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Abstract
Soybean crop plays an important role in world food production and food security, and 
agricultural production should be increased accordingly to meet the global food demand. 
Satellite remote sensing data is considered a promising proxy for monitoring and predict-
ing yield. This research aimed to evaluate strategies for monitoring within-field soybean 
yield using Sentinel-2 visible, near-infrared and shortwave infrared (Vis/NIR/SWIR) spec-
tral bands and partial least squares regression (PLSR) and support vector regression (SVR) 
methods. Soybean yield maps (over 500 ha) were recorded by a combine harvester with 
a yield monitor in 15 fields (3 farms) in Paraná State, southern Brazil. Sentinel-2 im-
ages (spectral bands and 8 vegetation indices) across a cropping season were correlated 
to soybean yield. Information pooled across the cropping season presented better results 
compared to single images, with best performance of Vis/NIR/SWIR spectral bands under 
PLSR and SVR. At the grain filling stage, field-, farm- and global-based models were 
evaluated and presented similar trends compared to leaf-based hyperspectral reflectance 
collected at the Brazilian National Soybean Research Center. SVR outperformed PLSR, 
with a strong correlation between observed and predicted yield. For within-field soybean 
yield mapping, field-based SVR models (developed individually for each field) presented 
the highest accuracies. The results obtained demonstrate the possibility of developing 
within-field yield prediction models using Sentinel-2 Vis/NIR/SWIR bands through ma-
chine learning methods.
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Introduction

Considering the projections of world population, expected to be over nine billion people 
by 2050 (FAO, 2018), agricultural production should be increased accordingly to meet the 
global food demand. Therefore, to guarantee high levels of productivity while preserving 
the environment, agricultural land use and agronomic management practices must follow 
sustainable practices, using precise and time-efficient information about crop spatial dis-
tribution and development conditions. In this scenario, remote sensing has the potential 
to provide accurate spatial information about agricultural systems, contributing to better 
site-specific management of agronomic practices, with effects over financial market and 
strategic planning of governmental and corporative policies, such as supply regulation and 
food security (Gusso & Ducati 2012; Silva Junior et al., 2017).

Soybean plays an important role in world food production and food security, and Brazil 
is responsible for more than one third (over 135 Mt—CONAB, 2021) of soybean produced 
worldwide (362 Mt—USDA, 2021). To address site-specific and time-efficient crop man-
agement, remote sensing data has been considered a promising proxy for monitoring and 
predicting soybean yield at multiple levels of data acquisition: satellite-based (Bolton & 
Friedl 2013; Dado et al., 2020), UAV-based (Zhang et al., 2019; Silva et al., 2020) and 
field-based (Christenson et al., 2016; Crusiol et al., 2017a, 2021b; Carneiro et al., 2020) 
and at multiple scales, varying from limited spatial extents to county- or state-level (Dado 
et al., 2020). However, the monitoring of within-field soybean yield still faces limitations 
and there is a substantial need for more research due to the low availability of high spa-
tial resolution yield data (acquired by combine harvester with yield monitors, despite their 
increasing use in agricultural activities) and due to the complex relationships among crop 
growth processes and their biotic and abiotic stresses within each field (Dado et al., 2020, 
Kross et al., 2020).

Usually, most yield prediction models using satellite remote sensed data are developed 
using vegetation indices (VIs—considered as the key indicator of yield), based on their 
direct relationship with biomass and the indirect relationship between biomass and yield, 
which may not always represent the variability in yield caused by stresses across a crop-
ping season (Sakamoto 2020). For this reason, the use of reflectance from multiple spectral 
bands, analyzed by machine learning algorithms, has demonstrated higher accuracy than 
VIs for yield prediction in soybean crop systems using multispectral satellite data (Dado et 
al., 2020) and aerial multispectral imagery (Leon et al., 2003).

Machine learning algorithms are useful to identify patterns in datasets, capturing com-
plex relationships among driving variables and delivering higher accuracy compared to con-
ventional correlations, being considered an important tool in decision support systems for 
agricultural management (Kayad et al., 2019; Zhai et al., 2020). Based on remote sensing 
data, the advantage of machine learning methods for regression tasks, either linear (e.g., par-
tial least squares regression) or non-linear (e.g., support vector regression), relies on the pos-
sibility of using two or more spectral variables (e.g., spectral bands or vegetation indices) to 
predict a key parameter of crop development (e.g., yield). Unlike the traditional univariate 
regression methods, in which one spectral variable (e.g., spectral band or vegetation index) 
is used to predict yield, machine learning regression methods enable the development of 
prediction models using several spectral bands or vegetation indices acquired from the tar-
get area, or even their combination (spectral bands and vegetation indices), contributing to 
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the better characterization of the crop development condition across different wavelengths. 
Considering the important role of time for crop monitoring, machine learning regression 
methods enable the use, in the same model, of spectral information, such as image spectral 
bands and derived vegetation indices. This spectral information can be acquired on different 
days across the cropping season, which has the potential of better characterizing the timing 
of occurrence of biotic and abiotic factors that can influence yield values. In this context, 
since machine learning regression methods gather information from different spectral bands 
and vegetation indices at different times across a cropping season, there is a large potential 
for the developed models to explain crop variability and its yield.

According to Gao et al. (2018), yield prediction through remote sensed data is usually 
based on a single day observation, which poses limitations on the understanding of physi-
ological trends in crop systems and their relationship to yield. Hence, the R5 phenological 
stage of soybean crop (grain filling stage, Fehr & Caviness, 1977) has been described as 
the most suitable for yield prediction using remote sensed data (Sakamoto 2020; Crusiol et 
al., 2021a). However, combining information from different times across a cropping season 
can contribute to overcoming such limitations and has demonstrated high accuracy in yield 
modelling (Hunt et al., 2019; Dado et al., 2020; Gómez et al., 2019).

Under machine learning perspectives, Sentinel-2 imagery (European Space Agency—
ESA) has been increasingly used for yield monitoring due to its high spatial, temporal and 
spectral resolutions. With a revisit time of five days, 13 spectral bands (from visible to 
short-wave infrared wavelengths) and spatial resolution between 10 and 60 m (depending 
on the spectral band), Sentinel-2 has made significant spectral data available, providing a 
better understanding of crop dynamics and contributing to the development of crop yield 
prediction models (Di Gennaro et al., 2019; Segarra et al., 2020).

Although research into yield monitoring in several crop types using remote sensed data 
and machine learning algorithms has been carried out, the quantitative assessment of dif-
ferent input variables (spectral bands and vegetation indices from single or pooled images 
across a cropping season) for soybean within-field yield monitoring has been little dis-
cussed. Therefore, there is a great potential to further explore the combinations of input vari-
ables, contributing to the adoption of feasible strategies for yield prediction through satellite 
multispectral images. The present manuscript aimed to evaluate strategies for monitoring 
within field soybean yield using Sentinel-2 visible, near-infrared and shortwave infrared 
spectral bands and machine learning regressions methods. The specific goals addressed: (1) 
comparison between single vegetation indices and multiple spectral bands under machine 
learning algorithms for yield prediction; (2) the contribution of using all available Senti-
nel-2 images across a cropping season for yield prediction; (3) the development of a yield 
prediction model based on Sentinel-2 Vis-NIR-SWIR spectral bands at the R5 phenological 
stage; and (4) the mapping of within-field soybean yield based on Sentinel-2 images.

Materials and methods

Study areas

The study areas are located in Astorga and Mauá da Serra municipalities, situated in the 
north area of Paraná State, southern Brazil. Paraná state accounts for about 16% (over 20 
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Mt) of the national soybean production and for about 5% of all soybeans produced world-
wide (SEAB, 2021, CONAB 2021, USDA 2021). Astorga and Mauá da Serra municipalities 
play an important role in soybean production in Paraná State.

Three soybean farms (Fig. 1), described in Table 1, were monitored in the 2019/2020 
cropping season. Água-Viva and Tupinambá farms, named from now on as AV and TP farms 
respectively, are located in Astorga Municipality, while Mauá da Serra farm, named from 
now on as MS farm, is located in Mauá da Serra Municipality.

The climate of the experimental area is classified as Cfa according to Köppen climate 
classification, i.e., subtropical climate, with a mean temperature in the hottest month higher 
than 22 °C, and rainfall concentrated in the summer months, corresponding, therefore, to 
the period of soybean production, albeit with no defined dry season (Wrege et al., 2011; 
Alvares et al., 2013).

Fig. 1  Location of Água-Viva—AV (a), Tupinambá—TP (b) and Mauá da Serra—MS (c) farms using True 
Color Image (TCI), an RGB product from Sentinel-2 composed by bands 2 (blue), 3 (green) and 4 (red)
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Soybean yield data

Soybean yield data were obtained by cooperation with Integrada Cooperativa Agroindus-
trial, an agro-industrial cooperative of farmers that provides them technical assistance for 
crop production and logistic support for agricultural input supply and production trade. 
Integrada Cooperativa Agroindustrial is responsible for over 1% of all soybeans produced 
in Brazil and the monitored farms are included in the Precision Agriculture Program of the 
cooperative. Yield data were recorded by a combine harvester with yield monitor and the 
output data consisted of a point dataset containing multiple information about crop harvest, 
i.e., the geographic location of each point (acquired by the global navigation satellite system 
in the machinery, and recorded every 1 s), the speed of the harvester and the ground distance 
represented by each recorded point, header width, grain weight and grain moisture.

To eliminate the effects derived from null yield, overlapped points, harvested width less 
than the harvester header and speed variation, effects recognized to have a large impact in 
the delivered yield map (Vega et al., 2019), soybean yield was calculated and corrected to 
13% grain moisture, as per Eq. 1.

	
GY =

(100 − HGM)
(100 − DGM)

× HGW × 10,000
(HW × GD)� (1)

In which GY is the grain yield (kg ha−1), HGM the harvested grain moisture (%), DGM the 
desired grain moisture (%), HGW the harvested grain weight (kg), HW is the header width 
(m) and GD the ground distance represented by the point (m).

The yield dataset obtained for each field underwent statistical quality control using con-
trol charts with upper and lower control limits defined at –3σ and +3σ in relation to the 

Table 1  Description of the monitored farms, fields, area, mean altitude, sowing and harvesting dates and 
cultivar
Farm Field Area (ha) Mean alti-

tude (m)
Sowing date Harvesting date Cultivar

AV AV 1 46 443 From Oct. 30
to Nov. 02

From Mar. 04 
to 22

BMX Fibra
AV 2 55 BMX Garra
AV 3 41 TMG 7067 IPRO

TP TP 1 8 565 From Oct. 23 
to 25

From Feb. 20
to Mar. 03

M6410 IPRO
TP 2 43 TMG 7067 IPRO
TP 3 48 M6410 IPRO
TP 4 53 M6410 IPRO

MS MS 1 12 898 From Oct. 22 
to 27

From Mar. 11 
to 16

BRS 511
MS 2 15 BRS 511
MS 3 16 BRS 511
MS 4 24 BRS 511
MS 5 48 From Nov. 06 

to 08
From Mar. 17 
to 23

M6410 IPRO

MS 6 32 From Nov. 19 
to 20

From Mar. 23 
to 25

M6410 IPRO

MS 7 9 From Dec. 01 
to 02

From Mar. 27
to Apr. 03

BMX Compacta
MS 8 65 BMX Compacta
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mean yield, where σ represents the standard deviation. Yield values above or below the con-
trol limits were considered as outlier and removed from the yield dataset, as suggested by 
Kross et al. (2020) and Carneiro et al. (2020). Using the software QGIS (QGIS, 2022), yield 
points were then rasterized to a 20 m cell grid, to meet the Sentinel-2 spatial resolution, as 
described in section ‘Sentinel-2 data’, and smoothed using a Gaussian filter with smoothing 
degree equal to 2.5σ.

Sentinel-2 data

Comprising the period of crop development, from November 2019 to March 2020, Senti-
nel-2 images were acquired from the Copernicus Open Hub at the Level 2 A Bottom-Of-
Atmosphere (BOA) reflectance product. Sentinel-2 A and -2B, launched on 23 June 2015 
and 7 March 2017 respectively (Gao et al., 2018), carry a Multi-Spectral Instrument (MSI) 
and provide a revisiting interval of 5 days. The spatial and spectral characteristics of MSI 
from Sentinel-2 A and -2B (ESA, 2021) are presented in supplementary table.

Nine spectral bands were used: bands 2, 3, 4, 5, 6, 7, 8a, 11 and 12. Band 8 was not used 
due to its overlapping with bands 7 and 8a, and bands 1, 9 and 10 were not used due to 
their coarse resolution (60 m) for within-field monitoring. Kayad et al. (2019), monitoring 
within-field maize yield, assessed the correlation between yield and Sentinel-2 bands 8 and 
8a and observed similar and competitive results. Considering that most of the spectral bands 
used are originally acquired at 20 m resolution, bands 2, 3 and 4 were also analyzed at 20 m 
resolution (originally provided by Sentinel-2 Level 2 A product) to match the same spatial 
resolution of most spectral channels, as suggested by Dado et al. (2020). After cloud and 
shadow mask, only images, from each farm, containing the majority of their pixels free of 
cloud and shadow were used. Sentinel-2 images were processed using the software QGIS 
(QGIS, 2022).

Table 2 presents the images used in each field and the correspondent overpass date. The 
different number of available images for each field is related to the differences in sowing 
calendar (Table 1) and cloud cover on the overpass date. Despite the high revisiting fre-
quency of Sentinel-2, the high cloud cover observed in the study area limited the number 
of available images from 4 to 7 images on each field. According to Eberhardt et al. (2016), 
Paraná State is negatively affected (from 40% up to 70%) by cloud cover on optical images, 
and Astorga and Mauá da Serra municipalities have an average (between the years of 2000 
and 2014) of about only 30% of cloud-free images across the soybean cropping season. 
The negative effects of cloud cover for soybean monitoring in Paraná State have also been 
reported by Sugawara et al. (2008) and Crusiol et al. (2017b).

From the acquired Sentinel-2 images, vegetation indices (VIs) were calculated, as 
described in Table  3: blue normalized difference vegetation index (BNDVI), green nor-
malized difference vegetation index (GNDVI), normalized difference vegetation index 
(NDVI), normalized difference red-edge index (NDRE), normalized difference infrared 
index (NDII), normalized difference infrared index 2 (NDII 2), enhanced vegetation index 
(EVI) and enhanced vegetation index 2 (EVI 2).
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Machine learning regression methods

Using The Unscrambler® (CAMO Software—Norway), two machine learning methods (p 
≤ 0.05) were used to correlate the Sentinel-2 spectral data (independent variables) to soy-
bean yield (dependent variable):

Table 2  Sentinel-2 images used for yield monitoring on each field
Overpass date
Nov. Dec. Jan. Feb. Mar.

Farm Field 29 29 18 28 12 27 03 08 13
AV AV 1 × × × × ×

AV 2 × × × × ×
AV 3 × × × × ×

TP TP 1 × × × ×
TP 2 × × × ×
TP 3 × × × ×
TP 4 × × × ×

MS MS 1 × × × × ×
MS 2 × × × × ×
MS 3 × × × × ×
MS 4 × × × × ×
MS 5 × × × × × ×
MS 6 × × × × × × ×
MS 7 × × × × × × ×
MS 8 × × × × × × ×

Table 3  Vegetation indices calculated from Sentinel-2 images
Index Formula Reference
BNDVI BNDVI = (ρNIR−ρBlue)

(ρNIR+ρBlue)
Wang et al. (2007)

GNDVI GNDVI = (ρNIR−ρGreen)
(ρNIR+ρGreen)

Gitelson et al. (1996)

NDVI NDVI = (ρNIR−ρRed)
(ρNIR+ρRed)

Rouse et al. (1974)

NDRE NDRE = (ρNIR−ρRedEdge)
(ρNIR+ρRedEdge)

Gitelson and Merzlyak (1994)

NDII NDII = (ρNIR−ρSWIR1600λ)
(ρNIR+ρSWIR1600λ)

Hardisky et al. (1983)

NDII 2 NDII2 = (ρNIR−ρSWIR2200λ)
(ρNIR+ρSWIR2200λ)

Hardisky et al. (1983)

EVI
EVI = 2.5 × (ρNIR−ρRed)

(ρNIR+6×ρRed−7.5×ρBlue+1)

Huete et al. (2002)

EVI 2 EVI2 = 2.5 × (ρNIR−ρRed)
(ρNIR+2.4×ρRed+1)

Jiang et al. (2008)

ρ = reflectance
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Partial least square regression (PLSR)

PLSR is a multivariate regression method that performs the linear correlation between 
predictor variables, i.e., spectral bands, and dependent variable, i.e., soybean yield, by the 
determination of orthogonal base vectors, or latent variables, that account for most of the 
variation in the response variable, generating a linear model composed of waveband scal-
ing coefficients to transform the spectral data (Yendrek et al., 2017). PLSR was developed 
based on the optimum number of latent variables, considering the lowest value of root mean 
square error (RMSE) and highest coefficient of determination (R2) in the cross-validation 
procedure (Souza et al., 2013). For more information about PLSR as a machine learning 
regression method for remote sensed data, please refer to Maimaitijiang et al. (2020).

Support vector regression (SVR)

SVR is a non-parametric regression method that performs the non-linear correlation between 
predictor variables, i.e., spectral bands, and dependent variable, i.e., soybean yield, by fit-
ting an optimal hyperplane (Ashourloo et al., 2016). A hyperplane can be defined as bound-
aries in high-dimensional space that classify the dependent variable for a regression task 
and, in the present research, was identified by using a non-linear kernel function (the Radial 
Basis Function) (Kayad et al., 2019; Kamir et al., 2020). In SVR, the number of parameters 
used in the model changes according to the input data and might be higher as the input data 
volume increases (Kayad et al., 2019).

Accuracy assessment

To assess the performance of PLSR and SVR models, a 10-fold cross-validation procedure 
was adopted, in which the input data is divided in ten subsets with roughly equal proportion 
and ten iterations, withholding one subset at a time. On each iteration, a training model is 
generated and then validated in the withheld subset. The overall accuracy of the model is 
obtained by the average of the results from each iteration (Guan et al., 2017, Hunt et al., 
2019). Two statistical metrics were used to evaluate the model performance: the root mean 
squared error (RMSE), and R2 (the proportion of variability in crop yield explained by the 
model). Hence, results from PLSR and SVR described in the present manuscript refer to the 
cross-validation procedure.

Sample selection

After all yield maps and Sentinel-2 images were processed, they were clipped to each field 
and pixels from field edges were excluded to avoid negative effects from the spectral mix-
ing with adjacent areas (Brown et al., 2013). The remaining pixels had their pixel values 
(containing yield and reflectance from each band from each image) extracted using a 40 m 
× 40 m grid sampling, selecting, thus, from 20 to 30% of all pixels. Pixels extracted from 
the 40 m × 40 m grid sampling were used to conduct the statistical analysis described in 
section ‘Strategies for yield monitoring’, while yield and spectral response from all pixels 
were used to apply the spectral models for within-field soybean yield mapping, described in 
section ‘Mapping within field soybean yield’.
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Strategies for yield monitoring

Yield monitoring through single Sentinel-2 images

Fields with similar sowing dates within each farm (Table 1) were inserted into the same 
dataset, i.e., within AV farm, fields were analyzed together; within TP farm, fields were 
analyzed together; and within MS farm, four groups of fields were analyzed, one containing 
MS 1, 2, 3 and 4, one containing only MS 5, one containing only MS 6, and one containing 
MS 7 and 8.

To assess the correlation between yield and Sentinel-2 images on each overpass date 
(Table 2), a linear regression was established between yield values and the derived veg-
etation indices (Table 3), and evaluated by the coefficient of determination (R2). To check 
whether the use of the nine spectral bands from Sentinel-2 can deliver competitive results, 
reflectance values from all spectral bands from each overpass date (Table 2) were correlated 
to yield using PLSR and SVR models and evaluated by the coefficient of determination (R2) 
from the cross-validation procedure.

Yield monitoring through Sentinel-2 images pooled across cropping season

To assess the contribution of using all available Sentinel-2 images across the cropping sea-
son (Table 2), each derived vegetation index (Table 3) had its temporal response pooled into 
the same dataset and correlated to yield using PLSR and SVR. Under the same perspective, 
the nine spectral bands from all available Sentinel-2 images were pooled into the same data-
set and correlated to yield using PLSR and SVR. Additionally, all VIs and all spectral bands 
from all available Sentinel-2 images were pooled into the same dataset to evaluate whether 
combining: (1) all vegetation indices from all available images; or (2) all vegetation indices 
and all spectral bands from all available images; could deliver competitive results for yield 
prediction. The accuracy was assessed by the R2 and RMSE from the cross-validation pro-
cedure. Fields with similar sowing dates within each farm, as described in section ‘Yield 
monitoring through single Sentinel-2 images’, were analyzed together.

Yield monitoring through Sentinel-2 images at the R5 phenological stage

To make all fields from all farms comparable among them, despite their differences in sow-
ing dates, spectral data acquired at the R5 phenological stage (which corresponds to the 
grain filling stage—Fehr & Caviness, 1977) were used. The R5 phenological stage has been 
recognized to have the highest correlation with grain yield using soybean spectral response 
(Bolton & Friedl, 2013; Carneiro et al., 2020; Kross et al., 2020 Sakamoto 2020, Crusiol et 
al., 2021a).

Considering that soybean phenology might be influenced by environmental conditions 
and the cultivar used, affecting the time of occurrence of the R5 phenological stage, images 
from 80 to 100 days after sowing (DAS), for each field, were considered as correspondent 
to the R5 phenological stage. The selection of this time interval was based on research find-
ings addressing the R5 phenological stage for soybean spectral monitoring and based on 
results from field experiments addressing the phenology characterization of multiple soy-
bean cultivars at the National Soybean Research Center (Embrapa Soja—Brazilian Agricul-
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ture Research Corporation—located in Londrina municipality, less than 75 km far from the 
study areas). Thus, at this stage, the available Sentinel-2 images for each field were merged 
for each spectral band separately, promoting the standardization of the number of input data 
(one image containing nine spectral bands) for crop yield monitoring at the R5 phenological 
stage, as suggested by Guan et al. (2017) and Gómez et al. (2019).

PLSR and SVR models (correlating yield and Sentinel-2 spectral bands) were developed, 
separately, for each field, where 15 field-based models were generated (one for each of 
them). Besides that, PLSR and SVR models were developed, separately, for each farm, by 
aggregating within each farm, the pixels used to develop the field-based models. As a result, 
3 farm-based models were generated (one for each farm).

Aiming at developing a global-based model, yield and spectral data from all fields from 
all farms were analyzed together, by aggregating the pixels used to develop all the 15 field-
based models. At this stage, yield values were correlated to: the derived vegetation indices 
(Table 3) and evaluated by the coefficient of determination (R2), and to Sentinel-2 spectral 
bands, using PLSR and SVR models, and evaluated by the R2 and RMSE from the cross-
validation procedure.

The input data for each model (field-, farm- and global-based) consisted of one image 
(obtained after merging the available images between 80 and 100 DAS—Table 2) contain-
ing the nine Sentinel-2 spectral bands; and the sampling size for each field, extracted from 
the 40 m × 40 m grid sampling (section ‘Sample selection’), varied from 20 to 30% of all 
pixels.

To provide further evidence of the predictive capacity for soybean yield of the developed 
global-based models, data were further analyzed by splitting into calibration and validation 
subsets (containing 75% and 25% of data respectively). Thus, the calibration subset was 
used to generate an additional prediction model, whose accuracy was assessed by R2 and 
RMSE from the cross-validation procedure, while the remaining 25% was used as valida-
tion subset, whose accuracy was assessed by the R2 and RMSE from the linear correlation 
between observed and predicted yield.

Comparing satellite-based and ground-based data for yield monitoring

Aiming at comparing spectral data obtained through Sentinel-2 images and through field 
campaigns, a field experiment was undertaken at the National Soybean Research Center 
(Embrapa Soja), a branch of the Brazilian Agricultural Research Corporation, located in 
Londrina Municipality, Paraná State, Southern Brazil (Fig. 1), in the 2016/2017, 2017/2018 
and 2018/2019 cropping seasons. The motivation of comparing the results obtained from 
Sentinel-2 images to results obtained at leaf scale, on field experiments, was to provide fur-
ther evidence of the relation between soybean yield and spectral response at both levels of 
data acquisition, strengthening the soybean yield monitoring ability.

The spectral response of ten soybean genotypes and cultivars, with different responses 
to water availability and submitted to non-irrigated (rainfed) condition, meeting, as close 
as possible, the natural rainfed conditions found in the three evaluated farms, was assessed 
at the R5 phenological stage. Leaf-based reflectance was collected at 89, 96 and 94 DAS 
(2016/2017, 2017/2018 and 2018/2019 cropping seasons respectively) on the central leaflet 
of the fullest expanded third trifoliate leaf from the top using the FieldSpec 3 Jr spectroradi-
ometer (Analytical Spectral Devices, Boulder, CO, USA), with a spectral resolution of 3 nm 
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between 350 and 1,400 nm and 30 nm between 1,400 and 2,500 nm. The plant probe device, 
with an internal 99% reflectance board (Spectralon®—used as reflectance standard), and 
a 1% reflectance opaque and black board (used during the spectral assessment to ensure 
pure leaf reflectance spectra collection) was used to prevent illumination interferences of 
adjacent targets and atmospheric scattering and attenuation. On each plot, four leaf-based 
spectral subsamples were collected and then averaged, resulting in the samples used for 
data analysis, in a total of 224 subsamples and 56 spectral samples from the three cropping 
seasons.

The hyperspectral data were then resampled to meet the Sentinel-2 spectral bands, named 
from now on as Sentinel-2-like. A linear regression was stablished between yield and the 
derived vegetation indices (Table 3), evaluated by the coefficient of determination (R2). To 
assess the correlation between yield and Sentinel-2-like spectral bands, PLSR and SVR 
models were generated and evaluated by the R2 and RMSE from the cross-validation pro-
cedure. Following the procedure adopted in section ‘Yield monitoring through Sentinel-2 
images at the R5 phenological stage’, to provide further evidence of the predictive capacity 
for soybean yield of the developed Sentinel-2-like models, data were further analyzed by 
splitting into a calibration subset (containing 75% of data), whose accuracy was assessed by 
the R2 and RMSE from the cross-validation procedure, and the remaining 25% of data were 
used as validation subset, whose accuracy was assessed by the R2 and RMSE from the linear 
correlation between observed and predicted yield.

Mapping within-field soybean yield

Aiming at mapping within-field soybean yield, the field-based, farm-based and global-based 
SVR models, generated in section ‘Yield monitoring through Sentinel-2 images at the R5 
phenological stage’ using a 40 m × 40 m grid sampling (section ‘Sample selection’), were 
applied to all pixels from each field. To assess the accuracy of yield mapping, using the 
developed SVR models applied to all pixels, a linear regression was established between 
predicted yield (mapped) and observed yield (recorded by a combine harvester with yield 
monitor) and the R2 and RMSE were used to evaluate the trend between both datasets (pre-
dicted and observed).

Extra SVR models were developed, for each field, using Sentinel-2 and yield values 
from all pixels, to ensure the unbiased selection of yield and spectral samples from the 40 m 
× 40 m grid sampling. Their accuracy was assessed by the R2 and RMSE from the cross-
validation procedure.

Results

Characterization of soybean yield on each evaluated farm

Figure 2 displays the boxplot for soybean yield measured from all pixels and from the 40 m 
× 40 m grid sampling (section ‘Sample selection’) on each farm. Yield values extracted from 
the 40 m × 40 m grid sampling had similar distribution compared to yield values extracted 
from all pixels within each farm. This similar distribution denotes the effectiveness in select-
ing from 20 to 30% of pixels from each farm, representing the variability of soybean yield.
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Relation between yield and single Sentinel-2 images

Tables 4 and 5 present the coefficients of determination (R2) for soybean yield using vegeta-
tion indices and from PLSR and SVR using Sentinel-2 spectral bands on AV, TP and MS 
farms for each single image across cropping season. For all evaluated farms (on MS farm, 
four groups of fields were analyzed according to their sowing date, as described in section 
‘Yield monitoring through single Sentinel-2 images’), a temporal pattern regarding the most 

Table 4  Coefficients of determination (R2) for soybean yield using vegetation indices and from PLSR and 
SVR using Sentinel-2 spectral bands on AV and TP farms

Nov. Dec. Jan. Feb.
29 29 18 28 12

AV BNDVI 0.05 0.01 0.01 0.01 0.01
EVI2 0.05 0.01 0.03 0.01 0.01
EVI 0.04 0.01 0.06 0.14 0.01
GNDVI 0.05 0.01 0.03 0.02 0.11
NDVI 0.05 0.01 0.02 0.01 0.01
NDRE 0.06 0.01 0.07 0.04 0.01
NDII 0.05 0.01 0.34 0.14 0.01
NDII2 0.04 0.01 0.42 0.21 0.02
PLSRa 0.70 0.59 0.70 0.53 0.60
SVRa 0.82 0.68 0.80 0.55 0.62

TP BNDVI 0.01 0.08 0.17 0.18
EVI2 0.01 0.05 0.14 0.16
EVI 0.04 0.01 0.01 0.11
GNDVI 0.01 0.01 0.18 0.28
NDVI 0.01 0.05 0.14 0.16
NDRE 0.01 0.01 0.18 0.29
NDII 0.18 0.41 0.01 0.07
NDII2 0.09 0.26 0.04 0.01
PLSRa 0.34 0.42 0.53 0.57
SVRa 0.40 0.54 0.60 0.61

Fig. 2  Boxplot of soybean grain yield on Água Viva (AV), Tupinambá (TP) and Mauá da Serra (MS) farms 
from all pixels (All) and from the 40 m × 40 m grid sampling (Grid)
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feasible time for yield monitoring was not observed either using vegetation indices or Senti-
nel-2 spectral bands. For some fields, the highest correlation was observed at the beginning 
of cropping season (e.g., AV, MS 1–4 and MS 5), while some fields presented the highest 

Table 5  Coefficients of determination (R2) for soybean yield using vegetation indices and from PLSR and 
SVR using Sentinel-2 spectral bands on MS farm

Nov. Dec. Jan. Feb. Mar.
29 29 18 28 12 27 03 08 13

MS
1–4

BNDVI 0.05 0.01 0.02 0.03 0.01
EVI2 0.05 0.01 0.02 0.01 0.01
EVI 0.05 0.01 0.01 0.02 0.01
GNDVI 0.07 0.01 0.08 0.04 0.01
NDVI 0.05 0.01 0.02 0.01 0.01
NDRE 0.08 0.01 0.01 0.01 0.01
NDII 0.01 0.01 0.01 0.12 0.02
NDII2 0.01 0.01 0.05 0.17 0.01
PLSRa 0.55 0.44 0.29 0.26 0.39
SVRa 0.54 0.48 0.35 0.27 0.35

MS
5

BNDVI 0.13 0.01 0.13 0.02 0.22 0.18
EVI2 0.02 0.01 0.18 0.07 0.26 0.18
EVI 0.08 0.08 0.06 0.07 0.27 0.18
GNDVI 0.09 0.06 0.09 0.07 0.23 0.10
NDVI 0.02 0.01 018 0.07 0.26 0.19
NDRE 0.02 0.01 0.15 0.12 0.25 0.10
NDII 0.21 0.05 0.02 0.02 0.29 0.28
NDII2 0.15 0.08 0.08 0.08 0.29 0.27
PLSRa 0.50 0.26 0.33 0.26 0.29 0.20
SVRa 0.52 0.22 0.36 0.25 0.28 0.23

MS
6

BNDVI 0.04 0.01 0.05 0.08 0.06 0.01 0.46
EVI2 0.05 0.01 0.05 0.32 0.18 0.06 0.38
EVI 0.05 0.01 0.01 0.09 0.03 0.03 0.35
GNDVI 0.03 0.12 0.01 0.02 0.02 0.09 0.42
NDVI 0.05 0.01 0.05 0.32 0.18 0.06 0.38
NDRE 0.01 0.05 0.01 0.11 0.01 0.07 0.36
NDII 0.01 0.01 0.48 0.71 0.62 0.59 0.40
NDII2 0.01 0.01 0.42 0.69 0.53 0.56 0.36
PLSRa 0.27 0.29 0.54 0.76 0.70 0.70 0.69
SVRa 0.32 0.29 0.57 0.78 0.70 0.71 0.75

MS
7–8

BNDVI 0.25 0.16 0.08 0.01 0.01 0.01 0.06
EVI2 0.29 0.18 0.06 0.04 0.02 0.01 0.06
EVI 0.31 0.17 0.03 0.07 0.04 0.02 0.05
GNDVI 0.24 0.24 0.17 0.01 0.01 0.07 0.14
NDVI 0.29 0.18 0.06 0.04 0.02 0.01 0.05
NDRE 0.27 0.25 0.17 0.01 0.01 0.07 0.15
NDII 0.23 0.22 0.14 0.02 0.08 0.03 0.03
NDII2 0.26 0.23 0.12 0.03 0.08 0.03 0.02
PLSRa 0.27 0.24 0.22 0.18 0.28 0.31 0.40
SVRa 0.29 0.26 0.21 0.26 0.35 0.36 0.44
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correlation at the middle (e.g., MS 6) and at the ending of the cropping season (e.g., TP and 
MS 7–8).

Besides the absence of temporal pattern, the correlation between vegetation indices and 
yield presented, for each VI, both positive and negative correlations on different images, 
and non-significant correlations were frequently observed on the three farms, preclud-
ing the identification of the most feasible vegetation index for within-field soybean yield 
monitoring.

Among the evaluated vegetation indices, those derived from near-infrared and shortwave 
infrared bands (NDII and NDII2) demonstrated outstanding results, achieving competitive 
results with the PLSR and SVR models and even outperforming them at MS 5 (Table 5) 
on March 3rd. However, using machine learning regression methods demonstrated larger 
stability in the trend between spectral response and soybean yield. Hence, the use of all Sen-
tinel-2 bands through PLSR and SVR demonstrated, for all fields and dates across cropping 
season (with the exception of MS 5 on March 3rd ), higher accuracy for within-field yield 
prediction compared to the use of single VIs.

Relation between yield and Sentinel-2 images pooled across cropping season

Figures 3 and 4 present the results derived from PLSR and SVR using Sentinel-2 images 
pooled across the cropping season on AV, TP and MS farms. At this stage, each vegeta-
tion index (Table 3) had their temporal response correlated to yield using PLSR and SVR. 

Fig. 3  R2 and RMSE derived from PLSR and SVR for soybean yield prediction using pooled vegetation 
indices and Sentinel-2 spectral bands (S2) across cropping season on AV (a) and TP (b) farms
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Similarly, the nine spectral bands from all available images were also pooled into the same 
dataset and correlated to yield using PLSR and SVR.

Fig. 4  R2 and RMSE derived from PLSR and SVR for soybean yield prediction using pooled vegetation 
indices and Sentinel-2 spectral bands across cropping season on MS farm: MS 1–4 (a), MS 5 (b), MS 6 (c) 
and MS 7–8 (d)
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For all vegetation indices, the use of their temporal response pooled into the same dataset 
and correlated to yield using PLSR and SVR demonstrated higher correlation compared 
to the use of vegetation index from a single image (Tables 4 and 5). As has been observed 
using single images, the use of pooled data across cropping season did not demonstrate a 
pattern regarding the most feasible VI for within-field soybean yield monitoring.

Although the accuracy for within-field yield prediction had been increased by the use 
of vegetation index pooled through the cropping season, the use of the nine spectral bands 
from all available Sentinel-2 images across the cropping season demonstrated the highest 
correlation to yield compared to information acquired at single image (Tables 4 and 5) and 
temporal response from VIs.

To evaluate whether combining: (1) all vegetation indices from all available images; or 
(2) all vegetation indices and all spectral bands from all available Sentinel-2 images; could 
deliver competitive results for yield prediction, PLSR and SVR models were developed for 
each farm and are presented in Fig. 5.

The use of all vegetation indices (Table  3) from all Sentinel-2 images (Table  2) did 
not result in higher accuracy compared to the use of all spectral bands from all Sentinel-2 
images across cropping season. Besides that, adding all VIs to all spectral bands from all 
images demonstrated a meaningless contribution to both PLSR and SVR models for yield 
prediction.

Fig. 5  R2 and RMSE derived from PLSR (a) and SVR (b) regressions for soybean yield prediction using 
pooled Sentinel-2 spectral bands (S2), vegetation indices (VIs), and Sentinel-2 spectral bands + vegetation 
indices (S2+VIs) from all images across cropping season
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Relation between yield and Sentinel-2 images at the R5 phenological stage

The results derived from PLSR and SVR using Sentinel-2 images at the R5 phenological 
stage for each field (field-based models) and each farm (farm-based models), presented 
in Table 6, demonstrated that the accuracy in soybean yield prediction presented different 
results for different production areas. Regarding the global-based model, Fig. 6 (a) displays 
the boxplot for soybean yield measured from all fields from all farms analyzed together 
(global-based model) and its splitting into calibration (75%) and validation (25%) subsets. 
The boxplot for soybean yield measured at Embrapa Soja is presented in Fig. 6 (b). The 

Table 6  R2 and RMSE derived from PLSR and SVR regressions for soybean yield using Sentinel-2 spectral 
bands at the R5 phenological stage on each field (field-based models) and each farm (farm-based models)

Yield (kg ha−1) PLSR SVR
Farm Field Mean σ Model-based R2 RMSE R2 RMSE
AV AV 1 3669.96 28.38 Field 0.78 13.08 0.79 12.85

AV 2 3597.75 12.49 Field 0.17 11.35 0.29 10.52
AV 3 3526.75 38.30 Field 0.49 27.03 0.53 26.20
All 3594.27 65.04 Farm 0.63 39.36 0.70 35.77

TP TP 1 3575.90 11.47 Field 0.21 10.42 0.07 11.06
TP 2 3567.39 25.43 Field 0.37 20.35 0.44 19.43
TP 3 3479.87 43.34 Field 0.30 36.27 0.26 37.32
TP 4 3490.54 23.64 Field 0.46 17.40 0.48 17.03
All 3512.18 50.04 Farm 0.52 34.47 0.60 31.47

MS MS 1 3653.96 30.26 Field 0.06 29.99 0.28 25.82
MS 2 3598.22 25.06 Field 0.73 13.00 0.54 17.04
MS 3 3710.81 42.04 Field 0.26 36.40 0.38 33.82
MS 4 3750.40 25.72 Field 0.16 23.63 0.18 23.63
MS 5 3577.43 27.74 Field 0.25 24.24 0.32 23.08
MS 6 3621.88 13.67 Field 0.71 7.21 0.72 7.24
MS 7 3642.59 8.71 Field 0.13 8.22 0.23 7.49
MS 8 3644.05 25.86 Field 0.28 21.83 0.34 21.04
All 3638.30 56.93 Farm 0.52 39.06 0.60 35.86

Fig. 6  Boxplot of soybean grain yield from Global-based model (a) and from Embrapa Soja (b), comprising 
100%, 75% and 25% of data
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portioning of the global-based model and data from Embrapa Soja into 75% and 25% was 
undertaken to provide further evidence of their ability for soybean yield prediction. Hence, 
75% of data was used to generate an additional prediction model, while the remaining 25% 
was used to perform its validation. It is possible to verify, within each dataset, a similar 

Sentinel-2 Sentinel-2-like
BNDVI 0.13 0.10
EVI2 0.04 0.15
EVI 0.12 0.17
GNDVI 0.03 0.01
NDVI 0.04 0.16
NDRE 0.01 0.06
NDII 0.21 0.01
NDII2 0.15 0.01

Table 7  Coefficients of de-
termination (R2) for soybean 
yield using vegetation indices 
derived from Sentinel-2 images 
(Sentinel-2) and ground-based 
Sentinel-2-like spectral data 
(Embrapa Soja) at the R5 phe-
nological stage

Fig. 7  Scatterplot between observed and predicted (external validation) soybean yield using Sentinel-2 spec-
tral bands through PLSR (a) and SVR (b) and using ground-based Sentinel-2-like spectral data (Embrapa 
Soja) through PLSR (c) and SVR (d)
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distribution among 100% of data (global-based model and Embrapa Soja) and their splitting 
into 75% and 25% subsets.

The average spectral response of soybean crop at the R5 phenological stage from the 
global-based model (Sentinel-2) and from Embrapa Soja (Sentinel-2-like), presented in a 
supplementary figure, demonstrated a similar response across the visible and shortwave-
infrared spectrum with larger differences, however, at bands 7 and 8a (780 nm and 860 
nm respectively). Table 7 presents the coefficients of determination (R2) for soybean yield 
using vegetation indices at R5 the phenological stage derived from Sentinel-2 (global-based 
model) and Sentinel-2-like (Embrapa Soja) data. Table 8 presents the results derived from 
PLSR and SVR using, at the R5 phenological stage, Sentinel-2 images (global-based model) 
and Sentinel-2-like (Embrapa Soja) and their 75% subsets.

As has been observed, either for single images or images pooled across cropping season, 
the use of vegetation indices for monitoring within-field soybean yield demonstrated low 
values of R2, both using satellite and ground-based data (Table 7). On the other hand, the 
use of visible, near-infrared and shortwave infrared spectral bands (Table 8) demonstrated 
higher correlation with within-field soybean yield, with R2 equal to 0.75 for global-based 
model and 0.63 for Sentinel-2-like (Embrapa Soja) model, using SVR approach. Besides 
that, the generation of an additional prediction model, using 75% of data, demonstrated 
similar accuracy compared to the global-based and Sentinel-2-like models. These two addi-
tional models (generated using 75% of data from global-based and Embrapa Soja) were 
applied to the remaining 25% of data, and Fig.  7 presents the results from the external 
validation.

It is possible to observe a similar trend between observed and predicted soybean yield 
(using Vis/NIR/SWIR spectral bands) either from satellite or ground-based remote sensed 
data. Those findings are important to support future research addressing soybean yield mon-
itoring using spectral data collected from multiple platforms and integrated among them. 
The results from SVR from Sentinel-2 spectral bands and Sentinel-2-like (Embrapa Soja) 
revealed higher accuracy in soybean yield prediction compared to PLSR. Although for Sen-
tinel-2-like (Embrapa Soja), results obtained for SVR were slightly higher than PLSR, with 
R2 equal to 0.65 and 0.62 respectively, for Sentinel-2 (global-based model) larger differ-
ences in their accuracies were observed (R2 equal to 0.75 and 0.54 respectively). Despite the 
differences in the accuracy from both regression methods, the strong and positive relation 
between observed and predicted soybean yield is emphasised. The regression analysis with 
an intersection passing through the origin (y = bx) revealed an adjusted model (y = 1.0002x 
and y = 1.0004x) for Sentinel-2 (global-based model) using PLSR and SVR respectively; 

PLSR SVR
Dataset Model R2 RMSE R2 RMSE
Sentinel-2 Global-based 

100%
0.56 51.76 0.75 38.82

Global-based 
75%

0.55 52.16 0.75 39.16

Sentinel-2-like Embrapa Soja 
100%

0.63 409.58 0.63 404.20

Embrapa Soja 
75%

0.61 409.79 0.65 393.88

Table 8  R2 and RMSE derived 
from PLSR and SVR for 
soybean yield at the R5 pheno-
logical stage using Sentinel-2 
images and ground-based 
Sentinel-2-like spectral data 
(Embrapa Soja) comprising 
100% and 75% of the spectral 
dataset
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and (y = 0.9910x and y = 1.0206x) for Sentinel-2-like (Embrapa Soja) using PLSR and SVR 
respectively, indicating a similar trend in the adjusted models.

Mapping within-field soybean yield

Considering the better performance of SVR in relation to PLSR for soybean within-field 
monitoring, SVR models from the field, farm and global-based models were used for map-
ping within field soybean yield. Figure  8 presents the R2 and RMSE between observed 
and predicted yield from SVR models at the R5 phenological stage using the global-based 
model (developed using information from all fields from all farms), farm-based models 
(developed using information within each farm) and field-based models (developed using 
information from each field separately). The aforementioned models were developed using 
data extracted from a 40 m × 40 m grid sampling and were applied to all pixels to perform 

Fig. 8  R2 and RMSE between observed and estimated soybean yield on AV and TP farms (a) and MS farm (b) 
using Sentinel-2 spectral bands through SVR applying the Field-based, Farm-based and Global-based models 
and the model generated separately for each field, using all pixels
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the yield mapping. To ensure the unbiased selection of samples from the grid sampling, 
extra SVR models were developed, for each field, using values from all pixels, labelled in 
Fig. 8 as ‘all pixels’ (as described in section ‘Mapping within field soybean yield’).

For all the 15 fields, the use of field-based models delivered the highest accuracy for 
within-field yield mapping. It was observed that the accuracy for yield prediction increased 
from the most complex dataset (global-based model) to models that take into account the 
complexity from each farm (farm-based model), reaching the highest accuracy using field-
based models. The observed and predicted yield maps from each field using the respective 
SVR field-based model are presented in Fig. 9. For each field, the upper and lower yield 
limits were set to the same value for observed and predicted maps, allowing their visual 
comparison.

Fig. 9  Observed and predicted yield maps from AV (a), TP (b) and MS (c) farms
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The comparison between the field-based models (Fig. 8, black bars) and the extra SVR 
models (developed, for each field, using values from all pixels—Fig. 8, white bars with 
black stripes) demonstrated competitive results in all the 15 evaluated fields, suggesting that 
a small number of samples (from 20 to 30% in each field, selected from the 40 m × 40 m grid 
sampling) can be used for yield mapping without loss of accuracy. Performing the regres-
sion analysis between the coefficient of determination and root mean square error obtained 
by the field-based models and the extra SVR models, a strong positive correlation was 
observed. The regression analysis with an intersection passing through the origin (y = bx) 
revealed an adjusted model (y = 1.0266x and y = 0.8963x) with coefficients of determination 
(R2) equal to 0.989 and 0.977 for their R2 and RMSE respectively.

Discussion

The yield dataset used in the present manuscript demonstrated variability not only within 
farm, but also between them (Fig. 2). According to Embrapa Soja (2013), the soybean crop 
is deeply affected by, among others, weather conditions, soil fertility and management, seed 
technology and cultivar, invasive plants, disease and insect management, and technical 
adjustments during the establishment of the crop, such as sowing date and plant population. 
Although the farms evaluated are located within the same geographical zone (Fig. 1), it was 
expected that the interferences aforementioned had led to differences in soybean growth 
conditions and, consequently, differences in yield among and within them.

Relation between yield and single Sentinel-2 images

The time interval for optimal within-field yield monitoring demonstrated to be different 
on each farm and among the evaluated fields (Tables 4 and 5). The characterization of the 
most feasible time for yield prediction across cropping season might be difficult due to the 
complex relationships between crop growth and the biotic and abiotic factors (Kross et al., 
2020), such as weather conditions and soil and crop management, which may not be the 
same in all production areas (Robson et al., 2017). According to Esquerdo et al. (2011), 
there is a trade-off between early prediction and accuracy in soybean yield prediction, sug-
gesting that the accuracy in yield prediction increases toward the end of the season (Gómez 
et al., 2019). Al-Gaadi et al. (2016), reported limitations in the detection of the best time 
across cropping season for potato yield prediction.

Besides the lack in temporal pattern, the evaluated vegetation indices did not demon-
strate a trend with yield, presenting, in the different images, both positive and negative 
correlations for the same index, which also precluded the identification of the most feasible 
vegetation index for within-field soybean yield monitoring. Leon et al. (2003), obtained, 
for the same VI, both positive and negative correlations between soybean yield and vegeta-
tion indices without temporal pattern on three fields. Using VIs, Ali et al. (2019) reported 
different accuracies for yield prediction in several crop types according to the phenological 
stage. Segarra et al. (2020), predicting wheat yield at regional level, and Suarez et al. (2020), 
predicting carrot yield, reported limitations in the identification of the most accurate VI.

When developing yield prediction models using all Sentinel-2 spectral bands and 
machine learning regression methods, higher accuracy compared to the use of single VIs 
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was observed, for all fields and dates across the cropping season (with the exception of MS 
5 on March 3rd, when slightly higher R2 was observed for NDII and NDII2),. The contribu-
tion of PLSR and SVR relies on the fact that multiple Vis-NIR-SWIR spectral bands were 
analyzed into the same model, enabling better characterization of the conditions of crop 
development across different wavelengths. The higher accuracy of spectral bands for yield 
prediction using machine learning regression methods have been reported in corn (Kayad et 
al. 2019), and soybean (Leon et al. 2003; Dado et al. 2020).

Relation between yield and Sentinel-2 images pooled across cropping season

It was demonstrated in Figs.  3 and 4 that pooling spectral information across the crop-
ping season might contribute to enhance the accuracy of within-field yield prediction. This 
trend could be observed for all vegetation indices and also using all spectral bands from all 
available images. According to Gao et al. (2018), the use of combined spectral information 
through the cropping season contributes to better understanding the physiological dynamics 
of crops, better characterizing, therefore, their response to yield across time. Although many 
different biotic and abiotic factors can influence soybean yield, each of them has a more 
favorable time of occurrence across the cropping season. By this reasoning, using images 
pooled through time allows the acquisition of spectral information on different phenologi-
cal stages and under the influence of their driving factors, which results in more accurate 
models for yield monitoring.

The use of pooled spectral bands from images across the cropping season for yield pre-
diction has been addressed in soybean (Dado et al., 2020). Predicting soybean yield through 
NDVI images, Mercante et al. (2010) reported that pooled information from different dates 
delivered higher accuracy than a vegetation index from single images. As demonstrated in 
the analysis of single images, the contribution of PLSR and SVR relies on the fact that mul-
tiple Vis-NIR-SWIR spectral bands could better describe the influence of different stresses 
in crop yield across multiple wavelengths. Besides that, several images (from the early 
stages of crop development to the maturity stages) were analyzed into the same model, 
enabling, thus, the characterization of the biotic and abiotic factors that can influence yield 
values at different time across the cropping season, according to their timing of occurrence.

As demonstrated in Fig.  5, pooling all VIs from all available images presented simi-
lar accuracy compared to all spectral bands; and their combined use (adding all VIs to all 
spectral bands) did not contribute to enhance the model accuracy, which might be related 
to the fact that vegetation indices are calculated from spectral band reflectance and might, 
therefore, present similar information. Shoko and Mutanga (2017) reported that Sentinel-2 
bands outperformed the use of vegetation indices or their combined use for the classifica-
tion of grassland species. Hunt et al. (2019) demonstrated that spectral bands have higher 
correlation to wheat yield compared to vegetation indices and that their combined analysis 
did not enhance the prediction accuracy.

Relation between yield and Sentinel-2 images at the R5 phenological stage

Assessing the relation between yield and Sentinel-2 images at the R5 phenological stage, 
the accuracy in soybean yield prediction presented different results for different produc-
tion areas for PLSR and SVR (Table  6), demonstrating that the influence of biotic and 
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abiotic factors on crop yield varies spatially and temporally between the assessed fields. 
Robson et al. (2017) and Rahman et al. (2018) demonstrated that the relation between spec-
tral response and avocado yield changes from one cropping season to another and from field 
to field. Kross et al. (2020), monitoring within-field soybean yield, reported limitations due 
to the driving factors that affect each field, emphasizing the complex relation between crop 
development and its spectral response.

The accuracy in yield prediction using merged images at the R5 phenological stages was 
lower than using all available images (Figs. 3 and 4). However, the use of a standardized 
number of input data at the target period (one image containing nine spectral bands), as 
suggested by Guan et al. (2017) and Gómez et al. (2019), contributed to overcoming the 
limitation in the acquisition of images, mainly free of cloud cover, at similar periods across 
the cropping season for different fields, making the models developed more flexible for 
application and spatially extrapolated to new soybean areas.

Aiming at providing further evidence of the relation between soybean yield and spectral 
response using both satellite and ground-based data, the average spectral response from 
the global-based model was assessed and compared to the average spectral response from 
Embrapa Soja (Sentinel-2-like) dataset. A similar spectral response was found between both 
sensors, albeit with larger reflectance for the orbital sensor at near-infrared spectrum (sup-
plementary figure). Lamquin et al. (2019) reported the closely related behavior of ground- 
and satellite-based sensors over a variety of calibration targets. Similar trends in the spectral 
response from Sentinel-2 images and simulated spectral bands from a hyperspectral sensor, 
albeit with differences in their reflectance intensities, have been reported by Toming et al. 
(2016) and Munyati et al. (2020). Although data from the global-based model and Embrapa 
Soja were not collected in the same area or time, their similar behavior, collected both at 
canopy level (Sentinel-2 images) and leaf level (Sentinel-2-like) provide evidence of the 
potential to investigate soybean yield prediction through its spectral response from multiple 
platforms of data acquisition, strengthening the possibility of inter-comparison for soybean 
yield prediction at the R5 phenological stage.

Based on the Sentinel-2 images (global-based model) and Embrapa Soja (Sentinel-2-like 
model), machine learning regression methods outperformed vegetation indices (Tables 7 
and 8), strengthening the potential of spectral bands under machine learning for crop moni-
toring, as suggested in Tables 4 and 5. However, a better performance from SVR in relation 
to PLSR was observed. Although PLSR models have been proved to predict yield with 
high accuracy using hyperspectral data in soybean (Christenson et al., 2016; Crusiol et al., 
2021a), the results suggest that, for within-field soybean yield prediction through Sentinel-2 
images, the use of SVR can provide higher accuracy, especially when analysing different 
production areas (fields and farms) into the same dataset.

Although both PLSR and SVR had been successfully applied to yield prediction, the 
PLSR promotes the linear correlation between predictor variables, i.e., spectral bands, and 
dependent variable, i.e., soybean yield, while the SVR (the radial basis function) promotes 
the non-linear correlation between predictors and dependent variable. Chen & Jing (2017) 
carried out wheat yield estimation through Landsat spectral bands using artificial neural 
networks and PLSR regression approaches and found that non-linear models provide higher 
accuracy when integrating data from different fields. Similarly, addressing the soybean yield 
monitoring using Sentinel-2 images, Dado et al. (2020) demonstrated the effectiveness of 
non-linear regression models for yield prediction when grouping information from differ-
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ent fields. Gómez et al. (2019) carried out potato yield monitoring through Sentinel-2 data 
and machine learning regression approaches and, although the authors emphasize that in 
machine learning there is no single algorithm that fits all data, they found that the SVR 
using a non-linear kernel function (the radial basis function) provided the highest accuracy 
for yield prediction.

Mapping within-field soybean yield

Towards within-field soybean yield map, field-based models presented the highest accuracy, 
followed by the farm-based models and, with the lowest accuracy, global-based model. 
Similar results were obtained in previous studies that addressed within-field yield moni-
toring based on remote sensing data. Robson et al. (2017) stated that higher correlation 
between yield and remote sensed data is more likely to be achieved at field scale in com-
parison to larger monitoring area. Monitoring within-field corn and soybean yield, Kross et 
al. (2020) reported limitation in the yield prediction and described how the topography from 
each field, as well as differences in planting, spacing and management practices from each 
area affected the accuracy of yield prediction within multiple fields. Accordingly, Kayad et 
al. (2019) suggested that the development and application of corn yield prediction models 
should be carried out on fields with similar management and crop growth conditions, which 
might encompass the specific characteristics from each of them.

The global-based model demonstrated lower accuracy for within-field soybean yield 
prediction, due to the heterogeneous characteristics among fields. However, it has great 
potential in promoting yield mapping at regional level, considering the average yield from 
each field or farm. Simultaneously, more information from the crop development condi-
tions within each field, e.g., weather conditions, soil management, invasive plants, disease 
and insect management, could be useful to strength the prediction ability of the developed 
models.

The results obtained demonstrate the possibility of developing yield prediction mod-
els based on crop spectral response from Sentinel-2 visible, near-infrared and shortwave 
infrared bands through machine learning approaches, such as SVR. Future research will be 
developed aiming at exploring multi-source remote sensed data to strengthen the prediction 
ability of the machine learning regression approaches when analysing yield datasets from 
multiple fields. Their heterogeneities in planting, spacing and management practices, which 
might contribute to enhance the design of a soybean within-field yield prediction model 
with applicability at regional level will be considered.

Conclusions

This research addressed the assessment of strategies for within-field soybean yield mon-
itoring using Sentinel-2 visible, near-infrared and shortwave infrared spectral bands and 
machine learning regression methods. The results suggest that Sentinel-2 Vis/NIR/SWIR 
images, associated with partial least squares regression and support vector regression, can 
be used as a fast and reliable proxy for yield monitoring, contributing to better site-specific 
management of agronomic practices, economic policies and strategic planning of govern-
mental and corporative decision making over technical issues.
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For individual images, single vegetation indices (VIs) performed poorly (low accuracy) 
in yield prediction compared to the use of the nine Sentinel-2 spectral bands under machine 
learning regression methods. When pooling all available images across the cropping season, 
higher accuracies were obtained compared to the use of single images. As has been observed 
on single images, the use of Vis/NIR/SWIR spectral bands provided higher accuracies than 
vegetation indices. Besides that, pooling Vis/NIR/SWIR spectral bands and all vegetation 
indices from all available images did not result in higher accuracy.

At the R5 phenological stage, with a standardized number of input data (one image con-
taining nine spectral bands), a similar spectral behavior was observed between satellite and 
ground-based datasets with SVR performing better in relation to PLSR for yield prediction.

For within-field soybean yield mapping based on Sentinel-2 images at the R5 phenologi-
cal stage, SVR field-based models presented the best results, demonstrating that the accu-
racy for within-field yield prediction increases from the most complex dataset (global-based 
model) to models that take into account the complexity from each farm (farm-based model), 
reaching the highest accuracy using field-based models.

Supplementary Material

Supplementary table  Spatial and spectral characteristics of Sentinel-2 spectral bands
Sentinel-2 A Sentinel-2 B

Band number Spatial resolution 
(m)

Central wave-
length (nm)

Bandwidth 
(nm)

Central wave-
length (nm)

Band-
width 
(nm)

1 60 442.7 21 442.2 21
2 10 492.4 66 492.1 66
3 10 559.8 36 559.0 36
4 10 664.6 31 664.9 31
5 20 704.1 15 703.8 16
6 20 740.5 15 739.1 15
7 20 782.8 20 779.7 20
8 10 832.8 106 832.9 106
8a 20 864.7 21 864.0 22
9 60 945.1 20 943.2 21
10 60 1373.5 31 1376.9 30
11 20 1613.7 91 1610.4 94
12 20 2202.4 175 2185.7 185
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