Avian-human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment.

Calvin Tadmon ${ }^{\text {a,b,1 }}$ Berge Tsanou ${ }^{\text {a,c }}$ Arnaud Feukouo Fossi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Computer Science, University of Dschang, P.O. Box 67 Dschang, Cameroon.
${ }^{b}$ The Abdus Salaam International centre for Theoretical physics, Strada Costiera 11, 34151 Trieste, Italy.
${ }^{\text {c }}$ Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.

Abstract

In this paper, an avian-human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction-diffusion system with homogeneous Neumann boundary conditions is investigated. By mean of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.

Keywords: Reaction-diffusion systems, Avian influenza, SI-SEIS-C model, Stability.

1. Introduction

The avian influenza is caused by viruses adapted to birds and it normally affects wild birds and poultry. The wild birds are natural reservoir for all the sub-types of influenza A viruses. Influenza viruses are widespread and due to their high mutation rate many subtypes exist. Furthermore, H5N1, H7N4, H7N7, H7N9, H9N2 and other avian influenza viruses with pathogenicity have great potential threat to human. Poultry farms are an important reservoir of avian influenza A virus (H7N9), which plays a critical role in the genesis of influenza pandemic [1]. Avian influenza virus (AIV) transmission to humans is largely facilitated by contact with animals and excretion of contaminated droplets or aerosols [2] and to a lesser extent through transport of (dead) birds or contaminated objects (vehicles, humans, or fomites), water, food and contact with infected wildfowl or insects [3]. Historically, the avian influenza splits into two classes: the "High Pathogenic Avian Influenza (HPAI)" and the "Low Pathogenic Avian Influenza (LPAI)". The HPAI can cause a series of systemic infections that can lead to high mortality. The LPAI causes mild or no symptoms.

Recently in [4], the authors proposed the following mathematical model to study the impact of

[^0]environmental transmission on avian influenza infection:
\[

\left\{$$
\begin{array}{l}
\frac{d X}{d t}=(1-q) A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X, \tag{1.1}\\
\frac{d Y}{d t}=q A+\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y, \\
\frac{d S}{d t}=B+a E+\gamma I-\tau_{v} \frac{S}{N} Y-\tau_{e} \frac{S}{N} C-\delta S, \\
\frac{d E}{d t}=\tau_{v} \frac{S}{N} Y+\tau_{e} \frac{S}{N} C-(a+\delta+\epsilon) E, \\
\frac{d I}{d t}=\epsilon E-(\gamma+\rho+\delta) I, \\
\frac{d C}{d t}=\phi_{2} Y-\xi C .
\end{array}
$$\right.
\]

P
B
9 M
0 b
i
i
e

In (1.1), the first two equations and the last one describe the interactions between the birds and their biotope. Thus, the poultry population is divided into two classes: susceptible poultry X and asymptomatic poultry contaminated with avian influenza viruses Y. The concentration of avian influenza viruses in the poultry living environment (biotope) is C. The remaining three equations form an SEIS model for humans, which describes the dynamics of human population divided in three mutually exclusive classes: susceptible humans S, latent humans E and infected humans I.

It must be pointed out that System (1.1) neglects any spatial structure of disease spreading and is definitely not very realistic for moving individuals such as poultry and humans. For example, in our case, poultry on the farm can move from one point to another to feed or drink water and humans can migrate in large numbers from one area to another for supplies during the sales period (of poultry or eggs). During the rearing period, that is the time lag during which there is neither sale of poultry nor production of eggs, humans cannot be in the same location, so a rearing period will result in a delay. But whatever the reason for introducing a delay into any population model in which the individuals are moving, the corresponding term in the model must be nonlocal in space as well as in time. Thus it would be realistic to incorporate delay effects in the interaction terms. Furthermore, As the distribution of the individuals is in different spatial locations, the standard method of including the spatial effects consists in the introduction of diffusion terms. This lead is an extended version of the SI-SEIS-C avian-human epidemic model (1.1) in the form of a delayed reaction diffusion system of equations given below.

Therefore in this study, we propose a mathematical model for the transmission dynamics of AIV among poultry-human that incorporates both mobility of the poultry/human and spatial environmental homogeneity.

The outline of the remainder of the paper is as follows. In Section 2 we build an avian-human influenza epidemic model that incorporates diffusion, nonlocal delay and spatial homogeneous environment, and give the model's basic properties. Section 3 deals with the theoretical analysis of the continuous poultry model, while Section 4 presents an asymptotic analysis of the full model and numerical simulations are given in Section 5. Finally, we conclude the paper in Section 6 and provide some discussions that highlight few relevant perspectives.

2. Modelling framework and uniform bound

2.1. Modelling framework

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain representing an industrial city in which humans live. We assume that poultry farms are built in human sparsely populated areas and that each farmer has already bought his poultry and will not do so until the end of the sale for broilers or until the end of egg laying for laying hens. Denote by $X(x, t), Y(x, t), S(x, t), E(x, t), I(x, t)$ the number of susceptible poultry, asymptomatic poultry, susceptible humans, latent humans and infected humans respectively at time t and location x. $C(x, t)$ is the concentration of virus at time t and location x.

2.1.1. Poultry population dynamics

We assume that a total number A of poultry replenishes the farm per unit time due to importation and the proportion $(1-q) A$ is susceptible, while the remaining proportion $q A$ is asymptomatic. Susceptible and asymptomatic poultry die at rate $d X$ and $d Y$, respectively. Upon direct transmission among poultry, susceptible poultry moves to asymptomatic class following a saturation type incidence at rate $\beta_{v} X Y /(1+$ αY), such that $\beta_{v} Y$ measures the infection force of the infective poultry, the parameter α stands for the inhibitory effort, and $1 /(1+\alpha Y)$ describes the saturation due to the protection measures of the poultry farmers or the crowding of infected poultry when the number of infective poultry increases [5]. Upon indirect transmission, $\beta_{e} X C /(C+\kappa)$ corresponds to the incidence rate between environmental contaminated food particles and susceptible poultry. In the latter, β_{e} is the transmission coefficient such that $\beta_{e} \gg \beta_{v} ; 1 /(C+\kappa)$ represents saturation due to the cleaning of farms when the concentration of excretion becomes larger; $\mathcal{\kappa}$ is the concentration of avian viruses attached to aerosol particles in the farm, sufficient to guarantee 50% chance of catching the infection. In the farm, poultry move from point to other to feed or drink water. To model this displacement, we use diffusion Fick's law. Thus, the dynamics of poultry population is given by the following system:

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}-D_{1} \Delta X=(1-q) A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X \tag{2.1}\\
\frac{\partial Y}{\partial t}-D_{2} \Delta Y=q A+\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y
\end{array}\right.
$$

2.1.2. Human population dynamics

New born or immigrated humans are recruited susceptible at rate B and die naturally at rate δ. Since there are some medicines to fight against avian influenza A virus, the latent and the infected humans recover respectively at rate a and γ. The transmission of avian influenza A from poultry to humans occurs at rate τ_{v}, and τ_{e} is the transmission coefficient from the pathogenic or contaminated environment to humans. For the motivations on the choice of the different incidence functions in (2.2), we refer the reader to our previous paper [4] for details. The morbidity of the latent human is ϵ and the disease-related death rate is ρ, with $(\rho \gg \delta)$.

During the sales period (of poultry or eggs), humans migrate in large numbers from densely populated areas to these sparsely populated areas for supplies. This migration is similarly described by Fick's law of diffusion.

During the rearing period, that is the time lag during which there is neither sale of poultry nor production of eggs, humans cannot be in the same location in the industrial city. To model this phenomenon, we use a "nonlocal" delay: an average weight in space arises when the account is taken of the fact that humans have been at different points in space in previous times. Thus, for ecological reasons, it is necessary to incorporate a time delay into some equations of the model. In addition, it should be noted that the human population at all times will have some contribution in animal husbandry as in the sale or harvest of eggs. This contribution is modeled by a function $k(t)$ called the delay kernel and satisfies:

$$
k(t) \geq 0, \quad \forall t \geq 0, \quad t k(t) \in L^{1}((0,+\infty), \mathbb{R}) \text { and } \int_{0}^{+\infty} k(t) d t=1
$$

Similarly a function G, defined as the spatial averaging kernel, informs that this delay is given and enjoys the following equalities:

$$
\int_{\Omega} G(x, y, t) d x=\int_{\Omega} G(x, y, t) d y=1
$$

For example, $G(x, y, t)$ is the Green's function of the operator $\frac{\partial}{\partial t}-D_{3} \Delta$ subject to homogeneous Neumann boundary condition, and $k(t)=\frac{1}{\tau} e^{-t / \tau}$ with a constant τ representing the delay.

We assume that humans at a typical time s (with $s<t$) made a contribution so that the sale of poultry or the harvesting of eggs can take place at time t. To quantify this contribution, we first multiply the
density at time s by the function $k(t-s)$, because they have contributed at time $t-s$. Knowing that humans located at the point x at time t could have been anywhere in the industrial area at the previous instant s, we will now need to multiply this density by a function in space $G(x, y, t-s)$. Thus, the dynamics of human population is given by the following system:

$$
\left\{\begin{array}{l}
\frac{\partial S}{\partial t}-D_{3} \Delta S=B+a E+\gamma I-\delta S-\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y \tag{2.2}\\
\frac{\partial E}{\partial t}-D_{4} \Delta E=\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y-(a+\delta+\epsilon) E, \\
\frac{\partial I}{\partial t}-D_{5} \Delta I=\epsilon E-(\gamma+\rho+\delta) I .
\end{array}\right.
$$

The term

$$
\int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y
$$

with

$$
G(x, y, t-s) k(t-s) \geq 0, x, y \in \Omega, \quad t>0
$$

accounts for the infection of individuals to their present position at time t, caused by the asymptomatic poultry and the infected aerosol from all possible positions at all previous times $[6,7,8]$.

2.1.3. Virus concentration dynamics

Since an emission rate for pathogens is defined as an amount released per unit of time, it depends on source type (pigs, poultry, industrial, humans, etc.), source characteristics (e.g., stable construction or animal activity), excretion route (e.g., exhaled air or feces), pathogen species or strain, particle size, etc. For a full quantitative risk assessment, quantified emission rates are required. Hence, the contribution by humans and poultry in the contamination of the poultry farm is respectively $\phi_{1} I$ and $\phi_{2} Y$; and the degradation or decontamination rate of viruses (inactivation) due to the temperature or humidity is ξ. It is worth stressing on the fact that the contribution of humans to the contamination of the environment can be neglected because of the precautions (disinfection, wearing of protective equipments) taken by poultry producers to prevent visitors from spreading the viruses in their farms. So we assume that only infected poultry can contaminate their living environment through feces and sneezing. If in addition we neglect the diffusion of avian influenza viruses in the living environment of the poultry, then the dynamics of their concentration is modeled by the following equation:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\phi_{2} Y-\xi C . \tag{2.3}
\end{equation*}
$$

So, in the above described framework, the full model governing the dynamics of avian-human influenza is the following partially degenerated reaction-diffusion system:

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}-D_{1} \Delta X=(1-q) A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X, \tag{2.4}\\
\frac{\partial Y}{\partial t}-D_{2} \Delta Y=q A+\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y, \\
\frac{\partial S}{\partial t}-D_{3} \Delta S=B+a E+\gamma I-\delta S-\frac{S}{N} \int_{\Omega}^{t} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y, \\
\frac{\partial E}{\partial t}-D_{4} \Delta E=\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y-(a+\delta+\epsilon) E, \\
\frac{\partial I}{\partial t}-D_{5} \Delta I=\epsilon E-(\gamma+\rho+\delta) I, \\
\frac{\partial C}{\partial t}=\phi_{2} Y-\xi C,
\end{array}\right.
$$

for $t>0, x \in \Omega$. We emphasize that, the reaction part of system (2.4) corresponds the model we have proposed and studied in [4]. Therefore, the system (2.4) is its substantial extension and its analytical analysis calls for different mathematical techniques and approaches, as one will notice shortly. The parameters of the model (2.4), their biological significance and unit are gathered in Table 1.

Table 1: Biological significance of the parameters of PDE-model (2.4)-(2.6).

Parameters	Biological significance	Units
9	Proportion of asymptomatic imported poultry	no unit
a	Recovery rate of the latent humans	week ${ }^{-1}$
A	Numbers of imported poultry	ind/week
γ	Recovery rate of the infected humans	week ${ }^{-1}$
β_{v}	Direct contact rate in poultry host	$(\text { ind.week })^{-1}$
ρ	Disease-related death rate	week $^{-1}$
β_{e}	Indirect contact rate in poultry host	week ${ }^{-1}$
D_{1}	Diffusion coefficient for susceptible poultry	no unit
d	Natural death rate of poultry	week ${ }^{-1}$
D_{2}	Diffusion coefficient for infected poultry	no unit
α	Parameter of the inhibitory effort	ind ${ }^{-1}$
D_{3}	Diffusion coefficient for susceptible humans	no unit
B	Recruitment rate for humans	ind/week
D_{4}	Diffusion coefficient for latent humans	no unit
τ_{v}	Transmission rate of AIV from poultry to human	week ${ }^{-1}$
ϵ	Morbidity of the latent humans	week ${ }^{-1}$
δ	Natural death rate of humans	week ${ }^{-1}$
κ	Half saturation rate (eID ${ }_{50}$)	g. m^{3}
ξ	Degradation rate of virus	week ${ }^{-1}$
τ_{e}	Transmission rate of AIV from environment to human	ind /(g.mi ${ }^{3}$.week)
ϕ_{2}	Emission rate of poultry	g.m³/(ind.week)
D_{5}	Diffusion coefficient for infected humans	no unit
τ	Delay parameter	no unit

We assume that during an epidemic, the borders between cities are closed. Thus, the sale and consumption (of hens or eggs) will only take place in the industrial area, that is, humans and poultry are banned to leave their industrial zone. So we use the homogeneous Neumann boundary conditions

$$
\begin{equation*}
\frac{\partial X}{\partial \eta}=\frac{\partial Y}{\partial \eta}=\frac{\partial S}{\partial \eta}=\frac{\partial E}{\partial \eta}=\frac{\partial I}{\partial \eta}=0, \quad t>0, \quad x \in \partial \Omega, \tag{2.5}
\end{equation*}
$$

and initial conditions

$$
\left\{\begin{array}{l}
X(x, 0)=\varphi_{1}(x), S(x, 0)=\varphi_{2}(x), E(x, 0)=\varphi_{3}(x), I(x, 0)=\varphi_{4}(x), \tag{2.6}\\
Y(x, \theta)=\varphi_{5}(x, \theta), C(x, \theta)=\varphi_{6}(x, \theta), \quad(x, \theta) \in \bar{\Omega} \times(-\infty, 0) .
\end{array}\right.
$$

Here η is the outward unit normal vector on the boundary and Δ is the usual Laplace operator. The positive constants D_{1} and D_{2} are the diffusion coefficients for poultry; D_{3}, D_{4} and D_{5} are the diffusion coefficients for humans. The initial function φ_{i} for $i \in\{1 \cdots 6\}$ is nonnegative, Hölder continuous and satisfies $\frac{\partial \varphi_{i}}{\partial \eta}=0$ on the boundary.

2.2. Uniform bound

In this section, we provide an in-depth study of the dynamics of the initial boundary value problem (IBVP) (2.4)-(2.6) which yields various outcomes. Precisely, we prove the existence, uniqueness, positivity
and boundedness of the solution for the IBVP (2.4)-(2.6). This is done by combining the variational method and semigroup techniques to some useful functional analysis arguments.

2.2.1. Local existence and uniqueness for the IBVP

We rewrite (2.4) in the following compact form:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A_{p} u=f\left(u_{1}, u_{2}, \cdots, u_{6}\right) \quad \text { in } \Omega \times(0,+\infty), \tag{2.7}\\
\frac{\partial u_{i}}{\partial \eta}=0 \quad \text { on } \partial \Omega \times(0,+\infty), \forall i \in\{1,2,3,4,5\} \\
u_{i}=\varphi_{i} \quad \text { in } \Omega \times(-\infty, 0], \forall i \in\{1,2,3,4,5,6\},
\end{array}\right.
$$

where $u=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)^{t}=(X, Y, S, E, I, C)^{t}$,
$A_{p}=\operatorname{diag}\left\{-D_{1} \Delta+d,-D_{2} \Delta+d,-D_{3} \Delta+\delta,-D_{4} \Delta+(a+\delta+\epsilon),-D_{5} \Delta+(\gamma+\rho+\delta), \xi\right\}$ and $f=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)^{t}$ with

$$
\begin{aligned}
& f_{1}=(1-q) A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa^{\prime}} \\
& f_{2}=q A+\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}, \\
& f_{3}=B+a E+\gamma I-\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y, \\
& f_{4}=\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y, \\
& f_{5}=\epsilon E \\
& f_{6}=\phi_{2} Y .
\end{aligned}
$$

The following Lemma is instrumental for Proposition 2.2 below.
Lemma 2.1. [9] Let $K(x, y, t)=G(x, y, t) k(t), \quad x, y \in \Omega \subset \mathbb{R}^{3}$, where $k(t) \geq 0$ and $G(x, y, t)$ is the solution to

$$
\begin{equation*}
\frac{\partial G}{\partial t}=D_{2} \nabla^{2} G, \quad \frac{\partial G}{\partial \eta}=0 \quad \text { on } \quad \partial \Omega, \quad G(x, y, 0)=\delta(x-y) . \tag{2.8}
\end{equation*}
$$

Then

$$
\left\|\int_{\Omega} \int_{-\infty}^{t} K(x, y, t-s) u(y, s) d s d y\right\|_{2} \leq \int_{-\infty}^{t} k(t-s)\|u(\cdot, s)\|_{2} d s
$$

for any function $u(x, t)$ such that $\partial u / \partial \eta=0$ on $\partial \Omega$.
The local existence result for the PDE system (2.7) can be established under the following condition on f.

Proposition 2.2. Let $T>0$. If $f: \mathbb{C}\left((-\infty ; T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right) \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$, then f is uniformly Lipschitz continuous on every bounded subset of $\mathbb{C}\left((-\infty ; T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right)$.

Proof. Set $u, v \in \mathbb{C}\left((-\infty ; T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right)$ such that $u=\left(X_{1}, Y_{1}, S_{1}, E_{1}, I_{1}, C_{1}\right), v=\left(X_{2}, Y_{2}, S_{2}, E_{2}, I_{2}, C_{2}\right)$ and

$$
\begin{array}{ll}
\left\|u_{i}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq T_{m}, \quad \forall i \in\{1,2\}, \quad\left\|u_{i}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq U_{m}, \quad \forall i \in\{3,4,5\} \text { and }\left\|u_{6}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq V_{m}, \\
\left\|v_{i}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq T_{m}, \quad \forall i \in\{1,2\},\left\|v_{i}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq U_{m}, \quad \forall i \in\{3,4,5\} \text { and }\left\|v_{6}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \leq V_{m} .
\end{array}
$$

Recall that

$$
\begin{equation*}
\|u\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)}=\sum_{j=1}^{6}\left\|u_{j}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},\|f(u)-f(v)\|_{2}=\left\{\sum_{j=1}^{6}\left\|f_{j}(u)-f_{j}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})}^{2}\right\}^{\frac{1}{2}} . \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|f_{1}(u)-f_{1}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})} \leq & L_{1}^{1}\left\|X_{1}(\cdot, s)-X_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}+L_{2}^{1}\left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3}^{1}\left\|C_{1}(\cdot, s)-C_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}, \\
\leq & L_{1} \sup _{s \leq T}\left\|X_{1}(\cdot, s)-X_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{1} \sup _{s \leq T}\left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{1} \sup _{s \leq T}\left\|C_{1}(\cdot, s)-C_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
\end{aligned}
$$

where the non-vanishing L_{j}^{1} for all $j \in\{1,2,3,4,5,6\}$ are

$$
L_{1}^{1}=\beta_{v} T_{m}+\beta_{e} \kappa V_{m}+\alpha \beta_{v} T_{m}^{2}+\beta_{e} V_{m}^{2}, L_{2}^{1}=\beta_{v} T_{m}, L_{3}^{1}=\beta_{e} \kappa T_{m}
$$

and

$$
L_{1}=\max \left\{L_{1}^{1}, L_{2}^{1}, L_{3}^{1}\right\} .
$$

Similarly, there exist $L_{2}, L_{3}, L_{5}, L_{6}>0$ such that:

$$
\begin{aligned}
\left\|f_{2}(u)-f_{2}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})} \leq & L_{1}^{2}\left\|X_{1}-X_{2}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}+L_{2}^{2}\left\|Y_{1}-Y_{2}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3}^{2}\left\|C_{1}-C_{2}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
\leq & L_{2} \sup _{s \leq T}\left\|X_{1}(\cdot, s)-X_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{2} \sup _{s \leq T}\left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{2} \sup _{s \leq T}\left\|C_{1}(\cdot, s)-C_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
\end{aligned}
$$

$$
\left\|f_{5}(u)-f_{5}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})} \leq \epsilon\left\|E_{1}-E_{2}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
$$

$$
=L_{5} \sup _{s \leq T}\left\|E_{1}(\cdot, s)-E_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
$$

$$
\left\|f_{6}(u)-f_{6}(v)\right\|_{L^{p}(\Omega ; \mathbb{R})} \leq \phi_{2}\left\|Y_{1}-Y_{2}\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
$$

$$
=L_{6} \sup _{s \leq T}\left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})},
$$

$$
\begin{aligned}
\left\|f_{3}(u)-f_{3}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})} \leq & L_{3} \sup \left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3} \sup \left\|C_{1}(\cdot, s)-C_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3} \sup \left\|E_{1}(\cdot, s)-E_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3} \sup \left\|I_{1}(\cdot, s)-I_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{3} \sup \left\|S_{1}(\cdot, s)-S_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}, \forall s \leq T .
\end{aligned}
$$

Here

$$
\begin{gathered}
L_{2}=\max \left\{L_{1}^{2}, L_{2}^{2}, L_{3}^{2}\right\}, L_{3}=\max \left\{L_{1}^{3}, L_{2}^{3}, L_{3}^{3}, L_{4}^{3}, L_{5}^{3}\right\}, L_{5}=\epsilon, L_{6}=\phi_{2}, \\
L_{1}^{2}=\beta_{v} T_{m}+\beta_{e} \kappa V_{m}+\alpha \beta_{v} T_{m}^{2}+\beta_{e} V_{m}^{2}, L_{2}^{2}=\beta_{v} T_{m}, L_{3}^{2}=\beta_{e} \kappa T_{m}, L_{1}^{3}=3 \tau_{v} U_{m}^{2}, L_{2}^{3}=3 \tau_{e} U_{m}^{2}, \\
L_{3}^{3}=4 U_{m}\left(\tau_{v} T_{m}+\tau_{e} V_{m}\right), L_{4}^{3}=U_{m}\left(\tau_{v} T_{m}+\tau_{e} V_{m}\right)+a, L_{5}^{3}=U_{m}\left(\tau_{v} T_{m}+\tau_{e} V_{m}\right)+\gamma .
\end{gathered}
$$

In the same manner, there exists $L_{4}>0$ such that:

$$
\begin{aligned}
\left\|f_{4}(u)-f_{4}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})} \leq & L_{4} \sup \left\|Y_{1}(\cdot, s)-Y_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{4} \sup \left\|C_{1}(\cdot, s)-C_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{4} \sup \left\|E_{1(, s)}-E_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{4} \sup \left\|I_{1}(\cdot, s)-I_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})} \\
& +L_{4} \sup \left\|S_{1}(\cdot, s)-S_{2}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}, \forall s \leq T .
\end{aligned}
$$

Here,

$$
L_{4}=\max \left\{L_{1}^{4}, L_{2}^{4}, L_{3}^{4}, L_{4}^{4}, L_{5}^{4}\right\}, L_{1}^{4}=3 \tau_{v} U_{m}^{2}, L_{2}^{4}=3 \tau_{e} U_{m}^{2}, L_{3}^{4}=2 U_{m}\left(\tau_{v} T_{m}+\tau_{e} V_{m}\right),
$$

$$
L_{4}^{4}=U_{m}\left(\tau_{v} T_{m}+\tau_{e} V_{m}\right)
$$

Finally, setting $K=\max \left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}\right\}$, it follows that

$$
\begin{aligned}
\|f(u)-f(v)\|_{2} & =\left\{\sum_{j=1}^{6}\left\|f_{j}(u)-f_{j}(v)\right\|_{L^{2}(\Omega ; \mathbb{R})}^{2}\right\}^{\frac{1}{2}}, \\
& \leq K \sum_{j=1}^{6} \sup _{s \leq T}\left\|u_{j}(\cdot, s)-v_{j}(\cdot, s)\right\|_{\mathbb{C}(\bar{\Omega} ; \mathbb{R})}, \\
& =K \sup _{s \leq T}\|u(\cdot, s)-v(\cdot, s)\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)} .
\end{aligned}
$$

A_{p} is a closed linear operator in $L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$, whose domain is given by

$$
D\left(A_{p}\right)=\left\{u=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)^{t} \in W^{2,2}\left(\Omega ; \mathbb{R}^{6}\right), \frac{\partial u_{i}}{\partial \eta}=0 \text { on } \partial \Omega \forall i \in\{1,2,3,4,5\}\right\} .
$$

From [10], it is well known that $-A_{p}$ generates an analytic semi-group of bounded linear operators

$$
G(t)=\left\{\exp \left(-t A_{p}\right)\right\}_{t \geq 0} \text { on } L^{2}\left(\Omega ; \mathbb{R}^{6}\right) .
$$

For each $0<\alpha<1$, we introduce the fractional power space $D\left(A_{p}^{\alpha}\right)$ equipped with the graph norm of $A_{p}^{\alpha}=-\Delta+\alpha I$

$$
\|u\|_{2, \alpha}=\|u\|_{2}+\left\|A_{p}^{\alpha} u\right\|_{2} \quad \text { for } u \in D\left(A_{p}^{\alpha}\right) .
$$

We rewrite (2.4) in the following abstract form:

$$
\left\{\begin{array}{l}
\frac{d u(t)}{d t}+A_{p} u(t)=f\left(u_{t}\right), \quad 0<t<\infty \tag{2.10}\\
u(t)=\varphi(t), \quad-\infty<t \leq 0
\end{array}\right.
$$

where $u=\left(u_{1}, u_{2}, \cdots, u_{6},\right)^{t}$ and $u_{t}(\theta)=u(t+\theta)$ for $\theta \in(-\infty, 0]$.
Lemma 2.3. ([10]) $D\left(A_{p}^{\alpha}\right) \hookrightarrow \mathbb{C}^{\mu}\left(\bar{\Omega} ; \mathbb{R}^{6}\right), \quad$ if $\alpha>3 / 4$ and $0 \leq \mu<2 \alpha-\frac{3}{2}$.
here \hookrightarrow means that the inclusion is continuous. Hence, for $3 / 4<\alpha<1$, there exists a positive number c_{α} satisfying

$$
\begin{equation*}
\|u\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)}+\sum_{i=1}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)} \leq c_{\alpha}\|u\|_{2, \alpha}, \quad \forall u \in D\left(A_{p}^{\alpha}\right) . \tag{2.11}
\end{equation*}
$$

Proposition 2.4. [11] Assume that the initial function φ satisfies $\varphi=\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{6}\right)^{t} \in \mathbb{C}^{\sigma}\left((-\infty, T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right)$, with $0<\sigma<1$. Then,

$$
\begin{equation*}
\sup _{t \leq 0}\|\varphi(t)\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)}+\sup _{t, s \leq 0, t \neq s} \frac{\|\varphi(t)-\varphi(s)\|_{\mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)}}{|t-s|^{\sigma}}<\infty \tag{2.12}
\end{equation*}
$$

Corollary 2.5. ([10]) Let G be the analytic semigroup generated by $-A_{p}$: The following properties hold for the semigroup G and the fractional power space $D\left(A_{p}^{\alpha}\right)$:
(1) $G(t): L^{2}(\Omega) \longrightarrow D\left(A_{p}^{\alpha}\right) \forall t>0$,
(2) $\left\|A_{p}^{\alpha} G(t) u\right\|_{2} \leq M_{\alpha} t^{-\alpha} e^{\nu t}\|u\|_{2}, \forall t>0, \alpha \geq 0$ and $u \in L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$,
(3) $\|(G(t)-I) u\|_{2} \leq \frac{1}{\alpha} M_{1-\alpha} t^{\alpha}\left\|A_{p}^{\alpha} u\right\|_{2} \quad \forall t>0 \quad, 0<\alpha \leq 1$ and $u \in L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$,
(4) $G(t) A_{p}^{\alpha} u=A_{p}^{\alpha} G(t) u, \forall t>0, u \in D\left(A_{p}^{\alpha}\right)$.

Here M_{α} and v are some positive numbers.

Theorem 2.6. Assume Proposition 2.2 and $3 / 4<\alpha<1$ hold true. Then, for each φ satisfying (2.12) and $\varphi(0) \in D\left(A_{p}^{\alpha}\right)$, there exists a positive number T such that (2.10) has a unique strong solution u on $(-\infty, T]$ satisfying $u \in \mathbb{C}\left([0, T] ; D\left(A_{p}^{\alpha}\right)\right)$.

Proof. It is easy to see that

$$
\begin{equation*}
u(t)=G(t) \varphi(0)+\int_{0}^{t} G(t-s) f\left(u_{s}\right) d s \tag{2.13}
\end{equation*}
$$

for $t \geq 0$ is a mild solution of (2.10).
Let r denote a sufficiently large number satisfying $r>\|\varphi(0)\|_{2, \alpha}$ and Q the complete metric space

$$
Q=\left\{u \in \mathbb{C}\left([0, T] ; D\left(A_{p}^{\alpha}\right)\right) ; u(0)=\varphi(0) \text { and } \sup _{0 \leq s \leq T}\|u(s)-\varphi(0)\|_{2, \alpha} \leq r\right\} .
$$

For $u \in Q$, define $P(u):[0, T] \rightarrow \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)$ by

$$
P(u)(t)=G(t) \varphi(0)+\int_{0}^{t} G(t-s) f\left(u_{s}\right) d s \quad \text { for } 0 \leq t \leq T .
$$

We show that P maps Q into itself, and is a strict contraction.
By virtue of Proposition 2.2, Corollary 2.5 and (2.11), we have:

$$
\begin{aligned}
\|P(u)(t)-\varphi(0)\|_{2, \alpha} \leq & \frac{1}{\alpha} M_{1-\alpha} t^{\alpha}\|\varphi(0)\|_{2, \alpha} \\
& +e^{v t}\left(\frac{M_{0} c_{\alpha} r+M_{0}\left\|f\left(u_{0}\right)\right\|_{2}}{v}+\frac{M_{\alpha} c_{\alpha} r+M_{\alpha}\left\|f\left(u_{0}\right)\right\|_{2}}{1-\alpha} t^{1-\alpha}\right) .
\end{aligned}
$$

Thus, for $0<t<T_{1}<T$ such that

$$
\frac{1}{\alpha} M_{1-\alpha} T_{1}^{\alpha}\|\varphi(0)\|_{2, \alpha}+e^{\nu T_{1}}\left(\frac{M_{0} c_{\alpha} r+M_{0}\left\|f\left(u_{0}\right)\right\|_{2}}{v}+\frac{M_{\alpha} c_{\alpha} r+M_{\alpha}\left\|f\left(u_{0}\right)\right\|_{2}}{1-\alpha} T_{1}^{1-\alpha}\right) \leq r
$$

we conclude that P maps Q into itself.
Similarly, we obtain

$$
\|P(u)(t)-P(v)(t)\|_{2, \alpha} \leq K c_{\alpha} e^{v t}\left\{\frac{M_{0}}{v}+\frac{M_{\alpha}}{1-\alpha} t^{1-\alpha}\right\} \sup _{0 \leq s \leq t}\|u(s)-v(s)\|_{2, \alpha},
$$

for all $u, v \in Q$. It follows that $\|P(u)(t)-P(v)(t)\|_{2, \alpha} \leq \frac{1}{2} \sup _{0 \leq s \leq T_{2}}\|u(s)-v(s)\|_{2, \alpha}$ for $0<t<T_{2}<T$ such that

$$
K c_{\alpha} e^{\nu T_{2}}\left\{\frac{M_{0}}{v}+\frac{M_{\alpha}}{1-\alpha} T_{2}^{1-\alpha}\right\} \leq \frac{1}{2} .
$$

Therefore, P is a strict contraction mapping Q into itself if $T=\min \left\{T_{1} ; T_{2}\right\}$ is sufficiently small. Hence, applying the fixed point Theorem shows that (2.13) has a unique solution $u \in \mathbb{C}\left((-\infty, T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right) \cap$ $\mathbb{C}\left([0, T] ; D\left(A_{p}^{\alpha}\right)\right)$.

We prove that this solution u actually satisfies (2.10). It is well known (see [10]) that, if $f\left(u_{t}\right)$: $(0, T] \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$ is Hölder continuous, the function u given by (2.13) is a strong solution of (2.10). Therefore, in view of Proposition 2.2 and Equation (2.12), it suffices to show the Hölder continuity of $u:[0, T] \rightarrow \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)$. For this purpose, we employ the method used in [12].

Let $t, t+h \in[0, T]$ with $h>0$. From (2.13) we have

$$
\begin{aligned}
u(t+h)-u(t)= & G(t+h) \varphi(0)+\int_{0}^{t+h} G(t+h-s) f\left(u_{s}\right) d s \\
& -G(t) \varphi(0)+\int_{0}^{t} G(t-s) f\left(u_{s}\right) d s, \\
= & G(t)[G(h)-I] u_{0}+\int_{t}^{t+h} G(t+h-s) f\left(u_{s}\right) d s \\
& +\int_{0}^{t} G(t-s) f\left(u_{s}\right)[G(h)-I] d s, \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

For any $0 \leq \beta<\alpha$, each A_{p}^{β} will be estimated separately. we have,

$$
A_{p}^{\beta} I_{1}=\int_{t}^{t+h} A_{p}^{\beta} \frac{d}{d s} \exp \left(-s A_{p}\right) \varphi(0) d s=-\int_{t}^{t+h} A_{p}^{\beta} \exp \left(-s A_{p}\right) A_{p} \varphi(0) d s=-\int_{t}^{t+h} A_{p}^{1+\beta-\alpha} \exp \left(-s A_{p}\right) A_{p}^{\alpha} \varphi(0) d s
$$

It follows from Corollary 2.5 that if $0<\delta<1-\beta$ with $0<\delta \leq 1$, then:

$$
\begin{equation*}
\left\|A_{p}^{\beta} I_{1}\right\|_{2} \leq M_{1+\beta-\alpha}\left\|A_{p}^{\alpha} \varphi(0)\right\|_{2} e^{\nu T}\left((t+h)^{\alpha-\beta}-t^{\alpha-\beta}\right) \leq C_{1} h^{\alpha-\beta}, \tag{2.14a}
\end{equation*}
$$

$$
\begin{equation*}
\left\|A_{p}^{\beta} I_{2}\right\|_{2} \leq M_{\beta}\left(K M_{\alpha} c_{\alpha} r+\left\|f\left(u_{0}\right)\right\|_{2}\right) \int_{t}^{t+h}(t+h-s)^{-\beta} e^{v(t+h-s)} d s \leq C_{2} h^{1-\beta}, \tag{2.14b}
\end{equation*}
$$

$$
\begin{equation*}
\left\|A_{p}^{\beta} I_{3}\right\|_{2} \leq M_{\beta+\delta} \frac{1}{\delta} M_{1-\delta} h^{\delta}\left(K M_{\alpha} c_{\alpha} r+\left\|f\left(u_{0}\right)\right\|_{2}\right) \int_{0}^{t}(t-s)^{-(\beta+\delta)} e^{v(t-s)} d s \leq C_{3} h^{\delta} . \tag{2.14c}
\end{equation*}
$$

These estimates (2.14a)-(2.14c) yield the Hölder continuity of $A_{p}^{\beta} u:[0, T] \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$, with exponent $\alpha-\beta$ for any $0 \leq \beta<\alpha$. This fact together with Lemma 2.3 imply that $u \in \mathbb{C}^{\alpha-\beta}\left([0, T] ; \mathbb{C}\left(\bar{\Omega} ; \mathbb{R}^{6}\right)\right)$ for $3 / 4<\beta<\alpha$. Thus the proof is complete.

2.2.2. Positivity of solutions for the IBVP

We rewrite the IBVP (2.4)-(2.6) in the form:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\bar{D} \Delta u+g(u) u=f(u) \quad \text { in } \Omega \times(0, T), \tag{2.15}\\
\frac{\partial u}{\partial \eta}=0 \quad \text { on } \partial \Omega \times(0, T), \\
u(x, \theta)=u_{\theta i} \quad \text { in } \bar{\Omega} \times(-\infty, 0]
\end{array}\right.
$$

where $u=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)^{t}=(X, Y, S, E, I, C)^{t}$,
$g(u)=\operatorname{diag}\left(g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right), f(u)=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)^{t}, \bar{D}=\operatorname{diag}\left(D_{1}, D_{2}, \cdots, D_{5}, 0\right)$,
with $g_{1}=\beta_{v} \frac{u_{2}}{1+\alpha u_{2}}+\beta_{e} \frac{u_{6}}{u_{6}+\kappa}+d, g_{2}=-\beta_{v} \frac{u_{1}}{1+\alpha u_{2}}+d$,
$g_{3}=\delta+\frac{1}{u_{3}+u_{4}+u_{5}} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} u_{2}+\tau_{e} u_{6}\right)(y, s) d s d y$,
$g_{4}=(a+\delta+\epsilon), g_{5}=(\gamma+\rho+\delta), g_{6}=\xi, f_{1}=(1-q) A$,
$f_{2}=q A+\beta_{e} \frac{u_{1} u_{6}}{\kappa+u_{6}}, f_{5}=\epsilon u_{4}, f_{3}=B+a u_{4}+\gamma u_{5}, f_{6}=\phi_{2} u_{2}$,
$f_{4}=\frac{u_{3}}{u_{3}+u_{4}+u_{5}} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} u_{2}+\tau_{e} u_{6}\right)(y, s) d s d y$.
Note that $D_{i}>0$, for $i=\{1,2, . ., 5\}$. Denote $\mathcal{H}=L^{2}(\Omega)$ and $\mathcal{V}=H^{1}(\Omega)$. Following [13], define the Hilbert space

$$
W\left(0, T, \mathcal{V}, \mathcal{V}^{\prime}\right)=\left\{u \in L^{2}((0, T), \mathcal{V}) / \frac{\partial u}{\partial t} \in L^{2}\left((0, T), \mathcal{V}^{\prime}\right)\right\}
$$

equipped with the norm

$$
\|u\|_{W\left(0, T, V, V^{\prime}\right)}^{2}=\|u\|_{L^{2}((0, T), \mathcal{V})}^{2}+\left\|\frac{\partial u}{\partial t}\right\|_{L^{2}\left((0, T), \mathcal{V}^{\prime}\right)}^{2},
$$

and the following hypotheses for initial conditions:

$$
\begin{equation*}
u_{\theta 1}, u_{\theta 2}, u_{\theta 6} \in L^{\infty}(\Omega), u_{\theta i} \in \mathcal{H} \text { for } i \in\{3,4,5\}, u_{\theta i} \geq 0 \text { for } i \in\{1, \ldots, 6\} . \tag{2.16}
\end{equation*}
$$

Moreover, define

$$
\begin{equation*}
a(u, v)=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d x . \tag{2.17}
\end{equation*}
$$

The variational parabolic problem associated to the triple $(\mathcal{H}, \mathcal{V}, a(t, \cdot, \cdot))$, is

$$
\left\{\begin{array}{l}
\frac{d}{d t}(u(t), v)_{\mathcal{H}}+\bar{D} a(u(t), v)+\left(g\left(u_{t}\right) u(t), v\right)_{\mathcal{H}}=\left(f\left(u_{t}\right), v\right) \quad \forall v \in \mathcal{V} . \tag{2.18}\\
u(\theta)=u_{\theta i},
\end{array}\right.
$$

Given $f\left(u_{t}\right) \in L^{2}\left((0, T), \mathcal{V}^{\prime}\right)$ and $u_{\theta i} \in \mathcal{H}$, there exists $u \in W\left(0, T, \mathcal{V}, \mathcal{V}^{\prime}\right)$ such that (2.18) holds, since this problem is equivalent to (2.10).

Proposition 2.7. [13] For $u_{0} \in \mathcal{H}$ and $f \in L^{2}\left((0, T), \mathcal{V}^{\prime}\right)$, Problem (2.18) which consists in finding $u \in$ $W\left(0, T, \mathcal{V}, \mathcal{V}^{\prime}\right)$ such that

$$
\begin{equation*}
\frac{d u}{d t}+A_{p} u=f, \quad \text { with } \quad u(0)=u_{0} \tag{2.19}
\end{equation*}
$$

admits a unique solution given by

$$
\begin{equation*}
u(t)=G(t) u_{0}+\int_{0}^{t} G(t-s) f\left(u_{s}\right) d s . \tag{2.20}
\end{equation*}
$$

We first present a positivity lemma, which can be found in any standard textbook on PDE.
Lemma 2.8. [14] Let $u_{i} \in \mathbb{C}(\bar{\Omega} \times[0, T]) \cap \mathbb{C}^{2,1}(\Omega \times(0, T))$ be such that

$$
\left\{\begin{array}{l}
\frac{\partial u_{i}}{\partial t}-D \Delta u_{i}+c_{i} u_{i} \geq 0 \quad \text { in } \Omega \times(0, T], \tag{2.21}\\
\frac{\partial u_{i}}{\partial \eta} \geq 0 \quad \text { on } \partial \Omega \times(0, T], \\
u_{i}(x, 0)=u_{i}^{0}(x) \geq 0 \quad x \in \bar{\Omega},
\end{array}\right.
$$

and $c_{i} \equiv c_{i}(x, t)$ is a bounded function in $\bar{\Omega} \times[0, T], D>0$. Then $u_{i}(x, t) \geq 0$ in $\bar{\Omega} \times[0, T]$. Moreover $u_{i}(x, t)>0$ in $\Omega \times(0, T]$ unless it is identically zero.

As a consequence of Lemma 2.8, we have the following positivity result.
Lemma 2.9. Any solution of (2.4)-(2.6) with a non negative initial function is positive.
Proof. Here, one approaches the solution of (2.15) by a sequence of solutions (u_{i}^{n}) of linear equations. For $n=0, u_{i}^{0}$ denotes the solution of

$$
\left\{\begin{array}{l}
\frac{\partial u_{i}^{0}}{\partial t}-\bar{D}_{i} \Delta u_{i}^{0}=0 \quad \text { in } \Omega \times(0, T), \tag{2.22}\\
\frac{\partial u_{i}^{0}}{\partial \eta}=0 \quad \text { on } \partial \Omega \times(0, T] \\
u_{i}^{0}(\theta)=u_{\theta i} \quad \text { in } \bar{\Omega} \times(-\infty, 0]
\end{array}\right.
$$

which implies that

$$
\begin{equation*}
d \leq g_{1}\left(u^{n-1}\right) \leq \beta_{v}+\beta_{e}+d . \tag{2.24}
\end{equation*}
$$

Note that $f_{i}\left(u^{n-1}\right) \geq 0$ for all i. Since g_{4}, g_{5} and g_{6} are constants, we have $g_{i}\left(u^{n-1}\right) \in L^{\infty}(\Omega \times(0, T))$ for $i \in\{1,4,5,6\}$. It remains to show that $g_{i}\left(u^{n-1}\right) \in L^{\infty}(\Omega \times(0, T))$ for $i \in\{2,3\}$.

For this, we need to prove that $u_{i}^{n} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$, for $i \in\{1,2,6\}$.

- Case of u_{i}^{0}

Let $k \in \mathbb{N}^{*}$. We multiply the first equality in (2.22) by $\left(u_{i}^{0}\right)^{2 k-1}$, integrate over Ω and use Green formula, to get

$$
\begin{equation*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{i}^{0}\right)^{2 k} d x+D_{i}(2 k-1) \int_{\Omega}\left(u_{i}^{0}\right)^{2 k-2}\left|\nabla u_{i}^{0}\right|^{2} d x-D_{i} \int_{\partial \Omega} \frac{\partial u_{i}^{0}}{\partial \eta} u_{i}^{0} d \eta=0 . \tag{2.25}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{i}^{0}\right)^{2 k} d x \leq 0 \tag{2.26}
\end{equation*}
$$

By integrating over (θ, t), we obtain

$$
\begin{equation*}
\left\|u_{i}^{0}(t)\right\|_{L^{2 k}(\Omega)} \leq\left\|u_{i}^{0}(\theta)\right\|_{L^{2 k}(\Omega)} . \tag{2.27}
\end{equation*}
$$

When k tends to ∞, we obtain,

$$
\begin{equation*}
\left\|u_{i}^{0}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{\theta i}\right\|_{L^{\infty}(\Omega)} . \tag{2.28}
\end{equation*}
$$

This implies that $u_{i}^{0} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$.

- Case of u_{i}^{n} with $n \in \mathbb{N}^{*}$

By induction, we suppose that $u_{i}^{0}, u_{i}^{1}, \cdots, u_{i}^{n-1} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$.
For $i \in\{1,6\}$ we multiply the first equality in (2.23) by $\left(u_{i}^{n}\right)^{2 k-1}$, integrate over Ω and use Green formula, to have

$$
\begin{aligned}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{i}^{n}\right)^{2 k} d x+ & D_{i}(2 k-1) \int_{\Omega}\left(u_{i}^{n}\right)^{2 k-2}\left|\nabla u_{i}^{n}\right|^{2} d x \\
& +\int_{\Omega} g_{i}\left(u^{n-1}\right)\left(u_{i}^{n}\right)^{2 k} d x \\
& =\int_{\Omega} f_{i}\left(u^{n-1}\right)\left(u_{i}^{n}\right)^{2 k-1} d x .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\frac{1}{2 k} \frac{d}{d t} \int_{\Omega}\left(u_{i}^{n}\right)^{2 k} d x \leq 0 \tag{2.29}
\end{equation*}
$$

By integrating over (θ, t), we obtain

$$
\begin{equation*}
\left\|u_{i}^{n}(t)\right\|_{L^{2 k}(\Omega)} \leq\left\|u_{i}^{0}(\theta)\right\|_{L^{2 k}(\Omega)} . \tag{2.30}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2}+D_{i} a\left(u_{i}^{n}, u_{i}^{n}\right)+\left(g_{i}\left(u^{n-1}\right) u_{i}^{n}, u_{i}^{n}\right)_{\mathcal{H}}=\left\langle f_{i}\left(u^{n-1}\right), u_{i}^{n}\right\rangle . \tag{2.38}
\end{equation*}
$$

For $i \in\{1,3,4,5,6\}$, the form $D_{i} a$ is \mathbf{V}-coercive that is, there exists $\alpha>0$ such that $D_{i} a(u, u) \geq \alpha\|u\|_{\mathcal{V}}^{2}$ for all v in \mathcal{V}. Moreover g_{i} are bounded, that is there exists $l_{1}, l_{2}>0$ such that $l_{1} \leq g_{i}(u) \leq l_{2}$, for all $u \geq 0$. Therefore,

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2}+\alpha\left\|u_{i}^{n}\right\|_{\mathcal{V}}^{2}+l_{1}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2} \leq\left\|f_{i}\left(u^{n-1}\right)\right\|_{\mathcal{V}^{\prime}}\left\|u_{i}^{n}\right\|_{\mathcal{V}} \tag{2.39}
\end{equation*}
$$

274
When k tends to ∞, we get,

$$
\begin{equation*}
\left\|u_{i}^{n}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{\theta i}\right\|_{L^{\infty}(\Omega)} . \tag{2.31}
\end{equation*}
$$

This implies that $u_{i}^{n} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$.
Remark 2.10. Since the function $g_{2}\left(u^{n-1}\right)$ is undervalued, we make the change $w_{2}^{n}=e^{-\lambda t} u_{2}^{n}$, to obtain:

$$
\begin{equation*}
\frac{\partial w_{2}^{n}}{\partial t}-D_{2} \Delta w_{2}^{n}+\left(\lambda+g_{2}\left(e^{\lambda t} w^{n-1}\right) w_{2}^{n}=f_{i}\left(e^{\lambda t} w^{n-1}\right) e^{-\lambda t} .\right. \tag{2.32}
\end{equation*}
$$

We can choose $\lambda \geq 0$ such that

$$
\lambda+g_{2}\left(e^{\lambda t} w^{n-1}\right) \geq 0 .
$$

Doing the same manipulation as before, we obtain

$$
\begin{equation*}
\left\|w_{i}^{n}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|w_{\theta i}\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{\theta i}\right\|_{L^{\infty}(\Omega)} . \tag{2.33}
\end{equation*}
$$

As a result, we obtain that $w_{2}^{n} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$ and since $u_{2}^{n}=e^{\lambda t} w_{2}^{n}$, we have $u_{2}^{n} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$. As $u_{i}^{n} \in L^{\infty}\left((0, T) ; L^{\infty}(\Omega)\right)$ for $i \in\{1,2,6\}$ and $\forall n \in \mathbb{N}$ we have

$$
\begin{equation*}
d-\beta_{v} T_{m} \leq g_{2}\left(u^{n-1}\right) \leq d \text { and } \delta \leq g_{3}\left(u^{n-1}\right) \leq \tau_{v} V_{m}+\tau_{e} U_{m}+\delta, \tag{2.34}
\end{equation*}
$$

since $\int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s) d s d y=1$.
Conclusion 1. It then follows that $g_{i}\left(u^{n-1}\right) \in L^{\infty}(\Omega \times(0, T))$ for all i. Thus, by Lemma 2.8, $u_{i}^{n} \geq 0$.
Let us show that the sequence is bounded. From (2.18), we have

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{i}^{n}, v\right)_{\mathcal{H}}+D_{i} a\left(u_{i}^{n}, v\right)+\left(g_{i}\left(u^{n-1}\right) u_{i}^{n}, v\right)_{\mathcal{H}}=\left\langle f_{i}\left(u^{n-1}\right), v\right\rangle \quad \forall v \in \mathcal{V} . \tag{2.35}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{i}^{n}, v\right)_{\mathcal{H}}=\left\langle\frac{\partial u_{i}^{n}}{\partial t}, v\right\rangle, \tag{2.36}
\end{equation*}
$$

by density and choosing $v=u_{i}^{n}$, we have

$$
\begin{equation*}
\left\langle\frac{\partial u_{i}^{n}}{\partial t}, u_{i}^{n}\right\rangle=\frac{1}{2} \frac{d}{d t}\left(u_{i}^{n}(t), u_{i}^{n}(t)\right)_{\mathcal{H}}=\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}(t)\right\|_{\mathcal{H}}^{2} . \tag{2.37}
\end{equation*}
$$

Then by the Young inequality, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2}+\alpha\left\|u_{i}^{n}\right\|_{\mathcal{V}}^{2}+l_{1}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2} \leq \frac{1}{2 \epsilon_{1}}\left\|f_{i}\left(u^{n-1}\right)\right\|_{\mathcal{V}^{\prime}}^{2}+\frac{\epsilon_{1}}{2}\left\|u_{i}^{n}\right\|_{\mathcal{V}}^{2} . \tag{2.40}
\end{equation*}
$$

We take ϵ_{1} small enough such that $\alpha-\left(\epsilon_{1} / 2\right)=\epsilon_{2}$.

Hence

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2}+\epsilon_{2}\left\|u_{i}^{n}\right\|_{\mathcal{V}}^{2}+l_{1}\left\|u_{i}^{n}\right\|_{\mathcal{H}}^{2} \leq \frac{1}{2 \epsilon_{1}}\left\|f_{i}\left(u^{n-1}\right)\right\|_{\mathcal{V}^{\prime}}^{2} . \tag{2.41}
\end{equation*}
$$

Therefore by integration, one has

$$
\begin{equation*}
\frac{1}{2}\left\|u_{i}^{n}(t)\right\|_{\mathcal{H}}^{2}+\epsilon_{2} \int_{\theta}^{t}\left\|u_{i}^{n}(s)\right\|_{\mathcal{V}}^{2} d s+l_{1} \int_{\theta}^{t}\left\|u_{i}^{n}(s)\right\|_{\mathcal{H}}^{2} d s \leq \frac{1}{2 \epsilon_{1}} \int_{\theta}^{t}\left\|f_{i}\left(u^{n-1}\right)\right\|_{\mathcal{V}^{\prime}}^{2} d s+\frac{1}{2}\left\|u_{i}^{n}(\theta)\right\|_{\mathcal{H}}^{2} . \tag{2.42}
\end{equation*}
$$

Remark 2.11. For $i=2$, we make the following change of variable $w_{2}^{n}=e^{-\lambda t} u_{2}^{n}$ where we can take $\lambda=\beta_{1}+\beta_{2}$. Taking into account the fact that g_{2} is bounded and that the form $D_{i} a$ is \mathcal{H}-coercive, we have the same result as (2.42).

As $f_{1}(u)=(1-q) A$, we deduce that $\left(u_{1}^{n}\right)$ remains bounded in $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ and $L^{2}((0 ; T), \mathcal{V})$. As $f_{2}(u)=$ $q A+\beta_{e} \frac{u_{1} u_{6}}{\kappa+u_{6}}$, we get $f_{2}\left(u^{n-1}\right) \leq q A+\beta_{e} u_{1}^{n-1}$, which remains bounded in $L^{2}((0 ; T), \mathcal{V})$. Therefore, u_{2}^{n} has the same property as u_{1}^{n}. The same result holds for u_{6}^{n}, because $f_{6}\left(u^{n-1}\right)=\phi_{2} u_{2}^{n-1}$.
We have $f_{4}(u)=\frac{u_{3}}{u_{3}+u_{4}+u_{5}} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} u_{2}+\tau_{e} u_{6}\right)(y, s) d s d y$. Therefore, $f_{4}\left(u^{n-1}\right) \leq$ $\int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} u_{2}^{n-1}+\tau_{e} u_{6}^{n-1}\right)(y, s) d s d y$, which remains bounded in $L^{2}((0 ; T), \mathcal{V})$. A similar result holds for u_{5}^{n}, because $f_{5}\left(u^{n-1}\right)=\epsilon u_{4}^{n-1}$. Since $f_{3}=B+a u_{4}+\gamma u_{5}$, we have the same conclusion for u_{3}^{n}.

Now, we deduce that for the positive bounded sequence $\left(u_{i}^{n}\right)_{n \geq 0}$ one can extract subsequence $\left(u_{i}^{m}\right)_{m \geq 0}$ which converges uniformly for almost all t by some compact operator in $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ to u_{i}. Applying Proposition 2.7, for all n it holds that

$$
\begin{equation*}
u_{i}^{n}(t)=\int_{0}^{t} G_{i}(t-s) q_{i}^{n}(s) d s+G_{i}(t) u_{\theta i} \tag{2.43}
\end{equation*}
$$

where $G_{i}(t)$ is the semigroup generated by the unbounded operator $-\bar{D}_{i} A_{p}$. Let us denote

$$
\begin{equation*}
q_{i}^{n}(s)=-g_{i}\left(u^{n-1}(s)\right) u_{i}^{n}(s)+f_{i}\left(u^{n-1}(s)\right) . \tag{2.44}
\end{equation*}
$$

We deduce that $q_{i}^{n} \in L^{2}((0 ; T), \mathcal{V})$.
Moreover, the sequence $\left(u_{i}^{n}\right)_{n \geq 0}$ is bounded in $\mathbb{C}^{0}([0 ; T], \mathcal{H})$, which implies that the sequence $\left(q_{i}^{n}\right)_{n \geq 0}$ is bounded in $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ for all i.

Then, we can conclude by showing that operator \mathcal{G}_{i} which maps $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ into $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ and given by

$$
\begin{equation*}
\mathcal{G}_{i}^{n}(f)=\int_{0}^{t} G_{i}(t-s) f(s) d s, \tag{2.45}
\end{equation*}
$$

is compact.
Considering the triple $\left(L^{2}(\Omega), H^{1}(\Omega), a\right)$, the unbounded variational operator A_{p} associated to a is a positive symmetric operator with compact resolvent. It admits a sequence $\left(\lambda_{k}\right)_{k \geq 0}$ of positive eigenvalues with $\lim _{k \rightarrow+\infty} \lambda_{k}=\infty$ and a Hilbert basis $\left(e_{k}\right)_{k \geq 0}$ of \mathcal{H} consisting of eigenvectors of A_{p}. Since $(G(t))_{t>0}$ is the semigroup generated by $-A_{p}$, then for all $u_{0} \in \mathcal{H}$,

$$
\begin{equation*}
G_{i}(t) u_{0}=\sum_{k=0}^{+\infty} e^{-t D_{i} \lambda_{k}}\left(u_{0}, e_{k}\right) e_{k}, \tag{2.46}
\end{equation*}
$$

which proves that the operator is compact for all $t>0$, because

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} e^{-t D_{i} \lambda_{k}}=0 . \tag{2.47}
\end{equation*}
$$

Setting

$$
\begin{equation*}
G_{N}(t) u=\sum_{k=0}^{N} e^{-t D \lambda_{k}}\left(u, e_{k}\right) e_{k}, \tag{2.48}
\end{equation*}
$$

one sees that $G_{N}(t)$ is an operator with finite rank which converges to $G(t)$. The following Theorem is relevant in the sequel.

Theorem 2.12. [13] Let $t \rightarrow G(t)$ be an application from $[0,+\infty[$ into $\mathcal{L}(\mathcal{H})$. One assumes that there exists a sequence of operators $\left(G_{N}(t)\right)_{N \geq 0}$ of \mathcal{H} with the following properties:
(1) : for all N and all $t>0, G_{N}(t)$ is of finite rank and independent of t,
(2) : $t \rightarrow G_{N}(t)$, is continuous from $[0,+\infty)$ into $\mathcal{L}(\mathcal{H})$ for all N,
(3) : for $N \rightarrow \infty, G_{N}(t)$ converges to $G(t)$ in $L^{1}(] 0, T[, \mathcal{L}(\mathcal{H}))$ for all $T>0$.

Then the operator \mathcal{G} is compact from $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ into $\mathbb{C}^{0}([0 ; T], \mathcal{H})$ for all $T>0$.
From Theorem 2.12 since \mathcal{G}_{i} is compact for all i, we have

$$
\begin{equation*}
u_{i}^{n}(t)=G_{i}(t) u_{i}^{0}+\mathcal{G}_{i}\left(q_{i}^{n}\right)(t) . \tag{2.49}
\end{equation*}
$$

Then $\left(u_{i}^{n}\right)_{n} \geq 0$ belong to a relatively compact set of $\mathbb{C}^{0}([0 ; T], \mathcal{H})$. Therefore from $\left(u_{i}^{n}\right)_{n \geq 0}$ we can extract a subsequence $\left(u_{i}^{m}\right)_{m \geq 0}$ which converges uniformly to $u_{i} \in \mathbb{C}^{0}([0 ; T], \mathcal{H})$ for each i.

Conclusion 2.

$$
\begin{equation*}
u_{i}^{m} \longrightarrow u_{i} \text { in } \mathbb{C}^{0}([0 ; T], \mathcal{H}) \tag{2.50}
\end{equation*}
$$

Thus, combining Conclusion 1. and Conclusion 2. yield $u_{i} \geq 0$ and $u_{i}(\theta)=u_{\theta i}$.

2.2.3. Boundedness of the solutions for IBVP

Lemma 2.13. Let $u(x, t)$ satisfy

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-D \Delta u=f(u, x, t), \quad \text { in } \Omega \times(0, \infty), \tag{2.51}\\
u \frac{\partial u}{\partial \eta} \leq 0, \quad \text { on } \partial \Omega \times(0, \infty), \\
u(x, 0)=u^{0}(x), \quad x \in \bar{\Omega} .
\end{array}\right.
$$

where $D>0$ and $\|f(u, x, t)\| \leq K\|u\|$. If there exists p with $1 \leq p<\infty$ such that $\|u(x, t)\|_{L^{p}(\Omega)}$ is uniformly bounded for $t \geq 0$, then $\|u(x, t)\|_{L^{q}(\Omega)}$ is uniformly bounded for $t \geq 0$, where $q=p \times 2^{N}, N=1,2, \ldots$. In particular $\|u(x, t)\|_{L^{\infty}(\Omega)}$ is uniformly bounded for $t \geq 0$.

The following result shows that the solution of (2.4)-(2.6) is uniformly bounded, and global in time.
Theorem 2.14. Let $(X, Y, S, E, I, C) \in\left[\mathbb{C}(\bar{\Omega} \times[0, T)) \cap \mathbb{C}^{2,1}(\Omega \times(0, T))\right]^{6}$ be the solution of problem (2.4)-(2.6) with non-negative non-trivial initial value. Then $T=\infty$ and there exist M_{2}, M_{3} and M_{4} such that:

$$
0<X+Y \leq M_{2}, 0<S+E+I \leq M_{3} \text { and } 0 \leq C \leq M_{4},(x, t) \in \Omega \times(0, \infty) .
$$

Proof. Clearly, we have

$$
\begin{equation*}
\frac{\partial(X+Y)}{\partial t}-\Delta\left(D_{1} X+D_{2} Y\right)=A-d(X+Y) \tag{2.52a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial(S+E+I)}{\partial t}-\Delta\left(D_{3} S+D_{4} E+D_{5} I\right)=B-\delta(S+E+I)-\rho I \leq B-\delta(S+E+I) . \tag{2.52b}
\end{equation*}
$$

Integrating (2.52a) and (2.52b) over Ω yields

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}(X+Y) d x=A|\Omega|-d \int_{\Omega}(X+Y) d x \tag{2.53a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}(S+E+I) d x \leq B|\Omega|-\delta \int_{\Omega}(S+E+I) d x \tag{2.53b}
\end{equation*}
$$

Applying Gronwall inequality yields

$$
\begin{align*}
\|X+Y\|_{L^{1}(\Omega)} & =\frac{A|\Omega|}{d}\left(1-e^{-d t}\right)+\sup _{\theta \leq 0}\left\|\varphi_{1}(\cdot)+\varphi_{5}(\cdot, \theta)\right\|_{L^{1}(\Omega)} e^{-d t}, \\
& \leq \max \left\{\sup _{\theta \leq 0}\left\|\varphi_{1}(\cdot)+\varphi_{5}(\cdot, \theta)\right\|_{L^{1}(\Omega)}, \frac{A|\Omega|}{d}\right\}, \tag{2.54a}\\
\|S+E+I\|_{L^{1}(\Omega)} & \leq \frac{B|\Omega|}{\delta}+\left(\left\|\varphi_{2}(x)+\varphi_{3}(x)+\varphi_{4}(x)\right\|_{L^{1}(\Omega)}-\frac{B|\Omega|}{\delta}\right) e^{-\delta t}, \\
& \leq \max \left\{\left\|\varphi_{2}(x)+\varphi_{3}(x)+\varphi_{4}(x)\right\|_{L^{1}(\Omega)}, \frac{B|\Omega|}{\delta}\right\} . \tag{2.54b}
\end{align*}
$$

According to Lemma 2.13, we obtain the uniform bounds of X, Y, S, E and I.
Knowing from (2.54a) that Y is bounded, we have

$$
\frac{\partial C}{\partial t}=\phi_{2} Y-\xi C \Rightarrow \frac{\partial C}{\partial t} \leq \frac{A \phi_{2}|\Omega|}{d}-\xi C .
$$

By the comparison principle

$$
\begin{equation*}
C(x, t) \leq \frac{A \phi_{2}|\Omega|}{d \xi}+\left(\sup _{\theta \leq 0} \varphi_{6}(\cdot, \theta)-\frac{A \phi_{2}|\Omega|}{d \xi}\right) e^{-\xi t} \leq \max \left\{\sup _{\theta \leq 0} \varphi_{6}(\cdot, \theta), \frac{A \phi_{2}|\Omega|}{d \xi}\right\} . \tag{2.55}
\end{equation*}
$$

The proof is completed.
Moreover, from the above results, we conclude that the solution of IBVP (2.4)-(2.6) enters and stays in the region.

$$
\Sigma=\left\{(X, Y, S, E, I, C) \in\left(\Omega \times \mathbb{R}_{+}\right)^{6}: 0<X+Y \leq M_{2}, 0<S+E+I \leq M_{3}, 0 \leq C \leq M_{4}\right\},
$$

where

$$
M_{2}=\max \left\{\sup _{\theta \leq 0}\left\|\varphi_{1}(\cdot)+\varphi_{5}(\cdot, \theta)\right\|_{L^{\infty}(\Omega)}, \frac{A|\Omega|}{d}\right\},
$$

$$
M_{3}=\max \left\{\left\|\sum_{k=2}^{4} \varphi_{k}(x)\right\|_{L^{\infty}(\Omega)}, \frac{B|\Omega|}{\delta}\right\},
$$

$$
M_{4}=\max \left\{\sup _{\theta \leq 0} \varphi_{6}(\cdot, \theta), \frac{A \phi_{2}|\Omega|}{d \xi}\right\} .
$$

Hence the region Σ of biological interest, is positively-invariant under the flow induced by IBVP (2.4)(2.6).

3. Asymptotic analysis of the poultry system (when $q=0$)

We start by studying the poultry sub-system as it decouples from the human sub-system. It is given by:

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}-D_{1} \Delta X=A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X \tag{3.1}\\
\frac{\partial Y}{\partial t}-D_{2} \Delta Y=\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y, \\
\frac{\partial C}{\partial t}=\phi_{2} Y-\xi C \\
\frac{\partial X}{\partial \eta}=\frac{\partial Y}{\partial \eta}=0, \\
X(x, 0)=\varphi_{1}(x), Y(x, \theta)=\varphi_{5}(x, \theta), C(x, \theta)=\varphi_{6}(x, \theta)
\end{array}\right.
$$

Since the disease starts in poultry population, the basic reproduction number of the full model (2.4) can be computed by using the poultry sub-system (3.1). By letting the densities of the diseased compartments Y and C be zero, we get $P^{0}=\left(\frac{A}{d}, 0,0\right)$ as the disease-free equilibrium of (3.1).

Let $\mathbf{X}:=\mathbb{C}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$ be the Banach space, with the usual supremum form $\|.\|_{\mathbf{X}}$. Define $\mathbf{X}^{+}=\mathbb{C}\left(\bar{\Omega}, \mathbb{R}_{+}^{3}\right)$. Then $\left(\mathbf{X}, \mathbf{X}^{+}\right)$is a strongly ordered space. Assume that $T_{1}(t), T_{2}(t), T_{3}(t): \mathbb{C}(\bar{\Omega}, \mathbb{R}) \rightarrow \mathbb{C}(\bar{\Omega}, \mathbb{R})$ are the C_{0} semigroups associated with $D_{1} \Delta-d, D_{2} \Delta-d$ and $0 \times \Delta-\xi$ subject to the Neumann boundary condition, respectively. It follows that for any $\varphi \in \mathbb{C}(\bar{\Omega}, \mathbb{R}), t \geq 0$, one has

$$
\begin{aligned}
& T_{1}(t) \varphi(x)=e^{-d t} \int_{\Omega} \Gamma_{1}(x, y, t) \varphi(y) d y, \\
& T_{2}(t) \varphi(x)=e^{-d t} \int_{\Omega} \Gamma_{2}(x, y, t) \varphi(y) d y, \\
& T_{3}(t) \varphi(x)=e^{-\xi t} \varphi(x),
\end{aligned}
$$

where Γ_{1} and Γ_{2} are the Green functions associated with $D_{1} \Delta-d, D_{2} \Delta-d$ subject to the Neumann boundary condition, respectively. It follows from [15, Section 7.1 and Corollary 7.2.3] that $T_{i}(t): \mathbb{C}(\bar{\Omega}, \mathbb{R}) \rightarrow$ $\mathbb{C}(\bar{\Omega}, \mathbb{R}) \quad(i=1,2, t>0)$ is compact and strongly positive. Linearizing (3.1) at the disease-free equilibrium P^{0}, we obtain:

$$
\left\{\begin{array}{l}
\frac{\partial \omega_{1}}{\partial t}=-\frac{\beta_{v} A}{d} \omega_{2}-\frac{\beta_{e} A}{d \kappa} \omega_{6}-d \omega_{1}+D_{1} \Delta \omega_{1}, \tag{3.2}\\
\frac{\partial \omega_{2}}{\partial t}=\left(\frac{\beta_{v} A}{d}-d\right) \omega_{2}+\frac{\beta_{e} A}{d \kappa} \omega_{6}+D_{2} \Delta \omega_{2}, \\
\frac{\partial \omega_{6}}{\partial t}=\phi_{2} \omega_{2}-\xi \omega_{6}
\end{array}\right.
$$

subject to the boundary conditions

$$
\frac{\partial \omega_{1}}{\partial \eta}=\frac{\partial \omega_{2}}{\partial \eta}=0, \quad \forall x \in \partial \Omega, t>0
$$

and initial conditions

$$
\omega_{1}=\varphi_{1}(x, 0), \omega_{2}=\varphi_{5}(x, \theta) \text { and } \omega_{6}=\varphi_{6}(x, \theta), \quad \forall(x, \theta) \in \bar{\Omega} \times(-\infty, 0) .
$$

We can observe that the equations for ω_{2} and ω_{6}, corresponding to the infectious compartments, are decoupled from ω_{1}. These two equations form the following cooperative system,

$$
\left\{\begin{array}{l}
\frac{\partial \omega_{2}}{\partial t}=\left(\frac{\beta_{v} A}{d}-d\right) \omega_{2}+\frac{\beta_{e} A}{d \kappa} \omega_{6}+D_{2} \Delta \omega_{2} \tag{3.3}\\
\frac{\partial \omega_{6}}{\partial t}=\phi_{2} \omega_{2}-\xi \omega_{6}
\end{array}\right.
$$

supplemented by initial conditions and the boundary condition $\frac{\partial \omega_{2}}{\partial \eta}=0, \forall x \in \partial \Omega, t>0$. For every initial value $\varphi=\left(\varphi_{1} ; \varphi_{2}\right) \in \mathbf{X}$; the solution semiflows $\Pi_{t}: \mathbf{X} \rightarrow \mathbf{X}$ associated with the linear system (3.3) is defined by

$$
\Pi_{t}(\varphi)=\left(\omega_{2}(., t, \varphi), \omega_{6}(., t, \varphi)\right) .
$$

Π_{t} is obviously a positive C_{0}-semigroup on $\mathbb{C}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$ generated by

$$
\mathcal{B}=\left(\begin{array}{cc}
D_{2} \Delta-d & 0 \\
\phi_{2} & -\xi
\end{array}\right) .
$$

Setting $\omega_{2}(x, t)=e^{\lambda_{0} t} \varphi_{1}(x), \omega_{6}(x, t)=e^{\lambda_{0} t} \varphi_{2}(x)$, with $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in \mathbf{X} \times \mathbf{X}$ and substituting them into the equations for ω_{2} and ω_{6}, we obtain the following eigenvalue problem

$$
\left\{\begin{array}{l}
\lambda_{0} \varphi_{1}(x)=\left(\frac{\beta_{v} A}{d}-d\right) \varphi_{1}(x)+\frac{\beta_{e} A}{d \kappa} \varphi_{2}(x)+D_{2} \Delta \varphi_{1}(x), \tag{3.4}\\
\lambda_{0} \varphi_{2}(x)=\phi_{2} \varphi_{1}(x)-\xi \varphi_{2}(x) \\
\frac{\partial \varphi_{1}(x)}{\partial \eta}=0, \forall x \in \partial \Omega, t>0
\end{array}\right.
$$

The result below about the existence of the principal eigenvalue of (3.4) follows from [16, Lemma 2.7].
Lemma 3.1. [16]. Suppose $s(\mathcal{B})$ is the spectral bound of \mathcal{B}. Since all the parameters are constant, then $\lambda_{\frac{A}{d}}=s(\mathcal{B})$ is the principal eigenvalue of the eigenvalue problem (3.4) which has a strongly positive eigenfunction.

This means that $\lambda_{\frac{A}{d}}$ is a real eigenvalue with algebraic multiplicity one, and $\mathcal{R}_{e}(\lambda)<\lambda_{\frac{A}{d}}$ for any other eigenvalue λ of (3.4). Furthermore, $\lambda_{\frac{A}{d}}$ has a corresponding eigenvector $\varphi_{0}(x)=\left(\varphi_{01}, \varphi_{02}\right)$ satisfying $\varphi_{0}(x) \gg 0$, and any other nonnegative eigenvector of (3.4) is a positive multiple of $\varphi_{0}(x)$.

In the paper by Wang and Zhao [17], the concept of the basic reproduction number is extended to reaction-diffusion epidemic systems with Neumann boundary conditions. Based on the theory of principle eigenvalues, they defined the basic reproduction number \mathcal{R}_{0} for a reaction-diffusion epidemic model as the spectral radius of the "next generator" operator \mathbb{L} defined by

$$
\begin{equation*}
\mathbb{L}(\varphi(x))=\int_{0}^{\infty} F(x) T(t) \varphi d t=F(x) \int_{0}^{\infty} T(t) \varphi d t . \tag{3.5}
\end{equation*}
$$

Consequently, they showed that if $\mathcal{B}=\nabla \cdot\left(d_{I} \nabla\right)-V_{T}$ then

$$
\begin{equation*}
\int_{0}^{\infty} T(t) \varphi d t=-\mathcal{B}^{-1} \varphi, \tag{3.6}
\end{equation*}
$$

and the next generation operator is

$$
\begin{equation*}
\mathbb{L}=-F \mathcal{B}^{-1} . \tag{3.7}
\end{equation*}
$$

In (3.6) and (3.7), F is the matrix characterizing the generation of secondary infectious cases/agents, and V_{T} is the matrix of transition rates between compartments. Both are analogues to the next-generation matrices associated with the corresponding ODE system (i.e. without diffusion terms). $T(t)=\left(T_{2}(t) ; T_{3}(t)\right)$ is the solution semigroup for the linearized reaction-diffusion system; it denotes the distribution of the initial infection, and $d_{I}=\operatorname{diag}\left[D_{2}, 0\right]$ is the diffusion matrix.

Following [17], the basic reproduction number of PDE system (2.4)-(2.6) is defined by

$$
\begin{equation*}
\mathcal{R}_{0}=\rho(\mathbb{L}), \tag{3.8}
\end{equation*}
$$

where

$$
F=\left[\begin{array}{cc}
\frac{\beta_{v} A}{d} & \frac{\beta_{e} A}{\kappa d} \\
0 & 0
\end{array}\right], \quad V_{T}=\left[\begin{array}{cc}
d & 0 \\
-\phi_{2} & \xi
\end{array}\right],
$$

and

$$
\mathcal{B}=\left(\begin{array}{cc}
D_{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-d & 0 \\
\phi_{2} & -\xi
\end{array}\right) .
$$

Since all parameters are spatially homogeneous, we can actually find an explicit formula for the basic reproduction number \mathcal{R}_{0}. Indeed, applying [17, Theorem 3.4], we obtain the following result.

Theorem 3.2. Suppose that D_{2} is a positive constant. Then one has

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{\beta_{v} A}{d^{2}}+\frac{\beta_{e} A \phi_{2}}{\kappa \xi d^{2}} . \tag{3.9}
\end{equation*}
$$

3.1. Existence of equilibrium points

In this section, we investigate the existence of constant endemic equilibria of PDE poultry system (3.1). For this purpose, let $P^{*}=\left(X^{*}, Y^{*}, C^{*}\right)$ be an endemic steady state of system (3.1), then it is straightforward that

$$
\left\{\begin{array}{l}
\beta_{v}\left(\frac{A}{d}-Y^{*}\right) \frac{Y^{*}}{1+\alpha \Upsilon^{*}}+\beta_{e}\left(\frac{A}{d}-Y^{*}\right) \frac{C^{*}}{C^{*}+\kappa}-d Y^{*}=0 \tag{3.10}\\
\phi_{2} Y^{*}-\xi C^{*}=0, \\
X^{*}+Y^{*}=\frac{A}{d}
\end{array}\right.
$$

System (3.10) yields

$$
\begin{equation*}
X^{*}=\frac{A}{d}-\Upsilon^{*}, \quad C^{*}=\frac{\phi_{2}}{\xi} \Upsilon^{*}, \tag{3.11}
\end{equation*}
$$

and Y^{*} is a positive root of the following quadratic polynomial:

$$
\begin{equation*}
Q\left(Y^{*}\right)=\alpha_{4} Y^{* 2}+\alpha_{5} Y^{*}+\alpha_{6} \tag{3.12}
\end{equation*}
$$

whose coefficients are given by

$$
\begin{equation*}
\alpha_{4}=-\frac{\beta_{v} \phi_{2}}{\xi}-\frac{\beta_{e} \alpha \phi_{2}}{\xi}-\frac{d \alpha \phi_{2}}{\xi}, \tag{3.13a}
\end{equation*}
$$

$$
\begin{gather*}
\alpha_{5}=-\kappa \beta_{v}-\frac{\beta_{e} \phi_{2}}{\xi}-\left(d \alpha \kappa+\frac{d \phi_{2}}{\xi}\right)\left(1-\mathcal{R}_{0}\right)-\frac{\alpha \kappa \beta_{v} A}{d}-\frac{\beta_{e} A \phi_{2}^{2}}{\kappa d \xi^{2}} \tag{3.13b}\\
\alpha_{6}=\kappa d\left(\mathcal{R}_{0}-1\right) . \tag{3.13c}
\end{gather*}
$$

Investigating the signs of α_{4}, α_{5} and α_{6} lead to the following straightforward result.
Proposition 3.3. The model (3.1) has:

1. a unique positive endemic equilibrium whenever $\mathcal{R}_{0}>1$,
2. no positive endemic equilibrium whenever $\mathcal{R}_{0} \leq 1$.

3.2. Local stability of the equilibrium points

As in references [18], let $0=\mu_{0}<\mu_{i}<\mu_{i+1}, i=1,2, \cdots$ denote the eigenvalues of $-\Delta$ on Ω with homogeneous Neumann boundary condition, $E\left(\mu_{i}\right)$ the space of eigenfunctions corresponding to μ_{i} and $\left\{\Phi_{i j}: j=1,2, \cdots, \operatorname{dim} E\left(\mu_{i}\right)\right\}$ an orthonormal basis of $E\left(\mu_{i}\right)$. Then $\mathbb{X}=[C(\bar{\Omega})]^{3}$ can be decomposed as

$$
\mathbb{X}=\bigoplus_{i=1}^{\infty} \mathbb{X}_{i}, \quad \mathbb{X}_{i}=\bigoplus_{i=1}^{\operatorname{dim} E\left(\mu_{i}\right)} \mathbb{X}_{i j}, \text { where } \mathbb{X}_{i j}=\left\{c \Phi_{i j}: c \in \mathbb{R}^{3}\right\}
$$

Theorem 3.4. The disease-free equilibrium P^{0} of the poultry system (3.1) is locally asymptotically stable whenever $\mathcal{R}_{0}<1$, but unstable when $\mathcal{R}_{0}>1$.

Proof. The linearization of system (3.1) at P^{0} gives

$$
\begin{equation*}
\frac{\partial Z(x, t)}{\partial t}=\bar{D} \Delta Z(x, t)+\mathcal{A} Z(x, t), \tag{3.14}
\end{equation*}
$$

where $\bar{D}=\operatorname{diag}\left(D_{1}, D_{2}, 0\right)$ and

$$
\mathcal{A}=\left(\begin{array}{ccc}
-d & -\beta_{v} \frac{A}{d} & -\beta_{e} \frac{A}{\kappa d} \\
0 & \beta_{v} \frac{A}{d}-d & \beta_{e} \frac{A}{\kappa d} \\
0 & \phi_{2} & -\xi
\end{array}\right) .
$$

For each $i \geq 1, \mathbb{X}_{i}$ is invariant under the operator \mathcal{L} and λ is an eigenvalue of \mathcal{L} if and only if it is an eigenvalue of the matrix $-\mu_{i} \bar{D}+\mathcal{A}$ for $i \geq 1$; in which case, there is an eigenvector in \mathbb{X}_{i}.

The characteristic equation of $-\mu_{i} \bar{D}+\mathcal{A}$ at P^{0} is

$$
\begin{equation*}
\left(-\mu_{i} D_{1}-d-\lambda\right)\left\{\lambda^{2}+\lambda\left(\mu_{i} D_{2}+\xi+d-\frac{\beta_{v} A}{d}\right)+\mu_{i} D_{2} \xi+d \xi-\frac{\beta_{v} A \xi}{d}-\frac{\beta_{e} A \phi_{2}}{\kappa d}\right\}=0 . \tag{3.15}
\end{equation*}
$$

It is obvious that (3.15) has an eigenvalue

$$
\lambda_{1}=-\mu_{i} D_{1}-d<0,
$$

and the other two eigenvalues λ_{2} and λ_{3} solve the following equation

$$
\lambda^{2}+\lambda\left(\mu_{i} D_{2}+\xi+d-\frac{\beta_{v} A}{d}\right)+\mu_{i} D_{2} \xi+d \xi-\frac{\beta_{v} A \xi}{d}-\frac{\beta_{e} A \phi_{2}}{\kappa d}=0 .
$$

It is easy to see that

$$
\begin{aligned}
& \lambda_{2}+\lambda_{3}=-\mu_{i} D_{2} \xi-\xi-d+\frac{\beta_{v} A}{d}=-\mu_{i} D_{2} \xi-\xi-\frac{\beta_{e} A \phi_{2}}{\kappa d^{2} \xi}+d\left(\mathcal{R}_{0}-1\right), \\
& \lambda_{2} \times \lambda_{3}=\mu_{i} D_{2} \xi+d \xi-\frac{\beta_{v} A \xi}{d}-\frac{\beta_{e} A \phi_{2}}{\kappa d}=d \xi\left(1-\mathcal{R}_{0}\right)+\mu_{i} D_{2} \xi .
\end{aligned}
$$

Clearly, If $\mathcal{R}_{0}<1$, then $\lambda_{2} \times \lambda_{3}>0$ and $\lambda_{2}+\lambda_{3}<0$. Thus, $\operatorname{Re}\left(\lambda_{2}\right)<0$ and $\operatorname{Re}\left(\lambda_{3}\right)<0$. Hence, P^{0} is locally asymptotically stable whenever $\mathcal{R}_{0}<1$.

On the other hand, if $\mathcal{R}_{0}>1$, at least one of the eigeinvalues has a positive real part, which implies that P^{0} is unstable. In fact, set

$$
h_{1}(\lambda)=\lambda^{2}+\lambda\left(\mu_{i} D_{2}+\xi+d-\frac{\beta_{v} A}{d}\right)+d \xi\left(1-\mathcal{R}_{0}\right)+\mu_{i} D_{2} \xi .
$$

If $\mathcal{R}_{0}>1$, it is easy to show that for λ real and $i=0$ (in this case, $\mu_{0}=0$),

$$
h_{1}(0)=d \xi\left(1-\mathcal{R}_{0}\right)<0 \quad \text { and } \quad \lambda_{2} \times \lambda_{3}=h_{1}(0) .
$$

This completes the proof.

Theorem 3.5. The endemic equilibrium P^{*} of the poultry system (3.1) is locally asymptotically stable whenever $\mathcal{R}_{0}>1$.

Proof. Linearizing system (3.1) at P^{*} gives

$$
\begin{equation*}
\frac{\partial Z(x, t)}{\partial t}=\bar{D} \Delta Z(x, t)+\mathcal{B} Z(x, t), \tag{3.16}
\end{equation*}
$$

where $\bar{D}=\operatorname{diag}\left(D_{1}, D_{2}, 0\right)$ and

$$
\mathcal{B}=\left(\begin{array}{ccc}
-P^{* *}-d & -Q^{* *} & -R^{* *} \\
P^{* *} & Q^{* *}-d & R^{* *} \\
0 & \phi_{2} & -\xi
\end{array}\right),
$$

427 where

$$
P^{* *}=\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa^{\prime}}, Q^{* *}=\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}, R^{* *}=\kappa \beta_{e} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}} .
$$

The characteristic equation of $-\mu_{i} \bar{D}+\mathcal{B}$ at Z^{*} is

$$
\begin{equation*}
\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}=0 \tag{3.17}
\end{equation*}
$$

429 where

$$
\begin{aligned}
c_{1}= & \mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d+\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d+\xi \\
= & \beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+\beta_{v} \frac{X^{*}}{1+\alpha Y^{*}}\left(1-\frac{1}{1+\alpha Y^{*}}\right)+\beta_{e} \frac{X^{*} C^{*}}{Y^{*}\left(C^{*}+\kappa\right)}+\mu_{i} D_{1}+d+\mu_{i} D_{2}+\xi>0, \\
c_{2}= & \xi\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)+\xi\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}+\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right), \\
= & \xi\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)+\xi\left(\mu_{i} D_{2}+\beta_{v} \frac{X^{*}}{1+\alpha Y^{*}}\left(1-\frac{1}{1+\alpha Y^{*}}\right)+\beta_{e} \frac{X^{*} C^{*}}{Y^{*}\left(C^{*}+\kappa\right)}\right) \\
& +\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)\left(\mu_{i} D_{2}+\beta_{v} \frac{X^{*}}{1+\alpha Y^{*}}\left(1-\frac{1}{1+\alpha Y^{*}}\right)+\beta_{e} \frac{X^{*} C^{*}}{Y^{*}\left(C^{*}+\kappa\right)}\right) \\
& +\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}+\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right)>0, \\
c_{3}= & \kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)+\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}} \\
& +\beta_{v} \xi \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right) \\
& +\xi\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)\left(\mu_{i} D_{2}+\beta_{v} \frac{X^{*}}{1+\alpha Y^{*}}\left(1-\frac{1}{1+\alpha Y^{*}}\right)+\beta_{e} \frac{X^{*} C^{*}}{Y^{*}\left(C^{*}+\kappa\right)}\right) \\
& +\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right)>0,
\end{aligned}
$$

$$
\begin{aligned}
c_{1} c_{2}-c_{3}= & \xi\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)^{2}+\xi\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right)^{2} \\
& +\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)^{2}\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right)^{2} \\
& +\xi^{2}\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)+\xi^{2}\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right)\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right) \\
& +2 \xi\left(\mu_{i} D_{1}+\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}+d\right)\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}\left(\mu_{i} D_{2}+\beta_{v} \frac{X^{*}}{1+\alpha Y^{*}}\left(1-\frac{1}{1+\alpha Y^{*}}\right)+\beta_{e} \frac{X^{*} C^{*}}{Y^{*}\left(C^{*}+\kappa\right)}\right) \\
& +\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right)\left(\mu_{i} D_{2}-\beta_{v} \frac{X^{*}}{\left(1+\alpha Y^{*}\right)^{2}}+d\right) \\
& +\kappa \beta_{e} \xi \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}-\kappa \beta_{e} \phi_{2} \frac{X^{*}}{\left(\kappa+C^{*}\right)^{2}}\left(\beta_{v} \frac{Y^{*}}{1+\alpha Y^{*}}+\beta_{e} \frac{C^{*}}{C^{*}+\kappa}\right)>0 .
\end{aligned}
$$

Then, by using Routh-Hurwitz criterion, the endemic equilibrium P^{*} of system (3.1) is locally asymptotically stable. This completes the proof.

3.3. Global stability analysis of the equilibrium points

Here, we establish the global stability of the equilibria for the continuous system (3.1). This is achieved by constructing suitable Lyapunov functions. We first introduce the function $\Phi(x)=x-1-\ln x$. Clearly, $\Phi(x) \geq 0$ for all $x>0$ and the equality holds if and only if $x=1$.

Theorem 3.6. The disease-free equilibrium P^{0} of the poultry system (3.1) is globally asymptotically stable (GAS) in Σ if $\mathcal{R}_{0} \leq 1$.

Proof. Define the Lyapunov function

$$
L(t)=\int_{\Omega} L_{1}(x, t) d x,
$$

with

$$
L_{1}(x, t)=X-X^{0}-X^{0} \ln \left(\frac{X}{X^{0}}\right)+Y+\frac{\beta_{e} X^{0}}{\kappa \xi} C .
$$

Using the fact that $A=d X^{0}$, the derivative of $L_{1}(x, t)$ in the direction of the vector field given by the right-hand side of system (3.1) is

$$
\begin{aligned}
\frac{\partial L_{1}(x, t)}{\partial t}= & {\left[1-\frac{X^{0}}{X}\right]\left[d X^{0}-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X+D_{1} \Delta X\right] } \\
& +\left[\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y+D_{2} \Delta Y\right]+\frac{\beta_{e} X^{0}}{\kappa \xi}\left(\phi_{2} Y-\xi C\right), \\
= & -\frac{d}{X}\left(X-X^{0}\right)^{2}+\beta_{v} X^{0} \frac{Y}{1+\alpha Y}+\beta_{e} X^{0} \frac{C}{C+\kappa}+\frac{\beta_{e} X^{0}}{\kappa \xi} \phi_{2} Y-d Y-\frac{\beta_{e} X^{0}}{\kappa \xi} \xi C \\
& +D_{1} \Delta X+D_{2} \Delta Y-D_{1} X^{0} \frac{\Delta X}{X} .
\end{aligned}
$$

$$
\frac{\partial L_{1}(x, t)}{\partial t} \leq-\frac{d}{X}\left(X-X^{0}\right)^{2}+d\left(\mathcal{R}_{0}-1\right) Y+D_{1} \Delta X+D_{2} \Delta Y-D_{1} X^{0} \frac{\Delta X}{X} .
$$

we have

$$
\begin{aligned}
\frac{d L(t)}{d t} & =\int_{\Omega} \frac{\partial L_{1}(x, t)}{\partial t} d x \\
& \leq-d \int_{\Omega} \frac{1}{X}\left(X-X^{0}\right)^{2} d x+d\left(\mathcal{R}_{0}-1\right) \int_{\Omega} Y(x, t) d x-D_{1} X^{0} \int_{\Omega} \frac{|\nabla X|^{2}}{X^{2}} d x
\end{aligned}
$$

Consequently, $\frac{d L(t)}{d t}<0$ if and only if $\mathcal{R}_{0}<1 . \frac{d L(t)}{d t}=0$, if and only if $\mathcal{R}_{0}=1$ and $X=X^{0}$, for all $t>0$ and $x \in \Omega$. It is easy to see that the largest invariant subset included in the set $\left\{(X, Y, C) \in \Sigma / \frac{d L(t)}{d t}=0\right\}$ is the singleton $\left\{P^{0}\right\}$. Thus, by the generalized LaSalle's Invariance Principle [19, Theorem 4.2] (see also [20]), the disease-free equilibrium P^{0} is globally asymptotically stable in Σ. This completes the proof.

Theorem 3.7. The endemic equilibrium P^{*} of the poultry system (3.1) is globally asymptotically stable (GAS) in the interior of Σ if $\mathcal{R}_{0}>1$.

Proof.

$$
H(t)=\int_{\Omega} H_{1}(x, t) d x
$$

where the Volterra-type Lyapunov function H_{1} is given by

$$
H_{1}(x, t)=c_{1}\left(X-X^{*}-X^{*} \ln \left(\frac{X}{X^{*}}\right)\right)+c_{2}\left(Y-Y^{*}-Y^{*} \ln \left(\frac{Y}{Y^{*}}\right)\right)+c_{3}\left(C-C^{*}-C^{*} \ln \left(\frac{C}{C^{*}}\right)\right)
$$

454 with c_{1}, c_{2} and c_{3} being three positive constants to be determined shortly. Denote

$$
O_{1}=X-X^{*}-X^{*} \ln \left(\frac{X}{X^{*}}\right), O_{2}=Y-Y^{*}-Y^{*} \ln \left(\frac{Y}{Y^{*}}\right)
$$

455

$$
O_{3}=C-C^{*}-C^{*} \ln \left(\frac{C}{C^{*}}\right), f(Y)=\frac{Y}{1+\alpha Y} \text { and } g(C)=\frac{C}{C+\kappa}
$$

456
We have

$$
\begin{aligned}
\frac{\partial O_{1}}{\partial t}= & \left(1-\frac{X^{*}}{X}\right)\left[X^{*} f\left(Y^{*}\right)+X^{*} g\left(C^{*}\right)-d\left(X-X^{*}\right)-X f(Y)-X g(C)+D_{1} \Delta X\right] \\
= & -d \frac{\left(X-X^{*}\right)^{2}}{X}+X^{*} f\left(Y^{*}\right)\left[1-\frac{X^{*}}{X}-\frac{X f(Y)}{X^{*} f\left(Y^{*}\right)}+\frac{f(Y)}{f\left(Y^{*}\right)}\right] \\
& +X^{*} g\left(C^{*}\right)\left[1-\frac{X^{*}}{X}-\frac{X g(C)}{X^{*} g\left(C^{*}\right)}+\frac{g(C)}{g\left(C^{*}\right)}\right]+\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X, \\
= & -d \frac{\left(X-X^{*}\right)^{2}}{X}+\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+a_{12} G_{12}+a_{13} G_{13} \\
\frac{\partial O_{2}}{\partial t}= & \left(1-\frac{Y^{*}}{Y}\right)\left[X f(Y)+X g(C)-\frac{Y}{Y^{*}} X^{*} f\left(Y^{*}\right)-\frac{Y}{Y^{*}} X^{*} g\left(C^{*}\right)\right]+\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
= & X^{*} f\left(Y^{*}\right)\left[\frac{X f(Y)}{X^{*} f\left(Y^{*}\right)}+1-\frac{Y}{Y^{*}}-\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right] \\
& +X^{*} g\left(C^{*}\right)\left[\frac{X g(C)}{X^{*} g\left(C^{*}\right)}+1-\frac{C}{C^{*}}-\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right]+\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
= & \left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y+a_{21} G_{21}+a_{23} G_{23} .
\end{aligned}
$$

$$
\frac{\partial O_{3}}{\partial t}=\left(1-\frac{C^{*}}{C}\right)\left[\phi_{2} Y-\phi_{2} Y^{*} \frac{C}{C^{*}}\right]=\phi_{2} \Upsilon^{*}\left[1-\frac{C}{C^{*}}+\frac{Y}{Y^{*}}-\frac{Y C^{*}}{Y^{*} C}\right]=a_{31} G_{31},
$$

where $a_{12}=a_{21}=X^{*} f\left(Y^{*}\right), a_{13}=a_{23}=X^{*} g\left(C^{*}\right), a_{31}=\phi_{2} Y^{*}$ and all other $a_{i j}=0$, for all others $(i, j), 1 \leq i, j \leq$ 3. The associated weighted digraph $(\mathcal{G}, \mathcal{A})$ has three vertices and three cycles. We consider the following two kind of cycles: cycles involving direct transmission and cycles involving indirect transmission. By [21, Theorem 3.5] there exists $c_{i}, 1 \leq i \leq 3$, such that $H_{1}=\sum_{i=1}^{3} c_{i} O_{i}$ is a Lyapunov function for (3.1). Futhermore, following [21], $c_{1}=c_{2}$ and $c_{3}=\frac{X^{*} g\left(C^{*}\right)}{\phi_{2} Y^{*}} c_{1}$. Thus,

$$
H_{1}(x, t)=c_{1} O_{1}+c_{1} O_{2}+\frac{X^{*} g\left(C^{*}\right)}{\phi_{2} Y^{*}} c_{1} O_{3} .
$$

We have

$$
\begin{aligned}
& \frac{\partial H_{1}(x, t)}{\partial t}= c_{1}\left[\frac{\partial O_{1}(x, t)}{\partial t}+\frac{\partial O_{1}(x, t)}{\partial t}+\frac{X^{*} g\left(C^{*}\right)}{\phi_{2} Y^{*}} \frac{\partial O_{3}(x, t)}{\partial t}\right] \\
&=-d c_{1} \frac{\left(X-X^{*}\right)^{2}}{X}+X^{*} f\left(Y^{*}\right) c_{1}\left[1-\frac{X^{*}}{X}-\frac{X f(Y)}{X^{*} f\left(Y^{*}\right)}+\frac{f(Y)}{f\left(Y^{*}\right)}\right] \\
&+X^{*} g\left(C^{*}\right) c_{1}\left[1-\frac{X^{*}}{X}-\frac{X g(C)}{X^{*} g\left(C^{*}\right)}+\frac{g(C)}{g\left(C^{*}\right)}\right] \\
&+X^{*} f\left(Y^{*}\right) c_{1}\left[\frac{X f(Y)}{X^{*} f\left(Y^{*}\right)}+1-\frac{Y}{Y^{*}}-\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right] \\
&+X^{*} g\left(C^{*}\right) c_{1}\left[\frac{X g(C)}{X^{*} g\left(C^{*}\right)}+1-\frac{Y}{Y^{*}}-\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right] \\
&+X^{*} g\left(C^{*}\right) c_{1}\left[1-\frac{C}{C^{*}}+\frac{Y}{Y^{*}}-\frac{Y C^{*}}{Y^{*} C}\right] \\
&+c_{1}\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+c_{1}\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
&=-d c_{1} \frac{\left(X-X^{*}\right)^{2}}{X}+X^{*} f\left(Y^{*}\right) c_{1}\left[2-\frac{X^{*}}{X}-\frac{Y}{Y^{*}}-\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}+\frac{f(Y)}{f\left(Y^{*}\right)}\right] \\
&+X^{*} g\left(C^{*}\right) c_{1}\left[2-\frac{X^{*}}{X}-\frac{Y}{Y^{*}}-\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}+\frac{g(C)}{g\left(C^{*}\right)}\right] \\
&+X^{*} g\left(C^{*}\right) c_{1}\left[1-\frac{C}{C^{*}}+\frac{Y}{Y^{*}}-\frac{Y C^{*}}{Y^{*} C}\right] \\
&+c_{1}\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+c_{1}\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
&=-d c_{1} \frac{\left(X-X^{*}\right)^{2}}{X} \\
&-X^{*} f\left(Y^{*}\right) c_{1}\left[\frac{X^{*}}{X}+\frac{Y}{Y^{*}}+\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}-\frac{f(Y)}{f\left(Y^{*}\right)}-2\right] \\
&-X^{*} g\left(C^{*}\right) c_{1}\left[\frac{X^{*}}{X}+\frac{Y}{Y^{*}}+\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}-\frac{g(C)}{g\left(C^{*}\right)}-3\right] \\
&-X^{*} g\left(C^{*}\right) c_{1}\left[\frac{C}{C^{*}}-\frac{Y}{Y^{*}}+\frac{Y C^{*}}{Y^{*} C}\right] \\
&+c_{1}\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+c_{1}\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
& \\
&
\end{aligned}
$$

464

$$
\begin{aligned}
= & -d c_{1} \frac{\left(X-X^{*}\right)^{2}}{X} \\
& -X^{*} f\left(Y^{*}\right) c_{1}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{Y}{Y^{*}}\right)+\phi\left(\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right)-\phi\left(\frac{f(Y)}{f\left(Y^{*}\right)}\right)\right] \\
& -X^{*} f\left(Y^{*}\right) c_{1}\left[\ln \left(\frac{X^{*} Y}{X Y^{*}}\right)+\ln \left(\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right)-\ln \left(\frac{f(Y)}{f\left(Y^{*}\right)}\right)\right] \\
& -X^{*} g\left(C^{*}\right) c_{1}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{Y}{Y^{*}}\right)+\phi\left(\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right)-\phi\left(\frac{g(C)}{g\left(C^{*}\right)}\right)-1\right] \\
& -X^{*} g\left(C^{*}\right) c_{1}\left[\ln \left(\frac{X^{*} Y}{X Y^{*}}\right)+\ln \left(\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right)-\ln \left(\frac{g(C)}{g\left(C^{*}\right)}\right)\right] \\
& -X^{*} g\left(C^{*}\right) c_{1}\left[\phi\left(\frac{C}{C^{*}}\right)-\phi\left(\frac{Y}{Y^{*}}\right)+\phi\left(\frac{Y C^{*}}{Y^{*} C}\right)+1\right] \\
& +c_{1}\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+c_{1}\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y, \\
= & -d c_{1} \frac{\left(X-X^{*}\right)^{2}}{X} \\
& -X^{*} f\left(Y^{*}\right) c_{1}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{Y}{Y^{*}}\right)+\phi\left(\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right)-\phi\left(\frac{f(Y)}{f\left(Y^{*}\right)}\right)\right] \\
& -X^{*} g\left(C^{*}\right) c_{1}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{C}{C^{*}}\right)+\phi\left(\frac{Y C^{*}}{Y^{*} C}\right)+\phi\left(\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right)-\phi\left(\frac{g(C)}{g\left(C^{*}\right)}\right)\right] \\
& +c_{1}\left(1-\frac{X^{*}}{X}\right) D_{1} \Delta X+c_{1}\left(1-\frac{Y^{*}}{Y}\right) D_{2} \Delta Y .
\end{aligned}
$$

Note that

$$
\left\{\begin{array}{l}
f(0)=g(0)=0, \quad f(Y)>0, g(C)>0 \quad \forall Y>0, C>0 \\
f^{\prime}(Y), g^{\prime}(C)>0 \text { and } f^{\prime \prime}(Y), g^{\prime \prime}(C) \leq 0,
\end{array}\right.
$$

and

$$
\begin{aligned}
\phi\left(\frac{f(Y)}{f\left(Y^{*}\right)}\right)-\phi\left(\frac{Y}{Y^{*}}\right) \leq\left(\frac{f(Y)}{f\left(Y^{*}\right)}-\frac{Y}{Y^{*}}\right)\left(1-\frac{f\left(Y^{*}\right)}{f(Y)}\right)=-\frac{\alpha Y Y^{*}\left(Y-Y^{*}\right)^{2}}{Y^{*} f(Y)\left(f\left(Y^{*}\right)\right)^{2}(1+\alpha Y)\left(1+\alpha Y^{*}\right)^{2}} \\
\phi\left(\frac{g(C)}{g\left(C^{*}\right)}\right)-\phi\left(\frac{C}{C^{*}}\right) \leq\left(\frac{g(C)}{g\left(C^{*}\right)}-\frac{C}{C^{*}}\right)\left(1-\frac{g\left(C^{*}\right)}{g(C)}\right)=-\frac{\kappa C C^{*}\left(C-C^{*}\right)^{2}}{C^{*} g(C)\left(g\left(C^{*}\right)\right)^{2}(\kappa+C)\left(\kappa+C^{*}\right)}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\frac{d H(t)}{d t}= & \int_{\Omega} \frac{\partial H_{1}(x, t)}{\partial t} d x \\
\leq & -d c_{1} \int_{\Omega} \frac{\left(X-X^{*}\right)^{2}}{X} d x \\
& -X^{*} f\left(Y^{*}\right) c_{1} \int_{\Omega}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{Y}{Y^{*}}\right)+\phi\left(\frac{X Y^{*} f(Y)}{X^{*} Y f\left(Y^{*}\right)}\right)-\phi\left(\frac{f(Y)}{f\left(Y^{*}\right)}\right)\right] d x \\
& -X^{*} g\left(C^{*}\right) c_{1} \int_{\Omega}\left[\phi\left(\frac{C}{C^{*}}\right)-\phi\left(\frac{g(C)}{g\left(C^{*}\right)}\right)\right] d x \\
& -X^{*} g\left(C^{*}\right) c_{1} \int_{\Omega}\left[\phi\left(\frac{X^{*}}{X}\right)+\phi\left(\frac{Y C^{*}}{Y^{*} C}\right)+\phi\left(\frac{X Y^{*} g(C)}{X^{*} Y g\left(C^{*}\right)}\right)\right] d x \\
& -D_{1} X^{*} \int_{\Omega} \frac{|\nabla X|^{2}}{X^{2}} d x-D_{2} Y^{*} \int_{\Omega} \frac{|\nabla Y|^{2}}{Y^{2}} d x
\end{aligned}
$$

Consequently, $\frac{d H(t)}{d t}<0$ and $\frac{d H(t)}{d t}=0$ if and only if $X=X^{*}, Y=Y^{*}$ and $C=C^{*}$, for all $t>0$ and $x \in \Omega$. Moreover, the largest invariant subset contained in $\left\{(X, Y, C) \in \Sigma / \frac{d H}{d t}(t)=0\right\}$ is the singleton $\left\{P^{*}\right\}$. It follows from the generalized LaSalle's Invariance Principle [19, Theorem 4.2] (see also [20]) that P^{*} is globally asymptotically stable.

Remark 3.8. When $q \neq 0$, the poultry system has only one endemic equilibruim, which is locally asymptotically stable.

4. Asymptotic analysis of the full system (when $q=0$)

In the absence of infection, that is $Y=E=I=C=0$, the model (2.4)-(2.6) has a disease-free equilibrum

$$
Z^{0}=\left(\frac{A}{d}, 0, \frac{B}{\delta}, 0,0,0\right) .
$$

4.1. Existence of endemic equilibrium point

Suppose that

$$
\mathcal{R}_{0}=\frac{\beta_{e} A \phi_{2}}{\kappa d^{2} \xi}+\frac{\beta_{v} A}{d^{2}}>1 .
$$

Then the full system (2.4)-(2.6) has the endemic equilibrium $Z^{*}=\left(X^{*}, Y^{*}, S^{*}, E^{*}, I^{*}, C^{*}\right)$, where X^{*}, Y^{*} and C^{*}) are given by (3.11) and (3.12) and

$$
S^{*}=N^{*}-E^{*}-I^{*}, \quad I^{*}=\frac{1}{\rho}\left(B-\delta N^{*}\right), \quad E^{*}=\frac{\gamma+\rho+\delta}{\rho \epsilon}\left(B-\delta N^{*}\right),
$$

with N^{*} being the positive root of the following quadratic equation:

$$
\begin{equation*}
\alpha_{1} N^{* 2}+\left(\alpha_{3} \gamma^{*}-\alpha_{1} \frac{B}{\delta}\right) N^{*}-\alpha_{2} \gamma^{*}=0, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{gathered}
\alpha_{1}=\frac{(a+\delta+\epsilon)(\gamma+\rho+\delta) \delta}{\rho \epsilon}, \alpha_{2}=\frac{B}{\rho}\left(\frac{(\gamma+\rho+\delta)}{\epsilon}+1\right)\left(\tau_{v}+\tau_{e} \frac{\phi_{2}}{\xi}\right), \\
\alpha_{3}=\left(\frac{(\gamma+\rho+\delta) \delta}{\rho \epsilon}+\frac{\delta}{\rho}+1\right)\left(\tau_{v}+\tau_{e} \frac{\phi_{2}}{\xi}\right) .
\end{gathered}
$$

Thanks to the Descarte's rule of sign, N^{*} is unique.

4.2. Local stability of the equilibrium points

The local stability of the equilibria Z^{0} and Z^{*} follows from linearization method of (2.4)-(2.6) and detailed spectral analysis of the corresponding characteristic equation.

Theorem 4.1. If $\mathcal{R}_{0}<1$, the disease-free equilibrium Z^{0} of the full system (2.4)-(2.6) is locally asymptotically stable, but unstable when $\mathcal{R}_{0} \geq 1$.

Proof. The linearization of system (2.4) at Z^{0} is

$$
\begin{equation*}
\frac{\partial Z(x, t)}{\partial t}=\mathcal{L} Z(x, t)=\bar{D} \Delta Z(x, t)+C Z(x, t), \tag{4.2}
\end{equation*}
$$

where $\bar{D}=\operatorname{diag}\left(D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, 0\right)$ and

$$
C=\left(\begin{array}{cccccc}
-d & -\beta_{v} \frac{A}{d} & 0 & 0 & 0 & -\beta_{e} \frac{A}{\kappa d} \\
0 & \beta_{v} \frac{A}{d}-d & 0 & 0 & 0 & \beta_{e} \frac{A}{\kappa d} \\
0 & -\tau_{v} & -\delta & a & \gamma & -\tau_{e} \\
0 & \tau_{v} & 0 & -(a+\delta+\epsilon) & 0 & \tau_{e} \\
0 & 0 & 0 & \epsilon & -(\gamma+\rho+\delta) & 0 \\
0 & \phi_{2} & 0 & 0 & 0 & -\xi
\end{array}\right) .
$$

The characteristic equation of $-\mu_{i} \bar{D}+C$ at Z^{0} is

$$
\begin{align*}
\left(-\mu_{i} D_{1}-d-\right. & \lambda)\left(-\mu_{i} D_{3}-\delta-\lambda\right)\left(-\mu_{i} D_{4}-(a+\delta+\epsilon)-\lambda\right)\left(-\mu_{i} D_{5}-(\gamma+\rho+\delta)-\lambda\right) \\
& \times\left\{\lambda^{2}+\lambda\left(\mu_{i} D_{2}+\xi+d-\frac{\beta_{v} A}{d}\right)+\mu_{i} D_{2} \xi+d \xi-\frac{\beta_{v} A \xi}{d}-\frac{\beta_{e} A \phi_{2}}{\kappa d}\right\}=0 . \tag{4.3}
\end{align*}
$$

The characteristic equation of $-\mu_{i} \bar{D}+\mathcal{D}$ at Z^{*} is

$$
\begin{equation*}
\left(\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}\right)\left(\lambda^{3}+\bar{c}_{1} \lambda^{2}+\bar{c}_{2} \lambda+\bar{c}_{3}\right)=0, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{c}_{1}= & \mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta+\mu_{i} D_{4}+\mu_{i} D_{5}+a+\delta+\epsilon+\gamma+\rho+\delta>0, \\
\bar{c}_{2}= & \left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{4}+a+\delta+\epsilon\right) \\
& +\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\delta+\epsilon\right)-a\left(\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right), \\
= & \left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{4}+\delta+\epsilon\right) \\
& +\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\delta+\epsilon\right)+a\left(\mu_{i} D_{3}+\delta\right)>0,
\end{aligned}
$$

$$
\begin{aligned}
& \bar{c}_{3} \quad=-a\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\tau_{v} \frac{\Upsilon^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right)+\epsilon \gamma\left(\tau_{v} \frac{\Upsilon^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\delta+\epsilon\right), \\
& =\epsilon \gamma\left(\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+\delta+\epsilon\right) \\
& +a\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{3}+\delta\right)>0 \text {, } \\
& \bar{c}_{1} \bar{c}_{2}-\bar{c}_{3}=\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)^{2} \\
& +\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)^{2} \\
& +2\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right) \\
& -\epsilon \gamma\left(\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right) \\
& -\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta+\mu_{i} D_{4}+a+\epsilon+\delta\right) \\
& \times\left[a\left(\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right)-\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\right], \\
& =\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)^{2} \\
& +\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)^{2} \\
& +2\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right) \\
& -\epsilon \gamma\left(\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta+\mu_{i} D_{4}+a+\epsilon+\delta\right) \\
& \times\left[a\left(\mu_{i} D_{3}+\delta\right)+\left(\mu_{i} D_{4}+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\right], \\
& =\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)^{2} \\
& +\left(\mu_{i} D_{5}+\gamma+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)^{2} \\
& +2\left(\mu_{i} D_{5}+\rho+\delta\right)\left(\mu_{i} D_{4}+a+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{* *}}+\delta\right) \\
& +2 \gamma\left(\mu_{i} D_{4}+a+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{\gamma^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)+2 \gamma \epsilon\left(\mu_{i} D_{3}+\delta\right) \\
& +\epsilon \gamma\left(\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}\right) \\
& +\left(\mu_{i} D_{3}+\tau_{v} \frac{\frac{\gamma}{}^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta+\mu_{i} D_{4}+a+\epsilon+\delta\right) \\
& \times\left[a\left(\mu_{i} D_{3}+\delta\right)+\left(\mu_{i} D_{4}+\epsilon+\delta\right)\left(\mu_{i} D_{3}+\tau_{v} \frac{Y^{*}}{N^{*}}+\tau_{e} \frac{C^{*}}{N^{*}}+\delta\right)\right]>0 .
\end{aligned}
$$

Thanks to Routh-Hurwitz criterion, the endemic equilibrium Z^{*} of the full model is locally asymptotically stable.

4.3. Global stability analysis of the DFE

To establish the global stability of the full system (2.4) - (2.6), we first give two lemmas about the global stability of the scalar equations.

Lemma 4.3. Let $u \in \mathbb{C}(\bar{\Omega} \times[0, \infty)) \cap \mathbb{C}^{2,1}(\Omega \times(0, \infty))$ be a nonnegative nontrivial solution of the scalar problem:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-D \Delta u=f(x, t)+A_{1} u(x, t) \quad \text { in } \Omega \times(0, \infty), \tag{4.6}\\
\frac{\partial u}{\partial \eta}=0 \quad \text { on } \partial \Omega \times(0, \infty), \\
u(x, 0) \geq 0 \quad x \in \bar{\Omega}
\end{array}\right.
$$

where $A_{1}>0$ and $f(x, t)$ is a nonnegative continuous function. Then u tends to A_{2} / A_{1} as t tends to ∞ uniformly on $\bar{\Omega}$, whenever $f(x, t)$ tends to A_{2} as t tends to ∞ uniformly on $\bar{\Omega}$.

The proof follows directly from the comparison principle for the parabolic equations. We omit it here.
Lemma 4.4. [7] If $u(x, t)$ is a bounded function and $\lim _{t \rightarrow \infty}\left\|u(x, t)-A_{1}\right\|_{\infty}=0$, then

$$
\int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s) u(y, s) d s d y \rightarrow A_{1} \text { as } t \rightarrow \infty
$$

uniformly on $\bar{\Omega}$.
Lemma 4.4, which is a consequence of Lemma 2.1, implies that the nonlocal integral term do not affect the long time behavior of the solution.

Theorem 4.5. The disease-free equilibrium of the full system (2.4) is globally asymptotically stable (GAS) in Σ if $\mathcal{R}_{0} \leq 1$.

Proof. For $\mathcal{R}_{0} \leq 1$, it follows from the global stability of P^{0} of the poultry system that
$\lim _{t \rightarrow \infty}\left\|X(x, t)-\frac{A}{d}\right\|_{\infty}=0, \lim _{t \rightarrow \infty}\|Y(x, t)-0\|_{\infty}=0$ and $\lim _{t \rightarrow \infty}\|C(x, t)-0\|_{\infty}=0$. Thus, by Lemma 4.4,

$$
\frac{S}{N} \int_{\Omega} \int_{-\infty}^{t} G(x, y, t-s) k(t-s)\left(\tau_{v} Y+\tau_{e} C\right)(y, s) d s d y \rightarrow 0 \text { as } t \rightarrow \infty,
$$

uniformly on $\bar{\Omega}$. Therefore $\lim _{t \rightarrow \infty}\|E(x, t)-0\|_{\infty}=0$, according to Lemma 4.3. Applying once more Lemma 4.3 gives $\lim _{t \rightarrow \infty}\|I(x, t)-0\|_{\infty}=0$.

For the third equation of the full system (2.4)-(2.6), since

$$
\lim _{t \rightarrow \infty}\|E(x, t)-0\|_{\infty}=0, \lim _{t \rightarrow \infty}\|I(x, t)-0\|_{\infty}=0
$$

and the fact that Lemma 4.3 applies again, we have $\lim _{t \rightarrow \infty}\left\|S(x, t)-\frac{B}{\delta}\right\|_{\infty}=0$. Therefore, Z^{0} is GAS for $\mathcal{R}_{0} \leq 1$.

Remark 4.6. When $q \neq 0$, the full system has only one endemic equilibrium, which is locally asymptotically stable.

5. Numerical simulations

In this section, we present some numerical simulations to illustrate the spread of avian influenza. For simplicity, we choose $\Omega=[0, \pi], K(x, y, t)=G(x, y, t) k(t)$, where

$$
k(t)=\frac{1}{\tau} e^{-t / \tau} ; G(x, y, t)=\frac{1}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} e^{-D_{3} n^{2} t} \cos (n x) \cos (n y) .
$$

To circumvent the difficulty caused by the nonlocal integral terms, we introduce the following new variables

$$
U(x, t)=\int_{0}^{\pi} \int_{-\infty}^{t} G(x, y, t-s) k(t-s) Y(y, s) d s d y, V(x, t)=\int_{0}^{\pi} \int_{-\infty}^{t} G(x, y, t-s) k(t-s) C(y, s) d s d y .
$$

Then system (2.4) becomes:

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}-D_{1} \Delta X=(1-q) A-\beta_{v} X \frac{Y}{1+\alpha Y}-\beta_{e} X \frac{C}{C+\kappa}-d X, \\
\frac{\partial Y}{\partial t}-D_{2} \Delta Y=q A+\beta_{v} X \frac{Y}{1+\alpha Y}+\beta_{e} X \frac{C}{C+\kappa}-d Y, \\
\frac{\partial S}{\partial t}-D_{3} \Delta S=B+a E+\gamma I-\delta S-\frac{S}{N}\left(\tau_{v} U+\tau_{e} V\right), \\
\frac{\partial E}{\partial t}-D_{4} \Delta E=\frac{S}{N}\left(\tau_{v} U+\tau_{e} V\right)-(a+\delta+\epsilon) E, \\
\frac{\partial I}{\partial t}-D_{5} \Delta I=\epsilon E-(\gamma+\rho+\delta) I, \\
\frac{\partial C}{\partial t}=\phi_{2} Y-\xi C, \\
\frac{\partial U}{\partial t}-D_{3} \Delta U=\frac{1}{\tau}(Y-U), \\
\frac{\partial V}{\partial t}-D_{3} \Delta V=\frac{1}{\tau}(C-V) .
\end{array}\right.
$$

Every variables of the previous system enjoys the homogenous Neumann boundary conditions. Additionally, we need the following initial conditions

$$
U(x, 0)=\int_{0}^{\pi} \int_{-\infty}^{0} G(x, y,-s) k(-s) Y(y, s) d s d y \text { and } V(x, 0)=\int_{0}^{\pi} \int_{-\infty}^{0} G(x, y,-s) k(-s) C(y, s) d s d y
$$

The parameters are fixed in the Table 2 below

Table 2: Numerical values of the parameters of PDE-model (2.4)-(2.6).

Parameters	values	Source	Parameters	values	Source
q	$0,0.1$	$[22]$	a	1	$[23]$
A	100	$[22]$	γ	0.9	$[23]$
β_{v}	$1.7143 \cdot 10^{-6}$	$[23]$	ρ	0.001	$[22]$
β_{e}	0.002 week $^{-1}$	Assumed	D_{1}	4	Assumed
d	$1 / 72$ week $^{-1}$	$[24]$	D_{2}	3	Assumed
α	0.001 ind $^{-1}$	$[23]$	D_{3}	2	Assumed
B	1.5	$[22]$	D_{4}	1.5	Assumed
τ_{v}	0.6	$[22]$	ϵ	1	$[22]$
δ	0.00025641	$[24]$	κ	10^{6}	$[22]$
ξ	35	Assumed	τ_{e}	0.1	Assumed
ϕ_{2}	\cdot	variable	D_{5}	1	Assumed
τ	3	Assumed			

5.1. General dynamics

Figure 1 illustrates Theorem 4.5, which states that the disease-free equilibrium Z^{0} of the full system (2.4)-(2.6) is globally asymptotically stable. That is, aviain influenza ultimately disappears in the poultry, human population and in the environment irrespective of the initial conditions whenever $\mathcal{R}_{0}<1$. Thus, reducing the contact rates (poultry-to-poultry and poultry-to-environment) for susceptible poultry in order to keep ($\mathcal{R}_{0}<1$), is a good policy to control the spread of avian influenza virus.

Figure 1: Simulations of IBVP (2.4)-(2.6) using various initial conditions when $q=0$ and $\phi_{2}=10^{3}$ (so that $\mathcal{R}_{0}=0.9183<1$). All other parameter values are as in Table 2.

Figure 2: Simulations of IBVP (2.4)-(2.6) using various initial conditions when $q=0$ and $\phi_{2}=10^{4}$ (so that $\mathcal{R}_{0}=1.1849>1$). All other parameter values are as in Table 2.

Figure 2 illustrates Theorem 4.2, which states that the endemic equilibrium Z^{*} of the full system (2.4)-(2.6) is locally asymptotically stable. That is, avian influenza are still present in poultry, human population and in the environment irrespective of the initial conditions whenever ($\mathcal{R}_{0}>1$). So, reducing contact rates (poultry-to-human, environment-to-human) for susceptible humans seems to be a recommended measure to control the spread of avian influenza within the human population.

Figure 3: Simulations of IBVP (2.4)-(2.6) using various initial conditions when $\phi_{2}=10^{4}$ and $q=0.1$. All other parameter values are as in Table 2.

5.2. Impact of some parameters on the model dynamics

As we can see from Figure 4, the diffusion of poultry and humans has no impact on the transmission dynamics of avian influenza. This is because: Indirect transmission through the environment is the most devastating one during an avian influenza outbreak on the one hand (see [4]) and infected humans can't transmit the virus on the other hand.

Figure 5 illustrates the impact of the delay parameter τ on the transmission dynamics of avian influenza. We observed that for very large values of τ, the number of infected humans decreases. Which is realistic because a significant delay by humans in feeding poultry can result in less contact between humans and poultry.

Figure 6 illustrates the impact of the transmission coefficient of the disease from the environment to humans. A significant impact on infected humans is observed when this parameter increases from 10% to 15%.

The effect of the transmission coefficient of the disease from the environment to the poultry is shown on Figure 7. We observe a significant impact on the three infected classes (i.e. human, poultry and virus concentration) when this parameter varies from 0.002 to 0.004 .

We can conclude from Figures 6 and 7 that the environment has a significant impact on the dynamics of the model.

6. Conclusion and discussion.

The main objective of this work was to add more realism to the modelling and analysis of the transmission of AIV. It was achieved by taking the authors's previous work [4] to the next level in two main directions:

Figure 4: Simulations of IBVP (2.4)-(2.6) with various values of D_{2} (so that $\mathcal{R}_{0}=1.1849>1$). All other parameter values are as in Table 2.

Figure 5: Simulations of IBVP (2.4)-(2.6) with various values of τ (so that $\mathcal{R}_{0}=1.1849>1$). All other parameter values are as in Table 2.

From the modelling perspective, the diffusion of poultry and humans were considered, as well as the delay in the trading of poultry and production of eggs (new poultry). The resulted more realistic model was a system of delayed reaction-diffusion equations.

From the theoretical perspective, we used the semigroup theory to deal with the well-posedness of the system. Moreover, the qualitative analysis of the model was insightfully performed and the main findings are as follows: An explicit formula for the reproduction number, given by the method in [17], allowed us to conclude whether the disease should persist or disappear in populations and in the environment. We obtained results on asymptotic behavior and numerical simulations were

Figure 6: Simulations of IBVP (2.4)-(2.6) with various values of τ_{e}. All other parameter values are as in Table 2.

Figure 7: Simulations of IBVP (2.4)-(2.6) with various values of β_{e}. All other parameter values are as in Table 2.
presented to interpret the results. It is observed that if $\mathcal{R}_{0}<1$, the disease-free equilibrium Z^{0} is globally asymptotically stable, implying that poultry, humans are safe and the environment is healthy if the contact rate for susceptible poultry is small. Our results also show that avian influenza spreads in the industrial zone when at least one of the two conditions is fulfilled: $\mathcal{R}_{0}>1$ or in the recruitment of poultry a proportion is asymptomatic.

From the computational aspect, we observed on the one hand that the importation of infected poultry can boost the endemic level of AIV in poultry and do not affect much the human population; on the other hand, in an epidemic situation, a significant delay can lead to a decrease in the number of infected humans. Moreover, we noticed that the environment has a significant impact on the dynamics of the
model. It should be noted that viruses live in poultry excrements, which are small particles that can be transported by the effect of the wind and diffused into the atmosphere. In view of this, it is very realistic to extend this work by taking into account the transport and spread of the virus. Thus, we will obtain an advection-diffusion model whose main investigation will be the study of impact of virus transport and diffusion on the transmission dynamics of this disease.

Acknowledgments

The authors are very thankful to the editors and the anonymous reviewer for their thoughtful reading and constructive suggestions that greatly improved the initial version of this paper.

References

[1] J.S.M. Peiris, M.D. De Jong, Y. Guan: Avian influenza virus (H5N1) : a threat to human health. Clin. Microbiol. Rev. 20:2, (2007), 243-267.
[2] B. Killingley, J. Nguyen-Van-Tam: Routes of influenza transmission. Influenza Other Respir. Viruses 7, (2013), 42-51.
[3] J.E. Dent, R.R. Kao, I.Z. Kiss, K. Hyder, M. Arnold: Contact structures in the poultry industry in Great Britain: exploring transmission routes for a potential avian influenza virus epidemic. BMC Vet. Res 4:27, (2008), 1746-6148.
[4] A. Feukouo Fossi, J. Lubuma, C. Tadmon, B. Tsanou : Mathematical modeling and nonstandard finite difference scheme analysis for the environmental and spillover transmission of an Avian Influenza Virus model. Dyn. Syst. (2021), https://doi.org/10.1080/14689367.2021.1872503.
[5] S. Liu, S. Ruan, X. Zhang: On avian influenza epidemic models with time delay, Theory.Biosci, 134, (2015), 75-82.
[6] R. Xu, A reaction diffusion predator-prey model with stage structure and nonlocal delay, Appl.Math.Comput 175,(2006), 984-1006.
[7] K. I. Kim, Z. Lin, L. Zhang, Avian-human influenza epidemic model with diffusion, Nonl.Anal: Real World Applications 11 (2010) 313-322.
[8] Q. Tang, J. Ge, Z. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay, Appl.Math.Comput 247,(2014), 753-761.
[9] A. Stephen, Gourley, S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J.Math.Anal. Vol. 35, No. 3. 806-822.
[10] Henry, Daniel, Geometric Theory of Semilinear Parabolic Equations, 1st edition, Springer-Verlag, (1981).
[11] Yagi, Atsushi, Abstract parabolic evolution equations and their applications, Springer Science and Business Media, (2009).
[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl.Math.Sciences, 44, Springer-Verlag, New York, (1983).
[13] C. Goudjo, B. Leye, M. Sy, Weak Solution to a Parabolic Nonlinear System Arising in Biological Dynamic in the Soil.(2011), Int.J.Diff.Equations, 1-25.
[14] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, (1992).
[15] H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Providence (RI): American Mathematical Society Providence, 41 (1995).
[16] F. B. Wang, Y. Huang, X. Zou, Global dynamics of a PDE in-host viral model, Appl.Anal: An Int.J, 93 (2014), 2312-2329.
[17] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J.Appl.Dyn.Syst. 11 (2012), 1652-1673.
[18] Tadmon, C., Foko, S. (2019). Modeling and mathematical analysis of an initial boundary value problem for hepatitis B virus infection. Journal of Mathematical Analysis and Applications, 474(1), 309-350.
[19] Walker, J. A. (2013). Dynamical systems and evolution equations: theory and applications (Vol. 20). Springer Science, Business Media.
[20] Alikakos, N. D., Bates, P. W. (1988). An invariance principle for a class of monotone systems and application to degenerate parabolic equations. The Rocky Mountain journal of mathematics, 18(2), 215-224.
[21] Z. Shuai, P. Van Den Driessche, Global stability of infectious disease models using Lyapunov functions. SIAM J.Appl.Math. Vol. 73, No. 4. 1513-1532.
[22] S. M. Guo, J. Wang, M. Ghost, X. Zhi: Analysis of Avian Influenza A (H7N9) model based on the low pathogenicity in poultry. J.Biol.Syst, 25:2,(2017), 1-16.
[23] S. Liu, L. Pang, S. Ruan, X. Zhang. Global dynamics of avian influenza epidemic models with psychological effect. Comput.Math.Methods.Med; (2015).
[24] Z. Liu, C. T. Fang. A modeling study of human infections with avian influenza A H7N9 virus in mainland China. Int.J.Infect.Dis; (2015), 73-78.

[^0]: ${ }^{1}$ Corresponding author: Calvin Tadmon, E-mail: tadmonc@yahoo.fr.

