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Abstract
Cloth manipulation is very relevant for domestic robotic
tasks, but it presents many challenges due to the complexity
of representing, recognizing and predicting the behaviour of
cloth under manipulation. In this work, we propose a generic,
compact and simplified representation of the states of cloth
manipulation that allows for representing tasks as sequences
of states and transitions semantically. We also define a Cloth
Manipulation Graph that encodes all the strategies to accom-
plish a task. Our novel representation is used to encode two
different cloth manipulation tasks, learned from an experi-
ment with human subjects manipulating clothes with video
data. We show how our simplified representation allows to
obtain a map of meaningful steps that can serve to describe
cloth manipulation tasks as domain models in PDDL, en-
abling high-level planning. Finally, we discuss on the existing
skills that could enable the sensory motor grounding and the
low-level execution of the plan.

Introduction
The manipulation of highly-deformable objects is becom-
ing an important area of robotic manipulation research, with
very interesting potential applications in industrial, domes-
tic or health care scenarios. Despite its importance, core ca-
pabilities such as grasping, placing, or handing to a person
still remain as a hard and unsolved problem when dealing
with textiles, as opposed to rigid objects. This is because a
rigid object state can be defined by 6 pose parameters, while
the deformation space of a fabric is infinite dimensional.
This huge dimensional jump makes usual manipulation so-
lutions not applicable to deal with textiles. In particular, the
complexity of defining and recognizing scene states dealing
with clothes makes any reasoning symbolic representation
of scenes very difficult to ground, hindering the training of
AI systems and task planners.

Although learning techniques can benefit from simula-
tion, the transfer to reality has only been successful for sim-
ple skills (Matas, James, and Davison 2018; Yan et al. 2020;
Hoque et al. 2020; Tanaka, Arnold, and Yamazaki 2018),
because simulated cloth differs highly from real behaviour.
There have been some works learning from real data using
either video and sensory-motor data from a robot perform-
ing the manipulation in teleoperation (Yang et al. 2016) or
from demonstrated robot actions connecting different im-
ages of the scene (Lippi et al. 2020). However, they show

Figure 1: Generic pipeline for learning from human demon-
stration for manipulation tasks. A good task representation
learned from the segmentation of the data can be used for
decision making. State representations have to be defined to
ease state recognition but also to enable action execution.

clear limitations when it comes to generalizing to other tasks
(Yang et al. 2016) or when the scene contains cloth with
self-occlusions (Lippi et al. 2020). It is even less common
to learn cloth manipulation tasks from human demonstra-
tions. However, learning from humans would be important
to obtain a diversity of strategies to accomplish a task, and
with different parameters related to safety, fast accomplish-
ment of the objective or number of steps needed to accom-
plish a task, inducing a measure of task complexity. Learn-
ing through human demonstration follows a pipeline similar
to Fig. 1. Large amounts of data could be obtained from hu-
man demonstrations in the form of video data and motion
data of the hands (Verleysen, Biondina, and Wyffels 2020),
but learning from this kind of data is challenging due to
the difficulty of annotating data and recognizing cloth states
from images.

Another challenge for cloth manipulation is to find gen-
eral solutions (Sanchez et al. 2018). Most recent attempts to
find general approaches consist of end-to-end learning ap-
proaches (Tanaka, Arnold, and Yamazaki 2018; Yan et al.
2020; Hoque et al. 2020; Lippi et al. 2020) that are still lim-
ited to relatively simple tasks with limited self-occlusions,
that is, with fabrics laying flat or semi-flat on a table. We be-
lieve that the key to general solutions is to define a domain
of semantic scene states (cloud box in Fig. 1) with carefully
chosen parameters to facilitate state recognition and local-
ization of manipulation relevant features, that is, that can be
grounded with real-sensor data.

The literature of cloth manipulation has dealt since the
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very beginning on how to represent cloth and simplify it
to a tractable manner to plan actions (Miller et al. 2012;
Doumanoglou et al. 2016). In the Related work Section we
will review how the literature has dealt with the problem of
scene representation in the context of cloth manipulation.
Approaches range from very simple 1-dimensional repre-
sentations (Petrı́k et al. 2016) to mesh representations of the
cloth (Bersch, Pitzer, and Kammel 2011), including to end-
to-end learning approaches using the whole scene state im-
age as state definition (Yan et al. 2020). However, none of
the representations used has defined a full domain model to
enable PDDL planning.

The first contribution of this work is to propose a novel
idea to define a semantic scene state in cloth manipulation
tasks. The novelty lies in including information on how the
cloth is grasped (Borràs, Alenyà, and Torras 2020), where it
is grasped from, what are the environmental contacts and the
possible transitions between them. The second contribution
is the Cloth Manipulation (CloM) Graph, a graph that can be
built using the previous representation to encode all the pos-
sible states and transitions of a given manipulation task seen
from video demonstrations, enabling to capture the diversity
of strategies. We show the feasibility of our approach by ex-
tracting the graph for two textile manipulation tasks, one to
fold a napkin in 3 folds and the other to unfold and put a
tablecloth, following a recent benchmark (Garcia-Camacho
et al. 2020). We performed an experiment with 8 subjects
that wear a gripper to reduce the number of possible grasp
types and dexterity ability. Finally, we show how the CLoM
Graph can be easly converted into PDDL and feed into a
solver to plan a cloth manipulation task.

The proposed scene representation and the CloM Graph
is also motivated to potentially provide explainability to the
decision-making processes, in line with the trustworthy AI
from the EU guidelines. As opposed to opaque end-to-end
deep learning methods (Yang et al. 2016; Tanaka, Arnold,
and Yamazaki 2018), latent space variables (Lippi et al.
2020) that are difficult to interpret, or learned latent dynamic
models from large amounts of random samples (Yan et al.
2020) that produce plans that are difficult to explain to a hu-
man, our CloM Graph provides a framework that is designed
to provide both semantic explanations by construction, high-
level planning as well as low-level building blocks to plan a
task and execute it.

Related work
Task planning understood as a decision-making module that
evaluates different strategies and chooses the optimal plan
has been quite unexplored in cloth manipulation. Seminal
literature on cloth manipulation was more focused on mo-
tion planning given a task plan (Cusumano-Towner et al.
2011; Doumanoglou et al. 2016). For cloths already flat on a
table, simplified planar polygonal representations were used
in (Miller et al. 2011; Doumanoglou et al. 2016; Li et al.
2015) or even simpler 1-dimensional ones in (Petrı́k et al.
2016) for rectangular clothes. For grasping hanging clothes,
contours were used in (Triantafyllou et al. 2016).

Recently, more general literature has focused on deep
learning approaches where the scene is represented as RGB-

D images and the system learns the mapping between an
image with an action and a resulting image, where the ac-
tion is modelled as the pick-up point pixel coordinates and
a direction of displacement (Hoque et al. 2020; Seita et al.
2019; Yan et al. 2020; Jangir, Alenya, and Torras 2020). In
(Matas, James, and Davison 2018) they apply reinforcement
learning, where the state is represented by an RGB image
plus the robot arm joints and grippers state. All these works
are trained in simulation but achieve acceptable sim-to-real
results. In (Yang et al. 2016) they use a similar approach by
feeding directly the RGB image and robot arm joints to a
neuronal network that is trained with teleoperated real robot
data.

A few works do task planning using similar approaches.
In (Tanaka, Arnold, and Yamazaki 2018) they use deep
learning to obtain mappings between image states and se-
quences of simple actions. The method is general but only
achieves very simple plans due to the large amounts of data
needed, that are in simulation but augmented with large
amounts of real robot data. The work in (Lippi et al. 2020)
is, up to our knowledge, the only that considered the impor-
tance of building a graph of scene states to enable task plan-
ning. They build a graph in latent space where each node
is a set of RGB images related by just perturbations that is
linked to another node if it can be obtained through the ap-
plication of a simple action, modelled as pick-up point and
release point in pixel coordinates. The system is trained by
demonstrating the linking actions with a real robot.

All these works assume the basic scene state is the cloth
when is not touched by the robot. Instead, in our approach,
every re-grasp, contact with the environment or change in
cloth configuration triggers a new segment in the graph. We
believe this is necessary to approach complex tasks where
several re-grasps are needed before the cloth is fully re-
leased, to obtain simpler action primitives that can be reused
in different tasks and contexts, similarly as it was done for
rigid objects (Zoliner et al. 2005). To the best of our knowl-
edge, no work has been able to learn from videos of human
demonstrations.

In (Jia et al. 2019) they do imitation learning in robot-
human collaboration tasks. They assume the scene is the
RGB-D image and the N coordinates of the points where
the cloth is grasped, and define the action as the destination
location of the grasped points. In this case, no re-grasp or
release is considered.

High-level planning has been tackled in the context of
robot-assisted dressing (Canal et al. 2018; Kapusta et al.
2019), but without addressing the cloth representation issue
and minimizing the part of cloth manipulation by assuming
pre-grasped garments.

In our previous work (Borràs, Alenyà, and Torras 2020)
we introduced a framework to describe textile grasps based
on the geometry of the prehension agents, including extrin-
sic geometries from the environment. In this paper, we use
that notation to identify the grasp but we use additional in-
formation to define the scene state.



(a) (b) (c) (d)

Figure 2: The geometries of prehension are points (P), lines
(L) and planes (⇧). (a) Double pinch grasp. (b) A double
pinch with the additional extrinsic contact of the table, de-
noted with an ”e” subscript. (c) A double line-plane grasp
(d) A combination of grasps of the hands against the table.

Figure 3: Location of grasp points with respect to subject.
Any interior point is labeled I.

A generic state-and-transition definition
To recognize and understand a manipulation action, it is nec-
essary to interpret the states of a scene at each time-step.
This is a difficult problem and our approach is to define a
simplified representation of a scene in a way that can be rec-
ognized by a robot and that allows executing the next action.

We propose to define a state as a tuple

S =< GT,GL,CC > (1)

where
• GT is the grasp type,
• GL are the location of the grasp with respect to the cloth,

and
• CC is the cloth configuration.

Then, we define a manipulation primitive as the triple

< S
o

, S
d

,M > (2)

where
• S

o

and S
d

are the origin and destination states, and
• M is a semantic label of the action primitive the subject

is performing.
The definition of the grasp type GT is based on the cloth

grasp framework and taxonomy introduced in our previous
work (Borràs, Alenyà, and Torras 2020). In this framework,
each grasp is defined by the geometries of the two virtual
fingers that apply opposing forces. A partial glimpse of the
grasp framework is provided in Fig. 2. A very important
feature is that our grasp framework considers elements in
the environment as extrinsic contact geometries and, there-
fore, it explicitly models environmental contact interactions.
Thus, all cloth states realize a grasp, as when there is no con-
tact with the subject, the cloth lays on a table, corresponding
to a non-prehensile ⇧

e

grasp.

Table 1: Example frames by scene state

All frames, including frames from additional states, can be
found in the paper website 1.

Regarding the grasp location GL, we have defined a set of
labels to describe the approximate locations of the grasping
points on a given rectangular cloth, shown in Fig. 3, corre-
sponding to coordinates in a 2D cloth reference. Note that
a similar notation could be used for other shaped garments
along the silhouette. Locations are encoded with respect to
the subject grasping hands, i.e., left corner (LC) refers to
the corner closest to the subject’s left hand, and right cor-
ner (RC) likewise, up to rotations of 45º. The two farthest
corners are labelled far left (FL) and far right (FR). When
the cloth is hanging, the right and left corners are the top
ones (closer to subject hands). This means that for certain
state transitions we may get a swap of labels for the same
points. For instance, when placing a cloth flat on a table, and



then folding it without releasing it, the labelling swaps from
(LC+RC) to (FL+FR) after the table contact has been added.
See the next section for more details and examples. This no-
tation is used regardless of the cloth configuration. There-
fore, when the cloth is folded, each corner contains several
layers of fabric. If only the top layer is grasped, it is logged
with the subscript RC1. If no subscript is used, it is assumed
that the subject is grasping all the layers. Although this la-
bel represents a coarse grid on the border of the cloth, the
associated manipulations that a robot may do depending on
these locations does not require more precision, as only the
concept is important for the decision process. For the execu-
tion phase, additional information could be added regarding
the location of the robot grippers, cloth corners and edges.

Regarding the configuration of the cloth, CC, it is well
known that the configuration state of a textile is infinite-
dimensional. That, together with the high number of self-
occlusions that occur when manipulating clothes, makes
cloth state estimation a difficult problem. The high com-
plexity of its full solution has been bypassed in the past
by just looking for task-oriented features, such as adequate
and accessible grasping points, e.g., shirt collars for hanging
(Ramisa et al. 2016) or towel corners for folding (Maitin-
Shepard et al. 2010). Increasingly, it becomes clearer that
we need simplified representations, specially regarding de-
formable objects, as stated in specialized surveys on the
topic (Smith et al. 2012; Yin, Varava, and Kragic 2021). We
have defined only 5 categories of simplified cloth configura-
tions:

{Crumpled, F lat, Folded, Semi�Folded, Semi�Flat}

This is a very short list of states, but in combination with
the grasping information and the interaction with the envi-
ronment, we found it reduced the variability enough inside
one same state. This can be seen in Table 1, where we show
examples of frames corresponding to segments identified in
our experiments. For instance, the crumpled state, that ap-
pears in rows 1-4, can have many configurations. However,
whether it is in contact with the table or not, or grasped by
corners or not reduces the possible configurations to very
similar shapes inside each state. This is not true for the case
where it is not grasped, like in row 4. In this case, there is the
possibility of enriching each category with different descrip-
tors such as (Ramisa et al. 2013) to measure the amount of
deformation or the number of visible edges and corners us-
ing methods such as (Qian et al. 2020) or (Liu et al. 2016).
This is beyond the scope of this work, and we assume here
that at least a corner is visible.

The other state that may seem ambiguous is the semi-
folded, rows 9 and 10 in Table 1, as we are not considering
how many folds have been done. Indeed, we can see in the
table how cloths with different number of folds appear under
the same state. However, we propose to only identify the fi-
nal state of fold (row 11), as all partial folds afford the same
kind of action, that of continuing folding until you are done.
The semi-flat state (row 12) is important as it can trigger a
flattening action, but it has been purposely ignored in the
data for simplicity, as will be explained in the next section.

Finally, regarding the motion semantic label M , we de-

Figure 4: Experimental setup. (Top) The subject wears a mo-
tion tracking suit, a GoPro camera mounted on the head and
we also take a Kinect screenshot of the final result, although
the latter is not used in this paper. (Bottom) Wearable point-
point gripper used in the experiments.

fine a set of labels related to the action the subject is per-
forming from that initial state until the following one, like
for instance, ”Place flat on table”, ”Fold on table” or ”Trace
edge”. Semantic labels are useful for high-level planning
and scene understanding, and can be linked to low-level pa-
rameters like motion primitives or other trajectory represen-
tations. They can also be seen in Table 1 because for the
data we have collected, all states where the cloth is grasped
trigger the same action although they may finish in different
states, as can be seen in the graph representations.

The proposed state and transition definition induces a seg-
mentation of manipulation tasks at each change of scene
state. The state changes at each re-grasp, which in our grasp
framework, this includes changes in contacts with the envi-
ronment. In addition, there is also a change of state when
the grasp locations vary (like in a ”Trace Edge”) or when
the cloth configurations changes (like in ”GoToCenter”, also
known as Unfold in the air).

Experimental setup and data collection
We tested a total of 8 subjects wearing a GoPro camera fixed
at their forehead (Fig 4). Additionally, subjects wore a mo-
tion data suit (XSens), but we don’t use these data for the
current paper. The experiment included several cloth manip-
ulation tasks, but for the scope of this paper, we focus on the
task of folding a napkin with 3 folds on the table and the un-
folding to put a tablecloth. We asked the subjects to wear a
simple gripper, shown at the bottom of Fig 4, to reduce their
manipulation dexterity to one closer to that of the robot. Sub-
jects were allowed to train with the grippers, executing the
tasks three to four times before starting the recordings.

When it comes to cloth manipulation, human experiments
provide us with a lot of useful information regarding the va-



riety of strategies to accomplish a task, that is not observed
in robot cloth manipulation demonstrations, as analyzed
in (Borràs, Alenyà, and Torras 2020). Therefore, learning
state sequences from humans will provide us with a much
richer graph regarding alternative strategies, and we will be
able to learn new manipulation approaches for robots. How-
ever, there is a trade-off between obtaining a great diversity
of strategies and sparsity on the obtained data derived from
particular ways subjects perform one same task. This is spe-
cially true when it comes to cloth manipulation that almost
every subject has its own tricks to fold their clothes. For this
reason, we instructed the subjects to perform a very specific
task (fold on the table, not in the air, and in 3 folds, and un-
fold the tablecloth to directly place it on the table). Despite
these indications, we obtained a lot of variability, sometimes
even between the trials of one same subject. However, some
strategies have been used consistently by most of the sub-
jects.

From the data collected, we have manually labelled the
videos at each change of state, associating a motion seman-
tic label to each transition depending on the action that was
done, following the proposed representation. We purposely
ignored any manipulation that corrected a mistake, or that
relocated the cloth on the table, just to simplify the data. Ex-
amples of the labels and their corresponding graphic state
representations can be seen in Table 1. The labels include
timestamps at each change of state, providing the segmenta-
tion of the data and the sequence of states.

Cloth manipulations graph
Thanks to the proposed representation, and extracting the
sequences of state and transitions of the labelled video data,
we can generate a graph where each node is a scene state,
and the edges represent the transition action.

To generate the graph, for each trial we defined an edge
for each state change, and we represented it symbolically us-
ing the formulation introduced in Section ”A generic state-
and-transition definition”, where each initial and destination
states are the initial and end node of the graph edge, and
the motion semantic value is the edge label. We then iden-
tify common nodes and common edges, defining the graph
with all the distinct vertices and edges that have appeared,
counting their multiplicity.

To simplify the data, we have removed some left and right
distinctions. For instance, a single corner grasped is the same
irrespective of whether it is the left or right corner, grasped
with the left or right hand. We also assume two grasped
points on the same cloth edge are the same regardless if they
are on the right or left side. All these simplifications are de-
scribed in the additional material 1.

Using all the data collected, we obtain a graph with 32
nodes and 65 edges, but many of them appear a single time
in our data. If we require each edge to appear at least 2 times
in the data, the graph is reduced to 18 nodes with 27 edges.
The reduced graph is shown in Fig. 5. The complete graph
can’t be included in the paper for space reasons, but you can
find it on the provided website. The CloM Graph of the task

1http://www.iri.upc.edu/groups/perception/#PlanningCloMGraph

of unfolding and putting the tablecloth can also be found
in the website, in this case, the simplified one has 12 states
and 15 transitions, while the full graph has 17 states and 32
transitions, meaning that this task is much less complex than
the previous one. As the two tasks are inverse one of the
other, only one transition is common in both graphs, the one
of ”Place flat on table” from the central state (2PP, RL+LC,
Flat) to the (2PP+⇧

e

, RL+LC ,Flat) that appears 21 times
for the tablecloth task and 20 for the folding task.

We performed a total of 24 trials, meaning the maximum
times one primitive can appear repeated in the data is 24.
Despite the diversity of strategies displayed by the subjects
there are some transitions that consistently appear. We plot-
ted in red the transitions that appear in at least half of the
total capacity (12 times) and, in orange, the ones that appear
6 times or more. We can see that the weakest flow in the
graph is in the transition from Fig. 5-a to Fig. 5-b. That is
because there is a great variety of manipulations to find the
two corners, that can be appreciated in the full graph. Once
the corners are grasped, the primitives to unfold in the air
become less sparse (Fig. 5-c). The bottom state at the col-
umn (a), the (PP, RC, Crumpled) state, is reached by several
edges with a multiplicity 1 that don’t appear, but can be seen
in the full graph.

Planning
As it has been presented, the CloM Graph allows to easily
establish the sequence of states and actions necessary to ex-
ecute a cloth manipulation task. In this section, we show that
the definition of the CloM Graph is adequate and convenient
for generating a planning domain that can, for example, po-
tentially be used in decision making to solve a task with
a robot manipulator. Given an instance of a CloM Graph,
we can translate the presented representation into a classical
planning problem, synthesizing it in the STRIPS language,
which is a subset of the Planning Domain Definition Lan-
guage (PDDL).

A classical planning problem is defined by a 4-tuple
P =< F,A, I,G >, where F is the set of fluents with bi-
nary valuation, A is the set of actions, and I and G are the
initial and goal states of the problem. On the one hand, flu-
ents F are propositional variables that serve to describe the
states. On the other hand, actions A are defined by a set of
preconditions and a set of positive and negative effects (both
described by a set of fluents), meaning that an action is only
applicable when the preconditions hold in that state. As an
important implementation detail, we observe that in our rep-
resentation the states (i.e. nodes of the graph) are defined by
the tuple S in Equation 1, being able to consider each pa-
rameter of which is composed as a propositional variable f ,
where f 2 F . However, as we rely on binary fluents when
we ground GT , GL and CC to a particular value the rest of
fluents are negated.

Furthermore, our actions (i.e. transitions in the graph)
are the manipulation primitives composed of the tuple
< S

o

, S

d

,M >, in which S

o

include the preconditions of the
action, S

d

the effects of the action, and M is the semantic la-
bel of the action. Finally, I and G represent the graph states



Figure 5: Reduced CloM graph obtained by requiring each edge to be observed at least 3 times in the data. We can clearly see
the different phases of the task, from the crumpled on the table phase on the left, to the central hanging part of the manipulation
(central state), and then the semi-folded states on the table during the first, second and third folds, located to the right. The label
of each edge consist of the semantic name of the primitive and the number of times it appears in the data (in parenthesis).

used to define the problem, whose solution presents a se-
quence of actions, whose execution induces a state sequence
to arrive from state I to state G. Having this definition, any
cloth manipulation task can be described as a determinis-
tic problem P using the representation presented in Section
”A generic state-and-transition definition”. To validate this
approach we translated into STRIPS the CloM Graphs of
the cloth manipulation tasks of folding a napkin in 3 folds
and spreading a tablecloth. The PDDL domain and the prob-
lem files for both tasks, as well as the code to generate the
LISP-like files of any cloth manipulation task from the CloM
Graph can be found on the paper’s website 1.

To instantiate the propositional variables F that are nec-
essary in the domain, it is necessary to identify the different
grasp types (GT), grasp locations (GL) and cloth configura-
tions (CC) that appear during the execution of the task. In
the example of folding a napkin, we have a total of 6 differ-
ent Grasp Types, 7 combinations of Grasp Locations and 4
Cloth Configurations:

• PP, 2PP, ⇧
e

, PP+Pie, 2PP+⇧
e

, L+PP+⇧
e

• I, RC, LC+RC, FL+FR, FR+F2, FR+RC, RE+RC
• Crumpled, Flat, sFolded, Folded

In addition, actions are created by instantiating as precon-
ditions the specific GT , GL and CC of the origin state of the
action and specifying as effects the fluents that had changed
its value (e.g. if an action only changes the CC from Flat to
sFolded, then eff = sFolded^¬Flat). The domain will be
composed of a total number of actions equal to the number
of transition in the CloM Graph.

By construction, the result of the domain given a problem
whose initial state I is the first state of the graph (Pie, -,
Crumpled) and the goal G is the last one (Pie, -, Folded) will
provide a graph structure as the one in Fig. 5, being able to
directly obtain the plan solution given any two states of the
graph.

Now that we have the domain model, a solver (Fast-
Forward in our example) can be used to solve a particular
problem given both the initial I and goal states G. We expect
the solution of the solver to match the corresponding frag-
ment of the graph. As an example, we consider the fragment
of the task of folding a napkin shown in Fig. 6. As we can
see in the figure, there exist four different paths, highlighted
in colors, to arrive from the initial state S1 to the goal state
S7. In classical planning, it is also usual to define some cost
functions that serve to express a measure of plan quality that
the planner should try to optimize, but obtaining the opti-
mal path is not in the scope of this work, but to present a
way to obtain the possible actions and state sequences of a
task. Therefore, all the existing outcomes of the given prob-
lem are explored by manually increasing the cost of some
actions, so the planner is forced to produce successively the
different solutions. The resulting plans for the PDDL prob-
lem of the fragment in Fig. 6 are presented in Fig. 7, with
their corresponding state sequences. Observe the complete-
ness of the approach, as the solver was able to produce all
the four expected plans, which correspond to the paths on
the graph.

We argue that the costs should be computed related to the
particular robotic setup, capabilities, and tasks. In the con-
text of cloth manipulation, costs could be defined for exam-
ple to minimize the total number of actions to execute or
the running time. In our example, the green path in Fig. 6
would be the optimal option. Also, cost functions can be de-
fined to select best paths according to the restrictions of the
robotic embodiment (e.g. use tactile sensors to perform the
edge tracing action, then the red and yellow paths would be
the best options), or of the hardware (e.g. gripper that allows
to perform linear grasps).

Discussion
The proposed state representation simplifies the perceptual
information that needs to be acquired. Observe that the com-



Figure 6: Fragment from the CloM Graph of folding a nap-
kin. PDDL problem defined with initial state I=S1 to goal
state G=S7.

Figure 7: Plan outcomes for the given problem S1 to S7.

putation of the graph requires only a high-level segmentation
of the states. We have recently demonstrated that these as-
sumptions are realistic and that the required perceptions are
feasible (Tzelepis et al. 2022). However, note that the effec-
tive execution of every transition requires much more de-
tailed perception, in the form of cloth part recognition and
pose estimation (Ramisa et al. 2016) and grasping point de-
tection (Corona et al. 2018; Qian et al. 2020). We believe
that is with the integration of this methods, together with
the definition of planning domains, that we can enable high-
level planning and decision making of complex cloth manip-
ulation tasks.

There is an open question remaining regarding whether
additional information would be necessary to enrich the rep-
resentation of cloth configuration in the most complex cases.
For example, in the case of a crumpled cloth on a table, the
presence of visible corners or not, changes the grasping ac-
tion necessary to start the task (e.g. grasp directly the cor-
ner or try to reveal a hidden corner by grasping the cloth by
any point and release it). This can be done by including de-
scriptors such as (Ramisa et al. 2013) or by using methods
to detect cloth features (Qian et al. 2020) and including the
number of visible corners and edges in the category of cloth
configuration.

To build the CLoM graph the proposed granularity for
segmentation is much thinner than other works like (Lippi
et al. 2020), where only states with the cloth on the table are
considered. This is done with the motivation of obtaining
simple motion primitives to facilitate re-usability. Also, we
believe that this segmentation is also relevant for benchmark

purposes, to represent the complexity of a task and identify
different evaluation segments.

Another motivation behind our approach is to enable ex-
plainable reasoning at the manipulation level as well as
learning a dynamic movement primitive (DMP) for each
re-grasp strategy (not necessary from human motion data),
which is also associated with its preconditions and effects.
The resulting DMPs can be used for task planning (Canal
et al. 2018), and potentially for explainability purposes as
well, since the learning process makes explicit the con-
ditions that enable to execute the primitive and the ex-
pected outcomes. We envisage the CloM Graph as a com-
mon ground representation where information at the differ-
ent robotic levels (planning, perception and execution) can
be stored.

Conclusions
We have introduced a compact and generic representation of
states of a manipulation task in the context of cloth manip-
ulation. The representations are vast simplifications of the
complexity of a cloth manipulation state, but we showed
how they are enough to segment a manipulation task into
relevant and coherent manipulation primitives. In addition,
from the sequences of states and transitions, we have de-
fined the CloM Graph that encodes the diversity of strate-
gies to accomplish the task. We have shown two examples
of common cloth manipulation tasks for which the CloM
Graph is learned from an experiment with 8 human subjects.
Learning from human demonstrations allows to identify ma-
nipulation primitives not used so far by robots that could be
especially handy for the versatile manipulation of clothing
items. In addition, we have defined full domain models of
these two tasks to enable PDDL planning and demonstrate
that the proposed representation is compatible for describ-
ing task planners that allows to enable high-level planning
of complete cloth manipulation tasks.

The CloM Graph we have proposed complies with the
desideratum that ”low-complexity representations for the
deformable objects should be the objective” (Smith et al.
2012). This manipulation-oriented representation would
permit probabilistic planning of actions to ensure reaching
the desired cloth configuration without requiring high accu-
racy in perception nor searching in high-dimensional con-
figuration spaces. In addition, our encoding of manipulation
tasks facilitates the definition of metrics and measures of
complexity of a given strategy, which is very useful to de-
fine benchmark tasks with increasing complexity.

In future research, we will work towards the state recog-
nition and the definition of the motion primitives performing
transitions between states. Additionally, this work will lead
to a database of labelled video data synchronized with mo-
tion data of different cloth manipulation tasks, which could
be of great utility for the whole manipulation community
working on highly deformable objects.
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