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SUMMARY

The success of immunotherapy has led to amyriad of
clinical trials accompanied by efforts to gain mecha-
nistic insight and identify predictive signatures for
personalization. However, many immune monitoring
technologies face investigator bias, missing unantic-
ipated cellular responses in limited clinical material.
We present here a mass cytometry (CyTOF) workflow
for standardized, systems-level biomarker discovery
in immunotherapy trials. To broadly enumerate im-
mune cell identity and activity, we established and
extensively assessed a reference panel of 33 anti-
bodies to cover major cell subsets, simultaneously
quantifying activation and immune checkpoint mole-
cules in a single assay. This assay enumeratesR98%
of peripheral immune cells with R4 positively identi-
fying antigens. Robustness and reproducibility are
demonstrated on multiple samples types, across
two research centers and by orthogonal measure-
ments. Using automated analysis, we identify strati-
fying immune signatures in bonemarrow transplanta-
tion-associated graft-versus-host disease. Together,
this validated workflow ensures comprehensive
immunophenotypic analysis and data comparability
and will accelerate biomarker discovery.
INTRODUCTION

Treating cancer via modulation of the immune system has

recently shown curative clinical benefit in multiple types of can-

cer for which conventional chemotherapy has not worked. Three
This is an open access article und
of the most widely employed strategies are hematopoietic stem

cell transplantation, immune checkpoint blockade (Ribas and

Wolchok, 2018), and adoptive transfer of chimeric antigen

receptor (CAR) T cells (June et al., 2018), although many other

approaches are being developed. To further investigate the

immunotherapeutic potential of all approaches and combina-

tions thereof, thousands of clinical trials are currently being

planned and conducted (Farkona et al., 2016).

Many immunotherapy trials are accompanied by immune

monitoring, which can provide crucial insights into immune cell

behavior at both population and single-cell levels. Comprehen-

sive phenotyping of immune populations aids in the elucidation

of the cellular mechanisms underlying newly developed thera-

peutic approaches. It can also identify the presence of cellular

and molecular signatures that stratify patients into distinct risk

groups and/or help to predict clinical responses to therapy.

The tremendous complexity and heterogeneity of the human

immune system necessitates the use of single-cell technolo-

gies for its analysis. Although flow cytometry has traditionally

been the mainstay for such immune-monitoring applications,

the advent of mass cytometry (i.e., cytometry by time-of-flight

[CyTOF]) now provides an opportunity to simultaneously quantify

more molecular features while reducing signal overlap and back-

ground noise (Bandura et al., 2009; Bendall et al., 2011). The high-

dimensional capabilities of mass cytometry enable the identifica-

tion of a wide array of immune populations and cellular states in a

single assay, which not only allows comprehensive immune

monitoring of small sample quantities but also across millions

of cells from large groups of patients (Spitzer and Nolan, 2016).

Before using mass cytometry for immune cell phenotyping in

clinical trials, rigorous validation studies must be performed

to establish proper experimental and analytical workflows.

Although such specialized workflows have been developed

independently at some research institutions, published studies

using these methods are typically not comparable because
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Figure 1. Comprehensive Assessment of Im-

mune Composition for Clinical Research in

Cancer Immunotherapy

(A) Common sample types anticipated from tumor

patients include peripheral blood samples and tumor

biopsies. Within these samples, immune cell lineages

and respectivesubpopulationsare indicated.Although

more subsets can be delineated, these populations

were chosen as a reference set of interest for

comprehensive immunophenotyping. In addition to

population identification, important clinical targets and

currently available biomarkers are of high interest.

(B) Antigens were selected based on their relevance

for population and subpopulation identification or

for defining important activation and/or maturation

stages.

For additional information on clones, dilutions, and

metal-assignments, see Table S1 and the Key Re-

sources Table.
each workflow uses distinct antibody panels to identify different

target immune cell populations. Furthermore, the scope of a

given study is often limited to specific target populations hypoth-

esized to be of importance instead of broadly surveying all im-

mune cell subsets in a given sample. This approach likely biases

the analysis and overlooks unanticipated, potentially novel ef-

fects on other immune cell populations. Further, the unbiased

analysis of such studies requires researchers to establish dedi-

cated analytical frameworks to more effectively mine the high-

dimensional datasets generated by mass cytometry (Arvaniti

and Claassen, 2017; Bruggner et al., 2014; Nowicka et al., 2017).

To address these issues, we here present a mass cytometry-

based experimental workflow for comprehensive immune moni-

toring of cancer immunotherapy clinical trials. The proposed

reference antibody panel used in this workflow is comprised of

a readily available, established, and validated set of 33 surface

and intracellular antibodies, enabling the robust identification of

key immune cell populations and cell states in a single assay.
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We achieved assignment of 98% of periph-

eral immune cells by positivity of four or

more antigens. Importantly, the design facil-

itates the space for additional (R10) targets

without disruption of the core reference

panel to address experiment-specific hy-

potheses, providing an unprecedented level

of flexibility and customization compared

with other workflows. Exemplifying this abil-

ity, we identify additional B-cell maturation

states and characterize myeloid cell hetero-

geneity acrossmatched primary tumors and

lymph node metastases, suggesting tissue-

dependent expression of co-stimulatory

molecules (CD86). Finally, we demonstrate

the utility of this framework by monitoring

immune cell reconstitution and identifying

disease-associated immune signatures

using an automated pipeline after bone

marrow transplantation (BMT) in leukemia
patients (n = 15). Together, this workflow provides a standardized

immune monitoring approach that can greatly improve under-

standing of key molecular and cellular factors that can influence

and predict therapeutic success and failure, providing biomarkers

to improve the application of next-generation treatments.

RESULTS

Comprehensive Phenotyping for Human Immunotherapy
Trials
To build a comprehensive human immunophenotyping panel

for a single-pass analysis, we took a cell-lineage–agnostic

approach to maximize coverage of all immune populations ex-

pected in biological specimens (i.e., peripheral blood and tissue)

from immunotherapy trials. As such, we first selected the major

immune cell lineages and their subsets that would be ideal

to detect in human cancer samples. This list comprises T cells,

B cells, natural killer (NK) cells, and various myeloid and



granulocyte populations, thus covering all major immune cell lin-

eages typically found (Figure 1A).

The importance of T cells in cancer has been well-established

and is illustrated by the clinical success of CAR–T-cell therapies

(June et al., 2018) and checkpoint-blockade approaches

(Ribas and Wolchok, 2018). Therefore, in addition to identifying

T cells and their functionally diverse subsets, determination of

the expression levels of checkpoint-related molecules, such as

PD-1, CTLA-4, and TIM-3, as well as receptors, such as

PD-L1, is critical. One specific T-cell subset of high interest

included in the panel is regulatory T (Treg) cells. Treg cells are

able to suppress T-cell responses against self-antigens as well

as anti-tumor T-cell responses and are often associated with

poor prognosis (Tanaka and Sakaguchi, 2017).

Besides T cells, functional heterogeneity also existswithin other

compartments, including NK cells. Traditionally, CD56highCD16�

are thought to be the main producers of an array of cytokines,

whereas CD56lowCD16+ NK cells exhibit increased cytolytic activ-

ity (Björklund et al., 2016; Cooper et al., 2001). Likewise, multiple

functionally diverse myeloid populations have been identified

(Villani et al., 2017; Wong et al., 2012), some of which have been

correlated with therapeutic success in immunotherapy (Krieg

et al., 2018).

To detect and analyze the immune cell populations listed in Fig-

ure 1A, we identified a combination of surface and intracellular

proteins that characterize these immune cell lineages and their

functional states (Figure1B) and selectedapanel of 33anti-human

heavy-metal–conjugated monoclonal antibodies targeting these

epitopes (TableS1;KeyResources Table). Allocationof antibodies

tospecificheavy-metal isotopes followedmasscytometry specific

panel design considerations, including allocation of low-abun-

dance targets to higher-sensitivity channels and minimization of

potential spectral overlap (Takahashi et al., 2017). Further, all anti-

bodies were titrated to maximize separation of positive and

negative populations and to minimize sources of non-specific

signal in adjacent channels (Table S1; Key Resources Table).

Importantly, given the high-dimensional capabilities of mass

cytometry, the proposed panel does not exhaust the full range

of metal isotopes commonly used in mass cytometry experi-

ments, which allows for the inclusion of 10 or more additional an-

tibodies to further customize the panel toward more-specific

hypotheses. This antibody panel, therefore, provides the back-

bone needed to comprehensively and robustly identify all major

immune cell populations in patient samples from immunotherapy

clinical trials while allowing further customization.

Analysis of Immune Composition and Activation State
Having defined the range of immune cell populations and pro-

teins to be analyzed, we used this panel to stain cryopreserved

peripheral blood mononuclear cells (PBMCs) from healthy do-

nors. Stained samples were acquired on a CyTOF mass cytom-

eter, and data were normalized using bead standards (see

Method Details). Samples were pre-gated on single, DNA+,

live, CD45+ non-platelet, and non-erythrocyte cells (Figure S1A).

Next, we used a sequential gating approach for initial data explo-

ration and to identify the major immune populations within these

samples (Figure 2A). All major immune cell lineages could be

readily identified using a series of lineage defining surface pro-
teins and calculated frequencies were found to be within known

ranges (Brodin and Davis, 2017) (Figure 2B). Importantly, using

the proposed gating strategy, we were able to assign 98.4% ±

0.3% (median ± SEM) of pre-gated cells to a specific immune

lineage. Remaining cells are likely unassigned because of the

strict cutoffs inherent to biaxial gating and could be identified

using high-dimensional approaches as shown below.

Our panel enabled the identificationofmultiple immunecell sub-

populations. For example, T cells could be further subdivided into

CD4+ T helper (Th) cells, CD8+ T cells, natural killer T (NKT) cells,

and gd T cells (Figures 2A and 2C). Additionally, using the differen-

tial expression patterns of CD27, CD45RA, CD45RO, and CCR7,

several maturation and antigen-experience states of T cells,

such as naive, effector, effector memory, and central memory,

could bediscriminated (Sallusto et al., 2004) (Figure 2C). Treg cells

were identified through high expression of the interleukin-2 recep-

tor alphachain (CD25),by low tonegative levelsof the IL-7 receptor

CD127, and via expression of the lineage-defining transcription

factor FoxP3. We tested multiple staining conditions to obtain

optimal intracellular stainingquality forFoxP3,given its importance

for Treg cell identification (Figures S1B and S1C).

Aside from T cells, other immune cell lineages could be subdi-

vided into various functional subsets (Figure 2C). Specifically, we

were able to discriminate between various stages of B-cell matu-

ration via CD27 and CD38 expression, multiple functionally

distinct monocyte subsets based on their expression of CD14

and CD16, and NK cell subsets based on their combinatorial

expression of CD16 and CD56.

In addition to immune cell composition, several other cellular

features could be evaluated using this antibody panel (Figure 2D).

CD25, HLA-DR, andCD38 allowed determination of the activation

state of T cells, whereas Ki-67 expression identified actively prolif-

erating cells across multiple cell types. Importantly, expression

levels of the immune checkpoint-related molecules PD-1, PD-L1,

CTLA-4, andTIM-3 could beassessedonall cells. Taken together,

the highly optimized approach proposed here for immune moni-

toring allowed us to comprehensively assess both immune

composition and cell activation states, simultaneously.

Reliability and Robustness across Different Analysis
Conditions
To assess the reliability and robustness of this immunopheno-

typic antibody panel in obtaining comprehensive population

enumeration, we calculated the number of detected antigens

on each individual cell. We found that 99.8% ± 0.1% (median ±

SEM) of live cells were positive for at least four or more antigens

in our panel (Figures 3A, S2A, and S2B). The same was true for

virtually all individual immune cell lineages, demonstrating the

antibody panel’s ability to further subdivide these populations

(Figure 2B). Although certain antigens might be downregulated

in specific diseases, in contexts with substantial cell activation,

this number will likely increase as additional proteins become ex-

pressed. Importantly, expression of a board range of proteins en-

sures that all major immune lineages differ from each other by

expression of multiple proteins (Figure S2C), indicating that cell

identification does not depend on a single antigen given an

appropriate gating strategy or by using clustering approaches,

as discussed below.
Cell Reports 28, 819–831, July 16, 2019 821



A B

C D

Figure 2. Data Exploration and Identification of Immune Cell Subsets in Peripheral Blood
PBMCs were stained with the indicated set of antibodies (see Table S1) and analyzed by mass cytometry.

(A) Cells were pre-gated as non-beads, DNA+, single, live, CD45+, CD235ab/CD61�, non-neutrophils (see Figure S1). The major immune lineages and certain

subsets are identified through the indicated series of gating steps.

(B) Median frequencies ± SEM in PBMCs from healthy donors (n = 5).

(C) Exemplary identification of immune cell subsets, pre-gated on the indicated populations. Treg cells can be identified as CD25high CD127low, FoxP3pos, or a

combination thereof.

(D) Assessment of expression levels of important checkpoint and activation molecules on various immune cell populations. Expression was induced by

stimulating cells with anti-CD3, anti-CD28-coated beads for 2 days.
To assess the robustness of the selected panel across different

research institutions, aliquots of PBMC samples obtained from

the same blood draw of five healthy donors were distributed to

two research centers, where sample staining was performed by
822 Cell Reports 28, 819–831, July 16, 2019
the respective researchers, using separate reagents. Stained

samples were then acquired on the two respective mass cytom-

eters present in those laboratories. Immune cell frequencies were

centrally determined through manual gating and compared
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Figure 3. Reproducible Assessments of Immune Composition across Independent Analyses

PBMCs from healthy donors (n = 5) were analyzed in two research centers. Immune cell populations were identified through serial gating as before (see Figure 2).

(A) Median number of positive antigens per cell, based on manually determined cutoffs (see Figure S2A). Numbers indicate median frequency of total pre-gated

cells. Error bars represent SEM.

(B) Median number of positive antigens per cell as in (A), stratified by immune cell lineage.

(C) Different PBMC aliquots of the same donors (n = 5) were stained and acquired by mass cytometry in two different research institutes. Frequencies of immune

lineages were determined through serial gating. Linear regression line is shown in black with the 95% confidence intervals (CIs, shaded). Coefficients, p values,

and slope D were calculated based on data from all donors.

(D) Hierarchical clustering of samples from two independent mass cytometry runs based on frequencies as in (C).

(E) PBMCs aliquots of the same donors as in (C) were stained and acquired by flow cytometry, employing four separate staining reactions. Frequencies of immune

lineages were determined through serial gating and plotted against the frequencies determined from mass cytometry as in (C). Linear regression line is shown in

black with the 95% CIs (shaded). Coefficients, p values, and slope D were calculated based on data from all five donors.

(F) Exemplary biaxial plots and frequencies of CD4+ and CD8+ T cell subsets within one donor (HD08), as determined by mass cytometry (left) and flow

cytometry (right).
between the individual runs (Figure 3C). We found strong agree-

ment (r = 0.96) between the manually gated immune cell popula-

tions from the two independent runs. This correlation was found

over a broad range of frequencies and was not dependent on

highly abundant populations (Figure S2D). Further, frequency-

based hierarchical clustering grouped aliquots from the same

donor run on different CyTOF analyzers together, thus confirming

the data reproducibility between different the study centers (Fig-
ure 3D). Additional aliquots of the same PBMCs were run by flow

cytometry, employing four independent antibody panels focusing

on separate immune cell populations. Importantly, we obtained

strong agreement (r = 0.98) between immune cell populations

over a broad range of frequencies analyzed with either flow

cytometry or CyTOF (Figures 3E, 3F, and S2D).

Lastly, to accommodate for a wide variety of immune sample

collection techniques, we assessed the effect of sample fixation
Cell Reports 28, 819–831, July 16, 2019 823



before surface staining and analysis with mass cytometry (Fig-

ures S2E–S2G). We calculated fold changes of the 95th percen-

tile between unfixed and paraformaldehyde (PFA)-fixed cells for

each antigen. Although the majority of the antigens were not

overtly altered in their dynamic ranges, a subset of antigens

(including CCR7 andCD11b) showed decreased staining on pre-

viously fixed cells. However, manually gated immune cell fre-

quencies from live-stained cells versus cells fixed with PFA

before surface staining were nevertheless highly correlated

(r = 0.94). As before, hierarchical clustering confirmed an overall

highly similar immune profile between fixed and unfixed sam-

ples. Together, these data demonstrate the robustness and

reproducibility of this mass cytometry-based analysis across

multiple study centers and staining conditions as well as strong

correlation with the historical gold standard, fluorescence-based

flow cytometry.

Data Visualization and Population Identification Using
Automated Approaches
Thus far, we used a defined sequential gating strategy to identify

major immune cell populations, a method that is widely used

by researchers and founded in empirical biological knowl-

edge. However, with the increase in simultaneously acquired

parameters, it is progressively infeasible to manually identify

populations in highly multiplexed datasets, making computa-

tional approaches, such as clustering, extremely advantageous

(Chester and Maecker, 2015; Mair et al., 2016; Saeys et al.,

2016; Spitzer and Nolan, 2016).

To enable initial exploration, high-dimensional data are often

projected into a lower-dimensional space interpretable by hu-

mans using dimensionality-reduction algorithms. These lower-

dimensional maps give an immediate overview of data structure

and the presence of various populations. One method that

has become increasingly popular is t-Distributed Stochastic

Neighbor Embedding (tSNE) (Amir et al., 2013; van der Maaten

and Hinton, 2008). We visualized PBMC data from five healthy

donors using tSNE and assigned cells to unique colors by over-

laying the results of our manual gating (Figures 4A and S3A).

Manual gating and separation by tSNE appeared in high concor-

dance, demonstrating consistent results with one another.

Another hybrid approach that allows the visualization and com-

parison of multidimensional datasets are scaffold maps (Spitzer

et al., 2015). Scaffold maps groups similar cells into clusters,

which are then visualized based on their similarity with manually

determined (e.g., gated) landmark nodes. We built a reference

scaffold map using healthy donor PBMCs and used manual

gating to define landmark nodes, which represented all major im-

mune cell populations identified in our mass cytometry data (Fig-

ure 4B). This method allows for comparison with other samples,

such as tumor-infiltrating leukocyte populations from tissue

biopsies of cancer patients, which can then be mapped onto

this reference map and compared through visual inspection or

statistical methods (Spitzer et al., 2017) (Figure 4C).

Besides scaffold, a multitude of other high-dimensional clus-

tering algorithms have been reported (Weber and Robinson,

2016). Although many of these algorithms now have graphical

user interfaces (e.g., cytofkit [Chen et al., 2016] and Cytosplore

[van Unen et al., 2017]), comprehensive and reproducible anal-
824 Cell Reports 28, 819–831, July 16, 2019
ysis methods for large groups of samples remains a challenge

that often requires basic familiarity with programming languages.

Recent automated commercial solutions have been devel-

oped to analyze large multidimensional datasets. We here em-

ployed the Astrolabe platform (Astrolabe Diagnostics, Inc.),

which uses the flow self-organization map (FlowSOM) algorithm

(Van Gassen et al., 2015), followed by a labeling step that auto-

matically assigns cells to pre-selected and biologically known

immune cell lineages (Figures 4D and 4E). Depending on the

required resolution, these populations can be further subdivided,

again using unsupervised FlowSOM-based clustering (Fig-

ure S3B). Using the Matthews correlation coefficient (MCC;

see Method Details) to compare lineage assignments between

manual gating and clustering, we found good correlations

for all major leukocyte populations (Figures 4F, S3C, and S3D),

with minor disagreements for basophils (present here at

extremely low levels) and NK cell subsets (Figure S3E).

In summary, a variety of automated methodologies can be

applied to the high-dimensional datasets generated using our

proposed antibody panel, thus allowing the exploration, visuali-

zation, and comparison of single samples or sample groups to

ultimately gain novel biological insights in a hypothesis-free

and comprehensive approach.

Identifying Disease-Associated Immune Signatures
Following BMT
One scenario in which comprehensive immunophenotyping,

without prior knowledge of the system composition, is crucial

is hematopoietic reconstitution in leukemia patients following

BMT.We collected PBMC samples from 15 individuals, sampled

at multiple time points after BMT, for a total of 28 samples (see

Table S2). Of these patients, a small subset suffered from graft

versus host disease (GvHD, n = 3), whereas most other patients

did not experience such complications (Figure 5A). To monitor

immune reconstitution and to identify potential GvHD-associ-

ated immune signatures, we applied the above outlined mass

cytometry–based experimental and analytic workflow.

After staining and acquisition,weused the Astrolabe platform to

identify the major immune populations and their subsets. Anno-

tated clustering identified 30 immune cell subsets spanning the

major immune lineages (Figure 5B). tSNE dimensionality reduction

was used to give an immediate overview of various reconstituted

populations (Figure 5C). Across all samples, immune reconstitu-

tion was dominated by T cells (29.0% ± 7.5%) and monocytes

(27.0% ± 5.4%), followed by NK cells (7.1% ± 0.9%) and human

leukocyte antigen–DR isotype (HLA-DR)�CD16+ cells (Figure 5E).

B cells (dominated by CD27� B cells) were present at lower fre-

quency (2.5% ± 1.3%).

Exploring the biological significance of patient-to-patient vari-

ation in their immune composition, we investigated whether im-

mune cell proportions stratify among patients with different clin-

ical outcomes, e.g., the occurrence of GvHD. To compare

between patients with or without GvHD, we calculated the fold

changes (FCs), p values, and false discovery rates (FDRs), cor-

recting for multiple-hypothesis testing (see Method Details).

This approach identified a reduction in two immune cell popula-

tions as a potential immune-signature of failed engraftment/

occurrence of GvHD in this cohort (Figure 5F). First, CD27�
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Figure 4. Automated Data Visualization and Population Identification

PBMCs from healthy subjects (n = 5) and tumor biopsies from cancer patients (n = 5) were analyzed by mass cytometry using the reference panel (see Table S1).

(A) Data from all healthy donors was randomly subsampled to 20,000 cells and subjected to tSNE dimensionality reduction. Cells are colored by their immune cell

lineage assignment from manual gating. Grey indicates cells unassigned by manual gating.

(B) A reference scaffold map of PBMC data was created using manually gated landmarks (colored) and all antigens for the clustering analysis. Inter-cluster

connections were used to create the graph but are not depicted here. Shown is one representative sample (HD03).

(C) Pre-gated, CD45+ cells from tumor samples were mapped onto the reference scaffold. Maps from two patients are shown (left). Enlarged examples of

modulated immune cell populations are pointed out (right).

(D) PBMC data as above were clustered and automatically annotated using the Astrolabe platform. Shown are median expression levels of all antigens for all

clusters.

(E) Exemplary expression profiles of immune cell populations as determined by Astrolabe (HD06).

(F) Mean precision, recall, F1score, and Matthews correlation coefficient (MCC; see Method Details) between manual lineage assignments and FlowSOM-based

clustering for all donors and populations (left). Mean MCC for all donors stratified by population (right). Two horizontal lines indicate MCC = 1 (maximum

agreement) and MCC = 0.8, respectively. Error bars represent SEM.
B cells were reduced in patients with GvHD (0.44% ± 0.21%

versus 3.33% ± 2.2%, p = 0.0046, FDR = 0.069; Figure 5G). In

addition, patients with GvHD displayed lower frequencies of

naive CD4+ T cells (0.09% ± 0.03% versus 0.3% ± 0.3%, p =

0.0036, FDR = 0.069). Lastly, although the comprehensive
assessment of a broad range of immune cell populations was

necessary to identify these stratifying populations, once their

identity is known, manual gating can again be used to confirm

their reduction in patients with GvHD (Figure 5H). In summary,

this demonstrates the utility of the outlined framework to perform
Cell Reports 28, 819–831, July 16, 2019 825
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Figure 5. Identification of Disease-Associated Immune Signatures Following Bone Marrow Transplantation

(A) Following tumor therapy, patients (n = 15; Table S2) underwent bone marrow transplantation. Peripheral blood samples were collected and subsequently

stained with the described reference panel and analyzed by mass cytometry.

(B) Data were uploaded to the Astrolabe platform, clustered, and automatically annotated. Exemplary heatmap of one patient depicting the median protein

expression levels across all populations identified through clustering.

(C) The 20,000 randomly subsampled cells of one patient were subjected to tSNE dimensionality reduction. Color-assignments represent different immune

lineages as identified through annotated clustering.

(D) Clustering-derived frequencies of immune populations for all samples in this study (n = 28). Boxplots depict the interquartile range (IQR)

with a horizontal line representing the median. Whiskers extend to the farthest data point within a maximum of 1.53 IQR. Points represent individual

samples.

(E) Frequencies of immune cell subpopulations were combined into frequencies for major immune cell lineages and color-coded as in (C). Pie chart depicting the

median frequencies ± SEM of all major immune lineages across all samples (left). Immune composition for all analyzed samples (n = 28; right). (F) FDR and fold

change (FC) of immune cell frequencies in patients with or without GvHD.

(legend continued on next page)
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clinically relevant monitoring of immune perturbations in a med-

ical setting. Employing this approach, treatment-, disease-, or

time-dependent, immunological responses can be assessed in

a straightforward and comprehensive manner to discover novel

biomarkers and immune signatures.

Extendibility and Flexibility of the Reference Assay
Framework
Given the proposed application of this workflow to a diverse

array of studies, an important feature of the immunophenotypic

antibody panel is that it does not exhaust the full range of avail-

able lanthanide isotopes available for use by mass cytometry.

Up to 10 antibodies or more, depending on the availability of

newly developed reagents, can be added to the described refer-

ence panel without modification. We illustrated this ability to

customize the panel in two separate scenarios, focusing on

different leukocyte populations (see Table S3). We targeted up

to 10 additional antigens with mass-tagged antibodies, stained,

and acquired samples from multiple donors with these anti-

bodies in addition to the reference panel.

First, we included an additional 10 antibodies to further distin-

guish B-cell maturation as well as co-stimulatory molecule and

isotype expression (Kaminski et al., 2012) (Figures S4A–S4C).

Together with the immunophenotypic reference panel, these

additional antigens enabled the identification of multiple addi-

tional B-cell subpopulations, including plasma cells and several

stages of isotype-switched naive and memory B cells.

Further, we set focus on tissue-resident myeloid cell subpop-

ulations by including antibodies against molecules associated

with dendritic cells (DCs), neutrophils, monocytes, and macro-

phages and their activation or co-stimulatory states (Figure 6A).

For that analysis, we included tumor biopsies (n = 4) and

matched, metastatic lymph node samples (n = 2) from patients

with squamous cell carcinomas (see Table S2).

Using a combination of tSNE visualization and FlowSOM-clus-

tering, multiple myeloid subpopulations could be distinguished

(Figures 6B and 6C). This included previously unresolved sub-

sets of cDCs (CD141+ cDC1 and CD1c+ cDC2) as well as

different populations of monocyte/macrophage cells, hereafter

referred to asmonocyte-derived cells (MDCs). In addition to their

identification, these subsets could also be analyzed for differen-

tial expression of many subset associated proteins (CCR2,

CD244, CD172ab, and CD206) and costimulatory molecules

(CD40 and CD86), which have been shown reflect the activation

state and propensity to provide co-stimulation to T cells

(Figure 6D).

Although preliminary, because of the limited number of sam-

ples, this panel extension enabled us to compare between cells

isolated from primary tumors and lymph node metastases. Fre-

quencies of defined subpopulations were comparable between

tumors and lymph nodes (Figures 6E, S4D, and S4E). We further

compared the expression of costimulatorymolecules onmyeloid

populations from lymph nodes and tumors and observed a trend
(G) Comparison of differentially abundant immune cell frequencies in patientswith

median.

(H) Confirmation of reduced abundance of B cells (top) and naive CD4+ T cells (bo

B cells were pre-gated on single, live, CD45+ cells. Examples of naive CD4+ T ce
toward increased CD86 expression on all three MDC subsets

isolated from lymph node metastases compared with the

respective primary tumors (Figures 6F and 6G). In summary,

these results demonstrate that, while retaining the ability to cover

all immune populations across a variety of tissues and collection

conditions (Figures 1, 2, 3, 4, and 5), the proposed immune refer-

ence workflow provides the flexibility to further increase the res-

olution of the analysis toward a specific immune population or

scientific hypothesis.

DISCUSSION

In this study, we established a reference panel of 33 anti-human

antibodies for mass cytometry that can easily be incorporated

into routine immunophenotyping studies in the context of cancer

immunotherapy. The selected target antigens are distributed

broadly across immune cell types and thus ensure that all major

immune cell lineages and various functional subsets can be iden-

tified robustly and unambiguously. Apart from proteins essential

for the identification of immune cell populations, we also

included antibodies against targets that can be used to assess

functional states, e.g., proliferative activity or expression levels

of immune checkpoint-related molecules, such as CTLA-4,

Tim-3, PD-1, and PD-L1, some of which have already been pro-

posed as candidate biomarkers in cancer immunotherapy (Patel

and Kurzrock, 2015).

We validated the panel using various sample types from

healthy donors or cancer patients, including PMBCs and bi-

opsies of tumor tissue or lymph nodes. In all cases, we were

able to identify the major immune cell lineages as well as their

functionally diverse subsets and cell states. Additionally, these

samples were collected and analyzed by different researchers

across various research institutions, underwent different pre-

processing protocols, and were stained and acquired at multiple

locations (Leipold et al., 2018). Notwithstanding, we obtained

highly correlated results from each of the patient samples

analyzed, regardless of pre-staining processing or location

where the samples were analyzed. Additionally, immune-cell fre-

quencies derived from flow cytometry methods strongly corre-

lated with our mass cytometry results (Bendall et al., 2011),

further validating the proposed workflow.

It should be noted that the proposed reference panel fo-

cuses on major immune cell populations and well-established

subpopulations. However, to date, there is no comprehensive

consensus regarding cell-type definitions and annotations, and

many immune cell populations can be further subdivided, de-

pending on the use of additional antigens. To account for this,

and to allow customization of the antibody panel for specific

research needs, the proposed immunophenotypic reference

antibody panel does not exhaust the full range of available anal-

ysis channels, and additional antibodies can easily be added.

Importantly, the absence of spectral overlap between different

analysis channels in mass cytometry allows the straightforward
or without GvHD. Boxplots depict the IQRwith a horizontal line representing the

ttom) in an exemplary patient with (right) and without (left) GvHD. Examples of

lls were pre-gated on single, live, CD4+ T cells.
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Figure 6. Flexibility of the Proposed Framework Enables Augmented Exploration of Heterogeneous Populations

(A) Antibodies targeting additional antigens of interest were conjugated to non-occupied heavymetal isotopes (see Table S3). Cells from lymph node biopsies (n = 2)

and tumor biopsies (n = 4) of patients with head and neck carcinoma (see Table S2) were stained with these antibodies in combination with the reference set.

(B) Data were pre-gated on single, live, CD45+CD3�CD19�CD7�CD56� to exclude T cells, most B cells, and NK cells. To create a tSNE overview, data from all

samples were randomly subsampled to 20,000 cells with equal contribution from all samples. Cells are colored by their FlowSOM-based cluster-assignment.

Grey lines indicate the density distribution of the tSNE map.

(C) Cluster-based median expression levels for all population-relevant antigens used in the tSNE and FlowSOM analysis.

(D) Protein expression levels of all additional antigens are overlaid as a color-dimension onto the tSNE map.

(E) Frequencies of FlowSOM-based clusters as in (B) and (C) in all samples.

(F) Exemplary CD86 expression levels on total MDCs (CD14+ cells) in cells derived from a lymph nodemetastasis (left) and primary tumor (right) of the same patient.

(G) Median CD86 expression levels (arcsinh-transformed and percentile normalized) on MDC subsets from lymph nodes and tumors. Lines connect different

tissues of the same patients.
addition of further antibodies. We illustrated this flexibility by

including additional antibodies in the panel that were specific

for B cells ormyeloid cell subsets and activation states; however,

other cell populations or combinations thereof could be tar-

geted. Furthermore, fixation and permeabilization procedures

are already integrated in this framework, thus allowing the incor-

poration of additional intracellular antibodies without having to

modify the employed staining protocol. Currently, up to 10 chan-

nels can be customized, and making use of alternate antibody-

heavy metal-conjugation protocols, such as direct binding of

cisplatin to partially reduced antibodies (Mei et al., 2016), this

number can be further increased. Open channels also ensure

compatibility of the panel with fixed or live-cell barcoding ap-

proaches (Hartmann et al., 2018; Mei et al., 2015; Zunder
828 Cell Reports 28, 819–831, July 16, 2019
et al., 2015). These approaches help to eliminate technical vari-

ability and increase sample comparability, which is especially

valuable when using clinical samples obtained from different

research studies. Our framework, therefore, further contributes

to the standardization and quality control of mass cytometry

experimentation, which builds upon the already published re-

ports of using bead-based normalization protocols (Finck

et al., 2013) and the addition of reference cells to increase

comparability between different experiments (Kleinsteuber

et al., 2016).

With minor exceptions, this panel is exclusively comprised of

commercially available, off-the-shelf reagents, minimizing conju-

gation batch differences across time and different study sites.

Implementation of such standardized experimental workflows



and antibody panels has been proposed for flow cytometry

(Finak et al., 2016; Maecker et al., 2012) but has not yet been

implemented for analogous studies using mass cytometry. In

addition to assessing a broad and defined set of immune cell

populations, our proposed workflow will allow valuable cross-

trial comparisons and would simplify and enhance meta-

analyses as recently proposed (Hu et al., 2018).

Further, we have demonstrated that results generated using

this workflow are amenable to a variety of data analysis ap-

proaches. Major immune cell subsets and established subpopu-

lations can be identified using a series of two-dimensional gates

using the proposed manual-gating scheme (Figure 2). However,

many alternative approaches exist and, especially for the

comprehensive exploration of high-dimensional datasets, auto-

mated data analysis methods are advantageous (Newell and

Cheng, 2016; Saeys et al., 2016). We used multiple, semi-auto-

mated algorithmic analyses approaches, including tSNE dimen-

sionality reduction (Amir et al., 2013; van der Maaten and Hin-

ton, 2008) as well as clustering and visualization through

Scaffold maps (Spitzer et al., 2015). Alternatively, data could

be visualized using force-directed layouts (Samusik et al.,

2016) or uniform manifold approximation and projection

(UMAP) dimension reduction (Becht et al., 2018; McInnes and

Healy, 2018). Other approaches dedicated to identifying differ-

ential immune cell frequencies in groups of samples can be

applied, including approaches relying on statistical comparisons

of cluster frequencies (Bruggner et al., 2014; Spitzer et al., 2017),

convolutional neutral networks (Arvaniti and Claassen, 2017),

empirical Bayes moderated tests (Weber et al., 2019), or hyper-

spheres (Lun et al., 2017). Because these approaches

typically require advanced computational skills, we addi-

tionally demonstrate compatibility of this experimental workflow

with a fully-automated, commercial analysis platform (http://

astrolabediagnostics.com) to perform a systems-level analysis

of immune cell reconstitution after BMT (Lakshmikanth et al.,

2017; Stern et al., 2018) and to identify factors associated with

the development of acute GvHD (Stikvoort et al., 2017). Albeit

preliminary, because of the limited sample number and potential

confounding factors, we demonstrated the utility of our frame-

work to identify such disease-associated cellular immune signa-

tures in a clinical cohort. Importantly, we are currently employing

the described methodology to investigate the longitudinal influ-

ence of modified grafts in this scenario. In addition, this frame-

work is already being applied to multiple studies in the field of

immunotherapy research, including the study of DC vaccination

approaches in combination with checkpoint inhibition (Nowicki

et al., 2018).

In summary, we have established and extensively validated an

experimental framework for comprehensive immunophenotyp-

ing. Although the initial scope of this panel was its application

to clinical research in the field of cancer immunotherapy, its

broad assessment of immune cell states and populations would

be a valuable approach for research in other fields, such as infec-

tious disease (Bengsch et al., 2018; Newell et al., 2012), vaccine

development (Pejoski et al., 2016), and assessment of autoim-

munity (Hartmann et al., 2016; Rao et al., 2017). This study

demonstrates this platform’s broad applicability and provides

examples of how it will accelerate and improve immune moni-
toring of patients enrolled in clinical trials. Altogether, by

taking our cell-agnostic approach to immune monitoring,

laying out a unified protocol and panel for comprehensive

analysis, this study democratizes the elucidation of therapeutic

mechanisms and discovery of immune cell signatures and

biomarkers.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies for reference panel

Anti-human CD45 89Y (clone H130) Fluidigm Cat# 3089003B, RRID:AB_2661851

Anti-human CD235ab (clone HIR2) BioLegend Cat# 306602, RRID:AB_314620

Anti-human CD61 (clone VI-PL2) BioLegend Cat# 336402, RRID:AB_1227584

Anti-human CD3 (clone UCHT1) BioLegend Cat# 300402, RRID:AB_314055

Anti-human CD19 142Nd (clone HIB19) Fluidigm Cat# 3142001B, RRID:AB_2651155

Anti-human CD117 143Nd (clone 104D2) Fluidigm Cat# 3143001B, RRID: N/A

Anti-human CD11b 144Nd (clone IRCF44) Fluidigm Cat# 3144001B, RRID:AB_2714152

Anti-human CD4 145Nd (clone RPA-T4) Fluidigm Cat# 3145001B, RRID:AB_2661789

Anti-human CD8a 14Nd (clone RPA-T8) Fluidigm Cat# 3146001B, RRID:AB_2687641

Anti-human CD11c 147Sm (clone BU15) Fluidigm Cat# 3147008B, RRID:AB_2687850

Anti-human CD14 148Nd (clone RMO52) Fluidigm Cat# 3148010B, RRID: N/A

Anti-human FceRI 150Nd (clone AER-37/CRA-1) Fluidigm Cat# 3150027B, RRID: N/A

Anti-human CD123 151Eu (clone 6H6) Fluidigm Cat# 3151001, RRID:AB_2661794

Anti-human TCRgd 152Sm (clone 11F2) Fluidigm Cat# 3152008B, RRID: N/A

Anti-human CD45RA 153Eu (clone HI100) Fluidigm Cat# 3153001B, RRID: N/A

Anti-human Tim-3 154Sm (clone F38-2E2) Fluidigm Cat# 3153008B, RRID:AB_2687644

Anti-human PD-L1 156Gd (clone 29E.2A3) Fluidigm Cat# 3156026B, RRID: N/A

Anti-human CD27 158Gd (clone L128) Fluidigm Cat# 3155001B, RRID:AB_2687645

Anti-human Tbet 160Gd (clone 4B10) Fluidigm Cat# 3160010B, RRID: N/A

Anti-human CD152 161Dy (clone 14D3) Fluidigm Cat# 3161004B, RRID: N/A

Anti-human FoxP3 162Dy (clone PCH101) Fluidigm Cat# 3162011A, RRID:AB_2687650

Anti-human CD33 163Dy (clone WM53) Fluidigm Cat# 3163023, RRID:AB_2687857

Anti-human CD45RO 164Dy (clone UCHL1) Fluidigm Cat# 3164007B, RRID: N/A

Anti-human CD127 165Ho (clone A019D5) Fluidigm Cat# 3165008B, RRID: N/A

Anti-human CCR7 167Er (clone G043H7) Fluidigm Cat# 3167009A, RRID: N/A

Anti-human Ki-67 168Er (clone B56) Fluidigm Cat# 3168007B, RRID:AB_2800467

Anti-human CD25 169Tm (clone 2A3) Fluidigm Cat# 3169003B, RRID:AB_2661806

Anti-human TCRVa24-Ja18 170Er (clone 6B11) Fluidigm Cat# 3170015B, RRID: N/A

Anti-human CD38 172Yb (clone HIT2) Fluidigm Cat# 3144014B, RRID:AB_2687640

Anti-human HLA-DR 174Yb (clone L243) Fluidigm Cat# 3174001B, RRID:AB_266539

Anti-human PD-1 175Lu (clone EH12.2H7) Fluidigm Cat# 3175008B, RRID: N/A

Anti-human CD56 176Yb (clone NCAM16.2) Fluidigm Cat# 3176008B, RRID:AB_2661813

Anti-human CD16 209Bi (clone 3G8) Fluidigm Cat# 3209002B, RRID:AB_2756431

Biological Samples

PBMCs from healthy subjects Stanford blood center https://stanfordbloodcenter.org/

PBMCs from healthy subjects Parker Institute for Cancer

Immunotherapy

https://www.parkerici.org/

Tumor biopsies from cancer patients UCSF https://www.ucsf.edu/

PBMCs from bone marrow transplant patients Stanford https://www.stanford.edu/

Chemicals, Peptides, and Recombinant Proteins

Sodium heparin Sigma-Aldrich Cat# H4784

Benzonase Sigma-Aldrich Cat# E1014

Cisplatin Fluidigm Cat# 201064

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

0.1 uM centrifugal filter Millipore Cat# UFC30VV00

Intercalator-Ir Fluidigm Cat# 201192B

Calibration Beads, 151/153Eu Fluidigm Cat# 201073

Calibration Beads, EQTM Four Element Fluidigm Cat# 201078

Antibody Stabilizer Candor Bioscience Cat# 131 050

Critical Commercial Assays

eBioscience Foxp3 / Transcription Factor

Staining Buffer Set

Thermo Fisher Scientific Cat# 00-5523-00

MaxPar conjugation set Fluidigm Cat# N/A

Deposited Data

Dataset accession numbers FR-FCM-Z249

and FR-FCM-Z244

Flowrepository https://flowrepository.org

Software and Algorithms

Cytobank analysis software Kotecha et al., 2010 https://www.cytobank.org, RRID:SCR_014043

R environment R Development Core

Team, 2008

https://www.r-project.org/, RRID:SCR_001905

Rtsne van der Maaten and

Hinton, 2008

https://github.com/jkrijthe/Rtsne, RRID:SCR_016900

statisticalScaffold R package Spitzer et al., 2017 https://github.com/SpitzerLab/statisticalScaffold, RRID: N/A

Vortex Samusik et al., 2016 https://github.com/nolanlab/vortex, RRID:SCR_017047

Astrolabe N/A https://www.astrolabediagnostics.com/, RRID: N/A

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-normalization, RRID: N/A

Other

CyTOF2 mass cytometer Fluidigm Cat# N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sean C.

Bendall (bendall@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
PBMC samples

All samples from human subjects (see Table S2) were obtained and experimental procedures were carried out in accordance with

the guidelines of the Stanford Institutional Review Board (IRB). Written informed consent was obtained from all subjects. For healthy

donors, fresh whole human blood in heparin collection tubes or leukoreduction system (LSR) chamber contents (Terumo BCT) were

obtained via the Stanford Blood Center. Samples from BMT patients were drawn on 30 and 90 post BMT. PBMCs were isolated

via Ficoll (GE Healthcare) density gradient centrifugation, resuspended in fetal bovine serum (FBS, Omega Scientific) supplemented

with 10% DMSO (Sigma) and stored in liquid nitrogen.

Tissue samples

Tissue samples (see Table S2) were collected fresh shortly after surgery and transported for processing on ice in transport me-

dium (Leibovitz’s L-15 medium supplemented with 6 g/L glucose and 15 mM HEPES buffer). Tumor samples were then finely

minced and placed into tumor dissociation buffer (transport medium, 2% fetal bovine serum (FBS), 5mg/ml collagenase IV,

0.1 mg/ml DNase I) for 45 min at 37�C with gentle rotation. Following dissociation, cells were filtered through a 70 mm filter,

centrifuged at 500 g for 5 min at 4�C, and resuspended in PBS with 5 mM EDTA. Cells were then mixed with viability buffer

(PBS, 5 mM EDTA, 50 mM cisplatin) for 60 s at room temperature, quenched with wash buffer (PBS, 5 mM EDTA, 0.5% bovine

serum albumin), centrifuged at 500 g for 5 minutes at 4�C, resuspended again in wash buffer, and fixed in 1.6% PFA for 10 min

at RT. After fixation, cells were centrifuged at 600 g for 5 min at 4�C, rinsed with wash buffer, centrifuged again at 600 g for

5 min at 4�C, resuspended in freezing medium (PBS, 10% DMSO, 0.5% bovine serum albumin), and frozen at �80�C until

staining.
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METHOD DETAILS

Panel design and heavy-metal conjugation of antibodies
Most antibodies were obtained pre-conjugated to heavy-metal isotopes from Fluidigm. When possible, targets were allocated to

specific heavy-metal isotopes following the sensitivity of themass cytometers (e.g., placing lower abundance targets on higher sensi-

tivity channels) and to avoid problems with potential spectral overlap as outlined previously (Takahashi et al., 2017). Where needed,

in-house conjugations were performed using the MaxPar X8 antibody-labeling kit (Fluidigm) following an optimized and updated

protocol (Hartmann et al., 2019). In short, antibody buffer exchange was performed by washing 100 mg of antibody with R buffer

(Fluidigm) using a 50 kDa MWCO microfilter (Millipore) and centrifuging for 10 min, 120000 g at RT. Antibodies were then reduced

with 100 mL of 4 mM TCEP (Thermo Fisher) for 30 min at 37�C and washed two times with C buffer (Fluidigm). Metal chelation

was performed by adding lanthanide metal solutions (final 0.05M) to MaxPar chelating polymers in L-buffer (both Fluidigm) and incu-

bating for 40min at RT.Metal-loaded polymers were washed twice with L-buffer using a 3 kDaMWCOmicrofilter (Millipore) by centri-

fuging for 30 min, 120000 g at RT. Partially reduced antibodies andmetal-loaded polymers were incubated together for 60-120 min at

37�C. Conjugated antibodies were washed four times with 400 mL W buffer (Fluidigm) and collected by two centrifugations (2 min,

1’000 g, RT) with 50 mL of W buffer into an inverted column in a fresh 1.6 mL collection tube. Protein content was assessed by

NanoDrop (Thermo Fisher) measurement, antibody stabilization buffer (Candor Bioscience) was added to a final volume of at least

50 v/v % and antibodies were stored at 4�C.

Mass cytometry workflow
Sample preparation

Cryopreserved PBMC and tumor biopsy samples where thawed into 10 mL of cold cell culture medium (RPMI-1640 (life technolo-

gies), 10% FBS, 1x L-glutamine, 1x penicillin/streptomycin (Thermo Fisher)) supplemented with 20 U/ml sodium heparin and

0.025 U/ml benzonase (Sigma) and washed once (250 g, 4�C).
Cellular barcoding

Where indicated, samples where barcoded and combined into a composite sample before surface staining. Barcoding was per-

formed employing either a palladium-based barcoding approach applicable to fixed cells (Zunder et al., 2015) or a live cell barcoding

methodology involving antibodies against the surface molecules beta-2-microglobulin and a sodium-potassium pump (CD298) as

described (Hartmann et al., 2018).

Viability staining

Cisplatin (Sigma) was resuspended to 100mM in DMSO, pre-conditioned for 48 h at 37�C and stored at�20�C. Viability staining was

performed by resuspending the sample in 1mL of PBS and adding cisplatin to a final concentration of 500 nM, followed by incubation

for 5 min at RT and washing with CSM. Where indicated, cells were fixed with 1.6% PFA in PBS for 10 min at RT and washed twice

with cell staining medium (CSM: PBS with 0.5% BSA and 0.02% sodium azide (all Sigma)) before staining. In case live cell barcoding

was employed, viability assessment was performed by substituting cisplatin with DCED-palladium (Sigma) and following the protocol

as described here.

Antibody staining

Cell-surface antibody master-mix (2x) was prepared by adding appropriate dilutions of all cell-surface antibodies (Table S1; Key

Resources Table) into 50 mL CSM per sample. If samples contained more than 3 3 106 cells, antibody volume (but not total CSM

volume) was increased accordingly (e.g., 2-fold for up to 6 3 106 cells). The antibody master-mix was then filtered through a pre-

wetted 0.1 mm spin-column (Millipore) to remove antibody aggregates and 50 mL were added to the sample resuspended in 50 mL

of CSM. After incubation for 30 min at RT, cells were washed once with CSM. For intracellular staining, cells were fixed using the

FoxP3 / transcription factor staining buffer set (Thermo Fisher Scientific) to fix for 1 h at RT. After fixation, samples were washed

once with CSM and once with 1x permeabilization buffer (Thermo Fisher Scientific) by centrifugation for 5 min, 600 g at 4�C. Intra-
cellular antibody master-mix (2x) was prepared analogously to the surface antibody mix by adding appropriate dilutions of all intra-

cellular antibodies (see Table S1 and Key Resources Table) into 50 ul permeabilization buffer per sample. 50 mL of 2x antibodymaster

mix was added to the samples in 50 mL permeabilization buffer and incubated for 1 h at RT. Cells were washed once with permeabi-

lization buffer and once with CSM. Finally, samples were resuspended in intercalation solution (1.6% PFA in PBS and 0.5 mM iridium-

intercalator (Fluidigm)) for 20 min at RT or overnight at 4�C.
Data acquisition

Before acquisition, samples were washed once in CSM and twice in ddH2O and filtered through a cell strainer (Falcon). Cells were

then resuspended at 13 106 cells/mL in ddH2O supplemented with 1x EQ four element calibration beads (Fluidigm) and acquired on

a CyTOF2 mass cytometer (Fluidigm).

Flow cytometry
PBMC samples were thawed as described above and subsequently treated with Fc blocking reagent (BioLegend) for 10 min at 4�C.
Antibody cocktails were then added for 30min and incubated at 4�C. All samples werewashedwith PBS containing BSA (0.5%), then

fixed with 1.6% PFA for 10 min at RT. Finally, the samples were washed and analyzed on an LSRII flow cytometer (BD Biosciences)

equipped with 405, 488, 561, and 640nm lasers.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data normalization and gating
After acquisition, data from acquired samples was bead-normalized using MATLAB-based software (Finck et al., 2013). Barcoded

cells were assigned back to their initial samples using MATLAB-based debarcoding software (Zunder et al., 2015). Normalized data

was then uploaded onto the Cytobank analysis platform (Kotecha et al., 2010) to perform initial gating and population identification

using the indicated gating schemes (Figures 2 and S1).

Data visualization and analysis
For further downstream analysis, pre-gated data was imported into the R environment (R Development Core Team, 2008) using the

flowCore package (Ellis et al., 2009). Data was transformed with an inverse hyperbolic sine (arcsinh) transformation using a cofactor

of 5 and normalized to the 99.5th percentile of each respective channel before downstream tSNE and Scaffold analysis. Visualization

of samples by tSNE dimensionality reduction was calculated using the Rtnse package (Krijthe, 2015) with default parameters:

perplexity = 30, theta = 0.5, max_iter = 1000 using the indicated channels.

To build a reference scaffold, bead and percentile-normalized data from live, CD45+, single, non-neutrophil cells was imported into

the statisticalScaffold package (Spitzer et al., 2017). All available channels were used to build the reference maps. All population-

relevant antigens were included in the clustering analysis. Astrolabe analysis was carried out by uploading bead-normalized data.

Single-cell data was clustered using the FlowSOM R package (Van Gassen et al., 2015). Cell subset definitions follow (Finak

et al., 2016; Maecker et al., 2012). Cluster labeling, method implementation, and visualization were done through the Astrolabe

Cytometry Platform (Astrolabe Diagnostics, Inc.).

Statistical analysis
Cell frequencies are reported asmedians unless stated otherwise. Standard error of median was calculated in R using bootstrapping

with 1000-fold resampling. For frequency correlations between different centers and technologies, manually gated frequencies of

cell populations were compared by linear regression using the lm() function. Hierarchical clustering using the R function hclust()

was performed using the same frequency matrix.

To compare manual gating with automated clustering we employed theMatthews correlation coefficient (MCC) (Boughorbel et al.,

2017; Matthews, 1975) which takes into account true and false positives as well as negatives and expresses these results in a single

coefficient. A coefficient of +1 represents perfect agreement.

Differential abundance analysis for identifying GvHD-associated immune signatures was done through the Astrolabe platform

using the edgeR R package (McCarthy et al., 2012; Robinson et al., 2010) following the method outlined in Lun et al. (2017). Samples

from both time points were pooled for this analysis.

Visualization
Plots were created using the ggplot2 R package (Wickham, 2016). Schematic representations were created with biorender (https://

biorender.com/). Figures were prepared in Illustrator (Adobe).

DATA AND CODE AVAILABILITY

Single-cell mass cytometry datasets for validating the reference panel across two research centers (FR-FCM-Z249) and for

identifying stratifying populations in bone-marrow transplanted patients (FR-FCM-Z244) are available at flowrepository.org.
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