
Eur. Phys. J. Plus         (2022) 137:572 
https://doi.org/10.1140/epjp/s13360-022-02770-z

Regular Art icle

EH-DPD: a dissipative particle dynamics approach to electrohydrodynamics

Alberto Gubbiotti1,a , Mauro Chinappi2, Carlo Massimo Casciola1

1 Departimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
2 Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy

Received: 28 February 2022 / Accepted: 23 April 2022
© The Author(s) 2022

Abstract Electrohydrodynamics is crucial in many nanofluidic and biotechnological applications. In such small scales, the com-
plexity due to the coupling of fluid dynamics with the dynamics of ions is increased by the relevance of thermal fluctuations.
Here, we present a mesoscale method based on the Dissipative Particle Dynamics (DPD) model of the fluid. Two scalar quantities,
corresponding to the number of positive and negative ions carried by each DPD particle, are added to the standard DPD formulation.
We introduced a general framework that, given the definition of the free-energy of the DPD particle, allows to derive a fluctuation-
dissipation relation and the expression for ionic fluxes between the DPD particles. This provides a link between the dynamics of
the system and its equilibrium properties. The model is then validated simulating a planar electroosmotic flow for the cases of
overlapping and non overlapping electric double layers. It is shown that using a Van der Waals equation of state the effect of ionic
finite size can be accounted, leading to significant effects on the concentration and velocity profiles with respect to the ideal solution
case.

1 Introduction

Electrohydrodynamics deals with the coupled motion of fluids and ions [1]. Such coupling has relevant effects in microfluidics,
allowing manipulation of fluids or dispersed particles using electrical stimuli [2]. A specific range of applications in which electro-
hydrodynamic effects are of crucial importance are nanopore systems [3,4]. When a fluid containing ions is located in a confined
region as a nanopore, a non-uniform distribution of ions may arise in a region whose size depends on the ionic concentration in
the bulk, the so-called Debye layer [1]. This inhomogeneity in the ionic distribution may be generated as a consequence of the
interaction of the ions with the nanopore walls, as in the case of a charged nanopore surface [5,6]. However, it may also be induced
by ion-specific interactions with neutral walls, as has been studied in the case of hydrophobic nanopores [7]. Ionic inhomogeneity
can be also achieved via an external gating voltage applied to electrodes embedded in the nanopore [8,9] or via induced charge
mechanism where the same external electric field that drives the ions through the pore, also polarizes the solid membrane inducing a
surface potential that, in turn, alters ion distribution in the nanopore [10,11]. In all these cases, the ionic distributions near the walls
are generally different for positive and negative ions. As a consequence, the zone near the confining walls is electrically charged,
and the fluid in that region can be put in motion by an external electric field. The resulting flow is known as electroosmotic flow,
and it has been shown to take place both in synthetic [6,12,13] and in biological [14–16] nanopores. Electroosmotic flow can be the
dominant effect governing the translocation of particles or molecules through a nanopore [15,17–19], and can generate interesting
phenomena such as current rectification [12] or complex velocity profiles [20,21].

In all the mentioned examples, the modeling of confined systems has to combine electrohydrodynamic phenomena with thermal
fluctuations, which are especially important in nanopores [22]. For this reason, an extensively used technique to simulate nanopores
is all-atoms Molecular Dynamics (MD) [14,20,23] that naturally includes all the relevant effects. For systems out of the typical
length and time scales accessible to Molecular Dynamics, mesoscale models which reduce the degrees of freedom while properly
modeling the thermal fluctuations of the system are needed, for a review on computational methods to study electrohydrodynamics
at the nanoscale, see, among others [4,24].

A technique which has been widely used to simulate mesoscale systems is Dissipative Particle Dynamics (DPD) [25]. In the DPD
framework, the fluid is represented by a system of pairwise interacting particles [26,27]. The original DPD model was developed
to study the rheology of colloidal suspensions [26,28], but in the last two decades it has been expanded in many different ways
in order to simulate increasingly complex systems [29–34]. Physical systems studied with DPD or derived methods include blood
[35,36], polymers [37], biomolecules [38,39], biological membranes [40], and droplets [41]. DPD simulations including electrostatic
interactions have also been performed, either considering DPD particles with fixed charge [42–44], charged polyelectrolytes [45,46],
or with mixed approaches combining DPD model of the fluid with a Nernst-Planck solver for the ionic dynamics [47]. A different
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approach considers the concentrations of ionic species as additional scalar variables associated to each DPD particle, modeling the
fluxes of concentration between them [34]. The approach proposed by Deng et al. [34] is promising since it allows to rescale the
system size without having to explicitly parametrize the ion-solvent interaction, and it has been shown to be in good agreement
with linearized fluctuating hydrodynamics theory and Molecular Dynamics simulations [48]. The purpose of the present work is to
somewhat extend this strategy by providing a link between the equation of state of the electrolyte solution and the ionic transport
equations, which is crucial to build thermodynamically consistent models of real electrolyte solutions.

In particular, here, we propose a mesoscale model based on DPD which is able to simulate the electrohydrodynamic phenomena
taking place in nanofluidic systems. We will refer to this method as electrohydrodynamic-DPD, or EH-DPD.1 The dissolved ions
are represented by adding two degrees of freedom for each meso-particle, and the exchange of ions depends on the difference of
chemical potential. Although only two charged species are considered here, the model can be easily generalized to include electrolyte
solutions with more species. In Sect. 2, the equations for the dynamics of the system are reported, and it is shown (Sect. 3) that,
if appropriate fluctuation-dissipation conditions are satisfied, the proposed dynamics admits an equilibrium distribution. Since the
equilibrium distribution of a system is related to its thermodynamic potential, this gives a link between the terms arising in the
equations of motion and the thermodynamic properties of the meso-particles, allowing a consistent definition of pressure and
chemical potential. In Sect. 4, the physical model used to derive the forces and the ionic exchange rates between meso-particles
is described. The electrostatic interactions are computed considering the charge carried by each meso-particle to be distributed
as a Gaussian of constant variance located on its center. The chemical potential used in the model is that of a perfect gas plus a
contribution due to the electrostatic interactions. The ionic exchange rates between the meso-particles are modeled as dependent
on the local ionic quantities to obtain a conductance which is linearly dependent on the ionic average concentration. It is shown
that this dependence implies the necessity of considering an additional drift in order for the system to reach the desired equilibrium
distribution. In Sect. 5, the model is tested against analytical results for planar electroosmotic flow, finding an excellent agreement
with the theoretical prediction for both the cases of overlapping and non-overlapping electric double layers. As an example of the
applicability of the presented approach to simulate a more complex fluid, a Van der Waals equation of state is also used, simulating
ion-specific effects such as excluded volume. The possibility of simulating different equations of state for the electrolyte solution
is promising for the study of current and mass transport in systems in which phase transitions and ion specific effects are relevant,
such as hydrophobic nanopores and hydrophobic nanoporous materials [50–53].

2 Electro-hydrodynamics: DPD formulation

The fluid is constituted by N meso-particles of equal mass m. The state of the ith meso-particle is described by its position xi ,
velocity vi , quantity of cations nc

i and quantity of anions na
i . The vector of state of the entire systems has therefore dimension 8N ,

and the equations for its evolution are

dxi = vi dt , (1)

mdvi = f Ci dt +
∑

j �=i

[
γwD

i j v j i · ei j dt + σwR
i j dW v

i j

]
ei j , (2)

dnc
i =

∑

j �=i

[
γ cwD

i j hc
i j dt + σ cwR

i j dW c
i j

]
, (3)

dna
i =

∑

j �=i

[
γ awD

i j ha
i j dt + σ awR

i j dW a
i j

]
, (4)

where ei j = (
xi − x j

) ‖xi −x j‖ is the unit vector pointing along the particle-particle direction. The increments dWi j are independent
increments of the Wiener process, three for each pair of particles, satisfying

dW v
i j = dW v

j i , (5)

dW c
i j = −dW c

ji , (6)

dW a
i j = −dW a

ji . (7)

Equations (1) and (2) have the structure of the standard DPD equations [54], where f Ci is a conservative force which depends
on the physical model chosen and will be specified in Sect. 4, see Eqs. (60–62). The parameters γ and σ control the intensity of the
respective forces, i.e., the dissipative force

f Di j = γwD
i j

(
v j i · ei j

)
ei j , (8)

1 We refer to electrohydrodynamics in its broader meaning of phenomena involving charge transport coupled to fluid motion [49].
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Fig. 1 Sketch of the exchange of positive ions nc between two meso-particles. The two particles, labeled 1 and 2, have different chemical potentials μc , due
to different ion concentration and electrostatic potentials. The relation between the chemical potential of the meso-particles and the quantities hc

i j are given
in Sect. 3. Two different types of fluxes arise, one dissipative flux proportional to the difference of chemical potential, and one random flux proportional to
a white noise process. The same applies to negative ions na

and the random force

f Ri j = σwR
i jξ

v
i j ei j , (9)

where v j i = v j −vi is the velocity difference between two interacting meso-particles and ξv
i j is a white noise stochastic process such

that dW v
i j = ξv

i j dt . The functions wD and wR are weight functions which depend only on the interparticle distance ri j = ‖xi − x j‖.
Such weight functions are maximum for ri j = 0, and vanish if the interparticle distance is larger than a cutoff radius rc. There is no
prescribed functional form for wD and wR , here the Lucy function [29] is used for wD ,

wD
i j = wD(ri j ) =

(
1 + 3

ri j

rc

)(
1 − ri j

rc

)3

, (10)

for ri j < rc, while the other weight function is such that wR
i j =

(
wD

i j

)1/2
.

Equations (3) and (4) represent the main novelty of the present paper and describe the rate at which the quantity of cations (and
anions) carried by the meso-particle change, ṅc

i (and ṅa
i ), respectively. This rate is the sum of the contributions from all the pairs

and can be divided in two terms, the dissipative rates

J D
i j = γ cwD

i j hc
i j , (11)

and the random rates

J R
i j = σ cwR

i jξ
c
i j , (12)

where analogous expressions hold for the anions. The same weight functions employed in Eq. (2), wD and wR are used. The
quantities γ c, σ c (γ a , σ a) determine the magnitude of the dissipative and random rate at which two meso-particles exchange cations
(anions). The random rates depend on the white noise processes ξ c

i j and ξa
i j , corresponding to the Wiener increments dW c

i j = ξ c
i j dt

and dW a
i j = ξa

i j dt . The quantities hc
i j and ha

i j determine the dissipative rates for the cations and anions, as a function of the state of the

system. As the conservative force f Ci , also the quantities hc
i j and ha

i j are specified in Sect. 4, where the relevant theoretical aspects
are illustrated. It will be shown there that hc

i j and ha
i j have two components, see Eq. (43), one related to the chemical potentials of

the meso-particle for the cations and the anions, μc and μa , respectively, and one appearing if γ a and γ c are chosen to be dependent
on the quantity of ions in the meso-particles. The chemical potentials μc and μa may then be modeled to contain one part related
to electrostatic energy, from which the ionic current arises, and one part dependent on the internal energy, thus governing ionic
diffusion, see Eq. (59). The conditions of Eqs. (6) and (7) imply that J R

i j = −J R
ji for both ionic species. Assuming that the additional

conditions

hc
i j = −hc

ji (13)

ha
i j = −ha

ji (14)

are satisfied, we have also J D
i j = −J D

ji . If such conditions hold, an important consequence is that the total quantity of both species,
and hence the total charge of the system, is strictly conserved during the dynamics. The dynamics of ionic fluxes between particles
is sketched in Fig. 1.
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3 Equilibrium distribution and fluctuation dissipation relations (FDR)

The system of Eqs (1–4) can be written in the compact form of a Langevin equation:

ẏ = u( y) + G( y)ξ , (15)

where

y = (
x1 , . . . , x3N , v1 , . . . , v3N , nc

1 , . . . , nc
N , na

1 , . . . , na
N

)T
(16)

is the state vector which has dimension 8N . The standard hydrodynamics setting, with no ion transport, is recovered by reducing the
state vector to its x- and v-components. In the following, vectors such as u are identified by lowercase bold letters, while matrices
as G are identified by uppercase bold letters.

The drift vectoru( y) = (
ux

1, . . . , ux
N , uv

1 . . . , uv
N , uc

1, . . . , uc
N , ua

1, . . . , ua
N

)T , also of dimension 8N , includes all the deterministic
terms in Eqs (1–4), i.e.,

ux
i = vT

i ,

uv
i = m−1

⎡

⎣ f C
i +

∑

j �=i

γwD
i j

(
v j i · ei j

)
ei j

⎤

⎦
T

uc
i =

∑

j �=i

γ cwD
i j hc

i j ,

ua
i =

∑

j �=i

γ awD
i j ha

i j . .

(17)

The stochastic vector

ξ = (
ξv

12 , . . . , ξv
(N−1)N , ξ c

12 , . . . , ξ c
(N−1)N , ξa

12 , . . . , ξa
(N−1)N

)T
(18)

is composed of independent white noise processes and has dimension 3N (N − 1)/2, i.e., three times the total number of particle
pairs. The matrix G has therefore dimension 8N × 3N (N − 1)/2, and is composed by the following blocks

G( y) =

⎛

⎜⎜⎝

0 0 0
Gv 0 0
0 Gc 0
0 0 Ga

⎞

⎟⎟⎠ . (19)

The matrix Gv has dimension 3N×N (N−1)/2 and can be written in a compact form considering it to be composed of N×N (N−1)/2
vectors of dimension 3, gv

iα , each one containing the stochastic force acting on particle i due to the process ξv
α , where α is an index

which spans all the particle pairs, i.e., α = α(p, q) with p ∈ [1, N −1] and q ∈ [p+1, N ]. Hence, rα = rpq , wR
α = wR

pq , eα = epq ,

and, using this compact notation, gv
iα = m−1 fiασwR

α eα , where

fiα =

⎧
⎪⎨

⎪⎩

0 if i �= p and i �= q ,

1 if i = p ,

−1 if i = q .

(20)

The matrices Gc and Ga have dimension N × N (N − 1)/2 and their expressions are, respectively, gc
iα = fiασ cwR

α and ga
iα =

fiασ awR
α . The trajectories obtained from the integration of the Langevin Eq. (15) can be equivalently described as the evolution

of a probability distribution for the state variables y obeying a Fokker–Planck equation [55,56]. With the definitions (16)–(19) the
Fokker–Planck equation associated with Eq. (15) reads

∂ P( y, t)

∂t
= ∇y ·

[(
−u + 1

2
∇y · GGT + 1

2
GGT · ∇y

)
P( y)

]
, (21)

where ∇y = (∇x ,∇v,∇c,∇a)T is the 8N-dimensional gradient built with the derivatives with respect to the components of y,
Eq. (16).

It is convenient to introduce the matrix D = GGT /2, which has dimension 8N × 8N and can be decomposed in blocks

D =

⎛

⎜⎜⎝

0 0 0 0
0 Dv 0 0
0 0 Dc 0
0 0 0 Da

⎞

⎟⎟⎠ , (22)
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where Dv is a 3N × 3N submatrix, and both Dc and Da are N × N submatrices. The matrix Dv can be further decomposed in
N × N blocks of 3 × 3 submatrices Dv

i j . Their expressions are as follows:

Dv
i j =1

2

∑

α

gv
iα ⊗ gv

jα = 1

2m2

∑

α

fiα f jα

(
σwR

α

)2
eα ⊗ eα ,

Dc
i j =1

2

∑

α

gc
iαgc

jα = 1

2

∑

α

fiα f jα

(
σ cwR

α

)2
,

Da
i j =1

2

∑

α

ga
iαga

jα = 1

2

∑

α

fiα f jα

(
σ awR

α

)2
,

(23)

where the summation over α between particle pairs is explicitly indicated. These expressions can be simplified accounting for the
properties of product fiα f jα , i.e., fiα f jα = 0 except two special cases: i) fiα f jα = 1 for i = j and α = α(i, q) or α = α(p, i) for
any p and q; ii) fiα f jα = −1 for i �= j and α = α(i, j) or α = α( j, i).

With this in mind, Eq. (23) is rewritten as:

Dv
i j = 1

2m2 δi j

∑

k �=i

(
σwR

ik

)2
eik ⊗ eik + 1

2m2

(
δi j − 1

) (
σwR

i j

)2
ei j ⊗ ei j , (24)

Dc
i j =1

2
δi j

∑

k �=i

(
σ cwR

ik

)2 + 1

2

(
δi j − 1

) (
σ cwR

i j

)2
, (25)

Da
i j =1

2
δi j

∑

k �=i

(
σ awR

ik

)2 + 1

2

(
δi j − 1

) (
σ awR

i j

)2
. (26)

In the following it is assumed that the dynamics generated by Eq. (15) admits an equilibrium distribution

Peq( y) = C exp [S( y)/kB ] , (27)

where S( y) = kB(ln
[
Peq( y)

]+ ln C) is an appropriate thermodynamic potential depending on the coarse-grained variables y and
kB is Boltzmann constant. In the present context, dealing with an isolated system, S can be understood as the (coarse-grained)
entropy of the system. The equilibrium distribution must be the solution of the Fokker–Planck Eq. (21), i.e.,

0 = ∇y · [(−u + ∇y · D + D · ∇y S
)

Peq( y)
]

. (28)

For the following calculations is convenient to split the drift term u into two parts, the conservative drift and the dissipative drift,
u = uC + uD . Using the same notation as in Eq. (17),

uC,x
i =vT

i ,

uC,v
i =m−1

(
f C

i

)T
,

uC,c
i =0 ,

uC,a
i =0 ,

(29)

while for the dissipative drift,

uD,x
i = 0 ,

uD,v
i =m−1

⎡

⎣
∑

j �=i

γwD
1 j

(
v j i · ei j

)
ei j

⎤

⎦
T

,

u D,c
i =

∑

j �=i

γ cwD
i j hc

i j ,

u D,a
i =

∑

j �=i

γ awD
i j ha

i j .

. (30)

3.1 FDR for hydrodynamics

The Fluctuation Dissipation Relation (FDR) for pure hydrodynamics is discussed there to recover within the present framework
the classical DPD expression. The requirement that the conservative interactions alone should leave the equilibrium distribution
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unchanged implies that

∇y ·
(
uC Peq

)
= uC · ∇y Peq =

[
uC · ∇y

(
S

kB

)]
Peq = 0 , (31)

where ∇y · uC = 0 and ∇y Peq = Peq∇y S/kB . This condition is satisfied if

∂S

∂xi
∝ f Ci , (32)

∂S

∂vi
∝ −mvi . (33)

As will be clear from the following, the proportionality constant is assumed to be 1/T , with T the temperature, taken to be uniform
throughout the system. Based on Eqs. (31) and (28), the expression

uD = ∇y · D + D · ∇y S (34)

gives a condition for the Fokker–Planck Eq. (21) to have the equilibrium solution of Eq. (27) with S satisfying Eqs. (32) and (33).
The Fokker–Planck equation can then be rewritten as follows:

Ṗ = −∇ ·
[(

uC + D · ∇S − D · ∇
)

P
]

. (35)

Using Eq (30), as well as the definition of dissipative drift Eq. (34), gives for the velocity component of meso-particle i ,

m−1
∑

j �=i

γwD
i j

(
v j i · ei j

)
ei j =

∑

j �=i

1

2m2

(
σwR

i j

)2
ei j ⊗ ei j

1

kB

(
∂S

∂vi
− ∂S

∂v j

)
, (36)

where we used the fact that the matrix D doesn’t depend on the velocity, and hence ∇v · D = 0. Considering Eqs. (33), (36) is
identically satisfied if the following two conditions are met

γ = βσ 2

2
,

wD
i j =

(
wR

i j

)2
,

(37)

with β−1 = kB T . These are the same FDRs found by Español and Warren [27] for hydrodynamics.

3.2 FDR for ionic transport

The Fluctuation Dissipation Relations (FDRs) discussed in the previous sections for pure hydrodynamics are here extended to
include ionic transport. Clearly all the results previously established still hold in presence of transported charges.

It is instrumental to introduce the problem by considering the simplest case of constant noise intensities σ c and σ a which imply
∇c · Dc = 0 and ∇a · Da = 0. Using Eqs. (30) and (34), and using the expressions for Dc and Da from Eqs. (25) and (26), we
obtain

∑

j �=i

γ cwD
i j hc

i j = 1

2

(
σ cwR

i j

)2 1

kB

(
∂S

∂nc
i

− ∂S

∂nc
j

)
,

∑

j �=i

γ awD
i j ha

i j = 1

2

(
σ awR

i j

)2 1

kB

(
∂S

∂na
i

− ∂S

∂na
j

)
.

(38)

Exploiting the second condition in (37) for the weight functions, we obtain

γ c = β

2
σ 2

c ,

γ a = β

2
σ 2

a

(39)

and

hc
i j =T

(
∂S

∂nc
i

− ∂S

∂nc
j

)
= μc

j − μc
i ,

ha
i j =T

(
∂S

∂na
i

− ∂S

∂na
j

)
= μa

j − μa
i ,

(40)
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where the chemical potentials of the meso-particle are defined as:

μc
i = − T

∂S

∂nc
i

,

μa
i = − T

∂S

∂na
i

.

(41)

Removing the assumption of constant noise intensity, σ c and σ a can now depend on cations and anions carried by the interacting
particles, i.e., σ c = σ c(nc

i , nc
j ) = σ c

i j and σ a = σ a(na
i , na

j ) = σ a
i j with σ c

i j = σ c
ji and σ a

i j = σ a
ji . Hence ∇c · Dc and ∇a · Da do not

vanish, in general, and must be considered in the drift term, Eq. (34). From the expressions for Dc and Da , Eqs. (25) and (26), the
dissipative drifts now read

∑

j �=i

γ cwD
i j hc

i j = 1

2

∑

j �=i

(
σ c

i jw
R
i j

)2

⎡

⎢⎣
1

(
σ c

i j

)2

⎛

⎜⎝
∂
(
σ c

i j

)2

∂nc
i

−
∂
(
σ c

i j

)2

∂nc
j

⎞

⎟⎠+ 1

kB

(
∂S

∂nc
i

− ∂S

∂nc
j

)⎤

⎥⎦ ,

∑

j �=i

γ awD
i j ha

i j = 1

2

∑

j �=i

(
σ a

i jw
R
i j

)2

⎡

⎢⎣
1

(
σ a

i j

)2

⎛

⎜⎝
∂
(
σ a

i j

)2

∂na
i

−
∂
(
σ a

i j

)2

∂na
j

⎞

⎟⎠+ 1

kB

(
∂S

∂na
i

− ∂S

∂na
j

)⎤

⎥⎦ ,

(42)

which, using Eq. (37) for the weight functions together with Eq. (39) and the definitions (41), gives the explicit expression for hc
i j

and ha
i j in the general case

hc
i j = 1

βγ c
i j

(
∂γ c

i j

∂nc
i

− ∂γ c
i j

∂nc
j

)
+ μc

ji ,

ha
i j = 1

βγ a
i j

(
∂γ a

i j

∂na
i

− ∂γ a
i j

∂na
j

)
+ μa

ji .

(43)

It is worth noting that the antisymmetry conditions (13) are satisfied, implying conservation of the total quantity of each ionic
species. As typical, when the noise intensity depends on the state variables, additional drift terms appear in the Langevin equation,
see also [55,56].

4 Physical model

In the previous section, it was shown that if the conditions (39), (37), (32) and (33) are met, system (1–4) admits a stationary
equilibrium solution given by (27). The conservative force f C

i , the particle velocity vi and the chemical potentials μc
i and μa

i are
related to the entropy of the system S through Eqs. (32), (33) and (41). The system (total) energy ET OT may be expressed as:

ET OT = UE +
N∑

i=1

(m

2
v2

i + Ui

)
, (44)

where UE is the electrostatic energy of the system. The sum includes the portion of kinetic energy and internal energy associated
with particle i , mv2

i /2 and Ui , respectively. Under the assumption of local equilibrium, the particle entropy can be expressed in
terms of Helmholtz free energy Ai and internal energy,

Si = 1

T
(Ui − Ai ) . (45)

Hence, the total entropy reads

S =
N∑

i=1

Si =
N∑

i=1

1

T
(Ui − Ai ) = 1

T

[
ET OT − UE −

N∑

i=0

(
Ai + m

2
v2

i

)]
. (46)

For an isolated system ET OT = const and the entropy S is fully specified once free energy Ai and electrostatic energy UE are given
in terms of the coarse-grained variables. In general terms, the Helmholtz free energy density (per unit mass) is a function of specific
volume, temperature and number densities. As a consequence, the free energy of the meso-particle depends on particle volume Vi ,
(uniform) temperature, and composition given in terms of number of atoms (in the sense of indivisible particles) belonging to the
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meso-particle. In the following, the composition is specified in terms of ns
i , nc

i , na
i , the number of solvent, cationic and anionic

atoms, respectively. Hence, Ai = Ai (Vi , T, ns
i , nc

i , na
i ).

Before specifying the free energy in detail, it is worth defining first the meso-particle volume,

V −1
i =

N∑

j=1

w(ri j ) , (47)

where w(r) is a differentiable compactly supported, positive function with (single) maximum at r = 0, with integral normalized to
1, that vanishes identically for r larger than a cutoff rc. Hereafter, w(r) is specified as the Lucy’s function commonly used in the
context of Smoothed Dissipative Particle Dynamics [29],

w (r/rc) =
⎧
⎨

⎩

105
16π r3

c
(1 + 3r/rc) (1 − r/rc)

3 if r/rc < 1 ,

0 if r/rc > 1 .
(48)

4.1 Free energy

As partially anticipated, the meso-particle is considered to be constituted by M atoms of three different kinds and equal mass, namely
nc

i cations, na
i anions and ns

i solvent atoms. Number of cations, anions and solvent atoms may change during the dynamics under
the constraint of constant total mass,

nc
i + na

i + ns
i = M = const . (49)

A simple model for the particle free energy Ai follows by considering a system comprising three non-interacting species (perfect
gas model) [57]

Ai = nc
i

β

[
log

(
nc

i λ
3

Vi

)
− 1

]
+ na

i

β

[
log

(
na

i λ3

Vi

)
− 1

]
+ ns

i

β

[
log

(
ns

i λ
3

Vi

)
− 1

]
, (50)

where λ, depending on temperature and atoms masses, is the De Broglie’s thermal wavelength. In Eq. (50), the dependence on ns
i

may eliminated in favor of the total number of atoms forming the meso-particle, Eq. (49), while the temperature, and hence λ, is
assumed to be the same in all the meso-particles.

Using the constraint of Eq. (49) to eliminate the number of solvent atoms ns , Eq. (50) reads

Ai (Vi , nc
i , na

i ) = nc
i

β

[
log

(
nc

i

M − nc
i − na

i

)
− 1

]
+

+ na
i

β

[
log

(
na

i

M − nc
i − na

i

)
− 1

]
+ M

β
log

(
M − na

i − nc
i

Vi

)
,

(51)

where inessential constant terms have been omitted. Notice that the particle pressure, related to the derivative of the free energy with
respect to volume, turns out to depend on the total number of atoms M , see § 4.3 below.

4.2 Electrostatics of EH-DPD particles

The expression (46) for the entropy requires an explicit form for the electrostatic energy. The coarse-grained variables nc
i and na

i
provide the number of cations and anions carried by the meso-particle. Its charge is then

qi = qcnc
i − qana

i , (52)

with qc and qa the (absolute value of the) charge of a single cation/anion. The charge distribution associated with each meso-particle
is given by as a Gaussian function centered in xi with constant variance s2, i.e.,

ρi (r) = ρ(r, xi , qi ) = qi
(
2πs2

)3/2 exp
−‖r − xi‖2

2s2 . (53)

The energy ascribed to the interaction between meso-particles, i �= j , is then [58]

U E
i j = U E

ji = 1

2

∫ ∫
ρi (r)ρ j (r ′)
‖r − r ′‖ drdr ′ = qi q j

ri j
erf
(ri j

2s

)
, (54)

where the interaction energy of the couple is U E
i j + U E

ji . Introducing the self-energy, i = j ,

U E
ii = 1

2

∫ ∫
ρi (r)ρi (r ′)
‖r − r ′‖ drdr ′ = q2

i

2s
√

π
. (55)

123



Eur. Phys. J. Plus         (2022) 137:572 Page 9 of 21   572 

The self-energy does not contribute to the electrostatic force, since it is independent of the relative positions of the meso-particles.
However, it does contribute to the total electrostatic potential of the meso-particle, which can be defined as:

�i = ∂U E

∂qi
= qi

s
√

π
+

N∑

i �= j

q j

ri j
erf
(ri j

2s

)
. (56)

Since lim
r→0

erf(r/(2s))/r = 1/(s
√

π), the above expression can be rewritten in compact form as:

�i =
N∑

j=1

q j

ri j
erf
(ri j

2s

)
, (57)

where now the summation also includes the term j = i (rii = 0). Finally, the total electrostatic energy of the system can be expressed
as:

UE = 1

2

N∑

i=1

qi�i . (58)

4.3 Chemical potential and conservative force

Specifying the electrostatic energy completes the expression of the entropy, Eq. (46), providing the chemical potential, Eq. (41). Its
explicit expression for cations and anions is

μc
i = −T

∂S

∂nc
i

= ∂ (Ai + UE )

∂nc
i

= 1

β
log

(
nc

M − nc − na

)
+ qc�i ,

μa
i = −T

∂S

∂na
i

= ∂ (Ai + UE )

∂na
i

= 1

β
log

(
na

M − nc − na

)
− qa�i ,

(59)

respectively, where constant terms have been omitted, since the dynamics depends only on the chemical potential differences. The
effect of electrostatic interactions, proportional to the particle electrostatic potential, adds to the familiar contribution coming from
the (perfect gas) equation of state.

The conservative component of the force acting on the particle is obtained by differentiating the entropy S with respect to particle
position, Eq. (32),

f Ci = T
∂S

∂xi
= −∂ (UE + A)

∂xi
= f Ei + f Pi , (60)

where A =
N∑

j=1
A j is the system free energy. As for the chemical potential, the conservative force comes from two contributions.

The origin of the electrostatic force f Ei is immediately clear. It can be computed using Eqs. (58) and (56), giving

f Ei = −
∑

j �=i

qi
∂�i

∂ri j
ei j =

∑

j �=i

qi q j

√
πs erf

(
ri j/(2s)

)− ri j exp
(
−r2

i j/(4s2)
)

s
√

πr2
i j

ei j . (61)

The second contribution follows from the equation for the free energy A, (50), giving

f Pi = −
∑

j �=i

∂ A j

∂Vj

∂Vj

∂xi
=
∑

j �=i

M

β

(
Vj + Vi

)
w′

i j ei j , (62)

where Eq. (47) has been used and w′
i j is the derivative of the weight function w(ri j ). It could be noted that −∂ Ai/∂Vi = M/βVi is

the meso-particle pressure pi , providing the standard interpretation of f Pi as the pressure force.

4.4 Ionic exchange between particles

The coefficients γ c/a control the ionic exchange between particles and don’t affect the equilibrium distribution. Instead, they control
the cationic and anionic conductivity of the solution, see Appendix 1. The following expression was chosen for the coefficients γ c/a

γc(n
c
i , nc

j ) = γ c
0

√
nc

i nc
j

γa(na
i , na

j ) = γ a
0

√
na

i na
j ,

(63)
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Fig. 2 Ionic current density J as defined in Appendix 1 resulting after the application of an electric field E = 10 (simulation units, see Sect. 5.1 for details),
in the direction parallel to the application of the field. The current density was computed for different values of the dissipative parameters γ a

0 = γ c
0 = γ0

and of average concentration c0. The electric current density (and hence the conductivity) shows a linear dependence on the ion concentration c0 for the
range of concentrations simulated. For these simulations a value of qc = qa = q = 0.6 has been used

where γ
c/a
0 are parameters which control the ionic current between particles at a given concentration. The resulting ionic conductivity

shows a linear dependence on the ionic concentration c0 and on the parameters γ
c/a
0 , at least in the explored range of parameters,

see Fig. 2. As previously shown, Eq. (43), the use of parameters γ c/a which depend on concentration gives rise to an additional
exchange of ions between the particles independent on the chemical potential

hc
i j = 1

β

(
1

nc
i

− 1

nc
j

)
+ μc

ji

ha
i j = 1

β

(
1

na
i

− 1

na
j

)
+ μa

ji .

(64)

5 Validation

As a classical case of study to validate electrohydrodynamic DPD models, a system consisting of a planar channel of height h with
given surface charge at the two walls is simulated [34]. Starting from ideal solutions, the results will be extended to a more general
Van der Waals equation of state. Before describing the actual set-up, it is instrumental to review classical solutions for electroosmotic
flows based on the Debye approximation βζq 
 1 where ζ is the wall electric potential and q = qc = qa is the ionic charge of the
ions, where the electrolyte has been assumed symmetric. In this case, the 1-D version of the Poisson–Boltzmann equation reads [1]

d2φ

dz2 = 2qc0

ε
sinh(βqφ(z)) � φ(z)

λ2
D

, (65)

where z is the coordinate orthogonal to the channel walls, φ is the electrostatic potential, c0 the concentration at zero potential and ε

the dielectric constant. In the linearized form on the right-hand side of the equation, λD = (
2βq2c0/ε

)−1/2
is the Debye length. The

boundary conditions for this equation relate the derivative of the potential at the walls to the wall charge, i.e., assuming a vanishing
electric field outside the channel

dφ

dz

∣∣∣∣
z=h/2

= −σup

ε
,

dφ

dz

∣∣∣∣
z=−h/2

= σlow

ε
, (66)

where σup and σlow are, respectively, the surface charges of the upper and lower walls.
We consider two different scenarios: (i) the symmetric case (suffix S) with both walls with same surface charge, σup = σlow = σ

and (ii) the antisymmetric case (suffix A) where the two walls are oppositely charged, σup = −σlow = σ . In the two cases, the
analytical solutions of Eq. (65) read [59]

φS = ζ S cosh(z/λD)

cosh(h/(2λD))
, φA = ζ A sinh(z/λD)

sinh(h/(2λD))
, (67)

and the wall potentials (ζ -potentials) in the symmetric and antisymmetric case are, respectively,

ζ S = λDσ

ε tanh(h/2λD)
, ζ A = λDσ tanh(h/2λD)

ε
. (68)

The resulting cationic and anionic concentrations are cc(z) = c0 exp (−qφ) and ca(z) = c0 exp (qφ), respectively. The electroos-
motic velocity profile which arises after the application of an electric field E parallel to the walls follows from the Stokes equation
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endowed with no slip conditions at the walls,

μ
d2u

dz2 + q E(cc − ca) = 0 , (69)

as

uS = vS
eo

(
1 − φS

ζ S

)
, (70)

u A = vA
eo

(
2z

L
− φA

ζ A

)
, (71)

where veo = εζ E/μ is the electroosmotic velocity and μ is the dynamic viscosity.

5.1 Simulation set up

For all the simulations reported here, we set m = 1, rc = 2 and β = 3.23 · 10−3, respectively, the mass of the meso-particle, the
cutoff radius and the inverse thermal energy. The remaining free parameters of the EH-DPD system are the number of atoms in the
meso-particle (M = 50 in all simulations), the ion charges, which are set to be equal, qa = qc = q , the parameter s = 0.67 related
to the Gaussian used to model electrostatic interactions, the dissipative coefficient γ and the corresponding coefficients for the ionic
transport γ c

0 and γ a
0 appearing in Eq. (63). When not specified, we set γ = 3000, leading to a viscosity of μ = 61.22 as computed

by imposing a Poiseuille flow and measuring the resulting velocity profile [60].
The parameters γ c

0 and γ a
0 can be calibrated to obtain a given conductivity, see Fig. 2, estimated by applying a constant electric

field to a triply-periodic EH-DPD system and measuring the resulting electric current density as defined in Appendix A. We did
so for different values of γ c

0 and γ a
0 and for different ionic concentrations c0. We also estimated the conductivity of the fluid by

an independent approach based on linear response theory, see Appendix B, finding a good agreement with the nonequilibrium
simulations. When not specified, the values used in the following subsection are γ c

0 = γ a
0 = 1.

To simulate an electroosmotic flow, a model for the wall is needed. We simulated a planar channel with a height of 20, modeled
using fixed meso-particles of constant charge with a random uniform distribution in two layers of width 2 for each side with a
particle number density of ρwall = 1.125. In a previous work [56], we showed that in the DPD context, walls constituted by fixed
random particles are suitable to guarantee impermeability and a low slip. A similar model was employed here the main differences
being that now the wall has a constant particle density. The one exposed towards the liquid mainly controls the slippage, while the
external one guarantees wall impermeability. The wall particles interact with the fluid particles via the multi-body potential which
defines the pressure force, see Eq. (62), where for the wall particle volume a constant value of Vwall = 0.2 has been used for the
inner layer and Vwall = 20 for the external one. In case the wall is charged, also the electrostatic forces are included by charging
the layer exposed to the fluid. The dissipative interaction between the wall and the fluid was set to γwall/ f luid = 100. We measured
the slip length of the resulting fluid-wall system by imposing a Poiseuille flow, observing an acceptably low slip length < 2% of the
channel height.

In the set of Eq. (1), there is no guarantee that the quantities nc and na are positive. In fact, due to the stochastic nature of the
equations, unfrequent, strong events can lead to a negative number of ions in the particle. The chemical potential of Eq. (59) and the
functions γ a and γ c are not defined for negative na

i and nc
i , thus a limiting value of nlimit = 4.5 · 10−5 was used. We verified that

changing this parameter doesn’t affect the results reported here. The electrostatic interactions are dealt with the Ewald summation
algorithm [58] and the model was implemented using the DPD package of LAMMPS [61]. The Euler–Maruyama algorithm [62]
was used to integrate Eq. (1) in the Itô formalism using a time step of �t = 10−4.

5.2 Electroosmotic flow

We used the planar wall simulation setting as described in Sec. 5.1, both in the symmetric charge setting (positive charges at
both walls) and in the antisymmetric charge setting (positive charges in the upper wall, negative charges in the lower wall). The
ionic charge q , equal for both species, has been tuned to adjust the Debye screening length, using c0 = 3.75 as ionic density. The
concentrations of the two ionic species are set to guarantee the global electroneutrality of the system, with the additional condition√

ccca = c0. An external electric field E parallel to the walls forces the electroosmotic flow in the channel. The intensity of the
electric field has been tuned to control the electroosmotic velocity. Finally, the wall charge σ is tuned to control the ζ -potential. After
equilibration, a Debye layer sets in at the walls. Ten systems were simulated five each for the symmetric and antisymmetric setting,
corresponding to different values of Debye length and surface charge. The cationic and anionic density profiles are plotted in Fig. 3
together with the particle electrostatic potential for several symmetric and antisymmetric systems in comparison with the predictions
of the linearized Poisson–Boltzmann model. The simulated ionic density is in good agreement with the analytical predictions for
all simulations, except for slight differences for the largest ζ -potentials (see Fig. 3c–d). This is not unexpected, since the Debye
approximation is bound to fail at large βqζ .
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(a) (b)

(c) (d)

Fig. 3 Ionic density profile for the cations (blue) and the anions (red) compared with the analytical solutions (black lines). Figures a and c are cases with
symmetric wall charges, while figures b and d are cases with antisymmetric wall charges. In the two top plots, two different values of the Debye length are
considered and ζ = 258, while in the bottom plots the zeta potential is changed and λD = 3

The electroosmotic flow generated by the external electric field through the charge imbalance near the walls is plotted in Fig. 4
for different Debye lengths and electroosmotic velocities in comparison with the analytical predictions.

5.3 Mapping to dimensional units

After the previous discussion on the general features of the proposed approach, in this section we consider the specific case of a
channel with height h = 10 nm, Debye length λD = 4.28 nm, mass density 103 Kg/m3, electric conductivity κ = 70 mS/m and
viscosity μ = 6.5 · 10−4 Pa · s. The reference dimensional quantities are: length Lre f = 0.5 nm, energy Eref = 1.38 · 10−23 J,
and mass Mref = 3.33 · 10−25 Kg which corresponds to the mass of a single EH-DPD particle. The reference charge is set
to Qref = 7.6 · 10−21 C, leading to a relative dielectric constant εr = 75. The assigned Debye length is obtained by using the
(dimensionless) concentration of ions (dimensionless charge q = 0.3) c0 = 1.875. The particle interaction cutoff is set to rc = 1 nm.
The dimensionless meso-particle density ρ = 0.375 provides the target mass density of the solution.

The remaining physical parameters to be mapped are the solution viscosity and conductivity. This requires preliminary calibration
simulations to determine their dependence on the model parameters γ , γ c

0 and γ a
0 . In principle, γ c

0 and γ a
0 can be used to independently

reproduce anion and cation conductivities. Limiting, for simplicity, the analysis to symmetric solutions, we assume γ c
0 = γ a

0 . Fig. 5a
provides the solution viscosity as a function of γ for fixed γ c

0 = γ a
0 . We computed the viscosity by imposing a Poiseuille flow [60]

and measuring the average velocity obtained at a given pressure difference. In the investigated range of parameters, the viscosity is
found to be almost independent of γ c

0 and γ a
0 , which control the conductivity. From the μ−γ curve, we find that γ = 6500 provides

the target viscosity. Analogously, Fig. 5b provides the solution conductivity as a function of the common value of γ c
0 = γ a

0 = γ0.
From the figure, γ0 = 0.015 yields the assigned electrical conductivity. We estimated the electric conductivity by applying a constant
electric field to a bulk system and measuring the resulting current. The resulting electroosmotic flow in a 10 nm planar channel is
shown in Fig. 5c, while the ionic density is shown in Fig. 5d. The zeta potential is such that ζ = −0.5(qβ)−1. It is apparent that in
the middle of the channel, the concentration of anions and cation is different, as expected when the electric double layers overlap.
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(a) (b)

(c) (d)

Fig. 4 Velocity profile of the electroosmotic flow generated by a constant electric field parallel to the walls compared with the analytical solutions (black
lines). Figures a and c correspond to cases with both walls positively charged, while figures b and d are cases with a positive charge in the lower wall,
z = −5, and a negative charge in the upper wall, z = 5. In the two top plots, two different values of the Debye length are considered using an electroosmotic
velocity of veo = 1, while in the bottom plots the electroosmotic velocity is changed by changing the electric field and λD = 3. In all the plots, ζ = 258

5.4 Excluded volume effects

To test the capability of EH-DPD to simulate fluids with different equations of state, we performed planar electroosmosis
simulations similar to the above described using a Van der Waals equation of state, i.e.,

P = kB T

v − b
− a

v2 , (72)

where v is the volume divided by the total number of particles, a is a parameter modeling the attraction between fluid particles
and b is the excluded volume of the single particle. For a multicomponent fluid, the parameters a and b are usually expressed
as combinations of the respective single components parameters according to mixing rules [63]. In the case of a fluid with three
components (i.e., nc cations, na anions and ns solvent), for the meso-particle i , bi = nc

i bc + nc
aba + ns

i bs and ai = nc
i nc

i acc +
na

i na
i aaa +2ns

i ns
i ass +2nc

i na
i aca +2nc

i ns
i acs +2ns

i na
i asa , where bc, ba and bs are the excluded volume of each species and aaa , acc,

ass , aca , acs and asa are parameters controlling the attractive force between the species. As in the case of perfect gas, we assumed
nc + na + ns = M to hold for each particle, leaving only the nc and na as independent variables. The free energy is hence

Ai (Vi , nc
i , na

i ) = nc
i

β

[
log

(
nc

i

M − nc
i − na

i

)
− 1

]
+ na

i

β

[
log

(
na

i

M − nc
i − na

i

)
− 1

]
+

+ M

β
log

(
M − na

i − nc
i

Vi − bi

)
+ ai

V 2
i

,

(73)

We chose to focus on the effect of the corresponding excluded volume parameters bs , bc and ba , letting the parameter a = 10
constant and independent on the local fluid composition, such that the fluid is single phase. In this framework, the chemical potential
for cations in particle i reads

μc
i = 1

β

[
log

(
nc

i

M − nc
i − na

i

)
+ Mbc

Vi − bi

]
+ qc�i , (74)
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(a) (b)

(c) (d)

Fig. 5 Electroosmotic flow for a 10, nm planar channel. a Viscosity of the fluid as a function of the parameter γ , with μre f = M1/2
re f E1/2

re f L−2
re f =

8.57 · 10−6Pa · s. The value highlighted with a circle was used for the electroosmotic flow simulation. b Conductivity of the fluid as a function of the

parameters γ a = γ c = γ0, with κre f = Q2
re f L−2

re f E−1/2
re f M−1/2

re f = 107.8 S/m. The value highlighted with a circle was used for the electroosmotic flow
simulation. c Velocity and d density profiles of cations (blue) and anions (red). The Debye length was set to 4.28 nm

and similarly for the anions.
The results of the simulations are displayed in Fig. 6. In Fig. 6a and b, the ionic concentration profiles are shown for two cases

each corresponding to the symmetric (panel a) and antisymmetric (panel b) setting. As reference cases, the perfect gas model above
reported is considered (dashed lines), with the same parameters reported in Sect. 5.3 with the only difference that γ = 4500, which
was adopted to obtain a viscosity equal to the simulated Van der Waals fluid. The applied electric field was such that veo = 2. The
continuous lines refer to a Van der Waals model with bs = 0.01, bc = 0.02 and ba = 0.04. The effect of the excluded volume is
to decrease the ion concentration near the walls, generating a larger charge density near negatively charged surfaces and a smaller
charge density near positively charged surfaces, due to the larger excluded volume of anions with respect to cations. The difference
in charge distribution (in particular close to the walls) leads to a more pronounced electroosmotic flow in the symmetric case reported
in Fig. 6c, while a net flow is observed in the case of antisymmetrically charged walls due to the different ion accumulation in the
two walls, as reported in Fig. 6d.

6 Conclusions

The EH-DPD (ElectroHydrodynamic Dissipative Particle Dynamics) model we have illustrated in the present paper is an extension
of the DPD model which can be used to simulate the dynamics of electrolyte solutions at mesoscopic scales. The meso-particles
carry and exchange among them two ionic species under the collective motion induced by their mutual interactions. The forces
acting between the meso-particles and the ionic exchange rates are determined by the specific fluid model which, in the EH-DPD,
amount to define the free-energy of the meso-particle system. The model has been validated simulating the electroosmotic flow
in a planar nanochannel with charged walls, and a good agreement is obtained both in the case of Debye length comparable with
channel height and in the case of small Debye length. This approach can be used to study fluid systems where thermal fluctuations
are crucial on scales larger than affordable with Molecular Dynamics like nanoparticle and biomolecule sensing, systems with
membranes for desalination or energy harvesting. We validated our methods against analytical results for electroosmotic flows
in a planar channel obtained from the commonly adopted linearized Poisson–Boltzmann solution of the Poisson–Nernst–Planck–
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Fig. 6 Simulation results for a fluid with perfect gas and Van der Waals equation of state. In all the panels, the dashed lines refer to the perfect gas model,
while the continuous lines refer to the Van der Waals model of Eq. (73), with a = 10, bs = 0.01, bc = 0.02 and ba = 0.04. All the remaining parameters are
set as described in Sect. 5.3, with the only difference of γ = 4500 in the perfect gas case to match the viscosity of the corresponding Van der Waals model
which has γ = 6500. The Debye length was set to 2.15 in all the cases by tuning the charge of the ions. a-b Cation (blue) and anion (red) concentration
profiles and concentration difference (black) for the perfect gas case (continuous lines) and the Van der Waals model (dashed lines), for a planar channel
with symmetric a and antisymmetric b charges in the walls. c-d Velocity profiles corresponding panel a, symmetric case c, and b, antisymmetric case d

Navier–Stokes equation. This was accomplished using the free energy of a perfect gas to model the interparticle interactions. It has
also been shown that different free energies representing more complex fluids can be used. As an example, we employed the Van
der Waals equation of state, which introduces ion specific effects such as the excluded volume. As a final remark, although in this
work we focused on a single phase fluid, the same equation of state allows phase transitions and introduces an energetic cost for the
creation of interfaces between different phases allowing to deal with multiphase systems. In general, the possibility of providing the
equation of state as an input of the simulation is promising for the study of systems with ion specific effects driven by electric field
or concentration gradients also in presence of phase transitions like, e.g., for hydrophobic channels and hydrophobic nanoporous
materials.
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Appendix A: Ionic current density

In this Appendix, we derive an expression for the electric current density of EH-DPD systems. Consider a system of N EH-DPD
particles moving within a volume V . The total charge density of the system is given by

ρ(r) =
N∑

i=1

qi g(r − xi ) , (A1)

where g is a Gaussian function centered at xi with constant variance s

g( y) = 1
(
2πs2

)3/2 exp
(
− y · y

2s2

)
. (A2)

The change of the charge density has two components

dρ(r) =
N∑

i=1

[dqi g(r i ) + qi dg(r i )] = dρ1(r) + dρ2(r) , (A3)

where r i = r − xi . The first component is

dρ1(r) =
N∑

i=1

dqi g(r i ) =
N∑

i=1

(
qcdnc

i − qadna
i

)
g(r i ) . (A4)

Using Eqs. (3) and (4)

〈dρ1(r)〉 =
N∑

i=1

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
g(r i )dt . (A5)

Using the antisymmetry of hc/a
i j

〈dρ1(r)〉 = 1

2

N∑

i=1

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

) [
g(r i ) − g(r j )

]
dt . (A6)

We can expand g(r j ) around r i obtaining

〈dρ1(r)〉 = −1

2

N∑

i=1

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)( ∞∑

α=1

1

α!∇
αg(r i ) : xα

i j

)
dt , (A7)

where ∇α = ∇ ⊗ · · · ⊗ ∇︸ ︷︷ ︸
α

, xi j = xi − x j , xα
i j = xi j ⊗ · · · ⊗ xi j︸ ︷︷ ︸

α

. Equation (A7) can be rewritten as:

〈ρ̇1(r)〉 = −∇ ·
⎡

⎣1

2

N∑

i=1

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
�i j (r)xi j

⎤

⎦ , (A8)

where

�i j (r) =
(

g(r i ) +
∞∑

α=1

1

(α + 1)!∇
αg(r i ) : xα

i j

)
. (A9)

For what concerns the second term in Eq. (A3), we have

〈dρ2(r)〉 =
N∑

i=1

(
qcnc

i − qana
i

)
dg(r i ) = −

N∑

i=1

(
qcnc

i − qana
i

)∇g(r i ) · vi dt =

= −∇ ·
N∑

i=1

(
qcnc

i − qana
i

)
g(r i )vi dt .

(A10)

The expected value of the total charge density variation can be written in the form:

〈ρ̇(r)〉 = −∇ · J(r) , (A11)
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where J(r) is the current density, which reads

J(r) =
N∑

i=1

⎡

⎣1

2

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
�i j (r)xi j + (

qcnc
i − qana

i

)
g(r i )vi

⎤

⎦ . (A12)

In order to obtain the current density J i associated with particle i (hereafter called the particle current density), J is integrated over
the whole space, i.e.,

N∑

i=1

J i Vi =
∫

J dr =
N∑

i=1

⎡

⎣1

2

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
xi j + (

qcnc
i − qana

i

)
vi

⎤

⎦ , (A13)

which defines the particle current density as

J i = 1

2Vi

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
xi j + 1

Vi

(
qcnc

i − qana
i

)
vi . (A14)

The average current density given the state of the system is hence

J(x, v, ncna) = 1

V

N∑

i=1

J i Vi =

= 1

V

N∑

i=1

⎡

⎣1

2

∑

j �=i

(
qcγ

c
i jw

D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
xi j + (

qcnc
i − qana

i

)
vi

⎤

⎦ .

(A15)

We used this expression to compute the current density of several bulk EH-DPD systems when an external electric field is applied,
in order to evaluate the conductivity of the solution.

Appendix B: electrical conductivity of the system

Here, we derive the expression for the conductivity of an EH-DPD system in the context of a linearized theory à la Green–Kubo
[64]. The time dependent pdf of the state of a system of EH-DPD particles at equilibrium in the infinite past will obey the initial
condition

P( y,−∞) = Peq( y) = 1

Z
exp

(
Seq( y)

kB

)
, (B1)

where y is the state of the system and Z the normalization constant. At time t = −∞ an external electric field E(t) = E(t)n̂ is
switched on. The pdf along the successive evolution driven by the external electric field is governed by the Fokker–Planck equation,
Eq. (35), repeated here for convenience,

∂ P( y, t)

∂t
= −∇ ·

[(
uC ( y) + 1

kB
D( y) · ∇S( y) − D( y) · ∇

)
P( y, t)

]
= L F P P( y, t) , (B2)

where now the Fokker–Planck operator L F P includes the effects of the electric field. Specifically, the entropy S( y), Eq. (46) accounts
for the external perturbation Uext = −∑ qi xi · n̂E(t) added to the electrostatic energy, Eq. (58). The total entropy of the system
can be expressed as:

S( y) = Seq( y) + E(t)n̂
T

·
N∑

i=1

qi xi = Seq( y) + Sext ( y) , (B3)

where the external term is proportional to the electric field intensity E(t). The electric field also enters in the conservative drift uC ,
Eq. (29) through the entropy, Eq. (32), and splits into its equilibrium and external components

uC( y) = uCeq( y) +

⎛

⎜⎜⎜⎜⎜⎜⎝

0
q1n̂
. . .

qN n̂
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
E(t) = uCeq( y) + uCext( y) . (B4)

123



  572 Page 18 of 21 Eur. Phys. J. Plus         (2022) 137:572 

Hence, the operator L F P decomposes into an equilibrium component, independent of the electric field E , and an external, field-
dependent part

L F P = Leq
F P + Lext

F P , (B5)

where

Leq
F P P = −∇ ·

[(
uCeq( y) + 1

kB
D( y) · ∇Seq( y) − D( y) · ∇

)
P

]
, (B6)

and

Lext
F P P = −∇ ·

[(
uCext ( y) + 1

kB
D( y) · ∇Sext ( y)

)
P

]
. (B7)

Linearizing P( y, t; E) for small external fields,

P( y, t) = Peq( y) + dP( y, t)

dE
E + o(E) � Peq( y) + Pext ( y, t) , (B8)

the solution of the Fokker–Planck equation,

∂ P( y, t)

∂t
= ∂ Pext ( y, t)

∂t
= Leq

F P Pext ( y, t) + Lext
F P (t)Peq( y) , (B9)

where we used Leq
F P Peq = 0, is

Pext ( y, t) =
∫ t

−∞
exp

[
(t − s) Leq

F P

]
Lext

F P (s)Peq ds . (B10)

The action of the operator Lext
F P on the equilibrium pdf can be expressed as (Eq. (B7)):

Lext
F P Peq( y) = − 1

kB

[
uCext( y) · ∇Seq( y)+

+ ∇ · D( y) · ∇Sext ( y) + 1

kB
∇Sext ( y) · D( y) · ∇Seq( y)

]
Peq( y) ,

(B11)

where ∇ · uCext = 0 and D : ∇ ⊗ ∇Sext = 0. According to the definitions of D (Eqs. 24 –26), uC
ext (Eq. B4), Seq and Sext (Eq. B4),

the action of Lext
F P on Peq reduces to

Lext
F P Peq( y) = −βV J−

eq · n̂E(s)Peq( y) , (B12)

where the function

J−
eq( y) = 1

V

N∑

i=1

⎡

⎣1

2

N∑

j �=1

(
qcγ c

i jw
D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
xi j − qivi

⎤

⎦ (B13)

is obtained computing the current density of Eq. (A15) in the absence of any external field, changing v to −v. We obtain

Pext ( y, t) = −βV

t∫

−∞
exp

[
(t − s)Leq

F P

] [
J−

eq · n̂E(s)Peq( y)
]

ds . (B14)

With this expression, the current density due to a stationary electric field after the transient decayed, e.g., at time 0 is

〈J〉 =
∫

J P( y, 0)d y =
∫

J Peq( y)d y +
∫

J Pext ( y, 0)d y = J1 + J2 . (B15)

J1 can be simplified by considering that the current density can be decomposed into equilibrium and external contributions

J( y) = Jeq( y) + Jext ( y) , (B16)

with

Jeq = 1

V

∑

i

⎡

⎣1

2

N∑

j �=1

(
qcγ c

i jw
D
i j hc

i j − qaγ a
i jw

D
i j ha

i j

)
xi j + qivi

⎤

⎦ (B17)

123



Eur. Phys. J. Plus         (2022) 137:572 Page 19 of 21   572 

and

Jext = E n̂
2V

·
∑

i

N∑

j �=1

(
q2

c γ c
i jw

D
i j + q2

aγ a
i jw

D
i j

)
xi j ⊗ xi j . (B18)

Considering that
∫

Jeq( y)Peq( y)d y = 0 , (B19)

J1 reads

J1 =
∫

Jext ( y)Peq( y)d y = E

2V

∑

i

N∑

j �=1

〈(
q2

c γ c
i jw

D
i j + q2

aγ a
i jw

D
i j

)
xi j ⊗ xi j

〉

eq
· n̂ . (B20)

The second component J2 is

J2 =
∫

J( y)Pext ( y, 0)d y =
∫ (

Jeq( y) + Jext ( y)
)

Pext ( y, 0)d y . (B21)

Considering that Jext Pext = O(E2), the linearized expression for J2 is

J2 =
∫

Jeq( y)Pext ( y, 0)d y = −βV E

0∫

−∞

∫
Jeq( y) ⊗ exp

[−sLeq
F P

] [
J−

eq · n̂Peq( y)
]

dsd y . (B22)

Using the adjoint operator exp
(
−sLeq†

F P

)

J2 = βV E

0∫

−∞

∫
exp

(
−sLeq†

F P

) [
Jeq( y)

]⊗ J−
eq · n̂Peq( y)dsd y , (B23)

which gives

J2 = −βV

∞∫

0

〈
J(s) ⊗ J−(0)

〉
eq ds · E n̂ . (B24)

Introducing the conductivity tensor κ such that J = κ · E,

κ = 1

2V

∑

i

N∑

j �=1

〈(
q2

c γ c
i jw

D
i j + q2

aγ a
i jw

D
i j

)
xi j ⊗ xi j

〉

eq
− βV

∞∫

0

〈
J(s)J−(0)

〉
eq ds . (B25)

Since the equilibrium system is statistically isotropic it follows κi j = κ0δi j . We used the derived formula as an additional tool
to evaluate the conductivity of the EH-DPD system, finding a good agreement with the conductivity computed in nonequilibrium
simulations with an external electric field applied.
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