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Abstract

The evaluation of Deep Learning (DL) models has
traditionally focused on criteria such as accuracy, F1
score, and related measures. The increasing availability
of high computational power environments allows the
creation of deeper and more complex models. However,
the computations needed to train such models entail
a large carbon footprint. In this work, we study the
relations between DL model architectures and their
environmental impact in terms of energy consumed and
CO2 emissions produced during training by means of
an empirical study using Deep Convolutional Neural
Networks. Concretely, we study: (i) the impact of the
architecture and the location where the computations
are hosted on the energy consumption and emissions
produced; (ii) the trade-off between accuracy and
energy efficiency; and (iii) the difference on the
method of measurement of the energy consumed using
software-based and hardware-based tools.

Keywords: Green AI, deep learning, neural networks,
sustainable software engineering, energy metrics

1. Introduction

In recent years, Deep Learning (DL) models
have shown great performance in many machine
learning-based tasks. The DL-centric research paradigm
and the ambition of creating the next state-of-the-art
model lead to the exponential growth of model size
and the use of larger datasets to train these models,
requiring therefore intensive computation that entails a
considerable large financial cost and carbon footprint
[1]. If this trend continues, greater amounts of energy
will be needed to build larger models to achieve
ever-smaller improvements, making research progress

directly depend on the uncontrolled exploitation
of computing resources. In this context, energy
consumption is becoming a necessary consideration
when designing all types of software [2] and specifically
DL-based solutions. Fortunately, the awareness of
aligning DL research with the emergent Green AI
movement [3] is growing steadily.

In the DL realm, Convolutional Neural Networks
(CNN) have become a well-known architectural
approach widely used in areas such as image
classification and natural language processing (NLP)
[4] [5]. Common architectures for CNNs are
AlexNet [5], VGGNet [6], GoogleNet [7], and
ResNet [8]. CNNs use linear algebra principles,
specifically matrix multiplication, to identify patterns.
Alternative activation function, parameter optimization,
and architectural innovations were the basis of CNN
advances. These networks are computationally
demanding, requiring graphical processing units (GPU)
to train the models. The availability of large amounts
of data and the access to more powerful hardware has
opened new possibilities for CNN research. Indeed,
the evolution of these architectures has shown a
trend towards increasingly complex models to solve
increasingly complex tasks [9] [7] [10] [11].

In this paper, we investigate the effects of different
CNN architectures in the energy efficiency of the model
training stage, and the possible relation of energy
efficiency with the accuracy of the obtained model.
To do so, we focus on one particular application
domain, namely computer vision (CV), which has
evolved significantly in the last years thanks to the
widespread application of CNNs. CV applications
are useful in many areas including medical imaging,
agriculture monitoring, traffic control systems, sports
tracking, and more. This includes a set of challenges
such as image classification, object detection, image
segmentation, image captioning among others. We
center this work in the context of image classification
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as it is considered the basis for CV problems and CNNs
have become the state-of-the-art technique. To perform
this task, CNNs extract important features from the
images at each convolution level and are completed with
some fully connected output nodes for the classification.

This document is structured as follows. Section
2 gives the background and reports the related work
on energy consumption of DL systems and Green
AI. Section 3 defines the research goal and research
questions of our study, as well as the experimental
methodology. Section 4 presents the results and gives
answers to our research questions. Section 5 reviews
findings and discuss their implications and Section 6
summarizes the overall study and delineates future steps.

2. Background and Related Work

2.1. Energy measurement

To measure the energy consumption of a computing
device there are essentially two kinds of tools: hardware
power monitors and energy profilers [12]. Hardware
monitors are directly connected to the power source of
the component that can be used to monitor the energy
consumption of software. Despite being difficult to set
up, power monitors are the most accurate strategy to
measure energy, although they cannot discriminate what
percentage of this consumption comes from a particular
thread of execution. The other strategy is using energy
profilers, a software-based tool that captures energy data
in conjunction to program execution. This allows energy
profilers to compute the power consumed by the device,
but these calculation rely on estimations. To what extent
these estimations differ from the real consumption is
worth to be investigated in order to claim for internal
validity of empirical studies on energy efficiency.

Recent work has analyzed the carbon footprint of
training deep learning models and advocated for the
evaluation of the energy efficiency as an evaluation
criterion for research [3]. The number of floating point
operations (FLOPs) has been used in the past to quantify
the energy footprint of a model [13] [14] [15], but
they are not widely adopted in DL research. And little
research has been done regarding the CO2 emissions of
highly expensive computation processes.

2.2. Green AI

The present-days concern on the carbon footprint
of increasingly large DL models has been growing.
Schwartz et al. [3] advocate for redirecting DL research
towards a more environmentally friendly solution
known as Green AI. They estimated that computational
cost of AI research that aim to obtain state-of-the-art

results has increased 300.000x from 2012 to 2018. This
is due to the AI community focus on metrics such as
accuracy rather than energy efficiency. In this paper,
they suggest to report the number of FLOPs required to
generate the results as a standard measure of efficiency.

Strubell et al. [1] estimated the carbon emission of
training some of the recently successful neural network
models for NLP, raising awareness and proposing
actionable recommendations to reduce costs of NLP
research. They conclude that these trends are not only
found in the NLP community, but hold true across the
AI community in general.

Recent work by Google and UC Berkeley [16] has
estimated the carbon footprint and energy consumption
of large neural network training. The paper proposes
strategies to improve the energy efficiency and CO2

emissions. They reported that by carefully choosing
processor, hardware and data centers, it is possible to
reduce the carbon footprint of deep neural networks by
up to 100-1000 times.

When it comes to DL frameworks, Georgiou et
al. [17] reported clear difference between energy
consumption and run-time performance of two of the
most popular DL frameworks, Pytorch and Tensorflow.
The study showed that DL frameworks show significant
model-sensitivity and that current documentation of
the frameworks has to be improved. Also, Creus et
al. studied how to make greener DL-based mobile
applications. The studies showed that it is possible
to build optimized DL-based applications varying the
number of paramenters of CNNs [18, 19].

Regarding greener DL models in applications
domains, we can find advances for greener DL-based
solutions as well. For instance, for weed detection,
Ofori et al. combined the mobile-sized EfficientNet
with transfer learning to achieve up to 95.44%
classification accuracy on plant seedlings [20], and
model compression achieving 62.22% smaller in size
than DenseNet (the smallest-sized full-sized model)
[21]. Moreover, for pig posture classification, Witte et
al. reported the YOLOv5 model achieving an accuracy
of 99,4% for pig detection, and EfficientNet achieving a
precision of 93% for pig posture classification [22].

With respect to the aforementioned works, there is a
clear need for further research to build greener DL-based
solutions and models. Our work delves into CNN
architectures and their energy efficiency.
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3. Research methodology

3.1. Goal, research questions and hypotheses

We formulate our research goal according to
the Goal Question Metric (GQM) guidelines [23]
as follows: Analyze convolutional neural networks
architectures with the purpose of measuring their energy
efficiency with respect to the model training from the
point of view of the AI practitioner in the context of
creating an image classification model for computer
vision. This research goal is operationalised into three
research questions (RQ):

RQ1: Does the CNN architecture have an impact
on energy consumption? According to the background
introduced in Section 2, we will respond this RQ
using two different measures which generate a null
hypothesis each: H.1.1.0: There is no difference
in energy consumed and emissions produced during
training varying the CNN model architecture. H.1.2.0:
There is no difference in FLOPs required during training
varying the CNN model architecture.

RQ2: What is the relationship between CNN
accuracy and the energy needed to train the model?

RQ3: What are the differences between
software-based and hardware-based methods of
measuring the energy efficiency of a model?

With RQ1 we aim to provide a comparative analysis
of the measures specified for some of the best known
CNN architectures for image classification, namely
VGG16, VGG19 and ResNet50, to determine the
correlation between architecture complexity and energy
consumption. We carry out this analysis on two of the
most popular image datasets for this task: MNIST and
CIFAR-10.

With RQ2 we want to compare the trade-off between
energy efficiency and the accuracy obtained from
each model configuration. If little accuracy gains
require much more computation, one can argue that
this improvement is only needed when facing critical
business cases (e.g., designing life-critical systems).
To answer this RQ, we will be using a score ratio
introduced by Alyamkin et al. [24], where they
introduce this new metric to compare models: Score =
Accuracy/Energy. Energy in our case will refer to the
energy consumption of the training in kWh.

With RQ3 we pretend to study how to measure the
energy efficiency of a model’s training while exploring
two different ways of measurement (see Section 2):
the use of wattmeters (hardware-based measurement)
and the use of profilers (software-based estimation).
Understanding the internals of these measurement
instruments will help researchers to design robust study

protocols.

3.2. Study Design

We divide the study into a three-stage pipeline (see
Fig. 1): (a) the Data Management stage which includes
the collection and preprocessing of the images, (b) the
Modeling and Development of the DL components,
including the training of the DL model, and (c) the
Research Outputs, which studies the outputs from the
previous phase (e.g., power, energy consumed, accuracy
from the models) to answer our RQs.

3.3. Variables

In the following subsections we define the
variables of our experimental design grouped into
three categories.

3.3.1. Independent variables. In this study we
define two independent variables: (i) the CNN
architecture, and (ii) the measurement instrument.

As defined in Section 3.1, our objective is focused
on the energy consumption of training a deep CNN
model, and not on the model itself. Therefore we use
transfer learning from the following CNN architectures:
VGG16, VGG19, and ResNet50. We define the model
architecture as a categorical variable that specifies which
of the CNN is trained, and the model number of
parameters is defined as a numerical variable indicating
the complexity of the model.

VGG comes from the Visual Geometry Group from
Oxford and it was used to win the ILSVR (ImageNet)
competition in 2014 [6].

VGG16 is a 16-layer model, being 13 of them
convolutional and the other 3, fully connected. It has
138.4 million parameters. The same size is used for
all the kernels in every convolutional layer is used,
namely 3x3 kernel with stride = 1 and padding = 1. For
maximum pooling, this changes into 2x2 kernel with
stride = 2.

VGG19 is a newer version, build upon the same
concept as the VGG16, but with 19 layers in total, with
16 convolutional layers and 143.7M million parameters.

ResNet stands for Residual Network and was first
introduced in 2015 [8]. The architecture of this NN
relies on Residual Blocks, where a residual block is a
combination of the original input and an output after
convolution and activation function. There are different
versions of ResNet having a different number of layers.

ResNet50 is the 50-layer model that has 48
convolution layers and 25.6 million parameters.
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Figure 1. Schema of the empirical study.

The way of measuring the energy consumption that
indicates the two options of getting the measurements:
an emission profiler and a wattmeter (see Section 3.4 for
more details).

3.3.2. Dependent variables. To measure the
environmental impact of a model’s training process, we
will track the computer power and energy consumption
during the experiments. We use four numerical
variables that measure (i) the emissions in CO2

equivalents (CO2-eq) in kg; (ii) the energy consumed
by the infrastructure in kWh; (iii) the number of
floating-point operations (FLOP) needed to train the
model; and (iv) the validation accuracy of the model
obtained.

3.3.3. Other variables. We use a categorical
variable that indicates which dataset is utilized for the
model training. The image classification input datasets
used in this paper are the following:

The MNIST1 (Modified National Institute of
Standards and Technology) handwritten digits [25]. It
is a large dataset commonly used in ML for training
systems. It consists of 70,000 28 x 28 black and white
images with 10 classes: digits from 0 to 9. The images
have been normalized and centered in a fixed size and
grayscale levels where introduced with anti-aliasing.
There are 60,000 images for training and 10,000 for
testing.

The CIFAR-102 (Canadian Institute For Advanced
Research) dataset. It is a set of small labeled images
for classification dataset which consists of 60,000 32
x 32 colour images in 10 mutually exclusive classes,
with 6,000 images per class. There are 50,000 training
images and 10,000 test images and the classes are:

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/˜kriz/cifar.html

airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. These images are challenging to classify
due to the varying lighting condition and angles.

Other categorical variables that should be considered
independent but we do not have full control over them
due to the cloud provider plan are:

The type of hardware. For RQ1 and RQ2
the computations were performed on 2 x Intel®
Xeon® Processor 2.00 GHz CPUs and 1 x Tesla
P100-PCIE-16GB GPU. For RQ3 8the computations
were performed on 80 x Intel® Xeon® E5-2698 v4
@ 2.20GHz CPUs and 8 x Tesla V100-SXM2-32GB
GPUs.

The location where the cloud is hosted. Experiments
were conducted using Kaggle3 kernels. For RQ1
and RQ2 there were three available locations: Taipei
(Taiwan), Oregon (USA), and South Carolina (USA).
For RQ3 the infrastructure was located in Île-de-France
(France).

3.4. Data collection

In this section, we respectively report the measures
of our study (see Figure 1, (c)), and the instruments used
to collect them.

3.4.1. Measures. To describe the amount of work
that is required to train a model we compute the
following measures:

CO2 emission is the quantity that we want to
minimize directly. These emissions can be calculated
as the product between: (i) carbon intensity of the
electricity consumed for computation, quantified as
kg of CO2 emitted per kWh of electricity, and (ii)
the net power supply consumed by the computational
infrastructure, quantified in kWh. Carbon intensity of
electricity used is determined by a weighted average of

3https://www.kaggle.com/
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Table 1. Independent, dependent and other variables of the study.

Class Name Description Scale Operationalization

Independent Architecture Type The deep CNN architecture nominal See section 3.3.1

Measuring instrument
Energy measuring method
(by hardware or software) nominal See section 3.3.1

Dependent Emissions
Carbon dioxide (CO2) emissions,
expressed as kilograms of
CO2-equivalents (CO2-eq)

numerical Profiled

Energy consumption
Net power supply consumed
during the compute time,
measured as kWh

numerical See measuring method

Floating-point operations
Number of floating point
operations per second (FLOP) numerical Retrieved from modeling

Accuracy
Validation accuracy
obtained after training numerical Retrieved from modeling

Others Dataset
The input dataset used to
train the models nominal See section 3.3.3

Hardware GPU and CPU type nominal Profiled

Location
Province/State/City where the
compute infrastructure is hosted nominal Profiled

emissions from various energy sources used to generate
power, including fossil fuels and renewables. The
combination of energy sources is based on the specific
location where the computation is hosted.

Energy consumed is related to CO2 emissions,
while being independent of time and location. The
power supply to the hardware is tracked at frequent
time intervals, thus it is highly dependent on the type
of hardware utilized.

We executed our experiment three times and we
report the median value of energy consumed reported
by both the wattmeter and the profiler.

FLOPs is the total number of floating-point
operations required to execute a computational process.
It estimates the amount of work needed for the process
as a deterministic measure, computed by defining the
cost of two base operations: addition and multiplication.
FLOPs can be estimated given a model instance even
before starting the training.

To compute the FLOPs required for the training
of the model we use the keras-flops4 package for
TensorFlow. All code has been developed in Python
(version 3.7.12) and the Keras API of TensorFlow5 and
all models were trained with a batch size of 32.

3.4.2. Instruments. To conduct the collection of
data and the aforementioned variables, we use two

4https://github.com/tokusumi/keras-flops
5https://keras.io/

different instruments.
First, we used the CodeCarbon6 profiler: a Python

package that enables us to track emissions in order
to estimate the carbon footprint of an experiment.
Internally, CodeCarbon uses RAPL for measuring
the energy consumed by the CPU and RAM, and
NVIDIA Management Library (NVML) for the energy
consumption of the GPU. CodeCarbon also presents the
the total energy consumed, which corresponds to the
sum of the energy consumption from the CPU, GPU and
RAM. The package logs the data of each experiment into
an emissions.csv file. The logged fields we are interested
in are: duration of the compute (in seconds), emissions
as CO2-equivalents (in kg), and energy consumed (in
kWh).

Second, for responding RQ3, we replicated the
experiment on a machine connected to a wattmeter,
therefore being able to compare the energy consumption
obtained using both a wattmeter and a profiler. We used
a wattmeter from the OmegaWatt vendor, which is able
to collect up to 50 measurements per second of power
directly from the power supply units.

3.5. Data analysis

In RQ1, we divided the analysis into two different
parts, considering two variables: model architecture
and input data. In each part we assessed the
energy consumption on all the dependent variables

6https://github.com/mlco2/codecarbon
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(CO2-equivalent emissions, energy consumed, and
FLOPs). Within each part, we followed an
identical procedure: (1) use violin and box plots to
illustrate the distributions for each response variable,
comparing between datasets and CNN architectures; (2)
assess the correlation coefficient between independent
and dependent variables; (3) assess the statistical
significance (i.e., p-value) of the findings.

We used a point-biserial correlation coefficient to
assess the correlation between dependent variables and
the input data. Point-biserial correlation is a correlation
coefficient used when we have a dichotomous and
a continuous variable. It ranges from −1 to +1,
where −1 indicates a perfect negative association, +1
indicates a perfect positive association and 0 indicates
no association.

To assess the dependent variables with respect
to the type of architecture we used Kruskal-Wallis
test. Kruskal-Wallis test by rank is a non-parametric
alternative to one-way ANOVA test, which extends the
two-samples Wilcoxon test in the situation where there
are more than two groups. A significant Kruskal–Wallis
test indicates that at least one sample stochastically
dominates one other sample.

In RQ2, we assess the trade-off between
accuracy and energy consumption with the
Score = Accuracy/Energy (see Section 3.1 for
more details). We can easily compare the scores
between between experiments by sorting them.

For RQ3, we compared the energy consumption
as collected in two different ways: a wattmeter
and CodeCarbon. The relationship between the two
methods is assessed by computing the Spearman’s rank
correlation coefficient.

4. Results

In this section we discuss the quantitative results in
response to the RQs and hypotheses presented in 3.1.
The entire analysis was conducted using R language.

Table 2 contains the summary of the different
experiment configurations and its characteristics.

4.1. Does CNN architecture have an impact on
energy consumption? (RQ1)

Fig. 2 shows the violin plot of the correlation
between the energy consumed (in kWh) and the
emissions produced (in CO2-eq in kg) with the different
experiments grouped by input dataset (CIFAR10 and
MNIST) and by CNN architecture (VGG16, VGG19
and ResNet50). The boxplots show that the median
of both emissions and energy consumed using the
CIFAR10 images is lower than using the MNIST

Figure 2. Violin-plots for the total emissions and

energy consumed with the input dataset and CNN

architecture.

Figure 3. Violin-plots for the total FLOPs with the

input dataset and CNN architecture.

images. We see that regarding the type of architecture,
both VGG models report similar emissions and
consumed energy, that are lower with respect to
ResNet50. In Fig. 3 have the violin plots for the number
of FLOPs required to train the model. In this case we
see that using the MNIST dataset and the VGG19 model
requires more FLOPs. Furthermore, the same procedure
described in section 3.5 for the location variable. Fig. 4
shows the violin plot and box plots grouped by location.
Emissions from Taiwan (Taipei City) were higher than
the other two cities located in the United States (Oregon
and South Carolina). Regarding the energy consumed,
the three locations do not show difference.

Table 3 shows the results of computing point-biserial
correlation coefficient between the input dataset and
the response variables. In this case we take CIFAR10
as the base dataset, meaning that a negative value of
the correlation coefficient indicates that the variables
are inversely related. We see that both the consumed
energy during training and the number of FLOPs are
strongly correlated to the input data. Both coefficients
are negative, meaning that to train with the CIFAR10
dataset required less energy and FLOPs with respect to
using the MNIST dataset.

Table 4 shows the statistic significance
(Kruskal-Wallis test p-value) between the architecture
of the model and the response variables. In summary,
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Table 2. Experiment characteristics. Dataset size includes both train and test sets; the split proportion can be

found in section 3.3.1. Depth refers to the topological depth of the network, which includes activation layers,

batch normalization layers, etc.

Architecture Data Image
Size

Dataset
Size Depth Total

Parameters
Trainable
Parameters

Total
FLOPs

Trainable Layer
FLOPs

VGG16 CIFAR10 32x32 60k 16 33,6M 18,9M 21.3 G 1.21 G
MNIST 48x48 70k 16 33,6M 18,9M 46.3 G 1.21 G

VGG19 CIFAR10 32x32 60k 19 38,9M 18,9M 26.7 G 1.21 G
MNIST 48x48 70k 19 38,9M 18,9M 58.6 G 1.21 G

ResNet50 CIFAR10 32x32 60k 50 48,8M 25,2M 6.68 G 1.61 G
MNIST 48x48 70k 50 73,9M 50,3M 16.3 G 3.22 G

Figure 4. Violin-plots for the total emissions and

energy consumed with the location where the

compute infrastructure is located.

Table 3. Assessment for point-biserial correlation

coefficient between input datasets and the emission

rate, consumed energy and FLOPs.

Variable Corr. Coef. Assessment

Emissions (CO2-eq) -0.0605 Weak corr.
Energy Consumed (kWh) -0.4135 Strong corr.
FLOPs -0.6233 Strong corr.

there is statistical significance to accept that there is
correlation between the emissions produced in CO2-eq
and energy consumption with the type of architecture.

Finally, table 5 shows the statistical significance
(Kruskal-Wallis test p-value) between the location
where the computation was hosted and the emissions
and energy consumed. The p-values of the test statistic
show that there is relation between the location and the
emissions produced to train the model, but not with the
energy consumed.

4.2. What is the relationship between model
accuracy and the energy needed to train
the model? (RQ2)

Table 6 presents the accuracy obtained from a model
with a particular architecture trained on a dataset in a
particular location, the energy consumed for training
that model, and the Score which correspond to the ratio

Table 4. Statistical significance assessment for

Kruskal-Wallis test for correlation between the

architectures and the emission rate, consumed energy

and FLOPs. This tests responds to the hypotheses

H.1.1.0 and H.1.2.0 from section 3.1.

Variable p-value Assessment

Emissions (CO2-eq) < 0.001 Significant
Energy Consumed (kWh) < 0.001 Significant
FLOPs 0.1561 Not significant

Table 5. Statistical significance assessment for

Kruskal-Wallis test for correlation between the

infrastructure locations and the emission rate and

consumed energy.

Variable p-value Assessment

Emissions (CO2-eq) < 0.001 Significant
Energy Consumed (kWh) 0.6509 Not significant

between the mentioned accuracy and energy.
We first analyze the score by location (as allow us

to compare energy consumed by the same hardware on
different models).

In Oregon and in South Carolina, we observe that
a model with architecture VGG19 trained on CIFAR10
produces the highest Score (12.64). VGG19 has a lower
energy consumption at the expense of having a lower
accuracy compared to its smoller version VGG16. The
score metric allows to quantify the trade-off between
energy and accuracy.

In Taipei, the model with VGG16 architecture has
a higher accuracy than VGG19 wih higher energy
consumtion (as happened in the previous two locations).
The increase of energy consumption on Taipei compared
to the other locations leads to lower score for VGG19.

On the contrary, we observe a different trend when
we analyze the models trained on MNIST at Oregon

Page 787



and South Carolina: VGG16 has the highest Score value
and, at the same time, the highest accuracy and lowest
energy.

The reason why the levels of energy consumption
change for each location given identical specifications
and experiments is due to how CodeCarbon estimates
the net carbon intensity. For each location, the
proportion of energy derived from fossil fuels and
low-carbon sources are approximated using the
international energy mixes derived from the United
States’ Energy Information Administration’s Emissions
& Generation Resource Integrated Database (eGRID).
This approximation is done by examining the share of
total primary energy produced and consumed for each
country in the dataset and determining the proportion of
energy derived from different types of energy sources
(e.g., coal, petroleum, natural gas and renewables).

By choosing the architecture with highest Score, we
obtain either (i) an improvement in both accuracy and
energy efficiency (e.g., models trained using MNIST
dataset), or (ii) an improvement in energy efficiency
with a detriment (small such in the case on CIFAR10
on South Carolina) on accuracy.

Table 6. Scores of the different experiment

configurations. Accuracy: validation accuracy from

last epoch of training. Energy: Kilowatt per hour.

Score = Accuracy/Energy.

Location Data Architecture Accuracy Energy Score

Oregon CIFAR10 VGG16 0.6189 0.0583 10.63
VGG19 0.6018 0.0493 12.64
ResNet50 0.3021 0.1057 4.11

MNIST VGG16 0.9429 0.0879 11.02
VGG19 0.9395 0.0932 10.44
ResNet50 0.8858 0.1893 7.64

S.Carolina CIFAR10 VGG16 0.6167 0.0667 9.26
VGG19 0.6157 0.0574 10.88
ResNet50 0.1 0.1224 1.17

MNIST VGG16 0.9459 0.0920 10.42
VGG19 0.9384 0.1137 8.26
ResNet50 0.8883 0.2171 6.36

Taipei CIFAR10 VGG16 0.6191 0.0567 10.99
VGG19 0.6147 0.0637 9.80
ResNet50 0.2169 0.1347 2.48

4.3. What are the differences between
software-based and hardware-based
methods of measuring the energy
efficiency of a model? (RQ3)

Table 7 shows the median energy consumption
obtained using a wattmeter and a profiler. All the values
are expressed in kWh.

We observe that the energy consumption returned by
the wattmeter is larger than the total energy consumed

Table 7. Energy consumption obtained using a

wattmeter and a profiler, expressed in kWh. For the

profiler, we present the energy consumption and the

total reported by the profiler.

Data Archit. Watt.
(kWH)

CodeCarbon (kWH)

CPU GPU RAM TOTAL

MNIST VGG16 2.25 0.04 0.77 0.41 1.21
VGG19 2.54 0.09 0.85 0.47 1.40
ResNet50 3.03 0.05 1.08 0.59 1.72

CIFAR10 VGG16 1.48 0.06 0.52 0.28 0.86
VGG19 1.73 0.05 0.61 0.32 0.98
ResNet50 1.70 0.01 0.64 0.35 0.99

reported by the profiler in the same amount of time,
going from 42% to 46%. We provide two possible
explanations for this difference. First of all, a profiler
is not analog to a power meter. The profiler we
use, CodeCarbon, is based on RAPL, which uses a
software power model which estimates energy usage by
using hardware performance counters and I/O models.
On the contrary, the wattmeter does not estimate the
consumption; it actually reports samples of power
consumed by the devised connected to it, and from those
samples we computed the energy consumed.

Secondly, the total energy computed from the
wattmeter also includes the energy consumed by all
components from devices connected to the wattmeter
(e.g., cache memories, hard disks). On the contrary, the
profiles computes the total energy based on estimation
from three components: CPU, GPU and RAM
consumption. Nevertheless, we observe a correlation
between the energy consumed reported by the wattmeter
and by the profiler: Even the energy values are different,
the correlation computed using Spearman gives a rho
equals to 0.94, which means a strong correlation.

For example, the architecture ResNet50 on MNIST
is, according with both wattmeter and profiler, the
configuration that consumes more energy, while VGG16
on CIFAR is the configuration that consumes less.

5. Discussion

Our results show that the selection of different CNN
architectures for image classification and dataset size
affect the energy consumption as well as the Score
(accuracy/energy). This is mainly due to the duration of
the training: the larger the number of parameters to train,
the longer it will take and consequently the larger the
energy consumption. Also, in terms of carbon footprint,
the location of the computing infrastructure plays an
important role because of the sources of power. These
results indicate these two factors as promising to achieve
greener DL solutions. Specifically, our RQ2 shows
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the potential of optimized learning processes requiring
less input (data efficient DL) without degrading the
quality of the output. With respect to related work,
it becomes necessary to explore DL methods dealing
with lower volumes such as transfer learning and model
compression for more computationally efficient models.
Ofori et al. have several works showing that models with
pre-trained weights outperform state-out-the-art CNNs
[20, 21].

Furthermore, profilers are a good estimation of the
real energy consumption. The energy profiles are based
on software metrics, and provide an estimation of the
energy consumed during the training of a model.

Consequently, the energy values obtained with
software-based tools are not as precise as those that
can be computed using a hardware-based device such
as a wattmeter. However, this study shows that there
is a strong correlation between the energy reported by
the wattmeter and the energy reported by a profiler.
Meaning that, profilers are a cheap (no additional
hardware is required), easy (few lines of code are
required) and reliable way to compare the energy
consumption at the expense of some precision in the
calculation.

In this study, we have compared the trade-off
between the performance of a model in terms of
accuracy and in terms of energy consumption. With this,
we have seen that by choosing models that are more
energy efficient we are compromising the accuracy of
the model, and that little gains of improvement require
much more computation. By considering one factor over
the other when considering models, one can argue that
only when facing critical cases (e.g., medical imaging)
these improvements in the model’s performance are
needed.

The outcomes of this study have provided insight
to the process of training a ML model as a ’one-time’
operation. However, the energy concerns are raised
when we start to include ML in the development
and operation chains to Machine Learning Operations
(MLOps). As the training and deployment of ML
models are automated procedures that are re-trained,
updated and maintained in cycle.

5.1. Limitations

We faced several threats to validity of our study, for
which we took mitigation actions as described below.

Number of executions. A single execution in
a given configuration may always suffer from some
malfunctioning. Therefore, we executed our experiment
three times per each configuration and took the mean
and median.

Location. We could not select the locations
beforehand; they were random as Kaggle selected
internally the servers used. However, this randomness
did not interfere with the execution of the study and the
analysis of its results.

Generalization. Our results apply for the CV
domain, even for two particular datasets used, and
cannot be generalized beyond this point without further
studies.

Reliability. We observed that CodeCarbon yielded
occasionally as output negative values of energy
consumption. We conjecture that it can be caused by
a bug in the CodeCarbon tool. Nevertheless, to avoid
such values impact on our findings, we report median
energy consumption (recall we execute three times each
experiment), which means that extreme values (such as
those negative) are discarded. Moreover, we observe
that the executions of the ResNet50 architecture trained
with CIFAR10 at South Carolina, returned an accuracy
of 0.1, and that value did not change along the training
process. That could be caused by the malfunction of the
Keras platform at that time and location.

6. Conclusions and future work

In this paper, we have studied three different CNN
architectures over two large image classification datasets
in order to empirically evaluate the impact of the
experimental design in the energy efficiency of the
training process.

Each training session was evaluated with respect
to three efficiency metrics: CO2 emissions produced,
total energy consumed and number of FLOPs needed.
Overall, we gathered statistical evidence of relations
between all of the aforementioned variables.

In detail, we have gained statistical evidence that
the carbon emissions and the energy consumed by a
computational process such as the training of a CNN is
related to the experimental design regarding the neural
network architecture. We also seen that the impact of
the computations can be affected by factors that can be
hardly controlled by researchers when engaging in deep
learning research, such as the location where the cloud
is hosted.

It is important that the progress of DL research
towards better performing models also consider
reducing the computational cost of the training when
designing the architecture.

Our future work spreads over several dimensions.
We plan to replicate the study to other domains,
e.g. natural language processing, where other DL
architectures may prevail. Also, we aim at further
elaborating the results of RQ2 to further extend this
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notion of score for evaluating models and to address in
detail when to stop trading-off the amount of carbon
footprint of the model for more accuracy we want
to continue studying the variables that are taken into
account in the computation of the score. With this, we
aim to provide guidance in the creation of future models
to obtain better results with less energy consumption.
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