefore, S realizes all the corresponding
connections in the cluster graph. The same happens for the first and the last columns.

Consider a clause Cj = (xj1 , xj2 , xj3 ) and the corresponding assigned values tj1 tj2 tj3 . The vertices in S from the Cl,
Var-in-Cl and Var-not-in-Cl in the row are all in the same vertical position (upper, middle, or lower). Therefore,
according to the horizontal connections, the horizontal path on this row is realized by S (see Figs. 7 and 8).

Consider a variable xi with assigned value ti, observe that depending on the value ti, the selected vertices are all on
the left (ti = 1) or on the right (ti = 0). Therefore, according to the vertical connections (see Figs. 6 and 8), the vertical
path on this column is realized by S. We conclude that S is a multicolored realization for Gϕ

To show the opposite direction, we must prove that when Gϕ has a multicolored realization S, Φ has a truth assignment
T in which each clause gets exactly one variable with assigned value 1. We define T as follows: Consider the Var gadgets
on the top row, we set T (xi) = ti, being ti = 1 when S contains the left vertex in the gadget and ti = 0 otherwise. As
S is multicolored, each xi is assigned a single truth value. In Fig. 8, the multicolored set defined by the circled vertices
translates to the truth assignment x1 = 0, x2 = 1, x3 = 0 and x4 = 0.

Consider a column corresponding to a variable xi assigned to value ti. When the vertex selected on the top row gadget is
the left (respectively right) one, the vertical connections only allow vertical paths that go through left (respectively right)
vertices in the gadgets in the column (see Fig. 6). Therefore, for the Var gadgets in column i, when ti = 1, S contains all
the left vertices, and, when ti = 0, S contains all the right vertices.

Consider a clause Cj = (xj1 , xj2 , xj3 ) and the vertical position (upper, middle or lower) of the vertex in the leftmost
Cl gadget in the corresponding row. Recall that, according to the definition of the horizontal connections, a horizontal
complete path in the cluster graph can only contain vertices in the same vertical position in all the gadgets. Consider the
path p induced by the vertices in S from the clusters in the associated row starting from the left. If p starts in the upper
vertex, it contains the upper vertices of the Var-in-Cl gadget associated to the variables xj1 , xj2 and xj3 . The first one is
connected only to the left vertex on the vertically contiguous Var gadgets, while the other two are connected only to the
right vertex on the vertically contiguous Var gadgets (see Fig. 6). So, we get that tj1 = 1, tj2 = 0, and tj3 = 0. A similar
argument shows that when p starts in the middle (lower) vertex, then tj1 = 0, tj2 = 1, and tj3 = 0 (tj1 = 0, tj2 = 0, and
tj3 = 1). Therefore, the constructed formula is a YES instance of the Monotone 1-in-3 SAT problem. □

5. Colored graphs with bounded cluster size

We start with presenting a polynomial time algorithm for the particular case of the MGR problem in which the colored
graph has cluster size at most 2. Later, we show that the problem becomes NP-complete for graphs with cluster size
larger than 2, thus providing a complexity dichotomy with respect to cluster size. In order to get the result, we provide a
reduction to the 2-SAT problem: given a boolean formula Φ in CNF with at most two literals per clause, decide whether
Φ has a satisfying assignment. Recall that the 2-SAT problem can be solved in polynomial time [18].

Proposition 2. The MGR problem is polynomial time solvable for colored graphs with cluster size at most 2.
10
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P

Fig. 9. A colored graph with cluster size at most two and the associated 2-SAT formula. The set formed by the circled vertices is a multicolored
realization corresponding to the satisfying assignment xi = 1, for i = 1, . . . , 5.

roof. Let (G, ϕ) be a colored graph with cluster size s(G, ϕ) = 2. Let A1, . . . , Ak be the color classes in (G, ϕ).
From (G, ϕ), we create an instance Φ of 2-SAT as follows. Φ has variables x1, . . . xk. We associate each vertex in u ∈ V

with a literal lu. If Ai = {u}, lu = xi. If Ai = {u, v}, lu = xi and lv = ¬xi. The clauses in Φ are the following. For each
color class with |Ai| = 1, we add clause xi For each edge (Ai, Aj) ∈ E(Gϕ), we add one clause for each missing edge among
vertices in the color classes, i.e., for u ∈ Ai, w ∈ Aj with (u, w) /∈ E(G), we add the clause (¬lu ∨ ¬lw). Observe that this
clause will be satisfied only when at least one of its two literals is assigned the value 0.

An example of the construction is given in Fig. 9. Note that Φ is a 2-SAT instance, and it can be constructed in
polynomial time. Let us show that (G, ϕ) admits a multicolored realization if and only if Φ is satisfiable.

Assume that (G, ϕ) admits a multicolored realization S. Let us consider the assignment T of truth values to the variables
of Φ that makes the literals associated with the vertices in S get value 1, as S is multicolored, T is a valid assignment
for Φ . As S is multicolored, it contains all the vertices in color classes with only one vertex. Therefore, T satisfies all the
clauses in Φ with one literal.

Consider a connection (Ai, Aj) ∈ E(Gϕ) with some associated clause in Φ . For u ∈ Ai, w ∈ Aj with (u, w) /∈ E(G), at least
one of the vertices u or w cannot belong to S. Therefore, at least one of lu or lw gets value 0 under tS . Thus, the clause
(¬lu ∨ ¬lw) is satisfied by T . We conclude that T satisfies Φ .

For the other direction, assume that T is a satisfying assignment for Φ . Consider the set of vertices S that contains
those vertices u ∈ V (G) such that T (lu) = 1. As α is an assignment, then S is multicolored. Let S = {l1, . . . lk}. Assume
that S is not a multicolored realization of (G, ϕ). In such a case, there must be an edge (Ai, Aj) ∈ E(Gϕ) with (li, lj) /∈ E(G).
Hence, the clause (¬li∨¬lj) will not be satisfied, contradicting the fact that α is a satisfying assignment. Thus we conclude
that S is a multicolored realization of (G, ϕ). □

Let us analyze the case of colored graphs with cluster size s ≥ 3. The reduction provided in the proof of Theorem 3
shows NP-hardness for s = 3. To extend the reduction to a value of s > 3, we add to the graph constructed in this
reduction a large enough set of independent vertices. Those independent vertices are colored in such a way that each
color class is completed to have s vertices. After the addition of the independent vertices, the cluster graph remains the
same. Furthermore, none of the added vertices can form part of a multicolored realization. Therefore, the problem is
NP-complete for s > 3. Putting this together with Proposition 2, we get a complexity dichotomy with respect to cluster
size.

Theorem 5. The MGR problem is NP-complete for colored graphs with cluster size s ≥ 3, and polynomial time solvable
otherwise.

Our last result is an FPT algorithm for the MGR problem parameterized by the treewidth of the cluster graph and the
cluster size. Recall that we have already established that the MGR problem parameterized by the treewidth of the cluster
graph is W [1]-hard (see Theorem 1), and that it is NP-complete, for s > 2, when the cluster graph is convex bipartite.
Recall that convex bibartite graph can have unbounded treewidth. Our algorithm uses dynamic programming on the tree
decomposition.

To describe the algorithm, we assume that as usual, together with the input (G, ϕ), we are given a nice tree
decomposition (T , X, r) of the cluster graph Gϕ . To simplify the explanation, we slightly change the notation. For a node
v ∈ T , we consider two associated graphs Gu

ϕ , the subgraph induced in Gϕ by the union of all the bags in the subtree
rooted at u (a subgraph of Gϕ), and Gu, the subgraph induced in G by the union of all the color classes appearing in a bag

u
in the subtree rooted at u (a subgraph of G). Observe that by definition (Gu)ϕ = Gϕ .

11
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As each element in a bag corresponds to a color class, we refer directly to the color class. Given a collection of color
lasses A = {A1, . . . , Ak}, and a set S ⊆ V , we say that S is multicolored with respect to A when S contains exactly one
ertex from each color class in A.

heorem 6. The MGR problem when parameterized by the treewidth of the cluster graph and the cluster size belongs to FPT.

roof. Let (G, ϕ) be a colored graph with cluster size s, and let (T , X, r) be a nice tree decomposition of the cluster graph
ϕ with width w. The dynamic programming algorithm will fill, for each node v ∈ V (T ), a boolean table Mv(S) having
n entry for each multicolored subset S with respect to the color classes included in Xv . At the end of the algorithm,
v(S) = 1 if there is a multicolored set S ′ in Gv realizing Gv

ϕ such that S ⊆ S ′, and otherwise Mv(S) = 0. Therefore, the
alue of Mr (∅) will determine whether there is a multicolored realization of G or not. We deal with the table computation
or each type of node in the nice tree decomposition separately, as each type of node requires a different kind of recursion
nd a different correctness guarantee.

tart node. Let u be start node of T , that is a leaf, with Xu = {A} for some color class A in Gϕ . The multicolored subsets are
ormed by just one vertex in A. We set Mu({x}) = 1, for x ∈ A, and Mu(∅) = 0. As the graph Gu

ϕ is an isolated vertex, the
omputed values are correct.

ntroduce node. Let u be an introduce node of T and let v be its unique child. Recall by definition |Xu − Xv| = 1. Assume
that A is the unique color class in Xu − Xv .

Then, for each x ∈ A and each multicolored set S with respect to Xv , if G[{x}∪S] is a realization of Gu
ϕ[Xv] and Mv(S) = 1,

we set Mv({x} ∪ S) = 1, otherwise we set the value to 0.
Note that all the multicolored sets with respect to Xu are formed by a vertex in A and a multicolored set S with respect

to Xv . Furthermore, Gv
ϕ does not include the vertex x. For a multicolored set S ′ of Gu

ϕ , let x ∈ A ∪ S ′ and let S be formed
by the vertices in S ′ belonging to the color classes in Xv . Then G[S ′

] is a realization of Gu
ϕ if and only if G[{x} ∪ S] is a

realization of Gϕ[Xu] and Mv(S) = 1.

Forget node. Let u be a forget node of T , let v be its unique child and assume that, according to the definition, A is
the unique color class in Xv − Xu. Then, for each x ∈ A and each multicolored subsets S with respect to Xv , we define
Mu(S) = ∧x∈AMv(S ∪ {x}). This expression provides the correct value, as we are considering all the possible multicolored
supersets of S with respect to Xv , if one of them is extendable to a multicolored realization, then S is also extendable.

Join node. Let u be a join node of T with children v and w. In this case, we have that Xu = Xv = Xw

Then, for each multicolored subsets S with respect to Xu, we set Mu(S) = Mu(S) ∧ Mw(S). This formula provides the
correct value, as for the set S to be extendable to a multicolored realization in Gu, S must be extendable to a multicolored
realization in both Gv and Gw .

Complexity. The size of the tables associated with a node is upper-bounded by sw , as we have to select on vertex from
each color class with at most s vertices and the number of classes in a bag is at most w. To compute the entries, the
most complex operation is a forget node in which we have to look at all the elements in a color class. This number is
upper-bounded by n. As the total number of nodes is polynomial in the number of color classes, the total cost is O(swp(n)).
This function shows that the problem is fixed parameter tractable. □

6. Conclusions and further results

We have introduced a new generalized graph problem in order to assess the viability of the associated cluster graph in
terms of a possible existing realization. We have studied the complexity of the problem in the parameterized framework.
Our results shed light on the hardness of the problem with respect to several parameters.

We can consider also a variant of the MGR problem in which, instead of asking for a multicolored realization of the
cluster graph, we are interested in a multicolored realization of a given spanning subgraph:

Multicolored subgraph realization problem (MsGR)

Instance: An undirected graph G = (V , E) and a coloring ϕ of G.

Question: Is there a multicolored realization of H = (V (Gϕ), E ′), for E ′
⊆ E(Gϕ)?

This version of the problem captures another well known problem: the multicolored independent set problem which is
also known to be W [1] hard parameterized by the number of colors (see for example [2]). Observe that the MsGR problem
includes, as a particular case, the MGR problem. Therefore, all the hardness results provided in this paper hold for the
MsGR problem.

Note that in the MGR problem, when an edge is not present in Gϕ , none of the vertices in the corresponding color
classes are connected. This is not always the case in the MsGR problem, an edge that is not present in the target graph H
might appear in Gϕ . When (A, B) ∈ E(Gϕ) but (A, B) /∈ E(H), a realization of H must select two not connected vertices, one

from A and another from B. So, a necessary condition for the existence of a multicolored realization of H is that the bipartite

12



J. Díaz, Ö.Y. Diner, M. Serna et al. Discrete Applied Mathematics xxx (xxxx) xxx

g
raph G[A, B] connecting the vertices in A with the vertices in B is not a complete bipartite graph. If G[A, B] ≡ K|A|,|B| and H
does not contain the edge (A, B), we know that no multicolored realization exists. Otherwise, we can assume that, for each
(A, B) ∈ E(Gϕ) with (A, B) /∈ E(H), we have E(A, B) = {(u, v) ∈ V (G) | u ∈ A, v ∈ B} ⊊ A × B. Under this assumption, we
can consider the graph G′ in which, for each (A, B) ∈ E(Gϕ) with (A, B) /∈ E(H), we remove from E(G) the edges in E(A, B)
and add the edges A × B \ E(A, B). Maintaining the same coloring, we have that G′

ϕ = Gϕ and that H has a multicolored
realization if and only if there is a multicolored realization of G′

ϕ . Furthermore, G′
ϕ can be constructed in polynomial time

in the size of G. In this way we obtain a polynomial time reduction from the MsGR problem to the MGR that preserves
all the parameters considered in this paper. Consequently, all the positive results (polynomial time or FPT algorithms)
devised for the MGR problem also hold for the MsGR problem.

Recall that a homomorphism from a graph G = (V , E) to a graph H = (V ′, F ) is a function f from V to V ′ such that,
for each (x, y) ∈ E, (f (x), f (y)) ∈ F . If S ⊆ V and f is a homomorphism from G to G[S], f is a retraction with respect to S if,
for x ∈ S, f (x) = x [28]. Inspired by this notion, we consider the following problem.

Composed retraction problem (CR)
Instance: Undirected graph G = (V , E), a subgraph H = (V ′, F ) of G together with a homomorphism f from G to H .
Question: Is there a homomorphism g from H to G such that, for x ∈ V ′, f (g(x)) = x?

Note that, for colored graphs (G, ϕ) in which the coloring is proper, ϕ is a homomorphism from G to Gϕ . Furthermore, if S
is a multicolored realization of Gϕ , then the function g assigning to each vertex in Gϕ the corresponding colored vertex in S
is a homomorphism from Gϕ to G that verifies ϕ(g(x)) = x. On the other hand, if there is a homomorphism g from Gϕ to G
such that, for x ∈ V (Gϕ), ϕ(g(x)) = x, then g(V (Gϕ)) is a multicolored realization of Gϕ . Therefore, the MGR problem, when
the coloring is proper, is a subproblem of the CR problem. Taking into account that the coloring used in the reductions
in this paper are proper, all the hardness results provided in this paper hold for the CR problem. It remains open to find
other parameterizations under which the CR problem becomes tractable.
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