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EXTENDED ABSTRACT 

Phenotypic diversity in human populations is a direct 

consequence of genetic variation, which acts in conjunction with 

environmental and behavioral factors to produce phenotypic 

variation,  from eye color and height to disease susceptibility and 

responses to drugs (1). High population-specific variability in 

disease’s prevalence have been described, including multiple 

examples where a disease is strongly overrepresented in a single 

population, for instance sickle cell anemia in Africans, 

hemochromatosis in Northern-Europeans or familial Gaucher’s 

disease in Ashkenazi Jews (2). In addition, population 

differences in response to drugs have been documented, for 

instance, 5-Fluorouracil (cancer chemotherapeutic), Warfarin 

(anticoagulant for preventing thrombosis and embolism) or 

nicotine (3). 

In this context, there has been a growing interest in profiling the 

molecular causes underlying infectious  disease-related 

phenotypic differences across individuals from populations of 

different genetic backgrounds. Studies using RNA-seq data from 

primary monocytes, as a model of an innate immunity, have 

shown that human populations differ in their transcriptional 

responses to immune challenges, which are largely controlled by 

genetics and have been shaped by natural selection (4). In 

addition, a similar work focusing on alternative splicing 

characterisation upon immune activation highlights the 

contribution of positive selection to diversify the splicing 

landscape of human populations (5). 

Moreover, additional works using single-cell RNA-seq indicate 

that most of the ancestry effects on the immune response are cell 

type specific, exceptuating  interferon (IFN) response which is 

strongly correlated with European ancestry after infection with 

influenza A virus (Figure 1) (6). Also in line with previous 

evidence, it has been seen that eQTLs explains > 50% of 

population differences in response to infection, stressing the key 

role played by genetics in shaping population differences in 

immune responses (6). 

This evidence suggests that genetic ancestry is  a main driver of 

inter-individual differences in response to infection. In turn, 

these findings highlight the importance of studying the effect of 

human population genetic variation over disease and disease 

response for developing effective treatments, and in order to lay 

the foundations for the establishment of personalized medicine. 

Moreover, the characterisation of the transcriptome differences 

derived from human genetic variation can provide further 

insights into the evolution of human populations. 

 

 

 

Figure 1. Correlation 

between African 

genetic ancestry 
proportion and IFN 

score in mock (dotted 
lines) and IAV-infected 

conditions (solid lines) 

for different peripheral 
blood mononuclear cell 

types. A consistent 

reduction in the IFN 
response is observed as 

the estimated african 

ancestry of individuals 
increases. INF score represents the average expression of interferon genes, 

while the proportion of african genetic ancestry is estimated based on 

polymorphism presence. (Adapted from Randolph et al., (Science, 2021)). 

Data 

This project is defined within the eQTLGen Consortium, 

a large-scale, international collaborative effort with the aim of 

finding disease-related genetic variants in individual immune 

cell types. This study will perform 

single-cell RNA-seq and ATAC-seq in a collection of 

peripheral blood mononuclear cells (PBMCs) from different 

African populations, including rural and urban populations, and 

first generation immigrants. In addition, ex vivo immune 

stimulation will be performed. Genome variation data is also 

expected to be present. 
 

Objectives 

 

The main aim of this project is performing a detailed 

characterisation of the transcriptomes of different human 

populations at single cell resolution. Some additional 

objectives are exposed below. 
 

A key step in any scRNA-seq data analysis involves conferring 

identity to each cell. For this aim, we will use available machine 

learning methods which are able to project cell type labels from 

existing annotated references onto our query data. Fortunately, 

initiatives like the Human Cell Atlas are a source of curated and 

well annotated scRNA-seq reference datasets across many 

tissues. In addition, we will manually confirm the assigned cell 

type identities by checking the expression of established markers 

for each cell population present. 

 

For the estimation of genetic ancestry of each individual we 

propose the usage of methods (like ADMIXTURE) based on 

polymorphism datasets. 
 

In order to characterize genetic ancestry effects on gene 

expression across cell types, we will perform differential 

expression analysis (DEA) to determine population 

differentially expressed genes (popDEG). In this regard, it will 

be interesting to confirm the observation of ancestry effects 

being cell type specific in a non-viral stimulation context (6). 

Pseudo-bulking (aggregating all the cells from the same cell type 

and donor into a single profile) is often considered in single-cell 

DEA to increase statistical power and improve effect sizes. We 
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will consider both standard single-cell DEA and pseudo-bulking, 

in case the first strategy is unable to capture population 

differences. Next, to identify functionally enriched pathways 

with genetic ancestry, we will perform gene set enrichment 

analysis with the popDEGs. We will consider established 

sources of terms as GO, KEGG and additional gene signature 

databases as MSigDB. 
 

In addition, we will assess the contribution of genetic variation 

to genetic ancestry-associated differences by performing 

expression Quantitative Trait Loci (eQTL mapping).  We will 

search for cis-eQTLs (SNPs within 100kb distance from the 

gene) and trans-eQTLs (SNPs regulating gene networks over 

long genomic distances). 
We will also identify genetic associations with epigenetic 

variation (chromatin accessibility QTLs) and response to 

stimulation QTLs (reQTLs). It has been reported that cis-

eQTLs explain a large fraction of the variance in ancestry-

associated expression differences (6). In order to validate this, 

we aim to quantify the fraction of population differences in gene 

expression that can be attributed to genetics as done in (6). 
 

Moreover, in order to screen for polygenic selection, we will 

perform GSEA on the intersection of popDEGs and genes with 

an eQTL (eGenes). In this context, encountering consistent 

population differences in the expression of genes within the 

same pathway, can be due to genetic drift, or due to polygenic 

selection. We will employ different strategies to assess if natural 

selection, as opposed to genetic drift, has contributed to 

differences between populations. 
 

Additional analysis we envision to perform include gene 

regulatory networks and trajectory analysis comparison 

across populations. 
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