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Abstract

In [Zhe20a], Hailun Zheng constructs a combinato-
rial 3-sphere on 16 vertices whose graph is the com-
plete 4-partite graph K4,4,4,4. Such a sphere seems
unlikely to be realizable as the boundary complex of
a 4-dimensional polytope, but all known techniques
for proving this fail because there are just too many
possibilities for the 16× 4 = 64 coordinates of its ver-
tices. Known results [PPS12] on polytopal realizabil-
ity of graphs also do not cover multipartite graphs.

In this paper, we level up the old idea of
Grassmann–Plücker relations, and assemble them us-
ing integer programming into a new and more pow-
erful structure, called positive Grassmann–Plücker
trees, that proves the non-realizability of this exam-
ple and many other previously inaccessible families of
simplicial spheres. See [Pfe20] for the full version.

1 Introduction

A simplicial (d − 1)-sphere Σ is a simplicial complex
homeomorphic to a (d − 1)-dimensional sphere. We
say that Σ is non-realizable if there does not exist
a (necessarily simplicial) d-polytope whose boundary
complex is isomorphic to Σ.

Example 1 The following list of 19 facets defines a 3-
sphere Σ on 8 vertices with 27 edges and 38 triangles:

+[0123] -[0124] +[0135] -[0146]

+[0157] -[0167] -[0234] +[0345]

-[0456] +[0567] +[1237] -[1246]

-[1267] +[1357] -[2347] +[2456]

-[2457] -[2567] +[3457]

The signs define an orientation of Σ.

How to prove that this 3-sphere is non-realizable?
In this case, the venerable Grassmann–Plücker rela-
tions suffice. These are polynomial relations that are
satisfied by the determinants of any d+ 1 points of a
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realization of Σ in d-space. The most basic ones are
the three-term GP relations Γ(S|ijkl) = 0 with

Γ(S|ijkl) = [Sij][Skl]− [Sik][Sjl] + [Sil][Sjk], (1)

which are valid for any subset S ⊂ {1, 2, . . . , n} of size
(d−1), and any four indices i, j, k, l ∈ {1, 2, . . . , n}\S.
A typical 3-term GP relation in our example is

0 = Γ(045|1267)

= [04512][04567]− [04516][04527] + [04517][04526].

By permuting the entries inside these determinants,
we can change their signs — even permutations will
leave the sign unchanged, while odd permutations will
flip it. A particularly advantageous way of changing
the signs is

0 = Γ(045|1267)

= (−1)[01425](−1)[05674]

− [04651](−1)[24750]

+ [01574] [24560]

= [01425][05674] + [04651][24750] + [01574][24560].

The advantage of rewriting Γ(045|1267) in this way is
that now all determinants are positive! For example,
[01425] > 0 because [01425] = −[01245], and [01245]
is the “signed slack” of the point x5 with respect to
the facet [0124] in the supposed convex realization of
Σ; but the orientation of 0124 in Σ is negative by the
above list. The other determinants can be similarly
checked to be positive.

But this expresses zero as a positive combination
of positive numbers, which is impossible; therefore,
there is no convex realization of this 3-sphere.

2 The non-realizability of Zheng’s 3-sphere

To explain why Zheng’s combinatorial 3-sphere Z is
important, let’s fix definitions. A (d− 1)-dimensional
simplicial complex is balanced if its 1-skeleton is d-
colorable in the graph-theoretic sense, i.e., its vertices
can be colored with d colors in such a way that the
endpoints of all edges receive different colors. More-
over, a (d − 1)-dimensional balanced simplicial com-
plex Σ is balanced k-neighborly if each k-subset of the
vertex set that contains at most one vertex of each
color class is actually a face of Σ.
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Now we can say why Zheng’s example Z is impor-
tant — in fact, it is important in at least two ways.

First, there has been a lot of work on analogies
between combinatorial data in the balanced and the
non-balanced settings [JM18, JMNS18, Ven19]. For
example, one would like to have a balanced analogue
of the celebrated Upper Bound Theorem by McMullen
and Stanley. For this, in particular one would like bal-
anced analogues of the extremal examples to even ex-
ist, i.e., one would like to construct infinite families
of balanced k-neighborly simplicial spheres. What
Zheng shows in [Zhe20a], however, is that (i) there
is no balanced 2-neighborly homology 3-sphere on 12
vertices; (ii) there is no balanced 2-neighborly homol-
ogy 4-sphere on 15 vertices; (iii) but taking suspen-
sions over Z yields a balanced 2-neighborly homology
(3 +m)-sphere on 16 + 2m vertices for every m ≥ 0.

The second reason why her example is important
lies in the fact that in [PPS12], the authors study
which graphs are realizable as the 1-skeleton of poly-
topes. The case of multipartite graphs was not treated
there, and to date the only polytope whose graph is
known to be the multipartite graph K4,4,4,4 is the 4-
dimensional cross polytope.

We can now show for the first time that Z is not
realizable as the boundary complex of a convex poly-
tope, and therefore that Z does not yield a new poly-
tope whose graph is K4,4,4,4.

Theorem 2 Zheng’s balanced sphere Z is not poly-
topal.

Proof. An orientation of the facets of Z is given by
the following list:

-[048c] +[048e] +[049c] -[049d] +[04ad]

-[04ae] +[059d] -[059f] -[05ad] +[05ae]

-[05be] +[05bf] +[068c] -[068e] -[069c]

+[069e] -[079e] +[079f] +[07be] -[07bf]

+[148c] -[148e] +[14ae] -[14af] -[14bc]

+[14bf] -[158c] +[158d] -[159d] +[159f]

+[15bc] -[15bf] +[168e] -[168f] -[16ae]

+[16af] -[178d] +[178f] +[179d] -[179f]

-[24ad] +[24af] +[24bd] -[24bf] +[258c]

-[258d] -[25ac] +[25ad] -[268c] +[268d]

+[269c] -[269e] +[26ae] -[26af] -[26bd]

+[26bf] -[279c] +[279e] +[27ac] -[27ae]

-[349c] +[349d] +[34bc] -[34bd] +[35ac]

-[35ae] -[35bc] +[35be] -[368d] +[368f]

+[36bd] -[36bf] +[378d] -[378f] +[379c]

-[379d] -[37ac] +[37ae] -[37be] +[37bf]

We prove the non-realizability of Z in a similar way as
in Example 1, but we allow GP relations in which we
do not have full control over the signs. For example,
we can express

0 = Γ(18f|56bd)

= [18f56][18fbd] − [18f5b][18f6d] + [18f5d][18f6b]

= [16f85][18bdf]? + [15fb8][16f8d] + [158df][16f8b],

where all (black) signs are known to be positive in any
realization of Z, but the (red) sign with a question
mark can be either positive or negative. For instance,
[16f8] is a positively oriented facet because the ori-
entation of [168f] in the given list is negative, and
this implies that all determinants of the form [16f8x]

must be positive, because all points x lie on the same
side of the facet in any convex realization. On the
other hand, no four-element subset of [18bdf]? ap-
pears in the list of facets of Z, so the sign of that
determinant could be positive or negative.

To balance this uncertainty, we look for another
GP relation that involves [18bdf]?. A candidate is

0 = Γ(1bf|48de)

= [1bf48][1bfde] − [1bf4d][1bf8e] + [1bf4e][1bf8d]

= [14bf8][1bdef]? + [14bfd][18bef]? − [14bfe][18bdf]?.

On the one hand, we can eliminate the unknown sign
[18bdf]? by forming the polynomial combination

[14bfe] · Γ(18f|56bd) + [16f85] · Γ(1bf|48de),

but on the other hand we now have two additional
unknown signs to worry about.

Somewhat surprisingly, we are able to bring this
process to a closure by forming the following polyno-
mial combination of GP relations:

[36fb5]

(
[36fb4]

(
[14bf3]

(
[16f85]

(
[14bfd](−Γ(18f|46be))

+[16f84] Γ(1bf|48de)
)

+[16f84] [14bfe] Γ(18f|56bd)
)

+[16f84] [14bf8] [16f85] Γ(1bf|34de)

)
+[16f84] [14bf8] [14bfe] [16f85](−Γ(3bf|146d))

)
+ [16f84] [14bf8] [14bfd] [16f85] [36fb4] Γ(3bf|156e) .

It is encoded in the positive Grassmann–Plücker tree
in Figure 1, and multiplying it out as in Figure 2
proves the non-realizability of Z. �

One can check that arranging the GP polynomials
into a tree, i.e., a graph without cycles, guarantees
that the final certificate does not depend on the order
in which the certificate is multiplied out.

3 Finding positive Grassmann–Plücker trees

How do we go about finding such certificates? First,
we restrict to a useful subclass of GP relations that
permit algebraic elimination:

Definition 3 A three-term GP relation as in (1) has
no adjacent unknown solids if no two determinants
that are multiplied together have unknown sign.
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−Γ(18f|46be)

Γ(18f|56bd)

Γ(1bf|34de)Γ(1bf|48de)

−Γ(3bf|146d)

Γ(3bf|156e)

[13bdf]?

[13bef]?[18bdf]?

[18bef]?

[1bdef]?

Figure 1: Grassmann–Plücker tree proving the non-realizability of Zheng’s 3-sphere

0 = [36fb5]

(
[36fb4]

(
[14bf3]

(
[16f85]

(
[14bfd](−[16f84][18bef]? + [14bf8][16f8e] + [14e8f][16f8b])

+ [16f84]([14bf8][1bdef]? + [14bfd][18bef]? − [14bfe][18bdf]?)
)

+ [16f84] [14bfe]
(
[16f85][18bdf]? + [15fb8][16f8d] + [158df][16f8b]

))
+ [16f84] [14bf8] [16f85]

(
− [14bf3][1bdef]? + [13bdf]?[14bfe]− [13bef]?[14bfd]

))
+ [16f84] [14bf8] [14bfe] [16f85]

(
[14bf3][36fbd] + [36fb1][34dbf]− [13bdf]?[36fb4]

))
+ [16f84] [14bf8] [14bfd] [16f85] [36fb4]

(
[15fb3][36fbe] + [36fb1][35bef] + [13bef]?[36fb5]

)
= [14bf3] [16f84] [14bf8] [14bfe] [16f85] [36fb5] [36fbd] + [14bf3] [16f84] [14bfe] [15fb8] [16f8d] [36fb4] [36fb5]

+ [14bf3] [16f84] [14bfe] [158df] [16f8b] [36fb4] [36fb5] + [14bf3] [14bf8] [14bfd] [16f85] [16f8e] [36fb4] [36fb5]

+ [14bf3] [14e8f] [14bfd] [16f85] [16f8b] [36fb4] [36fb5] + [15fb3] [16f84] [14bf8] [14bfd] [16f85] [36fb4] [36fbe]

+ [36fb1] [16f84] [14bf8] [14bfd] [16f85] [36fb4] [35bef] + [36fb1] [16f84] [14bf8] [14bfe] [16f85] [34dbf] [36fb5] .

Figure 2: The certificate derived from Figure 1. The sign of each determinant with a “?” can be different in
different realizations, but the certificate is arranged in such a way that they all cancel. After multiplying out, all
surviving determinants are known to be positive in any realization, but the whole certificate must sum to zero.
Since this can’t happen, the realization cannot exist.

Next, we set up the GP graph in which we will
search for our certificate. Its nodes are

VΣ =

{
±Γ(S|ijkl) : Γ(S|ijk`) has no two adjacent

unknown solids

}
,

and the edges are labelled with the set S(Σ) of
normal forms [Pfe20, Definition 3.2] of solids of Σ.
There can be multiple edges between two nodes, but
they have different labels: two nodes Γ,Γ′ ∈ VΣ are
joined with an edge (π, {Γ,Γ′}) labelled π ∈ S(Σ)
in EΣ ⊆ S(Σ)×

(
VΣ

2

)
iff they share a solid π such that

σi = −σ′i, where σi, σ
′
i are the canonical signs [Pfe20,

Definition 4.4] of the terms containing π in Γ,Γ′.
Said differently, each GP polynomial is connected

to many other GP polynomials, and each connect-
ing edge is labelled with an unknown solid common
to both polynomials. At each node, there can be at
most 3 different labels, but potentially thousands of
incident edges with those labels.

Our goal is to find a tree in this graph in such a way
that each node has exactly one incident edge labelled
with each label occurring at that node. The task is
therefore to distill the lucky nodes out of this graph,

and for each lucky node the up to three lucky edges
out of the thousands of candidates; oh, and we’d like
the resulting tree to be as small as possible.

For this, we solve the integer program on the in-
teger indicator variables {xΓ : Γ ∈ VΣ} and {xe :
e = (π, {Γ,Γ′}) ∈ EΣ} defined in Figure 3. The in-
equalities for these variables xΓ, xe ∈ {0, 1} have the
following interpretation:

� (2) ensures that both endpoints of an edge
present in the solution are present;

� (3) ensures that at most one edge is selected be-
tween two selected nodes;

� (4) forces the solution to be a tree with at least
one node;

� (5) ensures that if a node Γ with an unknown
sign π? is present in the solution, then there is
exactly one edge of that label incident to Γ.

4 More results

We have implemented a search for positive GP trees in
the software framework polymake [GJ00]. With this

19



XIX Spanish Meeting on Computational Geometry, Madrid, July 5-7, 2021

min
∑

Γ∈VΣ

xΓ s.t. 2
∑

π: e=(π,{Γ,Γ′})∈EΣ

xe ≤ xΓ + xΓ′ for each {Γ,Γ′} ∈
(
VΣ

2

)
(2)

∑
π: e=(π,{Γ,Γ′})∈EΣ

xe ≤ 1 for each {Γ,Γ′} ∈
(
VΣ

2

)
, (3)

1 +
∑
e∈EΣ

xe =
∑

Γ∈VΣ

xΓ (4)

∑
Γ′: e=(π?,{Γ,Γ′})∈EΣ

xe = xΓ for all Γ ∈ VΣ, for all unknown π? ∈ Γ (5)

Figure 3: The integer program for finding positive Grassmann–Plücker trees

implementation, we can prove the non-realizability of
several previously inaccessible families.

4.1 Topological Prismatoids

In [CS19], Francisco Criado and Francisco Santos
introduced topological prismatoids, a combinatorial
abstraction of the geometric prismatoids used by
Santos [San12] to construct counterexamples to the
Hirsch conjecture. Criado and Santos construct
four combinatorially distinct non-d-step topological
4-dimensional prismatoids on 14 vertices, referred to
as #1039, #1963, #2669 and #3513, which imply
the existence of 8-dimensional spheres on 18 ver-
tices whose combinatorial diameter exceeds the Hirsch
bound. In [CS19], the question of polytopality of these
combinatorial prismatoids was left open.

Theorem 4 The topological prismatoids #1039,
#1963, #2669 and #3513 are not polytopal. �

4.2 Novik and Zheng’s centrally symmetric neigh-
borly d-spheres

In [NZ19], Novik and Zheng give several constructions
of centrally symmetric, highly neighborly d-spheres.
They are based on a family ∆d

n of cs-dd2e-neighborly
combinatorial d-spheres on 2n ≥ 2d + 2 vertices,
which arise as the case i = dd2e of an inductively con-
structed family ∆d,i

n of cs-i-neighborly combinatorial
d-spheres. Each of those contains a certain combina-
torial d-ball Bd,i−1

n , which is the only part that gets
deleted in a step of the inductive construction. For
d = 3, Novik and Zheng’s family {∆3

n : n ≥ 4} is
precisely Jockusch’s family from [Joc95].

Theorem 5 For n ≥ 6, no member ∆4
n of Novik and

Zheng’s family is realizable. �

Theorem 6 (with [Zhe20b]) For n − 2 ≥ d ≥ 3, no
member ∆d

n of Novik and Zheng’s family is realizable.
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