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University of Maringá, Maringá, Brazil; cChongqing Institute of Meteorological Sciences, Chongqing, China; 
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ABSTRACT
The agricultural land use combined with agronomic management 
practices shall be structured on sustainable practices, guaranteeing 
both the maximization of productivity and environment preserva-
tion. NDVI (Normalized Difference Vegetation Index) time-series has 
been recognized as a useful methodology to monitor crop devel-
opment and its spatial distribution. However, there is always 
a trade-off between spatial and temporal resolutions in satellite 
data. Hence, high spatial and temporal resolutions from Planet 
CubeSat represent a possibility to overcome this trade-off. This 
paper investigated the potential of using high spatial resolution 
daily NDVI-time-series from Planet CubeSat images for crop mon-
itoring. One hundred nineteen images from 2017, at 3 m ground 
sampling distance, over cotton, spring corn and winter wheat fields, 
were acquired and converted into NDVI. The harmonic analysis of 
time series (HANTS) algorithm was applied to obtain a smoothed 
cloud and gap-free daily time-series. The 3 m daily time-series were 
resized to daily 9 and 30 m resolution; and resampled to temporal 
resolutions at 4, 8 and 16 days intervals to assess the impact of 
spatial and temporal resolution on NDVI time-series. NDVI time- 
series were evaluated by their minimum, maximum, average and 
coefficient of variation across the year. Principal component analy-
sis (PCA) and the stepwise procedure were applied to assess opti-
mum features (days across the year) to assist the NDVI-time-series 
interpretation. PCA and stepwise highlighted the best time across 
the year for NDVI-time-series interpretation. As the spatial resolu-
tion decreases, the range of NDVI and its standard deviation within 
field also decreases, leading to loss of within field spectral varia-
bility. At daily temporal resolution, slight differences in crop devel-
opment can be detected in a very short time interval, but as the 
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temporal resolution decreases the changes in crop development 
are detected at larger rates. The high temporal and spatial resolu-
tions from Planet CubeSat images demonstrated great potential to 
monitor agricultural systems and can subsidize, on forthcoming 
research, the local and regional monitoring of agricultural areas 
and contribute to better management regarding strategic planning 
of governmental and corporate decision making over technical 
issues.

1. Introduction

China is one of the world’s largest crop producers and is responsible for 17%, 22% and 
23% of world’s wheat, corn and cotton production, respectively (USDA 2020). Agricultural 
farmlands in China are characterized by small-scale individual-owned farmland, usually 
smaller than 1 ha and highly fragmented in narrow stripes of crop rows (parcels) (Pan et al. 
2015; Wu et al. 2018; Hu et al. 2019), which requires fine spatial and temporal resolutions 
to characterize the land use and its changes through time. In this context, a time-efficient 
monitoring of crops and their spatial distribution is important for better management of 
supply regulation, food security, financial market and strategical planning of governmen-
tal and corporative decision making over technical issues (de Souza et al. 2015; Song et al. 
2017; da Silva Junior et al. 2017; Padhee and Dutta 2019).

One of the most recognized methodologies to attend the efficient crop monitoring 
and its spatial distribution is the use of satellite-based NDVI time-series (Masialeti, Egbert, 
and Wardlow 2010; Tsalyuk, Kelly, and Getz 2017; Werner, Oliveira, and Esquerdo 2020). 
According to Sakamoto (2020), vegetation indices (e.g. NDVI) are used under the assump-
tion of their direct relationship with canopy biomass, which is a response to biotic and 
abiotic factors, such as weather, nutrient supply, soil water status, diseases and insects 
over the past days. However, the information capable of being extracted from NDVI-time- 
series deeply depends on its spatial resolution and revisiting time of the sensor (Liu et al. 
2019; Zhang et al. 2020) and also on the analysed cropping system.

When using satellite data to assess crop growing patterns, there is always a trade-off 
between spatial and temporal resolutions (Sun et al. 2017). Furthermore, the cloud cover 
on satellite images is a key factor that affects frequency of cloud-free images obtainment. 
While the spatial resolution plays a role in the identification of more detailed canopy 
spectral variability, allowing the evaluation of complex landscapes and within field 
variability, the temporal resolution (with cloud-free images) is important to detect 
changes through time at the same field, contributing for the understanding of crop 
phenology and development, making able a time-efficient decision making over crop 
management. However, sensors with high revisiting frequency, providing daily images on 
the same field, usually present coarse spatial resolution and, on the other hand, high 
spatial resolution sensors usually present low revisiting frequency (Sun et al. 2017).

One possibility to overcome the trade-off between spatial and temporal resolution on 
satellite-based images is the use of multi-satellite data fusion algorithms. Several algo-
rithms have been developed aiming at promoting the fusion of coarse spatial resolution 
and high revisiting frequency satellites (e.g. MODIS – MODerate resolution Imaging 
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Spectroradiometer) with fine spatial resolution and low revisiting frequency satellites (e.g. 
Landsat) (Gao et al. 2006; Zhu et al. 2010, 2016; Li et al. 2017; Liu et al. 2018; Sun et al. 
2021). Although data fusion methods represent a way to overcome the trade-off between 
pixel size and frequency of image, the lack of observation at very high spatial resolution 
(<5 m) still poses limitations to the obtainment of high-resolution daily time-series 
(Houborg and McCabe 2016).

By this reason, another possibility is the use of the PlanetScope (PS) Constellation, 
delivering high spatial resolution images at high revisiting frequency. Planet © (www. 
planet.com) has launched hundreds of nano-satellites, so-called as CubeSat 3 U, with 
small size (10 × 10 × 30 cm) and low weight (<4 kg), providing, by its sun-synchronous 
orbit, daily global nadir-pointing land surface imaging on four spectral bands (red, green, 
blue and near-infrared) with a 3–4 m nadir ground sampling distance (GSD) (Houborg and 
McCabe 2018). Since then, the acquisition of an unprecedent dense time-series at a high 
spatial resolution is contributing for urban, environmental and agricultural monitoring 
worldwide.

The recently advances in the obtainment of daily high spatial resolution satellite- 
based images has led to an increasing number of research works addressing the use of 
Planet CubeSat images for agricultural monitoring (Houborg and McCabe 2016, 2018; 
Aragon et al. 2018; Poursanidis et al. 2019; Kimm et al. 2020), landscape studies (Huang 
et al. 2020), water investigations (Cooley et al. 2017; Wicaksono and Lazuardi 2018; 
Maciel et al. 2020; Li et al. 2019) and natural inventories (Kääb, Altena, and Mascaro 
2017; Shao et al. 2019; Aldeghi et al. 2019; Mazzanti, Caporossi, and Muzi 2020), 
demonstrating the relevance of this product for better understanding land surface 
process, especially in complex landscapes, where both temporal and spatial resolutions 
are important.

Based on the current progress, this paper aims at investigating the potential of using 
high spatial resolution daily NDVI-time-series from Planet CubeSat images for crop 
monitoring. The specific goals of this paper are: (1) to evaluate crop development through 
3 m daily NDVI-time-series; (2) to assess optimum features (days across the year) for NDVI- 
time-series interpretation; (3) to assess the spatial resolution effect on within field NDVI 
monitoring; and (4) to evaluate the effect of temporal resolution on data dimensionality 
and crop development monitoring.

2. Materials and methods

2.1. Study area

The study area comprises the Hengshui City, Hebei Province, China. Three fields, defined 
in this paper as a portion of land with the same crop type (Figure 1), with area between 9 
and 14 ha, containing cotton, spring corn and winter wheat crops with different number 
of seasons across the year (single and double-seasons), were selected from the image 
dataset (as described in Section 2.2) using a crop classification map from Hengshui City for 
the year of 2017.

Two fields were sown on single cropping season with cotton and spring corn, and the 
third field was sown on double cropping season with winter wheat and spring corn. Daily 
NDVI-time-series images containing only pixels from each field were built at the original 
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spatial resolution (3 m). Thus, pixels from adjacent fields did not interfere in the pixel 
resize procedure, as described in Section 2.3.

The three selected fields (containing cotton, spring corn and winter wheat crops) 
represent the major crops in the studied area and their cropping patterns (single and 
double cropping seasons) and constitute the reality of cropland size in China. Hence, 
these fields are fragmented into small and narrow stripes of crop rows (defined in this 
paper as parcel), which lead to variability in sowing date and crop phenology within each 
field, as observed in Figure 1.

Figure 2 presents the monthly weather data (total rainfall and average maximum and 
minimum air temperature) from Hengshui City for the year of 2017. Although weather 
data is not available for each monitored field (which could provide further interpretation 
about how weather data is driving crop development and affecting the NDVI time-series) 
this information is important to subsidize the understanding the crop development 
according the agronomic requirements of water supply and temperature.

2.2. Planet CubeSat images acquisition and processing

Daily CubeSat scenes from 2017, on the Hengshui City, were acquired at the analytic 
product level, in which images had been orthorectified, the radiometric data represents 
the surface reflectance with a 16-bit depth and the positional accuracy is higher than 
10 m. Each scene covers an area of approximately 20 × 20 km and, since the studied area is 

Figure 1. Location and area covered by the NDVI image from planet CubeSat at 218 DOY and detail of 
the cotton, spring corn and winter wheat fields at the maximum average NDVI across 2017 time-series 
(226, 229 and 110 DOY, respectively). NDVI images from cotton (a), spring corn (b) and winter wheat 
(c) fields were overlapped on an RGB image from 218 DOY.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7117



located within the same scene, there was no need for mosaicking process. The ground 
sampling distance at nadir on the obtained images is 3 m.

Planet CubeSat images are recorded on a 6600 × 4400 pixels CCD array (Aldeghi et al. 
2019), which acquires both visible and near-infrared wavelengths. The bandwidths of the 
Planet CubeSat image are: 455–515 nm (blue), 500–590 nm (green), 590–670 (red) and 
780–860 nm (near-infrared) (Maciel et al. 2020).

Only CubeSat scenes with more than 50% of cloud free pixels were acquired. Therefore, 
all the 119 available images for the year of 2017 were automatically converted into NDVI 
(Rouse et al. 1974). The distribution of the analysed Planet CubeSat scenes across 2017 is 
presented in Figure 3.

2.2.1. Reconstructing and smoothing NDVI-time-series
A recurrent challenge when using satellite data, especially time-series vegetation index, is 
to perform the gap-filling and to remove the effects of atmospheric condition on the 
obtained surface reflectance response. Those interferences are often provoked by the 
presence of undetected sub-pixel clouds, atmospheric dust, aerosols and gaseous absor-
bers (Atkinson et al. 2012).

Figure 2. Monthly weather data (total rainfall and average air temperature) from Hengshui City, Hebei 
Province, China, for the year of 2017.

Figure 3. Distribution of available planet, Sentinel-2 and Landsat-8 images across 2017.
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Hence, to the obtainment of daily time-series and to remove the influence of noise, 
better reflecting the internal behaviour of the crop growth curve, gap-filling and smooth 
algorithms are required. However, there are divergent recommendations regarding the 
choice of the gap-filling and smoothing method for each satellite product and application 
purpose, demonstrating that their accuracy is deeply related to the location of the target 
area and the vegetation characteristics (Atkinson et al. 2012; Qiu, Feng, and Tang 2016; 
Zhou et al. 2016).

In this context, after removing cloud pixels, the harmonic analysis of time series 
(HANTS) algorithm was applied to obtain a smoothed gap-free time series, removing 
further noises and maintaining the Planet CubeSat data consistency. The HANTS algo-
rithm interpolates time series values by a Fourier transform and least squares method to 
obtain a new and smoother time series (Dong et al. 2019). According to Liang et al. (2017), 
NDVI time series, which has a strong seasonal dynamic, can be expressed using periodic 
series of low-frequency sine or cosine functions with different phases, frequencies, and 
amplitudes. HANTS algorithm is considered one of the most time-honoured methods to 
process satellite observed time series (Zhou, Jia, and Menenti 2015). The HANTS algorithm 
was applied through the IDL (Interactive Data Language) environment, allowing the 
acquisition of gap-free daily NDVI-time-series, containing 365 straight days, at 3 m spatial 
resolution.

2.3. Generating NDVI-time-series images at different spatial and temporal 
resolutions

Six NDVI-time-series images containing different temporal and spatial resolutions were 
generated, as described on Table 1.

The NDVI-time-series, after the daily reconstruction and smooth processing, named 
from now on as ‘daily NDVI- time-series’ image, were resized to 9 m and 30 m resolution 
using the ‘Resize Data Tool’ by pixel aggregate (average pixels’ value) from ENVI 
(Environment for Visualizing Images) software, resulting into three daily NDVI-time- 
series images with different spatial resolution. The reason the original 3 m resolution 
image was resized to 9 and 30 m resolutions is to analyse images with similar spatial 
resolution to Sentinel-2 Multi-Spectral Instrument – MSI (10 m), Landsat 7 Enhanced 
Thematic Mapper Plus – ETM+ – and Landsat 8 Operational Land Imager – OLI (30 m).

After that, the daily NDVI-time-series image (after the reconstructing and smoothing 
process, containing 365 straight days) were resampled to 4, 8 and 16 days intervals (NDVI 
daily values selected systematically at equal intervals), resulting in four NDVI-time-series 
images with different temporal resolution. Hence, besides the daily NDVI-time-series 
images (daily temporal resolution and 3 m spatial resolution), two daily NDVI-time- 

Table 1. Description of the evaluated NDVI-time-series images.
NDVI-time-series image Temporal resolution Spatial resolution

Daily NDVI-time-series Daily 3 m
9 m NDVI-time-series Daily 9 m
30 m NDVI-time-series Daily 30 m
4 days-NDVI-time-series 4 days interval 3 m
8 days-NDVI-time-series 8 days interval 3 m
16 days-NDVI-time-series 16 days interval 3 m
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series image were evaluated at different spatial resolutions and three NDVI-time-series 
images were evaluated at different temporal resolution, resulting in six NDVI-time-series 
images for each crop field.

To evaluate the impact of different revisiting interval on satellite-based image acquisi-
tion and the delivered NDVI trajectory across the year, NDVI values from the daily time- 
series were extracted at the corresponding days of the 119 original images from Planet 
CubeSat. After that, the NDVI trajectory across the year was compiled at 4, 8, 16 and 
32 days intervals of revisiting time.

Since the 119 available images were not equally distributed across the year, at some 
revisiting periods no image was available and at some revisiting periods more than one 
image was available. Hence, the image closest to the central day of each revisiting interval 
was selected to compose the NDVI trajectory across the year on each revisiting interval. 
The number of NDVI values at each revisiting interval across the year was: 61 (4 days 
interval), 37 (8 days interval), 22 (16 days interval) and 12 (32 days interval – this temporal 
resolution image is not described on Table 1 since it was only used for the investigation of 
the impact of revisiting interval on NDVI trajectory across the year).

2.4. Data analysis

To assess the effect of the temporal and spatial resolutions on detecting within field 
variability, the NDVI profile (time-series) from all pixels from each field were extracted 
from all NDVI-time-series images (Table 1) and evaluated by their minimum, maximum, 
average, coefficient of variation and standard deviation across the year. The daily increase 
rate across time-series, expressed in percentage in relation to the NDVI value from the 
previous day (according to the temporal resolution of each NDVI-time-series image), was 
also evaluated. Besides that, the NDVI-time-series from Planet CubeSat was compared to 
the original time-series from Sentinel-2 and Landsat-8 over the study area for the same 
period. Only cloud free Sentinel and Landsat scenes were used and the available images 
across 2017 are presented in Figure 3. Across 2017, original NDVI images from Planet, 
Sentinel-2 and Landsat-8 were available, at the same day, on 303 DOY (Day of the year) 
and 335 DOY.

The Principal Component Analysis (PCA) and Stepwise procedures were applied to 
select optimum features (days across the year) to assist the NDVI-time-series interpreta-
tion. Performed by the Unscrambler X software, version 10.4 (Camo Analytics), the PCA 
was applied to check whether the variance among the daily NDVI-time-series for each 
crop type (Table 1) can be explained (assessed by the cumulative variance of the first three 
principal components) and which dates across the year were more suitable for the time- 
series grouping (assessed by the loading correlation of each principal components).

PCA is a widely used data mining method that reduces the number of variables to be 
analysed (e.g. daily NDVI values across the year) and promotes, by a covariance matrix 
composed by all NDVI values across the year from all fields, the transformation of those 
variables into a new group of variables, called principal components – PC. Each principal 
component (PC) represents the linear combination of all analysed variables (NDVI time- 
series) to explain their variance and its score describes the percentage of variance that can 
be explained. The first principal component (PC1) carries most information of data 
variance, the second principal component (PC2) carries the residual information of PC1, 
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the third principal component (PC3) carries the residual information of PC2 and so on 
(Jolliffe and Cadima 2016; Li, He, and Fang 2007). The loading correlation of each PC, 
expressed in (r), is defined as the correlation of each variable (daily NDVI values across 
the year) with the principal component, and represents the contribution of each daily 
NDVI value to the PCA (Li, He, and Fang 2007; Holden and LeDrew 1998).

The stepwise procedure was carried out to select the NDVI values across the year that 
statistically group the analysed NDVI-time-series for each crop type, contributing to the 
time-series interpretation. In a forward and backward procedure, each variable (NDVI 
across the year) is added to or removed from a multilinear regression function, evaluated 
by the F-test and by the Wilks’ Lambda value, following the likelihood principle (Karimi 
et al. 2005; Thenkabail et al. 2004; Draper and Smith 2014; Furlanetto 2018). The stepwise 
was carried out until no variable (with p-value < 0.05 – defined a priori) could be entered 
or removed from the function, as described by Furlanetto (2018). The selected NDVI 
values across the year were used to interpret the time-series.

To check the effect of temporal resolution on crop type grouping, 50 pixels were 
randomly selected and extracted from the daily, 4, 8 and 16 day-NDVI-time-series images 
(Table 1) using the region of interest (ROI) toll from ENVI software, assuring the sampling 
at the same geographical position in each field and each time-series image and submitted 
to PCA. The pixel selection was performed addressing the variability on crop phenology 
within each field, selecting pixels from all parcels.

To evaluate the impact of different revisiting times on NDVI trajectory across the year, 
the NDVI trajectory from all pixels from each field were extracted from the 4, 8, 16 and 
32 days revisiting interval as well from the 119 available NDVI images.

3. Results

3.1. 3 m daily NDVI-time-series analysis

The daily NDVI time-series at 3 m spatial resolution of the single-season cotton and spring 
corn fields and of the double-season winter wheat and spring corn field are represented in 
Figure 4.

The obtained daily NDVI-time-series at 3 m spatial resolution (Figure 4) demonstrated 
to be singular for each field and to preserve the consistency of the original dataset. Table 2 
displays the linear regression between NDVI values from the original dataset and after the 
HANTS algorithm.

Across the first 140 days of the year (DOY) it is possible to observe a large difference of 
NDVI between winter wheat and the other evaluated crops, especially between 100 DOY 
and 120 DOY, near the maximum NDVI of winter wheat crop (0.528 at 110 DOY). The peak 
of NDVI values on the time-series corresponds to the development status of winter wheat 
crop. During this period, the NDVI values from single crop fields demonstrated a flat 
shape, around 0.10 and without large variations across time. The beginning of cotton and 
single-season spring corn cropping seasons can be clearly identified by the increase of 
NDVI around 150 DOY. The beginning of spring corn cropping season at the double- 
season field demonstrated to be latter compared to the single-season field.

The peak of NDVI on cotton field (0.730 at 226 DOY) was superior compared to the 
single-season spring corn (0.617 at 229 DOY) and double-seasons spring corn (0.671 at 
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243 DOY). The end of cotton and spring corn seasons (both at single and double-season 
fields) can be also observed by the lowest NDVI values around 310 DOY.

According to Cui et al. (2020), the phenology assessment is crucial to understand 
vegetation relations. Furthermore, the use of NDVI- time-series has been recognized to 
be efficient to evaluate the dynamic of agricultural systems, especially when single and 
double-season fields present NDVI curves with different shapes (Bellón et al. 2017).

Masialeti, Egbert, and Wardlow (2010) monitored NDVI-time-series from major crops in 
Kansas, United States, and performed a deep description of NDVI-time-series shapes, 
considering phenological phases of positive and negative NDVI increment and peaks 
among crop types. As reported by Hill and Donald (2003), crop phenology might present 
differences among production areas. Liu et al. (2013) stated that environmental condi-
tions, such as climatic factors (temperature, photoperiod, sunshine hours, solar radiation 
and precipitation), influence crop growth and phenology. In the same context, Wardlow, 
Egbert, and Kastens (2007) described the variability in time-series within crop type to be 
related to climatological conditions, agronomic management and sowing date.

Figure 5 presents the NDVI daily increase rate across the time-series of the evaluated 
fields. The knowledge of NDVI daily increase rate has been rarely reported by other 
research papers and has significant importance in the monitoring of crop conditions, 
providing deeper information of crop development across time.

During cotton crop development, the NDVI daily increase rate demonstrated a positive 
peak at 161 DOY (2.71%) and negative peak at 291 DOY (−2.07%). The spring corn fields 
presented, both at the single and double cropping season fields, positive daily increase 

Figure 4. 3 m daily-NDVI-time-series of cotton, spring corn and winter wheat and spring corn fields. 
Coloured dots represent the limits of standard deviation for each field.

Table 2. Linear regression between NDVI from original dataset and after the HANTS algorithm.
Field r R2 Slope Intercept RMSE

Cotton 0.990 0.981 0.940 0.020 0.030
Spring corn 0.988 0.977 0.939 0.005 0.029
Winter wheat and spring corn 0.976 0.953 0.953 0.003 0.042

*RMSE: root mean square error.

7122 L. GUILHERME TEIXEIRA CRUSIOL ET AL.



rate at the beginning of cropping season similar to cotton field: 2.48% (176 DOY – single- 
season) and 2.52% (199 DOY – double-season).

However, the negative peak at the ending of spring corn cropping season demon-
strated larger magnitude than the cotton field. The negative daily increase rate at the 
single-season field was −3.62% (295 DOY) and at the double-season field −4.34% 
(304 DOY).

Regarding winter wheat cropping season, the positive daily increase rate demon-
strated a peak at 70 DOY (1.60%) and a negative peak at 152 DOY (−2.08%). As expected, 
in all fields and crops evaluated, the rate of null daily increase occurred on the same days 
when NDVI values reached the maximum values across the cropping season.

Figure 5. Daily increase (%) on cotton (a), spring corn (b) and winter wheat and spring corn (c) NDVI- 
time-series. The dashed red lines represent the limit between positive and negative increase.
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It is important to emphasize the magnitude between the maximum positive and 
negative daily increase rate of NDVI across the time-series. The lowest difference between 
positive and negative daily increase rate was observed for winter wheat crop: 3.68%, 
ranging from 1.60% to −2.08%. The cotton crop demonstrated intermediate difference 
between positive and negative daily increase rate: 4.78%, ranging from 2.71% to −2.07%. 
The largest magnitude of the difference between positive and negative daily increase rate 
was found in spring corn fields: 6.1%, ranging from 2.48% to −3.62% (single-season field) 
and 6.86%, ranging from 2.52% to −4.34% (double-season field).

3.2. Optimum NDVI features for NDVItime-series interpretation

The differences among NDVI time-series are corroborated by the PCA, where the first 
principal component explained 84% of data variance and the second principal compo-
nent explained 14% of data variance. According to Wang (1999), when principal compo-
nents reach over 80%, the remaining components can be omitted in further analysis.

Figure 6 presents the loading correlation of the first and second principal components 
and the coefficient of determination (R2) of the selected bands on the stepwise procedure.

The first principal component demonstrated a higher grouping power, with loading 
correlation over 0.9 in the first 140 days of the year and around 195 DOY, discriminating 
the double-seasons field from single-season fields. The first 140 days of the year corre-
spond to the winter wheat cropping season, as described on Figures 4 and 6. The 195 DOY 
corresponds: to the positive slope on NDVI values on cotton and spring corn (single- 
season) fields; and to the later increase of NDVI in the double-season spring corn field.

The second principal component demonstrated high effectiveness on grouping cotton 
from spring corn (single-season) time-series. Hence, three peaks of loading correlation 
were detected at 162 DOY, 239 DOY and 293 DOY. The 162 DOY represents the ending of 
winter wheat season and the positive slope at the beginning of cotton and spring corn 
(single-season) fields, while the 239 DOY corresponds to the moment close to the peak of 

Figure 6. Loading correlations of the principal component analysis (PCA) and coefficient of determi-
nation (R2) of the selected bands on the stepwise procedure. Dashed red lines represent the 0.9- and 
−0.9 line of loading correlation.
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spring corn at the double-season field and negative slope of cotton and spring corn at 
single-season field. The 293 DOY is represented by a large negative increase rate of spring 
corn NDVI (−3.61 and −3.88 at the single and double-season fields respectively) simulta-
neously to a lower negative increase rate of cotton NDVI (−2.07), which is corroborated to 
the NDVI daily increase, as presented in Figure 5.

The results obtained on the PCA are in agreement to the results found on the stepwise 
procedure, in which the NDVI daily values for crop type grouping were selected (Figure 6). 
The NDVI at 118 DOY was found to be the best NDVI to group the evaluated time-series, 
with R2 = 0.99. This date corresponds to the moment close to the NDVI peak of winter 
wheat crop while the others two fields remained non-cultivated, with low values of NDVI. 
The second best NDVI to group the NDVI-time-series was found at 163 DOY, with 
R2 = 0.91. The 163 DOY is just one day from the 162 DOY, which, as described on the 
PCA, represents the ending of winter wheat season and the positive slope at the begin-
ning of cotton and spring corn (single-season) fields.

The selected NDVI at 243 DOY demonstrates a coefficient of determination equal to 
0.42. The 243 DOY is just 4 days distant from the 239 DOY, which, as described on the PCA, 
corresponds to the moment close to the peak of spring corn at the double-season field 
and the beginning of the negative slope of cotton and spring corn at single-season field.

The NDVI at 327 DOY was selected with R2 = 0.05, the lowest among the selected daily 
NDVI values. This date represents the minimum values of NDVI on corn fields (both at 
single and double-seasons) while the NDVI in the cotton fields was still decreasing, as 
shown in Figure 4.

According to Zeng et al. (2020), wavelet selection is one of the most used methods for 
data transformation to characterize the phenology of vegetation from satellite observa-
tions; and the PCA has been recognized to be efficient in detecting seasonal changings in 
time-series. Bellón et al. (2017), stated that the first principal component carries the 
information of major variability among crop types and the second principal component 
carries the information of intra-seasonal variability. Similarly, we found the first PC to be 
related to the winter wheat cropping season (when the other fields remained unsown) 
and the second PC to be related to the intra-seasonal variability between cotton and 
spring corn.

The use of optimum NDVI features for crop monitoring plays a role in spectral 
data reduction without losing spectral information. According to Peña and Brenning 
(2015), spectral features selection can be carried out for the best-performing classifier 
and feature set in order to determine whether a reduced number of image dates can 
achieve competitive results. Zhou, Zhang, and Townley-Smith (2013) observed that 
a reduction in time-series length and spectral bands reduced 75% of the data volume 
and led to a decrease of only 2% in the accuracy. Thus, considering the possibility of 
developing a classification model based on NDVI features from a specific year and its 
application on future cropping seasons (Masialeti, Egbert, and Wardlow 2010), we 
emphasize the potential of selecting optimum features from daily NDVI time-series to 
assist the crop type monitoring at local and regional levels, taking into account the 
crop development variation due to sowing dates, climatological condition and man-
agement practices.
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3.3. Impact of spatial resolution on within field monitoring

3.3.1. Cotton
Figure 7(a) displays the coefficient of variation in the cotton field at 3 m resolution (10,004 
pixels), 9 m resolution (1,107 pixels) and 30 m resolution (96 pixels) and the minimum, 
maximum and average NDVI at 3 m resolution across the year. The NDVI-time-series from 
Planet at 3 m resolution and from original Sentinel-2 and Landsat-8 images are presented 
in Figure 7(b).

Across the entire time-series, higher coefficients of variation were observed on the 3 m 
resolution image. It is possible to observe two peaks of coefficient of variation across 
cotton cropping season: one at the beginning of the year (28 DOY), which probably 
occurred due to secondary field management and small fractions of different types of 
vegetation in each parcel inside the field, and one at the end of NDVI negative increase 

Figure 7. Coefficient of variation (%) in the cotton field at 3 m resolution, 9 m resolution and 30 m 
resolution and minimum, maximum and average NDVI at 3 m resolution across time-series (a) and 
NDVI-time-series from Planet, Sentinel-2 and Landsat-8 (b).
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(308 DOY). Close to the maximum NDVI values (226 DOY) the coefficient of variation 
presented low values. The peaks of coefficient of variation in NDVI values are associated to 
differences in crop phenology from each parcel within the field. When the crop reaches 
the moment close to the maximum NDVI, the shape of the curve presents a plateau. 
Hence, at this moment the differences in crop NDVI within the field are minimized since all 
pixels are close to their maximum values, reducing the variability. Besides that, it is 
possible to observed that the NDVI derived from Planet, Sentinel-2 and Landsat-8 pre-
sented similar trend across the year.

Figure 8(a) presents the NDVI images from cotton field at 207 DOY, when the maximum 
standard deviation was observed, at 3 m, 9 m and 30 m resolution. The NDVI images 
derived from the original Planet, Sentinel-2 and Landsat-8 satellites at 303 DOY (when 
images from the three satellites were available) are presented in Figure 8(b). The narrower 
range between minimum and maximum NDVI associated with increasing pixel size can be 
observed among the three satellites. For Planet, NDVI ranged from 0.17 to 0.42, for 
Sentinel-2 from 0.18 to 0.36 and for Landsat-8 from 0.11 to 0.17.

3.3.2. Spring corn
Figure 9(a) displays the coefficient of variation in the spring corn field (single-season) at 
3 m resolution (15,561 pixels), 9 m resolution (1,716 pixels) and 30 m resolution (156 
pixels) and the minimum, maximum and average NDVI at 3 m resolution across the year. 
The NDVI time-series from Planet at 3 m resolution and from original Sentinel-2 and 
Landsat-8 images are presented in Figure 9(b).

Figure 8. NDVI images from cotton field at 207 DOY at 3 m, 9 m and 30 m resolution (a) and NDVI 
images from planet, Sentinel-2 and Landsat-8 at 303 DOY (b).
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As it has been observed in cotton field, the largest NDVI coefficient of variation in the 
spring corn (single-season) field were observed at the negative (309 DOY) slope of NDVI 
values across cropping season, and lower coefficient of variation was detected when crop 
reached the maximum NDVI value (229 DOY), demonstrating that when the crop reaches 
the moment close to the maximum NDVI, the shape of the curve presents a plateau, and 
at this moment, the variability in crop spectral response within the field is minimized. As 
observed for the cotton field, a similar trend across the year could be observed for the 
NDVI derived from Planet, Sentinel-2 and Landsat-8.

Figure 10 presents the NDVI images from spring corn field at 200 DOY, when the maximum 
standard deviation was observed, at 3 m, 9 m and 30 m resolution. The NDVI images derived 
from the original Planet, Sentinel-2 and Landsat-8 satellites at 303 DOY are presented in 
Figure 10(b). The narrower range between minimum and maximum NDVI associated with 

Figure 9. Coefficient of variation (%) in the spring corn field at 3 m resolution, 9 m resolution and 30 m 
resolution and minimum, maximum and average NDVI at 3 m resolution across time-series (a) and 
NDVI-time-series from Planet, Sentinel-2 and Landsat-8 (b).
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increasing pixel size can be observed among the three satellites. For Planet, NDVI ranged from 
0.08 to 0.34, for Sentinel-2 from 0.07 to 0.25 and for Landsat-8 from 0.05 to 0.11.

3.3.3. Winter wheat and spring corn
Figure 11(a) displays the coefficient of variation in the winter wheat and spring corn field 
(double-season) at 3 m resolution (9,991 pixels), 9 m resolution (1,088 pixels) and 30 m 
resolution (100 pixels) and the minimum, maximum and average NDVI at 3 m resolution 
across the year. The NDVI time-series from Planet at 3 m resolution and from original 
Sentinel-2 and Landsat-8 images are presented in Figure 11(b).

Four peaks of coefficient of variation were observed across time-series (Figure 11): at 
the beginning of winter wheat cropping season in 2017 (42 DOI) and 2018 (339 DOI); and 
at the beginning and ending of spring corn cropping season (188 DOI and 301 DOI, 
respectively). Following the results observed on the cotton and spring corn (single- 
season) fields, lower standard deviation was observed close to the peak of NDVI values 
both on wheat (110 DOY) and corn (243 DOY) seasons.

By the observed values of standard deviation around 150 DOY, the ending of winter 
wheat cropping season, demonstrated to be homogeneous within the field. The decrease 
in coefficient of variation according to the enlargement of pixel size could be observed 
both across winter wheat and spring corn seasons. The similar trend across the year for 
the NDVI derived from Planet, Sentinel-2 and Landsat-8 could be observed for the spring 
corn cropping season (from 180 DOY to 330 DOY) but not for the winter wheat cropping 
season (from 30 DOY to 180 DOY) most likely to the low number of available images 
across that period (Figure 3).

Figure 10. NDVI images from spring corn field at 200 DOY at 3 m, 9 m and 30 m resolution (a) and 
NDVI images from Planet, Sentinel-2 and Landsat-8 at 303 DOY (b).

INTERNATIONAL JOURNAL OF REMOTE SENSING 7129



Figure 12 presents the NDVI images from winter wheat and spring corn field at 57 DOY, 
when the maximum standard deviation was observed, at 3 m, 9 m and 30 m resolution. 
The NDVI images derived from the original Planet, Sentinel-2 and Landsat-8 satellites at 
303 DOY are presented in Figure 12(b). The narrower range between minimum and 
maximum NDVI associated with increasing pixel size can be observed among the three 
satellites. For Planet, NDVI ranged from 0.07 to 0.25, for Sentinel-2 from 0.07 to 0.20 and 
for Landsat-8 from 0.06 to 0.12.

Planet CubeSat images provided well detailed pixels capable of detecting larger 
variability within each studied crop compared to medium spatial resolution images, 
especially at 30 m resolution, demonstrating that small pixel leads to a higher detection 
of within field variability. It was also found (data not shown) that at lower spatial 
resolutions the minimum values of NDVI are increased and the maximum values are 

Figure 11. NDVI standard deviation in the winter wheat and spring corn field (double-season) at 3 m 
resolution, 9 m resolution and 30 m resolution and minimum, maximum and average NDVI at 3 m 
resolution across time-series (a) and NDVI-time-series from Planet, Sentinel-2 and Landsat-8 (b).
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decreased, compromising the range of values detected within the same field. These 
effects might be especially important if low spectral variability is observed during key 
phenological phases for crop management. In this scenario, the variability observed 
within agricultural areas is mostly due to: differences in sowing date of each parcel 
(narrow stripes of crop rows), which created variability in crop phenology; and to differ-
ences in agronomical practices. Thus, the use of high temporal and spatial resolution 
images might contribute to detect slight changes in crop development and phenology in 
short time intervals and a larger number of pure pixels can be obtained even in small 
agricultural areas, minimizing the pixel mixing that might lead to misinterpretation of 
surface reflectance variability.

The impact of spatial resolution on crop monitoring by means of remote sensing has 
been reported for over twenty years (Pax-Lenney and Woodcock 1997). However, most of 
previous studies used coarser resolutions from Sentinel-2 Multi-Spectral Instrument – MSI, 
Landsat 7 Enhanced Thematic Mapper Plus – ETM+ – and Landsat 8 Operational Land 
Imager – OLI Löw and Duveiller (2014) investigated the optimum pixel size for monitoring 
crop systems in different landscapes and found that none spatial resolution fits all 
applications. According to the authors, the mixed pixels represent the largest effect of 
spatial resolution on crop classification, affecting the pixels’ purity. Thus, the larger the 
pixel size, the larger the mixed pixels, demonstrating that each landscape and crop type 
might be affected in different proportions. Vrieling et al. (2017) evaluated the effect of 
spatial resolution on spectral variability within a highly dynamic eco-system using 10, 30 
and 100 m spatial resolution images and concluded that most detailed features can be 
assessed when higher spatial resolution images are used. Comparing the Planet CubeSat 

Figure 12. NDVI images from winter wheat and spring corn field at 57 DOY at 3 m, 9 m and 30 m 
resolution (a) and NDVI images from planet, Sentinel-2 and Landsat-8 at 303 DOY (b).
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to Sentinel-2 and Landsat 8 images in the prediction of forest canopy height, Shimizu 
et al. (2020) point out the highest accuracy obtained for Planet CubeSat images.

3.4. Impact of temporal resolution on crop monitoring

3.4.1. NDVI trajectory across the year
Figure 13 presents the average NDVI trajectory (submitted to smooth process via HANTS 
algorithm without filling the missing values between each pair of NDVI images) across 
time-series on cotton (a), spring corn (b) and winter wheat and spring corn (c) fields using 
all 119 available Planet CubeSat images and at daily, 4, 8, 16 and 32 days revisiting intervals.

On the cotton and spring corn fields (Figure 13(a,b)) it is possible to observe that the 
NDVI trajectory across time-series is less affect during periods when the fields remain 
unsown (e.g. during the first 120 DOY). However, during periods when the NDVI time- 
series is driven by the crop development (e.g. cotton, spring corn and winter wheat) 
differences in NDVI trajectory can be observed.

For the three evaluated fields, the use of all available Planet CubeSat images or their 
evaluation at 4, and 8 days revisiting intervals (119, 61 and 37 images across time-series 
respectively) did not result in large differences in NDVI trajectory across time-series. At 
16 days revisiting intervals (using 22 images across time-series) the NDVI trajectory 
demonstrated to be slightly different from the trajectory observed at shorter revisiting 
intervals. However, at 32 days revisiting intervals, using only 12 images across time-series, 
well-marked differences can be observed in NDVI trajectory on the three evaluated fields.

The well-marked differences in NDVI trajectory at 32 days revisiting time can be 
observed on the base of the slope at the beginning of cotton and spring corn (both at 
single and double cropping season) fields and at both sides of the shoulder of NDVI 
plateau of the three evaluated crops, diminishing the amount of spectral information 
available for each pixel across time-series.

Cui et al. (2020) evaluated crop phenology under different temporal resolution and 
reported that the detection of detailed temporal dynamics of vegetation is undermined as 
the temporal resolution increases. The authors also stated that larger influences in crop 
monitoring were observed in temporal resolutions larger than 18 days. Straw and Henry 
(2018) demonstrated that the larger the interval between images within time-series, the 
smaller the range of NDVI values detected within the same area, expressed by the increase 
of minimum values and decrease of maximum values.

3.4.2. Spectral data dimensionality
The 2-D score plot of the PCA for NDVI-time-series is presented in Figure 14 at 3 m daily 
(a), 4 days (b), 8 days (c) and 16 days (d) intervals and at daily 9 (e) and 30 (f) m resolution. 
In all simulated temporal resolutions, the cumulative score of the first and second 
principal components reached 98%.

In accordance to the results previously discussed (Figure 6), the OCA was capable of 
grouping the three crop fields. The winter wheat and spring corn double-season field can 
be clearly identified in all 2-D score plots (blue dots) due to the NDVI time-series at the first 
140 DOY, comprising the winter wheat crop (Figure 3) and highlighted by the loading 
correlation of the first principal component (Figure 6). The NDVI-time-series from corn 
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(single-season) and cotton fields presented similar shape but were well grouped between 
them in all simulated temporal resolutions (red and grey dots).

Although the crop fields could be consistently grouped regardless the simulated 
temporal and spatial resolution, the dimensional space among crop fields in the 
2-D score plot between the first and second principal components demonstrated to be 
reduced as the interval on NDVI time-series increases. Hence, the smaller amount of 

Figure 13. Average NDVI trajectory (submitted to smooth process via HANTS algorithm without filling 
the missing values between each pair of NDVI images) on cotton (a), spring corn (b) and winter wheat 
and spring corn (c) fields using all 119 available planet CubeSat images and at 4, 8, 16 and 32 revisiting 
intervals.
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spectral information (NDVI values) across the year diminished the distance among crop 
types.

3.4.3. Increase rate
Figure 15 presents the increase rate (positive or negative) of NDVI time-series from cotton 
(a), spring corn (b) and winter wheat and spring corn (c) fields at daily temporal resolution 
and at 4 days, 8 days and 16 days temporal resolution. The enlargement of the temporal 
resolution deeply affected the increase rate of NDVI values between images from time- 
series. In all fields, the daily increase rate of NDVI (well detailed in Figure 5) demonstrated 
lower values compared to the 4, 8 and 16 days temporal resolutions.

Figure 14. Principal component analysis for crop type at daily (a), 4 (b), 8 (c) and 16 (d) days NDVI-time 
-series at three m resolution and daily NDVI-time-series at 9 (e) and 30 (f) m resolution NDVI-time- 
series.
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The differences in the increase rate according to temporal resolution are due to the 
cumulative rates in the interval between NDVI images. At daily NDVI-time-series, crop 
development information can be extracted in a more detailed level, detecting slight 
differences from one day to another. However, at larger temporal resolution, larger 
increase rates are detected, with abrupt changes in the crop spectral behaviour between 
NDVI images.

In the cotton field (Figure 15(a)), the NDVI increase rate at daily temporal resolution 
presented positive and negative peaks of 2.71% and −2.07%, respectively. These values 
demonstrated to be 11.30% and −8.05% at 4 days temporal resolution; 23.65% and 

Figure 15. Increase rate (%) of NDVI from cotton (a), spring corn (b) and winter wheat and spring corn 
(c) fields at daily, 4, 8 and 16 days temporal resolution.
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−15.39% at 8 days temporal resolution; and 50.03% and −27.89% at 16 days temporal 
resolution.

Similar results were obtained in the spring corn field (Figure 15(b)), when the positive 
and negative peaks of NDVI increase rate at daily temporal resolution shifted from 2.48% 
and −3.62%, respectively, to 10.31% and −13.69% (4 days temporal resolution), 21.52 and 
−25.41 (8 days temporal resolution) and 44.98% and −43.45% (16 days temporal 
resolution).

Regarding the winter wheat crop (Figure 15(c)), the positive and negative peaks of 
NDVI increase rate at daily temporal resolution (1.60% and −2.08%, respectively) demon-
strated to be higher at larger intervals between images: 6.05% and −7.25% (4 days 
temporal resolution), 12.81% and −14.56% (8 days temporal resolution) and 28.02% and 
−27.61% (16 days temporal resolution).

Following the same trend, in the spring corn crop (Figure 15(c)), the positive and 
negative peaks of NDVI increase rate at daily temporal resolution (2.52% and −4.34%, 
respectively) showed higher values at 4 days temporal resolution (11.64% and −16.27%), 
at 8 days temporal resolution (24.39 and −29.64%), and at 16 days temporal resolution 
(52.07% and −48.86%).

The enlargement of positive and negative peaks of NDVI increase rate according to the 
temporal resolution is due to the cumulative rates in the interval between NDVI images 
and highlights the diminishment of spectral information on time-series, affecting the 
detection of small differences in crop development across time. At larger temporal 
intervals abrupt changes in crop development might be detected without knowing the 
intercurrent factors between images. At daily temporal resolution, slight differences in 
crop growth can be detected, enhancing the amount of spectral information for crop 
monitoring. Li and Roy (2017) analysed the revisit intervals of Landsat 8 and Sentinel-2 
and its implications for terrestrial monitoring, demonstrating that at higher temporal 
resolution larger amount of spectral information is acquired.

3.5. Perspectives for planet CubeSat on crop monitoring

The importance of using high spatial and temporal resolution time-series is associated to 
the timing of occurrence of factors that might reduce crop yield and where control actions 
should be applied. For instance, the identification of plant disease, insect attack is crucial 
for time efficient decision making. In the other hand, the soil management and correction 
of fertility levels are deeply associated to the spatial variability in the agricultural area. If 
considered together, spatial and temporal resolutions play a role in the identification of 
variability within the crop system and in the definition of management zones, which is 
essential to explore the maximum yield potential in each area.

Considering both temporal and spatial resolution as key factors for crop monitoring 
(Liu et al. 2018, 2019) and the rapidly increasing availability of very high-resolution 
imagery, Planet CubeSat images still requires further assessments of its data and its 
application in crop investigations (Myers et al. 2019). Hence, exploring the high spatial 
resolution daily NDVI time-series from Planet CubeSat images can contribute for crop 
monitoring at small size areas and complex landscapes.

Three factors impose limitations to the present paper: the small number of evaluated 
fields, only one year of time-series and the absence of ground data regarding sowing 
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dates, management practices, phenological stages and yield. However, even under the 
limitations imposed by these three factors, this paper addressed the use of high spatial 
resolution daily NDVI time-series from Planet CubeSat images for crop monitoring, 
demonstrating the merit of the used remote sensed product in the identification of fine 
temporal and spatial variability in the studied area, which may contribute to better site- 
specific management of crop development in a time-efficient manner, assisting govern-
mental and corporative decision make over technical issues, such as supply regulation, 
food security and financial market.

Based on the limitations and findings of this paper, it is important to describe the 
possibilities of using the Planet CubeSat NDVI-time-series in future research. In this 
context, the studied area shall be extended to a regional level, where it would be possible 
to understand the regional variability in the NDVI-time-series. Furthermore, the analysis of 
several years would improve the understanding of variability among cropping seasons. 
Besides that, the collection of ground data shall provide valuable information about crop 
development and, based on these information, spectral models could be developed 
aiming at predicting biophysical parameters of crop systems. Considering these perspec-
tives, the use of robust statistical methods will be essential for better understand the 
relation between crop development and NDVI time-series.

4. Conclusions

This paper aimed to investigate the potential of using high spatial resolution daily NDVI 
time-series from Planet CubeSat images for crop monitoring. The obtained NDVI time- 
series from cotton, spring corn and winter wheat fields demonstrated to be well shaped 
and smooth.

The NDVI daily increase rate demonstrated to be useful to analyse slight changes on 
crop development in short periods of time. PCA and the stepwise procedure highlighted 
the best time across the year for NDVI time-series interpretation and grouping, demon-
strating the potential of selecting NDVI features to develop spectral models that would 
assist the management of agricultural activities at local and regional levels.

The effect of spatial resolution was assessed by the ability of remote sensing data to 
detect within field variability. As the pixels size gets larger, the maximum NDVI values 
decrease, while the minimum NDVI values increase, shorting the range of NDVI and its 
coefficient of variation within each crop field. Hence, at high spatial resolution images 
(e.g. Planet CubeSat), well detailed pure pixels are capable of detecting larger variability 
within each crop field.

In the same way, the daily temporal resolution from Planet CubeSat images allowed 
the detection of slightly changes on crop development in a very short time interval. As the 
interval (days) between images gets larger, the changes in crop spectral response are 
detected at larger rates, without any spectral information of the intercurrent factors 
between one to another imagery date. Hence, the daily NDVI time-series from Planet 
CubeSat can lead to better understanding of crop development through time.

The high temporal and spatial resolutions from Planet CubeSat images demonstrated 
great potential to monitor agricultural areas characterized by small individual-owned farm-
land and complex landscape. Thus, the data delivered from Planet CubeSat images con-
tribute to overcome the trade-off between temporal and spatial resolution from satellite 
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data. Planet CubeSat images can subsidize, on forthcoming research, the regional and local 
monitoring of agricultural areas and contribute to the development of sustainable agricul-
tural practices, providing valuable information for better management regarding strategical 
planning of governmental and corporative decision make over technical issues.
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