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Abstract—G protein-coupled receptors are a large super-family
of cell membrane proteins that play an important physiological
role as transmitters of extra-cellular signals. Signal transmission
through the cell membrane depends on the conformational
changes of the transmembrane region of the receptor and the
investigation of the dynamics in these regions is therefore key.
Molecular Dynamics (MD) simulations can provide information
of the receptor conformational states at the atom level and
machine learning (ML) methods can be useful for the analysis
of these data. In this paper, Recurrent Neural Networks (RNNs)
are used to evaluate whether the MD can be modeled focusing on
the different regions of the receptor (intra-cellular, extra-cellular
and each transmembrane regions (TM)). The best results, as
measured by root-mean-square deviation (RMSD), are 0.1228 Å
for TM4 of the 2rh1 (inactive state) and 0.1325 Å for TM4 of
the 3p0g (active state), which are comparable to the state-of-the-
art in non-dynamic 3-D predictions, showing the potential of the
proposed approach.

Index Terms—Deep Learning, Recurrent Neural Networks,
LSTM, Molecular Dynamics, GPCRs

I. INTRODUCTION

G protein-coupled receptors (GPCRs) are a large and diverse
super-family of eukaryotic cell membrane proteins that play
an important physiological role as transmitters of extra-cellular
signal [1], making them relevant for pharmacology [2]. Around
the 34 % of the drugs approved by the US Food and Drug
Administration [1]. This has led, over the last decade, to
active research in the field of proteomics. The functionality of
proteins is determined by their 3-D structural configuration,
but, to gain insights about the signal transmission mecha-
nisms at the receptor, the conformational changes must be
analyzed from a dynamical point of view. Computer-assisted
MD simulations allow the study of the dynamic behavior of the
receptors, particularly in the presence of drugs. Research on
MD simulations has gathered pace in recent years, facilitated
by the existence of MD repositories, such as the GPCRMD
for MD simulations of GPCRs [1].

To understand the molecular basis of signal transmission,
the transmembrane regions are the most important part of the
receptor [3], as a conformational change is needed in these
regions to transmit the signal trough the cell membrane. For
this reason, the present study focuses on the analysis of the
MD of the transmembrane regions of a GPCR receptor using

ML approaches and, particularly, a variant of Recurrent Neural
Networks (RNNs) [4], Long Short-Term Memory (LSTM) [5],
which solves a limitations of the RNN architecture, namely the
inability to learn information originated from far past in time.
LSTMs are able to accumulate information for a long period
of time by allowing the network to dynamically learn and to
forget old aspects of information. Recent work has shown their
potential to mimic trajectories produced by simulations [6],
[7], achieving accurate predictions for short-term windows. To
the best of our knowledge, there is no reported work on their
use in the prediction of MD for the discriminating between the
important regions of the of GPRCs, such as the extra-cellular,
intra-cellular and transmembrane regions.

In previous research [8], we carried out a preliminary study
of this kind using unidirectional and bidirectional LSTM.
This study revealed the usefulness of LSTM to predict MD
trajectories of a GPCR receptor as a whole. In the current
study, the relative relevance of the different regions of the
receptor is analyzed. A unidirectional LSTM is used to predict
the MD of the different GPCR regions in two states of the
beta-2 adrenergic receptor (β2AR). Simulations are analyzed
for the 2rh1 structure (inactive state) and 3p0g structure (active
state), both with full agonist (BI-167107).

II. MATERIALS

A. GPCR MD simulations

The MD simulations used in this study were created in
Google Exacycle cloud computing platform [9]. They com-
prise 10,000 trajectories of the β2AR-rh1 GPCR inactive
(2rh1) and active (3p0g) receptor state with a full agonist.
The receptor consists of 282 and 285 amino acids for inactive
and active state respectively. Each trajectory describes the 3-D
position of the receptor along 28 consecutive time-steps, which
are hereon referred to as frames. The time elapsed between
each frame is 500 pico-seconds.

B. Structural Sequence Domains

The GPCRs have three structural domains, namely a seven-
helix transmembrane (TM) domain, an extra-cellular domain
built by the N-terminus and three extra-cellular loops (EL)
and the intra-cellular domain including the C-terminus and
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three intra-cellular loops (IL) [10]. Table I provides a detailed
description of each regions of the β2AR-GPCR receptor under
study.

TABLE I: β2AR-GPCRs amino acid distribution by regions
for inactive (2rh1) and active state (3p0g).

Region State amino acid id
N-terminus 3p0g [∗ -23)
N-terminus 2rh1 [∗ -30)

TM 1 2rh1/3p0g [30-60)
IL 1 2rh1/3p0g [60-67)

TM 2 2rh1/3p0g [67-96)
EL 1 2rh1/3p0g [96-103)
TM 3 2rh1/3p0g [103-136)
IL 2 2rh1/3p0g [136-147)

TM 4 2rh1/3p0g [147-171)
EL 2 2rh1/3p0g [171-197)
TM 5 2rh1/3p0g [197-229)
IL 3 2rh1/3p0g [229-267)

TM 6 2rh1/3p0g [267-298)
EL 3 2rh1/3p0g [298-305)
TM 7 2rh1/3p0g [305-328)

C-terminus 2rh1 [328- ∗)
C-terminus 3p0g [342- ∗)

∗ Unresolved loops by crystallography

For 2rh1 structures entail residues 30-342, and for 3P0G
residues 23-344. Both have gaps in the sequence, where
the intra-cellular loop 3 (IL3) between TM2 and TM3 is
replaced in 2rh1 and 3P0G with T4-lysozyme and a nanobody,
respectively. These residues are 231-262 for 2rh1, and 228-264
for 3P0G. Since β2AR remains functional even in the absence
these regions.

Figure 1 represents the common structure of a β2 adrenergic
GPRC. The 7 TM, 3 IL and 3 EL regions are shown. In
addition, ligand binding with the protein is displayed in an
image inset.

III. METHODS

A. Theoretical methodology

1) The Long Short-Term Memory model: LSTM [5] are
neural networks of the RNN family that are designed for the
analysis of temporal data. In short, LSTM has a input gate (i), a
forgetting gate (f), one memory gate (c) and an output gate (o).
The input gate decides whether to let the incoming signal go
through to the memory gate, or block it. The output gate could
allow a new signal output or avoid it trough the memory gate.
The forgetting cell is responsible to remember or to forget
previous state of the memory gate. The update of memory
gate states is carried out by feeding previous output gate to
itself by recurrent connections of two consecutive time steps.
The reading and writing memory cell is controlled by a group
of sigmoid gate (x). At a given instance of time, the LSTM
receives inputs from different sources: the current positions
Xxyz as the input, the previous hidden state of all LSTM units
(h) as well as the previous memory gate state c(t−1). Then,
the output gate returns the probability of the next positions
on the sequences (Px, Py, Pz). A schematic representation is
shown in Figure 2.

In previous research [8], unidirectional LSTM (ULSTM)
and bidirectional LSTM (BLSTM) were applied to predict the
trajectories of the MD simulations of the receptor described in
this study. ULSTM works by processing data in the forward
direction, while BLSTM processes sequence data in both
forward and backward directions with two separate hidden
layers [11]. The best forecasting performances was obtained
by ULST and, for this reason, they are the method of choice
in the current study.

B. Experimental methodology

Data underwent linear max–min normalization [12] and was
returned to the original range values in Angstrom (Å) units.
The 3-D positions of amino acids were extracted for each
frame. However, the original database included the positions
of atoms instead of the position of amino acids. Therefore, the
amino acids mass centers were calculated as the 3-D positions
representing them. Two thousand trajectories per β2AR: 2rh1
(inactive state) and 3p0g (active state) both with full agonist
(BI-167107) were used. We refer to trajectories as nClones.
The LSTM training was carried out using the amino acid 3-D
position (x, y, z) per frame. We refer to sequence lengths as
nSteps-in and to length of the predicted sequences as nSteps-
out, and the amino acid representative data point position as
center of the amino acids. Values for these parameters were
chosen according to the experiments reported in [8]. These
were nSteps-in = 7, nSteps-out = 1 and Center of the amino
acids = “center of the mass”. The parameters of training
configuration of the LSTM were: epochs=100, verbose=0,
activation=’relu’, input-shape=(nSteps-in, length of amino acid
chain). All other parameters of the Keras [13] framework were
left by default. The data set was split in 5 folds with 400
nClones per fold. Four of them were used for training and
cross-validation process, and the remaining fold was used for
validation. Test predictions quality was assessed through Mean
Average Error (MAE) [14].

In the experimental setup, three analyses were performed
both for the 2rh1 and for the 3p0g states. The first experiment
evaluates the LSTM prediction error by seven TM, three EL
and three IL regions. The second analysis focused specifically
on the seven transmembrane sections, comparing between the
2rh1 and 3p0g states. The same evaluation was carried out
in the third analysis, but, in this case, focusing on the three
intra-cellular and extra-cellular regions respectively.

IV. RESULTS

The results are reported using two metrics with original
range values in Angstroms (Å): MAE [14] for x, y, z coordi-
nates and RMDS [15]. The standard deviation (std) [16] is also
calculated for the RMSD metric. The prediction error values
are shown for each region of the GPRC, such as TM, EL, IL.
Table II presents the results for the 2rh1 state and Table III
for the 3p0g state. In both, the minimum error value is found
in the 7TM region. These values were 0,1373 Å for the 2rh1
and 0,1521 Å for the 3p0g state.



Fig. 1: Schematic representation of the β2 adrenergic GPRC. TM, EL and IL regions and Ligand binding with the receptor.

Fig. 2: Illustration of a LSTM unit.

TABLE II: Prediction error of the LSTM by MAE (xyz) and
RMSD metrics. TM, EL, IL regions of the 2rh1 state.

Region MAEx MAEy MAEz RMSD
TM 0.0676 0.0731 0.0757 0.1373 ± 0.022
EL 0.0589 0.0733 0.0808 0.1699 ± 0.022
IL 0.0802 0.0693 0.0816 0.2199 ± 0,037

The next experiment analyzes the prediction errors for each
of the seven transmembrane regions. Table IV presents the
prediction error per TM section (TM1-TM7) by RMSD value
and its standard deviation. The best sequence predictions were
found in TM4 section for both of the 2rh1 and the 3p0g state
with 0.1228 (Å) and 0.1325(Å) respectively, followed by TM3.

Focusing on the intra-cellular and extra-cellular regions

TABLE III: Prediction error of the LSTM by MAE (xyz) and
RMSD metrics. TM, EL, IL regions of the 3p0g state.

Region MAEx MAEy MAEz RMSD
TM 0,0759 0.0771 0.0784 0.1521 ± 0.0359
EL 0.06932 0.0822 0.0877 0.1656 ± 0.0209
IL 0.0749 0.0768 0.0694 0.1711 ± 0,0256

Table V shows the same information for IL regions, while
Table VI shows the RMSD and its standard deviation in 2rh1
and 3p0g for EL regions. The minimum error was found for
both states in IL1 section with 0,1719 (Å) for the 2rh1 and
0.1401 (Å) for the 3p0g state. In the case of the extra-cellular
regions, EL1 had the minimum error with 0.1635 (Å) for the
2rh1 and 0.1361 (Å) for the 3p0g state.

TABLE IV: Prediction error by RMSD metric by TM
regions in 2rh1 and 3p0g states.

TM section 2rh1 3p0g
TM1 0.1687 ± 0.020 0.1870 ± 0.053
TM2 0.1429 ± 0.022 0.1693 ± 0.065
TM3 0.1234 ± 0.015 0.1360 ± 0.027
TM4 0.1228 ± 0.021 0.1325 ± 0.025
TM5 0.1297 ± 0.014 0.1527 ± 0.032
TM6 0.1393 ± 0.032 0.1362 ± 0.013
TM7 0.1345 ± 0.029 0.1507 ± 0.034

TABLE V: Prediction error by RMSD metric by IL regions
in 2rh1 and 3p0g states.

IL section 2rh1 3p0g
IL1 0,1719 ± 0.022 0.1401 ± 0.009
IL2 0.1920 ± 0.035 0.1866 ± 0.038
IL3 0.2960 ± 0.055 0.1867 ± 0.028

TABLE VI: Prediction error by RMSD metric by EL regions
in 2rh1 and 3p0g states.

EL section 2rh1 3p0g
EL1 0.1635 ± 0.019 0.1361 ± 0.008
EL2 0.1678 ± 0.026 0.1754 ± 0.032
EL3 0.1758 ± 0.021 0.1851 ± 0.022



V. DISCUSSION

The experimental results have shown that the LSTM per-
formed best to predict the dynamics of the transmembrane
regions followed by the extra-cellular regions. The intra-
cellular regions yielded the highest prediction error. These
results indicate that the regions dynamics of a GPCR are
different, so that the ML model learns its prediction with
different performance.

A more detailed analysis of the experimental results pro-
vided deeper insights about the MD of the specific receptor
regions. Interestingly, for the transmembrane regions, TM3,
TM4 showed the lowest error for both type of GPCRs states.
This result indicates that the dynamics of those TM regions are
the best predicted by LSTM; however, the std does not allow to
conclude that there are significant differences between them.
For the intra-cellular regions, the IL1 was identified as the
region with the lowest prediction error in both simulations.
Interestingly, the accurate prediction of the MD of IL1 region
contrasts with the results for IL2 and IL3 with a significantly
higher prediction error. In the case of the extra-cellular re-
gions, for both simulations, the EL1 region was identified to
have the lowest prediction error, while EL2 and EL3 regions
yielded a significant higher prediction error. In addition, the
experimental setup was carried out with ULSM, since the best
forecasting performances was obtained in [8]. This may be
given because the BLSTM trains in two direction, forward and
backward over the sequence. However, the LSTMs only were
evaluated for predict forward steps as ULSTM as do it in this
work. LSTM also has drawbacks when it is used to process
very long sequences. For this reason the next steps for the
research line will provide more comparison studies/analyses
with another Generative Models, such as, Transformers [17],
Auto-encoder [18], etc.

VI. CONCLUSION

This study aimed to preliminary investigate the prediction
ability of LSTM models of the different constituting regions
of a GPCR receptor, in order to understand the problem
complexity of MD modeling of GPCRs with ML models. It is
important to discern the prediction capability of the ML model
on the different regions, as the research on the signal passing
mechanism can be focused specifically on a certain type of
region. For example, the TM regions play an important role
for the signal transmission because of their ability to change
the shape of the transmembrane helices. It is known that an
outer displacement of TM6 from the center of the helices and
displacements of TM5 and TM7 are part of the activation
mechanism of a receptor [3]. However, the research on the
details of the mechanism of interaction between residues,
which unchains the activation, is still ongoing. ML approaches,
such as the LSTMs of this study, show promise for the in-
detail analysis of the receptor dynamics and for the discovery
of meaningful interactions between residues. The insights
about the differences in the MD dynamics of GPCRs and the
capability of the ML model to predict them should guide the
design of future experiments to model specifically the MD of

GPCRs with generative models, which have been successfully
used for the modeling of protein MD [19].
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