Soluble Epoxide Hydrolase Inhibitors:

Design, Synthesis, in vitro Profiling and in vivo Evaluation in Murine Models of Pain

Santiago Vázquez¹, Sandra Codony¹, José Entrena², Beatrice Jora¹, Rafael González-Cano², M. Isabel Loza³, José M. Brea³, Christophe Morisseau⁴, Clara Bartra⁵, Coral Sanfeliu⁵, Bruce D. Hammock⁴, and Enrique J. Cobos²

¹Laboratori de Química Farmacèutica, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona and IBUB, Barcelona, Spain; ²Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain; ³Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. University of Santiago de Compostela (USC), Santiago de Compostela, Spain; ⁴Department of Entomology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA. ⁵Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain.

Recently, we discovered that a selected member of a new family of benzohomoadamantane-based sEH inhibitors (sEHI), **1**, showed *in vivo* efficacy in a murine model of acute pancreatitis.² Taking into account the structure of the clinical candidate sEHI for neuropathic pain EC5026,³ herein we report further structureactivity relationships within series of the benzohomoadamantane-derived sEHI with the aim to conduct a screening cascade and to perform an *in vivo* proof of concept in murine models of pain with the selected candidate.

Scheme 1. Synthesis of the new sEHIs. ^aReagents and conditions: a) triphosgene, NaHCO₃, DCM, 30 min; b) DCM, overnight; c) *n*-BuLi, anh. THF, anh. DCM, overnight.

SCREENING CASCADE

Further in vitro profiling (human and murine sEH inhibition, human and mice microsomal stability, solubility, cytotoxicity, cytochromes inhibition, Caco-2 permeability, selectivity and hERG inhibition) allowed us to select compounds 8, 14 and 15 for *in vivo* studies.

Cpd	sEH IC ₅₀ a (nM)		Microsomal stability ^b (%)		Cytochrome inhibition (% at 10 µM)	Solubility ^c	PAMPA-	Cytotoxicity LD ₅₀ (µM)	
	Human	Murine	Human	Mouse	CYP 2C19			PI ^d	MTT ^e
8	0.4	1.0	47	64	38 ± 4	57	CNS +	>100	>100
14	0.4	0.5	66	84	32 ± 4	95	CNS +/-	>100	>100
15	0.4	0.4	58	60	26 ± 5	92	CNS +	>100	>100

Figure 2. Reduction of capsaicin-induced secondary mechanical hypersensitivity in mice by the systemic administration of AS2586114, and compounds 8 and 14, is due to sEH inhibition. The data shown represent the effect of the subcutaneous (s.c.) administration of AS2586114, 8 and 14 administered alone or associated to the CYP450 epoxidase inhibitor MS-PPOH (s.c.) on paw withdrawal latency in mice treated intraplantarly (i.pl.) with capsaicin. **p < 0.01 between nonsensitized mice (open bar) and the other experimental groups; [#]p < 0.05, ^{##}p < 0.01 between capsaicin-treated mice injected with the sEHI or their solvent (black bar); ⁺⁺p < 0.01 sEHItreated mice associated or not with MS-PPOH.

CONCLUSIONS

Figure 1. Objective of this work.

REFERENCES

¹Morisseau, C.; Hammock, B.D. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 37-58.

²Codony S.; Calvó-Tusell C.; Valverde E.; Osuna S.; Moriseau C.; Loza M.I.; Brea J.; Pérez C.; Rodríguez-Franco M.I.; Pizarro-Delgado J.; Corpas R.; Griñán-Ferré C.; Pallàs M.; Sanfeliu C.; Vázquez-Carrera M.;

Table 1. In vitro profiling of selected sEHIs. ^aReported IC_{50} values are the average of three replicates. ^bPercentage of remaining compound after 60 min of incubation with pooled human and mouse microsomes in the presence of NADPH at 37 °C. ^cSolubility measured in a 1% DMSO: 99% PBS buffer solution. ^dCytotoxicity tested by propidium iodide (PI) staining after 24h incubation in SH-SY5Y cells. ^eCytotoxicity tested by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay after 24h incubation in SH-SY5Y cells.

PHARMACOKINETIC STUDIES IN MICE (5 mg/Kg, S.C.)

• We have further explored medicinal chemistry around benzohomoadamantane-based piperidine new derivatives, analogs of the clinical candidate EC5026.

• An in *vitro* screening cascade and pharmacokinetic studies allowed us to select two candidates for *in vivo* efficacy studies.

- The administration of compounds 8 and 14 reduced pain in the capsaicin-induced murine model of a dose-dependent manner and allodynia in outperformed AS2586114, a standard sEHI.
- Hence, this study opens a whole range of applications of the benzohomoadamantane-based sEHIs in the pain field.

ACKNOWLEDGEMENTS

This research by the Grant PID2020-118127RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" to S.V. Financial support from Fundació Bosch i Gimpera, Universitat de Barcelona (F2I grant), to S.V., and from the Xunta de Galicia (ED431G 2019/02 and ED431C 2018/21) to M.I.L. are acknowledged. Partial support was provided by NIH-NIEHS River Award R35 ES03443, NIH-NIEHS Superfund Program P42 ES004699, NINDS R01 DK107767, and NIDDK R01 DK103616 to B.D.H. S.C. acknowledges a PhD fellowship from the Universitat de Barcelona (APIF grant).

Hammock B. D.; Feixas F.; Vázquez S. J. Med. Chem., 2021, 64, 5429-5446.

³Hammock, B. D.; McReynolds, C. B.; Wagner, K.; Buckpitt, A.; Cortes-Puch, I.; Croston, G.; Lee, K. S. S.; Yang, J.; Schmidt, W. K.; Hwang, S. H. *J. Med. Chem.* **2021**, 64, 1856-1872.

Cpd	FIL	Imax	Cmax	AUCIAST	AUCINF
	(h)	(h)	(µg/mL)	(µg*h/mL)	(µg*h/mL)
8	3.42	0.75	1.2	2.4	2.5
14	0.70	0.25	19.1	13.5	13.6

Table 2. Pharmacokinetic parameters for compounds 8 and 14.

