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Statistical Methods in HSCT 
and Cellular Therapies

Simona Iacobelli and Liesbeth C. de Wreede

6.1  Introduction

The analysis of data describing the outcomes of 
patients who have received an HSCT is not only 
fundamental to assessing the effectiveness of the 
treatment but can provide invaluable information 
on the prognostic role of disease and patient fac-
tors. Thus, the appropriate analysis and under-
standing of such data are of paramount 
importance. This document provides an overview 
of the main and well-established statistical meth-
ods, as well as a brief introduction of more novel 
techniques. More insight is provided in the EBMT 
Statistical Guidelines (Iacobelli 2013).

6.2  Endpoints

The outcomes most commonly studied in HSCT 
analyses are the key events occurring at varying 
times post HSCT, e.g., engraftment, GVHD, 
relapse/progression, and death. Besides the clini-

cal definition of the event of interest, it is impor-
tant to define the corresponding statistical 
endpoint and to use a proper method of measur-
ing the occurrence of the event (Guidelines 2.1).

The main distinction is between events that 
occur with certainty during a sufficiently long 
observation period (follow-up), like death, and 
events which are precluded from occurring once 
another event occurs, e.g., not all patients will expe-
rience a relapse of their disease because some die 
before. We define death without prior relapse (usu-
ally called NRM; see Guidelines 2.1.2) as the “com-
peting event” of relapse. The name “NRM” is 
preferable to TRM, the proper analysis of which 
requires individual adjudication of causes of death.

Survival endpoints: In addition to death, other 
examples of events of the first type are the com-
binations of (negative) events of interest, which 
in total have 100% probability of occurrence, for 
example, PFS which considers as failure of the 
event “either relapse/progression or death.” The 
components of PFS are the two competing events 
mentioned above, relapse/progression and NRM.

Competing risks endpoints: In addition to 
relapse/progression and NRM, other examples 
are death of a specific cause and all intermediate 
events during a HSCT history (engraftment, 
GVHD, achievement of CR, CMV infection) 
including the long-term (secondary malignancy). 
Notice that the definition of an endpoint requires 
specifying which are the competing events. 
Usually, this will be death without prior event of 
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interest, but depending on the disease and the 
aims of the analysis, other competing events 
might be included in the analysis, e.g., a second 
transplantation or other treatment can be consid-
ered as competing event for achievement of 
response.

6.3  Analysis of Time-to-Event 
Outcomes

Each event of interest may occur at variable times 
post transplant, so in statistical terms, it has two 
components—whether it occurs at all and, if it 
does, when. However, at the end of the follow-up, 
there can be patients who have not yet had the event 
of interest but are still at risk for it: their observa-
tion times are called “censored.” Censoring occurs 
at different timepoints for different patients. The 
inclusion of censored data precludes the use of 
simple statistical methods such as the Chi-Squared 
or T-test and requires the methods of survival (or 
competing risks) analysis. The crucial assumption 
of most methods in survival analysis is that the 
patients censored at a timepoint are “represented” 
by those who remain under follow-up beyond that 
timepoint. In other words, the fact that a patient is 
censored should not indicate that his/her prognosis 
is worse or better than the prognosis of a similar 

patient who remains under observation. This 
assumption is called “independent and uninforma-
tive” censoring.

6.3.1  Kaplan-Meier Curves

The main method to summarize survival end-
points is the Kaplan-Meier curve (Kaplan and 
Meier 1958), estimating for each point in time t 
after HSCT the probability S(t) of surviving 
beyond that time. This curve is decreasing from 
100% and will reach 0% with complete follow-
 up. A long flat tail of the curve (often called “pla-
teau”) is often based on a few censored 
observations at late times, corresponding to very 
unreliable estimates of the long-term survival. It 
is useful to report each S(t) with its 95%CI (con-
fidence interval at 95% level, best obtained using 
the Greenwood formula) or at least the number of 
patients still at risk at different timepoints. The 
median survival time is the minimum time when 
S(t) is equal to 50% (Fig. 6.1).

6.3.2  Cumulative Incidence Curves

The appropriate method to summarize endpoints 
with competing risks is the cumulative incidence 
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Fig. 6.1 Probability curves of the four main outcomes 
after HSCT. CIR Cumulative Incidence of Relapse. CIR 
and NRM add up to 1-RFS. Number at risk indicates the 

number of patients in follow-up who have not experienced 
an event so far. The grey zones indicate 95% confidence 
intervals
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(CI) curve (Gooley et  al. 1999), estimating for 
each point in time t the probability F(t) of having 
had the event of interest before that time. This 
curve is increasing from 0% and will not reach 
100% even with complete follow-up if the com-
peting event was observed for some patients. It is 
always useful to interpret CI curves of competing 
events together, to understand, e.g., when a cate-
gory of patients has a small risk of relapse, if this 
means that they have a good prognosis or that 
they died too early from complications to experi-
ence a relapse (shown by a high NRM curve) 
(Fig. 6.1).

6.3.3  Comparison of Groups

The main method to compare survival curves for 
two or more independent groups is the Log-Rank 
test. This test is based on the comparison of the 
underlying hazard functions, which express the 
instantaneous probability of the event at a time t 
among patients currently at risk. It has good 
properties in the situation of proportional hazards 
(PH, described in the next section), but it should 
be avoided (or considered carefully) when the 
survival curves cross; with converging curve 
alternatives like the Wilcoxon Signed-Rank test 
should be preferred.

In the comparison of cumulative incidence 
curves, the main method is the Gray test. Also the 
Log-Rank test can be applied to compare groups 
in the case of competing risks, when the object of 
interest is not the cumulative probability of 
occurrence of the event but its instantaneous 
probability among the cases at risk at each time, 
which is called “cause-specific hazard.” For the 
interesting difference of the two approaches to 
the analysis of competing risks endpoints, see 
Dignam and Kocherginsky (2008).

We refer to Sects. 1.3 and 1.4 of the Guidelines 
for remarks on statistical testing and about proper 
settings for comparisons of groups. Importantly, 
the simple methods described in this chapter can 
be applied only to groups defined at or before the 
time origin (e.g., transplantation); assessing 
 differences between groups defined during the 

follow- up requires other approaches, as those 
described in Sect. 6.4.1 (Guidelines page 14).

6.3.4  Proportional Hazards 
Regression Analysis

The above tests do not give a summary measure 
of the difference in outcomes between groups, 
nor can they be used when the impact of a con-
tinuous risk factor (e.g., age) has to be assessed. 
Furthermore, any comparison could be affected 
by confounding. These limitations are typically 
overcome by applying a (multivariable) regres-
sion model. The one most commonly used for 
survival endpoints is the proportional hazards 
(PH) Cox model (Cox 1972). Results are pro-
vided in terms of hazard ratios (HR), which are 
assumed to be constant during the whole follow-
 up (Guidelines 4.3.1). The Cox model in its sim-
plest form is thus not appropriate when a factor 
has an effect that strongly decreases (or increases) 
over time, but time-varying effects can be accom-
modated for in more complex models. Effects of 
characteristics which change during follow-up 
can be assessed by including them as time- 
dependent covariates.

For endpoints with competing risks, two 
methods can be used, which have a different 
focus: the Cox model can be used to analyse 
cause-specific hazards, whereas a regression 
model for cumulative incidence curves was pro-
posed by Fine and Gray (1999).

The use of these regression models requires a 
sound statistical knowledge, as there are many 
potential difficulties with the methods both in 
application and interpretation of results.

6.4  Advanced Methods

Many more advanced methods than the ones 
described above exist that help to get more insights 
from the available data. A good application of 
these needs expert statistical knowledge. The brief 
introductions given below are primarily meant to 
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help understanding papers where these methods 
have been applied. For a more in-depth discussion, 
see, e.g., Therneau and Grambsch (2000).

6.4.1  Multistate Models

The methodology of multistate models (Putter 
et al. 2007) has been developed to understand the 
interplay between different clinical events and 
interventions after HSCT and their impact on 
subsequent prognosis. Their primary advantage 
is that sequences of events, such as HSCT, DLI, 
GVHD, and death, and competing events, such as 
relapse and NRM, can be modelled simultane-
ously (see Fig.  6.2 for an example). This is in 
contrast to analysing composite survival out-
comes such as GVHD-free survival where all 
failures are combined and resolution of GVHD is 
not considered. Some studies applying this 
method that offer new insights into the outcomes 
after HSCT are Klein et al. (2000) about current 
leukemia-free survival, Iacobelli et  al. (2015) 
about the role of second HSCT and CR for MM 
patients, and Eefting et al. (2016) about evalution 
of a TCD-based strategy incorporating DLI for 
AML patients.

6.4.2  Random Effect Models

In standard methods, all patients are considered 
as independent, and each patient only contributes 

one observation for each endpoint. There are, 
however, situations when this does not hold, for 
instance, when patients within the same centre 
tend to have more similar outcomes than those 
from another centre or when one patient can 
experience more than one outcome of the same 
kind, e.g., infections. In these cases, the outcomes 
within one “cluster” (a centre or a patient) are 
more correlated than the outcomes between clus-
ters, which has to be accounted for in the analy-
sis. This is usually done by random effect models, 
which assume that each cluster shares an unob-
served random effect. In survival analysis, these 
are called frailty models (Therneau and Grambsch 
2000, Chap. 9). If the outcome is not an event but 
a value measured over time, e.g., CD8 counts, the 
appropriate regression models are called mixed 
models.

6.4.3  Long-Term Outcomes: 
Relative Survival/Cure Models

With improved long-term outcomes and increas-
ing numbers of older patients, a substantial num-
ber of patients will die from other causes than the 
disease for which they have been transplanted 
and the direct and indirect consequences of its 
treatment. This so-called population mortality 
can be quantified by methods from relative sur-
vival, based on population tables describing mor-
tality of the general population (Pohar Perme 
et al. 2016).
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Fig. 6.2 Example of a 
multistate model. All 
patients start in state 1 
(event-free after HSCT). 
They can then proceed 
through the states by 
different routes. Each 
arrow indicates a 
possible transition
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Especially for transplanted children, a period 
with a high risk of mortality can be followed by a 
very long and stable period where the death risk 
is (almost) zero. When the focus of an analysis is 
on the probability of long-term cure, cure models 
can be used that assess the impact of risk factors 
on this but only if follow-up is sufficiently long 
(Sposto 2002).

6.4.4  Propensity Scores

Propensity scores (PS) are useful to compare the 
outcomes of two treatments in the absence of ran-
domization, to control confounding due to the 
fact that usually the choice of the treatment 
depends on patient’s characteristics (confound-
ing by indication) (Rosenbaum and Rubin 1983). 
First, the PS, defined as the probability of receiv-
ing one treatment instead of the other, is esti-
mated for each patient. Then PS can be used in 
various ways (mainly stratification or pair match-
ing), allowing comparison of treatment outcomes 
among cases with a similar risk profile.

6.4.5  Methods for Missing Values

Missing values in risk predictors are a common 
problem in clinical studies. The simplest solu-
tion is to exclude the patients with missing val-
ues from the analysis (complete case analysis). 
This solution is not optimal, however: firstly, not 
all information is used (an excluded patient 
might have other characteristics known), and 
secondly, this approach can lead to bias if 
patients with missing values have on average a 
different outcome from the patients with 
observed values.

If values can be imputed on the basis of 
observed values in the dataset, these patients can 
be retained in the analysis to increase precision of 
estimates and avoid bias. The method most com-
monly used is called multiple imputation (White 
et al. 2011). A major advantage of this method is 
that it properly takes into account the uncertainty 
caused by the imputation in the estimates. If data 
are missing not at random—meaning their values 

cannot be predicted from the observed  variables—
multiple imputation can at most decrease the bias 
but not fully remove it.
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Key Points
• Survival and competing risk endpoints 

need specific methods.
• Survival analysis methods: Kaplan- 

Meier, Log-Rank test, Cox model.
• Competing risks methods: Cumulative 

incidence curve, Gray test, Cox model, 
and Fine and Gray model.

• Including events/changes of status 
occurring during follow-up in an analy-
sis requires specific (advanced) meth-
ods, like multistate models.
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