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Abstract 

Background:  The detection of physiologically relevant protein isoforms encoded by 
the human genome is critical to biomedicine. Mass spectrometry (MS)-based proteom-
ics is the preeminent method for protein detection, but isoform-resolved proteomic 
analysis relies on accurate reference databases that match the sample; neither a subset 
nor a superset database is ideal. Long-read RNA sequencing (e.g., PacBio or Oxford 
Nanopore) provides full-length transcripts which can be used to predict full-length 
protein isoforms.

Results:  We describe here a long-read proteogenomics approach for integrating sam-
ple-matched long-read RNA-seq and MS-based proteomics data to enhance isoform 
characterization. We introduce a classification scheme for protein isoforms, discover 
novel protein isoforms, and present the first protein inference algorithm for the direct 
incorporation of long-read transcriptome data to enable detection of protein iso-
forms previously intractable to MS-based detection. We have released an open-source 
Nextflow pipeline that integrates long-read sequencing in a proteomic workflow for 
isoform-resolved analysis.

Conclusions:  Our work suggests that the incorporation of long-read sequencing and 
proteomic data can facilitate improved characterization of human protein isoform 
diversity. Our first-generation pipeline provides a strong foundation for future develop-
ment of long-read proteogenomics and its adoption for both basic and translational 
research.

Keywords:  Long-read RNA-seq, PacBio, Mass spectrometry-based proteomics, Protein 
inference, Proteogenomics, Nextflow, Lifebit CloudOS, Alternative splicing, SQANTI, 
Iso-Seq
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Background
A comprehensive understanding of the proteome in healthy and diseased states is vital 
for nearly every area of biomedical research [1]. Multiple protein isoforms, containing 
distinct amino acid (AA) sequences, can arise from the same gene through mechanisms 
such as alternative promoter usage or splicing [2] and can exhibit different stabilities, 
molecular binding capabilities, and functional effects [3, 4]. Many protein isoforms have 
been implicated in diseases from neurodegeneration to cancer [5]. It has been estimated, 
through transcriptome measurements, that over 300,000 human protein isoforms may 
exist [6]. However, few experimental approaches readily detect proteins at isoform reso-
lution, leaving open the question of the extent to which transcript isoform complexity 
propagates to the proteome [7, 8].

Mass spectrometry (MS)-based proteomics has become the preeminent method for 
the comprehensive and sensitive characterization of the proteome [1]. Typically, the pro-
teome is proteolytically digested into peptides that are analyzed via liquid chromatog-
raphy (LC) and MS. The mass spectra are compared to theoretical peptides, generated 
from a protein database, to obtain peptide identifications. These peptide identifications 
are mapped back to their potential proteins of origin to obtain protein identifications 
(i.e., protein inference) [9]. Protein inference is complicated by shared peptides, which 
are peptides that map to two or more protein isoforms in the database. The presence 
of shared peptides can result in ambiguous protein identifications wherein multiple 
proteins are indistinguishable based on the peptide evidence. In these cases, a “protein 
group” (Fig. 1a) is formed, signifying either all or some subset of proteins in the group 
may be present in the sample.

The peptide identification and protein inference processes are heavily reliant on the 
composition of the protein database used for analysis. Reference protein databases 
broadly represent an organism’s proteome, but may fail to capture the proteomic vari-
ation across tissues, developmental and disease states, and individuals [10]. Discord-
ances between a database and a sample can have a direct impact on proteomic search 
results. Ideally, the protein isoform sequences annotated in the reference for a gene 
would exactly match those expressed in a sample (“Match,” Fig. 1b). In practice, however, 
perfect matches are rare. The protein isoforms from a sample could differ from those in 
the reference by either lacking isoforms (“Subset,” Fig. 1c) and/or possessing a surplus of 
isoforms (“Superset,” “Distinct,” “Partial Overlap,” Fig. 1d–f). Overall, reference-sample 
discordances lead to (1) ambiguity in identifying protein isoforms; (2) incorrectly identi-
fied protein isoforms; or (3) failure to identify known or novel relevant protein isoforms 
(such as those associated to disease and treatment).

Transcript sequencing can be used to generate a sample-specific candidate protein 
database, which is more reflective of the isoform diversity in the sample than the refer-
ence database, but still has limitations due to the sensitivity and specificity of sequenc-
ing technologies. Presently, such efforts to generate sample-specific databases have 
been dominated by using short-read RNA-seq [11–20] which suffers from the inability 
to sequence full-length transcripts and can only deliver partial protein models [21, 22] 
(Fig.  1g). Long-read sequencing technologies, such as those from Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT), can delineate full-length tran-
scriptomes with high fidelity [23]. These technologies can readily reveal thousands of 
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novel isoforms based on full-length transcript reads [24]. Such developments present an 
opportunity to leverage transcript expression—a prerequisite and correlate of protein 
expression [25]—to enhance isoform-resolved proteomics.

Here, we present a workflow for long-read proteogenomics that achieves enhanced 
characterization of protein isoform diversity through paired long-read RNA-seq and 
MS-based proteomics of the same sample. This approach is enabled by a computa-
tional pipeline that generates full-length protein databases constructed de novo from 
long-read RNA-seq data. Using this database, we demonstrate MS-based discovery of 
novel protein isoforms arising from mechanisms such as retained introns and skipped 
exons. With full-length protein predictions, we introduce a new classification system, 
SQANTI Protein, to characterize novel protein isoforms. Finally, we introduce a new 
heuristic-based protein inference algorithm, called “Rescue & Resolve,” that incorpo-
rates long-read transcript abundance into the protein inference process, which enables 
detection of protein isoforms typically discarded during protein inference due to insuf-
ficient peptide support. The entire pipeline and workflow is freely available as an open-
source and extensible computational resource, using the community-based workflow 
language, Nextflow. This first-generation long-read proteogenomics pipeline provides a 
strong foundation for the integration of long-read sequencing into proteomic workflows, 
advancing the characterization of human protein isoform diversity.

Results
We developed a long-read proteogenomics pipeline for protein isoform detection 
through integrated analysis of sample-matched long-read RNA-seq and MS-based prot-
eomics data. A Nextflow pipeline processes PacBio data, converts full-length transcripts 
into a protein database, and performs proteomics database searching (Fig. 2, Additional 
file 1: Fig. S1). We demonstrate the utility of our pipeline using transcriptomic and pro-
teomic data from the same cell line, Jurkat T-lymphocyte. Below we describe the fol-
lowing: (1) analysis of PacBio sequencing to reveal high-quality full-length transcript 
sequences; (2) open reading frame (ORF) prediction; (3) a novel protein isoform clas-
sification system called SQANTI Protein; (4) generation of a sample-specific, full-length 
protein database using both PacBio and GENCODE reference isoform models; and (5) 
creation of a novel protein inference algorithm that increases the number of protein iso-
form identifications through the direct incorporation of PacBio transcript abundance 
values.

Long‑read RNA‑seq reveals widespread isoform diversity that differs from the GENCODE 

reference set

We characterized the landscape of full-length transcripts in a human cell line through 
long-read RNA sequencing on the PacBio platform (see Additional file 2: Note S1). Tran-
script isoforms were compared to GENCODE [26] reference transcripts (v35), and their 
novelty status classified using SQANTI3 (Structural and Quality Annotation of Novel 
Transcript Isoforms) [27]. Among the transcript isoforms identified, 43,865 contained 
an exact match to GENCODE (“full splice matches,” FSMs) and 75,491 were novel. Of 
the novel cases, 43,075 transcripts contained novel combinations of known splice sites 
and/or junctions (“novel in catalog,” NICs), and 32,416 transcripts contained an entirely 
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new splice site or exon (“novel not in catalog,” NNCs). On average, novel transcripts 
exhibit lower abundances than their known counterparts, despite exhibiting a broad 
range of abundances overall (Additional file 1: Fig. S2a). In 13.93% (1274) of genes, the 
most abundant transcript isoform is novel. To determine the sampling sensitivity of the 
transcriptome, we generated saturation-discovery curves and confirmed that the num-
ber of unique genes and isoforms detected reaches a plateau (Additional file 1: Fig. S2b). 
Overall, these results illustrate the widespread nature of alternative splicing and the need 
for empirically driven methods to characterize isoform diversity in human samples.

Note that for this study, transcript nucleotide sequences were derived from the refer-
ence genome (genome-corrected mode in SQANTI3); therefore, genetic variations are 
not captured in the current version of our pipeline (see “Discussion”).

A sample‑specific, full‑length protein isoform database derived from long‑read RNA‑seq 

data

ORF prediction from long‑read RNA‑seq data

We created a workflow to discern the most biologically plausible open reading frame 
(ORF) for each full-length transcript isoform. We considered multiple candidate ORFs 
for each transcript as defined by the Coding-Potential Assessment Tool (CPAT) [28]. For 
most of the transcripts (91%), one ORF stands out as the most plausible protein-coding 
product based on its coding score; however, a sizable number of transcripts (12,787 or 
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Fig. 2  Long-read proteogenomic approach for enhanced sample-specific protein identification. Schematic 
of the long-read proteogenomics pipeline for improved protein isoform characterization. The pipeline 
includes approaches for ORF calling from long transcript reads, an automated protein isoform classification 
(SQANTI Protein), novel protein isoform detection, and a long-read-informed protein inference algorithm. 
CPM—full-length read counts per million
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9% of all transcripts) have two or more relatively high scoring ORFs (CPAT coding score 
above 0.9), in which the best ORF is unclear (Additional file 1: Fig. S2c). Therefore, for 
all ORFs, we incorporated additional metrics in the ORF ranking process, such as the 
GENCODE annotation status of the ATG start codon and the start codon’s position rela-
tive to the 5′ end of the transcript (see “ORF calling” in “Methods” and see Additional 
file 2: Note S2). After determining the ORF prediction for each transcript, we clustered 
transcripts containing identical ORF predictions (Fig. 3a). Transcripts that differed only 
in their noncoding regions were assigned to the same protein entry in the database.

SQANTI Protein: new classification scheme for full‑length protein isoforms

We derived protein isoform models from long-read RNA sequencing data for each 
gene and found that many genes may concurrently express multiple protein isoforms 
(Additional file  1: Fig. S2d). To systematically characterize these full-length protein 
isoforms, we created a new protein isoform classification scheme, SQANTI Protein, to 
describe the relationship between the predicted protein isoforms and those annotated 
in GENCODE. SQANTI Protein extends SQANTI3 transcript-centric classifications to 
the protein isoform level, considering how three key protein sequence elements—the 
N-terminus, the identified splice junctions, and the C-terminus—compare to refer-
ence protein isoforms (Fig.  3b). SQANTI Protein considers the full-length predicted 
protein sequence, detectable only by long-read RNA-seq, which differentiates it from 
previously proposed protein isoform classification schemas that have focused on “local” 
events, such as splice junctions or novel exons detected by microarrays or short-read 
RNA-seq [29, 30].

We loosely follow the nomenclature first developed for transcript isoform classifica-
tion in SQANTI. Major isoform categories for SQANTI Protein include pFSM, pNIC, 
pNNC, and pISM (Fig.  3b). A “protein full splice match” (pFSM) represents a protein 
isoform where all elements exactly match at least one protein isoform in the reference. 
For a “novel in catalog” (pNIC) protein isoform, all protein sequence elements—such 
as the N-terminus, splice junctions, or C-terminus—are known (i.e., annotated in the 
reference), but the combination of elements is novel. A “novel not in catalog” (pNNC) 
protein isoform contains at least one novel element, such as a novel N-terminus or splice 
junction. Protein isoforms classified as an “incomplete splice match” (pISM) are cases in 
which the predicted protein isoform is a suspected artifact. For example, the originating 
transcript isoform could be degraded at the 5′ end, resulting in a translation product 
missing the true ATG start codon. More detailed protein isoform sub-classifications are 
provided in the “sqanti_protein” and “protein_classification” modules of the Nextflow 
pipeline.

Among the ORFs predicted from the long-read data, 16,331 (24%) have an exact GEN-
CODE match and are deemed pFSMs (Fig. 3c). We found 28,737 (41%) potentially novel 
protein isoforms, with 7642 (11%) pNICs and 21,095 (30%) pNNCs. A more detailed 
breakdown of categorizations can be found in Additional file 3: Table S1. The remaining 
sequences were classified as pISM or were putative translation products of transcripts 
unlikely to be protein coding, such as intergenic transcripts.
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It is notable that transcript-level classification does not always translate directly to the 
protein-level classification (Additional file 4: Table S2). For example, 371 transcript-level 
ISMs (ISMs) are actually protein-level FSMs (pFSMs). This occurs when part of the 5′ 
untranslated region (UTR) of a reference transcript is missing, but the ATG start codon 
is preserved. As another example, for 4086 known protein isoforms (pFSMs, 25% of total 
pFSMs), the originating transcript was novel (NIC or NNC) with novel splicing events 
exclusively occurring in the UTRs.

Predicted protein isoforms that are novel make up a substantial part of the database. 
For the majority of genes (75%), at least one pNIC or pNNC protein isoform was uncov-
ered (Additional file  1: Fig. S2e). Furthermore, for a third of all genes with observed 
transcripts, the most abundant protein isoform did not correspond to the “reference” 
isoform (i.e., GENCODE APPRIS principal reference isoform [31], Additional file 1: Fig. 
S2f ), and 42.5% (1215) of those isoforms were entirely novel.

After annotation with SQANTI Protein, 45,068 protein isoforms (pFSM, pNIC, and 
pNNC protein isoforms) from 10,348 genes were considered for database generation.

Defining a high‑confidence PacBio‑derived protein database

We generated a high-quality database for proteomic analysis with the following filter-
ing criteria. Within our PacBio dataset, we found that genes producing transcripts with 
extreme lengths (e.g., less than 1 kb, longer than 4 kb), low abundance (e.g., below ~ 3 
CPM, or full-length read counts per million), or without 3′ polyadenylation were not 
fully covered due to technical limitations (see Additional file 2: Note S3). Therefore, we 
used these criteria to select genes in which we were confident in the sampling of protein-
coding transcripts. By extension, we are confident that the protein isoform models for 
these genes are reasonably complete. A total of 6653 genes meet our filtering criteria and 
are within the “high-confidence” space (HC space). For all other genes, we populated 
the protein database with GENCODE entries, generating a hybrid database to maintain 
integrity of downstream proteomic analysis. This hybrid database of PacBio-derived and 
GENCODE entries, called PacBio-Hybrid, is composed of 35,119 PacBio-derived pro-
tein entries from 6653 genes, and 48,413 GENCODE protein entries for the remaining 
13,276 protein-coding genes (Additional file 1: Fig. S3a).

PacBio‑derived protein isoform models for most genes differ from the reference

As described in the “Introduction,” differences between what is expressed in the sam-
ple and the reference database (see Fig. 1b–f; Match, Subset, Superset, Partial Overlap, 
Distinct) can have striking consequences on the protein isoforms inferred by MS analy-
sis. Within the HC space, we found less than 5% of genes have PacBio-derived isoform 
models that exactly match the reference database (Fig. 3d). The most frequent database-
sample discordance observed at a rate of 69% is “Partial Overlap,” in which the PacBio-
derived database contains one or more reference-matched isoforms, but also contains 
additional novel isoforms. A total of 19,838 novel isoforms belong to genes in the “Par-
tial Overlap” category. The other database-sample discordance categories which con-
tain novel PacBio isoforms, “Superset” and “Distinct,” account for 8.9% and 3.1% of the 
genes in the database, respectively. Overall, the number of predicted protein isoforms 
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for a given gene can diverge greatly between the sample-specific and reference database 
(Fig. 3e).

MS‑based proteomics analysis with a PacBio‑derived protein database

The PacBio-derived proteome differs substantially from the reference proteome. Since 
the database used for proteomic analysis serves not only as a model for identification but 
also for protein inference, its isoform composition directly impacts protein identifica-
tions. To assess such impacts, MS data from the Jurkat cell line was obtained and used 
for proteomic analysis with either the PacBio-Hybrid or GENCODE database. The MS 
spectra for analysis was generated via liquid chromatography-MS (LC-MS)/MS data-
dependent analysis (DDA) of 28 fractions from high-pH reverse-phase liquid chroma-
tography (RPLC) of a Jurkat tryptic digest. Acquired spectra were searched using the 
software tool MetaMorpheus [16] to obtain peptide- and protein-level identifications at 
a 1% false discovery rate (FDR) (Additional file 5: Table S3, Additional file 6: Table S4).

PacBio‑derived protein database recovers peptides identified with the reference database

Notably, the proteomic results using the PacBio-Hybrid database recovered 99% of pep-
tide and 99% of gene identifications found in the GENCODE reference database search 
results (1% FDR cut-off, Fig. 4a,b). Similar trends of results were observed when consid-
ering data from only the HC space, as well as when comparing PacBio-Hybrid results 
to search results obtained when using the UniProt reference database (Additional 
file  1: Fig. S3b-g). Additionally, the overlap between identified peptides and genes for 
the PacBio-Hybrid and reference database search results is comparable with the overlap 
found between the search results of the two reference databases (GENCODE vs. Uni-
Prot, Additional file  1: Fig. S3h-i) demonstrating that the PacBio-derived database is 
appropriately covering the protein space in the sample.

PacBio‑derived isoform models lead to dramatically different protein isoform identifications 

and can resolve ambiguities

MS-based identification of protein isoforms is challenging due to the uncertainty in 
assigning shared (multi-mapping) peptides to their isoform(s) of origin. The protein 
database utilized for analysis should represent the protein isoforms in the sample, but 
differences between isoforms in the database versus the sample can impact the accuracy 
and precision of the inferred protein groups (see Fig. 1) [9].

We found that although the peptide and gene-level identifications between the PacBio-
Hybrid and GENCODE MS search results were nearly 100% concordant (Fig. 4a,b), indi-
cating that the peptide set for protein inference is nearly identical, there were major 
differences in the protein isoform identifications obtained (Fig. 4c). Only 41% (4503) of 
the protein isoform groups from both PacBio-Hybrid and GENCODE results were iden-
tical. Similar results were observed for comparisons of protein groups in the HC space, 
against the protein groups from the UniProt reference database search, and between the 
protein groups obtained from the two reference database searches (Additional file 1: Fig. 
S3j-m). This low overlap of protein inference results, across all comparisons, indicate 
that differences in protein identifications are primarily caused by differences in protein 
isoform composition of the databases.
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The PacBio-derived database provides transcript-backed evidence of protein isoform 
expression that, when combined with peptide evidence, can lead to enhanced protein 
isoform identification. We found 3199 PacBio-Hybrid protein groups that are differ-
ent from those protein groups inferred through the GENCODE reference search. Of 
these protein group differences, 673 cases (21%) result in increased specificity of pro-
tein isoform identification when using the sample-derived PacBio-Hybrid database. An 
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Fig. 4  Customized long-read-derived protein database for protein isoform detection. a–c Overlap of 
peptide (a), gene (b), and protein isoform group (c) identifications from GENCODE versus PacBio database 
searches. d Example of a “Subset” case in which the sample is inferred to express fewer isoforms, based on the 
sample-specific PacBio-Hybrid database, than those inferred from the reference (GENCODE) database search. 
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illustration of this can be found in Fig. 4d. Based purely on MS peptide evidence, there 
is ambiguity in terms of whether the isoform LNPK-201 or LNPK-212 is expressed, 
but the PacBio transcript evidence indicates LNPK-201 is the main isoform likely to be 
expressed in the cell line. Another common scenario, accounting for 873 cases (27%), 
is that of partially overlapping protein isoform groups between the PacBio-Hybrid and 
reference results, as illustrated by isoforms of MECP2 (Fig. 4e). Using the GENCODE 
database as reference, MECP2-205 and MECP2-201 form a single protein isoform 
group and are indistinguishable based on the peptide evidence. However, when using 
the PacBio-Hybrid database, there was no transcriptional support for MECP2-201. 
Instead, MECP2-205 forms a protein isoform group with the novel PacBio-derived iso-
form PB.16836.37. A third scenario, accounting for 382 cases (12%), occurs when all of 
the protein isoforms for a protein group in the PacBio-Hybrid analysis are absent from 
any protein groups within the GENCODE reference database analysis. This results in a 
protein group that is entirely distinct to the PacBio-Hybrid protein inference results. An 
example of this can be found in Fig. 4f, where the PacBio-derived database lists a single 
isoform which is not found in the reference database, representing a case of an entirely 
distinct isoform model.

For many of these cases, peptides were not detected in the isoform-specific regions, 
leading to a high dependence of protein isoform inference on the isoforms represented 
in the database. The isoform composition of a database has an outsize impact on the pro-
tein inference results obtained, and we believe that sample-specific databases improve 
the accuracy of protein isoform detection.

Characterization novel RUNX1 isoforms relevant to thymocyte biology

Within our data, we uncovered an excellent example of biologically relevant protein iso-
forms from RUNX1 using full-length PacBio sequencing. RUNX1 expresses a key tran-
scription factor that regulates early thymocyte development [32, 33]. Rearrangements 
or mutations of RUNX1 are associated with multiple hematopoietic neoplasms [34, 35]. 
Interestingly, recent evidence indicates germline mutations in RUNX1 are associated 
with an increased risk of acute lymphoblastic leukemia (ALL) and that these mutations 
result in the generation of dominant negative isoforms of RUNX1 [36]. The Jurkat cell 
line, analyzed here, is derived from a 14-year-old male patient with ALL [37]. There-
fore, understanding the isoform landscape of RUNX1 in our sample is highly relevant. 
Overall, we predicted 11 novel full-length protein isoforms of RUNX1 (Additional file 1: 
Fig. S4). Eight of these predicted protein isoforms contain the complete DNA bind-
ing Runt homology domain (RHD) sequence expressed in-frame with novel down-
stream sequences (PB.15792.9, PB.15792.10, PB.15792.15, PB.15792.17, PB.15792.18, 
PB.15792.32, PB.15792.33, PB.15792.40). Additionally, five of these predicted isoforms 
(PB.15792.17, PB.15792.18, PB.15792.32, PB.15792.33, PB.15792.40) lack the transacti-
vation domain (TAD) found in the longer RUNX1 protein isoforms. The TAD recruits 
multiple cofactors (P300, CREBBP, TLE1) to RUNX1-binding sites, and thus each novel 
protein isoform has the potential to represent a functional dominant negative isoform 
capable of binding RUNX1 sites but unable to recruit relevant cofactors that mediate 
gene activation or repression [35, 38]. Since full-length RUNX1 is known to generally 
activate T cell differentiation genes and suppress multipotent hematopoietic genes [33], 
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expression of these newly predicted dominant negative isoforms is consistent with sup-
porting leukemogenic potential in Jurkat T-ALL. Peptide identifications provide support 
for the presence of three protein isoforms in two distinct protein groups. The two iso-
forms PB.15792.10 and PB.15792.15, containing both the RHD and TAD, are inferred 
as an indistinguishable protein group. Interestingly, PB.15792.40, one of the predicted 
dominant negative isoforms, is identified with a uniquely mapping peptide.

Long‑read, sample‑specific database leads to discovery of novel protein isoforms

The MS search with the PacBio-Hybrid database revealed novel peptide sequences 
which were absent from both the GENCODE and UniProt reference databases. Strin-
gent validation criteria were applied for novel peptide identifications and are described 
in more depth in Additional file  2: Note S4. We manually examined candidate mass 
spectra and confidently identified 14 novel peptides, each corresponding to a distinct 
event (Additional file 6: Table  S4). Such events arose from a diversity of mechanisms, 
including upstream ATG start site usage, translation of a retained intronic region, and 
novel exons (Fig. 5a–c).

Notably, 6 of the 14 novel detected peptides each map to a single isoform and there-
fore there is direct evidence for expression of the corresponding full-length protein 
isoform. Such a direct link from peptide to full-length protein is only available with 
knowledge of full-length transcripts expressed in the sample [39]. An example of this 
is illustrated for the peptide, abbreviated as ESD, which confirms the novel terminal 
exon in RABGAP1L, but also unambiguously maps to the full-length PacBio-derived 
protein isoform PB.1248.6 (Fig. 5c). Only a small fraction of all potential novel protein 
isoforms are identified directly by a novel peptide. This is unsurprising based on previ-
ous reports regarding the detectability of isoform-specific tryptic peptides. The low 
peptide coverage of alternative isoforms could be technical in origin [40, 41], and the 
debate is ongoing regarding the extent to which novel transcript isoforms are trans-
lated into proteins [7, 8].

Long‑read RNA‑seq‑informed protein isoform identification

In order to infer the presence of protein isoforms, most protein inference algorithms 
employ a probabilistic or parsimonious approach. Probabilistic protein inference 
algorithms seek to estimate the probability that a given protein isoform is in the sam-
ple on the basis of the peptides observed [42–45]. Parsimonious protein inference 
algorithms are more heuristically driven and follow Occam’s razor, which attempts 
to define the smallest number of protein isoforms that “covers” the set of identified 
peptides [9, 45–49].

Parsimonious algorithms are commonly used in the MS proteomics field as part of 
search software platforms like Andromeda/MaxQuant and MetaMorpheus. However, 
this approach can lead to elimination of bona fide protein isoforms that lack sufficient 
peptide support relative to other isoforms (Fig.  6a) [50]. Alternative isoforms are par-
ticularly susceptible, because their isoform-specific regions comprise a small fraction of 
the proteome and suffer from a negative detection bias in traditional MS-based prot-
eomics workflows using tryptic digestion [51].
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In our tryptic dataset, the peptides observed at 1% FDR could be the digestion prod-
ucts of up to 26,931 different PacBio-derived protein isoforms in the high-confidence 
space. When traditional, parsimonious protein inference is applied to this peptide set, 
the number of PacBio-derived protein isoforms present in inferred protein groups drops 
to 11,231, eliminating 15,700 potential protein isoforms due to lack of sufficient peptide 
support. We hypothesize that a fraction of these eliminated protein isoforms may actu-
ally exist in the sample, and their elimination reduces the precision and accuracy of the 
protein inference results obtained.

Rescue & Resolve: direct incorporation of long‑read data into protein inference

To overcome limitations of incomplete peptide coverage for protein isoform detection, 
we reasoned that the incorporation of long-read transcript isoform data directly in the 
protein inference process could help inform on the presence of a protein isoform. For 
this purpose, we developed a heuristic-based protein inference algorithm called “Res-
cue & Resolve” (R&R), which is implemented within a custom version of MetaMor-
pheus (see “Methods”). To our knowledge, this is the first protein inference algorithm 
that incorporates long-read transcriptional abundance as an orthogonal data source. 
As previously mentioned, the parsimonious protein inference process makes decisions 
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Fig. 6  Long-read-informed protein isoform detection. a Scenarios in which long-read transcriptomic 
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throughout the algorithm to discard, or eliminate, protein isoforms from consideration 
for identification, because they lack the same level of peptide evidence that compet-
ing isoforms possess. During this process, protein isoforms that are actually present in 
the sample could be eliminated, generating false negatives. The “rescue” portion of our 
“R&R” algorithm defines two cases in which a protein isoform could be “rescued” from 
elimination (Fig.  6a). The first case occurs when a protein isoform’s mapped peptides 
are a subset of the peptides mapped to another protein isoform (Case 1, Fig. 6a). In this 
scenario, the parsimonious algorithm would determine that the protein isoform which 
accounts for the most peptides is the simplest answer, and therefore more likely to be 
correct by the principle of Occam’s razor. The protein isoform that accounts only for a 
subset of the peptides observed is eliminated from consideration for identification. The 
second case occurs when a protein isoform’s mapped peptides are subsumable to (i.e., 
can be explained by) two or more protein isoforms which have additional peptide evi-
dence (Case 2, Fig. 6a). In this scenario, there is a protein isoform for which all of its 
peptide evidence can be explained by the existence of multiple protein isoforms that all 
have more peptide identifications supporting their existence. Again, as in Case 1, the 
parsimonious approach dictates that it is simpler, and therefore more likely, that the pro-
tein isoforms with additional peptide support are the sole contributors to the peptides 
being identified. The subsumable protein isoform is then eliminated from consideration 
for identification. In the “rescue” portion of our R&R algorithm, during the parsimoni-
ous process, protein isoforms that were eliminated due to scenarios such as Case 1 and 
Case 2, are identified, and set aside as potential false negatives that can be “rescued” 
from elimination. To determine whether or not a protein isoform should be “rescued” or 
eliminated, the long-read transcriptional abundance information obtained for each iso-
form is leveraged as an additional source of data. Since RNA abundance is at least mod-
erately correlated with protein expression [25, 52] (R-squared = 0.65, Additional file 1: 
Fig. S5a), a high abundance transcript would have a higher probability, than a low abun-
dance transcript, of generating the corresponding protein which was observed in our 
dataset (Additional file 1: Fig. S5b). In the R&R algorithm, protein isoforms are only res-
cued from elimination if their transcriptional abundance is greater than a user-specified 
abundance threshold. We selected a conservative transcript abundance threshold of 25 
CPM (see Additional file 2: Note S5 for parameter optimization details). The impact of 
the “rescue” portion of the “Rescue & Resolve” algorithm on the protein inference results 
obtained were compared to those obtained with the traditional parsimonious protein 
inference algorithm within MetaMorpheus (details regarding MetaMorpheus’s inference 
algorithm can be found at https://​github.​com/​smith-​chem-​wisc/​MetaM​orphe​us/​wiki/​
Prote​in-​Parsi​mony-​&-​Group​ing-​(Prote​in-​Infer​ence)).

We rescued 355 protein groups, of which 343 (96.6%) are Case 1 and 12 (3.4%) are 
Case 2 (Fig. 6b). A common example, Case 1, is shown in Fig. 6c for isoforms of IF116, 
in which the dominant isoforms (PB.1137.5 and PB.1137.24) are not the isoform that 
contains the longest sequence (PB.1137.2). Notably, these isoforms are entirely novel, as 
compared to isoforms found in GENCODE. Collectively, the “rescued” protein isoforms 
represented a 6.5% increase in the number of PacBio-derived protein isoforms identified 
at 1% FDR, compared to what is obtained without the “R&R” algorithm, using MetaMor-
pheus’ traditional parsimonious approach. Validation of protein inference approaches is 

https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
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exceedingly difficult, in that we do not know the true composition of the sample, and 
standard protein mixtures lack the complexity necessary to model the human proteome. 
This is especially true in the case of modeling human isoform diversity where the “Res-
cue & Resolve” algorithm is most beneficial. To validate the accuracy of the “rescued” 
protein isoform identifications, we used an independent multi-protease MS dataset to 
generate a “ground truth” of protein isoform presence, enabling us to calculate the rate 
of validation of the “rescued” protein isoforms within the high coverage multi-protease 
dataset, as compared to the validation rate of a random control (see Additional file 2: 
Note S6). We observed that 12.2% of protein groups that were “rescued” were confirmed 
to be expressed in the multi-protease data, which is much greater than the average frac-
tion of “rescued” protein isoforms validated from the distribution of the randomized 
control 1.4% (N = 1000 permutations, p-value < 0.0001, Fig.  6d). Details on the con-
struction of the randomized control permutations can be found in Additional file  2: 
Note S6. Therefore, these results indicate that many true protein isoforms are rescued 
based on the incorporation of long-read sequencing knowledge.

The “resolve” portion of the R&R algorithm addresses a third scenario which can arise 
during protein inference (Case 3, Fig.  6a), where the parsimonious process generates 
ambiguity through a protein group which contains two or more indistinguishable pro-
tein isoforms (based on equivalent peptide evidence). Ambiguous protein groups can be 
composed of three different classes of isoforms categorized by their relative transcrip-
tional abundance: (1) dominant (a “resolved” isoform), (2) minor, or (3) co-expressed. 
The “resolve” portion of the algorithm provides the opportunity to “resolve” these 
ambiguous protein groups to a single, dominant isoform, or provides support for the 
co-expression of multiple protein isoforms based on relative transcriptional abundance 
of each isoform within the group. For instances of Case 3, the relative transcriptional 
abundances underlying the predicted protein isoforms could indicate likelihood of 
expression.

We found 2600 cases (Case 3, Fig. 6a) of indistinguishable protein isoform groups in 
the high-confidence space, in which one or more protein isoforms are indistinguishable 
by peptide evidence alone. Our algorithm provides the relative transcript abundance 
measures for protein isoforms within a group, enabling the opportunity to resolve iso-
form identifications based on underlying transcript support, which is fully at the discre-
tion of the user (Additional file 1: Fig. S5c). We found that in 1434 cases, one isoform 
comprises more than 90% of the transcript abundance, suggesting that a single domi-
nant isoform could comprise the group. For these dominant isoform-containing pro-
tein groups, the ambiguity of which protein isoform is present within the sample was 
resolved, and a single protein isoform was considered to be identified, increasing the 
precision of the protein inference results obtained. Notably, not all protein groups can 
or should be resolved to a single isoform. There are cases where multiple protein iso-
forms are co-expressed and the peptide evidence is not comprehensive enough to be 
able to sufficiently distinguish them. It is important to maintain protein group ambiguity 
when necessary and valid. We discovered 295 protein isoform groups in which multiple 
protein isoforms may be co-expressed at appreciable levels (2+ isoforms with relative 
abundance > 30%), indicating that a single representative isoform cannot be assumed for 
these cases. We validated the accuracy of the “resolved” protein isoform identifications 
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by applying the same multi-protease validation strategy used for “rescued” protein iso-
forms (see Additional file  2: Note S6). We observed that 21.2% of the “resolved” pro-
tein isoforms were confirmed to be expressed in the multi-protease data, which is much 
greater than the average fraction of “resolved” proteins validated from the distribution 
of the randomized control, 10.0% (N = 1000 permutations, p-value < 0.0001, Fig. 6e). 
Details on the construction of the randomized control permutations can be found in 
Additional file  2: Note S6. We also investigated the validation rate of the protein iso-
forms that were removed from the protein groups, to determine if their removal was 
justified. We observed that only 0.7% of the removed isoforms were confirmed to be 
expressed in the multi-protease data. This is much less than the average fraction of 
“resolved” proteins validated from the distribution of the randomized control and the 
validation rate of the experimentally “resolved” protein isoforms (Fig. 6e). Although the 
majority of the “resolved” protein isoforms (73%) are incapable of producing a detect-
able unique peptide (7 to 50 amino acids) in any of the six protease digests (Arg-C, Asp-
N, Chym, Glu-C, Tryp, and Lys-C), 86 of the 387 (22%) “resolved” isoforms capable of 
producing a theoretical unique peptide were confirmed by the identification of a unique 
peptide identified in the multi-protease dataset. All “rescued” and “resolved” groups may 
be found in Additional file 7: Table S5.

These results indicate that the incorporation of long-read transcriptional abundance 
values into the protein inference process reveals protein isoforms that were difficult to 
identify solely with MS peptide data.

Discussion
The comprehensive characterization of the cellular proteome is a major goal in proteom-
ics to understand the molecular underpinnings of normal and disease states. One factor 
impeding progress towards this goal is the lack of experimental approaches that can eas-
ily identify proteins at isoform resolution. Current efforts employ short-read RNA-seq 
approaches which cannot characterize full-length isoforms [22]. Long-read sequencing 
provides the ability to obtain full-length transcript reads [23], allowing the delineation of 
transcript isoforms and, therefore, potential full-length protein isoforms for MS analysis 
[39, 53, 54].

To our knowledge, this is the first long-read based proteogenomics pipeline that inte-
grates full-length transcripts with MS data for full-length protein isoform characteriza-
tion. We show that the availability of long-read-derived, sample-specific protein isoform 
models is critical to enhance protein isoform detection. Our pipeline produces sample-
specific, full-length protein isoform databases which enables novel peptide discovery, 
and outputs genome browser tracks for visualization of reference- and sample-derived 
isoforms as well as peptide identifications. The pipeline also includes the first protein 
inference algorithm to directly incorporate long-read sequencing data to detect protein 
isoforms heretofore intractable to MS analysis (“Rescue & Resolve”).

Integrating long-read sequencing and proteomic data presented new challenges, 
which we addressed through the development of new components in the pipeline. 
We defined for each full-length transcript the most likely canonical ORF based on 
a modified output of CPAT. Further, we created a new protein isoform classifica-
tion system, SQANTI Protein, based on the transcript isoform classification tool 
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SQANTI3. Finally, the “Rescue & Resolve” algorithm, through incorporation of long-
read transcript isoform expression data into the protein inference process, enables 
the “rescue” of protein isoforms that have significant transcriptional support but are 
nonetheless difficult to identify in MS due to high sequence overlap. The algorithm 
also enables the user to “resolve” ambiguous protein isoforms that are indistinguish-
able based on peptide evidence alone, by leveraging the relative transcriptional 
abundance for such isoforms.

Our workflow identified 45,068 distinct candidate protein isoforms from a human 
cell line (Jurkat cells), 22,807 of which were novel. These long-read sequencing-
derived protein isoforms were filtered, and a sample-specific PacBio-Hybrid database 
containing 35,119 PacBio-derived protein isoform entries was generated. Proteomic 
analysis of this database revealed 14 novel peptide identifications and 5100 protein 
isoform groups within the high-confidence space identifications at 1% FDR. Notably, 
one of the novel peptides confirmed the translation of a transcript with a retained 
intron, which highlights the utility of an empirical approach to uncover the transla-
tion of transcripts not commonly thought to be translated. The implementation of the 
heuristic-based Rescue & Resolve protein inference algorithm increased the number 
of PacBio-derived protein isoform groups identified by 355, and resolved 1434 ambig-
uous protein isoform groups to a single protein isoform identification. The resolve 
approach also highlighted the existence of 295 protein isoform groups in which mul-
tiple protein isoforms appeared to be co-expressed at appreciable levels (2+ isoforms 
with relative abundance > 30%), demonstrating it is not always appropriate to assume 
a single isoform is expressed [14]. Although the Rescue & Resolve algorithm was 
developed for use with long-read sequencing information, the algorithm could also 
be applied to proteogenomic databases and transcriptional abundance information 
derived from short-read sequencing approaches.

The results and concepts described here provide a foundation for future develop-
ment of long-read proteogenomics. The pipeline’s flexible and modular nature lends 
itself to adaptation. For example, the proteomic analysis portion of the pipeline could 
be expanded to include a semisupervised learning post-search program such as percola-
tor [55] or mokapot [56]. In the future, we plan to expand the custom ORF prediction 
algorithm to include the discovery of noncanonical ORFs, such as those with cognate 
start sites (e.g., CTG) or short upstream ORFs commonly found in the 5′ UTR [57–59]. 
Another improvement to the pipeline will be an evolution of the heuristically driven 
“Rescue & Resolve” approach. We plan to develop a probabilistic protein inference algo-
rithm in which transcriptional abundance values are incorporated into a rigorous sta-
tistical framework for the inference of protein isoforms [43, 60]. The applications of our 
computational pipeline could also include the analysis of novel genes or genetic varia-
tion that is detectable in long-read data or separately available from previous genotyp-
ing, use of ONT (i.e., nanopore) cDNA or direct RNA sequencing data [54], the analysis 
of single-cell RNA-seq, use of targeted long-read datasets [61], or the use of top-down 
proteomics data for the analysis of proteoform diversity [62].

Though long-read proteogenomics and its application hold promise, limitations 
remain. First, for the “Rescue and Resolve” approach, we assume at least a moderate 
degree of RNA-protein correlation. Although isoforms from the same gene should not 
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greatly differ in their transcript-protein correlation, several studies have reported iso-
form-specific mRNA translation [63, 64] suggesting that alternative splicing can gen-
erate transcripts with distinct cis-regulatory landscapes. Therefore, caution must be 
taken for any given protein isoform, including follow-up confirmation of expression 
in vivo. Second, as with any RNA-Seq-based dataset, even though a majority of the iso-
form diversity detected from long-read RNA-seq approaches are likely due to co- and 
post-transcriptional processing mechanisms, it is possible that genetic translocations, 
deletions, or other mutations may give rise to what is ostensibly transcript isoform vari-
ations that are actually genetic in origin. We used Jurkat cells as a model system, which 
is tetraploid, and may contain some isoform variations due to cancer-related or natural 
genetic variants [65]. Third, the pipeline results are dependent on the quality of long-
read RNA sequencing. Limitations in quality of the extracted RNA or artifacts gener-
ated during the sample handling and library preparation process (e.g., PCR artifacts) can 
detrimentally impact accuracy of predicted protein models. The sampling of full-length 
transcripts is known to be incomplete—ultra-long transcripts or those transcripts lack-
ing a polyA tail may be under sampled—and can impede the ability to derive the entire 
proteome from transcript data alone. However, as both ONT and PacBio sequencing 
improves in both coverage and sensitivity, an entire long-read-derived proteome should 
be able to be generated de novo from sample-specific transcriptomes. Furthermore, rig-
orous benchmarking studies, such as those being conducted by The Long-read RNA-seq 
Genome Annotation Assessment Project (LRGASP) Consortium, will reveal strength 
and limitations of these methods for the community [66].

Overall, the incorporation of long-read sequencing into proteogenomic workflows 
represents a tremendous opportunity for isoform-resolved investigations in basic and 
translational research. As long-read sequencing continues to evolve in throughput, accu-
racy, and accessibility, long-read proteogenomics will be adopted by researchers and cli-
nicians and become a routine practice in the context of precision medicine.

Conclusion
We show that sample-specific protein isoform models derived from long-read RNA-
seq can lead to enhanced protein isoform detection. Our pipeline enables novel pep-
tide discovery and outputs genome browser tracks for visualization of reference- and 
sample-derived isoforms as well as peptide identifications. We introduce the first pro-
tein inference algorithm that directly incorporates long-read sequencing data to detect 
protein isoforms heretofore intractable to MS analysis (“Rescue & Resolve”). This work 
represents a foundation for subsequent studies that integrate long-read RNA-seq with 
proteomics for protein isoform characterization.

Methods
PacBio long‑read RNA‑seq

PacBio (Iso-Seq) data was collected on the Jurkat T-lymphocyte cell line. Jurkat RNA was 
procured from Ambion (Thermo, PN AM7858). The RNA was analyzed on a Thermo 
Nanodrop UV-Vis and an Agilent Bioanalyzer to confirm the nominal concentration 
and ensure RNA integrity. We observed a RIN value of 9.9. From the RNA, cDNA was 
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synthesized using the NEB Single Cell/Low Input cDNA Synthesis and Amplification 
Module (New England Biolabs).

Approximately 300 ng of Jurkat cDNA was converted into a SMRTbell library using 
the Iso-Seq Express Kit SMRT Bell Express Template prep kit 2.0 (Pacific Biosciences). 
This protocol employs bead-based size selection to remove low mass cDNA, specifi-
cally using an 86:100 bead-to-sample ratio (Pronex Beads, Promega). Library prepara-
tions were performed in technical duplicate. We sequenced each library on a SMRT cell 
on the Sequel II system using polymerase v2.1 with a loading concentration of 85pM. 
A 2-h extension and 30-h movie collection time was used for data collection. The “ccs” 
command from the PacBio SMRTLink suite (SMRTLink version 9) was used to convert 
Raw reads (~ 6 million, over 349 Gbps) into Circular Consensus Sequence (CCS) reads. 
CCS reads with a minimum of three full passes and a 99% minimum predicted accuracy 
(QV20) were kept for further analysis.

Jurkat RNA‑Seq data download and analysis

Jurkat RNA-Seq data was previously collected on an Illumina HiSeq2000, generat-
ing ~ 38.8 million paired-end 150 bp reads [67]. The data was downloaded from GEO 
(GSE45428).

To obtain estimated gene and isoform-level abundances, Kallisto (version 0.44.0) was 
used, with raw reads and the GENCODE reference transcriptome (version 35, GTF file 
of the comprehensive set, protein-coding genes only) as input.

Mass spectrometry data collection

Bottom-up proteomic data was previously collected for the multi-protease and trypsin-
only data sets [48, 68]. Briefly, cells were cultured and processed with aliquots of approx-
imately 107 cells each (6 aliquots for multi-protease digest and 1 aliquot for trypsin 
digest). Aliquots were lysed in SDT buffer (4% SDS, 500 mM Tris-HCl (pH 7.4) and 180 
mM DTT) and approximately 150 μg of lysate was used for filter-aided sample prepa-
ration [69]. Each aliquot for the multi-protease data set was digested with a different 
protease (Arg-C, Asp-N, chymotrypsin, Glu-C, Lys-C, or trypsin), and the trypsin-only 
aliquot was digested using trypsin. Following digestion, peptides were fractionated off-
line by high-pH reverse-phase liquid chromatography (trypsin-only: 28 fractions, multi-
protease: 11 fractions–10 fractions for the second trypsin sample) and dried down. 
Fractions were then reconstituted in 5% acetonitrile and 1% formic acid prior to LC-MS/
MS analysis on a nanoACQUITY LC system (Waters, Milford, MA) interfaced with a 
Thermo Scientific LTQ Orbitrap Velos mass spectrometer. All mass spectrometry raw 
files are freely available online (multi-protease: https://massi​ve.​ucsd.​edu/​MSV00​00833​
04/; 28 fraction trypsin: https://​db.​syste​msbio​logy.​net/​sbeams/​cgi/​Pepti​deAtl​as/​PASS_​
View?​datas​etPas​sword=​RE434​3upo&​ident​ifier=​PASS0​0215).

PacBio Iso‑Seq data analysis

Raw reads obtained from PacBio Sequel II sequencing were processed into “High Fidelity” 
(HiFi/CCS) reads using the “ccs” command in SMRTLink. Following CCS read genera-
tion, the “lima” command was run to generate full-length reads containing both the 5′ and 
3′ primer. The 5′ primer consists of the NEB cDNA sequence (sequence: GCA​ATG​AAG​

https://massive.ucsd.edu/
http://massive.ucsd.edu/MSV000083304/
http://massive.ucsd.edu/MSV000083304/
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215
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TCG​CAG​GGT​TGGG). The 3′ primer consists of the Clontech SMARTer cDNA primer 
(sequence: GTA​CTC​TGC​GTT​GAT​ACC​ACT​GCT​T). Following “isoseq3 refine” process-
ing, polyA tail sequences are removed. Then, “isoseq3 cluster” is run in order to cluster 
full-length reads that correspond to the same transcript isoform. This process allows for 
generation of full-length, non-concatamer (FLNC) reads, which are subjected to further 
downstream processing, as described below.

The high-quality, polished transcript sequences were mapped to hg38 using minimap 
(pbmm2, version 1.4.0) [70] with the following parameters “--preset ISOSEQ –sort”. Finally, 
“isoseq3 collapse” was run in order to combine redundant reads which were not properly 
clustered in the “isoseq3 cluster” step.

We recovered the relative abundance of each of the final isoforms in each sample by 
extracting the number of full-length reads supporting each polished isoform. Full-length 
counts per million (CPM) were derived by dividing the number of full-length non-chimeric 
reads aligning to a transcript isoform (i.e., the read became part of the transcript during 
the isoform clustering step) by the total number of reads and multiplying by a factor of 
1,000,000. Only transcripts above one CPM were subjected to further analysis in this study.

Transcript isoform classification and filtering

SQANTI is a computational tool for classification and quality assessment of full-length 
isoforms sequenced on long-read platforms [27]. We used SQANTI3 version 1.3 to anno-
tate the polished transcript isoforms obtained from the Iso-Seq analysis. We used default 
parameters. Note that this includes the option to use genome-derived sequences for the iso-
form output; therefore, transcriptional variations (alternative N-termini, alternative splic-
ing, etc.), but not genetic variations, will be captured in the current version of our pipeline.

The inputs for SQANTI3 analysis include the GENCODE version 35 annotations (i.e., 
GTF file) and the human reference genome (GRCh38, only canonical chromosomes chr1-
22, X, Y). The SQANTI3 outputs—isoform and junction “classification” files—were sub-
jected to additional analysis using custom python scripts, which are part of the Nextflow 
pipeline.

After running SQANTI3, we filtered out any transcript that was (1) classified as a RT-
template switching artifact by SQANTI3, (2) had 95% or higher Adenosine (i.e., polyA) con-
tent in 20 nt of the genome immediately downstream of the aligned 3′ end of the transcript, 
indicating a possible dT intra-priming artifact, or (3) did not align to a GENCODE-anno-
tated protein-coding gene (while SQANTI3 does not exclude transcripts based on coding 
potential, for the purpose of this study, we have excluded them). Finally, we employed a 
modified version of Cupcake “filter_away_subset.py” (https://​github.​com/​Magdo​ll/​cDNA_​
Cupca​ke) to remove 5′ transcript degradation products.

Generation of a full‑length protein isoform database from long‑read RNA‑seq

ORF prediction

After deriving a high-confidence set of full-length transcript isoforms, we developed a 
pipeline for selection of the most biologically plausible canonical ORF for each Iso-Seq 
transcript (“orf_calling” module in the Nextflow pipeline).

The Coding-Potential Assessment Tool (CPAT) was used to find all candidate open 
reading frames (ORFs), allowing up to 50 candidate ORFs of 50 nt or longer. The metrics 

https://github.com/Magdoll/cDNA_Cupcake
https://github.com/Magdoll/cDNA_Cupcake
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in the CPAT result output (e.g., coding score, which incorporates a hexamer score, ORF 
length and other metrics) were used for subsequent derivation of a final score for each 
candidate ORF. Additional information on ATG start codon status was used to generate 
this final score. For each candidate ORF, the ATG start codon was determined and com-
pared to the GENCODE-annotated ATG start codon. It is difficult to predict the exact 
ATG start ab initio due to lack of a strong consensus sequence for translational initiation 
sites genome-wide, but the identity of at least some of these sites has been manually 
curated where literature evidence exists (e.g., HAVANA group, GENCODE). Therefore, 
any ORF containing an ATG start previously annotated by GENCODE was selected in 
all cases. In the case that there are multiple ORFs corresponding to two or more GEN-
CODE proteins, we selected the upstream-most ORF. Otherwise, the number of ATGs 
found upstream of the candidate ORF start site was determined for incorporation into 
the final scoring metric. Note that this final score employed heavy weighting for ORFs 
with ATG start sites closer to the 5′ end of the PacBio transcript.

Protein database compilation

To generate a PacBio-derived protein database for MS searching, we grouped transcripts 
that produce ORFs (i.e., proteins) of the same sequence (“refine_orf_database” module 
in the Nextflow pipeline). Within each transcript grouping, a representative or “base” 
PacBio accession was chosen based on alphanumeric sorting. The total transcript abun-
dance for each grouping is the sum of all CPM values for member transcripts.

A FASTA file was generated containing in the accession line the base Iso-Seq acces-
sion and gene name. In addition to the FASTA file, a metadata table (“jurkat_orf_refined.
tsv”) was generated containing information on the base Iso-Seq accession, all other 
accession(s) in the same protein sequence group, the gene to which the isoform mapped, 
and the aggregated CPM.

GENCODE reference protein database

The GENCODE protein database used in this study was created by downloading the 
protein-coding translation FASTA and grouping entries with the same protein sequence 
for each gene (see “make_gencode_database” module in the Nextflow pipeline). There 
are many cases in which one or more GENCODE transcripts from the same gene lead to 
the same protein sequence. We grouped such cases and defined a representative protein 
accession as the first alphanumeric GENCODE protein accession, by transcript name 
(e.g., GAPDH-201).

Cross‑mapping of protein isoforms across databases

To compare protein isoform entries across the sample-specific (PacBio-derived) and 
reference (GENCODE, UniProt) databases, we performed a standard sequence-align-
ment-based mapping (see “accession_mapping” module in the Nextflow pipeline). Spe-
cifically, a pairwise alignment of all proteins between databases is conducted, tolerating 
up to two AA mismatches. Up to two AA differences are tolerated since the three data-
bases originate from different sources of genomic or transcript nucleotide sequence. For 
example, GENCODE protein sequences are derived from the human reference genome, 
while many UniProt sequences were derived from cDNA sequences. The mapping was 
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done in an iterative manner, in which perfect alignments (i.e., end-to-end match, no 
AA differences) were first sought and any remaining unmapped entries were compared 
to the other databases allow for first a single AA and then (if still unmapped) two AA 
mismatches. Any entries with differing protein lengths or with more than two AA mis-
matches were considered distinct entries.

Mass spectrometry searching against the PacBio‑derived and GENCODE database

Standard proteomic analysis of the tryptic and multi-protease datasets was performed 
using the free and open-source search software program MetaMorpheus [71]. A custom 
branch and docker image of MetaMorpheus was created (GitHub: https://​github.​com/​
smith-​chem-​wisc/​MetaM​orphe​us/​tree/​LongR​eadPr​oteog​enomi​cs, Docker: https://​hub.​
docker.​com/r/​smith​chemw​isc/​metam​orphe​us/​tags?​page=​1&​order​ing=​last_​updat​ed 
tag: lrproteogenomics) based on MetaMorpheus version 0.0.316 which includes a novel 
protein inference algorithm termed “Rescue & Resolve.” Analysis was performed using 
either the sample-specific hybrid (PacBio+GENCODE, called “PacBio-Hybrid”) data-
base (83,532 protein entries from 19,929 genes; in which the subset of PacBio-derived 
entries are 35,119 protein entries from 6653 genes), the GENCODE human database 
(version 35; 87,729 protein entries from 19,929 genes), or the UniProt reviewed human 
database with isoforms (downloaded November 1st, 2020; 42,358 protein entries from 
20,292 genes). All searches were conducted with a contaminants database, included in 
MetaMorpheus, which contains 264 common contaminant proteins frequently found in 
MS samples.

All RAW spectra files were first converted to MzML format with MSConvert (cen-
troid mode) prior to analysis with MetaMorpheus (see “mass_spec_raw_convert” mod-
ule in the Nextflow pipeline). For the MetaMorpheus MS search, the settings used for all 
search tasks can be found in Additional file 8: Table S6. MetaMorpheus produces pep-
tide spectral match (PSM), peptide and protein group result files, which we analyzed 
in downstream custom modules. Peptide identifications constitute not only the base 
amino acid sequence but also any post-translational modifications. Two separate peptide 
identifications may be present for the same base sequence, but exist as the modified and 
unmodified form. All peptide and protein results reported employ a 1% false discovery 
rate (FDR) threshold after target-decoy searching [72].

Computational pipeline with NextflowWe implemented the long-read proteogenomic 
pipeline in Nextflow, a domain-specific language allowing for the highly flexible develop-
ment of bioinformatic pipelines capable of being deployed on local machines, servers, 
or cloud environments [73]. The ability to create distinct modules for different analyses 
through containerization (e.g., Docker) is a key benefit of this framework, enabling both 
the seamless integration of long-read RNA-seq and mass spectrometry analysis work-
flows and the flexibility to collaborate across research groups. These processes are auto-
matically parallelized for optimal efficiency of compute resources.

We developed a Nextflow pipeline to process PacBio data, convert resulting tran-
scripts into a protein database, and perform proteomics database searching. The 
workflow, including all source code, is publicly available in GitHub at https://​
github.​com/​sheyn​kman-​lab/​Long-​Read-​Prote​ogeno​mics  [74]. All docker images 

https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics
https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
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may be found in the Docker Hub (https://​hub.​docker.​com/) under the repository 
gsheynkmanlab.

The analyses were performed on the Lifebit CloudOS platform (link: https://​lifeb​it.​
ai/), and the analysis page is available with the shareable link https://​cloud​os.​lifeb​it.​ai/​
public/​jobs/​60bcb​29b30​3ee60​1a69d​8c74. The pipeline structure, including details for 
each module, is included in Additional file 1: Fig. S2. Modules can represent a previously 
established program, a modified program, or a customized script for either processing or 
analysis. The full details may be found in the Long-Read-Proteogenomics GitHub Wiki 
page https://​github.​com/​sheyn​kman-​lab/​Long-​Read-​Prote​ogeno​mics/​wiki.

Data analysis and plot generation

All downstream data analyses were performed through custom Python and/or C# scripts. 
Data analysis scripts used for figure generation may be found in the following GitHub reposi-
tory: https://​github.​com/​sheyn​kman-​lab/​Long-​Read-​Prote​ogeno​mics-​Analy​sis [75].
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