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I. EXTENDED ABSTRACT

Explainability has become a major topic of research in
Artificial Intelligence (AI), aimed at increasing trust in models
such as Deep Learning (DL) networks. However, trustworthy
models cannot be achieved with explainable AI (XAI) methods
unless the XAI methods themselves can be trusted.

To evaluate XAI methods one may assess interpretability,
a qualitative measure of how understandable an explanation is
to humans [1]. While this is important to guarantee the proper
interaction between humans and the model, interpretability
generally involves end-users in the process [2], inducing strong
biases. In fact, a qualitative evaluation alone cannot guarantee
coherency to reality (i.e., model behavior), as false explana-
tions can be more interpretable than accurate ones. To enable
trust on XAI methods, we also need quantitative and objective
evaluation metrics, which validate the relation between the
explanations produced by the XAI method and the behavior
of the trained model under assessment.

In this work we propose a novel evaluation score for feature
attribution methods, described in §I-A. Our input alteration
approach induces in-distribution noise into samples, that is,
alterations on the input which correspond to visual patterns
found within the original data distribution. To do so we modify
the context of the sample instead of the content, leaving the
original pixels values untouched. In practice, we create a
new sample, composed of samples of different classes, which
we call a mosaic image (see examples in Figure 2). Using
mosaics as input has a major benefit: each input quadrant is
an image from the original distribution, producing blobs of
activations in each quadrant which are consequently coherent.
Only the pixels forming the borders between images, and
the few corresponding activations, may be considered out of
distribution.

By inducing in-distribution noise, mosaic images introduce
a problem in which XAI methods may objectively err (focus on
something it should not be focusing on). On those composed
mosaics we ask a XAI method to provide explanation for just
one of the contained classes, and follow its response. Then,
we measure how much of the explanation generated by the
XAI is located on the areas corresponding to the target class,
quantifying it through the Focus score. This score allows us to
compare methods in terms of explanation precision, evaluating
the capability of XAI methods to provide explanations related
to the requested class. Using mosaics has another benefit. Since
the noise introduced is in-distribution, the explanation errors
identify and exemplify biases of the model. This facilitates
the elimination of biases in models and datasets, potentially

resulting in more reliable solutions. We illustrate how to do so
in §I-C.

A. The Focus metric

When a feature attribution method is applied to an im-
age to explain the model’s prediction regarding a chosen
class, it typically produces a map from pixels to real values,
referred to as relevance. To formalize mosaics, and later
Focus, let us define a dataset D composed by a set of
images I = {img1, img2, ..., imgN} and a set of classes
C = {c1, c2, ..., cK}, where N is the number of total images
and K is the number of total classes. Every image in I has
assigned a unique class from C: c(img). From here we build
a set of mosaics M = {m1,m2, ...,mJ} where J is the total
number of mosaics in M . A mosaic m is composed by four
images m = {img1, img2, img3, img4} and characterized
by a target class tc = c(m), the specific class the XAI
method is expected to explain. While two images of the mosaic
belong to the target class c(img1) = c(img2) = c(m), the
other two are randomly chosen among the rest of classes
c(img3) ̸= c(m); c(img4) ̸= c(m). Mosaics are implemented
as two by two, non-overlapping grid, with the position of each
image being random.

The Focus metric estimates the reliability of XAI method’s
output as the probability of the sampled pixels lying on an
image of the target class of the mosaic c(m). This is equivalent
to the proportion of positive relevance lying on those images:

FA,θ(m) =
Rc(m)(img1) +Rc(m)(img2)

Rc(m)(m)
(1)

where Rc(r) is the sum of positive relevance toward class c on
the region of the mosaic r. This probability can be interpreted
as a precision of the relevance. In an sort of eye-tracking game,
the Focus metric asks to the XAI method “Why does mosaic
m belong to class c(m)?” on a mosaic m which contains
both samples belonging and not belonging to the target class
c(m). Given the previous question and a good underlying
model, a reliable feature attribution method should be able
to concentrate most of its explanation relevance on the two
appropriated images of the mosaic (img1 and img2).

B. Evaluation of XAI methods

We evaluate GradCAM, LRP, SmoothGrad, LIME, Grad-
CAM++ and IG, using three architectures (AlexNet, VGG16
and ResNet-18) and four target datasets (Dogs vs. Cats,
MAMe, MIT67 and ImageNet). Figure 1 shows an example
of the Focus distribution obtained for the MAMe dataset
experiments.
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Fig. 1. Focus distribution boxplot for different XAI methods applied to
models trained for the MAMe dataset.

When applied to SmoothGrad or IG, Focus finds these
methodologies as quasi-random in its explanations with respect
to the model. On the contrary, LRP and GradCAM are both
found to be consistently reliable methods. GradCAM performs
well on all experiments conducted, even when the underlying
model is not particularly well fit to the task. LRP performs
very well for high performing models, but it becomes more
unreliable on less accurate models. This also seems to be the
case of LIME, which suffers from an even larger variance.
GradCAM++ performs better than random, but not as well as
GradCAM and LRP.

C. Bias detection

We can also use the Focus to automate the bias iden-
tification in models and datasets. This is possible because
mosaics induce in-distribution noise, where Focus errors di-
rectly correspond to visual biases of the model. The proposed
procedure is as follows. First, for a better detection of biases
between pairs of classes, we use mosaics with two classes.
Therefore, in the mosaics used for this section, samples
different from the target class actually belong to the same
class: c(img3) = c(img4) ̸= c(m). We concentrate on the
most relevant biases by finding the pairs of classes obtaining
the lowest mean Focus in their joint mosaics. For each of
these pairs we extract the mosaics with highest and lowest
Focus, and present them to a human evaluator who must review
the explanations produced. The role of the evaluator is to
interpret the rationale behind the explanations (both correct and
incorrect) and its degree of generalization for the task. Based
on that assessment, corrective measures can be implemented.

To conduct this experiment we use the GradCAM method
and the ResNet-18 architecture, a configuration which obtains
a particularly robust Focus. An example is shown in Figure 2,
divided in two rows: the top one corresponds to a high Focus
and the bottom one to a low Focus. In this example, the model
is able to correctly attribute relevance to the Peacock images
on the upper mosaic, while, for the bottom mosaic, some of the
relevance incorrectly fall on the head of the Common iguana.
The fact that most of the incorrect relevance in the Common
iguana falls in the subtympanic shield (the characteristic circle
in its jowl) seems to be related with its visual similarity with
the ocellus of the Peacock (the circular spot in the feathers).

Fig. 2. GradCAM explanations obtained on the ResNet-18 trained with
ImageNet. Two examples of mosaics are shown in the first column. The second
column shows the corresponding GradCAM explanations for the target class.
The third column specifies the positions of the classes within the mosaic. The
target class is the Peacock class and the outer class is the Common iguana
class. The example above obtains a high Focus score (0.8176) and the one
below a lower one (0.4940).

Notice the iguana’s subtympanic shield is hardly visible in
the top mosaic. After the identification of these biases, and
an assessment of their impact, one could try to mitigate their
relevance for the model. For example more images of the target
class without the characteristic pattern found in the outer class
could be added to the training set (Peacocks images where the
ocellus is not visible).

D. Conclusion

With the aim of evaluating XAI methods in a quantitative
manner, we introduce a novel metric—the Focus—to assess
the faithfulness of a XAI method to the underlying model.
We show the methodology to be consistent across tasks and
architectures, providing strong empirical evidence of their
performance. We introduce another application of Focus, using
it for the identification and characterization of biases found
in models. This empowers bias-management tools, in another
small step towards trustworthy AI.
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