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Abstract – Existing heritage buildings are often composed of diverse materials and structural 

typologies, representing a challenge for structural analysis tasks. This work investigates the 

combined use of simple Lumped Plasticity Models (LPM) and macro-mechanical Finite 

Element (FE) approaches to evaluate the seismic response of structures composed of timber 

frames and masonry walls. The calibration of these engineering models is derived from a wide 

set of nonlinear static analyses reproducing benchmark experiments on timber and masonry 

specimens. The LPM and FE models are used eventually to appraise the seismic response of 

two existing timber-masonry hybrid buildings, located in the historical centre of Valparaíso, 

Chile. The nonlinear analyses performed with these models predict the acceleration-

displacement capacity of the buildings under seismic-like horizontal loading, revealing their 

potential local and global failure mechanisms.  

Keywords: Nonlinear Static Analysis, Timber Frame, Unreinforced Masonry Walls, Numerical 
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1. Introduction

Timber and masonry are recurrent materials in traditional and historical construction. A large 

part of the built heritage is composed of timber and masonry structural typologies, and the need for 

their conservation requires reliable tools and methods for their analysis and assessment. The 
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evaluation of the structural safety of these types of buildings against natural hazards, such as 

earthquakes, is a central issue in nowadays research. 

The most of the available structural modelling strategies deal with timber or masonry 

structures separately, i.e. considering homogeneous structural systems built with a single 

material (Lukic et al. 2018; González and Gutiérrez 2005; Vieux-champagne et al. 2014; 

Kouris et al. 2014; S. Saloustros, Pelà, and Roca 2020; D’Ambra, Lignola, and Prota 2016; 

Kalkbrenner, Pelà, and Sandoval 2019). Few researchers have addressed the modelling of 

hybrid timber-masonry structures (Ciocci, Sharma, and Lourenço 2018; Kouris and Kappos 

2014; Quinn 2016; Perrone 2011). The lack of experimental data about hybrid typologies, 

where timber frames coexist with load-bearing masonry walls, constitutes a major drawback 

in the calibration process of numerical models for the structural analysis of existing buildings.  

The modelling of timber frames can be addressed by using simplified Lumped Plasticity 

Models (LPM), where linear elastic frame elements are used to represent the timber members, while 

nonlinear springs or hinges introduce the nonlinearities at the nodes of the frames. LPM constitutes a 

suitable approach to simulate the structural behaviour of timber frame structures, after assuming that 

plasticisation occurs at the connections, i.e. the frame members’ ends. In these cases, experimental or 

analytical approaches are fundamental to evaluate the nonlinear behaviour of the connections. The 

definition of proper nonlinear moment-rotation or force-displacement relationships for the rotational 

hinges or axial springs at the connections is a central step to ensure reliable numerical simulations. 

The advantages of LPM lie in the simplicity of the parameters’ definition, as well as in the low 

computational costs, which allow practice-oriented simulations applicable to entire buildings or large-

scale applications. However, the reliable calibration of the lumped nonlinearities is a key issue during 

the preparation of the numerical model.  

The numerical simulation of unreinforced masonry structures (URM) has experienced a 

remarkable development in the last decades. The diversity of modelling needs has driven to the 
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development of several approaches with different levels of detail regarding the material discretization 

(Roca et al. 2010). Finite Elements (FE) continuum macro-mechanical modelling approaches are 

commonly adopted to address simplified and practice-oriented simulations of masonry walls 

subjected to in-plane and out-of-plane actions (Saloustros et al. 2017b; Saloustros, Cervera, and Pelà 

2019; Pantò et al. 2019; Kouris and Kappos 2012; D’Ambra, Lignola, and Prota 2016; Endo et al. 

2015; Bilgin and Korini 2014; Spyrakos and Francioso 2012). Macro-models do not make any 

distinction between units and mortar joints, and masonry is represented as a continuous homogeneous 

material in a simplified manner. The material behaviour is represented by using proper constitutive 

laws simulating the nonlinear response of masonry under different types of loads.  

This paper presents a methodology to build simplified and practice-oriented numerical models 

for the analysis of hybrid timber-masonry buildings. The study covers the definition of proper LPM 

for timber frames, and the formulation of a FE continuum macro-mechanical model for masonry 

walls. The central issue of the calibration of the models is pursued by means of a rigorous and 

scientific approach, based on the careful comparison between a wide set of available experiments on 

timber frames and masonry walls, and the results from the numerical simulations of the tests. The 

procedure includes the analysis of five benchmark experiments on timber frames, both bare and 

infilled, and three experiments on masonry walls, both in-plane and out-of-plane loaded. The 

calibrated models are used to simulate the seismic behaviour of two real traditional timber-masonry 

buildings located in the city of Valparaíso (Chile). All the models were developed within the 

structural and earthquake engineering software SAP2000 (v20). 

2. Calibration of the numerical model 

2.1 Numerical simulation of experiments on bare timber frames 

This section presents the calibration of the timber frame models by simulating the 

experimental behaviour of traditional Pombalino and Quincha walls. The adoption of Pombalino 
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frames became common in Portugal after the devastating Lisbon Earthquake. These buildings were 

intended to be anti-seismic, being characterized by a “cage” braced structure with St. Andrew’s 

crosses (Poletti 2013). Similarly, the quincha walls were introduced in Lima (Peru) after strong 

earthquakes destroyed the adobe houses during the sixteenth and seventeenth centuries. The second 

floors of the houses were rebuilt with quincha walls, which demonstrated a good seismic behaviour 

in later earthquakes. Quicha walls  are still used in Peru but also in other countries of Latin America 

(Torrealva, Vicente, and Michiels 2018). 

The calibration of the LPM for timber frames was developed by simulating five benchmark 

experimental tests on both bare and infilled frames of Portuguese Pombalino and Peruvian quincha 

walls, all tested under vertical pre-compression and lateral loads (Figure 1). Nonlinear static analysis 

(NSA) under displacement control was executed to obtain the structural behaviour of the models. 

 

Figure 1. Benchmark experimental tests on timber frame walls: (a-b) bare and infilled Pombalino frames (Poletti and 
Vasconcelos 2015), (c-d) bare and infilled Quincha frames tested in half-scale (Moore and D’Ayala 2011), and (e) infilled 
Quincha frames tested in full-scale (Torrealva, Vicente, and Michiels 2018). 

An experimental campaign on the Pombalino timber frame typology carried out by Poletti 
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(2013) was first selected to validate the numerical modelling strategy. Both a bare frame and an 

infilled specimen, subjected to the same loading conditions, were selected for simulation to study the 

influence of the infill on the lateral response (Figure 1a-b). 

The LPM was composed of top and bottom beams of 0.16 × 0.12 m2 cross-section, while the 

post and diagonal elements had a 0.08 × 0.12 m2 cross-section, as shown in Figure 2a. The 

connections between beams and posts, as well as those among intersecting diagonals, were made of 

half-lap carpentry joints, while the connections between the main frame and the diagonals were made 

by contact, as shown in Figure 2c. The timber was modelled as a linear elastic isotropic homogeneous 

material, considering the mechanical properties reported in Poletti (2013). A vertical load of 25 kN 

was applied at each post to represent realistically the loading condition encountered on site, as 

reported in Poletti &Vasconcelos (2015). A lateral displacement of 0.1 m was applied at the top-left 

corner as in the experiment. The LPM frame was pinned-supported at the base and restrained in the 

horizontal direction at the top-left node to allow the displacement application, in agreement with the 

experimental boundary conditions.  

 Modelling and calibration of the behaviour of the carpentry joint connections was a 

fundamental stage during the preparation of the LPM models. Nonlinear rotational hinges were 

introduced into the model in the locations of the half-lap connections, as shown in Figure 2b. A 

specific laboratory test on a half-lap connection specimen (Poletti 2013) allowed the determination 

of the nonlinear rotational behaviour, expressed in terms of a moment-rotation relationship with 

stiffness values Kin = 171 kNm/rad and Kfin = 47 kNm/rad, see Figure 2c (Poletti, Lourenco, and 

Ciocci 2016).  

Sensitivity analyses were performed to calibrate the nonlinear behaviour of the connections 

by contact according to Ciocci (2015), due to the lack of specific experimental data. Linear spring 

elements were introduced at the end nodes of diagonal members, together with moment releases 

(Figure 2b). These elements were aligned with the longitudinal and transverse local axes of the 
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diagonal member. Their axial and shear stiffnesses were modified progressively until the value of 

9050 kN/m, in order to reproduce a good agreement between the initial stiffness of the model and the 

experimental one. Figure 2d-f show the axial and shear nonlinear laws of the connection by contact. 

The axial and shear stiffnesses were assumed equal for the sake of simplicity, due to the lack of 

specific experimental datasets about the behaviour of connection by contacts in the available 

scientific literature. Since the compressive strength was not derived from the experimental tests, 

different values of the yielding load Fy were considered until obtaining a good agreement between 

the model and the experimental results for Fy = 26 kN. According to Ciocci (2015), the ultimate 

displacement of the connection by contact can be assumed as the same one reached by the half-lap 

connection (du = 0.05 m) since after the central connection failed, the remaining connections no 

longer worked. The ultimate capacity of the connections by contact was assumed zero when the 

ultimate displacement du was reached.  
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Figure 2. LPM of the Pombalino bare frame: (a) view of the FE model, (b) zoom of spring elements in a joint, (c) sketches of 
half-lap and connections by contact, (d) half-lap joint rotational behaviour, (e) axial and (f) shear responses of connection by 
contact. 

Figure 3a shows the load-displacement capacity curves of the model for varying values of Fy. 

The collapse mechanism predicted by the model revealed a very good agreement with the observed 

experimental response of the bare frame. Figure 3a highlights also the instances A-E corresponding 

to the nonlinearities appeared during the simulations. Figure 3b shows the evolution of the so-called 

“plastic state” of the hinges within the model during the development of the analysis, with dots of 

different colours according to the reached magnitude of plastic displacement/rotation (see Figure 2b). 

Nonlinearities started to appear at 0.017 m global displacement, when the axial springs of the 
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compressed diagonals reached their maximum capacity. Subsequently, the rotational hinges located 

at the central and external post-beam connections plasticized, and the model failed when the central 

ones reached their ultimate capacity. As in the experiment, the shear effect provoked by the diagonal 

on the central node led to the failure of this connection. Once this happened, the diagonals no longer 

worked and the analysis stopped at a displacement of 0.088 m. 
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Figure 3. LPM of the Pombalino bare frame: a) load vs. displacement curves derived from parametric analysis of the capacity 
of the connection by contact, b) evolution of the collapse mechanism, according to the plastic states denoted in Figure 2b. 

The second benchmark experiment was the quincha frame tested in half-scale dimension by 

Moore and D'Ayala (2011), see Figure 1c. The LPM was composed of post and beam elements with 

0.06 × 0.08 m2 cross-section, while the diagonal had 0.09 × 0.03 m2 cross-section, as shown in Figure 

4a. The timber specimens were modelled using the elastic isotropic material properties reported in 

Quinn (2015). Mortise-and-tenon joints were used to connect the posts and beams, while the diagonal 

was fastened to the frame using nails, see Figure 4b. A pre-compression load of 4.4 kN/m was applied 

through the top beam, followed by an incremental horizontal displacement applied at the top-left node 

to simulate the loading conditions during the experiment. The nodes at the base were restrained in all 

the translational DOFs. Nonlinear axial springs were introduced at each node of the diagonal-frame 

connections. Moment releases were specified at each end node of the diagonal to avoid the moment 

resistance at these points. 

The experimental moment-rotation response obtained in the same campaign was used to 

define the nonlinear relationship of this type of the mortise-and-tenon connection in the model, see 

Figure 4c. Nonlinear rotational hinges were used to introduce the nonlinearities at the top post-beam 

nodes of the model (see Figure 2b). According to Quinn (2016), the uplift experienced by the mortise-

and-tenon joints at the bottom of the frame could be represented by defining the tensile elastic 

capacity of these connections, based on the vertical uplift measurements on the tested frame. This 

relationship was used to model the axial stiffness of the springs attached at the bottom post-beam 

connections of the model.  

Analytical calculations were developed in order to predict the nonlinear behaviour of the 

nailed connection at the ends of the diagonal member since no experimental data were available. The 

capacity of the nails was calculated by using the equations proposed by Eurocode 5 (CEN EC5 1.2 

2004) for laterally loaded nails in single shear. This approach considers most of the essential 

parameters governing the response of nailed connections such as the mechanical properties of the 
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materials, the grain direction, the geometry and number of the nails, and the type of loads. Further 

details about calculations are reported in Jiménez (2021).  

The capacity of the nailed connections was assessed by means of a sensitivity analysis with 

different yielding tensile strength (fy) of the nails in the model, as no experimental data were available. 

Different reasonable yielding tensile strength values of commercial nails were considered to perform 

the sensitivity analysis, with fy equal to 500, 600 and 690 N/mm2, according to Porteous and Kermani 

(2004), corresponding to yielding loads Fy of 1.54 kN, 1.68 kN and 1.80 kN, respectively. The load-

deformation relationship of the nailed connections was defined assuming a bilinear curve with an 

initial linear branch up to the maximum capacity of the connection, followed by a softening 

behaviour. The stiffness and yield displacement of the connection were determined through a 

sensitivity analysis until obtaining a good agreement between the model and the experiment. The 

response of the model was in good agreement with the experiment, assuming a linear stiffness of 

2130 kN/m and a maximum capacity of 1.80 N/mm2 for the nailed connections. The yield 

displacement dy of the connection was calculated as 8.45 × 10-4 m, while its ultimate displacement 

was 5 × 10-3 m by applying a sensitivity analysis.  
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Figure 4. LPM of the half-scale Quincha bare frame: (a) view of the FE model, (b) sketches of mortise-and-tenon joints and 
nailed connections, (c) mortise-and-tenon rotational behaviour, and (d) nailed connection shear behaviour. 

 

The collapse mechanism predicted by the model was in good agreement with that observed 

during the experiment. Figure 5b displays the instances A-D of local failures during the simulation, 

while Figure 5c shows the evolution of the so-called “plastic state” of the hinges and springs within 

the model during the development of the analysis, according to Figure 4c-d. Nonlinearities appeared 

at the bottom diagonal connection when the spring reached its maximum capacity at a displacement 

of 0.01 m. After this point, the remaining springs along the diagonal and some of the top hinges 

reached their maximum capacity. As in the experiment, the frame failed as soon as the top diagonal-

beam connection reached its ultimate capacity. 
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Figure 5. LPM of the half-scale Quincha bare frame: (a-b) load vs. displacement curves derived from parametric analysis of 
the capacity of the nailed connections, and (c) evolution of the collapse mechanism, according to the plastic states denoted in 
Figure 4b. 

 

2.2 Numerical simulation of experiments on infilled timber frames 

The modelling of the infill was addressed using the Equivalent Strut Method (ESM), 

originally introduced by Stafford-Smith (1963) and subsequently developed by Bertoldi, Decanini, 

and Gavarini (1993). This study allowed estimating the contribution of the infill within the bare frame 

models. The ESM is a simplified approach where the elastic in-plane stiffness of an uncracked solid 

masonry infill is represented with an equivalent strut (Figure 6a), whose width ω is given by Equation 

(1). Such a strut shall have the same thickness and modulus of elasticity of the infill panel that it 

represents. According to Stafford-Smith (1963), the equivalent width of the strut depends on a relative 

stiffness parameter λh given by Equation (2), and on the constants k1 and k2 also related to λh. The 
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choice of what values to assign to these constants varies in the available scientific literature, based on 

different experimental studies. The values used in this research were introduced by Bertoldi, 

Decanini, and Gavarini (1993). The width of the equivalent strut can be calculated as follows: 

 ω = �
k1
λh

+ k2�d (1) 

Where d is the diagonal length of the infill panel, in m (Figure 6a), and λh is the relative stiffness 

coefficient, computed as follows: 

 
λh = �

Em e sin(2θ)
4Ec Icol hm

4
h (2) 

Where Em is the elastic equivalent modulus corresponding to the complete cracking stage on the infill, 

in kN/m2; e is the thickness of the infill panel, in m; θ is the angle whose tangent is the infill height-

to-length aspect ratio, in rad; Ec is the expected modulus of elasticity of the frame material, in kN/m2; 

Icol is the moment of inertia of the columns, in m4; hm is the height of the infill panel, in m; and h is 

height of the column measured between centre lines of the beams, in m (see Figure 6a).  

According to Decanini et al. (2004), the stiffness of the equivalent strut (kfm) corresponding 

to the complete cracking stage is given by Equation (3), see Figure 6b: 

 k𝑓𝑓𝑓𝑓 =
Em e ω

d
 (3) 
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Figure 6. Equivalent Strut Method: (a) geometric characteristics of the equivalent diagonal strut for the ESM application, and 
(b) nonlinear relationship based on Decanini et al. (2004) and Sassun et al. (2016). 

 

 The resistance of the panel is simulated by an equivalent failure compressive strength (σbr), 

which considers the different failure modes that could occur in both conventional tests and real 

structures subjected to seismic action. According to Decanini et al. (2004), four conventional failure 

modes have to be considered when computing the corresponding equivalent failure compressive 

stress: (a) diagonal tension, σbr(1), (b) bed-joint sliding, σbr(2), (c) crushing in the corners in contact 

with the frame, σbr(3), and (d) diagonal compression, σbr(4). The following Equations (4-7) indicates 

how to evaluate the equivalent failure compressive stress values according to the four conventional 

failure modes: 

 σbr (1) =  
0.6 τm0 + 0.3 σo

ω/d
 (4) 

 σbr (2) =
(1.2 sin θ + 0.45 cos θ) fsr  +  0.3 σo

ω/d
 (5) 

 σbr (3) =  
(1.2 sinθ + 0.45 cos θ) fsr  +  0.3 σo

ω/d
 (6) 
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 σbr (4) =  
1.16 σmo 0.3 τm0

k1 + k2 λh
 (7) 

Where, σm0. is the vertical compression strength measured on masonry specimens, in kN/m2; τm0 is 

the shear strength measured with the diagonal compression test, in kN/m2; fsr is the slide resistance 

in the joints measured from the triplet test, in kN/m2; and σ0 is the vertical stress due to working 

loads, in kN/m2. Once the equivalent failure compressive stress of the different failure modes have 

been determined, the minimum value (σbr)min defines the most probable failure mode of the infill. The 

lateral strength of the equivalent strut is given eventually by Equation (8): 

 Hmax = (σbr)min eω (8) 

The nonlinear deformation acceptance criteria of the equivalent strut was determined 

according to Decanini et al. (2004) and Sassun et al. (2016). Figure 6b shows the proposed load-

deformation law constituted by four branches. A first linear elastic one corresponds to the uncracked 

stage (Hcr), and it is followed by a post-cracking phase up to the maximum strength (Hmax), where Fm 

corresponds to the complete cracking stage of the infill panel. The third descending branch of the 

curve describes the post-peak strength deterioration of the infill until it reaches the residual strength 

Hres and displacement δres. According to Sassun et al. (2016), the drift ratios of the constitutive law 

can be assumed as δcr = 0.1%, δmax= 0.2%, δres= 0.8% which correspond to the damage state of a 

slender infill panel based on experimental results.  

The ESM models the strut by using linear elastic elements that are pin-connected to the 

surrounding frame. The nonlinear behaviour is introduced at the ends of the strut by using axial 

springs, containing the load-deformation laws of the panel shown in Figure 7b. The Pombalino and 

quincha infilled models were calibrated following the described ESM approach by incorporating the 

equivalent struts to the already calibrated bare frame models.  

The width of the equivalent strut of the infilled Pombalino frame was calculated as 0.21 m 

after applying Equation 1, and considering the parameters listed in Table 1. Figure 7a-b shows the 
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ESM configuration where the strut is highlighted in red and the axial springs in green. The stiffness 

coefficient λh was calculated as 12.325, considering coefficients k1 = 0.47 and k2 = 0.04, and the 

linear stiffness of the panel (kfm) was calculated as 49740 kN/m by applying Equation (3). 

Table 1. Parameters for the estimation of the equivalent strut of the infilled Pombalino frame. 

h 1.9 [m] 

hm 1.74 [m] 

Ec 10000000  [kN/m2] 

Em 5500000 [kN/m2] 

e 0.12 [m] 

Icol 0.00000512 [m 4] 

d 2.52 [m] 

ϴ 0.763 rad 

 

Figure 7. LPM based on ESM of the infilled Pombalino frame: (a) geometry and (b) infill hinges locations and DOF releases. 

 

The equivalent failure stresses of the infill panel were calculated as follows: σbr(1) = 240.9 

kN/m2; σbr(2) = 13119 kN/m2; σbr(3) = 5887.6 kN/m2; and σbr(4) = 8622.9 kN/m2, using the mechanical 

properties of masonry given by Poletti (2013). Given these results, a diagonal tension failure was 

predicted for the panel and the maximum lateral strength was calculated as 5.65 kN, see Figure 8a. 

Nonlinear axial springs were added at each node where the strut meets the frame, i.e., at the centre 

and the ends. Further details about calculations are reported in Jiménez (2021).  
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Figure 8b compares the numerical and experimental load-displacement capacity curves of the 

Pombalino infilled frame. A good agreement in terms of global stiffness is observed, and the 

maximum capacity is slightly underestimated by the model. Nonlinearities appeared at a global 

displacement of 0.015 m, when the axial springs of the struts reached their maximum capacity. After 

this phase, such springs moved to the post-cracking branch, until one of them reached its ultimate 

capacity at a displacement of 0.073 m. The axial springs of the diagonals in compression reached 

their maximum capacity at the global displacement of 0.018 m, followed by a progressive failure of 

the rotational hinges of the main frame, as shown in Figure 8c. This prediction is consistent with the 

experimental evidence. The diagonals separated from the main frame inducing a first loss of capacity 

followed by the collapse of the external half-lap connections. The analysis stopped when some of the 

rotational hinges reached their ultimate capacity and no longer worked.  
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Figure 8. LPM based on ESM of the infilled Pombalino frame: (a) nonlinear load-displacement relationship of the equivalent 
strut, (b) numerical vs experimental capacity curves, and (c) evolution of the collapse mechanism. 

 

Figure 9a shows the LPM model of the quincha frame tested by Moore and D’Ayala (2011), 

built in half-scale dimensions, with the ESM configuration. The width of the equivalent strut, 

highlighted in red, was calculated as 0.228 m wide by using the parameters listed in Table 2. The 

linear stiffness (kfm) of the strut was computed as 1798 kN/m by applying Equation (3). The 
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mechanical properties of the adobe infill provided by the authors of the experiments were used to 

determine the equivalent failure compressive modes of the panel σbr(1) = 77,37 kN/m2, corresponding 

to the diagonal tension. The maximum lateral strength Hmax was calculated as 1.418 kN, see Figure 

10a. 

Table 2. Parameters for the estimation of the equivalent strut of the infilled half-scale Quincha frame. 

h 1.76 [m] 

hm 1.64 [m] 

Ec 6400000 [kN/m2] 

Em 200000 [kN/m2] 

e 0.08 [m] 

Icol 0.00000144 [m4] 

d 81.45 [m] 

ϴ 0.96 rad 

 

 

Figure 9. LPM based on ESM of the infilled half-scale Quincha frame (a), and view of the specimen during the experiment (b) 
from Quinn (2015). 

 

Figure 10b shows the comparison between the numerical and the experimental capacity 

curves, with a good agreement in terms of global stiffness and capacity. Figure 10c shows the collapse 

mechanism predicted by the model, which are consistent with what occurred in the experiment. 
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Firstly, the springs of the strut reached their maximum capacity at a displacement of 0.002 m and 

0.007 m (instances A and B of Figure 10b). After that, the axial springs of the diagonal and some 

rotational hinges at the top post-beam connection reached their maximum capacity (instances B to E 

of Figure 10b). The collapse of the frame occurred at a global displacement of 0.04 m, when the top 

spring of the diagonal reached its ultimate capacity. From this point on, the differences between the 

experimental and numerical behaviour can be attributed to the simplified modelling strategy to 

represent the infill, which cannot represent the progressive critical local failures in detail.  
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Figure 10. LPM based on ESM of the infilled half-scale Quincha frame: (a) nonlinear load-displacement relationship of the 
equivalent strut, (b) numerical vs experimental capacity curves, and (c) evolution of the collapse mechanism. 

 

The last benchmark experimental results consists in a full-scale quincha frame tested by 

Torrealva, Vicente, and Michiels (2018), also studied by  Perrone (2011), see Figure 1e. Figure 11a 

shows the discretization of the frame according to the LPM, with the infill represented by the ESM. 

As in the previous cases, the timber elements were modelled using frame elements with elastic 
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parameters, based on the mechanical properties of the Moena Alcanfor timber, as reported in Perrone 

(2011). Vertical post and horizontal beam elements had a cross-section of 0.08 × 0.06 m2, while the 

diagonal member had a cross-section of 0.03 × 0.09 m2. Vertical posts and horizontal beams were 

connected by mortise-and-tenon joints, while the diagonal was nailed to the beams and posts (Figure 

11b-c). 

 

Figure 11. Model based on ESM of the full-scale infilled quincha frame (a), and view of the specimen (b) from Torrealva et al. 
(2018), with detail of the mortise-and-tenon connection (c). 

The nonlinear behaviour of nailed connections was calibrated by using the empirical model 

developed by Chui and Ni (1997) to estimate the load-embedment capacity, according to Equation 

(9), see Figure 12. This model, based on the original proposal by Foschi (1974), was later modified 

to introduce the strength degradation effects: 

 
P = (P0 + K1|δ|)�1 − e (−

K0|δ|
P0

)� − (K1 − K2)(|δ| − |δP|)H(|δ| − |δP|) (9) 

Where P is the load per unit length at embedment deformation δ, in N; P0 is a parameter model 

denoting the intercept of the first asymptote, in N/mm; K0 is the initial stiffness, in N/mm2; K1 is the 

slope of the first asymptote line, in N/mm2; K2 is the slope of the second asymptote line, in N/mm2; 

δp is the deformation at ultimate strength, in mm, and; H (|δ|-|δp|) is the step function expressed in 

Equation (10): 



23 
 

  H(|δ| − |δP|) = � 1   for |δ| − |δP| ≥ 0
 0   for |δ| − |δP| < 0  

(10) 

 

 
Figure 12. Load-embedment model for nailed connections by Chui and Ni (1997). 

 

The diagonal was connected to the beam with four nails, and to the post with three nails. 

Therefore, two particular models had to be defined for each connection. Due to the lack of 

experimental data on these specific connections, a benchmark experiment on a nailed connection 

subjected to shear loads (Xu 2006) was used to estimate the load-embedment capacity of the nails to 

be used within the model, in agreement with Perrone (2011). The following initial parameters were 

extracted from the experiment to calculate the load-embedment relationship: P0 = 1.2 kN/mm; K0 = 

0.66 kN/mm2, Pp = 1.25 kN; δ0 = 0.53 mm, K1 = 0.0059 kN/mm2; K2 = 0.0013 kN/mm2 δP = 10 mm. 

Sensitivity analyses were performed to adjust these values for the three and four nailed connections, 

by increasing P0 until obtaining a good agreement between the model and the experiment. A higher 

load per unit length value (P) was assumed for the four nails connection respect to the three nails, in 

a ratio of 4:3. The initial stiffness (K0) of each connection was calculated considering a displacement 

δ0 of 3 mm. The load-embedment curves of the four nail-connections were characterised eventually 

by the following parameters: P0 = 21 kN, K0 = 12.42 kN/mm2, K1 = 0.023; K2 = -0.02 kN/mm2, and 

δP = 10.4 mm. As for the three nail-connections, the parameters were P0 =12,8 kN; K0 = 7.57 kN/mm2, 
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K1 = 0; K2 = -0.072 kN/mm2, and δP = 10.4 mm. Figure 13a-b show the load-deformation relationships 

of both the four nail and three nail-connections, as they were implemented in the LPM of this study. 

 Perrone (2011) studied the nonlinear behaviour of the mortise-and-tenon connection of the 

full-scale quincha frame by developing a numerical micro-model. Her results in terms of moment-

rotation relationship were used to characterize the nonlinear behaviour of this type of connection in 

the LPM of the present study. Rotational hinges were introduced at each post-beam connections, with 

the constitutive behaviour presented in Figure 13c.  

Figure 13d shows the nonlinear behaviour of the infill through the ESM. The equivalent width 

of the strut was 0.369 m, calculated by considering the parameters listed in Table 3. The equivalent 

failure modes of the frame were estimated based on the mechanical properties of the adobe, where 

the most probable failure mode of the panel is the diagonal tension, σbr(1) = 93.145 kN/m2 .The 

maximum lateral strength Hmax of the panel was calculated as 2.75 kN. The above results were 

employed to define the load-displacement relationship controlling the ESM, as shown in Figure 13d.  

Table 3. Parameters for the estimation of the equivalent strut of the full-scale infilled quincha frame. 

h 3.14 [m] 

hm 3.08 [m] 

Ec 12000000 [kN/m2] 

Em 200000 [kN/m2] 

e 0.08 [m] 

Icol 0,0000014 [m4] 

d 4.06 [m] 

ϴ 0.90885 rad 

λh 9.21302 - 
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Figure 13. LPM based on ESM of the full-scale infilled Quincha frame: load-deformation relationships of (a) four and (b) three 
nail-connections, (c) mortise-and-tenon joint, and (d) equivalent strut.  

  

Figure 14a shows the comparison between the experimental and numerical load-displacement 

capacity curves, denoting a good agreement in terms of global stiffness and ultimate capacity. The 

model reached a maximum load of 12.4 kN at a displacement of 0.092 m. The global stiffness of the 

model is 869 kN/m, slightly higher than that obtained in the experiment. The collapse mechanisms 

predicted by the model revealed that the axial springs of the strut and diagonal elements plasticized 

first, as shown in Figure 14b (instances A-B of Figure 14a). Subsequently, some of the springs of the 

diagonal reached their maximum capacity at a displacement of 0.026 m (instance B of Figure 14a). 

Afterwards, some of the rotational hinges at the top and bottom connections of the frame entered in 

the plastic range (instances C-D of Figure 14a). The diagonal failed when one of the central springs 

reached its ultimate capacity (instance E of Figure 14a). After this stage, only the rotational hinges 

continued working in the model. This response was in good agreement with the experiment in terms 
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of both local failures and global mechanism, since the stiffness of the experimental frame reduced 

after a central nailed connection failed, but it maintained its stability given the high ductility of the 

mortise-and-tenon joints. 

 

Figure 14. LPM based on ESM of the full-scale infilled Quincha frame: (a) numerical vs experimental capacity curves, and (b) 
evolution of the collapse mechanism. 
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2.3 Numerical simulation of experiments on unreinforced masonry walls 

Three experimental programs on masonry walls were considered for simulation, including 

both the in-plane (Augenti et al. 2011) and out-of-plane behaviour (Gazzola 1985, Griffith and 

Vaculik 2007).  

A FE continuum macro-mechanical modelling approach was adopted to analyse the structural 

behaviour of masonry subjected to in-plane and out-of-plane actions. A two-dimensional nonlinear 

material model was used for shell element applications. This model is based on the theories of 

Darwin-Pecknold (Darwin and Pecknold 1974, 1977) and Vecchio-Collins (Frank J. Vecchio and 

Collins 1986), which represent the cracking by means of a fracture energy-based approach with 

softening behaviour (CSI 2016), according to the Total Strain Crack model (Vecchio and Collins 

1993, Reinhardt 1984, and Hordijk 1991). A co-axially rotating smeared crack model considers both 

cracking and crushing of the material. This model is considered appropriate for the applications to 

quasi-brittle materials like concrete and masonry. 

Figure 15a shows the first benchmark example consisting in the in-plane loaded wall tested 

by Augenti et al. (2011). The wall was modelled using layered shell elements with a mesh of 

approximately 0.20 × 0.28 m2, with a total number of 258 finite elements. The section of the element 

was defined with only one layer of 0.31 m thickness, and four integration points along the thickness 

direction. All the nodes at the base of the model were restrained in all the translational DOFs 

simulating the rigid support conditions of the experiment. A vertical pre-compression of 200 kN was 

applied at each pier of the wall, followed by an incremental lateral displacement applied at a height 

of 3 m on the left side of the wall.  

The masonry material was defined as a nonlinear for all its three membrane stress 

components, σ11, σ 22 and σ12. The constitutive law considered an isotropic material with Young’s 

modulus E = 2.22 GPa and Poisson’s ratio ν = 0.2. The stress-strain nonlinear deformation 

relationships are shown in Figure 15a-b, being the compressive strength fc = 3.96 MPa. The 
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compressive part of the uniaxial stress-strain curve, represented by a parabolic law (Figure 15b), was 

finally determined considering the analytical model proposed by Turnšek and Sheppard (1998), and 

Kaushik, Rai, and Jain (2007). The tensile behaviour of masonry (Figure 15c) was defined 

considering a linear response until the peak tensile stress (ft), which was estimated as 3.5% of the 

masonry compressive stress (0.135 MPa). The strain at the peak tensile stress (ε’t) was assumed as 

0.06‰, after executing sensitivity analyses. A higher compressive strain deformation capacity is 

required to achieve greater deformations of the model without increasing the strength capacity. 

According to D’Ambra, Lignola, and Prota (2016), this behaviour was obtained by incrementing 

artificially the peak strain value, as shown in Figure 15b (dashed line). This simplification allowed 

the model to reproduce correctly the rocking behaviour due to the base rotation of the piers in the 

experiment. An alternative approach to reproduce correctly the test results by advanced numerical 

simulation is addressed in-depth in Saloustros et al. (2017a). 

Shear strength of masonry is computed from the axial stress-strain relationship introduced in 

SAP2000, by using a conventional Coulomb friction model. According to D’Ambra, Lignola, and 

Prota (2016), a friction angle equal to 23º was used to define the shear model, as also recommended 

by Eurocode 6 (CEN 2005) for masonry.  
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Figure 15. (a) FE model of the in-plane loaded masonry wall tested by Augenti et al. (2011) (dimensions in m), and b) stress-
strain uniaxial relationships for masonry in compression and (c) tension. 

 

Figure 16a displays the obtained load-displacement capacity curve, where the local failures 

occurring during the analysis are highlighted with the instances A to D. The results revealed a good 

agreement compared to the experiment in terms of global stiffness, maximum and ultimate capacity 

of the wall. The maximum capacity was 180.8 kN (0.4% error), while the initial stiffness was 4.35 × 

104 kN/m (5.9% error).  

Figure 16b shows the principal compressive stress contours corresponding to the ultimate 

displacement of the simulation, i.e., instance D in Figure 16a. This result revealed the formation of 

the resistant mechanism characterized by diagonal struts within the piers as well as in the central 



30 
 

spandrel, whereas significant compressive stress is registered at the base of the pier. Figure 16c shows 

the principal tensile strain contours indicating the development of the cracking damage at the ultimate 

displacement. Cracking at the centre of the spandrel and at the base of the piers appear at instance A, 

followed by diagonal cracking development in both spandrel and piers at instances B and C. After 

the wall reached its maximum strength at instance C, the stiffness of the frame slightly decreased, 

and the model could not capture the resistance drop of 15% observed in the experiment. 

 

Figure 16. FE model of the in-plane loaded masonry wall tested by Augenti et al. (2011): (a) experimental vs numerical capacity 
curves, (b) principal tensile strain contour, and (c) principal compressive stress contour at the ultimate stage D of the analysis. 

 

The second benchmark experiment consists in a URM wall tested under out-of-plane actions 

by Gazzola (1985), and subsequently analysed by Lourenço (2000). The wall was loaded until failure 

with increasing out-of-plane uniform pressure. Preliminary sensitivity analysis was performed to 
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study the influence of the mesh refinement and of the through-thickness integration points (IPs) on 

the nonlinear response of the model. Figure 17a shows that the models with less than 64 elements 

were not able to capture accurately the nonlinearities. However, very small differences in terms of 

initial stiffness and peak load were recorded by using different mesh sizes. Figure 17b shows a slight 

difference in terms of capacity between the 4 to 9 IPs models, whereas the increment from 9 to 18 

IPs does not have a major influence on the out-of-plane response of the wall. The model showed the 

typical response of walls subjected to out-of-plane loads, where cracking started to appear at the mid-

height of the bottom face of the panel, as shown in Figure 17c. According to Lourenço (2000), 

predominant cracking occurred in the shorter span direction of the panel up to the peak load, which 

corresponds to higher bending moments and lower tensile strengths. After the peak load, the typical 

yield-line type of collapse appears with marked softening lines, see Figure 17d. The results obtained 

are consistent with those shown in Figure 17e that were obtained by Lourenço (2000) at the ultimate 

pressure.  
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Figure 17. FE model of the out-of-plane loaded masonry wall tested by Gazzola (1985): sensitivity analyses considering (a) a 
mesh refinement in the model with 9 IPs, and (b) different IPs in the model of 676 elements. FE results of the wall: (c) principal 
strain contours in the bottom face at the peak load, and (d) post peak, and comparison with (e) plastic strain at the ultimate 
pressure obtained by Lourenço (2000). 

 

The third benchmark experiment is the URM wall tested under out-of-plane actions by 

Griffith and Vaculik (2007). The study of Petracca et al. (2017) is also considered as a reference, as 

it provides an in-depth analysis of this complex experiment, by developing sophisticated 

computations based on micro-modelling and multi-scale modelling. Given the symmetrical layout of 

the wall, only the left part of it was modelled considering appropriate symmetrical boundary 

conditions, as shown in Figure 18a-d. The base and top edges of the panel were simply supported by 

fixing the out-of-plane DOFs. The vertical edge of the return wall was fixed in all the DOFs, and a 

symmetry axis along the right edge considered fixed horizontal translation, as well as the out-of-plane 

rotations.  
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The section of the wall is 0.11 m, set with two shell layers of 0.055 m thickness each, and a 

total of 10 IPs along the thickness direction. The masonry material was defined as nonlinear for all 

of the three membrane stress components of the layer, σ11, σ22 and σ12. A friction angle φ equal to 23º 

was considered to describe the shear model. A plastic stress-strain constitutive law defined the 

behaviour of the material model, with E = 5.27 × 107 kN/m2, Poisson’s ratio ν = 0.2, ft = 352 

kN/m2, fc = 17600 kN/m2. The compressive behaviour of masonry was described by means of the 

analytical model of Kaushik, Rai, and Jain (2007), that is shown in Figure 18e. The tensile behaviour 

was represented by the bilinear stress-strain relationship shown in Figure 18f. The curve is composed 

by an elastic branch up to the maximum tensile strength ft, defined as the 2% of fc. The tensile fracture 

energy of the model Gf was set equal to 0.04 kN/m based on sensitivity analysis in order to find an 

agreement with experimental results. The residual tensile strength was set equal to 50% of ft, see 

Figure 18f. Such rather high value was derived from a careful sensitivity analysis, as lower values for 

this parameter were not able to represent correctly the post-peak experimental behaviour. According 

to Griffith and Vaculik (2007), the definition of a proper post-peak strength plateau is meaningful for 

the case of simply supported out-of-plane loaded walls. Petracca et al. (2017) also highlighted an 

“apparent” plastic behaviour of the wall tested by Griffith and Vaculik (2007), with an almost 

constant post-peak strength plateau, as will be discussed in the following. Therefore, the assumed 

rather high value of the residual strength is motivated by the need of ensuring the correct 

redistribution of stresses after the peak load and the development of the mechanism with yield-line 

type of failure. A vertical pre-compression of 100 kPa was applied first at the top of the wall, followed 

by an out-of-plane pressure imposed to the outer surface of the main wall under displacement control. 

The deflection of the wall was measured at the centre of the wall, where the maximum displacement 

was expected, as shown in Figure 18d. 
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Figure 18. FE results of out-of-plane loaded masonry wall tested by Griffith and Vaculik (2007): (a) geometry, (b) surface 
pressure, (c) vertical pre-compression and (d) deformation. Assumed compressive (e) and tensile (f) stress-strain relationships 
of masonry material.  

 

Figure 19a shows the comparison between the experimental and the numerically calibrated 

pressure-deflection curve, evidencing a very good agreement. Figure 19b-c show the evolution of the 

principal tensile strains during different stages of the analysis. At the peak capacity (instance A in 

Figure 19a), the model displays diagonal cracking developed an extensive damaged zone, together 

with a horizontal crack in the centre of the wall, in agreement with the experimental evidence. Vertical 

cracking occurs also at the intersections of the return walls with the front one. As discussed by Griffith 

and Vaculik (2007), and highlighted also by Petracca et al. (2017), the apparent post-peak plastic 

behaviour of the wall may be attributed to a full redistribution of bending moment along the diagonal 

cracks to horizontal bending along the vertical edges of the wall. The bending restraints exerted by 
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the return walls provided additional capacity against the transfer of load from the diagonal bending 

mechanism.  

 

Figure 19. FE results of out-of-plane loaded masonry wall tested by Griffith and Vaculik (2007): (a) Experimental vs. numerical 
pressure-deflection curves, (b) principal tensile strain in the bottom and (c) top faces measured at different instances A, B and 
C. 
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It is worth noticing that more sophisticated computational strategies, like those adopted by 

Petracca et al. (2017), are certainly able to reproduce more accurately the experiments, thanks to their 

capability of modelling the complex behaviour of masonry even at the level of the interaction among 

the constituents (bricks and joints). However, the adopted simpler continuum FE model shows to be 

able to represent correctly the development of the failure mechanisms and the load-displacement 

response. For this reason, it can be concluded that the considered simplified approach can provide 

results that are worthy of consideration for the analysis of more complex existing buildings, like those 

presented in the following section.  

. 

3. Numerical modelling of hybrid timber–masonry buildings of Valparaíso, Chile 

3.1 Description of the case-studies 

The city of Valparaíso (Chile), listed in the World Heritage Site list by UNESCO, is composed 

of valuable historical buildings with hybrid structural systems, where timber frames and masonry 

walls coexist. Available documentation about the built environment in Valparaíso is scarce and 

fragmented, and detailed data are missing about the behaviour and characteristics of construction 

materials (timber, adobe, masonry) and structural details (e.g. carpentry joints). The need for 

systematic technical information has recently conducted to the development of research studies for 

survey and data collection (B. Jiménez, Pelà, and Hurtado 2018) aimed at the vulnerability assessment 

of the urban building stock (Jiménez, Saloustros, and Pelà 2021). The lack of experimental data about 

the mechanical behaviour of the specific structural systems in Valparaíso has also motivated the 

numerical approach followed in this work to calibrate the numerical models, which is based on careful 

comparisons with available experiments on timber frames and masonry walls of similar typologies 

(Pombalino and Quincha). 

In this work, two representative buildings located in the historical Cerro Alegre 

neighbourhood were analysed under lateral loads using the simplified FE models previously 
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calibrated in Section 2. Both buildings are shown in Figure 20a-b and were designed and constructed 

using the timber platform frame system combined with URM walls, as reported by  Jiménez (2015). 

The disposition of the structural elements, as well as the type of materials, connections, infill systems, 

and finishing are very similar in both buildings. 

 
Figure 20. Cases of study in the Cerro Alegre neighbourhood: (a) Building 1, located at 558 Lautaro Rosas street, and (b) 
Building 2, located at 167 Paseo Dimalow street, Valparaíso, Chile. 

  

The traditional platform frame is composed of a light timber frame in which a storey platform 

is constructed at each floor, see Figure 21. The studs for the next floor are usually erected on this 

platform with an intervening beam. The frame walls are usually configured in Valparaíso by stud 

elements of 0.1 × 0.1 m2 cross-section, spaced 0.4 ÷ 0.6 m each, and distributed between the top and 

bottom horizontal beams. Diagonal braces are usually introduced every two studs, and they are 

located next to the openings. Traditional carpentry joints reinforced with nails are used to connect the 

timber elements, where mortise-and-tenon joints are used to connect vertical posts and horizontal 

beams, including the sills of the openings, and notched joints connect the diagonals with the main 

frame, as shown Figure 21 at the right. Adobe blocks of 0.50 × 0.10 × 0.08 m3 fill the external walls 

of the façade, while lath-and-plaster are used for the internal partitions. The joists of the storeys have 

0.125 × 0.05 m2 cross-section, and are separated every 0.4 m nailed over the beams of the frame or 

embedded into the masonry, as appropriate. Wooden boards of 0.10 m width and 0.01 m thickness, 
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nailed at the top and bottom of the joists, constitute the floors and ceilings. Rudimentary trusses are 

supported by the walls and form the roof, with inclined rafters shaping pitched roofs, with around 

10% slope. Wooden ribbons over the trusses support the corrugated iron planks covering the roof 

structure.  

 

Figure 21. Isometric view of a representative timber platform frame system of Valparaíso. 

 

As reported by Jiménez (2015), most of the timber elements are made of Oakwood and 

Oregon Pine wood in Valparaíso. In both structures analysed in this work, URM load-bearing 

sidewalls are connected to the timber frames at the storey levels. The walls are made of fired clay 

bricks of 0.38 × 0.195 × 0.06 m3 and lime mortar, arranged in English bond. The sidewalls have 

variable thickness along the height, varying at each storey, ranging from 0.6 m to 0.2 m from the 

bottom to the top levels. The storeys are supported by joists commonly embedded or simply supported 

over the bricks. The sidewalls are not shared with the load bearing system of the adjacent buildings, 



39 
 

and they are placed only next to each other with the function of firewalls. The foundations under the 

load-bearing walls and timber frames are strip footings made of brick masonry, built on rocky soil, 

with 0.6 m thickness and 0.80 m height. 

Building 1 corresponds to a three-storey building dating back to 1909, which was designed 

by the architect Juan Blezard, as revealed in the original drawings shown in Figure 22a-b. The 

building is located in the number 558 of the Lautaro Rosas street, with a central position in a building 

aggregate. The first and second levels of the building are 87.39 m2, while the third level has the half 

of the built area and an exterior terrace. The structural system is composed of two main bays along 
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the longest direction of the building, which are divided by perpendicular internal partition walls 

distributing the rooms.   

 
Figure 22. (a-b) Original drawings of Building 1 located in the number 558 of the Lautaro Rosas street in the Cerro Alegre. 
Source: Registro Patrimonial de la Dirección de Obras Municipales de Valparaíso (DOM). (c-d) Frontal and transversal section 
views showing the structural configuration of Building 1. 

 

Building 2, shown in Figure 23, is a two-storey original house lately reformed for commercial 

use with a surface of 190 m2. The available data about the building were gathered when it was under 

restoration. This fact permitted a complete and detailed on-site inspection of the constructive system. 

The building is located in the number 167 of the Paseo Dimalow street, having a central position in 
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an in-row aggregate of four buildings. The date of construction is unknown, but it was possible to 

recognize the building in cartographic drawings since 1879. The building presented regular shape 

both in plan an elevation. The structural system has three bays, where the main one corresponds to a 

central corridor in-between the different rooms of the building. 

 
Figure 23. Drawing of the north façade of Building 2 (a) located in the number 167 of the Paseo Dimalow street in the Cerro 
Alegre, frontal (b) transversal (c) section views showing its structural configuration. 

 

3.2 Numerical models of the hybrid timber-masonry structures 

LPM and continuum FE models were used to simulate the nonlinear behaviour of the timber 

frames and masonry walls of the buildings, as shown in Figure 24a-b. Analytical calculations were 

executed to describe the behaviour of the carpentry joints, due to the lack of experimental data for 
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the specific typologies of Valparaíso. These hypotheses and assumptions were considered a 

reasonable approximation due to the structural similarities between the selected benchmark 

experiments in Section 2 and the examined cases of study. The behaviour of the timber frame 

structures is governed by the nonlinear behaviour of the connections, named mortise-and-tenon (stud-

beam link), and connection by contact (diagonal-stud link). The rotational behaviour of mortise-and-

tenon joints was investigated in previous studies (Chun, Yue, and Pan 2011; Xie et al. 2018; Chen, 

Qiu, and Lu 2016; Ogawa, Sasaki, and Yamasaki 2016). Analytical calculations were made in order 

to obtain the moment-rotation relationship of mortise-and-tenon joints, based on the simplified 

calculation procedure proposed by Chen, Qiu, and Lu (2016). The peak bending moment was 

calculated as 3.6 kNm considering the geometrical properties of the tenon, a friction coefficient of 

0.25, a tangential compression strength fc,t = 46.65 MPa and tangential Young’s modulus Ec,t = 12798 

MPa as mechanical properties of the Oak timber (Perez 1990). Nonlinear hinges were added at each 

mortise-and-tenon connection to model its rotational behaviour, defined with the moment-rotation 

relationship shown in Figure 25a. 

An axial nonlinear behaviour was considered for the connections by contact, assuming the 

same constitutive law of the diagonal connection of the Pombalino calibrated model (see Figure 2b). 

The above assumption is justified by the very similar geometrical configuration and cross-section of 

the elements in the connections. Nonlinear axial springs acting on the horizontal translational DOF 

were introduced at each node where the diagonals meet the frame. Figure 25b shows the axial load-

displacement relationship of the connection, with dots of different colours indicating the so-called 

“plastic state” of the hinges/springs within the model, according to the reached magnitude of plastic 

displacement/rotation. The timber material was modelled using isotropic linear elastic properties, 

according to the parameters of the Oak timber defined by Perez (1990). 
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Figure 24. Numerical models of (a) Building 1 and (b) Building 2. 
 

 

Figure 25. Constitutive laws for the carpentry joints in the lumped plasticity model of timber frames: (a) rotational behaviour 
of the mortise-and-tenon joints, and (b) axial behaviour of the connections by contact.  

 

The URM walls were modelled following the continuum FE approach already described in 

Section 2. The uniaxial nonlinear stress-strain relationship of the material was defined considering 

the model proposed by Kaushik, Rai, and Jain (2007). The required mechanical properties of the 

material were defined based on the average characteristic values proposed by the Italian standards 

(Italian Ministry of Infrastructure and Transport 2018; NTC-Circolare 2018) for existing URM in 

solid brick and lime mortar. Reductions factor of 0.7 and 0.8 were applied respectively to compressive 

strength and Young’s modulus values to account for thickness of mortar joints higher than 13 mm, 

as recommended by the Italian standards. The Young’s modulus was 1.2 × 106 kN/m2, and the 
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compressive strength was 2415 kN/m2. Figure 26 displays the constitutive laws of the material both 

in tension and compression, assuming a tensile strength corresponding to the 5% of the compressive 

one. Based on the experimental studies of Kaushik, Rai, and Jain (2007) on masonry walls, the peak 

compressive strain capacity ε’m was considered as 0.00325 m/m, while the ultimate compressive 

strain was estimated as 2.75 ε’m. A friction angle of 23º was assumed to define the shear model, 

based on the Eurocode 6 (CEN 2005) recommendations. The fracture energy Gf of masonry was 

assumed as 0.05 kN/m, based on past studies on URM by Petracca et al. (2017), Lourenço (2000) and 

Bocca, Carpinteri, and Valente (1989). The maximum elastic strain εm was calculated as 1 × 10-4 m/m 

and the ultimate cracked strain εcr as 2.8 × 10-3 m/m. Figure 26 shows the stress-strain constitutive 

law, which controls the nonlinear compressive and tensile behaviour of the investigated masonry 

structures.  

 

Figure 26. Uniaxial constitutive laws defining the behaviour of the masonry material for the Buildings 1 and 2: (a) compression 
and (b) tension stress-strain relationships. 

3.3 Seismic analysis of the hybrid timber-masonry buildings  

LPM of timber frames and continuum FE model of masonry walls were used to simulate the 

behaviour of the two cases of study. The frame elements configuring the load-bearing systems had 

0.10 × 0.10 m2 cross-section, except for the joists, which had 0.125 × 0.05 m2 cross-section. The 

existence of infill in the main façade was simulated by applying the Equivalent Strut Method (ESM) 

considering the mechanical properties of the adobe (MINVU 2013). The internal partitions of the 
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buildings were modelled as bare frames since they are normally covered using other techniques such 

as the lath-and-plaster system.  

Masonry walls were modelled using nonlinear layered shell element and two layers with four 

integration points each. The walls were meshed considering rectangular elements of 0.4 × 0.2 m2 size. 

The walls of Building 1 had variable thicknesses from 0.6 m to 0.2 m from the bottom to the top 

levels, while the ones of Building 2 varied from 0.6 m and 0.4 m. The roofs systems were not 

modelled in order to simplify the analysis. This decision was made after a sensitivity analysis, which 

demonstrated a negligible contribution of the roof structure on the overall response of the building. 

Fixed and pinned supports restrained the base of masonry walls and timber frame elements 

respectively. These boundary conditions simulated the existence of good quality foundations.  

NSA was performed along the two main directions of the models (X and Y) by applying 

separately horizontal forces proportional to the mass distribution of the buildings. The magnitude of 

the loading was increased incrementally up to the ultimate capacity of the model. The analyses were 

monitored in displacement control considering strategic nodes at the highest level of the structure to 

describe the response of the buildings. All the analyses were set using an iteration convergence 

tolerance of 1×10-4 as recommended by SAP2000 (CSI 2016).  

Figure 27 displays the capacity curves obtained for the Building 1 in the X and Y directions 

respectively. The so-called “Model A” includes the modelling of the infill by means of the ESM, 

whereas “Model B” does not include the equivalent struts but maintains the inertial mass of the infill. 

The models A and B were examined in order to evaluate the stiffening and resisting effect of the 

infill. The results revealed that the building presented a higher capacity in the Y direction, as expected. 

The presence of equivalent struts (Model A) increased the capacity of the building analysed in the X 

direction in 15%, while the initial stiffness slightly incremented, as shown in Figure 27a. No 

significant differences were detected between the Model A and B analysed in the Y direction, as 
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displayed in Figure 27b. Table 4 summarizes the main results of the Model A analysed in the X and 

Y directions.  

 

Figure 27. Capacity curves obtained for Building 1 in the (a) X and (b) Y directions. 

 

 Table 4. Summary of the results obtained for the Building 1 (Model A) in the X and Y directions. 

 Initial 
stiffness 
[kN/m] 

Maximum capacity Ultimate capacity 
Building 

1 
Load 
[kN] 

Acceleration 
[g] 

displacement 
[m] 

Load 
[kN] 

Acceleration 
[g] 

displacement 
[m] 

X 2.58× 104 398.5 0.26 0.037 388.7 0.25 0.050 
Y 5.82 × 105 824 0.53 0.0032 653 0.42 0.0044 

 

In the X direction, the model reached the maximum capacity at the acceleration of 0.26 g 

(394.2 kN base shear) and displacement of 0.034 m, whereas the ultimate displacement was recorded 

at 0.05 m with a slight reduction of 1.4% of shear capacity. The initial stiffness of the model was 2.58 

× 104 kN/m. The building entered in the nonlinear range once a tensile crack appeared at the base of 

the overturning masonry wall perpendicular to the applied load (Point 1 in Figure 27a). Figure 28a 

displays the localization of principal tensile strains at the base the wall at the same point. The 

overturning mechanism around the base of the wall was activated and progressively developed 

(Figure 28b) until reaching the ultimate strain value of 0.0028 m/m (Figure 28b-c). The overturning 

mechanism of the wall also interested the connection with the perpendicular one in the final stage, 

with a partial formation of a vertical crack at the corner (Figure 28c). After the development of the 

overturning mechanism in the wall (between Points B and C in (Figure 28a), some joints plasticized 
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in the timber frames parallel to the applied load until reaching their ultimate capacity at the end of 

the analysis, as shown in Figure 28d. Most of the damaged connections were the ones located at the 

diagonals in tension. The overall collapse of the building is governed by the overturning of the 

masonry wall, which triggered the collapse of some axial springs at the diagonal elements of the 

frames. The redistribution of the lateral forces to the timber frame system after the failure of masonry 

is apparent, as shown by the capacity curve of Figure 27a. 
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Figure 28. Seismic analysis of Building 1 in the X direction. Principal tensile strain contours (a) at a displacement of 0.011 m 
(Point 1 in Figure 27a), (b) at a displacement of 0.0023 m (Point 2 in Figure 27a), and at a displacement of 0.05 m (Point 3 in 
Figure 27a). (d) Hinges/springs plasticized at the ultimate step of the analysis in the timber frames (Point 3 in Figure 27a).  

 

The NSA of the Building 1 in the Y direction presented almost the double of the capacity of 

that in the X direction, reaching 0.53 g (824 kN base shear) at a displacement of 0.0032 m. As in the 

X direction, the masonry walls demonstrated to play a central role in the structural response of the 

building. The characteristic global collapse is governed by the shear sliding at the base of the masonry 

wall parallel to the applied load, as shown in Figure 29. The joints of the timber frames remained 

elastic up to the end of the analysis, while the masonry wall parallel to the horizontal loading received 

the most of the seismic action due to its higher rigidity. The ultimate capacity of the building is 

considered as the 80% of the maximum shear base load (Fmax), based on the Limit State definition for 

URM structures given by the Italian standards (NTC-Circolare 2018), being 653 kN and 0.42 g at a 

displacement of 0.0044 m. The initial stiffness of the model was 5.82 × 105 kN/m.  
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Figure 29. Seismic analysis of Building 1 in the Y direction. Principal tensile strain contours (a) at a displacement of 0.0008 m 
(Point 1 in Figure 27b), (b) at a displacement of 0.0029 m (Point 2 in Figure 27b), and at a displacement of 0.0044 m (Point 3 in 
Figure 27b).  

 

Figure 30 displays the capacity curves obtained from the analyses of Building 2 in the X and 

Y directions. The results demonstrated that the building presents a higher capacity in the Y direction, 

as was expected. The model A presented convergence problems in the Y direction. The stiffening 
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effect of the equivalent struts was more evident in the Y direction analysis (Model A), as shown 

Figure 30b. In this case, the maximum capacity and initial stiffness of the building increased in 19% 

and 18%, respectively. However, there was no significant difference between Model A and B 

analysed in the X direction, as noted in Figure 30a. Table 5 presents a summary of the results obtained 

from the Model A of Building 2 for both analysis directions. 

 

Figure 30. Capacity curves obtained for the Building 2 in the (a) X and (b) Y directions. 

Table 5. Summary of the results obtained for the Building 2 simulated in the X and Y directions. 

Building 
2 

Initial 
stiffness 
[kN/m] 

Maximum capacity Ultimate capacity 
Load 
[kN] 

Acceleration 
[g] 

displacement 
[m] 

Load 
[kN] 

Acceleration 
[g] 

displacement 
[m] 

X 3.7 × 104 303.1 0.27 0.01 194.4 0.18 0.017 
Y 7.4 × 105 564.8 0.52 0.001 564.8 0.52 0.001 

 

In the X direction, the Model A reached a maximum acceleration capacity of 0.27 g (303.1 

kN base shear) at a displacement of 0.0093 m, whereas the ultimate displacement was recorded at 

0.017, with a significant reduction of 40% of the shear capacity. The initial stiffness of the model was 

3.7 × 104 kN/m. The building entered in the nonlinear range once a horizontal crack started to appear 

at the base of the masonry wall as it reached the maximum tensile capacity of 0.0001 m/m. This 

damage is attributed to the overturning mechanism governing the failure mode of the wall. After this 

phase, some of the springs located in the timber frames parallel to the applied load reached their 

maximum capacity and plasticized progressively up to the end of the analysis. Figure 31d displayed 

the hinges formed at the ultimate step of the analysis. The cracking at the base of the wall 
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progressively developed towards the total damage at the end of the analysis, as shown in Figure 31b-

c. The characteristic global collapse of the building is partially governed by the overturning 

mechanism of the masonry wall and the failure of some axial springs in the diagonal elements. The 

results reveal again a transmission of seismic forces to the timber frame elements after the failure of 

the wall. This response propitiates a nonlinear response of the building with a limited amount of 

ductility. 

 

Figure 31. Seismic analysis of Building 2 in the X direction. Principal tensile strain contours (a) at a displacement of 0.0062 m 
(Point 1, Figure 30a), (b) at a displacement of 0.015 m (Point 2, Figure 30a), and at a displacement of 0.017 m (Point 3 in Figure 
30a). (d) Hinges/springs plasticized at the ultimate step of the analysis in the timber frames (Point 3 in Figure 30a). 

The NSA of Building 2 in the Y direction presented the double of the capacity of that in the 

X direction, reaching 0.54 g (590 kN base shear) at a displacement of 0.00011 m (Model A). The 

building entered in the plastic range once a horizontal cracking appeared at the base of the wall once 
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the maximum tensile strain of 0.0001 m/m was reached, as shown in Figure 32a. A shear sliding 

mechanism is activated because of the in-plane loading conditions of the wall. After this point, the 

cracking pattern developed a narrow damage zone until the analysis stopped due to convergence 

problems. The joints of the timber frames remained elastic until the end of the analysis. The 

convergence problems can be attributed to the quasi-brittle behaviour of the masonry, which 

experienced a quick drop of resistance. The analysis of the Model B, considering only the mass of 

the infill, reached a maximum capacity of 0.43 g (466.4 kN base shear) at a displacement of 0.0013 

m, whereas the ultimate displacement was recorded at 0.0024 m with a reduction of 28% of shear 

capacity, as shown in Figure 32b.  

 

Figure 32. Seismic analysis of Building 2 in the Y direction. Principal tensile strain contours (a) at a displacement of 0.00075 m 
(Point 1 in Figure 30b), (b) at a displacement of 0.0011 m (Point 2 in Figure 30b). 

3.4 Seismic performance of the buildings  

The seismic demands of the Buildings 1 and 2 were evaluated by considering two different 

demand spectra. The former is calculated following the Chilean standards NCh433 Of.96 (Instituto 

Nacional de Normalización 2009) for a building with a soil type II and maximum ground acceleration 

A0=0.4 (Zone 3). The latter corresponds to the elastic spectra of the 2010 earthquake recorded for the 

city of Valparaíso (Boroschek, Soto, and León 2010). Both acceleration spectra were calculated 
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considering a damping ratio of 0.05. Figure 33 and Figure 34 show the application of the N2 method 

(P. Fajfar and Eeri 2000; Peter Fajfar 1999) to Buildings 1 and 2 in the X and Y directions, 

respectively. Table 6 summarizes the characteristics of the equivalent SDOF systems of the two 

buildings for the evaluation of the seismic performance by means of the N2 method.  

 

Table 6. Characteristics of the equivalent SDOF systems of buildings 1 and 2. 

 Building 1 Building 2 

 X Y X Y 

Γ 2.03 3.94 3.57 2.67 

m* [kN-s2/m] 30.3 14.3 18.8 5.58 

Fy* [kN] 188 190 80 200 

dy [m] 0.0074 0.00032 0.0022 0.00026 
T* [s] 0.22 0.03 0.14 0.017 

 

The target displacement of Building 1 for the X direction-analysis is in the plastic range for 

the demand spectra of the Chilean seismic code, and in the elastic range, close to the yield 

displacement for the 2010 earthquake, see Figure 33a and Figure 33c. This means that although the 

2010 earthquake did not induce notable damage to the building, for the seismic hazard foreseen by 

the Chilean standards the building may undergo some moderate damage. In fact, the numerical 

analysis in this second case shows that the masonry walls are affected by some damage, as well as 

some axial springs of the diagonal elements. The target displacement for the Y direction analysis 

remains in the elastic stage for both the demand spectra of the Chilean seismic code and the 2010 

Earthquake. 
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Figure 33. Application of the N2 method to Building 1 in the X and Y directions, according to the demand spectra of (a-b) the 
Chilean seismic code NCh433, and (c-d) of the 2010 Earthquake. 

 

Building 2 exhibits a very good seismic performance when analysed in the Y direction, as the 

target displacement remains in the elastic stage for both demand spectra, as shown in Figure 34b and 

Figure 34d. However, the analysis in the X direction shows a target displacement rather close to the 

ultimate displacement for the case of the demand spectrum of the 2010 Earthquake, and target 

displacement higher than the ultimate one for the case of the demand spectra of the Chilean seismic 

code. Both results seem rather conservative if compared with the limited evidence of structural 

damage after the 2010 Earthquake. However, there are no data from detailed damage survey of the 

building after that seismic event, and the damage may have been hidden under the structure covering 

or by subsequent repairs. An in-situ inspection of the building executed in 2015 showed that several 

timber elements were recently replaced due to their bad state of conservation. In addition, it is worth 

noticing that the numerical analyses do not consider the actual aggregate configuration of the 

buildings, which would contribute to increase the structural capacity and stiffness of the system. To 
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conclude, it is also worth highlighting that the directionality of the earthquake is also a very important 

and influent parameter, as the building presents very different capacities in the X and Y direction. 

 

Figure 34. Application of the N2 method to Building 2 in the X and Y directions, according to the demand spectra of (a-b) the 
Chilean seismic code NCh433, and (c-d) of the 2010 Earthquake. 

4. Conclusions 

This work has presented a methodology for the seismic assessment of hybrid timber–masonry 

buildings based on developing simplified numerical simulations. The calibration of the numerical 

models has been based on the comparison with the evidence of benchmark experimental tests on 

timber frames and URM walls. Two timber frame typologies tested under lateral loads, i.e. the 

Portuguese “Pombalino” frames (Poletti 2013; Poletti and Vasconcelos 2015) and the Peruvian 

“quincha” frames (Moore and D’Ayala 2011; Torrealva, Vicente, and Michiels 2018), have been 

used for the calibration of the Lumped Plasticity Model (LPM). The careful stage of calibration of 

the LPM has considered two main parameters governing the problem, i.e., the nonlinear behaviour of 

the connections, and the presence of infill. The former aspect has been addressed through the 
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definition of nonlinear hinge and spring elements within the FE model, with proper moment-curvature 

or force-displacement nonlinear behaviours. The latter effect has been simulated by applying the 

Equivalent Strut Method (ESM). Nonlinear static analysis (NSA) has been applied to attain the results 

in terms of capacity curves and damage patterns. All the numerical simulations have shown 

satisfactory results compared with the experimental evidence. The simplified LPM of the timber 

frames has represented correctly the local failures of the connections occurred in the experiment, 

which has also allowed a good understanding of the global collapse. The contribution of the infill has 

been simulated by the ESM in a phenomenological and simplified manner, yet providing a good 

agreement with the experiments in terms of global stiffness and capacity.  

Additionally, two benchmark experiments have been considered to calibrate the continuum 

macro-mechanical FE models of masonry, taking into account their in-plane (Augenti et al. 2011) 

and out-of-plane (Griffith and Vaculik 2007; Gazzola 1985) nonlinear behaviours. Masonry has been 

considered as a homogeneous material with average properties, defined by the constitutive model 

based on the theories of Darwin-Pecknold (Darwin and Pecknold 1974, 1977) and Vecchio-Collins 

(Frank J. Vecchio and Collins 1986). The masonry models have been capable to reproduce correctly 

the results of the experiments in terms of maximum capacity and collapse mechanisms, both for the 

in-plane and out-of-plane loaded walls. The used smeared crack model has allowed the correct 

identification of the overall damage mechanisms occurred in the tested walls.  

The calibrated LPM and FE macro mechanical models have been adopted to analyse the 

seismic response of two hybrid timber-masonry buildings existent in the historical centre of 

Valparaíso, Chile. The LPM of the timber frame structures have been built after a proper setting of 

the nonlinear rotational and translational behaviours of two timber connections, i.e. the mortise-and-

tenon and the connection by contact. The nonlinear constitutive law for the mortise-and-tenon has 

been estimated analytically based on the model proposed by Chen, Qiu, and Lu (2016), while the law 

of the connection by contact using the calibrated for the Pombalino frame model. The continuum 
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model defining the response of masonry has been defined by using the characteristic properties of 

existing URM and lime mortar as defined by the Italian standards (NTC-Circolare 2018).  

Nonlinear Static Analysis (NSA) has been performed in the two main directions of the models 

(X and Y) by applying a horizontal loading pattern with forces proportional to the mass distribution 

of the buildings. The results have demonstrated that masonry walls have a central role in the lateral 

response of the buildings with hybrid timber masonry structural system, since they contribute to resist 

a major part of the applied loads, especially in the Y direction. In both analysis directions, the masonry 

walls are the first elements that reach the maximum capacity. In the Y direction, only the masonry 

walls reach their ultimate capacity, while the internal timber frames resist the applied actions without 

undergoing any damage. In this direction, the collapse of the masonry walls is given by a base shear 

mechanism provoked by a sliding failure at the base of the wall. In the X direction, the forces are 

redistributed to the timber frames after a nonlinear response of the masonry walls is triggered, and 

subsequently some of the springs reach their ultimate capacity. The collapse condition is given by the 

overturning mechanism around the base of the masonry walls, as well as the failure of the internal 

springs located at the diagonal connections. Both buildings have demonstrated a good seismic 

capacity in the Y direction.  

The seismic performance of the two buildings has been assessed by applying the N2 method 

for two different seismic demand spectra, i.e., the earthquake design spectrum of Valparaíso bases on 

the NCh433 Of. 96 standards (Instituto Nacional de Normalización 2009), and the spectrum of the 

2010 Earthquake occurred in the city of Valparaíso. Building 1 has confirmed its good seismic 

performance in the Y direction, where the target displacement has remained in the elastic range for 

both seismic demands. In the X direction, the target displacement has resulted slightly higher than 

the yield displacement for the 2010 earthquake spectrum, and in the nonlinear range for the Chilean 

standards demand spectrum. Almost null and moderate damage is expected respectively on the 

structural system for these two seismic demand levels.  
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Similarly, the Building 2 has presented a very good seismic performance in the Y direction 

for both demand spectra. In the X direction, the target displacement is very close to the ultimate 

displacement for the 2010 earthquake spectrum, and beyond it for the Chilean standards demand 

spectrum. These results would suggest important damage in both the masonry walls and timber frame 

connections. However, these outcomes of the numerical analyses seem rather conservative, as after 

the 2010 earthquake no severe damage was reported. This difference may be associated with other 

factors that could influence to a certain extent the seismic performance of the buildings, such as the 

structural aggregate condition and the actual directionality of the 2010 earthquake. 

It is important to notice that the results of the research, even though based on rigorous 

calibration of the numerical models through careful comparisons with experimental results available 

in the scientific literature, are based on some tentative hypotheses that would require validation 

against experimental data for the buildings in Valparaíso. Due to the lack of technical documentation 

and test results, the research has explored the existing similarities among the buildings in Valparaíso 

and other similar typologies in Portugal and Peru, and has used modelling features validated for 

Pombalino and Quincha buildings. These assumptions have certainly introduced some simplifications 

that will be addressed in future research. Future studies may also evaluate in detail the effect of the 

aggregate condition on the buildings.  
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