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Abstract In this work, we analyze, from the numerical point of view, a prob-
lem including a mixture made of a MGT viscoelastic solid and an elastic solid.
The corresponding variational problem is a linear system composed of two
coupled hyperbolic equations written in terms of the acceleration of the first
constituent and the velocity of the second one. Then, fully discrete approxima-
tions are introduced by using the finite element method and the implicit Euler
scheme. A discrete stability property and a priori error estimates are proved.
Finally, some one-dimensional numerical simulations are shown to demonstrate
the accuracy of the proposed approximations and the behaviour of the solu-
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1 Introduction

In the sixties of the previous century a big deal was developed to model gen-
eralized fluids and solids. A relevant example corresponds to mixtures of in-
teracting materials. It was trying to consider new materials in such a way
that they satisfied certain properties. While we can remember [4,10,7–9,11,
17,20–23,27,31] as pioneering works, we can also say that the amount of con-
tributions in this theory is immense. One of the main applications of these
models involving mixtures is the theory of the well-known composites, with
an increasing use in the automotive industry.

The so-called Moore-Gibson-Thompson (MGT) equation has deserved a
big interest recently. This equation came from the study of the mechanics of
fluids; however, it has also been proposed as a heat equation in a way similar to
the proposition of the Maxwell-Cattaneo heat equation. Therefore, we can also
consider a thermoelastic theory based on the Moore-Gibson-Thompson heat
equation. In fact, many contributions have been published on this theory over
the last two years (see [1–3,5,6,15,16,18,24,25,30,33] among others). At the
same time, it has also been shown how to obtain a viscous effect for different
materials [14,15,29] following the Moore-Gibson-Thompson proposition.

It is well known that the thermal waves obtained by the use of the Fourier
law (also for the type III Green-Naghdi heat conduction) propagate instanta-
neously. As a consequence, the causality principle is violated. For this reason,
new constitutive equations for the heat flux vector have been proposed as the
Maxwell-Cattaneo law (see [26]), the type II Green-Naghdi theory or some
types of the phase-lag theories. They save the drawback and propose heat
conduction theories free of the instantaneous propagation effect of the ther-
mal waves. Certainly, this aspect has been reflected very often in the literature.
However, to our knowledge there is not a similar criticism with respect to the
instantaneous propagation of the mechanical waves. In fact, the mechanical
waves for the Kelvin-Voigt (KV) viscoelasticity are also affected by the in-
stantaneous propagation effect (see [32, p. 39]), and therefore they also violate
the causality principle. It would be suitable to propose alternative laws for the
viscoelasticity saving this drawback as we know that it has been done for the
heat conduction. A natural possibility is to consider the viscoelastic theory
based on the MGT equation which eliminates this phenomenon [28]. In short,
we can say that the MGT-viscoelasticity is more realistic than the KV vis-
coelasticity in order to describe viscoelastic effects by using partial differential
equations (in a similar way as the alternative theories for the heat conduction).
As mixtures of viscoelastic and elastic materials have been considered (very
often) in the literature, we think that it is needed to propose such theory in
the case that the viscous material is proposed from the MGT theory. Never-
theless, we recognize that this theory is (until now) theoretical and academical
and it has not been applied yet in the context of the industrial applications.
In this sense, it is suitable to recall that the analytical study for this theory
has been developed recently [19]. In fact, the authors showed there how to
model a mixture of a MGT viscoelastic solid and an elastic solid. They gave
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the suitable framework to obtain the existence and uniqueness of solutions as
well as the exponential decay of the solutions.

In this work, we also consider this kind of materials but we now analyze the
problem from a numerical point of view, proving a discrete stability property,
providing an a priori error analysis and performing some numerical simula-
tions. The plan of this work is the following. In the next section we describe
the basic equations describing these solids, as well as the required assump-
tions, and we recall an existence and uniqueness result recently proved in [19].
In Section 3 we introduce a fully discrete algorithm by using the finite element
method and the implicit Euler scheme, we prove a discrete stability property
and we obtain a main a priori error estimates result by using a discrete version
of Gronwall’s inequality and some well-known results on the approximation by
the finite elements. Finally, in Section 4 we present some one-dimensional nu-
merical simulations to demonstrate the accuracy of the approximations and
the behaviour of the solution.

2 The variational formulation of the problem

In this section, we provide the variational formulation for a mixture of a Moore-
Gibson-Thompson viscous solid with an elastic solid, from the theory of mix-
ture of materials with memory, and we recall an existence and uniqueness
result (see [19] for further details).

We denote by B a multi-dimensional region in R
d, d = 1, 2, 3, such that its

boundary ∂B is smooth enough to apply the divergence theorem for d = 2, 3.
Moreover, let [0, T ], with T > 0, be the time interval of interest.

Let u = (ui)
d
i=1 and w = (wi)

d
i=1 be the displacement of the first and

second constituents, respectively.
Our system becomes (see [19]):

ρ1(τ
...
u i + üi) =

(

A∗
ijrsur,s +Aijrsu̇r,s +B∗

ijrswr,s

)

,j

−a∗ij(uj + τu̇j − wj), (1)

ρ2ẅi =
(

B∗
rsij(ur,s + τu̇r,s) + C∗

ijrswr,s

)

,j

+a∗ij(uj + τu̇j − wj). (2)

Here, ρ1 and ρ2 are the mass density of each component, A∗
ijrs, Aijrs, B

∗
ijrs,

C∗
ijrs and a∗ij are constitutive tensors whose properties will be described later,

and τ is a positive constant.
To define a problem based on this system we need to impose the boundary

conditions:

ui(x, t) = wi(x, t) = 0 ∀x ∈ ∂B, i = 1, . . . , d, (3)

and the initial conditions, for all x ∈ B and i = 1, . . . , d,

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0i (x), üi(x, 0) = ξ0i (x),

wi(x, 0) = w0
i (x), ẇi(x, 0) = e0i (x),

(4)
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where u0
i , v

0
i , ξ

0
i , w

0
i and e0i are prescribed functions.

In this paper we will assume that

(i) ρ1(x) and ρ2(x) are strictly positive.
(ii) There exists a positive constant C such that

A∗
ijrsξijξrs + 2B∗

ijrsξijηrs + C∗
ijrsηijηrs ≥ C(ξijξij + ηijηij)

for every tensors ξij and ηij .

(iii) There exists a positive constant C̃ such that

a∗ijξiξj ≥ C̃ξiξj

for every vector ξi.
(iv) There exists a constant greater than one C∗∗ such that

Aijrsξijξrs ≥ C∗∗τA∗
ijrsξijξrs

for every tensor ξij .

In order to provide the numerical approximation of problem (1)-(4) in the
next section, we will obtain its variational formulation. Thus, let H = [L2(B)]d

and denote by (·, ·)H the scalar product in this space, with corresponding norm
‖·‖H. Moreover, let us define the variational space V = [H1

0 (B)]d and, in order
to simplify the notation, let the following linear operators be given:

A∗(u,v) = (A∗
ijrsur,s, vi,j)L2(B) ∀u = (ui)

d
i=1,v = (vi)

d
i=1 ∈ V,

A(u,v) = (Aijrsur,s, vi,j)L2(B) ∀u = (ui)
d
i=1,v = (vi)

d
i=1 ∈ V,

B∗(u,v) = (B∗
ijrsur,s, vi,j)L2(B) ∀u = (ui)

d
i=1,v = (vi)

d
i=1 ∈ V,

C∗(u,v) = (Cijrsur,s, vi,j)L2(B) ∀u = (ui)
d
i=1,v = (vi)

d
i=1 ∈ V,

a∗(u,v) = (a∗ijuj, vi)L2(B) ∀u = (ui)
d
i=1,v = (vi)

d
i=1 ∈ V.

Then, applying Green’s formula to equations (1)-(2) and using boundary
conditions (3) we have the following weak problem.

Problem VP. Find the acceleration of the first constituent ξ : [0, T ] → V ,
and the velocity of the second constituent e : [0, T ] → V such that ξ(0) = ξ0 =
(ξ0i )

d
i=1, e(0) = e0 = (e0i )

d
i=1, and, for a.e. t ∈ (0, T ),

ρ1(τ ξ̇(t) + ξ(t), r)H +A∗(u(t), r) +A(v(t), r) +B∗(w(t), r)

+a∗(u(t) + τv(t)−w(t), r) = 0 ∀r ∈ V, (5)

ρ2(ė(t), z)H + C∗(w(t), z) +B∗(u(t) + τ v̇(t), z)

−a∗(u(t) + τv(t)−w(t), z) = 0 ∀z ∈ V, (6)

where we recall that the displacement of the first constituent u, the velocity
of the first constituent v and the displacement of the second constituent w

are then recovered from the relations:

v(t) =

∫ t

0

ξ(s) ds+ v0, u(t) =

∫ t

0

v(s) ds+ u0, (7)

w(t) =

∫ t

0

e(s) ds+w0. (8)
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Here, the initial values are given by u0 = (u0
i )

d
i=1, v

0 = (v0i )
d
i=1 and w0 =

(w0
i )

d
i=1.

The following result which states the existence of a unique solution to
Problem VP has been recently proved in [19].

Theorem 1 Let assumptions (i)-(iv) hold. If the initial conditions have the
following regularity:

u0 ∈ [H2
0 (B)]d, v0 ∈ [H1(B)]d, ξ0 ∈ [L2(B)]d,

w0 ∈ [H1
0 (B)]d, e0 ∈ [L2(B)]d,

there exists a unique solution (u,v, ξ,w, e) to Problem V P such that

u ∈ C3([0, T ];H) ∩ C2([0, T ];V ),
w ∈ C2([0, T ];H) ∩ C1([0, T ];V ).

3 Numerical analysis of a fully discrete scheme

In this section, we will numerically analyze the variational problem V P . We
proceed in two steps. First, in order to provide the spatial approximation,
the domain B is assumed polyhedral and so, let us denote by T h its regular
triangulation in the sense of [13]. We define the finite dimensional space V h ⊂
V as follows,

V h = {zh ∈ [C(B)]d ∩ V ; zh
|Tr ∈ [P1(Tr)]

d ∀Tr ∈ T h}, (9)

where P1(Tr) represents the space of polynomials of degree less or equal to one
in the element Tr, i.e. the finite element space V h is composed of continuous
and piecewise affine functions. Here, h > 0 denotes the spatial discretization
parameter. Moreover, the discrete initial conditions, denoted by u0h, v0h, ξ0h,
w0h and e0h, are given by

u0h = Phu0, v0h = Phv0, ξ0h = Phξ0,
w0h = Phw0, e0h = Phe0,

(10)

where Ph is the usual finite element interpolation operator over V h (see, for
instance, [13]).

In order to consider the discretization of the time derivatives, we define a
uniform partition of the time interval [0, T ], denoted by 0 = t0 < t1 < · · · <
tN = T , with step size k = T/N and nodes tn = n k for n = 0, 1, . . . , N .
Moreover, for a continuous function z(t), we use the notation zn = z(tn) and,
for the sequence {zn}

N
n=0, we denote by δzn = (zn−zn−1)/k its corresponding

divided differences.
Using the well-known implicit Euler scheme, we can fully approximate the

variational problem VP in the following form.
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Problem VPhk. Find the discrete acceleration of the first constituent
ξhk = {ξhkn }Nn=0 ⊂ V h and the discrete velocity of the second constituent
ehk = {ehkn }Nn=0 ⊂ V h such that ξhk0 = ξ0h, ehk0 = e0h, and, for n = 1, . . . , N ,

ρ1(τδξ
hk
n + ξhkn , rh)H +A∗(uhk

n , rh) +A(vhk
n , rh) +B∗(whk

n , rh)

+a∗(uhk
n + τvhk

n −whk
n , rh) = 0 ∀rh ∈ V h, (11)

ρ2(δe
hk
n , zh)H + C∗(whk

n , zh) +B∗(uhk
n + τvhk

n , zh)

−a∗(uhk
n + τvhk

n −whk
n , zh) = 0 ∀zh ∈ V h, (12)

where the discrete displacement of the first constituent uhk = {uhk
n }Nn=0, the

discrete velocity of the first constituent vhk = {vhk
n }Nn=0 and the discrete

displacement of the second constituent whk = {whk
n }Nn=0 are then recovered

from the next relations:

vhk
n = k

n
∑

j=1

ξhkj + v0h, uhk
n = k

n
∑

j=1

vhk
j + u0h, (13)

whk
n = k

n
∑

j=1

ehkj +w0h. (14)

It is obvious that the existence of a unique solution to Problem VPhk

follows from the Lax-Milgram lemma taking into account assumptions (i)-(iv).
The aim of this section is to provide the numerical analysis of Problem VP.

First, we have the following discrete stability result.

Lemma 1 Under the assumptions of Theorem 1, it follows that the sequences
{uhk,vhk, ξhk,whk, ehk}, generated by Problem V P hk, satisfy the stability es-
timate:

‖ξhkn ‖2H + ‖vhk
n ‖2V + ‖uhk

n ‖2V + ‖ehkn ‖2H + ‖whk
n ‖2V ≤ C,

where C is a positive constant assumed to be independent of the discretization
parameters h and k.

Proof In order to simplify the writing, we remove the superscripts h and k in
all the variables. Moreover, for the sake of simplicity in the calculations we
assume that τ = 1.

First, we take as a test function rh = ξhkn in discrete equation (11) to
obtain

ρ1(δξn + ξn, ξn)H +A∗(un, ξn) +A(vn, ξn) +B∗(wn, ξn)

+a∗(un + vn −wn, ξn) = 0.

Keeping in mind that

(δξn, ξn)H ≥
1

2k

[

‖ξn‖
2
H − ‖ξn−1‖

2
H

]

,

a∗(vn, ξn) ≥
C̃

2k

[

‖vn‖
2
H − ‖vn−1‖

2
H

]

,
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where we have used assumption (iii), it follows that

ρ1
2k

[

‖ξn‖
2
H − ‖ξn−1‖

2
H

]

+A∗(un, ξn) +A(vn, ξn) +B∗(wn, ξn)

+
C̃

2k

[

‖vn‖
2
H − ‖vn−1‖

2
H

]

≤ C
(

‖un‖
2
H + ‖wn‖

2
H + ‖ξn‖

2
H

)

. (15)

Secondly, taking as a test function zh = ehkn in discrete equation (12) we have

ρ2(δen, en)H + C∗(wn, en) +B∗(un + vn, en)

−a∗(un + vn −wn, en) = 0,

and using the estimates (obtained applying again assumption (iii)):

(δen, en)H ≥
1

2k

[

‖en‖
2
H − ‖en−1‖

2
H

]

,

a∗(wn, en) ≥
C̃

2k

[

‖wn‖
2
H − ‖wn−1‖

2
H

]

,

we find that

ρ2
2k

[

‖en‖
2
H − ‖en−1‖

2
H

]

+ C∗(wn, en) +B∗(un + vn, en)

+
C̃

2k

[

‖wn‖
2
H − ‖wn−1‖

2
H

]

≤ C
(

‖un‖
2
H + ‖vn‖

2
H + ‖en‖

2
H

)

. (16)

Combining the previous estimates (15) and (16) and observing that

A(vn, ξn) =
1

2k

[

A(vn,vn)−A(vn−1,vn−1) +A(vn − vn−1,vn − vn−1)
]

,

C∗(wn, en) =
1

2k

[

C∗(wn,wn)− C∗(wn−1,wn−1) + C∗(wn −wn−1,wn −wn−1)
]

,

B∗(vn, en) +B∗(wn, ξn) =
1

k

[

B∗(vn,wn)−B∗(vn−1,wn−1)

+B∗(vn − vn−1,wn −wn−1)
]

,

A(vn − vn−1,vn − vn−1) + C∗(wn −wn−1,wn −wn−1)
+2B∗(vn − vn−1,wn −wn−1) ≥ 0,

where we have used assumptions (ii) and (iv), we obtain the estimates:

ρ1
2k

[

‖ξn‖
2
H − ‖ξn−1‖

2
H

]

+A∗(un, ξn) +
1

2k

[

A(vn,vn)−A∗(vn−1,vn−1)
]

+
ρ2
2k

[

‖en‖
2
H − ‖en−1‖

2
H

]

+
1

2k

[

C∗(wn,wn)− C∗(wn−1,wn−1)
]

+
1

k

[

B∗(vn,wn)−B∗(vn−1,wn−1)
]

+
C̃

2k

[

‖vn‖
2
H − ‖vn−1‖

2
H

]

+
C̃

2k

[

‖wn‖
2
H − ‖wn−1‖

2
H

]

+B∗(un, en)

≤ C
(

‖un‖
2
H + ‖vn‖

2
H + ‖wn‖

2
H + ‖ξn‖

2
H

)

.
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Now, summing up to n the above estimates, we have

ρ1‖ξn‖
2
H + k

n
∑

j=1

A∗(uj , ξj) +A(vn,vn) + ρ2‖en‖
2
H + C∗(wn,wn)

+2B∗(vn,wn) + C̃‖vn‖
2
H + C̃‖wn‖

2
H + k

n
∑

j=1

B∗(uj , ej)

≤ Ck

n
∑

j=1

(

‖uj‖
2
H + ‖vj‖

2
H + ‖wj‖

2
H + ‖ξj‖

2
H

)

+ C
(

‖ξ0‖2H + ‖v0‖2V

+‖u0‖2V + ‖e0‖2H + ‖w0‖2V

)

.

Observing that, thanks again to properties (ii) and (iv),

A(vn,vn) + C∗(wn,wn) + 2B∗(vn,wn) ≥ C(‖vn‖
2
V + ‖wn‖

2
V ),

it follows that

‖ξn‖
2
H + k

n
∑

j=1

A∗(uj , ξj) + ‖vn‖
2
V + ‖wn‖

2
V + ‖en‖

2
H + k

n
∑

j=1

B∗(uj , ej)

≤ Ck
n
∑

j=1

(

‖uj‖
2
H + ‖vj‖

2
H + ‖wj‖

2
H + ‖ξj‖

2
H

)

+ C
(

‖ξ0‖2H + ‖v0‖2V

+‖u0‖2V + ‖e0‖2H + ‖w0‖2V

)

.

Finally, keeping in mind that

k
n
∑

j=1

A∗(uj , ξj) = A∗(un,vn)− k
n−1
∑

j=1

A∗(vj ,vj−1)−A∗(u0,v0),

k
n
∑

j=1

B∗(uj, ej) = B∗(un,wn)− k
n−1
∑

j=1

B∗(vj ,wj−1)−B∗(u0,w0),

‖un‖
2
V ≤ Ck

n
∑

j=1

‖vj‖
2
V + ‖u0‖2V ,

using a discrete version of Gronwall’s inequality (see [12]) we obtain the desired
stability property.

Now, our aim is to show an a priori error analysis. We have the following.

Theorem 2 Let the assumptions of Theorem 1 still hold. If we denote by
(u,v, ξ,w, e) and (uhk,vhk, ξhk,whk, ehk) the respective solutions to problems
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VP and VPhk, then we have the following a priori error estimates for all
rh = {rhn}

N
n=0, z

h = {zh
n}

N
n=0 ⊂ V h,

max
0≤n≤N

{

‖ξn − ξhkn ‖2H + ‖vn − vhk
n ‖2V + ‖un − uhk

n ‖2V + ‖en − ehkn ‖2H + ‖wn −whk
n ‖2V

}

≤ Ck

N
∑

j=1

(

‖ξj − rh
j ‖

2
V + ‖ξ̇j − δξj‖

2
H + ‖v̇j − δvj‖

2
V + ‖ėj − δej‖

2
H

+‖ej − zh
j ‖

2
V + ‖ẇj − δwj‖

2
V

)

+ C max
0≤n≤N

[

In + ‖en − zh
n‖

2
H + ‖ξn − rhn‖

2
H

]

+
C

k

N−1
∑

j=1

[

‖ξj − rhj − (ξj+1 − rh
j+1)‖

2
H + ‖ej − zh

j − (ej+1 − zh
j+1)‖

2
H

]

+C
(

‖ξ0 − ξ0h‖2H + ‖v0 − v0h‖2V + ‖u0 − u0h‖2V + ‖e0 − e0h‖2H

+‖w0 −w0h‖2V

)

, (17)

where C > 0 is again a positive constant assumed to be independent of the
discretization parameters, but depending on the continuous solution, and In is
the integration error defined as

In =
∥

∥

∥

∫ tn

0

v(s) ds− k

n
∑

j=1

vj

∥

∥

∥

2

V
. (18)

Proof Again, in order to simplify the calculations we assume that τ = 1.

First, we will derive the estimates for the acceleration of the first cons-
tituent. Thus, subtracting variational equation (5) at time tn for a test function
r = rh ∈ V h and discrete variational equation (11) it follows that, for all
rh ∈ V h,

ρ1(ξ̇n − δξhkn + ξn − ξhkn , rh)H +A∗(un − uhk
n , rh) +A(vn − vhk

n , rh)
+B∗(wn −whk

n , rh) + a∗(un − uhk
n + (vn − vhk

n )− (wn −whk
n ), rh) = 0.

Then, we have, for all rh ∈ V h,

ρ1(ξ̇n − δξhkn + ξn − ξhkn , ξn − ξhkn )H + A∗(un − uhk
n , ξn − ξhkn )

+A(vn − vhk
n , ξn − ξhkn ) +B∗(wn −whk

n , ξn − ξhkn )

+a∗(un − uhk
n + vn − vhk

n − (wn −whk
n ), ξn − ξ

hk
n )

= ρ1(ξ̇n − δξhkn + ξn − ξhkn , ξn − rh)H +A∗(un − uhk
n , ξn − rh)

+A(vn − vhk
n , ξn − rh) +B∗(wn −whk

n , ξn − rh)
+a∗(un − uhk

n + vn − vhk
n − (wn −whk

n ), ξn − rh).
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Taking into account that

(ξ̇n − δξhkn , ξn − ξhkn )H ≥ (ξ̇n − δξn, ξn − ξhkn )H +
1

2k

[

‖ξn − ξhkn ‖2H − ‖ξn−1 − ξhkn−1‖
2
H

]

,

A(vn − vhk
n , ξn − ξhkn ) = A(vn − vhk

n , v̇n − δvn) +A(vn − vhk
n , δvn − δvhk

n )

= A(vn − vhk
n , v̇n − δvn) +

1

2k

[

A(vn − vhk
n ,vn − vhk

n )−A(vn−1 − vhk
n−1,vn−1 − vhk

n−1)

+A(vn − vhk
n − (vn−1 − vhk

n−1),vn − vhk
n − (vn−1 − vhk

n−1))
]

,

a∗(vn − vhk
n , ξn − ξhkn ) = a∗(vn − vhk

n , v̇n − δvn) + a∗(vn − vhk
n , δvn − δvhk

n )

≥ a∗(vn − vhk
n , v̇n − δvn) +

C̃

2k

[

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

]

,

where we used the notations δvn = (vn − vn−1)/k and δξn = (ξn − ξn−1)/k,
we find that, for all rh ∈ V h,

ρ1
2k

[

‖ξn − ξhkn ‖2H − ‖ξn−1 − ξhkn−1‖
2
H

]

+
C̃

2k

[

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

]

+
1

2k

[

A(vn − vhk
n ,vn − vhk

n )−A(vn−1 − vhk
n−1,vn−1 − vhk

n−1)

+A(vn − vhk
n − (vn−1 − vhk

n−1),vn − vhk
n − (vn−1 − vhk

n−1))
]

+A∗(un − uhk
n , ξn − ξ

hk
n ) +B∗(wn −whk

n , δvn − δvhk
n )

≤ C
(

‖ξn − rh‖2V + ‖ξ̇n − δξn‖
2
H + ‖v̇n − δvn‖

2
V + ‖vn − vhk

n ‖2V + ‖un − uhk
n ‖2V

+‖wn −whk
n ‖2V + (δξn − δξhkn , ξn − rh)H

)

.

Now, we obtain the error estimates for the velocity of the second constituent
and so, we subtract variational equation (6) at time tn for a test function
z = zh ∈ V h and discrete variational equation (12) to get, for all zh ∈ V h,

ρ2(ėn − δehkn , zh)H + C∗(wn −whk
n , zh) +B∗(un − uhk

n + vn − vhk
n , zh)

−a∗(un − uhk
n + vn − vhk

n − (wn −whk
n ), zh) = 0.

Therefore, we have, for all zh ∈ V h,

ρ2(ėn − δehkn , en − ehkn )H +B∗(un − uhk
n + vn − vhk

n , en − ehkn )
+C∗(wn −whk

n , en − ehkn )− a∗(un − uhk
n + vn − vhk

n − (wn −whk
n ), en − ehkn )

= ρ2(ėn − δehkn , en − zh)H +B∗(un − uhk
n + vn − vhk

n , en − zh)
+C∗(wn −whk

n , en − zh)− a∗(un − uhk
n + vn − vhk

n − (wn −whk
n ), en − zh).

Taking now into account that

(ėn − δehkn , en − ehkn )H ≥ (ėn − δen, en − ehkn )H +
1

2k

[

‖en − ehkn ‖2H − ‖en−1 − ehkn−1‖
2
H

]

,

C∗(wn −whk
n , en − ehkn ) = C∗(wn −whk

n , ẇn − δwn) + C∗(wn −whk
n , δwn − δwhk

n )

= C∗(wn −whk
n , ẇn − δwn) +

1

2k

[

C∗(wn −whk
n ,wn −whk

n )− C∗(wn−1 −whk
n−1,wn−1 −whk

n−1)

+C∗(wn −whk
n − (wn−1 −whk

n−1),wn −whk
n − (wn−1 −whk

n−1))
]

,

a∗(wn −whk
n , en − ehkn ) = a∗(wn −whk

n , ẇn − δwn) + a∗(wn −whk
n , δwn − δwhk

n )

≥ a∗(wn −whk
n , ẇn − δwn) +

C̃

2k

[

‖wn −whk
n ‖2H − ‖wn−1 −whk

n−1‖
2
H

]

,
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where we used now the similar notations δen = (en − en−1)/k and δwn =
(wn −wn−1)/k, it follows that, for all z

h ∈ V h,

ρ2
2k

[

‖en − ehkn ‖2H − ‖en−1 − ehkn−1‖
2
H

]

+
C̃

2k

[

‖wn −whk
n ‖2H − ‖wn−1 −whk

n−1‖
2
H

]

+
1

2k

[

C∗(wn −whk
n ,wn −whk

n )− C∗(wn−1 −whk
n−1,wn−1 −whk

n−1)

+C∗(wn −whk
n − (wn−1 −whk

n−1),wn −whk
n − (wn−1 −whk

n−1))
]

+B∗(vn − vhk
n , δwn − δwhk

n ) +B∗(un − uhk
n , δwn − δwhk

n )

≤ C
(

‖en − zh‖2V + ‖ėn − δen‖
2
H + ‖ẇn − δwn‖

2
V + ‖vn − vhk

n ‖2V + ‖un − uhk
n ‖2V

+‖wn −whk
n ‖2V + (δen − δehkn , en − zh)H

)

.

Combining the previous estimates it follows that, for all rh, zh ∈ V h,

ρ1
2k

[

‖ξn − ξhkn ‖2H − ‖ξn−1 − ξhkn−1‖
2
H

]

+
C̃

2k

[

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

]

+
1

2k

[

A(vn − vhk
n ,vn − vhk

n )−A(vn−1 − vhk
n−1,vn−1 − vhk

n−1)

+A(vn − vhk
n − (vn−1 − vhk

n−1),vn − vhk
n − (vn−1 − vhk

n−1))
]

+A∗(un − uhk
n , ξn − ξhkn ) +B∗(wn −whk

n , δvn − δvhk
n )

+
ρ2
2k

[

‖en − ehkn ‖2H − ‖en−1 − ehkn−1‖
2
H

]

+
C̃

2k

[

‖wn −whk
n ‖2H − ‖wn−1 −whk

n−1‖
2
H

]

+
1

2k

[

C∗(wn −whk
n ,wn −whk

n )− C∗(wn−1 −whk
n−1,wn−1 −whk

n−1)

+C∗(wn −whk
n − (wn−1 −whk

n−1),wn −whk
n − (wn−1 −whk

n−1))
]

+B∗(vn − vhk
n , δwn − δwhk

n ) +B∗(un − uhk
n , δwn − δwhk

n )

≤ C
(

‖ξn − rh‖2V + ‖ξ̇n − δξn‖
2
H + ‖v̇n − δvn‖

2
V + ‖vn − vhk

n ‖2V + ‖un − uhk
n ‖2V

+‖wn −whk
n ‖2V + (δξn − δξhkn , ξn − rh)H + ‖en − zh‖2V + ‖ėn − δen‖

2
H

+‖ẇn − δwn‖
2
V + (δen − δehkn , en − zh)H

)

.

Keeping in mind that

B∗(wn −whk
n , δvn − δvhk

n ) +B∗(vn − vhk
n , δwn − δwhk

n )

=
1

k

[

B∗(wn −whk
n ,vn − vhk

n )−B∗(wn−1 −whk
n−1,vn−1 − vhk

n−1)

+B∗(wn −wn−1 − (wn−1 −whk
n−1),vn − vn−1 − (vn−1 − vhk

n−1))
]

,

A(vn − vhk
n − (vn−1 − vhk

n−1),vn − vhk
n − (vn−1 − vhk

n−1))
+2B∗(wn −wn−1 − (wn−1 −whk

n−1),vn − vn−1 − (vn−1 − vhk
n−1))

+C∗(wn −whk
n − (wn−1 −whk

n−1),wn −whk
n − (wn−1 −whk

n−1)) ≥ 0,
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where we have used again assumptions (ii) and (iv), multiplying the above
estimates by k and summing up to n we find that

‖ξn − ξhkn ‖2H + ‖vn − vhk
n ‖2V +A(vn − vhk

n ,vn − vhk
n ) + ‖en − ehkn ‖2H

+k

n
∑

j=1

A∗(uj − uhk
j , δvj − δvhk

n ) + ‖wn −whk
n ‖2V + C∗(wn −whk

n ,wn −whk
n )

+2B∗(vn − vhk
n ,wn −whk

n ) + k

n
∑

j=1

B∗(uj − uhk
j , δwj − δwhk

j )

≤ Ck

n
∑

j=1

(

‖ξj − rh
j ‖

2
V + ‖ξ̇j − δξj‖

2
H + ‖v̇j − δvj‖

2
V + ‖vj − vhk

j ‖2V + ‖uj − uhk
j ‖2V

+‖wj −whk
j ‖2V + (δξj − δξhkj , ξj − rh

j )H + ‖ej − zh
j ‖

2
V + ‖ėj − δej‖

2
H

+‖ẇj − δwj‖
2
V + (δej − δehkj , ej − zh

j )H

)

+ C
(

‖ξ0 − ξ0h‖2H + ‖v0 − v0h‖2V

+‖e0 − e0h‖2H + ‖w0 −w0h‖2V

)

∀rh = {rh
j }

n
j=0, z

h = {zh
j }

n
j=0 ⊂ V h.

From assumptions (ii) and (iv) it follows that

A(vn − vhk
n ,vn − vhk

n ) + C∗(wn −whk
n ,wn −whk

n ) + 2B∗(vn − vhk
n ,wn −whk

n )

≥ C
(

‖vn − vhk
n ‖2V + ‖wn −whk

n ‖2V

)

.

Finally, taking into account that

k

n
∑

j=1

A∗(uj − uhk
j , δvj − δvhk

n ) = A∗(un − uhk
n ,vn − vhk

n )

−k

n
∑

j=1

A∗(δuj − δuhk
j ,vj−1 − vhk

j−1)− A∗(u0 − u0h,v0 − v0h),

k

n
∑

j=1

B∗(uj − uhk
j , δwj − δwhk

n ) = B∗(un − uhk
n ,wn −whk

n )

−k

n
∑

j=1

B∗(δuj − δuhk
j ,wj−1 −whk

j−1)−B∗(u0 − u0h,w0 −w0h),

k

n
∑

j=1

(δξj − δξhkj , ξj − rhj )H = (ξn − ξ
hk
n , ξn − rhn)H + (ξ0h − ξ

0, ξ1 − rh1 )H

+

n−1
∑

j=1

(ξj − ξhkj , ξj − rhj − (ξj+1 − rh
j+1))H ,

k
n
∑

j=1

(δej − δehkj , ej − zh
j )H = (en − ehkn , en − zh

n)H + (e0h − e0, e1 − zh
1 )H

+
n−1
∑

j=1

(ej − ehkj , ej − zh
j − (ej+1 − zh

j+1))H ,

‖un − uhk
n ‖2V ≤ C

(

k

n
∑

j=1

‖vj − vhk
j ‖2V + Ij + ‖u0 − u0h‖2V

)

,
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where Ij is the integration error defined in (18), applying a discrete version of
Gronwall’s inequality (see again [12]), we obtain the a priori error estimates
(17).

From the above error estimates result we can deduce the convergence order
under suitable regularity conditions. As an example, we have the following
corollary which states the linear convergence of the algorithm under some
additional regularity conditions.

Corollary 1 Under the assumptions of Theorem 2, if the solution to Problem
V P has the regularity:

u ∈ C2([0, T ]; [H2(B)]d) ∩H4(0, T ;H),
w ∈ C1([0, T ]; [H2(B)]d) ∩H3(0, T ;H),

(19)

and we use the finite element space V h given in (9), and the discrete initial
conditions u0h, v0h, ξ0h, w0h and e0h defined in (10), the linear convergence
of the algorithm is deduced; i.e. there exists a positive constant C > 0, inde-
pendent of the discretization parameters h and k, such that

max
0≤n≤N

{

‖ξn − ξhkn ‖H + ‖vn − vhk
n ‖V + ‖un − uhk

n ‖V + ‖en − ehkn ‖H

+‖wn −whk
n ‖V

}

≤ C(h+ k).

4 Numerical results in one-dimensional examples

In this final section, we describe the numerical scheme implemented in MAT-
LAB for solving Problem V P hk, and we show some numerical examples to
demonstrate the accuracy of the approximations and the behaviour of the so-
lution. For the sake of simplicity, we restrict ourselves to the one-dimensional
case (the domain B is assumed to be the interval (0, 1)) and so, problem (1)-(4)
is written as follows:

ρ1(τ
...
u + ü) = A∗uxx +Au̇xx +B∗wxx − a∗(u + τu̇− w) in (0, 1)× (0, T ),

ρ2ẅ = B∗(uxx + τu̇xx) + C∗wxx + a∗(u+ τu̇ − w) in (0, 1)× (0, T ),

u(0, t) = u(1, t) = w(0, t) = w(1, t) for a.e. t ∈ (0, T ),

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ü(x, 0) = ξ0(x) for a.e. x ∈ (0, 1),

w(x, 0) = w0(x), ẇ(x, 0) = e0(x) for a.e. x ∈ (0, 1),

where A∗, A, B∗, C∗ and a∗ are now given constants representing the corres-
ponding linear operators.

Therefore, proceeding as in Sections 2 and 3, we obtain the following nu-
merical algorithm to solve the one-dimensional version of Problem V P hk.
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Given the solution uhk
n−1, v

hk
n−1, ξ

hk
n−1, w

hk
n−1 and ehkn−1 at time tn−1, variables

ξhkn and ehkn are obtained by solving the discrete linear system, for all rh, zh ∈
V h,

ρ1(τξ
hk
n + kξhkn , rh) +A∗k3((ξhkn )x, r

h
x) +Ak2((ξhkn )x, r

h
x) + a∗k3(ξhkn , rh)

+k2B∗((ehkn )x, r
h
x) + a∗τk2(ξhkn , rh)− a∗k2(ehkn , rh)

= ρ1τ(ξ
hk
n−1, r

h)−A∗k((uhk
n−1 + kvhkn−1)x, r

h
x)−Ak((vhkn−1)x, r

h
x)

−B∗k((whk
n−1)x, r

h
x)− a∗k(uhk

n−1 + kvhkn−1 + τvhkn−1 − whk
n−1, r

h),

ρ2(e
hk
n , zh) + C∗k2((ehkn )x, z

h
x) + a∗k2(ehkn , zh) +B∗k((k2 + τk)(ξhkn )x, z

h
x)

−a∗k((k2 + τk)ξhkn , zh)

= ρ2(e
hk
n−1, z

h)−B∗k((uhk
n−1 + kvhkn−1)x, z

h
x)− C∗k((whk

n−1)x, z
h
x)

+a∗k(uhk
n−1 + kvhkn−1 + τvhkn−1 − whk

n−1, z
h).

We note that the numerical scheme leads to a non-symmetrical system
which was solved by using LU-method, and it was implemented on a 3.2 Ghz
PC using MATLAB. Moreover, a typical run (h = k = 0.001) took about 0.37
seconds of CPU time.

4.1 First example: numerical convergence

As an academical example, in order to show the accuracy of the approximations
we solve this discrete problem with the following data:

B = (0, 1), T = 1, ρ1 = 1, ρ2 = 1, A∗ = 3, A = 2,

B∗ = 1, a∗ = 4, C∗ = 2, τ =
1

2
.

By using the following initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = ξ0(x) = w0(x) = e0(x) = x(x− 1),

and the (artificial) supply terms, for all (x, t) ∈ (0, 1)× (0, 1),

F1(x, t) = et(7x(x− 1)/2− 12),

F2(x, t) = −et(x(x − 1) + 7),

the exact solution to the above one-dimensional problem can be easily calcu-
lated and it has the form, for (x, t) ∈ [0, 1]× [0, 1]:

u(x, t) = w(x, t) = etx(x− 1).

Thus, the approximation errors estimated by

max
0≤n≤N

{

‖vn − vhkn ‖V + ‖un − uhk
n ‖V + ‖ξn − ξhkn ‖H + ‖wn − whk

n ‖V

+‖en − ehkn ‖H

}



On a mixture of a MGT viscous material and an elastic solid 15

h ↓ k → 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/23 0.291780 0.287690 0.285235 0.284416 0.284007 0.283761 0.283678
1/24 0.149900 0.145754 0.143281 0.142457 0.142045 0.141797 0.141715
1/25 0.079191 0.074944 0.072447 0.071620 0.071208 0.070960 0.070878
1/26 0.044065 0.039604 0.037055 0.036222 0.035808 0.035560 0.035478
1/27 0.026901 0.022032 0.019376 0.018528 0.018111 0.017862 0.017780
1/28 0.018938 0.013426 0.010566 0.009689 0.009264 0.009014 0.008931
1/29 0.015626 0.009408 0.006217 0.005284 0.004845 0.004590 0.004507
1/210 0.014421 0.007716 0.004138 0.003109 0.002642 0.002380 0.002295
1/211 0.014028 0.007096 0.003221 0.002068 0.001555 0.001277 0.001190
1/212 0.013913 0.006895 0.002867 0.001609 0.001034 0.000730 0.000638
1/213 0.013882 0.006837 0.002747 0.001430 0.000804 0.000464 0.000365

Table 1 Example 1: Numerical errors for some h and k.
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Fig. 1 Example 1: Asymptotic constant error.

are presented in Table 1 for several values of the discretization parameters h
and k. Moreover, the evolution of the error depending on the parameter h+ k
is plotted in Fig. 1. The convergence of the algorithm is clearly observed, and
the linear convergence, stated in Corollary 1, is achieved.

If we assume now that there are not supply terms, and we use the final
time T = 20, the following data:

B = (0, 1), T = 20, ρ1 = 1, ρ2 = 0.1, A∗ = 5, A = 2,
B∗ = 1, a∗ = 1, C∗ = 6, τ = 0.03,

and the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = ξ0(x) = x(x− 1), w0(x) = e0(x) = 0,
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taking the discretization parameters h = k = 0.001, the evolution in time of
the discrete energy

Ehk
n = ρ1τ

2||ξhkn ||2H + ρ2||e
hk
n ||2H + (A− τA∗)||(uhk

n )x||
2
H +A∗τ2||(vhkn )x||

2
H

+a∗||(whk
n )x||

2
H + a∗||uhk

n ‖2H + a∗τ2‖vhkn ‖2H + a∗‖whk
n ||2H

is plotted in Fig. 2 (in both natural and semi-log scales). As can be seen, it
converges to zero and an exponential decay seems to be achieved.
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Fig. 2 Example 1: Evolution in time of the discrete energy (natural and semi-log scales).

4.2 Second example: dependence on parameter a∗

In this second example our aim is to study the dependence on the coupling
parameter a∗ between the two constituents of the mixture.

The following data are used:

B = (0, 1), T = 1, ρ1 = 1, ρ2 = 0.1, A∗ = 5, A = 2,
B∗ = 1, C∗ = 6, τ = 0.03,

with the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = ξ0(x) = w0(x) = e0(x) = x(x− 1),

and again null Dirichlet boundary conditions.
Using the discretization parameters h = k = 0.001, in Fig. 3 we show the

displacement (upper left), velocity (upper right) and acceleration (lower) of
the first constituent of the mixture, for several values of parameter a∗. As can
be seen, the domain bends with a quadratic shape but, when the parameter
increases, the deformation reduces due to the energy transmission to the second
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Fig. 3 Example 2: Displacement (upper left), velocity (upper right) and acceleration (lower)
of the first constituent for several values of the mixture).

constituent. Even, the shape of the velocity and acceleration changes for the
largest values.

The displacement and velocity of the second constituent are plotted in Fig.
4 at final time. Again, we observe a quadratic behaviour for the displacement
field but the velocity clearly changes its form for values greater than 5. More-
over, we note that this deformation is produced due to the coupling between
the two components of the mixture.

Finally, in Fig. 5 we can see the evolution in time of the discrete energy
(defined in the previous example), in both natural and semi-log scales, for
some values of the parameter a∗. The exponential energy decay is found as
expected, being rather similar in all cases.
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Fig. 4 Example 2: Displacement and velocity of the second constituent at time T = 1.

Fig. 5 Example 2: Evolution in time of the discrete energy (natural and semi-log scales)
for different values of a∗.
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