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I. EXTENDED ABSTRACT

Agent-based models (ABM) have been increasingly em-
ployed to study dynamics of biological systems. However,
these mostly lack transport mechanisms that interface between
the agents and their microenvironment. We considered a set
of 5 general transport mechanisms (see Fig. 1), written as
ODE models and built on top of Fick’s Second Law of
Diffusion and R-MM kinetics, and their implementation within
an ABM software. Unit testing of said models was performed
on static, liposome-like agents. We also studied the effect of
varying agent and microenvironment-related parameters on the
dynamic. We then connected a few of these mechanisms to
the agent phenotype, developing a toy example that emulates
the experimental decreased tumorigenic growth dynamics of
Cytochalasin β.

II. INTRODUCTION

Cell transport mechanisms are remarkably relevant for
many biological system dynamics. At the same time, agent-
based modeling (ABM) software employed for studying tissue
and cell-level dynamics usually lacks said mechanisms. In light
of this, we set to develop and implement a compendium of
general transport systems within an open-source, physics and
agent-based multiscale simulation software: PhysiCell [1].

III. MATERIALS & METHODS

All simulations have been carried with PhysiCell v1.9.1
(https://github.com/MathCancer/PhysiCell.git) [1]. Note that,
as a multiscale simulation software, it works with three dif-
ferent timescales: The phenotype (6 min), the mechanics (0.1
min) and the diffusion timescale (0.01 min). For the devel-
opment and implementation of the transport models, we will
mostly work at the diffusion timescale. To obtain quantitative
results of these dynamics, a small extension of tools4physicell
(https://github.com/migp11/tools4physicell) was developed.

IV. PRELIMINARY RESULTS & DISCUSSION

Model building. In order to generalize the different trans-
port systems, we two common mechanisms: Diffusion and
two-step enzymatic reactions. For this reason, all models
will be built through tweaks and combinations of the simple
diffusion and facilitated diffusion carriers.

Fig. 1. Graphical abstract describing the employed workflow for the
development and implementation of different transport mechanisms within
PhysiCell. In point 1, R-MM refers to Reversible Michaelis-Menten kinetics.

Simple diffusion (SD) across the cell membrane is the
simplest mechanism. Implementation is based on a small
variation of Fick’s Second Law of Diffusion, in order to align it
with the space (µm) and time (min) of PhysiCell (see Point 2 of
Fig. 1) by accounting for the permeability coefficient (k ( µ

min ),
the agent surface (A (µm2)) and the concentration gradient
(∆C (mM)). Implementation within PhysiCell consisted in
integrating the flux at each diffusion timestep (0.01 min) with
additional biophysical constraints.

The second common mechanism is a facilitated diffusion
carrier (FDC). Following a Reversible Michaelis-Menten (R-
MM) kinetic, its rate laws can be employed to represent it as
a system of four coupled ODEs. From these, and assuming
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standard Quasi-Steady State and total substrate and receptor
mass balance, we can obtain a relatively simpler velocity
equation (See Point 2 of Fig. 1). Implementation consisted
in assuming the substrate flux to be equal to the this equation,
which was obtained through integration of the ODE system at
each diffusion timestep.

Facilitated diffusion channel (FDCh) mechanisms can be
understood as the flow of a substrate through a ”pore” in the
cell membrane that opens or closes under certain conditions.
For this reason, we implemented it as a step-function SD
model. The channel has two states, Open (O) and Closed (C),
and the cause of transitioning between these states is what
differentiates the channel types. For Aquaporin-like channels,
the condition that determines the state of the channel is just
stochastic, obtaining a value from a N(1,1) distribution to
compute the amount of Open channels. For Ligand-gated
channels, they are considered to be open if there is some
Ligand (L) attached to the receptor (R). This amount of RL
complex is computed following a Receptor-Ligand kinetic
model, implemented as a three coupled-ODE system.

Primary active transport model (PA) was implemented as
system of two coupled mechanisms: An independent ATP-
ADP exchange system and a carrier enzyme with an FCD-
like mechanism, transporting a substrate against gradient each
time an ATP is hydrolyzed. Simialrly, the Secondary active
(SA) transport model, was built like two coupled FCD-like
mechanisms, where one of them moves a substrate along
gradient, and the other one moves another substrate against
gradient. Here, the coupling is through the equivalence of the
pumping rate of a substrate to the passive entry rate of the
along-gradient substrate.

In silico experiments Assessment of transport dynamics
was carried through two experiments: Experiment A, in which
the simulation consisted of agents devoid of substrate, and a
microenvironment with certain substrate density (see Point 3
of Fig. 1); And experiment B, where we have the opposite
scenario. These experiments were carried with sets of static,
liposome-like agents in a closed system, without changes in
phenotype, cell cycle nor cell death. This was done in order to
avoid seeing dynamics not directly obtained from the transport
model.

For the SD model, in both Experiments A and B, both
densities inside and outside the agent reached equilibrium
following a logarithmic curve while maintaining net balance
of the total amount of substrate. This was observed for a wide
range of k values (10−4 to 1000 µm

min ), indicating that this
model allows for simulation of a wide variety of different
types of substrate types (see Table 1 from [3]). Identically,
for the FDC model, for both Experiments A and B, the same
equilibrium-reaching dynamic was seen, and mass balance of
both substrate and receptor were maintained.

We explored variations of different parameters of the
simulation to assess the effect on the dynamic. For both SD and
FDC models, and in both experiments, increasing cell number
resulted in a faster equilibrium at a lower concentration, and
increasing cell volume resulted om a slower equilibrium, lower
concentration. This is explained given that the SD model
accounts for the surface, which increases quadratically with
the volume.

Fig. 2. Blocking of Glucose transport by addition of Cytβ at 2500 min.
Glucose enters the cells through a FCD mechanism, as a GLUT transporter.
Cytβ enters agents through an SD model. Both cell types show heterogeneity in
the initial amount of receptors per agent, although the cancerous cells contain
twice as many receptors [2]. (A) Healthy cell count is constant, as these
were set to not divide. (B) PhysiCell output screenshots for both experiments.
Red-outlined cells are cancerous cells. Blue-colored cells are healthy cells.
Green-coloured cytoplasm indicates levels of Glucose inside the agent.

Next, we set to emulate the dynamics of adding Cytocha-
lasin β (Cytβ) (Fig. 2). a mycotoxic compound commonly
employed to treat cancer by inhibition of GLUT transporters
[2], which have an FDC-like mechanism. As expected, cancer-
ous cells divide faster due to the increased amount of GLUT
transporters, but addition of Cytβ shows a decrease in growth
due to the ”blocking” of the channels (Fig. 2.A, lower panel),
as observed experimentally [4].

Note that the efforts of this work are directed towards fitting
said models with specific cell-line pharmacokinetic data in
order to represent more realistic behaviours, which is notably
valuable in the context of personalized medicine treatment
research.
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