

RanAware, analysis and detection of

ransomware on Windows systems

Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de

Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

Written By: Pablo Aznar Puyalto

Under supervision of: René Serral Gracià

Barcelona, June 2022

1

Abstract

These past years the use of the computers increased significantly with the

introduction of the home office policy caused by the pandemic. This grow has been

accompanied by malware attacks and ransomware in particular. Therefore, it is

mandatory to have a system able to protect, to prevent and to reduce the impact

that this type of malware has in an organization.

RanAware is a tool that performs an early ransomware detection based on recording

file system operations. This information allows RanAware to monitor activity on the

file system, collect and process statistics used to determine the presence of a

ransomware in the system. After detection, RanAware handles the termination and

isolation of the malicious program as well as the creation of an activity report of the

ransomware operations.

In addition, this project performs an evaluation of the impact that RanAware has in

a system.

2

Acknowledgements

I would like to thank several people for this project. First of all, René Serral, the

director of this project, for guiding, counselling and supporting me during the

development of this project.

Secondly, I would like to thank my colleague from the masters, Rubén Barceló

Armada, for taking time to discuss and give his opinion regarding some of my

questions about this project.

Thirdly, to my brother José Manuel Aznar Puyalto, for supporting and helping me to

take decisions regarding the project and for taking his time review the report contents

and structure.

Fourthly, to my mother Maria Dolores Puyalto Gracia, for supporting me throughout

the development of the project and helping me with all the design related decisions

regarding the project report and presentation.

Lastly, to Daniela Leila Pernas Ferrari for designing the RanAware logo.

3

Table of contents

Abstract ... 1

Acknowledgements .. 2

Table of contents ... 3

List of Figures ... 6

List of Tables .. 7

1. Introduction .. 8

1.1. Project Goal .. 9

1.2. Motivation .. 9

1.3. Contents .. 9

2. Related Work ... 11

2.1. ShieldFS .. 11

2.2. RWGuard .. 11

3. Background ... 13

3.1. Ransomware .. 13

3.1.1. Common Ransomware Actions ... 14

3.2. Windows I/O .. 14

3.2.1. Windows Input/Output Manager ... 14

3.2.2. Windows I/O Model .. 15

3.2.3. IRP Function Codes... 15

3.3. Windows File System .. 15

3.3.1. File System Filter Drivers .. 16

3.3.2. Filter Manager.. 16

3.3.3. Filtering with Minifilter Drivers ... 17

3.3.4. Minifilter Drivers and User Mode Applications 17

3.4. Tools .. 18

4. Project Design .. 20

4.1. Driver Module .. 21

4.1.1. Filtered Operations ... 21

4.1.2. Actions ... 22

4.1.3. Communication with Client .. 22

4.2. Client Application ... 23

4.2.1. Driver Communication .. 23

4.2.2. Process Monitoring ... 23

4.2.3. Avoid detection of system operations .. 24

4

4.2.4. User Alerting, Logs and Quarantine .. 24

4.2.5. Additional Actions ... 25

4.3. Decoy Generator .. 25

5. Results .. 27

5.1. Ransomware Detection ... 27

5.2. Benchmarking .. 29

5.2.1. Overhead in I/O operations ... 29

5.2.2. Resources used by RanAware .. 34

5.2.3. Discussion ... 35

6. Project Methodology & Planification ... 36

6.1. Project Methodology ... 36

6.1.1. Tools .. 37

6.2. Project Planning ... 37

6.2.1. Initial Planning ... 37

6.2.2. Final Planning .. 39

6.2.3. Modification & Deviations from Initial Planification 40

7. Budget .. 42

7.1. Project Cost Estimation ... 42

7.1.1. Direct Costs ... 42

7.1.2. Indirect Costs .. 43

7.1.3. Contingency costs .. 43

7.1.4. Final Budget .. 43

8. Future Work / Improvements ... 44

8.1. Further testing on configuration parameters .. 44

8.2. Deep Analysis on RanAware Overhead .. 44

8.3. Use the driver to stop operations of malicious processes 44

8.4. Analyse entropy of memory buffers .. 44

8.5. Analyse binaries to find encryption traces in machine instructions 45

8.6. Detect deletion of the volume shadow copies 45

8.7. Implement a ranking system of processes ... 46

8.8. Create an Installer along with a certificate for the driver 46

8.9. Use IRP data to feed machine learning algorithms 46

8.10. Detect Ransomware notes .. 46

9. Considered Alternatives ... 47

9.1. CryptoAPI Hooking ... 47

10. Conclusion ... 48

5

References... 49

Appendix A: Installing the driver manually ... 53

Appendix B: Benchmarking data summary ... 55

Glossary .. 57

6

List of Figures

Figure 3.1: Simplified I/O stack .. 17
Figure 4.1: RanAware design diagram ... 20
Figure 5.1: Comparison of writing 10 files .. 30
Figure 5.2: Comparison of writing 100 files .. 31
Figure 5.3: Comparison of writing 1.000 files ... 32
Figure 5.4: Comparison of writing 10.000 files ... 33
Figure 6.1: Scrum methodology ... 36
Figure 6.2: Google Meet logo ... 37
Figure 6.3: Telegram logo.. 37
Figure 6.4: Initial Gantt planning .. 38
Figure 6.5: Final Gantt planning ... 39

7

List of Tables

Table 5.1: Ransomware test summary .. 28
Table 5.2: Acronym table for the test nomenclature .. 29
Table 5.3: I/O overhead summary .. 34
Table 5.4: System resource usage .. 34
Table 5.5: RanAware disk usage ... 35
Table 6.1: Initial estimated time ... 38
Table 6.2: Final Project dedication .. 40
Table 7.1: Human costs... 42
Table 7.2: Material costs ... 42
Table 7.3: Direct costs .. 43
Table 7.4: Indirect costs .. 43
Table 7.5: Total costs .. 43
Table B.1: Low load benchmark data .. 55
Table B.2: Medium load benchmark data ... 55
Table B.3: Heavy load benchmark data ... 56

8

1. Introduction

Due to the COVID-19 pandemic people and companies have become more reliant on

computers and online business; thus, leading to a drastic increase of ransomware

attacks and other types of malware in general [1].

Ransomware is a class of malware that aims to block or deny the access to a victim’s

machine and asks for a ransom payment to recover the system. Ransomware attacks

can be distinguished in two categories, locker ransomware and crypto ransomware.

While the former focuses on locking the access and disabling some services on the

victim’s machine, the second is characterized by encrypting the files on a device, as

a result immobilizing or blocking a system that remains powerless without access to

the decryption key [1].

Crypto ransomware uses secure and standard cryptographic algorithms, designed to

be reliable and unbreakable, to encrypt the data. This makes them especially

dangerous since the recovery of the encrypted data is supposedly impossible without

the knowledge of the decryption key. For this reason, crypto ransomware is

considered to be more threatening than locker ransomware, since even though the

system is available, the information may be lost forever. This is also the reason why

crypto ransomware are more used than locker ransomware.

The goal of the cybercriminals that use ransomware is usually the financial gain. For

this reason, cybercriminals tend to target big companies or public institutions, as

these are more likely to pay a high ransom. However, individuals and small

companies are also victims of a ransomware attacks. Therefore, every user should

be protected against them.

In this past year, 2021, there has been some noticeable Ransomware attacks, for

example; the attack against Colonial Pipelines that took place in May 2021, affected

the operations of a major fuel supply chain in the United States of America. The

company had to pay around $4.4 million dollars. Another attack that happened in

2021 was the attack performed by the ransomware group PYSA against the

Universitat Autònoma de Barcelona (UAB). Even when the public entity did not pay

the ransom, the estimated cost to restore the system and functionalities is around

€2 million euro. In addition, the consequences of this attack are still affecting the

university and its students since the system is not completely functional as it was

before.

The cost of being a ransomware victim is not only the economic ransom that is asked

to free the system, that often is not paid, but the impact it has on the normal

availability and operability of the victim. Usually, a company affected by ransomware

will have a long period of downtime until the system is completely recovered that

implies an economical loss, often comparable to the amount that is being asked by

the cybercriminals.

For these reasons it is crucial to be protected against ransomware attacks, the most

optimal protection is an early detection to be able to identify and stop the

ransomware before it is able to encrypt the whole system, hence minimizing the loss

of the victim.

9

1.1. Project Goal

The aim of this project, RanAware, is to build a lightweight system that is able to

perform an early detection of crypto ransomware and minimise the potential damage

that can cause into a system.

This project focuses on crypto Ransomware since they are the most common and

critical type of ransomware nowadays. The target system is Windows, because is the

most used platform in computers and the one that is mostly targeted by ransomware

attacks.

RanAware detects ransomware using different methods; first, by strategically placing

and monitoring decoy files, which are specially crafted files that should never be

written into, to detect malicious processes trying to modify them. Second, RanAware

is able to determine potential malicious processes by monitoring them along with the

file system operations that happen in the system. Finally, RanAware stops malicious

processes, provides a log of what are the operations performed by the terminated

suspicious processes and ensures that these are never executed again in the system.

1.2. Motivation

The damage caused by ransomware attacks in an organization or an individual is

incredibly high, not only because it encrypts all the personal or important data, that

will be possibly lost, but also because the downtime needed to recover from these

attacks is usually as damaging as the loss of data.

During 2019 the computational infrastructure of my father’s small business was

affected by Ransomware twice. Having seen first-hand the potential damage of

ransomware attacks to individuals or small business paired with the increase of

ransomware cases during the pandemic motivated me to investigate and develop a

system to help anyone that can be affected by ransomware, big companies or

individuals.

After researching on the topic, I found that the majority of the work uses Machine

Learning as a tool to implement an intelligent system to early detect ransomware

based on their behaviour. Despite the good performance that a Machine Learning

system provides, the cost of creating and maintaining an algorithm cannot be

overlooked. For this reason, RanAware focuses on a simpler approach for an early

ransomware detection system, since I believe that ransomware characteristic

behaviour can be detected by other means, avoiding the costs of the machine

learning algorithm implementation and maintenance.

1.3. Contents

This thesis is divided in several sections as follows: First, I will comment on some

proposed products to detect and prevent ransomware. Second, I will expand on the

common Ransomware functionalities as well as some Windows system mechanisms.

Third, I will explain and develop the work done in this thesis. In the following chapter,

I will present the results of the thesis, first the results testing against diverse

ransomware families and later an evaluation of the overhead and the cost it implies

using this product on a system. Fifth, I will comment on the project planification

10

followed by the budget for the project. Then I will focus on the improvements and

future work continued with work that was developed but later discarded. Finishing

with the conclusions of the project.

11

2. Related Work

Ransomware attacks have been growing over the years and so has the research in

the academic community. Many studies that investigate the characteristics and

behaviour of ransomware [2]–[4] and use them to propose techniques in order to

detect them have been presented [5]–[10]. In addition, several survey papers have

been redacted to summarize the research endeavours and to provide a general view

of the ransomware scene [1], [11]. Moreover, some papers proposing products to

early detect ransomware and to prevent and mitigate the damage have been

published [12], [13].

In this section I will focus on commenting two papers that propose different systems

to detect ransomware as early as possible to mitigate the damage done.

2.1. ShieldFS

ShieldFS is an extension of the filesystem that is able to distinguish ransomware from

benign processes during runtime [12].

ShieldFS authors have created a machine learning classifier based on the low-level

windows operations, IRPs, that is able to distinguish between a benign process and

a ransomware based on the file-system operations.

In addition, ShieldFS is able to work with ransomware that use code injection to mask

their operations by maintaining a history of the operations of the processes.

ShieldFS looks for indicators of the use of cryptographic primitives scanning the

memory of any process identified as malicious. ShieldFS also proposes a shadowing

mechanism to recover the files encrypted by a ransomware.

2.2. RWGuard

RWGuard is a product that employs three different monitoring techniques to detect

ransomware at an early stage [13].

The first technique that RWGuard uses are decoy files, which are files that should

never be written, placed strategically around the system. The second technique used

is monitoring the file operations of the processes at IRP level, RWGuard has a

machine learning classifier able to predict if the process is benign or a ransomware

based on this data. The third technique consists of monitoring file changes (e.g.,

create, delete and write operations) to determine anomalous changes.

Furthermore, RWGuard performs library hooking of the CryptoAPI of Windows in

order to intercept and monitor all file encryptions. The objective is to store the keys

used for encryption by malicious processes in order to recover the encrypted files

after a ransomware attack.

RWGuard also implements a file classification mechanism that, after receiving the

decision taken by the process monitoring classifier and the file monitoring module,

uses the information obtained with the crypto-tool to determine if it is an operation

performed by a Ransomware or a legitimate process.

12

The main difference of RanAware with the rest of the projects found in the research

field is that RanAware does not use Machine Learning to detect ransomware

processes. It combines state-of-the-art techniques with its own process monitoring

strategy to infer the presence of ransomware. Additionally, RanAware implements a

new system to ensure that these malicious processes are not executed again in the

victim’s computer.

13

3. Background

In the next sections of the thesis, I will explain in some extent the knowledge required

to better understand the work performed in this thesis and the decisions made

throughout the development of the project.

I will start expanding on the definition of ransomware and their most common

actions. Following this the Input/Output (I/O) model of Windows will be discussed

since it is the main focus of RanAware. Finally, the file system filter drivers will be

explained since it is important for the understanding of the thesis.

3.1. Ransomware

In order to better understand the project and RanAware functionalities, first it is

important to understand the behaviour and characteristics of ransomware and how

can we use these in order to identify them.

A ransomware is a type of malware that blocks and/or encrypts all the files in the

compromised system, then offers the possibility to recover them if a ransom is paid.

Ransomware often use threats like publishing sensitive data or destroying the data

in order to blackmail the victim into paying the ransom.

As commented before, two types of ransomware can be distinguished: locker

ransomware, that focus on blocking the access to the infected device and crypto

ransomware, that focus on encrypting the data on the device. Both types of

ransomware ask for a payment in order to recover the system. However, crypto

ransomware is the most used, therefore from this point all the ransomware concepts

will be focused in crypto ransomware.

A ransomware attack can be divided in several stages described as follows:

• Infection, the ransomware infects the machine when the victim executes a

malicious program that can be obtained via a spam email, a compromised

web access, a security exploit or other methods of malware propagation. This

stage usually includes the privilege escalation of a ransomware.

• Command and Control, the ransomware establishes communication with a

Command and Control (C2) server managed by the attackers. This server is

responsible of receiving information of the victim’s machine and controlling

some actions of the ransomware, for example, when to start the encryption

process and to provide cryptographic keys.

• File Encryption, once the ransomware is inside the system, proceeds to lock

the victim’s files or device. Ransomware encryption has two approaches:

Either it crawls the system encrypting all the files found in the device or it

targets specific critical system structures like the Windows File Table.

• Extortion, following the encryption process, a ransomware usually creates a

ransom note offering the decryption key in exchange for a ransom.

14

3.1.1. Common Ransomware Actions

Based on the actions commented above, it can be inferred that ransomware have a

remarkable characteristic behaviour and often follow specific patterns of activity [2],

[7], [9]–[11].

One of the most indicative behaviours of ransomware is the file interaction or file

system activity. Ransomware perform several actions related with files, namely,

file creation, reading, writing, modification or deletion. Usually, ransomware creates

files containing the ransom note in each directory where an encrypted file can be

found. When encrypting a file, the encrypted contents are written into a new file or

overwriting the contents of the legitimate file. Ransomware also deletes temporary

files or some system files. It is also common for ransomware to modify the extension

of the encrypted files with the name of the ransomware.

The other most representative aspect of ransomware is the usage of encryption.

Ransomware uses standard algorithms, like AES, ChaCha or RSA, to encrypt the files

of the infected device. Sometimes ransomware uses the cryptographic API available

on the system; however, the great majority now uses their own cryptographic

implementations of the algorithm.

Another activity characteristic of ransomware is the communication with a

Command-and-Control server (C2). The ransomware communicates with this

server to send information of the infected device and to receive cryptographic keys

to be used for the encryption. Usually, the keys received by the C2 server are public

keys used to encrypt the symmetric keys used by the ransomware to encrypt the

files.

Ransomware also tends to modify the Windows registry in order to achieve

persistence in the infected device. The most common operation is to register to be

executed each time the computer is powered on.

One more action that ransomware performs in Windows systems is the deletion of

the volume shadow copies [14]. Volume Shadow copies are backups of the critical

files of the system created automatically by Windows. Ransomware deletes them in

order to hinder the recovery capabilities of the system.

All these operations can be used in order to identify the presence of a ransomware

in a device.

3.2. Windows I/O

3.2.1. Windows Input/Output Manager

Input/Output (I/O) operations refer to any operation, program or device that

transfers data to or from a computer. Typical devices that perform I/O operations

are: keyboards, mice, disk drives, external drives, etc. Device drivers provide the

necessary software that serves as a connection between the external devices and the

operating system [15].

The Windows kernel-mode I/O manager is in charge of the communication between

applications and the interfaces provided by device drivers. The communication

15

between the operating system and device drivers is fundamentally done through I/O

request packets (IRPs). IRPs are similar to network packets; they are exchanged

from the operating system to the specific drivers and from one driver to another.

3.2.2. Windows I/O Model

Every operating system has an I/O model for handling the data flow to and from the

peripheric devices. The Windows I/O model has the following features [16]:

• All I/O requests to drivers are sent as IRPs.

• I/O Operations are layered. User-mode subsystems call I/O services, exported

by the I/O manager, so this can carry out the I/O operations in behalf of the

application or the user. The I/O manager creates one or more IRPs for each

call, and routes them through the corresponding drivers.

• The I/O manager defines a set of standard routines that drivers can support.

3.2.3. IRP Function Codes

I/O Request Packets (IRPs) are kernel structures that device drivers use to

communicate with each other and with the operating system. An I/O operation is

described by one or more IRPs.

Each IRP is identified by a major function code (IRP_MJ_XXX), which tells the driver

or the underlying device driver which operation should carry out to satisfy the I/O

request [17].

Some of the IRP major codes that are sent to drivers are:

• IRP_MJ_CREATE: Sent when there is a request to open a handle to a file object

or device object [18].

• IRP_MJ_CLOSE: Indicates that the last handle of the file object that is

associated with the target device object has been closed and released [19].

• IRP_MJ_READ: Sent any time following the successful completion of a create

request. Usually, an application has requested a data transfer to a device. In

the context of files, it is sent when reading from a file [20].

• IRP_MJ_WRITE: Is very similar as the previous code. In the context of files,

it is sent when modifying the contents of a file [21].

• IRP_MJ_QUERY_INFORMATION: Sent to obtain metadata about a file or file

handle [22].

• IRP_MJ_SHUTDOWN: Sent to notice that the system is being shut down [23].

In addition, some of the IRP major function codes are accompanied by IRP minor

codes (IRP_MN_XXX) that taken together allow to identify exactly what function is

being requested.

3.3. Windows File System

A file system is the structure that an operating system uses to control how data is

stored in and retrieved from the storage devices, usually disks. All the operations

related with files like creation, modification, deletion and so on, are operations that

need to go through the file system as these operations are modifying the storage.

16

The Windows file systems are implemented as file system drivers working above the

storage system.

3.3.1. File System Filter Drivers

A file system filter driver, or minifilter driver, is an optional driver that adds value or

modifies the behaviour of the system by intercepting requests targeted at a file

system, or another file system filter driver. This interception allows a minifilter to

extend, replace or modify the functionality of the original request. Some examples of

minifilter drivers are: anti-virus filters, backup drivers, encryption products [24].

3.3.2. Filter Manager

The filter manager (FltMgr) is a kernel-mode driver that implements and exposes

functionalities required in minifilter drivers so these do not have to implement and

manage the complexities of file I/O.

The filter manager is automatically attached to the file system stack when a minifilter

driver is loaded. A minifilter is attached to the file system stack indirectly, by

registering the desired I/O operations it’s going to filter to the filter manager [25].

There can be several minifilter drivers attached to a single file system stack, with the

objective to determine the load order of the minifilter drivers Windows uses the

altitude. Each minifilter driver must have a unique altitude identifier. The altitude of

a minifilter driver is used to ensure the load order of the different minifilter instances

and to determine the order that the filter manager calls the minifilter drivers to handle

the I/O operations [26].

The following figure illustrates a simplified I/O stack with the filter manager and three

minifilter drivers.

17

Source: https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-
concepts

Figure 3.1: Simplified I/O stack

3.3.3. Filtering with Minifilter Drivers

A minifilter driver can filter IRP based I/O operations, fast I/O and file system filter

operations. For each of the I/O operations it chooses to filter it registers a

PreOperation callback routine and/or a PostOperation callback routine. When the filter

manager is handling an I/O operation, it calls the appropriate callback routine for

each minifilter driver that has registered for that operation. When the callback

returns, the filter manager calls for the appropriate routine of the following minifilter

in the file system stack that has registered for the operation. The operations are

identified with the corresponding IRP major function code.

Using Figure 3.1 as an example, assume that all three minifilter drivers have

registered for the same I/O operation. The filter manager would call their

PreOperation callback routines in order of altitude, from highest to lowest, and then

it would forward the I/O to the next file system device driver. When the I/O request

is completed, the filter manager receives the request for completion, and it would

call the PostOperation callback routines of the registered minifilters in reverse order,

from lowest to highest.

3.3.4. Minifilter Drivers and User Mode Applications

The filter manager supports bidirectional communication between user-mode and

kernel-mode through communication ports [27].

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts

18

The minifilter driver creates a communication server port specifying the security

parameters, a callback to handle when a client connects, another callback to handle

disconnection of clients and a callback to process the received messages.

Once the communication port is created, the minifilter begins to listen for incoming

connections to the port. When a user-mode attempts to connect to the port, the

connection callback is called to handle the creation of a new connection. A connection

is only accepted if the user-mode caller has sufficient permissions as specified by the

security descriptor on the port. Each connection with the driver gets its own message

queue and private endpoints.

Once the communication is established, a user-mode application can send messages

to the minifilter driver that will be handled by the registered callback. The minifilter

driver can reply to the received messages and can also send messages to the user

application.

Whenever an endpoint closes, either kernel-mode or user-mode, the connection is

terminated. When the connection is closed from the user-mode side, the disconnect

callback of the minifilter driver is called so it can close its handle to the connection.

3.4. Tools

In this first section I am going to present the different tools I have used in order to

develop the project.

Git [28] is used to manage and work with the code. Git is a version control system

designed to handle projects fast and efficiently. I paired Git with GitHub [29] to store

the code online and be able to work using different machines.

Visual Studio 2019 Community Edition [30] is the Integrated Development

Environment (IDE) that I used to develop and compile all the versions of the code. I

had to use this IDE since it is the one that is compatible with the Windows Driver Kit

(WDK)

Windows Driver Kit (WDK) [31], is used to develop, test and deploy drivers for

Windows. The WDK provides the tools needed to develop minifilter drivers.

VMWare Workstation Pro [32] is a virtualization software. I used virtual machines

in order to test the driver since I had to run ransomware samples and I did not want

to deliberately infect my computer with ransomware.

WinDBG Preview [33] is the new version of the WinDbg, the debugger for Windows

systems, with graphical interface, renewed visuals and some more functionalities. I

used WinDBG Preview to debug the Windows Kernel and the driver.

VirtualKD-Redux [34] is a tool that allows to automatically launch and attach the

WinDBG Preview to a remote instance of Windows running in a virtual machine.

Debugging the Windows kernel is comparably easier using this tool than preparing

all the environment manually.

DebugView [35] is an application that allows to monitor debug output messages of

a local or network system. It can show the Win32 debug output and Kernel-mode

output. Used to review the correct functionality of the programmed driver.

19

Process Monitor [36] is a monitoring tool for Windows that shows real-time all the

file-system, Registry and process/thread activity in the system. I used this tool to

review some Ransomware actions and the actions of RanAware.

Conti source code [37], Conti is a ransomware developed by a Russian ransomware

group. With the recent Russian conflicts, a lot of cyberattacks were launched and the

source code of the Conti ransomware was leaked by a twitter user [38]. I used this

code to investigate which are the actions of a state-of-the-art ransomware and how

are they performed; thus, gaining insight on what operations should RanAware focus

to detect ransomware.

20

4. Project Design

The great majority the ransomware operations mentioned in section 3.1.1 lead to file

modification or file system, increasing its activity. As a consequence, a great strategy

to detect ransomware is to monitor the file system, particularly file modifications.

For this reason, RanAware focuses on file modifications and file system operations to

detect ransomware activity. Initially, the idea was to monitor encryption API calls,

which is a common trait of ransomware. However, given that most ransomware

implement their own custom encryption methods, the approach was discarded, for

more information refer to section 9.1.

RanAware is composed of different modules. The first module is a file system filter

driver or minifilter driver that monitors file operations occurring in the system. The

second component is a user application that communicates with the minifilter driver,

reading the information about the I/O operations and which process performed them.

Then, by maintaining process statistics and decoy file monitoring, the application

determines whether a process is a ransomware or not. After detecting a ransomware

process, RanAware stops it, generates a log of the operations this process has

performed and quarantines the executable to ensure it is never executed again, at

least by any legitimate user. The third and last component is a decoy file generator

that ensures to strategically generate decoy files, that are files that should never be

modified, throughout the system. This design is depicted in Figure 4.1.

Figure 4.1: RanAware design diagram

In the following sections, I will focus on the details of each one of these components

and the reasons I chose to implement them.

21

4.1. Driver Module

At the end, all of the ransomware operations related with files or file system activities

are Input/Output operations directed to disk. In Windows, these I/O operations are

translated into IRPs that must be handled by the I/O manager and the corresponding

drivers in order for them to be completed.

For this reason, the first module of RanAware is a minifilter driver. This driver is

constantly monitoring the I/O operations that occur in the system and logging

information about them. The driver stores the data of the requests until the client

application reads them from the driver’s log.

With this module RanAware will log all the file system operations of any process of

the system, including any possible ransomware running in it.

For each I/O operation logged, the minifilter driver stores different pieces of

information; the most relevant data stored by the driver is: the time when the request

is issued, the time when the request is completed, the ID and the name of the process

that issued the petition, the ID of the thread that issued the petition and the IRP

major and minor codes that identify the I/O operation. In a particular case, it also

stores whether the operation is a rename or not.

The driver registers with a high altitude, specifically 37000, that is the one that

corresponds to drivers observing and reporting file I/O [39].

4.1.1. Filtered Operations

As commented before, each I/O operation is identified by different IRP major codes

and a driver that wants to filter a given I/O operation must register for the IRP Major

code that identifies the I/O operation.

The RanAware driver does not monitor all the I/O operations that happens in the

system. The driver focuses on the operations that are more pertinent for detecting

the activity of ransomware, these are:

• File reading: Identified by IRP_MJ_READ.

• File writing: Identified by IRP_MJ_WRITE.

• File attribute modification: Identified by IRP_MJ_SET_INFORMATION

• Directory enumeration and modification: Identified by

IRP_MJ_DIRECTORY_CONTROL

RanAware only filters these operations since are the most relevant related to

ransomware activity in the file system. The file reading and writing is used by

ransomware to read the contents of the files before encrypting and to write the

encrypted contents back. The file attribute modification is monitored considering that

ransomware habitually adds the ransomware name as a file extension after

encrypting. Finally, the directory enumeration is a common operation performed by

ransomware in order to list all the files of a directory.

22

4.1.2. Actions

Given that the information that the RanAware minifilter records for each operation is

the same, the minifilter driver registers the same PreOperation and PostOperation

callback routine for all the I/O operations its filtering.

During the handling of the PreOperation callback, the driver records all the

parameters available at the start of the operation. When the PostOperation callback

is called, the minifilter driver records the final parameters that could not be stored

before the operation is completed, like the status of completion, the completion time

or the information returned when completing the operation.

The minifilter driver maintains a double-linked list storing the records of all the logged

operations. Whenever a new operation is logged, the driver allocates a new record

and stores it into its linked list.

4.1.2.1. Identifying a Rename Operation

There is a special case regarding one operation that needs additional treatment: the

rename operation. The IRP_MJ_SET_INFORMATION [40] code represents all of the

operations that request to set metadata of a file or file handle; this means that this

IRP code covers a great quantity of I/O operations. Since RanAware is interested in

the rename operation, whenever the driver receives this IRP code needs to process

the request data in order to recognise a rename operation.

To identify the rename operation, RanAware uses one of the parameters of the

IRP_MJ_SET_INFORMATION, the FileInformationClass parameter that specifies the

type of information to be set to the file. This parameter can take several values, for

the RanAware driver scope, the key value is FILE_RENAME_INFORMATION.

Whenever the driver is processing the IRP of an operation identified by

IRP_MJ_SET_INFORMATION and the FileInformationClass of this IRP takes the value

of FILE_RENAME_INFORMATION, the driver understands that this operation

corresponds to a rename of a file, therefore it stores in the record of this operation

that it is a rename.

4.1.3. Communication with Client

The last action the driver performs is communicating with the client application to

send the data of the logged operations.

The driver creates a communication port during initialization time. This port is used

by the client to start a communication that lasts until one of the two parties closes

the connection.

Once the connection is created, the driver will receive commands from the user

application. The only command that the driver responds for the moment is the

GetLogs command.

When the driver receives the GetLogs command it iterates through the double-linked

list that stores all the log records and copies them one by one to a client buffer until

the buffer is full. If there are no more records left, the driver returns an error code

indicating that there is no more information to read.

23

4.2. Client Application

The second module of RanAware is the client application. This application

communicates with the driver, writes a log of all the operations in the system,

monitors process and decoy files and is the responsible of taking the final decision to

identify ransomware processes.

The first action that the application does is to communicate with the minifilter driver

to retrieve the log records of the file system operations. The application analyses this

data and by monitoring the activity of decoy files and maintaining statistics of

processes identifies ransomware activity. In addition, all the data that the application

reads from the driver can be written into a user file or through the screen.

After finding a malicious process the RanAware application will terminate it, store a

log of all the operations the process has performed in the system and ensure that

the process is never executed in the system again. The logs provide useful

information in order to leverage the impact on the system by the malicious process.

4.2.1. Driver Communication

The communication between the driver and the application is a straightforward task.

The application initiates a communication with the driver during the start-up.

Then, the application creates a thread that is constantly communicating with the

driver to receive log records. Upon receiving a log record the thread analyses the

data of the record, looking for suspicions file modifications, updating the statistics of

tracked processes and performing any action if necessary.

4.2.2. Process Monitoring

With the information recovered from the logs received by the driver, RanAware

application monitors the file activity in order to detect unauthorized access to the

decoy files, which is any operation that tries to modify the contents of the file, and

maintains statistics of the processes that are useful to identify a ransomware.

The first thing that RanAware application investigates in a file operation log is whether

the operation is directed to a decoy file or not. In the case that the operation is a

writing operation and is directed to a decoy file, the application will assume that the

process that issued the application is a malicious process. For more information refer

to section 4.3.

The primary process statistic that RanAware records is the number of file renames in

a set period of time. The reasoning behind this is the fact that ransomware normally

tends to change the file extension after encrypting a file. The renaming of a file is not

a very common operation that an average user does, particularly if the operation is

repeated several times in few seconds. This is the reason why the driver needs to

indicate which of the recorded I/O operations are rename operations.

The current configuration is set to determine a process as a ransomware if it performs

more than 10 renames in a period of 30 seconds, both amount of renames and time

interval are configurable parameters of RanAware. Ransomware attacks usually

operate as fast as possible and would produce far more renames in a given time

24

period, regardless the extra time that the encryption process of bigger files may

imply. Conversely, it is very unlikely for a user to perform this many rename

operations in the same time period. Therefore, the current configuration records the

benign operations but does not classify them as malicious.

In addition, the process statistics are maintained within a structure that is easy to

expand allowing the upgrade of it with new statistics or information that can be useful

to detect ransomware.

4.2.3. Avoid detection of system operations

RanAware must be sure that all the system processes can operate without any type

of intrusion, for this reason, it maintains a list of benign processes or directories that

are considered secure. These are the system directories that usually contain

legitimate applications of Windows such as “C:\Windows\System32”, “C:\Program

Files” or “C:\Program Files (x86)”. RanAware avoids monitoring processes that

belong to any of these directories since they are considered secure. This way allows

RanAware to not record any statistic of Windows internal processes so it uses less

resources and does not interfere with the system operations nor the user experience.

All the processes in the system directories are considered safe since malware is

usually not located in the system directories. In addition, in order for any malware to

be installed within these directories, requires that it is executed with administrator

privileges.

Consequently, any malware executed with administrator privileges could perform any

action in the infected computer such as: disabling RanAware, disabling the security

measures, changing permissions, installing itself into the system directories and so

on. This is the reason why RanAware assumes that a “system” process is benign,

since if a malware is executed with administrator privileges means that any action

taken by RanAware can be circumvented in some way by the malware.

4.2.4. User Alerting, Logs and Quarantine

After identifying a malicious process, the RanAware application will terminate it, alert

the user, store logs about the process activity and quarantine the malicious

executable.

The log file is stored in the RanAware local report directory located at:

“C:\Users\<User>\AppData\Local\RanAware\RanAware_Reports\”. The log contains

all the activity of the terminated process recorded by the driver. In here we can see

all the actions that this process has performed, over which files, the name and route

of the process’ executable, the time when these were performed, etc.

The alert informs the user that a suspected ransomware process has been found and

terminated. It indicates the route of the created log and recommends contacting with

the system administrator, if any, and performing a malware analysis in order to

detect other possible threats on the computer.

Finally, RanAware maintains a protected quarantine directory destined to store all

the malicious samples that has detected. This way, these are never executed again

25

in the victim’s computer unless they are deliberately executed by someone with

administrator permissions.

The access to this directory is restricted to administrator accounts and only read and

write permissions are allowed. Furthermore, whenever a new sample is quarantined

in the directory, the Access Control List of each sample, the Windows mechanisms to

describe the allowed operations for a given object, is modified so only administrators

can read and write the file and to ensure that it cannot be executed.

4.2.5. Additional Actions

RanAware application performs some additional actions apart from the mentioned in

the previous sections.

In order for RanAware to be able to terminate any process detected as malicious, it

must have the correct permissions [41], for this reason, during start-up, the

RanAware application modifies its privileges to circumvent any malicious process

trying to avoid termination.

In addition, the first time that the user application of RanAware is executed it

registers the decoy generator module as a task in the Windows machine so it is

executed automatically every time the computers powers on.

Whenever a process is terminated it registers the name of this process and the

executable route into a list so that any user or system administrator can take a look

at which are the malicious processes identified by RanAware.

4.3. Decoy Generator

Ransomware tends to have an aggressive behaviour; they start to iterate over all the

directories of the infected computer encrypting all the files found during the process

with the objective of affecting the maximum amount of information of the victim.

In some cases, some ransomware aims to affect only the important files of the

victim’s computer, these usually are the files that are created or accessed recently.

The objective is to avoid infecting files that are i.e., 2 or 3 years old, since they may

be not that important for the victim. Although this behaviour is not the one that I

have observed during the project testing.

Taking advantage of the aggressive behaviour of ransomware attacks I decided to

use a well-known technique known as decoy files. The decoy files are files that are

present in the system but should not be modified by any process at all.

This way, when RanAware detects a process that tries to modify a decoy file means

that it is with high probability, a ransomware.

All of the operations that are performed on a decoy file can be detected with the logs

obtained from the minifilter driver. The user application is able to distinguish which

process is performing the access; thus, avoid detecting the RanAware processes as

malicious.

The third module of RanAware is a decoy generator that is executed each time the

computer is powered on. Once executed, the decoy generator will generate several

26

decoy files throughout the system. The file contents resemble real contents of files

that can be found in any personal desktop computer.

The reason behind executing the decoy generator each time the computer powers on

is to have a recent creation and access time in the file properties.

27

5. Results

To ensure that RanAware is working as intended, is crucial to evaluate its

functionalities within real scenarios. However, it is also important and often

overlooked, to measure the impact that this type of projects have in a system’s

performance. In the literature, I did not find any information of the overhead that

the proposed solutions caused in a system; thus, I find this part of the project really

important.

All the tests have been executed in a virtual machine created in VMWare Workstation

Pro, with a configuration of 8GB of RAM, 4 processors and running Windows 10 Pro

version 21H2 in test mode.

The computer that executes the virtual machine is a laptop model MSI GF75 Thin,

running Windows 10 Pro version 21H1, with 16 GB of RAM, an Intel Core i7-10750H

CPU @ 2.60GHz (12 CPUs) and a 512 GB SSD disk.

RanAware is always executed the same way; the driver and the RanAware application

are running, additionally, the application writes all the records received by the driver

in a text file.

In this section I present first, an evaluation of RanAware against real ransomware

attacks and then an evaluation of the impact that RanAware has in a system

considering different scenarios.

5.1. Ransomware Detection

In order to determine the effectiveness of RanAware I downloaded several samples

of ransomware from different sources and I executed all of them in the virtual

machine mentioned before with RanAware running.

Previous to executing the ransomware a snapshot with a clean state of the machine

is prepared so it is possible to roll back to a clean system after a ransomware

execution.

The first two samples I executed are two educational ransomware programs, EDA2

and hidden-tear [42]. These samples perform the typical ransomware operations,

they first communicate with a Command and Control (C2) server in order to retrieve

a key, then start encrypting the files and finally changing the desktop image

background. For executing both samples I had to configure a local server to act as a

C2 server. In this case, RanAware is able to identify and terminate both samples.

The third sample I have executed is a sample of the LockBit ransomware. The

sample has been obtained from an online sandbox called AnyRun [43].

The SHA-256 hash of the sample is:

“0545f842ca2eb77bcac0fd17d6d0a8c607d7dbc8669709f3096e5c1828e1c049”.

In this case, RanAware is also able to identify and terminate this ransomware

before it can encrypt a significant number of files in the system.

BlackMatter is the fourth type of ransomware I executed to test RanAware. I obtained

the sample from the same webpage as the previous one, AnyRun, the SHA256 hash

is: “2f1404af9417dbbbe69d53cb0cc0d6f2fc79138c372ab3c498ec05f60dbdc9f3”.

28

Again, RanAware is able to detect and stop the ransomware before any critical

damage occurs in the system.

The last sample I tested RanAware with is a WannaCry ransomware. The sample

with SHA-256 hash:

“ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa” is

detected and terminated by RanAware successfully.

The behaviour of these ransomware samples is very aggressive and simple. Both the

LockBit and BlackMatter ransomware start scanning the root system directory, C:\,

recursively and encrypting all the files found. Although the two of them target

different files, it does not seem the ransomware searches for recent files or specific

file types. From the behaviour observed, LockBit ransomware encrypts everything it

finds in alphabetical order and BlackMatter in reverse alphabetical order, always

excluding the system directories since they do not have any right to modify the

contents. WannaCry sample attacks with a different approach, it starts encrypting

the contents of the directory where it is executed and then backtracks to the root

directory encrypting everything it finds. EDA2 targets a directory specified in its

configuration file and encrypts every file that is present in this directory or

subdirectories in alphabetical order, in this test EDA2 is launched against the root

directory, C:\. Finally, Hidden-tear starts the encryption process from the Desktop of

the current user and encrypts every file it finds in alphabetical order.

In Table 5.1 there is a summary of the ransomware samples launched that specifies

whether if they are detected by RanAware or not, the number of encrypted files and

the percentage of encrypted files over the total files in the system.

The estimated total number of files in the system is 155.000; this number is the

number of files scanned by an antivirus, Malwarebytes [44], during a complete

system scan. Although the total number of files in the system reported by Windows

is higher, around 528.369, a lot of these files are special system files that won’t be

encrypted by ransomware.

Ransomware Terminated by

RanAware

Nº of

encrypted files

% of encrypted

files

EDA2 Yes 10 0,006 %

Hidden-tear Yes 0 0,00 %

LockBit Yes 10-97 0,06 %

BlackMatter Yes 10-142 0,09 %

WannaCry Yes 10-30 0,02 %

Table 5.1: Ransomware test summary

The number of encrypted files shows the minimum and the maximum of encrypted

files obtained in several executions of the sample. The maximum number of

encrypted files depends on how fast the ransomware operates. Even when the

ransomware is detected when it encrypts at most 10 files, the issued operations

before detection can be greater, especially if the ransomware spawns several threads

to perform the tasks concurrently. Nevertheless, the total percentage of encrypted

files is extremely low.

Hidden-tear first file encryption targets a decoy file, as a consequence it is instantly

detected by RanAware. If the ransomware does not target a decoy file, it is detected

29

by the amount of rename operations performed in a small period of time; this is the

reason the minimum number of encrypted files is sometimes 10, that is the threshold

of file renames configured in RanAware.

5.2. Benchmarking

All of the programs that run on a system have an impact in the performance of it in

one way or another. Accordingly, RanAware also affects the performance of the

system that is protecting; hence, I evaluated the resources RanAware is using and

the overhead the minifilter driver implies on the I/O operations.

5.2.1. Overhead in I/O operations

The performance tests evaluate the overhead that the driver causes to the I/O

operations, particularly to the write operations that are the most common ones that

the driver is monitoring.

The tests consist of computing the elapsed time of writing the same 512 random

characters into 10, 100, 1000 and 10000 files. I first executed these tests without

RanAware running and then with RanAware enabled to compare the impact of the

whole project in the I/O operations.

In addition, I have considered three different scenarios regarding the load of the

system. In the first scenario the system has a low workload and only the benchmark

program is running. In the second scenario the system has a medium workload

with two live stream videos with a quality of 1080p playing in the background using

Microsoft Edge. In the third scenario the system is under heavy workload using the

same configuration as the previous scenario and additionally a game, Bombslinger,

and a movie are running in the system.

During the executions of the tests, the Real Time Virus Protection of Windows

Defender has been deactivated since it could start scanning the system or the files

that are being created while the test is executing causing a very significant impact

on the data obtained.

All the results that are presented in this section follow some code names described

in Table 5.2. This is done in order to have shorter names that are easier to represent.

Acronym Meaning

LL Low Load

ML Medium Load

HL Heavy Load

ND No Driver running

D Driver running

XF X Files created

Table 5.2: Acronym table for the test nomenclature

In the following figures I present the collected data of each experiment. I have

collected 100 samples for each number of written files, with and without driver and

with different system loads.

30

The data is represented in a boxplot, displaying the number of seconds needed to

write the contents of all the files. The boundaries of the box indicate the lower quartile

(25th percentile) and the upper quartile (75th percentile), and the horizontal line

inside the box represents the median. The outliers that exceed the upper limit, which

is the maximum value of the upper whisker, are discarded. There is one plot for each

number of written files and each plot includes the data for the executions with and

without a driver and for the different system workloads.

Figure 5.1: Comparison of writing 10 files

Figure 5.1 presents the time it takes to write 10 files. In this case when RanAware is

running and the system is under some pressure, the time to write the files increases

slightly.

It is important to remark that in this case, the results report that some file writings

are slower under a medium load than with a heavy load in the system. This is

probably caused because writing 10 files only is a very small amount of work that

can be affected by a lot of factors during execution such as cache.

31

Figure 5.2: Comparison of writing 100 files

Figure 5.2 that corresponds to writing 100 files, shows a similar behaviour regarding

the previous iteration of the test; when RanAware is running under a busy system,

the execution time reported by the test increases.

In this case, it can also be observed that when the system is under medium load, in

some occasions the test reports similar or higher execution times than when the

system is under heavy load. This is probably caused by the same reasons as with the

first iteration of the test, writing 100 Files is a light task that can be affected by

different factors.

At first sight, Figure 5.1 and Figure 5.2 start to indicate the beginning of a trend;

whenever the system is busy the time it needs to complete the writing requests

increases. This is more noticeable if we compare the times reported with a relaxed

system and a very busy one.

32

Figure 5.3: Comparison of writing 1.000 files

Figure 5.3 shows the time needed to write 1.000 files. In this test case the execution

of RanAware also increases the overall time needed to complete the writing requests,

although it is particularly noticeable when the system is under a heavy work load.

With the other system work loads, the differences in execution time are minimal.

The trend that started appearing in the previous executions is easier to identify; the

busier the system is, the more time it needs to complete the writing requests. Unlike

in the previous scenario, the difference between a medium workload system and a

heavy one is easily discernible.

33

Figure 5.4: Comparison of writing 10.000 files

Figure 5.4 shows the last iteration of the test that consist of writing 10.000 files.

Similar to the preceding test cases, in this iteration all of the trends mentioned above

are easy to recognize. RanAware influences the execution of the test but only seems

to affect when the system is under heavy load. In addition, the difference of execution

time between system workload levels is clearly identifiable.

As it can be observed in the Figure 5.3 and Figure 5.4 report extremely similar results

and show the most logical outcome of the tests; the busier the system is, the more

time it needs to complete the file writings. While the results of the two first iterations

of the test start showing this tendency, it is not until the test starts to perform a huge

number of operations that this is remarked.

Even though, the two first iterations show similar results when the workload of the

system is at medium or high levels, the difference in time between the two scenarios

is clearly distinguished in the last two executions of the test. This is due to the small

quantity of operations performed by the test in the initial iterations that can be

affected by a lot of different factors, like background processes or system checks.

The overhead caused by RanAware varies among the different executions of the test,

although it is only significant when the system is under heavy workload. In this case,

the overhead differs significantly between each test case, the reason behind this

variation is the background processes that at some time can influence the execution

of the benchmarking program.

In addition, it must be considered that RanAware is constantly writing the logs

retrieved from the driver into a file, that also can have impact on the tests when

RanAware is running. However, during the executions of the test, we observed that

the bottleneck is the CPU in most cases, which in the last scenario was operating at

100% of capacity, and not the disk that was operating between 0% and 4% of its

capacity. After careful observation we could not identify the culprit of this behaviour,

34

since Windows is a highly concurrent system the cause of this high CPU usage may

be caused due to many factors. The analysis of this behaviour is left as an important

part of our future work.

Table 5.3 presents a summary of the data introduced in this section along with the

overhead caused by RanAware in each test case.

Written
Files

Low Load Medium Load Heavy Load

No Driver Driver Overhead No Driver Driver Overhead No Driver Driver Overhead

10 0,000523 0,000509 -2,63 % 0,000770 0,000901 16,92 % 0,000763 0,000971 27,23 %

100 0,005190 0,005223 0,65 % 0,012330 0,011029 -10,55 % 0,011184 0,015727 40,61 %

1000 0,049238 0,051827 5,2 % 0,096632 0,095091 -1,59 % 0,125153 0,179759 43,63 %

10000 0,519502 0,532631 2,5 % 0,991071 0,961036 -3,03 % 1,535279 1,773325 15,50 %

Table 5.3: I/O overhead summary

All in all, from the data presented in this section, it can be observed that RanAware

has some impact over the system, especially when the load of the system is high, as

already mentioned we plan to further analyse the reason of this usage in our future

work, preliminary analysis shows that the culprit may be poor performance of the

web browser during the experiments.

5.2.2. Resources used by RanAware

To evaluate the resources used by RanAware I used different Windows API calls to

obtain the virtual and physical memory, the percentage of CPU usage used by

RanAware and the number of I/O operations that RanAware is performing.

Based on the results obtained from the previous section, RanAware activity affects

more the system when it is under a heavy workload; for this reason, the metrics

presented in this section are collected during the execution of the tests when the

system is under heavy workload.

Resources Total System

Resources

Used system

Resources

RanAware

resource usage

% RanAware

resource usage

Virtual Memory 9,25 GB 3,82 GB 5,8 MB 0,15 %
Physical Memory 8 GB 3,91 GB 12,5 MB 0,31%

CPU (%) 100 92,06 % 1,66 % 1,81%

Table 5.4: System resource usage

As can be observed in Table 5.4 RanAware resource usage over the total resource

usage in the system is certainly small. The amount of memory used mainly maintains

all the data structures that RanAware uses and the CPU usage is very low since the

actions that RanAware performs are not complex.

Table 5.5 shows the disk usage of RanAware after the execution for the test data and

the recollection of the system resource usage data.

35

RanAware Disk Usage

Read Operations 5

Write Operations 85767

Other I/O Operations 593979

Read bytes 0,76 MB

Written bytes 0,33 GB

Table 5.5: RanAware disk usage

RanAware disk usage is mainly determined by the operations that RanAware

performs to write the record logs retrieved from the driver into a file. Since RanAware

is constantly writing into a file, the written bytes are high; nevertheless, this is a

necessary task in order to obtain detailed logs of the events that are happening at a

file system level.

The amount of data written can be reduced by using RanAware application without

writing into a file. Although this configuration will reduce the amount of disk usage

by RanAware, the action logs of a terminated process will be less detailed since

RanAware will not store all the actions that occurred in the system; hence, having

only access to the most recent actions.

5.2.3. Discussion

RanAware adds an overhead to write operations, however, this is barely noticeable

besides when the system is under heavy workload.

On the other hand, the resource usage of RanAware is low, the most consuming

operations would be the writing of the logs, that I believe it is useful to determine

the actions of the terminated processes.

Overall, I believe that the resource usage of RanAware is low and the impact it has

in a system is assumable taking into account the protection that it offers.

36

6. Project Methodology & Planification

6.1. Project Methodology

This thesis has been developed following a pseudo-SCRUM methodology. SCRUM is

an agile framework that is based on iterative steps in order to develop a product as

a team. SCRUM is characterized by splitting the work into sprints, that have an

average duration of 2-4 weeks.

The work that is assigned to a sprint is divided into more granular tasks and these

are distributed among the members of the team. During a sprint, there may be brief

daily meetings or every two days in order to track the progress of the team and

possible issues that may occur.

When a sprint is finished, a retrospective is performed in order to evaluate the

weaknesses and strengths of the team during the sprint and take actions for the

following sprints. These actions are then taken into account in the next sprint

planification.

Source: https://www.scrum.org/resources/what-is-scrum

Figure 6.1: Scrum methodology

SCRUM is a very common methodology used by software development teams since

it makes easy to organize, distribute the tasks and keep the team synchronized.

However, as the team of this project is composed by two members, the developer

and the director, there is not much point to perform a full SCRUM methodology.

The work methodology followed in this project is similar to SCRUM in the sense that

the tasks were all in a backlog and each week the team members met in order to

discuss the work of the previous week and decide the next steps. Nevertheless, there

were no daily meetings nor retrospectives. Anytime the developer had some doubts

contacted with the director and a meeting was scheduled or the discussion was

performed offline, i.e., mail or telegram.

https://www.scrum.org/resources/what-is-scrum

37

6.1.1. Tools

The tools used to work with this methodology are the following:

• Google Meet: Used to perform some of the weekly meetings if it was not

possible to perform them face to face.

Figure 6.2: Google Meet logo

• Telegram: Used to re-schedule meetings, talk about small problems, etc.

Replaces the e-mails as a more interactive and fast way to talk between the

team members.

Figure 6.3: Telegram logo

6.2. Project Planning

Planning a project is essential in order to organize and decide which tasks are going

to be performed, estimate the time is going to be spent on each task and to have an

overall vision of the project progress and development. This allows to define

deadlines and tweak the project in order to meet the desired requirements.

In this section I’m going to present the initial planification defined at the start of the

project, followed by the final planification and finishing with expanding the deviations

and changes that the initial plan suffered.

I started with the thesis work on January 14th and I expect to finish it at the middle

of June. The duration of this project is about five months, considering half of January

and half of June.

6.2.1. Initial Planning

Figure 6.4 shows the initial planning using a Gantt diagram. Each of the columns of

a month represents one week of said month.

38

Figure 6.4: Initial Gantt planning

In this graphic, the overlapping tasks means that they were developed in parallel

during that period of time, since they are complementary or are related in some way.

Detailed planning information is defined in Table 6.1.

Estimated time

Task Dedication (hours)

Learning Phase 95

Research 85

Sample Research 10

Development Phase 200

Driver 70

User application 80

CryptoAPI Hooking 35

Decoys 15

Testing Phase 50

Testing 50

Reporting Phase 60

Report 55

Presentation 15

Total 405 hours

Table 6.1: Initial estimated time

In Table 6.1 I detailed the initial estimated number of hours dedicated to each task.

This estimation takes into account that the number of hours dedicated per week to

the project is not stable. Depending on other responsibilities outside the thesis I could

invest more or less time into developing the project.

It is remarkable that the testing phase is the longest one in time yet the hours

dedicated to it are low, this is because the testing is a continuous task performed

during all the development of the project. Every implementation is tested while it is

being developed, therefore the testing starts almost at the same time as the

development and finishes a little bit later.

39

Another important thing to remark is that during the Development phase there was

some investigation and learning steps in order to continue with the project, this is

included in the Development hours.

6.2.2. Final Planning

The planification of the project suffered from some modifications and delays that

ultimately lead to a deviation of 40 hours. In this section I am going to present the

final planning considering all the deviations and changes that occurred regarding the

initial planification. In the next section I will expand on the deviations and their

reasons.

Figure 6.5 shows the final planning using a Gannt diagram.

Figure 6.5: Final Gantt planning

Note that the Driver task inside the Development Phase is much longer than in the

initial planification, this is because some new modifications to the driver were added

and implemented during the final weeks of the task.

A more detailed comparison between the initial and final planification is shown in

Table 6.2.

40

Task Estimated Time

(hours)

Real Time (hours)

Learning Phase 95 95

Research 85 85

Sample Research 10 10

Development Phase 200 235

Driver 70 80

User application 80 130

CryptoAPI Hooking 35 20

Decoys 15 5

Testing Phase 50 50

Testing 50 35

Benchmarking 0 15

Reporting Phase 60 75

Report 55 60

Presentation 15 10

Total 405 hours 445 hours

Table 6.2: Final Project dedication

At the end, the Learning Phase did not require more dedication yet the time to be

completed was extended for the reasons commented in the following section. In the

development phase, some tasks were discarded and the focus shifted to the user

application and the process monitoring performed in it. Regarding the Testing Phase,

the test of the product took less time than expected but in contrast the benchmarking

task was added. Finally, the Reporting Phase took almost the same effort as expected

at the start of the project although I needed more time to complete it.

6.2.3. Modification & Deviations from Initial Planification

The project planning is needed to determine which tasks are going to be developed

and set deadlines in order to meet the goals. However, it is possible that due to

unforeseen events or other factors, the development of the project is affected;

therefore, the task planification has to be restructured.

In this section I am going to expand on the modifications and deviations to the initial

planification and its primary reasons.

6.2.3.1. Initial Phase

Due to COVID-19 and some unforeseen events that forced me to step away from the

project some time, the research took more time than expected.

This is the reason why in Figure 6.5 the Research and the Initial Phase lasts longer

than in the initial planification presented in Figure 6.4. Even when the number of

hours is similar to the originally planned, it took more time to finish this task.

6.2.3.2. Development Phase

Due to the reasons mentioned in the previous paragraph, the Development Phase

started later than expected. In addition, this phase was extended since some of the

tasks took more time than planned originally, mainly the driver development.

41

Furthermore, some of the tasks that were initially going to be developed were

discarded, specifically the CryptoAPI Hooking; for more details refer to section 9. In

contrast some new functionalities were added, which caused a restructuration of the

tasks and more time was invested in order to complete the new desired features.

6.2.3.3. Testing Phase

The Testing Phase was expanded with a new task, the Benchmarking of the product.

This new task was not planned during the initial planification since it was not

considered at the start of the project. The Benchmarking task was mentioned during

a meeting with the project director and we both considered this very important, hence

it was added to the project scope.

6.2.3.4. Reporting Phase

The fact that some of the previous phases suffered from modifications and that the

workload of the master was misestimated during the final weeks of the course, lead

to increase the priority of the thesis report over the development in order to meet

the deadline of the project.

This encouraged that some of the development tasks were left as a future work to

have more time to produce a quality thesis report and avoid the rush of this task.

42

7. Budget

All projects have a cost, as well as this thesis. In this section I will estimate the

economic cost this project would have in a real business environment. I will consider

direct costs, indirect costs and a contingency budget.

7.1. Project Cost Estimation

7.1.1. Direct Costs

The direct costs are the expenses that are directly tied to a department or project.

Direct costs comprehend the costs related to labour, materials, licenses, equipment,

etc. In the thesis scope I am going to distinguish between human costs and material

costs.

7.1.1.1. Human Costs

Human costs are the ones related to labour. This project has been developed by one

student with the guidance of a professor. So, the human resources are a developer

and a director or project manager.

As there is a single developer for this project, there is no point in performing a role

separation among different tasks. The average salary of a developer is estimated

around 18€/h and the average salary of the project director is estimated to be 35€/h.

Role Estimated Hours Estimated Salary

per hour (€/h)

Estimated

Cost (€)

Developer 445 18 8.010

Director 50 35 1.750

Total: 9.760

Table 7.1: Human costs

7.1.1.2. Material Costs

In the material costs I included the Hardware and Software costs of the project.

These costs include the laptop used to develop the project, and the software licenses

for the non-free software, in this case VMWare Pro. The rest of software either has a

free community version or has no cost.

Product Price (€) Quantity Amortization

period

Estimated

cost (€)

MSI GF75 Thin 1199 1 3 years 166,52

Visual Studio

2019 Community

0 1 - 0

VMWare Pro 189,48 1 - 189,48

Windows Driver

Kit (WDK)

0 1 - 0

Total: 356

Table 7.2: Material costs

43

The total direct costs of the project result as the combination of the material costs

and the human costs, obtaining the following estimation:

Type of cost Estimated cost (€)

Human costs 9.760

Material costs 356

Total 10.116

Table 7.3: Direct costs

7.1.2. Indirect Costs

The indirect costs correspond to the costs that are not directly related with a single

product but to the process of developing them. In other words, indirect costs are the

costs needed to operate the business as a whole.

Some indirect costs are: office expenses, office rent, telephone expenses, commute

costs and so on.

With the Work from Home policy most of this cost now can be omitted. For this project

I will consider only the cost of electricity and internet as indirect cost.

Product Price Estimated Cost (€)

Electricity 0.28027 €/kWh 124,72

Internet 32 €/month 192,00

Total 316,72

Table 7.4: Indirect costs

7.1.3. Contingency costs

As any project I must take into account possible deviations and risks that can affect

the normal development of the project; therefore, I established a 10% margin over

the global cost of the project as a contingency measure in order to deal with

unforeseen events.

7.1.4. Final Budget

The total cost of the project is results as shown in the following table.

Type of cost Estimated

cost (€)

Direct costs 10.116

Indirect costs 316,72

Subtotal 10.432,72

Contingency measures (10%) 1.043,27

Total 11.475,99

Table 7.5: Total costs

44

8. Future Work / Improvements

During the lifetime of the project, the director and the author proposed multiple ideas

to detect ransomware and enhance RanAware, additionally some issues appeared

during development which require further investigation. Unfortunately, I did not have

enough time to implement all of them.

Accordingly, this section presents several improvements that can be done to

RanAware and some other ideas or extra modules that can be incorporated into the

project.

8.1. Further testing on configuration parameters

To configure RanAware ransomware detection I used several different configurations

of file renames per second, number of decoy files placed in the system, number of

operations to log, etc.

Despite the current values being tested and producing good results, more testing

could be done in order to slightly improve the effectiveness of RanAware.

8.2. Deep Analysis on RanAware Overhead

As mentioned in section 5.2.1, RanAware has some impact in the system’s

performance, particularly when it is under heavy workload. The results obtained for

this test scenario show that RanAware affects the system significantly in some

particular cases while in the rest of the cases the effects of RanAware are minor.

To further analyse the reason behind this behaviour of RanAware is an important task

that we decided to leave as a future work due to not having enough time to

investigate it.

8.3. Use the driver to stop operations of malicious processes

This functionality would involve the communication of the malicious processes

detected by the application to the driver, this could be done with a new command

sent through the communication channel already stablished.

When the driver receives information about a new offending process, stores it and

starts blocking all the operations that are issued by this process with the objective of

further reducing the effects of ransomware in the system.

This functionality was started during the development phase, unfortunately due to

the complexity of the driver it was decided to leave this task for future developments

of the project.

8.4. Analyse entropy of memory buffers

This improvement is aimed to attack the encryption property of ransomware. Its

objective is to detect the encryption data on the memory buffer that contains the

bytes that are going to be written into a file.

45

The driver would collect and send to the user application the address of the memory

buffer containing the data to be written into a file. This way, RanAware user

application would analyse the memory buffers computing the Shannon entropy of the

bytes in the buffer. If RanAware obtains a high entropy it could determine that the

bytes in the buffer probably represent encrypted data since the entropy of the bytes

representing text in files is very low.

With this strategy, RanAware aims to detect encrypted data that is being written into

a file. The objective is identifying processes that are doing an intensive use of

cryptography and mark them as possible ransomware. What’s more, this method

would allow to detect custom encryption solutions since it is only analysing the data

after the encryption has been performed and not the encryption method.

The downside of this strategy is that there are some types of data that possess also

a high entropy, like compressed files, or benign encryptions; for this reason,

RanAware should be careful with the type of files and data that is analysing in every

moment.

8.5. Analyse binaries to find encryption traces in machine

instructions

One of the ideas proposed by the director of the project is to detect the usage of

encryption by analysing the machine instructions of the binaries.

By knowing which are the machine instructions that are commonly used to perform

the cryptographic operations, it would be possible to compare this data with the

instructions that a binary executes in order to detect the presence of encryption

operations.

This could be used by RanAware to detect whether a process is performing encryption

operations or not. However, due to the difficulty of this method, not only to obtain

the machine instructions used by a process but to analyse encryption standard

algorithms and learn which are the instructions used by them, this task was left as a

feature for the future work.

All in all, this method would also allow to detect custom cryptography solutions that

are common in recent ransomware.

8.6. Detect deletion of the volume shadow copies

A common operation of ransomware is to delete the volume shadow copies if these

exist in the system. The shadow copies are created by Windows and are used to

recover critical information in case that it is lost.

A very straightforward strategy is to monitor these volume shadow copies to detect

any malicious process that attempts to delete them. An additional measure is the

replication of these copies to avoid losing them if a malicious process manages to

delete them. Both of these actions could be incorporated to RanAware.

46

8.7. Implement a ranking system of processes

This is an alternative system to classify processes that was proposed during

RanAware development.

With this system, RanAware maintains a list of dangerous processes and assigns a

score to each one of them. This score is incremented each time a process performs

a suspicious operation, the more suspicious operation, the more points it increments.

Then with a defined threshold, each process score that meets that threshold is

considered a malicious process, in this case a ransomware, and is terminated by

RanAware.

Additionally, this system would make it even easier to incorporate more modules into

RanAware.

8.8. Create an Installer along with a certificate for the driver

This is a Quality of Live improvement (QoL) that I believe is necessary before

introducing RanAware to a production environment.

The first thing to do is to create an installer that configures the environment and

installs the RanAware components into the system.

In order to have a complete product and to be able to install the driver without

problems it is also necessary to obtain a certificate from Microsoft to be able to

digitally sign the driver so it is trusted by the system. Unfortunately, there is a

monetary price that it will only be considered when the product is ready for

production deployment.

8.9. Use IRP data to feed machine learning algorithms

The data obtained with the driver opens the door for a lot of possibilities.

As found in the research, this data could be used to profile the behaviour of legitimate

applications and ransomware at IRP level. With the operations logged, a machine

learning algorithm can be trained to distinguish between a benign process or a

ransomware based on the IRP data that is collected by the driver.

8.10. Detect Ransomware notes

Another approach to detect ransomware is to monitor the creation of ransom notes.

These files represent a very common trait of ransomware. They are usually created

in every directory of the system after the legitimate files are encrypted. In the ransom

note, the victim is informed that the data in the computer has been encrypted and a

ransom is asked, usually in crypto-currencies, accompanied by an address to pay.

Often there is also a limited period of time to pay the ransom.

Since the content of these files is very characteristic, some rules or even a machine

learning algorithm could be defined to detect the creation of these files.

47

9. Considered Alternatives

This section describes some ideas that were considered to be developed but after

research and investigation they were discarded.

9.1. CryptoAPI Hooking

This was the first thing that came to my mind when I was thinking of methods to

detect ransomware.

The CryptoAPI is the API offered by Windows to perform cryptographic operations.

By hooking the function calls of the CryptoAPI, it would be possible to detect which

process is calling them and in addition, to backup the keys used so the encrypted

data could be recovered.

However, this solution had several issues that ultimately lead to discard it as a

module of RanAware, even when the functionality was almost implemented.

This first problem is that in order to hook the DLL in user mode, it was necessary

either to implement the hook for all of the processes in the system one by one or to

hook it at start-up to all processes that loaded the “User32.dll”. Both of these

solutions would cause RanAware to log cryptographic operations of benign processes.

On the other hand, the hooking could be performed at kernel level, nevertheless, this

approach resembled more the behaviour of a malware than a benign application and

it was discarded.

The second problem of this solution is that after logging the keys used to encrypt

data, these keys need to be related to the writing operations recorded by the driver

in order to know which key has been used to encrypt each file. This task could be

simple if the ransomware uses only one key to encrypt the whole system or

tremendously challenging if the ransomware uses different keys to encrypt the files,

that is the most common approach.

Ultimately, most of the recent ransomware do not use the APIs to perform the

cryptographic operations. The most common approach is that each ransomware

implements or uses its own version of the cryptographic algorithms. This renders

useless the hooking of the cryptographic API of Windows considering that the only

processes that use it are benign processes.

48

10. Conclusion

Upon considering all the facts, I can confidently say that I achieved the objective of

the project, RanAware is able to perform an early detection of ransomware and

terminate the attack. Additionally, I was able to measure the impact that RanAware

has in the system.

Considering the impact that RanAware has on a system, I believe that it is a fair price

to pay for effectiveness of the protection mechanism.

Although this project has a lot of room for improvement, I believe that the results

obtained with RanAware are satisfactory and very promising. On top of that, I was

able to learn a lot about ransomware, Windows system and driver development.

I also want to remark that RanAware is not a standalone solution that can operate

on its own; RanAware is meant to be a complementary specialized module to detect

ransomware. Therefore, it should never be used as the only security measure of a

computer since it only focuses on one type of malware among the myriad of malware

types there are nowadays.

49

References

[1] A. Alqahtani and F. T. Sheldon, “A Survey of Crypto Ransomware Attack

Detection Methodologies: An Evolving Outlook,” Sensors 2022, Vol. 22, Page

1837, vol. 22, no. 5, p. 1837, Feb. 2022, doi: 10.3390/S22051837.

[2] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural analysis on

windows platforms,” Journal of Information Security and Applications, vol. 40,

pp. 44–51, Jun. 2018, doi: 10.1016/J.JISA.2018.02.008.

[3] A. Palisse, H. le Bouder, J. L. Lanet, C. le Guernic, and A. Legay, “Ransomware

and the legacy crypto API,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 10158 LNCS, pp. 11–28, 2017, doi: 10.1007/978-3-319-

54876-0_2.

[4] G. McDonald, P. Papadopoulos, N. Pitropakis, J. Ahmad, and W. J. Buchanan,

“Ransomware: Analysing the Impact on Windows Active Directory Domain

Services,” Sensors, vol. 22, no. 3, Feb. 2022, doi: 10.3390/s22030953.

[5] A. Arabo, R. Dijoux, T. Poulain, and G. Chevalier, “Detecting Ransomware

Using Process Behavior Analysis,” Procedia Computer Science, vol. 168, pp.

289–296, Jan. 2020, doi: 10.1016/J.PROCS.2020.02.249.

[6] D. Nieuwenhuizen, “A Behavioural-based Approach to Ransomware Detection.”

https://labs.f-secure.com/archive/a-behavioural-based-approach-to-

ransomware-detection/ (accessed May 04, 2022).

[7] Monika, P. Zavarsky, and D. Lindskog, “Experimental Analysis of Ransomware

on Windows and Android Platforms: Evolution and Characterization,” Procedia

Computer Science, vol. 94, pp. 465–472, Jan. 2016, doi:

10.1016/J.PROCS.2016.08.072.

[8] A. Ferrante, M. Malek, F. Martinelli, F. Mercaldo, and J. Milosevic,

“Extinguishing ransomware - a hybrid approach to android ransomware

detection,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol.

10723 LNCS, pp. 242–258. doi: 10.1007/978-3-319-75650-9_16.

[9] D. Gonzalez and T. Hayajneh, “Detection and prevention of crypto-

ransomware,” 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and

Mobile Communication Conference, UEMCON 2017, vol. 2018-January, pp.

472–478, Jul. 2017, doi: 10.1109/UEMCON.2017.8249052.

[10] S. H. Kok, A. Abdullah, N. Z. Jhanjhi, and M. Supramaniam, “Prevention of

crypto-ransomware using a pre-encryption detection algorithm,” Computers,

vol. 8, no. 4, Dec. 2019, doi: 10.3390/computers8040079.

[11] R. Moussaileb, N. Cuppens, J. L. Lanet, and H. le Bouder, “A Survey on

Windows-based Ransomware Taxonomy and Detection Mechanisms: Case

Closed?,” ACM Computing Surveys, vol. 54, no. 6. Association for Computing

Machinery, Jul. 01, 2021. doi: 10.1145/3453153.

50

[12] A. Continella et al., “ShieldFS: A self-healing, ransomware-aware file system,”

in ACM International Conference Proceeding Series, Dec. 2016, vol. 5-9-

December-2016, pp. 336–347. doi: 10.1145/2991079.2991110.

[13] S. Mehnaz, A. Mudgerikar, and E. Bertino, “RWGuard: A real-time detection

system against cryptographic ransomware,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2018, vol. 11050 LNCS, pp. 114–136. doi:

10.1007/978-3-030-00470-5_6.

[14] “Volume Shadow Copy Service | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-server/storage/file-

server/volume-shadow-copy-service (accessed May 05, 2022).

[15] “Windows Kernel-Mode I/O Manager - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-

hardware/drivers/kernel/windows-kernel-mode-i-o-manager (accessed May

05, 2022).

[16] “Overview of the Windows I/O Model - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-

hardware/drivers/kernel/overview-of-the-windows-i-o-model (accessed May

05, 2022).

[17] “IRP Major Function Codes - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-

major-function-codes (accessed May 05, 2022).

[18] “IRP_MJ_CREATE - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

create (accessed May 05, 2022).

[19] “IRP_MJ_CLOSE - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

close (accessed May 05, 2022).

[20] “IRP_MJ_READ - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

read (accessed May 05, 2022).

[21] “IRP_MJ_WRITE - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

write (accessed May 05, 2022).

[22] “IRP_MJ_QUERY_INFORMATION - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

query-information (accessed May 05, 2022).

[23] “IRP_MJ_SHUTDOWN - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-

shutdown (accessed May 05, 2022).

[24] “File systems and filter driver design guide - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/ (accessed

May 05, 2022).

51

[25] “Filter Manager Concepts - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-

manager-concepts (accessed May 05, 2022).

[26] “Load order groups and altitudes for minifilter drivers - Windows drivers |

Microsoft Docs.” https://docs.microsoft.com/en-us/windows-

hardware/drivers/ifs/load-order-groups-and-altitudes-for-minifilter-drivers

(accessed May 05, 2022).

[27] “Communication Between User Mode and Kernel Mode - Windows drivers |

Microsoft Docs.” https://docs.microsoft.com/en-us/windows-

hardware/drivers/ifs/communication-between-user-mode-and-kernel-mode

(accessed May 05, 2022).

[28] “Git.” https://git-scm.com/ (accessed May 20, 2022).

[29] “GitHub.” https://github.com/ (accessed May 20, 2022).

[30] “Visual Studio: IDE y Editor de código para desarrolladores de software y

Teams.” https://visualstudio.microsoft.com/es/ (accessed May 20, 2022).

[31] “Download the Windows Driver Kit (WDK) - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-

wdk (accessed May 20, 2022).

[32] “Download VMware Workstation Pro.”

https://www.vmware.com/products/workstation-pro/workstation-pro-

evaluation.html (accessed May 20, 2022).

[33] “Debugging Using WinDbg Preview - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/debugging-using-windbg-preview (accessed May

20, 2022).

[34] “4d61726b/VirtualKD-Redux: VirtualKD-Redux - A revival and modernization

of VirtualKD.” https://github.com/4d61726b/VirtualKD-Redux (accessed May

20, 2022).

[35] “DebugView - Windows Sysinternals | Microsoft Docs.”

https://docs.microsoft.com/en-us/sysinternals/downloads/debugview

(accessed May 20, 2022).

[36] “Process Monitor - Windows Sysinternals | Microsoft Docs.”

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon (accessed

May 20, 2022).

[37] “Cracked5pider/conti_locker: Conti Locker source code.”

https://github.com/Cracked5pider/conti_locker (accessed May 30, 2022).

[38] “conti leaks (@ContiLeaks) / Twitter.” https://mobile.twitter.com/contileaks

(accessed May 30, 2022).

[39] “Load order groups and altitudes for minifilter drivers - Windows drivers |

Microsoft Docs.” https://docs.microsoft.com/en-us/windows-

hardware/drivers/ifs/load-order-groups-and-altitudes-for-minifilter-drivers

(accessed May 21, 2022).

52

[40] “IRP_MJ_SET_INFORMATION (IFS) - Windows drivers | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-set-

information (accessed May 21, 2022).

[41] “Process Security and Access Rights - Win32 apps | Microsoft Docs.”

https://docs.microsoft.com/en-us/windows/win32/procthread/process-

security-and-access-rights (accessed May 30, 2022).

[42] “goliate/hidden-tear: ransomware open-sources.”

https://github.com/goliate/hidden-tear (accessed May 29, 2022).

[43] “ANY.RUN - Interactive Online Malware Sandbox.” https://any.run/ (accessed

May 29, 2022).

[44] “Malwarebytes Cybersecurity for Home and Business | Anti-Malware &

Antivirus.” https://www.malwarebytes.com/ (accessed Jun. 08, 2022).

[45] “OSR Developer Community.” https://community.osr.com/ (accessed May 28,

2022).

[46] “Downloads:Driver Loader.”

https://www.osronline.com/article.cfm%5Earticle=157.htm (accessed May

28, 2022).

53

Appendix A: Installing the driver

manually

Manually installing a driver in Windows is not a trivial task. In this appendix I will

describe the process to generate and install the RanAware driver in a computer.

The first step is to have all the necessary tools installed in order to compile the

project. These are the Windows Driver Kit (WDK) and Visual Studio 2019 Community

Edition.

The compilation can be done with Visual Studio, after opening the project just click

the “Build” tab and then “Build Solution”. The project can be built for the x86 and

x64 platforms, even though the majority of the testing has been performed in a x64

environment. If there is any dependency that is not installed in the computer, the

compilation will fail. The most important thing is to install the WDK.

After compiling the project, all the executables and necessary files will be generated.

In particular for the driver, a certificate (RanAware_FS_Filter.cer), an inf file

(RanAware_FS_Filter.inf) and a system file (RanAware_FS_Filter.sys). These files are

the ones needed to install the RanAware driver.

As the driver is not digitally signed by Microsoft, we need to boot the system in Test

mode so we are able to install the driver. To boot Windows in test mode we can

execute the following command in an administrator command line and then reboot

the system.

> bcdedit /set testsigning on

If everything is correct, the bottom left corner of the screen should indicate that we

are in Testing mode. To disable the testing mode, execute the following command.

> bcdedit /set testsigning off

Once the system is in Test mode, we need to install the inf file. To do this right-click

on the file and click “install”. After the installation we need to execute a command in

a privileged command line to start the driver. The command to start the driver is:

> net start RanAware_FS

If everything goes well, we should get a message informing that RanAware is running.

That is all to load and run the driver from scratch.

To stop the driver from running we can use the following command:

> net stop RanAware_FS

There is an alternative to load and execute drivers that is a tool developed by a driver

developer community called OSR Developer Community [45]. The tool to load drivers

is called Driver Loader [46] and it is a really intuitive and easy to use.

54

Even though it should not happen, Windows may still complain about the driver

signature, if this happens the driver signature enforcement must be disabled. To do

this there are two alternatives:

Execute the following command:

> bcdedit.exe - set loadoptions DISABLE_INTEGRITY_CHECKS

If the previous command does not work properly, perform this follow the steps:

1. Restart the computer and press F8 key until the Advanced Options menu

pops up.

2. Choose Troubleshoot > Advanced Options > Startup Settings and click

Restart.

3. When the computer restarts select Disable driver signature enforcement.

To enable the driver signature just reboot the system or execute the following

command if the option remains disabled:

> bcdedit.exe - set loadoptions ENABLE_INTEGRITY_CHECKS

55

Appendix B: Benchmarking data

summary

In here I present a summary of the data used to create the boxplots for the

benchmarking.

The data represents the number of seconds that it took to complete writing the

contents of a determined number of files.

Configuration

Low Load

No Driver Driver

Nº of Files 10F 100F 1000F 10000F 10F 10F 100F 1000F

Minimum 0.000474 0.004788 0.046516 0.479982 0.000447 0.004562 0.049075 0.504155

First Quartile 0.000484 0.004956 0.048062 0.501878 0.000486 0.004843 0.050550 0.521153

Median 0.000516 0.005051 0.048806 0.517065 0.000503 0.005254 0.051695 0.533063

Third Quartile 0.000558 0.005445 0.050494 0.535912 0.000544 0.005598 0.053088 0.544105

Maximum 0.001435 0.010503 0.092646 0.841232 0.001452 0.010029 0.094135 0.833065

Mean 0.000541 0.005450 0.049885 0.528135 0.000539 0.005319 0.052631 0.536369

Mean (No

Outliers)

0.000523 0.005190 0.049238 0.519502 0.000509 0.005223 0.051827 0.532631

IQR 0.000074 0.000489 0.002433 0.034034 0.000058 0.000755 0.002537 0.022952

Lower Limit 0.000374 0.004222 0.044413 0.450828 0.000400 0.003710 0.046744 0.486725

Upper Limit 0.000668 0.006178 0.054143 0.586963 0.000631 0.006731 0.056893 0.578532

Table B.1: Low load benchmark data

Configuration

Medium Load

No Driver Driver

Nº of Files 10F 100F 1000F 10000F 10F 100F 1000F 10000F

Minimum 0.000493 0.006537 0.075327 0.890066 0.000544 0.006677 0.077751 0.843604

First Quartile 0.000559 0.009194 0.089507 0.948992 0.000652 0.009042 0.087720 0.919688

Median 0.000638 0.011487 0.094511 0.985603 0.000808 0.010645 0.091640 0.950433

Third

Quartile

0.001066 0.015131 0.105239 1.030136 0.001197 0.013096 0.103526 1.014221

Maximum 0.005158 0.040136 0.212306 1.283693 0.005123 0.027313 0.198929 1.650289

Mean 0.000914 0.013529 0.099564 1.002490 0.001060 0.011674 0.098794 0.979104

Mean (No
Outliers)

0.000770 0.012330 0.096632 0.991071 0.000901 0.011029 0.095091 0.961036

IQR 0.000507 0.005937 0.015732 0.081144 0.000546 0.004054 0.015806 0.094532

Lower Limit -0.000202 0.000288 0.065910 0.827276 - 0.000167 0.002961 0.064012 0.777889

Upper Limit 0.001827 0.024037 0.128837 1.151853 0.002015 0.019177 0.127235 1.156019

Table B.2: Medium load benchmark data

56

Configuration

Heavy Load

No Driver Driver

Nº of Files 10F 100F 1000F 10000F 10F 100F 1000F 10000F

Minimum 0.000452 0.006379 0.078969 1.176225 0.000566 0.006726 0.097987 1.137752

First Quartile 0.000593 0.008013 0.109869 1.363849 0.000675 0.008820 0.142358 1.565544

Median 0.000685 0.009990 0.124373 1.530483 0.000848 0.011306 0.177100 1.801511

Third Quartile 0.000964 0.014313 0.143671 1.716171 0.001219 0.024414 0.211381 1.948201

Maximum 0.015328 0.073986 0.248035 2.117679 0.036724 0.067437 0.369730 2.522436

Mean 0.001083 0.013919 0.127550 1.545477 0.001690 0.019045 0.183963 1.777846

Mean (No

Outliers)

0.000763 0.011184 0.125153 1.535279 0.000971 0.015727 0.179759 1.773325

IQR 0.000371 0.006300 0.033802 0.352322 0.000544 0.015594 0.069023 0.382657

Lower Limit 0.000037 -0.001437 0.059166 0.835367 -0.000142 -0.014571 0.038824 0.991558

Upper Limit 0.001520 0.023763 0.194374 2.244653 0.002035 0.047804 0.314915 2.522187

Table B.3: Heavy load benchmark data

57

Glossary

• IRP: Input/Output Request Packet.

• C2: Command and Control.

• RSA: Rivest, Shamir and Adleman.

• AES: Advanced Encryption Standard.

• API: Application Programming Interface.

• I/O: Input/Output.

• FltMgr: Filter Manager.

• IDE: Integrated Development Environment

• WDK: Windows Driver Kit

