

Contribution to the Development of a LoRa

Communications Module for the AlainSat-1 CubeSat

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Martí Fernandez Pons

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATIONS TECHNOLOGIES AND

SERVICES ENGINEERING

Advisors: Sra. Lara Pilar Fernández Capón

Prof. Adriano José Camps Carmona

Barcelona, May 2022

 ii

Abstract

The Remote sensing and Interference detector with radiomeTry and vegetation Analysis

(RITA) is a 1U payload that will fly onboard Alainsat-1, a 3U CubeSat. Among other

experiments, it will perform a proof of concept of a LoRa custom module for space-to-Earth

communications between the satellite and a terrestrial network of Internet of Things

sensors.

This final degree thesis consists of the implementation of the protocols of the Media Access

Control layer that will be used in the experiment mentioned above, precisely in the design,

implementation, and testing of pure ALOHA, and the design of CSMA/CA with RTS/CTS.

 iii

Resum

El sensor Remot i detector d’Interferències per a radiomeTria i Anàlisi de vegetació (RITA),
és una càrrega útil de 1U que volarà a bord del CubeSat de 3 Unitats Alainsat-1. Entre
d’altres experiments, aquesta realitzarà un prova de concepte de la utilització d’un mòdul
LoRa desenvolupat a la UPC per a comunicacions espai-terra entre el satèl·lit i una xarxa
terrestre de sensors d’internet de les coses.

Aquest treball final de grau consisteix en la implementació dels protocols de la capa de
control d’accés al medi que s’utilitzaran en l’experiment mencionat anteriorment;
concretament amb el disseny, implementació i test de l’ALOHA pur, i el disseny del
CSMA/CA amb RTS/CTS.

 iv

Resumen

El sensor Remoto y detector de Interferencias por radiomeTría i Análisis de vegetación
(RITA), es una carga útil de 1U que volará a bordo del CubeSat AlainSat-1 de 3 Unidades.
De entre otros experimentos, ésta realizará una prueba de concepto de la utilización de un
módulo LoRa desarrollado en la UPC para las comunicaciones espacio-tierra entre el
satélite i una red terrestre de sensores de internet de las cosas.

Este trabajo final de grado consiste en la implementación de los protocolos de la capa de
control de acceso al medio que se utilizaran en el experimento mencionado anteriormente;
concretamente en el diseño, implantación i testeo del ALOHA puro, i el diseño del
CSMA/CA con RTS/CTS.

 v

To my family and friends who have always supported me.

 vi

Acknowledgements

I would like to thank my co-tutor Lara Fernandez Capon, with whom I have been working,

for her guidance during this project. I also want to thank the rest of the team at RITA for

allowing me to contribute to their project.

Finally, I want to thank Adriano José Camps Carmona for making possible my collaboration

in this project.

 vii

Revision history and approval record

Revision Date Purpose

0 26/04/2022 Document creation

1 6/04/2022 Structure and content revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Martí Fernandez Pons marti.fernandez@estudiantat.upc.edu

Adriano José Camps Carmona adriano.jose.camps@upc.edu

Lara Pilar Fernandez Capon lara.fernandez.c@upc.edu

Written by: Reviewed and approved by:

Date 26/04/2022 Date 12/05/2022

Name Martí Fernandez Pons Name Lara Fernández Capón

Position Project Author Position Project Co-Supervisor

 Name Adriano José Camps Carmona

 Position Project Co-Supervisor

mailto:marti.fernandez@estudiantat.upc.edu
mailto:adriano.jose.camps@upc.edu

 viii

Table of contents

Abstract .. ii

Resum ... iii

Resumen ... iv

Acknowledgements ... vi

Revision history and approval record .. vii

Table of contents ..viii

List of Figures ... x

1. Introduction .. 1

1.1. Statement of purpose ... 1

1.2. Requirements and specifications .. 3

1.3. Work Plan ... 3

1.3.1. Deviations from the initial plan ... 3

2. State of the art of the technology used or applied in this final degree project 4

2.1. Media Access Control layer .. 4

2.2. Protocols studied for this project ... 5

2.2.1. Pure ALOHA.. 5

2.2.2. Slotted ALOHA .. 6

2.2.3. Carrier Sense Multiple Access ... 7

2.2.3.1. Carrier Sense Multiple Access with Collision Avoidance 8

3. Methodology .. 10

3.1. Scope ... 10

3.2. General design ... 10

3.3. LoraExp design .. 12

3.4. Protocol .. 13

3.5. Pure Aloha design .. 14

3.6. Carrier Sense Multiple Access with Collision Avoidance design 17

4. Results .. 21

4.1. Unit Testing .. 21

4.1.1. Basic functionalities ... 21

4.1.2. Congestion test ... 25

4.2. Testing in Flight Hardware .. 25

5. Budget ... 27

6. Conclusions and future development: .. 28

 ix

Bibliography: ... 29

7. Appendices: .. xi

7.1. Work Plan .. xi

7.1.1. Work packages ... xi

7.1.2. Gantt diagram ... xi

7.2. Code...xiii

7.2.1. Protocol.hpp ..xiii

7.2.2. Protocol.cpp .. xv

7.2.3. AlohaProtocol.hpp ... xviii

7.2.4. AlohaProtocol.cpp ... xviii

7.2.5. LoraExp.hpp .. xxiv

7.2.6. LoraExp.cpp .. xxvi

7.2.7. Main .. xxviii

 x

List of Figures

Figure 1. RITA Payload and antennas render [2] .. 1

Figure 2. IoT CubeSat scenario scheme ... 2

Figure 3. Pure ALOHA flow diagram. .. 6

Figure 4. Slotted ALOHA flow diagram ... 7

Figure 5. CSMA/CA with RTS/CTS flow diagram .. 9

Figure 6. UML diagram ... 11

Figure 7. Control method flow diagram of AlohaProtocol .. 16

Figure 8. Control method flow diagram of CsmaCaProtocol .. 20

Figure 9. Size of the custom types. ... 21

Figure 10. Configuration of the protocol parameters. .. 21

Figure 11. Periodic transmission of the beacon .. 22

Figure 12. Received packet processing .. 22

Figure 13. Retrieval of ACK from LoraExp by ZMQ sockets .. 22

Figure 14. Confirmation of the waiting packet ... 23

Figure 15. Discarded ACK .. 23

Figure 16. Data packet transmission ... 23

Figure 17. ACK transmission .. 24

Figure 18. Addition and removal of a packet from the backoff queue 24

Figure 19. Packets congestion after 10 minutes of execution ... 25

Figure 20. Duration of a control execution .. 25

Figure 21. ZMQ sockets performance on Pluto-SDR .. 26

 1

1. Introduction

1.1. Statement of purpose

With the pass of time and the onset of new technologies, the “Internet of Things” has

become an increasingly popular technology. Nowadays, day-to-day objects can be

connected to the Internet, allowing us to perform actions remotely or automate processes.

Even so, there are still significant challenges in the area of IoT. One of them is to

accomplish global coverage, even in rural or difficult access areas where terrestrial

technologies are not feasible [1]. A possible solution for this could be the use of a satellite

constellation. However, due to the power limitations and the amount of these devices, not

any constellation can be used. The solution best fits this scenario is a CubeSat

constellation orbiting in the Earth's low orbits.

CubeSat is a technology based on integrating all the subsystems of a traditional satellite in

what is known as a Unit, a cube with a side of ten centimetres and a weight equal to or less

than two kilograms. In the beginning, they were used to study the behaviour of different

technologies in a space environment. However, today, they are used in many services such

as communications or Earth observation.

The Remote sensing and Interference detector with radiomeTry and vegetation Analysis

payload, carried out by the UPC NanoSat Lab, is one of the three selected projects by the

2nd GRSS Student Grand Challenge to fly onboard Alainsat-1, a 3U CubeSat developed

by United Arab Emirates’ National Space Science and Technology Centre.

Figure 1. RITA Payload and antennas render [2]

The main objectives of RITA are to perform microwave radiometry measurements at L-

band, vegetation analysis using a hyperspectral camera, and Radio-Frequency

Interference (RFI) detection and classification by using a Software-Defined Radio (SDR),

all with a simple and affordable CubeSat-based remote sensing payload [3].

 2

Like some companies in the sector, such as FOSSA Systems [4] or Lacuna Space [5], that

are already deploying CubeSat constellations for IoT applications, RITA will also implement

a LoRa transceiver which will acquire in-situ data from a hard-to-access IoT sensors

network for natural disasters monitoring as part of a multi-level remote sensing campaign.

In addition, these IoT sensors will also be able to perform on-demand executions from the

MicroWave Radiometer MWR and imager if necessary based on the retrieved data.

LoRa, is a wireless technology designed to connect low power consumption devices with

wide coverage, but sacrificing bit rate. These conditions are accomplished using spread-

spectrum modulations derived from chirp spread spectrum modulations.

At LoRa the signals are modulated using orthogonal chirps signals which are constantly

and lineally jumping in frequency. Thanks to this, communications among larger distances

can be achieved with the same SNR level. Furthermore, being a spread spectrum

modulation makes it robust to other perturbing effects such as multipath or Doppler [6].

This makes it an interesting technology to be used in satellite communication systems, in

front of others also used in IoT applications such as Sigfox or NB-IoT. Its resilience to Earth-

to-space channel constraints, achieving a maximum distance of 832 km. Additionally, LoRa

can be used with a variety of Media Access Control (MAC) protocols which is also an

advantage in front of others modulations [7].

LoRaWAN is the MAC protocol based on a star-shaped topology designed for LoRa

modulation. However, it has been demonstrated that it has certain capacity limitations in

the IoT- satellite scenario. Because of the large footprint of the satellite, a large number of

devices can be in range, so this scenario represents a challenge in terms of the MAC. This

final degree thesis aims to design and implement MAC layer protocols that are suitable in

these conditions to be used by the RITA LoRa module.

Figure 2. IoT CubeSat scenario scheme

 3

1.2. Requirements and specifications

The main requirements and specifications of the LoRa experiment are:

 IoT sensors shall be able to transmit and receive LoRa modulation.

 IoT sensors shall be of large autonomy (a couple of years(TBD)).

 Spacecraft shall be able to transmit and send LoRa messages.

 LoRa experiment shall transmit and receive in the 868 MHz, which is the unlicensed

ISM frequency band that can be used over Europe.

 LoRa module shall be able to execute on-demand other payload modules.

 Software shall be able to obtain a configuration file to set MAC protocols and

modulation parameters.

 MAC protocol shall be changed depending on the configuration files of the

experiment.

 Telemetry of the LoRa module shall be transmitted to the ground station using the

s-band.

 UHF band shall be used to update the experiments' configuration files and do

patching(TBC).

 Software shall be efficient in terms of CPU usage.

 Software shall be efficient in terms of memory usage.

 Software shall be able to identify and handle errors.

 Software shall be able to generate logs to follow its performance of it.

1.3. Work Plan

The different work packages defined and the Gantt diagram are also explained. However,

due to space constraints, it was decided to move them to the beginning of the appendices.

1.3.1. Deviations from the initial plan

Regarding the division of the work into different work packages, it has to be only

commented the addition of an extra package referred to the report's writing. However, the

work plan has to be modified to a larger extent.

On the initial road map, it was scheduled to dedicate one month to each of the different

work packages of the development. However, soon it became apparent that conducting the

design, implementation, and debugging of the three protocols or even one in one month

was not a realistic estimation. In addition, the first approximation to the design of the

ALOHA protocol did not fit the requirements mentioned in the previous sections, and the

time dedicated to it was larger than expected.

For this reason and to complete the development of the pure ALOHA protocol, I decided to
extend the time of this project even though there is no time to finish the implementation
and testing of CSMA/CA and the development of Slotted ALOHA protocols.

 4

2. State of the art of the technology used or applied in this final

degree project

This section presents and explains the literature consulted to understand and develop this

project.

2.1. Media Access Control layer

When two or more nodes are sharing the same physical media, which is almost always the

case, some of them may try to access it simultaneously, giving rise to what is known as a

collision. In this case, the packets transmitted by the nodes involved may not be received

at their destination.

The Media Access Control protocols and the Logical Link Control (LLC), which constitute

the second layer of the Open Systems Interconnection model (OSI), are algorithms that

guarantee access to the shared media in an orderly and equitably way. Even so, there is

still the possibility of a collision, so MAC protocols establish a process to manage this

occasion [8].

However, due to the IoT and CubeSat scenarios, not all MAC protocols are suitable. There

are some additional limitations to the performance of MAC protocols which are not present

in traditional satellite communications. These are related to the hardware’s processing

capabilities, available storage, the mobility, and the number of devices.

Unlike traditional satellites, CubeSats do not have great processing capabilities, so the

proposed MAC protocols cannot involve complex processes. It has to be also taken into

account channel congestion. In satellite communications, the patterns are usually one-to-

one or one-to-many. In our scenario, the satellite will behave as a getaway. It will have to

retrieve the packets of sensors on Earth’s surface, which are unknown their location and

amount (lots-to-one). Moreover, these metrics will be changing continuously due to the

satellite’s movement around the orbit.

Therefore, the traditionally used protocols for satellite communications based on

reservation are not suitable in our scenario. This is because they are not flexible to the

variations in the number of devices since they require coordination among the nodes

involved. Therefore, the ALOHA-based protocols are more relevant for the MAC layer

protocols in IoT scenarios due to their simplicity in terms of implementation and the low

hardware requirements [9].

The existing MAC protocols usually used for IoT satellite communications can be

categorised as follows:

 Random access asynchronized protocols: These are protocols where access to

the media is performed randomly and require an ACK to confirm a correct reception.

The protocols that receive this categorisation are Aloha, Enhanced Aloha (E-Aloha),

Spread Spectrum Aloha (SS-Aloha), and Enhanced Spread Spectrum Aloha (E-

SSA).

 Random access synchronised protocols: These are protocols where the

channel is divided into slots of equal duration of the packet transmission time. The

nodes can only transmit at the beginning of these slots. It requires synchronization

 5

among the nodes of the network and ACK to confirm correct reception. The

protocols that receive this categorisation are Slotted Aloha (S-Aloha), Contention

Resolution Diversity Slotted Aloha (CRDSA), Irregular Repetition Slotted Aloha

(IRSA), Coded Slotted Aloha(CSA), and Multi-slots Coded Aloha(MuSCA).

 Medium sensing protocols: These are protocols where the nodes sense the

medium before transmitting. If it is free, it transmits; if not, it performs a random

backoff and senses the medium again. Only Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) is in this category. This protocol will be explained

in the following pages.

 Reservation protocols: These are protocols where the channel is divided into slots

that nodes reserve. Only R-Aloha is in this category. Require ACK to confirm correct

reception.

 Hybrid protocols: They are a mix of different protocols that cannot be classified in

previous categories. The protocols that receive this categorisation

 are: Fixed Competitive Time Division Multiple Access (FC-TDMA) and Random

Frequency Time Division Multiple Access (FTDMA).

All these above mentioned MAC protocols will accomplish the desired performance by

achieving a sufficient density of sensors for each one thousand square kilometres for the

case presented in this project [10]. Among them, it has been decided to implement ALOHA,

Slotted ALOHA, and CSMA/CA because of their implementation simplicity in front of the

others that have error correction codes or more complicated algorithms.

2.2. Protocols studied for this project

In this section, there is a more extensive explanation of the protocols to be implemented in

the scope of this project:

2.2.1. Pure ALOHA

Pure ALOHA is the first and the simplest of the MAC protocols. Right when a node has a

packet to send, it accesses the media and sends it without any restriction.

This approach does not address the problem of multiple access. If another node wants to

transmit simultaneously, the packet will be lost. For this reason, pure ALOHA relies on an

algorithm based on the repetition and the use of an extra packet called Acknowledgment

(ACK) to confirm the correct reception of the useful data packet. When the transmitting

node sends a packet, it starts a timer known as wait time. The duration of this time is

determined by two times the propagation delay plus a certain margin and the processing

time. If the ACK is received before this timer reaches zero, it would be considered a

success; if not, the packet would be transmitted again.

Even so, this process does not solve all the problems. If when the wait time is over, the

nodes retransmit the packet again, the situation will be the same as before. To address

this, nodes will start another timer, called backoff, of an aleatory duration before

retransmitting. The determination of backoff time depends on the implementation. This

project selected a Binary Exponential Backoff formula which consists of taking a random

number between R = [0, 2K-1], where K is the number of attempts and multiplying by the

maximum propagation delay.

There is one final scene that addresses this protocol. If every time that the attempt to send

a packet fails or the ACK does not arrive, it is retried to send, this will lead to saturation of

 6

the channel at a certain moment. To avoid this casuistic, a maximum of retransmission

attempts is set after which one the packet in question is descanted [8].

In our case, as the satellite behaves as the receiver, this will only perform two actions. First,

it will send the Beacon to let the nodes know that they are in the range to transmit and

second, the transmission of the ACK packet verifying the correct reception. In this protocol,

both packets Beacon and ACK have only the common fields, which are the timestamp and

the satellite identifier, and the satellite identifier, packet type, packet identifier, node

identifier, and timestamp, respectively [10].

Figure 3. Pure ALOHA flow diagram.

2.2.2. Slotted ALOHA

As the name suggests, slotted ALOHA is a MAC protocol derived from the pure ALOHA to

improve its performance.

Due to the lack of restriction on when to transmit, at the pure ALOHA protocol, the packet

can collide with another packet previously sent or during the time that it is transmitted. This

time where there is the possibility of a collision is known as vulnerable time. Considering

the hypotheses explained before and considering Tp as the time to transmit a packet, the

vulnerable time of pure ALOHA is two times the transmitting frame Tv = 2*Tp. The slotted

ALOHA is designed to improve this vulnerable time by adding limitations to when the nodes

can start to transmit.

At slotted ALOHA, the time is divided into slots of the same duration as the transmitting

frame Tp, and the nodes are limited to start the transmission at the beginning of these slots.

So, when a node starts to transmit, the packet can collide with packets sent by other nodes

at the same slot but not with packets transmitted at the previous or the following slots. By

doing this little modification to the algorithm of pure ALOHA, a vulnerable time of Tp is

accomplished, which is an improvement of 50%.

 7

Of course, this improvement does not directly improvement of the success rate from the

pure ALOHA if we find ourselves in the ideal scenario [8].

As in a pure ALOHA, the satellite will behave as the receiver. Even though this time, the

Beacon will have an extra field which is synchronisation, since this field is necessary to

start the slots synchronously at the different nodes in the range [10].

Figure 4. Slotted ALOHA flow diagram

2.2.3. Carrier Sense Multiple Access

Carrier Sense Multiple Access (CSMA) is a MAC protocol that tries to improve the

performances of the ALOHA protocols by adding the limitation of sensing the channel to

know if it is busy or free before transmitting.

Despite this new strategy, a collision-free channel is not accomplished. Because the

transmission of a packet always has a certain delay, it may be the case that a certain node

senses the media free while there is a second node that has already started to transmit a

packet that has not reached the first node yet.

When a collision occurs, to handle these situations, two different procedures were defined:

 Collision Detection (CSMA/CD): in this algorithm, the media is sensed not only

before it starts but also during the transmission simultaneous to the sending of the

packet. It also added the transmission of a jamming signal to notify the other nodes

of the network when a collision has occurred.

 Collision Avoidance (CSMA/CA): it modifies the pure ALOHA by adding two extra

packets and interframe waits.

 8

2.2.3.1. Carrier Sense Multiple Access with Collision Avoidance

As it is mentioned before, CSMA/CA relays on two extra packets, Request To Send (RTS)

and Clear To Send (CTS), and interframe wait, DFC InterFrame Space (DIFS), and Short

InterFrame Space (SIFS).

Before explaining the algorithm, let us explain the different components. RTS and CTS are

control packets whose purpose is to inform the network that communication will start. The

information contained the identifier of the nodes involved in the process and the duration

while the channel will be occupied, known as Network Allocation Vector (NAV).

DIFS and SIFS are established to solve the vulnerable time. SIFS is set by the maximum

delay of a transmitted packet to reach the most distant node. It is performed before the

transmission of each packet once started the process. DIFS is the sum of this delay time

plus an extra time defined by the binary exponential formula already explained, and it is

only performed at the beginning of the process.

Once these components have been described, let us start the algorithm. At the beginning

of a transmission, the node continuously senses the channel to verify if it is busy. When it

is free, the node waits for a DIFS, transmits RTS to reserve the channel, and sets a timer.

When the receiving node receives an RTS, it waits for SIFS, and answers with a CTS

confirming that it is ready. If the transmitting node receives a CTS before the timer reaches

zero, it means the reserve of the channel is correctly achieved, and the communication

process can start. If not, the transmitting node initiates a backoff process already explained

at pure ALOHA.

Following the exchange of packets described above, once the CTS is received, the data

packet is sent. If the ACK is received before the wait time ends, the process has been a

success; if not, a backoff is started after which the data packet is retransmitted. This

process is repeated until the correct reception of ACK or the number of attempts is

exceeded [8].

In addition to the already mentioned packets in ALOHA, the satellite will also have to send

the CTS packet in this protocol. This one is formed by satellite identifier, packet type, packet

identifier, node identifier, timestamp and the NAV. Because of the broadcast nature of

satellite communications, CTS will be the one which reserves the channel in our scenario

[10].

 9

Figure 5. CSMA/CA with RTS/CTS flow diagram

 10

3. Methodology

This section presents the methodology that has been followed and the software

development process are presented.

3.1. Scope

The goal is to implement an experiment consisting of using a CubeSat as a

communications relay between an IoT sensors network and a central station. These

sensors will be distributed around the Earth’s surface and will take measurements of

different parameters to predict, for example, natural disasters.

Due to the high quantity of sensors and constant change in the number of devices in the

range, this scenario represents a challenge for the current MAC protocols. The main goal

of this project is to develop a software which implements MAC protocols capable of

handling the situation described above that can be used on both sides, on the satellite and

the ground sensors.

3.2. General design

This software will have to work together with LoraUtils, which is the class that has been

developed to implement the LoRa Modulation process.

The first approach that was taken to the application’s design as a joint was to implement

three classes run by three independent threads. These will be organized in LoraUtils,

modulation, Protocol, which will manage the packets, and LoraExp, which will be in charge

of managing the useful data.

However, that is not the best solution. Due to the onboard processing capabilities of the

satellite, running three threads for this process is a bit excessive. In addition, LoraExp was

not needed to be running all the time, only when a new packet had to be processed.

For this reason, a new architecture was adapted. Only two threads, LoraUtils and Protocol,

and LoraExp will be an inner class of Protocol called when packets have to be processed.

Referred also to the architecture, because we wanted to implement more than one MAC

protocol, it was decided to use inheritance to reuse code and reduce the memory usage,

another limited resource onboard the satellite. In this way, Protocol is an interface extended

by AlohaProtocol, CsmaCaProtocol, and SlottedAlohaProtocol.

In addition to the protocols’ algorithms, the Protocol will also have to implement the periodic

transmission of a beacon because of the CubeSat scenario. This packet, which

components will be explained after, aims to inform the nodes if they are in the satellite’s

footprint not to transmit data if there is no one to receive it.

All the data collected from the sensors will be downloaded to the ground station throw an

SDR that transmits at S-band. For this reason, this protocol will record a log where all the

data collected from the sensors will be written. Moreover, the actions performed by the

MAC will also be recorded to do maintenance at the ground station. The spdlog third-party

library has been used for this purpose [11].

 11

Figure 6. UML diagram

Data management is an issue that has also been taken into consideration. The received

packets have a structure and include a set of data that differs depending on the packet

type. Also, having the necessary information groped together can be advantageous for

certain processes. Because of this, different custom types have been defined to manage

data in an orderly and effective way. That are listed below:

 Lora_Beacon: it consists of the union of an array of size ten and a struct. This struct

contains the timestamp (uint64_t) and the satellite identifier (uint16_t). In the case

of Slotted Aloha, it will also contain synchronization (uint16_t) to ensure the

beginning of the slots are simultaneously for all nodes.

 Protocol_Header: it is a union that contains the necessary information to manage

the packet. It is formed by a struct that has the satellite identifier, the type of the

packet (uint8_t), the packet identifier (uint8_t), and the node identifier (uint32_t).

This structure is used to decide how the MAC protocol should manage the packet.

 Buffer_Packet: it is how the packets are stored at the buffer. It is a struct that

contains the header of the packet (Protocol_Header), the number of attempts (uint),

and a vector to store the packet (uint8_t).

 Waiting_Packet: it is the form in which packets that are waiting for a response are

stored. It consists of a struct that has the packet type, the packet identifier, the node

identifier, the time at which has been sent the packet (time_t), the number of

attempts, and a vector to store the packet.

 Back_Off_Packet: it is the form in which packets that are in backoff are stored. It

consists of a struct that has the packet type, the packet identifier, the node identifier,

 12

the time at which has started the backoff (time_t), the duration of this backoff

(time_t), the number of attempts, and a vector to store the packet.

 Config_Params: they are the parameters to configure the protocol. It consists of a

struct that has the satellite identifier, the beacon period (time_t), the wait time

(time_t), the maximum backoff time (time_t), and the maximum number of backoff

(uint). In this packet, there is also the pointer to the LoraExp object.

 Lora_Packet: is the definition of the data packets that will be used. It is a union that

contains the satellite identifier, the type of the packet, the packet identifier, the node

identifier, the timestamp, the position in x (uint32_t), position in y (uint32_t), and the

position in z (uint16_t) of the transmitting node and the sensor data stored in an

array of uint8_t (at this moment is set to 50 positions).

 Lora_Ack: is the definition of the ACK packets that will be used. It is a union that

contains the satellite identifier, the type of the packet, the packet identifier, the node

identifier, the timestamp, and free slots (uint16_t).

 Request_to_Send and Clear_to_Send: this is the definition of the control packets

used in CSMA/CA. It is a union that contains the satellite identifier, the type of the

packet, the packet identifier, the node identifier, the timestamp, and the time to

reserve the channel (uint16_t).

 State: is an enumeration of the different states. (IDLE, RECEIVE, SEND, STOP)

 Packet_type: is an enumeration of the different packet types. (DATA_PACKET,

ACK, RTS, CTS)

These unions and structs have been defined at Protocol and LoraExp to have the most

general domain possible.

A further explanation of the previously mentioned classes' attributes, methods, and

connections can be found in the sections below.

3.3. LoraExp design

LoraExp is a simple class designed to implement the actions of the Application layer. The

goal is that Protocol can execute a constant control, so the time is not wasted processing

the data of packets, and it enhances its performance. Therefore, this class is in charge of

registering the data from the received packets in the log sanded to the ground station. It

will also create the ACK packet to confirm the correct reception of data packets.

The communication between both classes is implemented by performing a callback to the

processPacket function from the Protocol side and using ZMQ sockets from the LoraExp

side.

Depending on the context where sockets are used or how the packets are distributed

among them, ZMQ offers us six types of patterns or couples of sockets: Request-Reply,

Dealer-Router, Publish-Subscribe, XPublish-XSubscribe, Push-Pull, Exclusive pair.

At the Request-Replay pattern, the communication between sockets is bidirectional,

meaning packets go in both directions. In this pattern, the Request socket always starts

the communication, sends a packet to the Reply and then responds synchronously. The

Dealer-Router pattern has the same functionality as the pattern explained before. However,

it gives the possibility to implement the communication asynchronously. Moreover,

because both patterns have the same communication algorithm, Request/Dealer and

Replay/Router can be connected, but always like this.

 13

Publish-Subscribe and XPublish-XSubscribe are one-to-many sockets. At this pattern, a

Subscribe socket has to be subscribed to a Publish socket; if not, the first one cannot

receive the message sent by the second one. The difference between both is that in the

XPublish-XSubscrib pattern, the subscription to a Publish socket can be performed by

sending a message to it, which cannot be done in Publish-Subscribe. However, they can

be used together.

The Push-Pull pattern is compared with a pipeline; it directly connects both sockets. So,

the push socket can only fill the pipeline with packets, while the pull socket can only retrieve

packets. The Exclusive pair is also a one-to-one socket pattern like this last one. However,

the difference between both lies in that the Exclusive pair has been specifically designed

to be used different throw threads safely.

For our case, because the communication from Protocol to LoraExp is done performing a

callback, Request-Reply and Dealer-Router are discarded since the communication by

socket is not bidirectional. Also, Publish-Subscribe and XPublish-XSubscrib are discarded

because they are designed for one-to-many, and this is one-to-one communication. Finally,

the Exclusive pair pattern is discarded because there is no need to be thread-safe. So, the

communication from LoraExp to Protocol, among the different options that ZMQ offers, will

be performed by the Push-Pull pattern, which is the one that better fits the functionality that

it is searched for [12].

The exchange of information between the different classes, LoraUtils, Protocol, and

LoraExp, is performed using vectors of uint8_t. This is because uint8_t is the minimum data

type storable and is also used by ZMQ [13]. As for the vectors, they are used because they

have some very useful properties already implemented at the standard, such as the adding

and removal of elements.

The different types of packets are defined in this class as a union between an array of

uint8_t and a struct that contains an attribute for each one of the fields of the packets.

These are organized in such a form to avoid alignment problems and separate between

useful information and the MAC information used to handle packets.

Despite the good properties of vectors, they cannot be used to define a union. It is needed

to have the same size in terms of storage between the fields of the union to establish it.

For this reason, the vectors received from Protocol are converted into an array. Then, the

use of union grants us the possibility to convert a succession of ordered bytes that cannot

be understood directly to a container with the same information correctly separated by

fields and ready to be logged.

3.4. Protocol

This class is designed as an interface where all the common attributes and methods, as

well as a group of custom types of variables, are defined and which the different protocols

will extend and inherit.

It has two vectors of Buffer_Pakets to store the received packets, buffer_rx, and the

packets to send, buffer_tx. It also has a Config_Params attribute where the parameters of

the protocol set by the ground operator are stored, the definition of the ZMQ socket to

retrieve the packets from LoraExp, and the call back to process packets. And finally, the

beacon packet and a time_t to store when the last one has been sent.

 14

Of course, since the control method is implemented as a state machine, a variable to

manage the state of this one is needed. This is defined as a State variable and is called

current_state.

The functions implemented in this class are:

 loadConfig: this function has a Config_Params as an argument and returns void. In

this method, the configuration parameters and the initial state are set. It is also

created the call back to processPacket from LoraExp.

 setRX: this function has a vector as an argument and returns void. This function

creates a Buffer_Packet and adds it to the buffer_rx.

 setTX: this method returns void, and its arguments are: an uint8 _t for packet type,

an uint32_td for the node identifier, an uint8_t for the packet identifier, and a vector

for the data. This function creates a Buffer_Packet and adds it to the buffer_tx.

 getTimestamp: this function does not have arguments and returns a time_t which

is the Unix timestamp in milliseconds of the system.

 sendBeacon: this method returns void and takes the time stamp as an argument.

This function adds the timestamp to the beacon and sends it to LoraUtils.

 setBackOffTime: this function takes the number of attempts K realized of this packet,

obtains a random number between R = [0, 2K-1], and multiplies it by the waiting

time. This is the value that returns the duration of the backoff.

 printBufferPacket, printWaitingPacket, and PrintBackOffPacket: these functions

print the different values of the packets at the log. They are purely for debugging

purposes.

In addition, there is also the declaration as virtual of control and receive, which will be

implemented at the heir class.

3.5. Pure Aloha design

As is commented before, the AlohaProtocol class inherits from Protocol; therefore, all the

components and methods defined before are also the propriety of this one. So, in this class,

the main work consists of the redefinition of the virtual methods of control and receive.

Before going into the details on how these methods have been implemented, the addition

of two extra components concerning the interface has to be mentioned. Waiting and

Backoff queue are two vectors where the packets waiting for an ACK or at the backoff

process are stored to manage the time. The variables stored are of type Waiting_Packet

and Back_Off_Packet, respectively, which are structs with the necessary information for

the process. Waiting_Packet is formed by packet_type, packet_id, node_id, send_time,

n_backoffs, and packet, a vector storing the useful data. Back_Off_Packet the same

information listed above, changing the send_time for start_back_off and adding

back_off_time, which is the duration of the backoff.

Control methods are implemented as a machine of states of three different possibilities:

IDLE, RECEIVE, and SEND.

Before entering any state, getTimestamp is called to obtain the Unix time and stored in

unix_timestamp_ms. It is also checked if the beacon_period is exceeded, in which case it

is called sendBeacon. Finally, if there are any packets from LoraExp, they are retrieved by

calling to receive until there are no more packets at the socket.

 15

At IDLE state, first, the waiting_queue is revised. In the case of a Waiting_Packet has

finished the waiting_time, which means that the actual time, unix_timestamp_ms, minus

the initial time, send_time, is bigger than waiting_time, it is checked if the maximum number

of attempts has been exceeded. If so, sending the packet is aborted, which means that the

packet is removed from the waiting queue and is not attempted to be sent anymore. If not,

a Back_off_Packet is created and added to the back_off_queue, setting the start_back_off

as the actual time, the back_off_time by calling setBackOffTime and adding 1 to n_backoffs.

Then, the Waiting_Packet is eliminated from the waiting_queue. Because the waiting_time

is equal for all the packets, and these are added to the queue according to the order in

which they have been sent, from the first packet that has not finished, the waiting time

forward is not necessary to continue checking so the program moves to next step which is

revising the back_off_queue.

Due to the backoff time being random for each packet, unlike the waiting queue, all packets

stored at the back_off_queue have to be checked. If a Back_Off_Packet has exceeded the

back_off_time, it is created a new Buffer_Packed, added to the buffer_tx, and removed

from back_off_queue.

Finally, it is checked if there are packets to process in the buffers. If buffer_rx is not empty,

the current_state is changed to RECEIVE; if it is and buffer_tx is not empty, it is changed

to SEND. If both are empty, the current_state remains IDLE.

At RECEIVE state, it is taken the first Buffer_Packet of buffer_rx and its header is obtained.

Then is verified if the packet is addressed to us by comparing the satellite_id. If the

satellite_id coincides, which means is it addressed to us, the packet processed may be an

ACK or a data packet. If the packet is not addressed to us, it is discarded and removed

from the buffer_rx without processing it.

If it is a data packet, it is made a callback LoraExp to process it. If it is an ACK, it is verified

if the node_id and packet_id coincide with a packet from waiting_queue. If the data packet

that is corroborating its correct reception is not founded because the wait_time has already

finished, the packet is discarded. If it is found, the packet is eliminated from the

waiting_queue, and it is performed a callback to LoraExp to process the packet from

buffer_rx. In all cases, in the end, the packet is removed from the buffer_rx.

Finally, if there are more packets at buffer_rx, the state remains to RECEIVE; if not, it

changes to IDLE.

The last and the simplest state is SEND. The header and unix_timestamp_ms are

converted to a vector of uint8_t and added to the useful data stored at the packet of the

first Buffer_Packet of buffer_tx, and then it is sent to LoraUtils. If it is a data packet, a

Waiting_Packet is created and added to the waiting_queue. Finally, as in RECEIVE, if there

are more packets at buffer_tx, the state remains to SEND; if not, it changes to IDLE.

The other method implemented is receive. At this method, all the packets at the pull socket

of the class are retrieved. It is made using the properties that ZMQ offers by using the flag

ZMQ_NONBLOKING, which makes the socket not have a blocking behaviour. So, when

calling zmq::receive, if there is a packet to receive, it returns true, a Buffer_Packet is

created and added to buffer_tx at the end, and this process is repeated. If not, it returns

false and gets out of the method.

 16

Figure 7.
Control method

flow

diagram of AlohaProtocol

 17

3.6. Carrier Sense Multiple Access with Collision Avoidance design

CSMA/CA has been designed following the same scheme as pure ALOHA, which means
that the managing of packets is only performed at RECEIVE and SEND, and it is in the
IDLE state where the different waiting and processes are performed.

Due to the complexity of this protocol, several flags and times have to be added. Because
the node has just sent or received a packet, it has to be done one thing or another; it is
important to know which is the estate of the previous execution, so a new State variable
called previous_state has been added to the list of attributes. Two more flags, PROC and
RTS, have also been added. The first is a Boolean that is true if the node is involved in the
process which has the channel reserved. The second one indicates that the node is trying
to start a new process.

It has also been defined as one variable of type time_t to store each of the different times
that are used in the algorithm and are only calculated once at the beginning or are used
simultaneously, that are: DIFS, SIFS, INIT, which is the initial time of the process and NAV.
For both remaining times, wait and back off, it has been defined as control_time. And finally,
to update the time, three references are needed: initial, duration, and current time,
start_time has been defined, and it is used to store the initial time of any one of the time
processes, except NAV which one has INIT for this purpose.

As at AlohaProtocol, control is the main method also implemented as a state machine.
Before entering any state, the Unix timestamp of the system is obtained, the beacon is sent
if the beacon_period has been exceeded, and packets coming from LoraExp are retrieved
if there are any.

Once entered in the IDLE state, the different times are updated if necessary. Then NAV is
checked. If NAV has not been exceeded, but PROC is false, which means that there is an
ongoing process in which the node does not participate, it gets out of the IDLE state,
performing a loop until NAV is finished.

If the PROC flag is true, depending on the previous_state different actions are performed.
If previous_state is RECEIVE, first it is checked if SIFS has finished; if not, it starts a loop
that consists of getting in IDLE, checking SIFS, and getting out until SIFS has been
exceeded. Once SIFS is finished, the current_state is changed to SEND and the
previous_state to IDLE.

If the previous_state is SEND, it is checked if the wait time has finished. If it has not finished,
it is verified if a new packet has been received. If it is assertive, the current state is changed
to RECEIVE; if not, it does nothing. This process is repeated until a packet is received or
wait time is finished, in which cases it is set a backoff and the previous_state is changed
to IDLE.

If the previous_state is IDLE, it is checked if backoff has finished, and when it is, the
current_state is changed to SEND and previous_state to IDLE.

If NAV has not been exceeded, but PROC is true, that means that the communication has
not finished yet, but the channel is not reserved more. So, the communication is aborted,
which means that PROC is set to false, all times are set to zero, and the packet from
buffer_tx is removed.

If any of the previous cases is not the actual situation, it is checked by the RTS flag. If it is
true, a loop is performed where it is checked if, while a backoff time, new packets have
been received. This is how is modelled the active sense in this software. If a new packet is
received before the backoff time, the number of packets at buffer_rx is reset, and a new

 18

backoff is started. If not, it waits for DIFS, and the current_state is changed to SEND and
the previous state to IDLE.

Finally, two more casuistic are contemplated. If buffer_rx is not empty, the current_state is
changed to RECEIVE and the previous state to IDLE. Alternatively, if buffer_tx is not empty,
in which case, if it is needed, createRTS is called, the number of packets at buffer_rx is
stored, a backoff time is set, and the RTS flag is set to true, and DIFS and SIFS are
established.

At RECEIVE, it is taken the first Buffer_Packet of buffer_rx; its header is obtained and is
checked if it is of packet_type CTS.

If it is a CTS and addressed to us, PROC is set to true. If it is not addressed to us, PROC
is set to false. In both cases, NAV time is established to the time obtained from the packet,
INIT is set at the current time, and the RTS at the buffer_tx is removed. Usually, at
CSMA/CA, the channel is reserved by the RTS, but in this software, it is reserved by the
CTS. This is because, in our scenario, the satellite will be the one to send the CTS, thus
acquiring a broadcast nature which is not accomplished by land nodes which will send RTS.
In addition, land nodes are further apart than the usual case and at difficult accesses, which
increases the probability of the hidden node effect, so, because of the more extensive
coverage of the satellite on behalf of land nodes, CTS is better to reserve the media.

If the packet is not a CTS but is addressed to us, depending on the packet_type different
actions are performed. If it is a data packet, it is sent to LoraExp to be processed. If it is an
ACK, it is verified if the node_id and packet_id match with the data packet stored at
buffer_tx and in that case, it is sent to LoraExp to be processed, and PROC is set to false.
If it is an RTS, the response packet CTS is created, PROC is set to true, and NAV and INIT
are established to the correspondent time. In the three before-mentioned cases, SIFS time
is reset, and the current_state is changed to IDLE and previous_state to SEND.

If the packet is not addressed to us or is of ACK type, but the node_id and packet_id do
not match with the packet to verify, the current_state is changed to IDLE, but the
previous_state is not modified. This is to avoid getting out of the wait time if it is waiting for
a packet. At last, before getting out from SEND state, the packet processed is always
deleted from the buffer_rx.

When there is a packet to transmit, the state is set to SEND. At this state, for the first
Buffer_Packet of buffer_tx, it is verified if the maximum number of attempts has been
exceeded. If it is the case, the process is aborted, and current and previous states are set
to IDLE. If this is not the case, the header and timestamp are added to the data, the packet
is sent to LoraUtils, the wait time is established, the number of attempts is increased by
one, and current_state is set to IDLE and previous_state to SEND.

As in AlohaProtocol, the receive method is in charge retrieve the packets from LoraExp, so
its implementation is the same. However, this time, the packet received is added at the
beginning of buffer_tx. This is because, in contrast to the ALOHA, at CSMA/CA, a
sequence of packets has to be followed.

In this protocol, there are two extra packets which are in charge of the channel reservation
process. Due to this control packets necessity, other two methods have been added to
CsmaCaProtocol concerning Protocol: createRTS and createCTS. The first one is called
at the beginning of the process and creates an RTS type packet using the information of
the first packet of buffer_tx, which is the packet desired to send, and add it to the beginning.
In the case of createCTS, it is called while processing an RTS at RECEIVE state. The

 19

procedure is the same as createCTS, but this time using the information of the RTS that
has been processed to which is answering.

Because this class has not been implemented yet, it has to be mentioned that both
attributes and method or design can be subjected to changes in the future.

 20

Figure 8. Control method flow diagram of CsmaCaProtocol

 21

4. Results

This section presents the results obtained about the correct definition and implementation

after performing a series of tests on a computer and the Pluto-SDR.

4.1. Unit Testing

4.1.1. Basic functionalities

Before proving if the software is capable of correctly managing the situations that it will

have to face during its performance, it was verified if the custom types were correctly

defined. The order of the packets’ header components should be adjusted from the packets

proposed in [3] to avoid alignment problems. As seen in the following capture, the packet

with the wrong ordering of the header (the second one) adds 8 bytes between the useful

data, which provokes that the packet was not correctly processed by AlohaProtocol or

LoraExp.

Figure 9. Size of the custom types.

In the previous picture, it can also be seen that the size of the packets is a little bit bigger
than the sum of the bytes of its fields. The extra bytes are known as padding, and they are
added to conform the struct to its biggest component. In our custom types, the timestamp
is the most significant field and is 8 bytes, so the total size of the struct must be divisible
by eight. In contrast with the alignment bytes, these bytes will not create a malfunction of
the software since they are located at the end.

Once it is proven that the types defined are correct, the different methods implemented are
tested. First, the LoraExp and AlohaProtocol objects are created and configured by calling
the loadConfig function. The values used in this case are not the ones of the actual case,
they have been selected only for test proposes.

Figure 10. Configuration of the protocol parameters.

Then, the different states are tested. To do this, a simulation is conducted of the different
cases the software will have to face in each of these states introducing different types of
packets to the buffers manually. This simulation is performed by realizing several lops of
the control method execution.

First, it is checked the IDLE state. However, no actions are performed when there are no
packets to process at any of the buffers or queues. So, this initial test is used to prove the
most basic task that this software has, which is to send the beacon periodically. This task
is performed not only at the IDLE state but also at RECEIVE and SEND.

 22

Figure 11. Periodic transmission of the beacon

The previous figures show that the beacon is correctly created with the timestamp and the
satellite identifier, and it is sent 10 ms after the previous one has been sent.

Then, the functionality in RECEIVE state is tested. To simulate this situation, two packets
are added to the buffer_rx. Because these are simulating packets received from LoraUtils,
which only send a vector of uint8_t, of the different fields that Buffer_Packet contains is
only set the packet. Their header is still unknown, so this is randomly created.

When these packets are detected, the state is changed. Once in the receiving state, the
packet’s header is obtained and stored at the Buffer_Packet. If the packet received is of
DATA type, by calling the callback, this packet is sent to LoraExp to be processed, and the
ACK to confirm the correct reception is created with the correspondent information.

Figure 12. Received packet processing

Figure 13. Retrieval of ACK from LoraExp by ZMQ sockets

Then, the ACK is retrieved at the subsequent executions using the ZMQ sockets. The array

of bytes received from this one is processed to obtain the packet’s header, and it is created

a buffer packet which is added at the end of the buffer_tx.

At the previous captures, referent to the efficiency of the software, it can be seen that there

is a certain delay between the transmission and retrieval of the ACK packets. This delay

reaches a maximum of 3 milliseconds which could be relevant depending on the wait time

that has been selected.

 23

Another result that can be deduced is that, in addition to the correct processing of the

packet, it can also be confirmed that the exchange of information between the different

objects of AlohaProtocol and LoraExp is performed with no losses or alterations of the

information stored.

If the packet added to the buffer_rx is an ACK, the waiting queue is verified. Suppose the

packet with the node and packet identifier is found. In that case, the packet is sent to de

callback and processed, and both packets are eliminated. If not, the ACK packet is

discarded.

Figure 14. Confirmation of the waiting packet

Figure 15. Discarded ACK

Then, the SEND state is tested. Some packets are added to the transmission buffer to
check if they are correct. In contrast to the RECEIVE state, these buffer packets are added
to the buffer_tx with the set header. Suppose the packet that has to be sent is of DATA
type. In that case, before sharing it with LoraUtils, a waiting packet is created with the
necessary information for retransmission if the communication fails and is added to the
waiting queue. If it is an ACK, the packet is only sent to LoraUtils because there is no need
to be added to the waiting queue since this type of packet is not retransmitted.

Figure 16. Data packet transmission

 24

Figure 17. ACK transmission

In addition to the transmission process, at the previous captures of the log, it can also be

seen that the addition of the header and the timestamp to the packet is done correctly.

Finally, the backoff process is tested. A new data packet is added to the transmission buffer
to do this. Once it has been transmitted and correctly added to the waiting queue, it is
waited until the end of the wait time to see if this is correctly detected, and the packet is
added to the backoff queue.

Figure 18. Addition and removal of a packet from the backoff queue

In the previous figures, it can be seen that the exchange of packets between the waiting

queue, the backoff queue and the transmission buffer is achieved with no problems. It can

also be seen that the setBackOffTime correctly models the binary exponential formula that

implements.

In what refers to efficiency, on average, the control method is executed three times in a
millisecond, which means that at least one packet can be processed every millisecond if a
change of state is performed.

 25

4.1.2. Congestion test

Doe to the success rate of ALOHA, which is around 18%, the packets of failed

communication could accumulate in the waiting or backoff queues provoking the memory

fills quickly. This casuistic could be a problem considering the limited storage available on

the CubeSat.

To prove that if the maximum backoff algorithm is correctly implemented and the case

explained before is avoided, is performed a test to see how the program behaves along

time. This test consists of a loop of thirty executions, of the control method where the

software has to manage two received packets and send their correspondents ACK, two

successful transmissions and one failed transmission.

This loop is performed for ten minutes with a waiting time of 5 milliseconds and a maximum

of 5 backoff. After more than half a million executions, only four packets are in the waiting

queue and one in the backoff queue.

Figure 19. Packets congestion after 10 minutes of execution

4.2. Testing in Flight Hardware

The ADALM-Pluto is a module based on the AD9363 transceiver of Analog Devices, which

can perform communications by a Software Defined Radio, radiofrequency and wireless.

Its processor is a Single ARM cortex-A9 that works at 667 MHZ and 256 MB RAM.

Therefore, the processing capacities of this hardware are very restrictive in front of an

actual computer. For this reason, the ADALM-Pluto allows us to test the software in the

hardware conditions that we will have on the satellite.

Because of the different architectures between the computer and the Pluto-SDR, it was
needed to cross-compiled to the ARM architecture to test the software at the Pluto-SDR
and perform hardware in the loop testing.

By seeing the output log, it is proven that the algorithm is correctly working, also the Pluto-
SDR. In terms of efficiency, at the Pluto-SDR, the test executes control once in an average
time of three milliseconds. That means that one packet needs six milliseconds to be
processed.

Figure 20. Duration of a control execution

In addition, it can be observed that the time it takes for ZMQ sockets to exchange the
packets between LoraExp and Aloha protocol remains and, in some cases, gets worse. At
my computer, the maximum delay is around 5ms; meanwhile, at the Pluto-SDR, it is 130
milliseconds which will provoke the wait time to be a bit longer.

 26

Figure 21. ZMQ sockets performance on Pluto-SDR

 27

5. Budget

This project consists of software development, so the cost has been divided into
hardware, software and developers’ salary costs.

The hardware used in the development of this project is presented in the following table.
To calculate the depreciation of these components have been selected a useful life of 5
years and a residual value of 10%.

Element Number Price Depreciation

Computer 1 900 € 162 €

ADALM-PLUTO
Active Learning
Module

1
163,19 € 29.38 €

TOTAL 1063,19 € 191.38 €

From the software side, the text editor used is open-source, so it has no cost.

So, the main cost of this project is deducted from the salary of the engineers who have
contributed to it. The following table it is calculated the cost of this project taking into
account dedication, on average, of 30 hours for the junior engineer, me, and 1 hour for
the senior engineer each week for 34 weeks; so the total amount spent in euros is:

Position Number Dedication Duration Wage/hour Subtotal

Junior
Engineer

1 30 h/week 34 weeks 15.00 €/h 15,300.00 €

Senior
Engineer

1 1 h/week 34weeks 30.00 €/h 1,020.00 €

TOTAL 16,320.00 €

Therefore, the total cost to carry out the development of this project is 16,511.38 €.

 28

6. Conclusions and future development:

The objective of this final degree thesis has been to develop software capable of emulating

the algorithm of some selected MAC protocols that meets specific requirements due to the

limitations of the hardware and conditions that will be used.

As commented in the results, functional implementation of the Pure ALOHA protocol has

been accomplished. It has also completed the design CSMA/CA; however, it has been

started to implement but could not be finished due to time constraints.

This project will continue in the future to reach the need of the RITA mission.

The first consideration for the future will be to continue implementing CSMA/CA. Once the

implementation and testing are finished, and a functional result has been achieved, it will

be preceded by the developing of the Slotted ALOHA protocol.

Having the three protocols finished, an alternative to the ZMQ sockets can be studied to

reduce the delay in exchanging information between Protocol and LoraExp. It can also be

studied if the performance of the software can be enhanced.

It will also be interesting to create a test to simulate the communication between some
node and a satellite in which the channel was modelled as an idle channel that only
introduces a delay in the communication since the issue of power is not essential at the
link layer.

Finally, an end-to-end test, by putting together the entire software and uploading it to the
hardware, should be performed to ensure the correct function in an actual situation. Of
course, there is always the possibility of adding more Mac protocols.

 29

Bibliography:

[1] K. Mekki, E. Bajic, F. Chaxel and F. Meyer, "A comparative study of LPWAN

technologies for large-scale IoT deployment", ICT Express, vol. 5, no. 1, pp. 1-7,

Mar. 2019, [online] Available:

http://www.sciencedirect.com/science/article/pii/S2405959517302953.

[2] L. Fernandez et al., "SDR-Based Lora Enabled On-Demand Remote Acquisition

Experiment On-Board the Alainsat-1," 2021 IEEE International Geoscience and

Remote Sensing Symposium IGARSS, 2021, pp. 8111-8114, doi:

10.1109/IGARSS47720.2021.9553020.

[3] A. Pérez et al., "RITA: Requirements and Preliminary Design of an L-Band

Microwave Radiometer, Optical Imager, and RFI Detection Payload for a 3U

CubeSat," IGARSS 2020 - 2020 IEEE International Geoscience and Remote

Sensing Symposium, 2020, pp. 5986-5989, doi:

10.1109/IGARSS39084.2020.9324458.

[4] FOSSA Systems. Available: https://fossa.systems/.

[5] Lucana Sapce. Available: https://lacuna.space/.

[6] Semtech: AN1200.22 LoRa™ Modulation Basics. Accessed: September 2021.

[Online]. Available:

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OJu/xvKU

c5w9yjG1q5Pb2IIkpolW54YYqGb.frOZ7HQBcRc. (Accessed:05/2022)

[7] L. Fernandez, J. A. Ruiz-De-Azua, A. Calveras and A. Camps, "Assessing LoRa for

Satellite-to-Earth Communications Considering the Impact of Ionospheric

Scintillation," in IEEE Access, vol. 8, pp. 165570-165582, 2020, doi:

10.1109/ACCESS.2020.3022433.

[8] Forouzan, B.A. Data communications and networking. 5th ed. New York: McGraw-

Hill, 2013. ISBN 0071254420.

[9] Ferrer, T.; Céspedes, S.; Becerra, A. Review and Evaluation of MAC Protocols for

Satellite IoT Systems Using Nanosatellites. Sensors 2019, 19, 1947.

https://doi.org/10.3390/s19081947.

[10] Fernandez, L.; Ruiz-de-Azua, J.A.; Calveras, A.; Camps, A. On-Demand Satellite

Payload Execution Strategy for Natural Disasters Monitoring Using LoRa:

Observation Requirements and Optimum Medium Access Layer

Mechanisms. Remote Sens. 2021, 13, 4014. https://doi.org/10.3390/rs13194014.

[11] Spdlog: Fast C++ logging library. Available: https://github.com/gabime/spdlog.

[12] “ZMQ guide”. Accessed: November 2021. [Online]. Available:

https://zguide.zeromq.org/.

[13] “ZMQ API”. Accessed: November 2021. [Online]. Available: http://api.zeromq.org/.

 xi

7. Appendices:

7.1. Work Plan

7.1.1. Work packages

This project is organized into five subgroups of work.

 WP1: Research. It consists of searching and understanding all the necessary basic

knowledge to carry out this project.

 WP2: Implementation. A previous work of design followed by the writing of the code

in C++.

 WP3: Unit testing. Debug and perform a test of the different casuistic that the code

will have to approach until a functional result is achieved.

 WP4: hardware on de loop testing. Compile the software to upload to the Pluto-

SDR, check its correct operation and optimize.

 WP5: Documentation. Writing a series of reports to document the progress of this

project and the results derived from it.

7.1.2. Gantt diagram

W
o

rk

P
ac

ka
ge

W
P

1

W
P

1

W
P

1

W
P

2

W
P

2

W
P

2

W
P

2

W
P

3

W
P

4

W
P

1

W
P

2

W
P

2

W
P

5

W
P

5

W
P

5

Ta
sk

R
ea

d
 t

h
e

d
o

cu
m

en
ta

ti
o

n
 a

b
o

u
t

R
IT

A
, t

h
e

e
xp

er
im

en
t

an
d

 L
o

R
a

m
o

d
u

la
ti

o
n

U
n

d
er

st
an

d
 t

h
e

co
d

e
o

f
R

IT
A

-

Lo
R

a
al

re
ad

y
d

o
n

e

Se
ar

ch
 a

n
d

 le
ar

n
 a

b
o

u
t

p
u

re

A
LO

H
A

P
ro

to
co

l I
n

te
rf

ac
e

d
es

ig
n

 a
n

d

im
p

le
m

en
ta

ti
o

n

P
u

re
 A

LO
H

A
 d

es
ig

n

P
u

re
 A

LO
H

A
 im

p
le

m
en

ta
ti

o
n

P
u

re
 A

LO
H

A
 d

eb
u

gg
in

g

P
u

re
 A

LO
H

A
 u

n
it

 t
e

st
in

g

P
u

re
 A

lo
h

a
te

st
in

g
o

n
 P

lu
to

-
SD

R

Se
ar

ch
 a

n
d

 le
ar

n
 a

b
o

u
t

C
SM

A
/C

A
 w

it
h

 R
TS

/C
TS

C
SM

A
/C

A
 d

es
ig

n

C
SM

A
/C

A
 im

p
le

m
en

ta
ti

o
n

P
ro

je
ct

 P
ro

p
o

sa
l a

n
d

 W
o

rk
 P

la
n

P
ro

je
ct

 C
ri

ti
ca

l R
ev

ie
w

Fi
n

al
 r

ep
o

rt
 w

ri
ti

n
g

M
ay

 2
0

22

1
8

1
1

4

A
p

ri
l 2

02
2

 2
7

2
0

1
3

6

 xii

M
ar

ch
 2

0
2

2

3
0

2
3

1
6

9

2

Fe
b

ru
ar

y
2

0
2

2

2
3

1
6

9

2

Ja
n

u
ar

y
2

0
2

2
 2
6

1
9

1
2

5

D
ec

em
b

er
 2

0
2

1
 2

9

2
2

1
5

8

1

N
o

ve
m

b
er

 2
0

2
2

1

2
4

1
7

1
0

3

O
ct

o
b

er
 2

02
1

 2
7

2
0

1
3

6

Se
p

te
m

b
er

 2
02

1
 2
9

2
2

1
5

8

1

 xiii

7.2. Code

7.2.1. Protocol.hpp

This is the header file of the interface Protocol. Here there are defined the different custom

types of information used in the MAC layer and common methods are defined.

#ifndef PROTOCOL_HPP
#define PROTOCOL_HPP

#include "spdlog/spdlog.h"
#include <bits/stdint-uintn.h>
#include <bits/types/time_t.h>
#include <chrono>
#include <functional>
#include <stdio.h>
#include <zmq.h>
#include <zmq.hpp>

#include "LoraExp.hpp"

class Protocol
{
 public:
 typedef union {
 uint8_t raw[10];
 struct
 {
 uint64_t timestamp;
 uint16_t satellite_id;
 // uint16_t sync_slots;
 // uint16_t num_slots;
 // uint16_t free_slots;
 // uint16_t time_window;
 // uint8_t packet_size;
 };

 } Lora_Beacon;

 typedef union {
 uint8_t raw[8];
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 };

 } Protocol_Header;

 typedef struct
 {
 Protocol_Header header;
 uint n_backoffs;
 std::vector<uint8_t> packet;

 xiv

 } Buffer_Packet;

 typedef struct
 {
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 time_t send_time;
 uint n_backoffs;
 std::vector<uint8_t> packet;

 } Waiting_Packet;

 typedef struct
 {
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 time_t start_back_off;
 time_t back_off_time;
 uint n_backoffs;
 std::vector<uint8_t> packet;

 } Back_Off_Packet;

 typedef struct
 {
 uint16_t satellite_id;
 time_t period;
 time_t wait_time;
 time_t max_back_off_time;
 int max_back_off;
 LoraExp *packet_handler;

 } Config_Params;

 enum State
 {
 IDLE,
 RECEIVE,
 SEND,
 STOP
 };

 enum Packet_Type
 {
 DATA_PACKET,
 ACK,
 RTS,
 CTS,
 INFO
 };

 Protocol();

 xv

 ~Protocol();
 void loadConfig(Config_Params params);
 void setRX(std::vector<uint8_t> p);
 void setTX(uint8_t p_t, uint32_t n_id, uint8_t p_id,

std::vector<uint8_t> p);
 time_t getTimeStamp();
 void sendBeacon(time_t time);
 time_t setBackOffTime(int n);
 void printBufferPacket(Buffer_Packet p);
 void printWaitingPacket(Waiting_Packet p);
 void printBackOffPacket(Back_Off_Packet p);
 virtual bool control();
 virtual bool receive();

 protected:
 std::vector<Buffer_Packet> buffer_rx;
 std::vector<Buffer_Packet> buffer_tx;
 Config_Params config;
 zmq::context_t ctx;
 zmq::socket_t pull;
 std::function<void(LoraExp *, std::vector<uint8_t>, uint8_t)>

cb_t;
 State current_state;
 time_t last_beacon;
 Lora_Beacon beacon;
};

#endif

7.2.2. Protocol.cpp

This is the code file of the interface where the different functions previously defined are

implemented.

#include "Protocol.hpp"
#include <bits/stdint-uintn.h>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <spdlog/spdlog.h>
#include <zmq.h>

Protocol::Protocol() : ctx(1), pull(ctx, ZMQ_PULL)
{
 spdlog::info("Creating Protocol:");
 pull.bind("tcp://*:5557");
 spdlog::info(" Binded to: tcp://*:5557");
}

Protocol::~Protocol()
{
}

void Protocol::loadConfig(Config_Params params)
{

 xvi

 spdlog::info("Loading Protocol Configuration:");
 beacon.satellite_id = params.satellite_id;
 config = params;
 spdlog::info(" config verification:");
 spdlog::info(" Satellite ID: {}.", config.satellite_id);
 spdlog::info(" Max back off time: {}.",

config.max_back_off_time);
 spdlog::info(" Wait time: {}.", config.wait_time);
 spdlog::info(" Beacon repetition period: {}.",

config.period);
 last_beacon = 0;
 current_state = Protocol::State::IDLE;
 spdlog::info(" Current state set to: {}.", current_state);
 cb_t = &LoraExp::processPacket;
 spdlog::info(" Call Back to LoraExp::processPacket created.");
}

void Protocol::setRX(std::vector<uint8_t> p)
{
 Buffer_Packet temp;

 temp.n_backoffs = 0;
 temp.packet = p;
 buffer_rx.push_back(temp);
 printBufferPacket(buffer_rx.back());
}

void Protocol::setTX(uint8_t pt, uint32_t n_id, uint8_t p_id,

std::vector<uint8_t> p)
{
 Buffer_Packet temp;
 temp.header.satellite_id = config.satellite_id;
 temp.header.packet_type = pt;
 temp.header.node_id = n_id;
 temp.header.packet_id = p_id;
 temp.n_backoffs = 0;
 temp.packet = p;
 buffer_tx.push_back(temp);
 printBufferPacket(buffer_tx.back());
}

time_t Protocol::getTimeStamp()
{
 std::chrono::system_clock::time_point tp =

std::chrono::system_clock::now();
 time_t unix_timestamp_ms =

std::chrono::duration_cast<std::chrono::milliseconds>(tp.time_since_e

poch()).count();
 return unix_timestamp_ms;
}

void Protocol::sendBeacon(time_t time)
{
 beacon.timestamp = time;
 std::stringstream data;

 xvii

 std::copy(std::begin(beacon.raw), std::end(beacon.raw),

std::ostream_iterator<int>(data, ","));
 spdlog::info(" Packet data: {}.", data.str().c_str());
 last_beacon = time;
 spdlog::info(" Beacon send at {}", time);
}

time_t Protocol::setBackOffTime(int n)
{
 spdlog::info("entert set back off");
 int a = std::pow(2, n);
 spdlog::info("max back_of: {}", a);
 int temp = (rand() % a) * config.wait_time;
 spdlog::info("back_of: {}", temp);
 return temp;
}

void Protocol::printBufferPacket(Buffer_Packet p)
{
 spdlog::info("buffer packet:");
 spdlog::info("Satellite id: {}, Packet type: {}, Node id: {},

Packet id: {}.", p.header.satellite_id,
 p.header.packet_type, p.header.node_id,

p.header.packet_id);
 spdlog::info("Numero back offs: {}.", p.n_backoffs);
 std::stringstream data;
 std::copy(p.packet.begin(), p.packet.end(),

std::ostream_iterator<int>(data, ","));
 spdlog::info("Packet data: {}.", data.str().c_str());
}

void Protocol::printWaitingPacket(Waiting_Packet p)
{
 spdlog::info("Waiting packet:");
 spdlog::info("Send time: {}, Packet type: {}, Node id: {}, Packet

id: {}.", p.send_time, p.packet_type, p.node_id,
 p.packet_id);
 spdlog::info("Numero back offs: {}.", p.n_backoffs);
 std::stringstream data;
 std::copy(p.packet.begin(), p.packet.end(),

std::ostream_iterator<int>(data, ","));
 spdlog::info("Packet data: {}.", data.str().c_str());
}

void Protocol::printBackOffPacket(Back_Off_Packet p)
{
 spdlog::info("Back off packet:");
 spdlog::info("Start back off time: {}, bac off time: {}, Packet

type: {}, Node id: {}, Packet id: {}.",
 p.start_back_off, p.back_off_time, p.packet_type,

p.node_id, p.packet_id);
 spdlog::info("Numero back offs: {}.", p.n_backoffs);
 std::stringstream data;
 std::copy(p.packet.begin(), p.packet.end(),

std::ostream_iterator<int>(data, ","));
 spdlog::info("Packet data: {}.", data.str().c_str());

 xviii

}

bool Protocol::control()
{
 spdlog::info(" enter switch");
 return true;
}

bool Protocol::receive()
{
 return true;
}

7.2.3. AlohaProtocol.hpp

This is the header file of the class that extends the interface to implement the ALOHA

protocol.

#ifndef ALOHAPROTOCOL_HPP
#define ALOHAPROTOCOL_HPP

#include "LoraExp.hpp"
#include "Protocol.hpp"
#include <bits/types/time_t.h>

class AlohaProtocol : public Protocol
{
 public:
 bool control() override;
 bool receive() override;
 AlohaProtocol() : Protocol(){};
 ~AlohaProtocol(){};

 private:
 std::vector<Waiting_Packet> waiting_queue;
 std::vector<Back_Off_Packet> back_off_queue;
};

#endif

7.2.4. AlohaProtocol.cpp

This is the code file of the class that extends the interface to implement the ALOHA protocol.

Here there is the redefinition of the methods of control and receive.

#include "AlohaProtocol.hpp"
#include <zmq.h>

bool AlohaProtocol::control()
{
 spdlog::info("Protocol::control initiated.");
 time_t unix_timestamp_ms = getTimeStamp();
 spdlog::info(" Unix time: {}.", unix_timestamp_ms);
 if (config.period =< unix_timestamp_ms - last_beacon)

 xix

 {
 spdlog::info(" Sending beacon.");
 sendBeacon(unix_timestamp_ms);
 }

 bool more = true;
 while (more)
 {
 more = receive();
 }
 spdlog::info(" Current state is: {}.", current_state);
 spdlog::info(" RX paket: {}.", buffer_rx.size());
 spdlog::info(" TX paket: {}.", buffer_tx.size());
 spdlog::info(" waiting paket: {}.", waiting_queue.size());
 spdlog::info(" Back off paket: {}.", back_off_queue.size());
 switch (current_state)
 {
 case Protocol::State::IDLE: {

 bool a = true;
 spdlog::info(" Waiting queue verification:");
 while (!waiting_queue.empty() && a)
 {
 if (unix_timestamp_ms - waiting_queue[0].send_time >

config.wait_time)
 {
 spdlog::info(" The packet to node: {}, has

exceede the wait time.", waiting_queue[0].node_id);
 if (waiting_queue[0].n_backoffs < config.max_back_off)
 {
 Back_Off_Packet temp;
 temp.packet_type = waiting_queue[0].packet_type;
 temp.node_id = waiting_queue[0].node_id;
 temp.packet_id = waiting_queue[0].packet_id;
 temp.start_back_off = unix_timestamp_ms;
 temp.n_backoffs = waiting_queue[0].n_backoffs + 1;
 temp.back_off_time =

setBackOffTime(temp.n_backoffs);
 temp.packet = waiting_queue[0].packet;
 back_off_queue.push_back(temp);
 printWaitingPacket(waiting_queue.front());
 printBackOffPacket(back_off_queue.back());
 spdlog::info(" The packet to node: {}, has

been added to back_off_queue and removed from "
 "waiting_queue.",
 temp.node_id);
 }
 else
 {
 spdlog::info(" The packet to node: {}, has

exceede the max attemps.",
 waiting_queue[0].node_id);
 }
 waiting_queue.erase(waiting_queue.begin());
 }
 else
 {

 xx

 a = false;
 }
 }
 spdlog::info(" There are {} packets waitng ack.",

waiting_queue.size());
 spdlog::info(" There is no more packets to move.");
 int idx = 0;
 spdlog::info(" Back off queue verification:");
 while (idx < back_off_queue.size() && !back_off_queue.empty())
 {
 if (unix_timestamp_ms - back_off_queue[idx].start_back_off

> back_off_queue[idx].back_off_time)
 {
 spdlog::info(" The packet to node: {}, has

finished the back_of_time time.",
 back_off_queue[idx].node_id);
 Buffer_Packet temp;
 temp.header.satellite_id = config.satellite_id;
 temp.header.packet_type =

back_off_queue[idx].packet_type;
 temp.header.node_id = back_off_queue[idx].node_id;
 temp.header.packet_id = back_off_queue[idx].packet_id;
 temp.n_backoffs = back_off_queue[idx].n_backoffs;
 temp.packet = back_off_queue[idx].packet;
 buffer_tx.push_back(temp);
 printBackOffPacket(back_off_queue[idx]);
 printBufferPacket(buffer_tx.back());
 back_off_queue.erase(back_off_queue.begin() + idx);
 spdlog::info(" The packet to node: {}, has been

added buffer_tx and removed from back_off_queue.",
 temp.header.node_id);
 // break;
 }
 else
 {
 idx++;
 }
 }
 spdlog::info(" There are {} packets on back off.",

back_off_queue.size());
 spdlog::info(" There is no more packets to move.");
 if (!buffer_rx.empty())
 {
 current_state = Protocol::State::RECEIVE;
 spdlog::info(" New packet has been recived.");
 break;
 }
 else if (!buffer_tx.empty())
 {
 current_state = Protocol::State::SEND;
 spdlog::info(" Ther is a new message to sned.");
 break;
 }
 else
 {
 spdlog::info(" Waiting for new packages to process.");

 xxi

 }

 break;
 }

 case Protocol::State::RECEIVE: {
 std::vector<uint8_t> h(buffer_rx[0].packet.begin(),

buffer_rx[0].packet.begin() + sizeof(Protocol_Header));
 spdlog::info(" Std::vector<uint8_t> h for the packet

header created.");
 std::copy(h.begin(), h.end(), buffer_rx[0].header.raw);
 spdlog::info(" Std::vector<uint8_t> h correcly copyed to

header.");
 printBufferPacket(buffer_rx.front());
 if (buffer_rx[0].header.satellite_id == config.satellite_id)
 {
 if (buffer_rx[0].header.packet_type ==

Protocol::Packet_Type::ACK)
 {
 spdlog::info(" The packet recieved is an ack.

Verifaying wating_queue.");
 bool a = true;
 for (int i = 0; i < waiting_queue.size(); i++)
 {
 if (waiting_queue[i].node_id ==

buffer_rx[0].header.node_id &&
 waiting_queue[i].packet_id ==

buffer_rx[0].header.packet_id)
 {

 waiting_queue.erase(waiting_queue.begin() +

i);
 spdlog::info(" Packet to verify

found and erased from waiing_queue.");
 cb_t(config.packet_handler,

buffer_rx[0].packet, buffer_rx[0].header.packet_type);
 spdlog::info(" The packet

received has been processed.");
 spdlog::info(" The packet to the

node {} packet id {}, has been removed from "
 "waiting_queue.",
 buffer_rx[0].header.node_id,

buffer_rx[0].header.packet_id);
 a = false;
 break;
 }
 }
 if (a)
 {
 spdlog::info(
 "The packet to the node {} packet id {}, had

already exceede the wait_time. ACK discarded.",
 buffer_rx[0].header.node_id,

buffer_rx[0].header.packet_id);
 }
 }
 else

 xxii

 {
 cb_t(config.packet_handler, buffer_rx[0].packet,

buffer_rx[0].header.packet_type);
 spdlog::info("The packet received has been

processed.");
 }
 }

 buffer_rx.erase(buffer_rx.begin());
 if (buffer_rx.empty())
 {
 current_state = Protocol::State::IDLE;
 spdlog::info("There is no more packets to receive state

chnged to IDEL");
 }
 else
 {
 current_state = Protocol::State::RECEIVE;
 spdlog::info("There is {} packets to receive. State remain

RECEIVE", buffer_rx.size());
 }
 // current_state = Protocol::State::IDLE;
 break;
 }

 case Protocol::State::SEND: {
 spdlog::info("Preforming the sending of a packet.");
 printBufferPacket(buffer_tx.front());
 std::vector<uint8_t> h(std::begin(buffer_tx[0].header.raw),

std::end(buffer_tx[0].header.raw));
 if (buffer_tx[0].header.packet_type ==

Protocol::Packet_Type::DATA_PACKET)
 {
 Waiting_Packet temp;
 temp.packet_type = buffer_tx[0].header.packet_type;
 temp.node_id = buffer_tx[0].header.node_id;
 temp.packet_id = buffer_tx[0].header.packet_id;
 temp.send_time = unix_timestamp_ms;
 temp.n_backoffs = buffer_tx[0].n_backoffs;
 temp.packet = buffer_tx[0].packet;
 waiting_queue.push_back(temp);
 spdlog::info("The packet to node {} packet id {}, has been

added to waiting_queue.", temp.node_id,
 temp.packet_id);
 printWaitingPacket(waiting_queue.back());
 }
 uint8_t temp[8];
 std::memcpy(temp, &unix_timestamp_ms,

sizeof(unix_timestamp_ms));
 buffer_tx[0].packet.insert(buffer_tx[0].packet.begin(),

std::begin(temp), std::end(temp));
 buffer_tx[0].packet.insert(buffer_tx[0].packet.begin(),

h.begin(), h.end());
 printBufferPacket(buffer_tx.front());
 buffer_tx.erase(buffer_tx.begin());
 if (buffer_tx.empty())
 {

 xxiii

 current_state = Protocol::State::IDLE;
 spdlog::info("There is no more packets to send state

chnged to IDEL");
 }
 else
 {
 current_state = Protocol::State::SEND;
 spdlog::info("There is {} packets to send. State remain

SEND", buffer_tx.size());
 }
 // current_state = Protocol::State::IDLE;
 break;
 }

 case Protocol::State::STOP: {

 break;
 }
 }
 spdlog::info(" control finish");
 return true;
}

bool AlohaProtocol::receive()
{
 spdlog::info(" Looking if there are packet to recive from packet

handler:");
 zmq::message_t message;
 spdlog::info(" ZMQ message crated.");
 if (pull.recv(&message, ZMQ_NOBLOCK))
 {
 spdlog::info(" ZMQ has detected a new packet to

recive.");
 spdlog::info(" ZMQ has recived and copied the

message.");
 std::vector<uint8_t> temp(message.size());
 spdlog::info(" Message size: {}.",

message.size());
 memcpy(temp.data(), message.data(), message.size());
 spdlog::info(" Information copied from ZMQ::message

to std::vector<uint8_t> data.");
 Buffer_Packet p;
 std::vector<uint8_t> h(temp.begin(), temp.begin() +

sizeof(Protocol_Header));
 spdlog::info(" Packet type, node ID and packet ID

added to H");
 spdlog::info("header size: {}, uint64_t size: {}",

sizeof(Protocol_Header), sizeof(uint64_t));
 temp.erase(temp.begin(), temp.begin() +

sizeof(Protocol_Header) + sizeof(uint64_t));
 std::copy(h.begin(), h.end(), p.header.raw);
 spdlog::info(" Std::vector<uint8_t> h copied to

packet header");
 p.n_backoffs = 0;
 p.packet = temp;
 spdlog::info(" Buffer packet fully set");
 buffer_tx.push_back(p);

 xxiv

 spdlog::info(" Buffer packet added to the queue");
 printBufferPacket(buffer_tx.back());
 return true;
 }
 else
 {
 spdlog::info(" ZMQ has not detected a new packet to

recive.");
 return false;
 }
}

7.2.5. LoraExp.hpp

This is the header file of the class that implements the actions of the application layer. Here

there are defined the different packet types used in the three MAC protocols, the method

to write the log, and the ZMQ socket.

#ifndef LORAEXP_HPP
#define LORAEXP_HPP

#include "spdlog/spdlog.h"
#include <bits/stdint-uintn.h>
#include <bits/types/time_t.h>
#include <chrono>
#include <zmq.h>
#include <zmq.hpp>

#define MAX_SENSOR_DATA = 50;

class LoraExp
{
 public:
 typedef union {
 uint8_t raw[76];
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint32_t pos_x;
 uint32_t pos_y;
 uint16_t pos_z;
 uint8_t sensor_data[50];
 };
 } Lora_Packet;

 typedef union {
 uint8_t raw[18];
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;

 xxv

 uint64_t timestamp;
 uint16_t free_slots;
 };
 } Lora_Ack;

 typedef union {
 uint8_t raw[15];
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint16_t duration;
 };
 } Request_to_Send;

 typedef union {
 uint8_t raw[15];
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint16_t duration;
 };
 } Clear_to_Send;

 enum Packet_Type
 {
 DATA_PACKET,
 ACK,
 RTS,
 CTS,
 };

 LoraExp();
 ~LoraExp();
 void processPacket(std::vector<uint8_t> packet, uint8_t

packet_type);

 private:
 std::vector<uint8_t> buffer;
 zmq::context_t ctx;
 zmq::socket_t push;
 Lora_Packet packet;
 Lora_Ack ack;
 Request_to_Send rts;
 Clear_to_Send cts;

 void serialize(uint8_t packet_type, std::vector<uint8_t> packet);
 void createAck();
 void send();

 xxvi

};

#endif

7.2.6. LoraExp.cpp

 This is the code file where it is implemented the methods defined at LoraExp.hpp.

#include "LoraExp.hpp"
#include <bits/stdint-uintn.h>
#include <spdlog/spdlog.h>
#include <zmq.hpp>

LoraExp::LoraExp() : ctx(1), push(ctx, ZMQ_PUSH)
{
 spdlog::info("Creating packet Handler:");
 push.connect("tcp://localhost:5557");
 spdlog::info(" Connected to: tcp://localhost:5557");
}

LoraExp::~LoraExp()
{
}

void LoraExp::processPacket(std::vector<uint8_t> packet, uint8_t

packet_type)
{

 serialize(packet_type, packet);
 if (packet_type == LoraExp::Packet_Type::DATA_PACKET)
 {
 createAck();
 }
}

void LoraExp::serialize(uint8_t packet_type, std::vector<uint8_t> p)
{
 switch (packet_type)
 {
 case LoraExp::Packet_Type::DATA_PACKET: {
 spdlog::info("The packet is of data type.");
 std::copy(p.begin(), p.end(), packet.raw);
 spdlog::info("Packet Packet ID: {}.", packet.packet_id);
 spdlog::info("Packet Node id: {}.", packet.node_id);
 spdlog::info("Packet TimeStamp: {}.", packet.timestamp);
 spdlog::info("Packet Position in X: {}.", packet.pos_x);
 spdlog::info("Packet Position im Y: {}.", packet.pos_y);
 spdlog::info("Packet position in Z: {}.", packet.pos_z);
 std::stringstream data;
 std::copy(std::begin(packet.sensor_data),

std::end(packet.sensor_data), std::ostream_iterator<int>(data, ","));
 spdlog::info("Packet Usefull Data: {}.", data.str().c_str());
 break;
 }
 case LoraExp::Packet_Type::ACK: {

 xxvii

 spdlog::info("The packet is an ACK.");
 std::copy(p.begin(), p.end(), ack.raw);
 spdlog::info("ACK Packet ID: {}.", ack.packet_id);
 spdlog::info("ACK Node id: {}.", ack.node_id);
 spdlog::info("ACK TimeStamp: {}.", ack.timestamp);
 spdlog::info("ACK Free Slots: {}.", ack.free_slots);
 break;
 }
 case LoraExp::Packet_Type::RTS: {
 spdlog::info("The packet is a RTS.");
 std::copy(p.begin(), p.end(), rts.raw);
 spdlog::info("RTS Node id: {}.", rts.node_id);
 spdlog::info("RTS TimeStamp: {}.", rts.timestamp);
 spdlog::info("RTS Packet Duradtion: {}.", rts.duration);
 break;
 }
 case LoraExp::Packet_Type::CTS: {
 spdlog::info("The packet is an CTS.");
 std::copy(p.begin(), p.end(), cts.raw);
 spdlog::info("CTS Node id: {}.", cts.node_id);
 spdlog::info("CTS TimeStamp: {}.", cts.timestamp);
 spdlog::info("CTS Packet Duradtion: {}.", cts.duration);
 break;
 }
 }
}

void LoraExp::createAck()
{
 ack.satellite_id = packet.satellite_id;
 ack.packet_type = LoraExp::Packet_Type::ACK;
 ack.packet_id = packet.packet_id;
 spdlog::info("ACK Packet ID: {}.", ack.packet_id);
 ack.node_id = packet.node_id;
 spdlog::info("ACK Node ID: {}.", ack.node_id);
 ack.timestamp = 0;
 ack.free_slots = 0;
 spdlog::info("ACK has been created successfully.");
 std::vector<uint8_t> temp(std::begin(ack.raw), std::end(ack.raw));
 buffer = temp;
 send();
}

void LoraExp::send()
{
 zmq::message_t message(buffer.size());
 memcpy(message.data(), buffer.data(), buffer.size());
 bool a = push.send(message);
 spdlog::info("message sended: {}", a);
}

 xxviii

7.2.7. Main

This is a code file where the different test has been implemented. It is verified the correct

creation of the data structs and methods defined in the above files. It has been also

implemented the simulation of some cases the protocol will ha to face.

#include <bits/stdint-uintn.h>
#include <chrono>
#include <iostream>
#include <iterator>
#include <new>
#include <stdio.h>

#include "spdlog/logger.h"
#include "spdlog/sinks/basic_file_sink.h"
#include "spdlog/sinks/stdout_color_sinks.h"
#include "spdlog/spdlog.h"

#include "AlohaProtocol.hpp"
#include "LoraExp.hpp"
#include "Protocol.hpp"

void setupLogging();
time_t getTimeStamp();
void printVector(std::vector<uint8_t> a, std::string name);
void printArray(uint8_t a[], uint8_t size, std::string name);

int main(int argc, char *argv[])
{
 setupLogging();
 spdlog::info("Lora prove.");

 spdlog::info("Welcome to the LoRa transceiver!");

 spdlog::info("Initialising Packet Handler");
 LoraExp p_h;

 spdlog::info("Parsing configuration");
 Protocol::Config_Params config;
 config.satellite_id = 1;
 config.period = 10;
 config.wait_time = 5;
 config.max_back_off_time = 1000000;
 config.max_back_off = 5;
 config.packet_handler = &p_h;

 spdlog::info("Initialising Protocol");
 AlohaProtocol aloha;
 aloha.loadConfig(config);
 typedef union {
 uint8_t raw[76]; // 80
 struct
 {

 uint16_t satellite_id;
 uint8_t packet_type;

 xxix

 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint32_t pos_x;
 uint32_t pos_y;
 uint16_t pos_z;
 uint8_t sensor_data[50];
 };
 } L_P_A;
 spdlog::info("size aligment rx packet: {}", sizeof(L_P_A));

 typedef union {
 uint8_t raw[76]; // 80
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint32_t pos_x;
 uint32_t pos_y;
 uint16_t pos_z;
 uint8_t sensor_data[50];
 };
 } L_P;
 spdlog::info("size no aligment rx packet: {}", sizeof(L_P));

 typedef union {
 uint8_t raw[63]; // 64
 struct
 {
 uint32_t pos_x;
 uint32_t pos_y;
 uint16_t pos_z;
 uint8_t sensor_data[50];
 };
 } L_P2;
 spdlog::info("size no aligment tx packet: {}", sizeof(L_P2));

 typedef union {
 uint8_t raw[18]; // 24
 struct
 {
 uint16_t satellite_id;
 uint8_t packet_type;
 uint8_t packet_id;
 uint32_t node_id;
 uint64_t timestamp;
 uint16_t free_slots;
 };
 } L_A;
 spdlog::info("size no aligment ack: {}", sizeof(L_A));

 L_P_A ar_pk1;
 ar_pk1.satellite_id = 1;

 xxx

 ar_pk1.packet_type = 0;
 ar_pk1.node_id = 1;
 ar_pk1.timestamp = getTimeStamp();
 ar_pk1.packet_id = 1;
 ar_pk1.pos_x = 70;
 ar_pk1.pos_y = 40;
 ar_pk1.pos_z = 20;
 int e = 0;
 for (int i = 0; i < 50; i++)
 {
 ar_pk1.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> z(std::begin(ar_pk1.raw),

std::end(ar_pk1.raw));
 printArray(ar_pk1.raw, 76, "ar_pk1 array");
 printVector(z, "ar_pk1 vector");

 L_P r_pk1;
 r_pk1.satellite_id = 1;
 r_pk1.packet_type = 0;
 r_pk1.node_id = 1;
 r_pk1.timestamp = getTimeStamp();
 r_pk1.packet_id = 1;
 r_pk1.pos_x = 70;
 r_pk1.pos_y = 40;
 r_pk1.pos_z = 700;
 e = 0;
 for (int i = 0; i < 50; i++)
 {
 r_pk1.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> a(std::begin(r_pk1.raw),

std::end(r_pk1.raw));
 printArray(r_pk1.raw, sizeof(r_pk1), "r_pk1 array");
 printVector(a, "r_pk1 vector");

 L_P r_pk2;
 r_pk2.satellite_id = 1;
 r_pk2.packet_type = 0;
 r_pk2.node_id = 6751;
 r_pk2.timestamp = getTimeStamp();
 r_pk2.packet_id = 201;
 r_pk2.pos_x = 359;
 r_pk2.pos_y = 179;
 r_pk2.pos_z = 8359;
 for (int i = 0; i < 10; i++)
 {
 r_pk2.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> b(std::begin(r_pk2.raw),

std::end(r_pk2.raw));
 printArray(r_pk2.raw, sizeof(r_pk2), "r_pk2 array");
 printVector(b, "r_pk2 vector");

 xxxi

 L_P2 s_pk1;
 s_pk1.pos_x = 10;
 s_pk1.pos_y = 20;
 s_pk1.pos_z = 30;
 for (int i = 0; i < 10; i++)
 {
 s_pk1.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> c(std::begin(s_pk1.raw),

std::end(s_pk1.raw));
 printArray(s_pk1.raw, 63, "s_pk1 array");
 printVector(c, "s_pk1 vector");

 L_P2 s_pk2;
 s_pk2.pos_x = 10;
 s_pk2.pos_y = 20;
 s_pk2.pos_z = 30;
 for (int i = 0; i < 10; i++)
 {
 s_pk2.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> d(std::begin(s_pk2.raw),

std::end(s_pk2.raw));
 printArray(s_pk2.raw, 63, "s_pk2 array");
 printVector(d, "s_pk2 vector");

 L_P2 s_pk3;
 s_pk3.pos_x = 359;
 s_pk3.pos_y = 179;
 s_pk3.pos_z = 9000;
 for (int i = 0; i < 10; i++)
 {
 s_pk3.sensor_data[i] = e;
 e++;
 }
 std::vector<uint8_t> h(std::begin(s_pk3.raw),

std::end(s_pk3.raw));
 printArray(s_pk3.raw, 63, "s_pk3 array");
 printVector(h, "s_pk2 vector");

 L_A ack1;
 ack1.satellite_id = 1;
 ack1.packet_type = 1;
 ack1.node_id = 1;
 ack1.timestamp = getTimeStamp();
 ack1.packet_id = 20;
 ack1.free_slots = 0;
 std::vector<uint8_t> g(std::begin(ack1.raw), std::end(ack1.raw));
 printArray(ack1.raw, sizeof(L_A), "ack1 array");
 printVector(g, "ack1 vector");

 L_A ack2;
 ack2.satellite_id = 1;
 ack2.packet_type = 1;

 xxxii

 ack2.node_id = 2;
 ack2.timestamp = getTimeStamp();
 ack2.packet_id = 230;
 ack2.free_slots = 0;
 std::vector<uint8_t> f(std::begin(ack2.raw), std::end(ack2.raw));
 printArray(ack2.raw, sizeof(L_A), "ack2 array");
 printVector(f, "ack2 vector");

 L_A ack3;
 ack3.satellite_id = 1;
 ack3.packet_type = 1;
 ack3.node_id = 3000;
 ack3.timestamp = getTimeStamp();
 ack3.packet_id = 248;
 ack3.free_slots = 0;
 std::vector<uint8_t> j(std::begin(ack3.raw), std::end(ack3.raw));
 printArray(ack3.raw, sizeof(L_A), "ack3 array");
 printVector(j, "ack3 vector");
 int i = 0;
 e = 1;
 spdlog::info("provando funcionamiento estado IDLE sin paquetes");
 for (i = 0; i < 10; i++)
 {
 aloha.control();
 spdlog::info("--

-----------{}", e);
 e++;
 }

 spdlog::info("provando funcionamiento estado RECEIVE");
 for (i = 0; i < 20; i++)
 {
 if (i == 2)
 {
 aloha.setRX(a);
 aloha.setRX(b);
 }
 aloha.control();
 spdlog::info("--

-----------{}", e);
 e++;
 }

 spdlog::info("provando funcionamiento estado SEND i rebra ACK");
 for (i = 0; i < 20; i++)
 {
 if (i == 2)
 {
 aloha.setTX(0, 1, 20, c);
 aloha.setTX(0, 2, 230, d);
 }
 if (i == 6)
 {
 aloha.setRX(g);
 aloha.setRX(f);
 }
 aloha.control();

 xxxiii

 spdlog::info("--

-----------{}", e);
 e++;
 }

 spdlog::info("provando funcionamiento estado SEND i rebra ACK con

back off");
 for (i = 0; i < 50; i++)
 {
 if (i == 1)
 {
 aloha.setTX(0, 3000, 248, h);
 }
 if (i == 4)
 {
 aloha.setRX(g);
 }
 if (i == 35 || i == 45)
 {
 aloha.setRX(j);
 }
 aloha.control();
 spdlog::info("--

-----------{}", e);
 e++;
 }
 spdlog::info("Lora prove finished.");
 spdlog::info("infinite Loop inition.");
 e = 0;
 int loop = 30;
 while (1)
 {
 if (e % loop == 0)
 {
 aloha.setRX(a);
 }
 if (e % loop == 2)
 {
 aloha.setRX(b);
 }
 if (e % loop == 4)
 {
 aloha.setTX(0, 3000, 248, h);
 aloha.setTX(0, 2, 230, d);
 }
 if (e % loop == 8)
 {
 aloha.setRX(f);
 }
 if (e % loop == 9)
 {
 aloha.setTX(0, 1, 20, c);
 }
 if (e % loop == 13)
 {
 aloha.setRX(g);
 }

 xxxiv

 if (e % loop == 12)
 {
 aloha.setRX(j);
 }
 if (e % loop == 19)
 {
 aloha.setRX(j);
 }
 aloha.control();
 spdlog::info("--

-----------{}", e);
 e++;
 }
}

void setupLogging()
{
 auto console_sink =

std::make_shared<spdlog::sinks::stdout_color_sink_mt>();
 console_sink->set_level(spdlog::level::trace);
 console_sink->set_pattern("[%Y-%m-%d %H:%M:%S.%e] [%^%l%$] %v");

 auto file_sink =

std::make_shared<spdlog::sinks::basic_file_sink_mt>("rita-lora.log",

true);
 file_sink->set_level(spdlog::level::info); // info.
 file_sink->set_pattern("[%Y-%m-%d %H:%M:%S.%e][%l] %v");

 auto rita_logger = spdlog::logger("rita_logger", {console_sink,

file_sink});
 rita_logger.set_level(spdlog::level::trace);

 spdlog::set_default_logger(std::make_shared<spdlog::logger>(rita_l

ogger));
}

time_t getTimeStamp()
{
 std::chrono::system_clock::time_point tp =

std::chrono::system_clock::now();
 time_t unix_timestamp_ms =

std::chrono::duration_cast<std::chrono::milliseconds>(tp.time_since_e

poch()).count();
 return unix_timestamp_ms;
}

void printVector(std::vector<uint8_t> a, std::string name)
{
 std::stringstream data;
 std::copy(a.begin(), a.end(), std::ostream_iterator<int>(data,

","));
 spdlog::info("Packet data of {}: {}.", name, data.str().c_str());
}

void printArray(uint8_t a[], uint8_t size, std::string name)
{

 xxxv

 std::stringstream data;
 // std::copy(std::begin(a), std::end(a),

std::ostream_iterator<uint8_t>(data, ","));
 for (int i = 0; i < size; i++)
 {
 data << std::to_string(a[i]);
 }
 spdlog::info("Packet data of {}: {}.", name, data.str().c_str());
}

