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Fast spatial behavior in higher order in time equations and systems
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Abstract. In this work, we consider the spatial decay for high-order parabolic (and combined with a hyperbolic) equation in
a semi-infinite cylinder. We prove a Phragmén-Lindelöf alternative function and, by means of some appropriate inequalities,
we show that the decay is of the type of the square of the distance to the bounded end face of the cylinder. The thermoelastic
case is also considered when the heat conduction is modeled using a high-order parabolic equation. Though the arguments
are similar to others usually applied, we obtain new relevant results by selecting appropriate functions never considered
before.
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1. Introduction

Parabolic high-order (in time) equations arise in the study of viscoelasticity, fluid mechanics or heat
conduction. We can cite the work of Lebedev and Gladwell [16], where the authors propose high order
in time viscoelastic solids. We can also consider the generalized Burgers fluids [33], which correspond to
a parabolic third order in time equation (anti-plane shear). Moreover, we can recall the recent theories
concerning dual-phase-lag [34] and three-phase lag [4] for the heat conduction. In short, we can say that
parabolic high-order equations model a big quantity of thermomechanical problems.

The knowledge of the spatial behavior of the solutions for equations and systems is an important
topic in mechanics and mathematics. From a mechanical point of view, it is related to the Saint-Venant
principle and, from a mathematical point of view, with the Phragmén-Lindelöf principle. Mathematical
studies about the spatial behavior have been proposed for elliptic, hyperbolic and parabolic equations
[2,5–8,11–14,19,20,23–25]. The list of contributions in this theory is huge, but we want to focus our
attention to the parabolic case. Perhaps, the first contribution in this line was done by Knowles [15],
where the exponential decay for the solutions was obtained. However, it is worth recalling the work
of Horgan et al [9] and extended by Horgan and Quintanilla [10] for functionally graded materials.
These contributions provide spatial decay estimates of the kind of the exponential of the “square” of the
distance to the boundary where the perturbations hold. They represent an improvement in the sense that
the spatial decay for the transient classical heat equation is faster than the spatial decay for the static
heat equation. Later, some extensions to these contributions were proposed [28,29]. Furthermore, the
combination with the elastic equation has been also considered [17,31]. However, the first contribution
concerning the spatial behavior for high order (n-order) of a partial differential equation was given in
[32]. In this last contribution, the parabolic (and hyperbolic) transient problem was studied with the help
of a weighted Poincaré inequality. In the parabolic case, an exponential decay (linear in the distance to
the bounded boundary) was obtained.
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In this paper, we want to improve this last result. We are going to obtain a Phragmén-Lindelöf
alternative for a function defined on the cross-section and we will prove that the decay is of the type
obtained in [9,10]. We also study the thermoelastic problem when the heat conduction is determined by
a high-order parabolic equation. It is worth recalling that in a recent paper [30] the author showed that
the decay would be faster than any exponential of a linear expression of the distance. Here, we give a
new precise decay improving the ones presented previously. Although the arguments proposed have been
considered in many other contributions by different authors, in this work we introduce new functionals
which allow us to obtain the improvement in the knowledge of the decay.

In the next section, we propose the parabolic high-order problem that we will study later. To this end,
we need to recall several inequalities which are summarized in the third section. In the fourth section,
we obtain a Phragmén-Lindelöf alternative for a cross-sectional measure. In the fifth section, we prove a
faster decay estimate. In the sixth section, we consider the thermoelastic problem and we prove a decay
estimate of the type of the exponential of a second order polynomial. Finally, we give some examples
where the results obtained can be applied.

2. The problem

In this paper, we study the spatial behavior of the problem determined by the equation:
˙̂u = Δũ (2.1)

in a semi-infinite cylinder (or strip) B = [0,∞) × D, with the boundary conditions:

u(x, t) = 0 for a.e. x ∈ [0,∞) × ∂D,
u(0, x2, x3, t) = f(x2, x3, t) for a.e. (x2, x3) ∈ D,

(2.2)

and the initial conditions:

u(x, 0) = u̇(x, 0) = . . . = u(n)(x, 0) = 0 for a.e. x ∈ B. (2.3)

In Eq. (2.1) we have used the notations:

ũ = b0u + b1u̇ + · · · + bnu(n), û = a1u + a2u̇ + · · · + an+1u
(n). (2.4)

We refer the reader to Sect. 7 for some specific examples of these higher-order equations.
As usual, we need to impose that

f(x2, x3, 0) = 0 for a.e. (x2, x3) ∈ ∂D

to guarantee the compatibility of the conditions.
In this paper, we assume that an+1 > 0 and bn > 0. Of course, the case an+1 < 0 and bn < 0 can be

considered in a similar way. We note that the existence of the solutions to problem (2.1)–(2.3) as well as
their regularity can be obtained in view of the results in [21], once we combine these ideas with the ones
presented in the appendix of [22].

3. Some useful inequalities

To obtain our results it will be useful to recall (and to deduce) several inequalities. First, we recall
the weighted Poincaré inequality which states that

t∫

0

e−2ωsf2(s) ds ≤ ω−2

t∫

0

e−2ωs|f ′(s)|2 ds, (3.1)
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where ω > 0 and f(0) = 0.
From the above inequality we can deduce several inequalities which will be useful in our approach.
In view of the inequality (3.1), the systematic use of the Hölder and A-G inequalities allows us to

obtain
t∫

0

∫

D

e−2ωs|ũ(s)|2 dads = b2n

t∫

0

∫

D

e−2ωs|ũ(s)|2 dads

+2bn

t∫

0

∫

D

e−2ωsu(n)(b0u + · · · + bn−1u
(n−1)) dads

+

t∫

0

∫

D

e−2ωs(b0u + · · · + bn−1u
(n−1))2 dads

≤ b2n

t∫

0

∫

D

e−2ωs|u(n)|2 dads + 2bn

⎛
⎝

t∫

0

∫

D

e−2ωs(u(n))2 dads

⎞
⎠

1/2

×
[
|b0|

⎛
⎝

t∫

0

∫

D

e−2ωs|u|2 dads

⎞
⎠

1/2

+ · · · + |bn−1|
⎛
⎝

t∫

0

∫

D

e−2ωs|u(n−1)|2 dads

⎞
⎠

1/2 ]
+ · · ·

≤ b2n

t∫

0

∫

D

e−2ωs|u(n)|2 dads + Aω−1

t∫

0

∫

D

e−2ωs|u(n)|2 dads

+Bω−2

t∫

0

∫

D

e−2ωs|u(n)|2 dads

≤ C1ω
−1

t∫

0

∫

D

e−2ωs(an+1bn)|u(n)|2 dads

+b2n

t∫

0

∫

D

e−2ωs|u(n)|2 dads, (3.2)

where C1 is a positive calculable constant.
The next inequality we consider is the following one:∣∣∣∣∣∣

t∫

0

∫

D

e−2ωs(b0u + b1u̇ + · · · + bn−1u
(n−1))(a1u + · · · + an+1u

(n)) dads

∣∣∣∣∣∣
≤ 1

16

t∫

0

∫

D

e−2ωsbnan+1|u(n)|2 dads,

where ω is large enough, which can be obtained in a similar way.
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We will also need the following inequalities:

∣∣∣∣∣∣
t∫

0

s∫

0

∫

D

e−2ωτ û(b0u̇ + b1ü + · · · + bn−1u
(n)) dadτds

∣∣∣∣∣∣
≤ ω

8

t∫

0

s∫

0

∫

D

e−2ωτ bnan+1|u(n)|2 dadτds,

∣∣∣∣∣∣
t∫

0

s∫

0

∫

D

e−2ωτ bnu(n)(a1u̇ + · · · + anu(n)) dadτds

∣∣∣∣∣∣
≤ ω

16

t∫

0

s∫

0

∫

D

e−2ωτ bnan+1|u(n)|2 dadτds,

where ω is again large enough.

4. Phragmén-Lindelöf alternative

In this section, we obtain a Phragmén-Lindelöf alternative for the solutions to our problem (2.1)–(2.3)
for a measure defined in the cross section of the cylinder. We first define the function

G(z, t) =
1
2

t∫

0

s∫

0

∫

D

e−2ωτ |ũ(τ)|2dadτds. (4.1)

We have

∂G

∂z
=

t∫

0

s∫

0

∫

D

e−2ωτ ũ(τ)ũ,1(τ)dadτds

and

∂2G

∂z2
=

t∫

0

s∫

0

∫

D

e−2ωτ (ũ,1ũ,1 + ũũ,11)dadτds

=

t∫

0

s∫

0

∫

D

e−2ωτ (|∇ũ|2 + ũ ˙̂u)dadτds.

But we find that

ũ ˙̂u = (b0u + · · · + bn−1u
(n−1))(a1u̇ + · · · + an+1u

(n+1)) + bnan+1u
(n)u(n+1)

+bnu(n)(a1u̇ + · · · + anu(n))

=
d

dt

[
(b0u + · · · + bn−1u

(n−1))û
]

− (b0u̇ + · · · + bn−1u
(n))û +

1
2
bnan+1

d

dt
|u(n)|2

+bnu(n)(a1u̇ + · · · + anu(n)),
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and so, we obtain

∂2G

∂z2
=

t∫

0

∫

D

e−2ωs

(
1
2
bnan+1|u(n)|2 + (b0u + · · · + bn−1u

(n−1))û
)

dads

+

t∫

0

s∫

0

∫

D

e−2ωτ
[
|∇ũ|2 + ωbnan+1|u(n)|2 − (b0u̇ + · · · + bn−1u

(n))û

+2ω(b0u + · · · + bn−1u
(n−1))û + bnu(n)(a1u̇ + · · · + anu(n))

]
dadτds.

Therefore, in view of the inequalities provided in the previous section, it follows that

∂2G

∂z2
≥ 1

4

t∫

0

∫

D

e−2ωsbnan+1|u(n)|2 dads

+

t∫

0

s∫

0

∫

D

e−2ωτ
[
|∇ũ|2 +

ω

2
bnan+1|u(n)|2

]
dadτds, (4.2)

whenever ω is large enough. Thus, it leads

∂2G

∂z2
(z, t) ≥ 2λ2G(z, t), (4.3)

where λ2 is the known Poincaré constant for the cross section D. Inequality (4.3) has been previously
studied in the context of spatial estimates (see [18]).

From here we can obtain that either

G(z, t) ≥ G(z0, t)e
√
2λ(z−z0) (4.4)

for every z ≥ z0 and where G(z0, t) > 0, or the exponential decay

G(z, t) ≤ G(0, t)e−√
2λz (4.5)

is satisfied.
So we can deduce the following.

Theorem 4.1. The function G(z, t) defined in (4.1) for the solutions to problem (2.1)–(2.3) either it sat-
isfies the increasing estimate (4.4) or the decay estimate (4.5).

5. Fast decay

In this section, we prove a decay estimate for the solutions to problem (2.1)–(2.3) of the type of the
exponential of the distance to the part of the boundary where the perturbations are imposed. First, we
note that

∂G

∂t
=

1
2

t∫

0

∫

D

e−2ωs|ũ|2 dads.

From (3.2) and (4.2) we also find that

G
∂2G

∂z2
−

(
∂G

∂z

)2

≥ 2λ2G2(z) + C−1 ∂G

∂t
G, (5.1)
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where C is a computable positive constant depending on the constitutive coefficients and ω of the form:

C = 2
(

C1ω
−1 +

bn

an+1

)
.

Inequality (5.1) is well-known (see Equation (3.16) in [10]).
If we denote by P (z, t) = G(z, t)1/2 we can write

∂2P

∂z2
≥ λ2P + C−1 ∂P

∂t
.

We also note that P (z, 0) = 0 for z ≥ 0 and

P (0, t) =

⎛
⎜⎝

t∫

0

s∫

0

∫

D(0)

e−2ωτ |f̃(τ)|2 dadτds

⎞
⎟⎠

1/2

= g(t),

where g(0) = 0.
Let P (z, t) = exp

(−λ2tC
)
Φ(z, t). It then follows that

Φzz − C−1Φt ≥ 0 for z ≥ 0 and t ≥ 0,
Φ(z, 0) = 0 for z ≥ 0,
Φ(0, t) = exp

(
λ2tC

)
g(t) for t > 0.

An upper bound for Φ(z, t) follows from the maximum principle by using the solution to the problem

ηt = Cηzz

with the initial condition η(z, 0) = 0, when z ≥ 0, and the boundary condition:

η(0, t) = exp
(
λ2tC

)
g(t) for t > 0.

We know that

P (z, t) ≤ exp
(−λ2tC

)
η(z, t).

The function η(z, t) is well known (see Carslaw and Jaeger [3, p. 64]) and so, we have

η(z, t) = exp
(
λ2tC

)
g(t)F (z, t),

where

F (z, t) =
1
2
exp(−λz)erfc

{
C−1/2z

2t1/2
− (λ2Ct)1/2

}

+
1
2
exp(λz)erfc

{
C−1/2z

2t1/2
+ (λ2Ct)1/2

}
,

and

erfc(x) =
2

π1/2

∞∫

x

e−s2
ds.

Therefore,

P (z, t) ≤ g(t)F (z, t).

Since we know that

π1/2erfc(x) ≤ 1
x

e−x2
,
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we can conclude that (see Abramowitz and Stegun [1, p. 98]), for z > 2λtC, the estimate

P (z, t) ≤ g(t)
[
2C−3/2z(t/π)1/2exp(−λ2tC)

C−2z2 − 4λ2t2
exp

(
−C−1z2

4t

)]
(5.2)

holds.

Theorem 5.1. The solutions to problem (2.1)–(2.3) decaying to zero when the distance to the bounded
boundary increases satisfy estimate (5.2).

We remark that we can choose ω large enough to guarantee that the decay is “almost” of the type

exp
(

−an+1z
2

8bnt

)
.

6. Thermoelastic system

In this section, we extend the estimates obtained in the previous section to the thermoelastic case, that
is, a fast decay of the decaying solutions. Thus, we consider the system:

ρüi = μui,jj + (λ + μ)uj,ji − βθ,i,

c(a1θ̇ + a2θ̈ + · · · + an+1θ
(n+1)) = b0Δθ + b1Δθ̇ + · · · + bnΔθ(n)

−β(a1u̇i,i + a2üi,i + · · · + an+1u
(n+1)
i,i ),

(6.1)

with the boundary conditions:

ui(x, t) = θ(x, t) = 0 for a.e. x ∈ [0,∞) × ∂D,
ui(0, x2, x3, t) = fi(x2, x3, t) for a.e. (x2, x3) ∈ D,
θ(0, x2, x3, t) = f(x2, x3, t) for a.e. (x2, x3) ∈ D,

(6.2)

and the initial conditions:

ui(x, 0) = u̇i(x, 0) = θ(x, 0) = 0 for a.e. x ∈ B. (6.3)

Again, we assume that fi(x2, x3, 0) = f(x2, x3, 0) = 0 for a.e. (x2, x3) ∈ ∂D1.
It is worth noting that here ui is the displacement vector, θ is the temperature, λ and μ are the Lamé

constants, ρ is the mass density, c is the heat capacity and β is the coupling coefficient.
To make the calculations easier we assume that

ρ > 0, μ > 0, λ + μ ≥ 0, c > 0.

We also assume that an+1 > 0 and bn > 0.
In order to study the problem it is worth writing the displacement equation as

ρ¨̃ui = μũi,jj + (λ + μ)ũj,ji − βθ̃,i.

We can define the function

G0(z, t) = −
t∫

0

s∫

0

∫

D

e−2ωτ
[
μũi,1

˙̂ui + (λ + μ)ũk,k
˙̂u1 + βθ̃ ˙̂u1 + θ̃,1θ̃

]
dadτds.

In this section, we want to obtain a new spatial decay estimate. Therefore, we assume that

lim
z→∞ G0(z, t) = 0 uniformly as O(z−3). (6.4)

1Also the existence and regularity of solutions to problem (6.1)–(6.3) can be obtained as we already mentioned in
Sect. 2.
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We obtain that

G0(z, t) =

t∫

0

s∫

0

∫

B(z)

e−2ωτ
[
ρ¨̃ui

˙̂ui + μũi,j
˙̂ui,j + (λ + μ)ũi,i

˙̂uj,j

+|∇θ̃|2 + cθ̃
˙̂
θ
]
dvdτds,

where B(z) = {x ∈ B ; x1 ≥ z}. We note that

¨̃ui
˙̂ui = (b0üi + b1

...
u i + · · · + bnu

(n+2)
i )(a1u̇i + a2üi + · · · + an+1u

(n+1)
i )

= bnan+1u
(n+2)
i u

(n+1)
i + bnu

(n+2)
i (a1u̇i + a2üi + · · · + anu

(n)
i )

+(b0üi + b1
...
u i + · · · + bn−1u

(n+1))(a1u̇i + a2üi + · · · + an+1u
(n+1)
i )

=
d

dt

[1
2
bnan+1u

(n+1)
i u

(n+1)
i + bnu

(n+1)
i (a1u̇i + a2üi + · · · + anu

(n)
i )

]

+(b0üi + b1
...
u i + · · · + bn−1u

(n+1))(a1u̇i + a2üi + · · · + an+1u
(n+1)
i )

−bnu
(n+1)
i (a1üi + · · · + anu

(n+1)
i ),

ũi,j
˙̂ui,j = (b0ui,j + b1u̇i,j + · · · + bnu

(n)
i,j )(a1u̇i,j + a2üi,j + · · · + an+1u

(n+1)
i,j )

= bnan+1u
(n)
i,j u

(n+1)
i,j + bnu

(n)
i,j (a1u̇i,j + a2üi,j + · · · + anu

(n)
i,j )

+(b0ui,j + b1u̇i,j + · · · + bn−1u
(n−1)
i,j )(a1u̇i,j + a2üi,j + · · · + an+1u

(n+1)
i,j )

=
d

dt

[1
2
bnan+1u

(n)
i,j u

(n)
i,j + (b0ui,j + b1u̇i,j + · · · + bn−1u

(n−1)
i,j )ûi,j

]

+bnu
(n)
i,j (a1u̇i,j + a2üi,j + · · · + anu

(n+1)
i,j )

−(b0u̇i,j + b1üi,j + · · · + bn−1u
(n)
i,j )ûi,j .

In a similar way, we also have

ũi,iûj,j =
d
dt

[1
2
bnan+1u

(n)
i,i u

(n)
j,j + (b0ui,i + b1u̇i,j + · · · + bn−1u

(n−1)
i,i )ûj,j

]

+bnu
(n)
i,i (a1u̇j,j + a2üj,j + · · · + anu

(n)
i,j )

−(b0u̇i,i + b1üi,i + · · · + bn−1u
(n)
i,i )ûj,j .

We then obtain

G0(z, t) =

t∫

0

∫

B(z)

e−2ωs
[1
2
bnan+1(ρu

(n+1)
i u

(n+1)
i + μu

(n)
i,j u

(n)
i,j

+(λ + μ)u(n)
i,i u

(n)
j,j + c|θ(n)|2) + F1

]
dvds +

t∫

0

s∫

0

∫

B(z)

e−2ωτ
[ω

2
bnan+1(c|θ(n)|2

+ρu
(n+1)
i u

(n+1)
i + μu

(n)
i,j u

(n)
i,j + (λ + μ)u(n)

i,i u
(n)
j,j ) + ωF1 + F2 + |∇θ̃|2

]
dvdτds,

where

F1 = ρbnu
(n+1)
i (a1u̇i + · · · + anu

(n)
i ) + μ(b0ui,j + · · · + bn−1u

(n−1)
i,j )ûi,j

+(λ + μ)(b0ui,i + · · · + bn−1u
(n−1)
i,i )ûj,j + c(b0θ + · · · + bn−1θ

(n−1))θ̂,
F2 = (b0üi + · · · + bn−1u

(n+1)
i )(a1u̇i + a2üi + · · · + an+1u

(n+1)
i )

−bnu
(n+1)
i (a1üi + · · · + anu

(n+1)
i ) + bnu

(n)
i,j (a1u̇i,j + · · · + anu

(n)
i,j )

−(b0u̇i,j + b1üi,j + · · · + bn−1u
(n)
i,j )ûi,j + bnu

(n)
i,i (a1u̇j,j + · · · + anu

(n)
j,j )

−(b0u̇i,i + · · · + bn−1u
(n)
i,i )ûj,j + cbnθ(n)(a1θ̇ + · · · + anθ(n))

−c(b0θ̇ + · · · + bn−1θ
(n))θ̂.
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By choosing ω large enough we can obtain

G0(z, t) ≥ 1
4

t∫

0

∫

B(z)

e−2ωsbnan+1

[
ρu

(n+1)
i u

(n+1)
i + μu

(n)
i,j u

(n)
i,j + (λ + μ)u(n)

i,i u
(n)
j,j

+c|θ(n)|2
]
dvds +

t∫

0

s∫

0

∫

B(z)

e−2ωτ
[
|∇θ|2 +

ω

2
bnan+1(ρu

(n+1)
i u

(n+1)
i

+μu
(n)
i,j u

(n)
i,j + (λ + μ)u(n)

i,i u
(n)
j,j + c|θ(n)|2)

]
dvdτds.

We consider now

G1(z, t) =

∞∫

z

G0(ξ, t) dξ,

and so, we have

∂G1

∂t
= −

t∫

0

∫

B(z)

e−2ωs
[
μũi,1

˙̂ui + (λ + μ)ũ1,i
˙̂ui + βθ̃ ˙̂ui

]
dvds

+
1
2

t∫

0

∫

D(z)

|θ̃|2 dads,

∂G1

∂z
(z, t) = −G0(z, t),

∂2G1(z, t)
∂z2

≥ 1
4

t∫

0

∫

D(z)

e−2ωsbnan+1

[
ρu

(n+1)
i u

(n+1)
i + μu

(n)
i,j u

(n)
i,j + c|θ(n)|2

+(λ + μ)u(n)
i,i u

(n)
j,j

]
dads +

t∫

0

s∫

0

∫

D(z)

e−2ωτ
[
|∇θ|2 +

ω

2
bnan+1(ρu

(n+1)
i u

(n+1)
i

+μu
(n)
i,j u

(n)
i,j + (λ + μ)u(n)

i,i u
(n)
j,j + c|θ(n)|2)

]
dadτds.

From here, the argument is again standard (see, for instance, [26,27]).
We can obtain the existence of two positive constants β1 and R such that

∂G1

∂t
≤ −β1

∂G

∂z
+ R

∂2G1

∂z2
.

If we denote

H(z, t) = ea2Rte−azG1(z, t), a =
β1

2R
,

we obtain

R
∂H
∂z2

≥ ∂H
∂t

.

An argument similar to the one proposed in the previous section shows that

G1(z, t) ≤ ea(z−aRt) sup
0≤s≤t

[e2RsG1(0, s)]N(z, t),
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where N(z, t) =
z

(4πR)1/2

t∫

0

s−3/2exp
(

− z2

4πs

)
, and a change of variable implies that N(z, t)

= erfc
z

(4Ct)1/2
.

Therefore, we conclude that

G1(z, t) ≤ A(t)
z

exp
(

az − z2

4Rt

)
, (6.5)

where

A(t) = (4Rt)1/2e−a2Rt sup
0≤s≤t

ea2RsG1(0, s).

We remark that we can obtain upper bounds for this function A(t) in terms of the boundary conditions
following the arguments already used in [17,27].

It is clear that these estimates imply that the decay at the infinite is of the type of exp
(−z2

4Rt

)
which

we summarize as follows.

Theorem 6.1. The solutions to problem (6.1)–(6.3) that satisfy condition (6.4) decay in the form (6.5).

We note that, for ω large enough, we can choose R as near as we want to the value 2
bn

can+1
.

Therefore, asymptotically the rate of decay that we have obtained for the function G1 approaches to

exp
(

−can+1z
2

8bnt

)
.

7. A few examples

In this section we give several elementary examples where the results obtained in this paper can be
applied.

7.1. Parabolic equation

We give here several examples of parabolic equations of higher order. The first example corresponds to
the linearized form of generalized Burgers’ fluid. From [33] we know that the system determining the
evolution of this fluid is given by

ρ(v̇ + λ1v̈ + λ2
...
v ) = −∇q + η1Δv + η2Δv̇ + η3Δv̈,

where ρ, λ1, λ2, η1, η2 and η3 are positive constants.
In the case that we consider anti-plane shear deformations:

v1 = v(x2, x3), v2 = v3 = 0,

we obtain the equation:

ρ(v̇ + λ1v̈ + λ2
...
v ) = η1Δ∗v + η2Δ∗v̇ + η3Δ∗v̈,

where Δ∗ =
∂2

∂x2
2

+
∂2

∂x2
3

.

A second example could correspond to the dual-phase-lag heat equation [34] written as follows:

Ṫ + τqT̈ +
τ2
q

2
...
T + · · · +

τn
q

n!
T (n+1) = k(ΔT + τT ΔṪ + · · · +

τn
T

n!
ΔT (n)),
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where k, τq and τT are three positive constants. Perhaps the most known case corresponds to the equation:

Ṫ + τqT̈ +
τ2
q

2
...
T = k(ΔT + τT ΔṪ +

τ2
T

2
ΔT̈ ).

In 2007, Roy Chouduri [4] proposed to generalize the Tzou proposition to include the type II and III
Green–Naghdi theories, being the most well-known example the one written as

T̈ + τq

...
T = k∗ΔT + τ∗

ν ΔṪ + kτT ΔT̈ ,

where k, k∗ are two positive constants, τ∗
ν = k∗τν + k and τq, τν and τT are three positive relaxation

parameters.
In the reference [16] the authors proposed a constitutive equation in viscoelasticity of the form:

C(∂/∂t)σij = A(∂/∂t)εkkδij + 2B(∂/∂t)εij ,

where A, B, C are polynomials, σij is the stress tensor, εij is the strain tensor and δij is the Kronecker
symbol.

The anti-plane shear deformations can be obtained now from the equation:

u(n+1) + anu(n) + · · · + a2u
(2) = μ(b0Δu + · · · + bnΔu(n−1) + Δu(n)),

where μ is a positive parameter and whenever degree(C) = degree(B) − 1.

7.2. Thermoelasticity

Now, we give a couple of examples where we can apply the results of Sect. 6.
We note that the dual-phase-lag thermoelasticity has been studied by many authors. We can consider

the case:
ρüi = μui,jj + (λ + μ)uj,ji − βθ,i,

c(θ̇ + τq θ̈ +
τ2
q

2
...
θ ) = k(Δθ + τT Δθ̇ +

τ2
T

2
Δθ̈) − β(u̇i,i + τqüi,i +

τ2
q

2
...
u i,i).

A thermoelastic system corresponding to the three-phase-lag thermoelasticity could be (see [4]):

ρüi = μui,jj + (λ + μ)uj,ji − βθ,i,

c(θ̈ + τq

...
θ ) = k∗Δθ + τνΔθ̇ + kτT Δθ̈ − β(üi,i + τq

...
u i,i).

It is worth noting that we could also study systems where the derivation of the temperature could
correspond to higher order. For instance, we could consider systems of the form:

ρüi = μui,jj + (λ + μ)uj,ji − βθ,i,

c(θ̇ + τq θ̈ + · · · +
τn
q

n!
θ(n+1)) = k(Δθ + τT Δθ̇ + · · · +

τn
T

n!
Δθ(n))

−β(u̇i,i + τqüi,i + · · · +
τn
q

n!
u
(n+1)
i,i ).
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