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Abstract

The use of camera traps to estimate population size when animals are not individually recognizable is gaining traction in the
ecological literature, because of its applicability in population conservation and management.

We estimated population size of synthetic animals with four camera trap sampling-based statistical models that do not rely on
individual recognition. Using a realistic model of animal movement to generate synthetic data, we compared the random
encounter model, the random encounter and staying time model, the association model and the time-to-event-model and we
investigated the impact of violation of assumptions on the population size estimates.

While under ideal conditions these models provide reliable population estimates, when synthetic animal movements were
characterised by differences in speed (due to diverse behaviours such as locomotion, grazing and resting) none of the model
provided both unbiased and precise density estimates. The random encounter model and the time-to-event-model provided pre-
cise results but tended to overestimate population size, while the random encounter and staying time model was less precise
and tended to underestimate population size. Lastly, the association model was unable to provide precise results. We found that
each tested model was very sensitive to the method used to estimate the range of the field-of-view of camera traps. Density esti-
mates from both random encounter model and time-to-event-model were also very sensitive to biases in the estimate of ani-
mals’ speed. We provide guidelines on how to use these statistical models to get population size estimates that could be useful
to wildlife managers and practitioners.
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Introduction

A reliable estimate of population density for medium- and
large mammal species is crucial to develop population
dynamic and distribution models, and to implement conser-
vation and management programs (Williams, Nichols, &
Conroy, 2002). Moreover, precise and unbiased population
density estimates are fundamental to conserve rare and vul-
nerable species. According to the IUCN criteria, knowledge
of the population size is an important criterion to establish
the appropriate level of threat of a wild species. Currently,
the IUCN red list (https://www.iucnredlist.org/) reports that
for 127 medium and large terrestrial mammal species data is
deficient, so that population size cannot be assessed. Obtain-
ing a reliable population assessment is necessary to verify
the efficacy of policies for controlling invasive or alien spe-
cies. The assessment and monitoring of population size and
population density by means of affordable and reliable
methods are therefore key tools for developing fact-based
management.

Several methods exist to estimate population abundance,
ranging from traditional survey methods such as point
counts or distance sampling, to spatially explicit capture-
recapture techniques (e.g Borchers & Efford, 2008; Royle &
Young, 2008). Recently, there has been a growing number
of studies proposing analytical methods to estimate density
based on camera traps (CTs) data. As technology has
improved, wildlife biologists and animal ecologists have
increasingly used CTs to monitor animal communities
because they are non-invasive, relatively inexpensive tools,
with extended operating times (days/weeks or months,
depending on the trigger protocol and battery used), saving
labour of field assistants and allowing animal monitoring at
day and night (Burton et al., 2015; Rovero et al., 2013;
Trolliet et al., 2014).

The precision of the estimates, usually reported as coefficient
of variation (CV), is key for practical applications, for example
to effectively evaluate animal population response to manage-
ment actions (Engeman, 2005). Thus, the precision of an esti-
mate is fundamental to reduce sampling errors to a-priori
defined levels (Focardi et al., 2020). Skalski, Ryding, and Mill-
spaugh (2005) suggested that a coefficient of variation (CV)
lower than 0.2 is appropriate for the estimates to be meaningful
for management purposes.

Over the last decade, several analytical methods have
been proposed to estimate density from CT data for non-
individually recognisable species. Some of these methods
have been derived from Hutchinson and Waser’s (2007)
seminal paper, which assumes that animals may be treated
as “ideal gas” molecules and that methods stemming from
statistical mechanics can be useful to evaluate their density.
Accordingly, Rowcliffe et al. (2008) developed the random
encounter model (REM). The amount of animals y crossing
a detector (assumed circular of radius r) is given by:

y ¼ 2rtvD ð1Þ
where v is the speed of animals, t is time, and D is the den-
sity to be determined. The appropriate formula for D when
CT have a field of view (FOV), i.e. a sector of actual visibil-
ity by CT within a circle with angle u<p, reads:

D ¼ py
tvr 2þ uð Þ : ð2Þ

Such a model is strictly deterministic and assumes that the
number of encounters is observed without error, and that the
values of r, u, and animal movement speed v are known
(Rowcliffe et al., 2008). Since speed is considered in the
Eq. (2) as a static parameter, its overestimation can cause an
underestimation of density, and vice versa. For a given num-
ber of detections, using REM can lead to estimate a smaller
population if animals move faster than average during the
sampling period. This is simply because we assume that ani-
mals that move faster have more chances to be detected. The
inverse is true as well: the slower the animals move, the less
likely to be detected they are. Therefore, the same given
number of detections could lead REM to estimate a greater
population size for a sample of slower moving individuals.
To overcome this bias, corrections to the method to estimate
the area traversed by animals during any single day (day
range) based only on CT data have been developed
(Palencia et al., 2019, 2021; Rowcliffe et al., 2016b). With
REM, precision is usually estimated using bootstrapping
and the delta method (Rowcliffe et al., 2008), although more
recently Jourdain et al. (2020) developed a maximum likeli-
hood estimator version of REM.

An approach similar to REM has been developed by
Nakashima, Fukasawa and Samejima (2018): the random
encounter and staying time model (REST). For REST, the
amount of time an animal remains in the field of view
(FOV) of a camera (T) has to be known. In this method, den-
sity D can be estimated as:

D ¼ E yð ÞE Tð Þ
sH

ð3Þ

where s is the area surveyed and H the duration of the
study, E(y) is the expected number of encounters, and E
(T) is the expected staying time. This formulation stresses
that the model presents a full-likelihood formulation and
so the standard error (and hence CV) can be directly esti-
mated.

Campos-Candela et al. (2018) proposed a different model,
the Association Model (AM), which supposedly overcomes
some limitations of the previous methods. In this latter
method, density D can be estimated as:

D ¼
PC

i
PF

j ni;j

CFA
ð4Þ

where C is the number of camera traps, F is the number of
photographs, ni;j is the number of animals observed in cam-
era i and photograph j and A is the area covered by the FOV
of each camera. These authors validated the AM by
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simulations of the movement of animals characterised by a
home range. Unfortunately, their approach presents several
shortcomings as shown by Abolaffio, Focardi, and San-
tini (2019), and assumes perfect detection within the field of
view (see also Campos-Candela et al., 2019).

Other interesting methods to estimate population density
were proposed by Moeller, Lukacs, and Horne (2018).
Amongst these, the time-to-event model (TTE) seems prom-
ising as it performed well both in Moeller et al. (2018) simu-
lations and field study, such as recent work by
Loonam et al. (2020) and Loonam et al. (2021). This model
does not originate from the ideal gas theory, rather it is
rooted in sampling theory and uses observations of the time
between an arbitrary starting moment until the first detection
of an animal. A key assumption of this method is that ani-
mals are Poisson distributed across camera grid cells. This
assumption allows to assume an exponential distribution of
the time until a detection occurs at a camera. In order to
measure this exponentially distributed time until a detection,
the survey is divided into occasions (e.g., days) and each
occasion into periods (e.g., hours), assuming that the number
of animals Nijk visible to camera i, on occasion j and period k
is Poisson distributed:

Nijk » Pois λð Þ ð5Þ
where λ is the average number of animals visible to a cam-
era. Thus, if T is the distribution of periods of first detection,
then:

T ¼ exp λð Þ ð6Þ
We can estimate overall density (D) by dividing the esti-

mated λ by the mean area a of a camera’s FOV:

D ¼ λ
a
: ð7Þ
Table 1. Summary of the assumptions upon which the four methods we
the assumptions in relation to accuracy and precision (see Palencia et al.,
tion model (AM), random encounter model (REM), random encounter and

Assumption AM REM REST

CTs are placed randomly with respect
to animals

X X X

Certain detection X X X
Closed population X X X
Animal movement and behaviour are not
affected by CTs after first detection

X X

Independent detections X X X
Certain detection at zero distance X X
Certain animal recording inside focal area X
False detection X X X
Instantaneous detection X
Unaffected by inactivity periods X X
The authors warn that TTE may provide biased popula-
tion estimates, but Looman et al. (2020) showed that TTE
can perform comparably to existing methods for estimating
abundance in unmarked species that live at low densities
(such as the cougar Puma concolor).

Despite evident differences, all these methods share a
common number of assumptions which are:

(1) Camera traps must be placed randomly with respect to
the spatial distribution of animals, so that all individuals are
at risk of being captured and the inference obtained from the
sample can be unbiasedly extended to the rest of the popula-
tion. Usually, this is done using a random grid of CTs or a
stratified random sampling. This assumption excludes the
use of baited CTs or to set CTs on trails or other special
locations (Durbach et al., 2020). See Garrote et al. (2021)
and Cusack et al. (2015) for useful examples of deviations
from random placement.

(2) CTs must detect the animals with certainty inside an
area measured with negligible error (detection area). This
area can be identical or different amongst the set of CTs
used in a specific survey, e.g., in dependence on technologi-
cal differences amongst camera traps (such as triggering sen-
sitivity, or lens quality, etc.; Rovero et al., 2013) or obstacles
that reduce the FOV of a given CT.

(3) Population is closed during the study period: no birth,
death, net immigration or emigration are expected to occur.

(4) Animal movement and behaviour are not affected by
CTs, which means that instruments should neither attract
nor repel; the encounter with a CT should not influence the
detection probability by any other CT deployed in the same
sampling scheme.

Only if these general assumptions, as well as other general
and method-specific ones (Table 1), are met, the output of
analytical methods is meaningful. We summarise the
assumptions and the effects of their violation in Table 1.
tested are based. We also list some likely outcomes of violation of
2021a; Gilbert et al., 2021). Legend: camera Traps (CTs), Associa-
staying time model (REST), time-to-event model (TTE).

TTE Likely effects of violation of the assumption on

Accuracy Precision

X Positive bias when the CT is placed on
trails and preferred locations

X Negative bias
X Low

Direction of bias depends on whether the
animal is attracted or turned down by the CT
Positive bias in REM

X Negative bias
Negative bias

X Positive bias
X Negative bias
X Negative bias
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The analytical methods presented above have been validated
using synthetic data and/or applied to populations of known
size, but using different simulation approaches, so that it is diffi-
cult to compare their relative performance.
Rowcliffe et al. (2008) did not simulate movement trajectories,
but generated trapping data by drawing random numbers of
photographs from a negative binomial distribution.
Nakashima et al. (2018) approximated the movement of simu-
lated animals using a biased correlated random walk with step
intervals of 15 min. In a later contribution, Nakashima (2020)
approximated home range behaviour via an Ornstein-Uhlen-
beck process. The model proposed by Campos-
Candela et al. (2018) used a biased uncorrelated random walk,
while Moeller et al. (2018) and Chauvenet et al. (2017) also
used uncorrelated random walks. All these movement models
miss important components of realistic animal movement. First,
the models assume homogeneity of behaviours along the trajec-
tory, whereas alternative behaviours (e.g., resting, feeding)
occur. Second, in most cases, synthetic animals are character-
ised by diffusive unbounded movements which are unrealistic.

In this work, we fill this methodological gap by comparing
the performance of these methods (namely REM, AM, REST
and TTE) using an identical set of simulations and allowing for
complex behavioural phases of the surveyed animals. First, we
used a unique simulation model characterised by the presence
of home ranges and by a variable degree of path tortuosity,
with animals that may alternate different behaviours, each char-
acterised by a specific rate of displacement (Abolaffio et al.,
2019). Secondly, we developed a synthetic CT survey using
variable sampling efforts and CT settings for known population
of animals characterised by home range behaviour (moose
Alces alces). We initially compared the models’ performance
under simplistic conditions, then introduced a further level of
complexity in the behaviour of synthetic animals. We also
tested the impact of a variable FOV on all models’ perfor-
mance, and of the accuracy of speed estimation on REM and
TTE models.
Materials and methods

Animal movement model

In this paper we used the moose (Alces alces) as species
of reference (cf. Appendix S2 in Abolaffio et al., 2019, for
further information). The coordinates of the home range cen-
ters were randomly assigned. In the model, the animal
moves in a 2-dimensional space and is characterized by a
maximum of three different behavioural patterns: displace-
ment or fast movement, grazing with slow movement and
resting. The fractions of time spent in movement and grazing
are denoted pgraze and pmove, respectively, while (1- pgraze -
pmove) is the resting time.

Our model falls under the class of correlated velocity
models (Gurarie et al., 2017), also known as continuous
time movement models (Calabrese, Fleming, & Gurarie,
2016), as opposed to the more popular discrete-time move-
ment models, such as correlated random walks. However,
our model shows two major differences with respect to those
described in Guraire et al. (2017): (i) in our model the speed
is correlated only in magnitude and not in direction, giving
the animal the desired mean speed in magnitude and (ii) the
mean turning acceleration is pointing toward the centre, cre-
ating the desired home range behaviour.

Coherently with a large body of literature on animal
movement patterns, our model displays these main features:
i) correlation of movement that determines the direction of
successive steps, i.e. the turning angles are correlated
(Turchin, 1998); ii) assumption that the distribution of dis-
tances between the animal’s position and the home range
centre, of coordinates Xc, is bivariate normal and homoge-
neous (Okubo, 1980); iii) characteristic movement velocity
of relocation Va..

Beyond these main features, we explicitly accounted for
different types of movement for each animal: fast move-
ments, grazing, and resting. These stages are included in the
model as follows.

Fast movements. The displacement X(t) of the animal is
given by:

X t þ Dtð Þ ¼ X tð Þ þ V tð ÞDt ð8Þ
where the vector V ðtÞ denotes the velocity and Dt is the
time interval. VðtÞ depends on the sum of three terms:

V t þ Dtð Þ ¼ V tð ÞVa þ V tð Þ � Vað Þe�Dt=t

V tð Þ
� K X � X cð ÞDt þ Rt ð9Þ

The first one brings the module of velocity VðtÞ close to
the characteristic speed Va.. When V(t) > Va the fraction is
<1 while when V(t) < Va it yields values >1. Note that t,
measured in seconds, is a characteristic time scale of auto-
correlation (see Guraire et al. 2017).

The second term of Eq. (9) represents an acceleration
towards X c, while the third component of Eq. (9) is a random
noise Rt (m/s), with variance e2Δt assumed identical in the two
axes. Note that in Gurarie et al. (2017), Rt is denoted bdwt,
where b is equivalent to our e (m/s3/2). Guraire et al. (2017)
also defined 1/t = a.K (1/s2) is a parameter which represents
the intensity of centripetal component of movement. If K = 0,
in the limit of t! 0 and e=0, the animal performs a ballistic
motion. The case of t � 0; cannot be dealt with analytically,
but numerical simulations have showed that there is not a large
discrepancy with the case t! 0 (cf. Appendix S1 in
Abolaffio et al., 2019). When K > 0 and e>0 the animal per-
forms a home range behaviour which reduces to deterministic
orbits around X c when e=0. In case of t! 0 it is possible to
compute the home range size SHR as:

SHR ¼ c1Va

ffiffiffiffiffiffi
1
2K

r
ð10Þ
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where c1 is a constant which depends on the definition of
home range. For a 95% home range, c1 � 2:45. Since the
home range size and Va are usually known, one can use
Eq. (10) to estimate the value of K to be used in simulations
to develop the survey design for the species of interest. Note
that the velocity V(t) has a module correlation time t and
angular correlation time given by V2

a
e : The home range size

was set to 26 km2, which is the average home range size
computed for over 300 moose from several Scandinavian
populations (Allen et al., 2016), and considered identical for
all simulated animals, with a mean daily speed of 0.03 m/s
(Vander Vennen et al., 2016).

Grazing. The animal performs a uniform uncorrelated
Brownian motion on a small scale, with mean absolute dis-
placement per minute equal to 0.5 m.

Resting. The animal stands or lays still.
For the appropriate range of parameters and at a large

scale, the model looks similar to an Ornstein�Uhlenbeck
process in that there is a diffusion term coupled with a
movement bias towards the home range centre
(Preisler et al., 2004), but here we introduced a term for
aligning the velocity to the typical speed of the species of
interest. For a similar Ornstein�Uhlenbeck foraging model,
see also Fleming et al., (2014).

During each day of simulated movement, there was a vari-
able number of activity phases, and in each phase the differ-
ent activities alternate as moving, grazing and resting, using
the proportion established for the whole day.
Simulating camera trap sampling

To generate simulated CT surveys, we hypothesized an
idealized squared study area of 10 £ 10 km with periodic
boundary conditions, within which we placed a squared grid
of equidistant cameras. We used four grids with 25, 49, 100,
225 CTs with 2.00, 1.43, 1.00 and 0.67 km distance amongst
CTs, respectively. We simulated five different animal densi-
ties, i.e. 0.25, 0.5, 1.0, 2.5 and 5.0 animals/km2.

Moving animals were recorded when they entered the
detection area of the camera. Each camera was assumed to
have a maximal detection radius equal to 9 m and a FOV of
45°, unless otherwise specified. Here we assumed that all
the animals entering the FOV were recorded, and that there
were no obstacles that could affect detection which, of
course, is not always true in the case of actual CTs
(Trolliet et al., 2014). To assess the effect of variability in
camera detection radius (e.g., due to physical obstacles) we
produced a set of simulations where the effective detection
distance of each camera was randomly extracted from a uni-
form distribution bounded between 5 and 15 m. This set of
data was then analysed under two different scenarios: 1) the
effective detection distance was unknown, in which case the
maximum detection distance (15 m) was used in the density
calculations; 2) the effective detection radius was known,
with its average value across the set of CTs being used to
estimate animal density.
Simulation scenarios and data analysis

We simulated two different movement scenarios. In the
first one, each animal moves at constant speed (pmove = 1),
without any grazing or resting period. This rather unrealistic
scenario was used because previous studies implicitly or
explicitly assumed constant speed. In the second scenario,
we assumed pgraze = 0.3, pmove = 0.1, and the remaining
being resting. For the moose, the activity budget was derived
by Van Ballenberghe and Miquelle (1990). To be consistent
across the two scenarios, the speed of the animals in scenario
2 was calculated to obtain the same overall mean speed as in
scenario 1. The simulated surveys lasted 30 days, a duration
that can reasonably allow to meet population closure
assumption for a range of mammalian species. Cameras
were set to be turned on for 24 h/day, and the recording of
animals entering the field of view occurred without error
and no delay.

For REM we developed our own code based on
Caravaggi et al. (2016). For AM we used the code developed
by Abolaffio et al. (2019). Estimates for the TTE model were
obtained using the R code provided by Moeller et al. (2018).
Note that this code produces idle error messages which were
ignored (A. Moller pers. com.). The critical point in TTE is
that the duration of the period should be carefully set to the
time necessary for the animal to cross the FOV. In the absence
of clear indications in Moeller et al. (2018) we took as period
the time necessary to cross the field-of-view at the maximum
distance during moving, which turned out to be 225 s, for a
total of 384 periods per each occasion of 24 h. Note that the
number of periods per occasion does not impact results (A.
Moeller, pers. com.). For REST, the estimation of parameters
was performed within a Bayesian framework using a JAGS
code, kindly provided by Y. Nakashima. Posterior samples of
parameters were obtained by the MCMC method using JAGS
software (Plummer, 2003). The activity proportion was known
without errors. A uniform prior value from 0 to 100 was used
for the parameters of staying time and the dispersion parameter
for trapping rate. Following Nakashima et al. (2018) a gamma
distribution with shape (0.1) and rate parameters (0.1) was
used as the prior distribution for animal density. Each set of
simulated data was run using four different distributions for
staying time (exponential, gamma, log-normal and Weibull),
and the model yielding the lowest DIC value was selected
(Spiegelhalter et al., 2002).

We used semi-logarithmic funnel plots of the ratio of the
estimated density to true density which yields 1 in case of
perfect matching. We also reported upper and lower log-nor-
mal 95% confidence limits as a function of the true popula-
tion size (0.25, 0.5, 1.00, 2.50 and 5.0 animals per km2) per
survey effort.
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Results

Six examples of 30-day trajectories, using different
parameter assignment values, are reported in Fig. 1. As sug-
gested by this plot, by varying motion parameters it is possi-
ble to change the size and the shape of the simulated home
range. The home range size is determined by K (Eq. (6)):
when K increases (as in Fig. 1E, F) the home range size
decreases.

The analysis of the performance of the four estimators for
the case where model parameters are perfectly known, and
the simulated animals perform a continuous movement at
constant speed, is reported in Fig. 2 (see also Table S1 for
the numerical values displayed in Fig. 2). We present results
relative to four levels of effort (25, 49, 100 and 225 CT) and
five values of animal density. To give the reader an idea of
the sample size, around 20 detections were collected for the
smallest density and effort, while for the largest ones around
200 detections were recorded. The variability was generated
entirely by the stochasticity in animal movement and by the
initial random positioning of home ranges. For all models
we observed a reduction of sampling variance as a function
of density and sampling effort. At small sampling effort (25
CTs) and low density (0.25 animals/km2) the range of varia-
tion was around 200% for all methods and attained values
Fig. 1. Six examples of simulated animal trajectories. (A) One behaviour
iour (moving), correlation parameter = 0.1; (C) Three behaviours, namely
parameter = 0.05; (D). Three behaviours (pgraze = 0.3, pmove = 0.1), co
Va = 0.033 m/s. In panels (E) and (F) the the trajectories have the same p
stant K is doubled (K = 1.414 10�5 s�2). (For interpretation of the referen
version of this article.)
around 80% at high density (5 animals/km2). Using the larg-
est sampling effort (225 CT) at the highest density the range
of variation was lower, i.e. around 20�30% for all the four
methods. REM, REST and AM were asymptotically unbi-
ased, since there is no systematic deviation from 1, and pre-
cision improved with sample size. On the contrary TTE
appeared to be systematically biased high.

The performance of the four methods with more realistic
simulations including three different behaviours is shown in
Fig. 3, with the numerical values of confidence intervals
reported in Table S2. In these scenarios, AM and REST per-
formed worse than REM and TTE. Indeed, REM and TTE
confirmed the pattern observed for the simplest scenario
(Fig. 2). The results of these models showed a tendency to
overestimate the density, but they attained a good precision
when high density and large effort were considered. TTE
appeared to be almost two times more precise than REM,
while the precision of REST and AM was very poor. At low
density and effort levels, the upper limits of the confidence
intervals were generally 2�10 times the actual density, with
one AM estimate being 135 times larger. At high density
and large effort, the confidence intervals were 100% for
REST and 300% for AM. Overall, AM remained unbiased
while REST tended to be biased low towards underestimated
values.
(moving, pmove = 1), correlation parameter = 0.05; (B) One behav-
resting, moving, and grazing (pgraze = 0.3, pmove = 0.1), correlation
rrelation parameter = 0.1. In all the examples, average speed was
arameter values as in panels (C) and (D), respectively, but the con-
ces to colour in this figure legend, the reader is referred to the web



Fig. 2. The ratio between population estimate and true density is reported as a function of true density (x-axis) for the four considered methods and four levels of effort (25, 49, 100 and 225
camera traps). Model names are as in Table 1. Black dashed lines define the 95% confidence intervals. The red dashed line denotes lack of bias. One behaviour (moving), Va = 0.03, 30 days
of sampling. For each combination of values we performed 100 simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. The ratio between population estimate and true density is reported as a function of the true density (x-axis) for the four considered methods, and four levels of effort (25, 49, 100 and
225 camera traps). Model names are as in Table 1. Black dashed lines define the 95% confidence intervals. The red dashed line denotes lack of bias. Three behaviours (resting, moving, and
grazing), Va = 0.03, 30 days of sampling. For each combination of values we performed 100 simulations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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The importance of estimating correctly CT parameters is
illustrated in Fig. 4, where we compare the use of the maxi-
mum detection distance, with the average effective detection
distance (usually lower than the former). The use of the
average detection distance instead of the maximum potential
value increased the overall variance of density estimates.
For REM, REST and TTE the use of the mean instead of the
maximal detection distance tends to overestimate abun-
dance. However, in the case of REST, this bias compensates
for its tendency to underestimate, thus providing apparently
accurate abundances.

Lastly, in Fig. 5 we show the impact of an over- or under-
estimation of the animal mean speed for REM and TTE
models, since the daily range enters directly in the computa-
tional formula (REM model, see Eq. (2)) and in the defini-
tion of duration of the period in TTE. In both methods,
Fig. 4. Boxplots showing the accuracy of density estimates when using
each of the considered models. Model names are as in Table 1. We use th
and 120 simulations per group. The three behaviors were resting, moving
figure legend, the reader is referred to the web version of this article.)
speed overestimation produced a low-biased density value
while speed underestimation produced a severe positive
bias. Interestingly, in both models the underestimation of
the speed decreased the density estimate precision.
Discussion

This work represents the first attempt to critically evaluate
comparatively several recently proposed methods to assess
the size of wildlife populations using data simulated from
the same realistic model of animal movement. All estimators
considered have important limitations in providing robust
estimates of population density, with potential consequences
if used for conservation and management. Indeed, we
showed that despite their good performance under “ideal”
the maximal (grey) or mean (white) certain detection distance for
ree behaviors, density set at 2.5 animals/km2 and 100 deployed CTs
, and grazing. (For interpretation of the references to colour in this



Fig. 5. Boxplots of the distribution of accuracy of density estima-
tion values when mean animal speed is exact, over or under-esti-
mated. Model names are as in Table 1.The dashed red line denotes
the reference value. We used three behaviors, density set at 2.5 ani-
mals/km2, 100 deployed camera traps and 120 simulations per
group. The three behaviors were resting, moving, and grazing. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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survey conditions, when we introduced more realistic move-
ment patterns, the robustness of estimates decreased, with
decreased accuracy and precision.

It is clearly impossible to obtain good estimates using few
CTs when densities of animals are low. Depending on the
other parameters, we showed that >100 CTs are usually
necessary to get a good trade-off between accuracy and pre-
cision. This is more valid for REST than for REM and TTE,
as the latter two methods tend to provide more precise esti-
mates even with fewer camera traps. This was recently con-
firmed by an empirical comparison amongst methods
(Palencia et al., 2021a) for camera trap data concerning three
species (red deer Cervus elaphus, wild boar Sus scrofa, and
red fox Vulpes vulpes).
Our results were obtained with a set of population density
values which can be considered medium or low for the spe-
cies of reference. We expect that all these methods would
perform better with higher true density values, especially
when using AM and REST. Still, the values we used can
approximate the situation of rare species of conservation
concern, or recently introduced invasive alien species.

Our results also suggest that the effective estimate of the
FOV is critical to obtain valid results, especially in the case
of REST. The FOV is determined by different camera
parameters: maximal distance of certain detection, dmax, lens
angle-of-view and trigger delay. We have focused our study
on dmax for which any CT exhibits a certain detection proba-
bility. This is an often overlooked problem in field studies
but, based on our findings, we recommend to experimentally
assess this distance for each camera.
Hofmeester et al. (2019) showed that a number of factors,
depending on CT technology, animal species and habitat,
may influence CT detection probability. A number of meth-
ods have been devised to estimate the detection distance
from the analysis of CT pictures (Caravaggi et al., 2016;
Howe et al., 2017; Johanns, Haucke, & Steinhage, 2022;
Rowcliffe et al., 2011). An easy way is to compute dmax,
using a laser range finder. We also assumed that the CT was
able to detect any animal crossing the FOV between 0 and
dmax but, depending on the species size and CT positioning,
it is also possible that an animal moving very close to the
CT or crossing the FOV very rapidly may go undetected.
Howe et al. (2017) proposed to apply mark�recapture dis-
tance sampling methods to deal with this problem, whose
practical importance is well illustrated by
Bessone et al. (2020). In relation to left-truncation of detect-
ability, Rowcliffe et al. (2011) showed that this process
influences at a larger extent smaller mammal species.

A useful feature of our model is that synthetic animals
perform a continuous random walk with a high temporal res-
olution, and Abolaffio et al. (2019) showed that the spatial
resolution of an animal’s path is quite relevant to obtain a
correct estimate of detection rates. We have developed our
model framework according to Gurarie et al. (2017) and we
modelled the movement of animals as a correlated-speed
movement model. With respect to discrete movement mod-
els (e.g Signer, Fieberg, & Avgar, 2017 or Neilson et al.,
2018), speed attains a value which is independent of the
temporal step used in simulations. A clear limitation of our
model is that it yields circular home ranges whereas animal
home ranges are actually more complex (B€orger, Dalziel, &
Fryxell, 2008) but a similar assumption is also used in
SECR modelling (cf Efford, 2019 for a discussion on this
topic). In general, home range shapes more complex than
bivariate normal would result in an increased variance of the
estimates.

Finally, we believe that the model used here to reproduce
animal movements represents an improvement with respect
to those previously used to evaluate CT methods. The fea-
tures we introduced in the movement of synthetic animals
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capture essential properties of animal movement such as the
alternation of different behavioural states. Despite the sim-
plicity of the implemented mechanism, this complication
has important consequences in the performance of the differ-
ent estimators. The fact that the introduction of multiple
behavioural states compromises the results of the studied
estimators is probably linked to a specific bias in the sam-
pling process. Indeed, the chance that an animal gets
detected by CTs depends positively on its speed. When the
animal’s speed is not constant it is easier to detect an animal
during a relocation phase than while grazing because its
speed is higher. Therefore not considering movement vari-
ability could bias density estimation.

Our simulations assume that users have a perfect knowl-
edge of parameter values. This is very seldom the case under
actual field conditions. We agree with
Rowcliffe et al. (2012) that “the underestimation of distance
travelled is a serious but underappreciated problem”. Cur-
rently, there is no reliable, widely applicable method to
obtain approximately unbiased estimates of distance trav-
elled by animals. However, new emerging techniques such
as dead-reckoning (Bidder et al., 2015) can be used to
improve the estimates of animal speed. As well, interpola-
tion methods can be applied to telemetry data especially
when sampling rate is high (e.g. high GPS frequency) so
that the estimation of the movement via interpolation is close
to the real one (Fleming et al., 2016). Also well
Rowcliffe et al. (2016) and Palencia et al. (2021b) had pro-
posed a method to estimate daily range from CT observa-
tions. Although these methods are promising they are also
expensive and complex, whereas easy-to-use methods to
estimate parameter values would strongly support the use of
movement models (see Calabrese et al., 2016 and
Noonan et al., 2019 for useful examples).

Our simulations showed that REM overestimated popula-
tion size. This is in agreement with Cusak et al. (2015), who
provided a very careful analysis of lioness (Panthera leo)
density in the Serengeti, finding that REM estimates tended
to be higher than those obtained with other reliable methods.
Similarly, Rovero and Marshall (2009) showed that REM
estimates for a population of Harvey’s duiker (Cephalophus
harveyi) in Tanzania were higher than those obtained
through other methods.

REST seems more appropriate than REM for practical
management since it appears to be less expensive and sim-
pler to be put in place, although more complex to parame-
trize. A comparative analysis of the two models
(Palencia et al., 2021a) showed that for both red deer and
wild boar there were no significant differences between
these models and, moreover, that the estimates were similar
to the ones obtained via line transect distance sampling,
although the authors pointed out that “In general, the REM
estimates tended to be higher than those obtained by
REST”. Our simulations have shown that with a high sam-
pling effort or large animal densities one can obtain esti-
mates with a level of bias which can be acceptable in most
situations. Thus, in case a REM or a TTE survey is outside
the possibility of implementation, one should resort to
REST modelling, which is less time-consuming than REM
when the daily range has to be estimated from camera trap
data (Palencia et al., 2019; 2021b).

It is necessary to stress that respecting methods’ assump-
tions is essential to lead to reliable results. Broadley, Burton,
Avgar, and Boutin (2019) have made clear that an animal’s
speed depends on density and on home range size which in
turn depends on habitat characteristics (Efford et al., 2016),
and that these relationships vary with the studied taxon and
site. In most other studies where the methods here evaluated
were applied, though, authors were forced to use speed esti-
mates from studies carried out elsewhere. As we have
shown, the use of animal daily range obtained in a different
context will lead to biased population estimates. This
approach has been used in several studies, for instance
Schaus et al. (2020) attempted to use REMs to estimate
hedgehog (Erinaceus europeus) density in an urban area,
Manzo et al. (2012) estimated the density of pine martens
(Martes martes) in central Italy, Anile et al. (2014) used
REM to estimate the density of a small wildcat (Felis silvest-
ris) population in Sicily, Caravaggi et al. (2016) investigated
the threat posed by the invasive European hare (Lepus
europeus) on the endemic Irish hare (Lepus timidus hiberni-
cus) and Carbajal-Borges, Godínez-G�omez, and Men-
doza (2014) used REMs to investigate the status of the
endangered tapir, Tapirus bairdii in Mexico.

The methods tested here are not the only ones which can
be used for surveying populations of non-individually recog-
nisable animals by CTs. Howe et al. (2017) have proposed
to apply distance sampling to CT detections and such a
promising methodology has been validated with a chimpan-
zee population of known size (Cappelle et al., 2019) and
used for a multi-species assessment (Bessone et al., 2020).
Note that this method is similar to the AM but, more realisti-
cally, it relaxes the assumption of certain animal detection in
the FOV. To apply distance sampling technique to CT data,
one has to evaluate the distance between the animal and the
CTs while crossing the FOV. Moeller et al. (2018) proposed
a space-to-event model (STE), and used it to assess the pop-
ulation of elk (Cervus canadensis). N-mixture models
(Royle, 2004) have also been evaluated for their perfor-
mance. Some authors (Knape et al., 2018; Linket al. 2018;
Nakashima, 2020) found a lack of robustness to departures
from assumptions relative to different aspects of N-mixture
models such as double counting, variation in the population
size and in the detection probability over time (Link et al.,
2018). Also Barker et al. (2018) found that it may be diffi-
cult to identify both the population size and the detection
probability. On the other hand, K�ery (2018) detected no
problem of parameter identification.

Our results show that the estimation of population density
of wild mammals using CTs without individual recognition
can be questionable and warn against its uncritical applica-
tion and acceptance, even though some of the tested
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methods performed quite well in specific situations. In our
view, it is very important that population estimation methods
are subject to careful assessment to evaluate their strengths
and weaknesses before being used for conservation and
management. Indeed, robustness to violations of assumption
is a key element for judging the quality of statistical estima-
tors and the reliability of results returned. A better under-
standing of the properties of the studied models could derive
from comparison of estimated values with simulated data
with known properties, or populations of wild animals of
known density.

Despite such limitation, however, we still feel that CT-
based density estimations could be a promising tool in ani-
mal ecology, representing an appealingly cheap alternative
to more traditional approaches. Our tests, however, com-
pared the methods in their very basic form and we did not
suggest possible improvements. Some of the methods
described here, for example, may, at least in theory, be used
to estimate densities at the scale of a single camera/grid-cell
and/or over periods significantly shorter than the survey
duration. This type of analysis offers the appealing option of
being able to relate density estimates to spatial and/or tem-
poral covariates, and hence improve estimates and facilitate
extrapolation of results.
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