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In the context of the AdS4/C F T3 correspondence between higher spin fields and vector theories, we use 
the constructive bilocal fields based approach to this correspondence, to demonstrate, at the I R critical 
point of the interacting vector theory and directly in the bulk, the removal of the � = 1 (s = 0) state 
from the higher spins field spectrum, and to exhibit simple Klein-Gordon higher spin Hamiltonians. The 
bulk variables and higher spin fields are obtained in a simple manner from boundary bilocals, by the 
change of variables previously derived for the U V critical point (in momentum space), together with a 
field redefinition.
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1. Introduction

The AdS/CFT correspondence [1–3] has a very interesting ap-
plication in the context of the higher spin theories/vector model 
correspondence [4]. Of particular interest to us is the AdS4/C F T3
correspondence.1

Although the higher spin degrees of freedom of Fronsdal and 
Vasiliev are not those of string theory,2 there are several reasons 
why this correspondence is of importance and deserves further 
study. These include the absence of supersymmetry and the fact 
that vector models are “solvable” in the large N limit, allowing for 
a more concrete and detailed study of the workings of the cor-
respondence, and possibly even providing a definition of (gauge 
fixed) higher spin theories themselves, through their dual vector 
valued field theories.

We focus in this communication on the constructive approach 
of [18–22]. In this approach, the singlet sector of O (N) invariant 
field theories is described in terms of equal time bilocals, appro-
priate to an Hamiltonian description of the theory,

* Corresponding author.
E-mail addresses: cel.284@gmail.com (C. Johnson), 

mulokwe.mbavhalelo@gmail.com (M. Mulokwe), joao.rodrigues@wits.ac.za
(J.P. Rodrigues).

1 There is a vast literature on the subject; [5–13] are representative of the work 
on the subject, but they do not form by any means an exhaustive list.

2 For attempts to link the two, see for instance [14–17].
https://doi.org/10.1016/j.physletb.2022.137056
0370-2693/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
ψ�x1�x2
=

N∑
a=1

φa (
t, �x1

)
φa (

t, �x2
)
, (1)

where �x1 and �x2 are two dimensional space vectors. For the free 
theory (the U V fixed point), these 5 degrees of freedom and their 
canonical conjugates are mapped to AdS4 × S1, where the S1 en-
codes the spin degrees of freedom. The map is a phase transfor-
mation, but is a point transformation in momentum space. In a 
temporal gauge [22], it is given by:

E = E1 + E2 = | �p1| + �p2| (2)

�p = �p1 + �p2 (3)

pz = 2
√∣∣ �p1

∣∣ ∣∣ �p2
∣∣ sin

(
ϕ2 − ϕ1

2

)
(4)

θ = arctan

(
2�p2 × �p1(∣∣ �p1
∣∣ − ∣∣ �p2

∣∣) pz

)
(5)

with ϕ2 − ϕ1 being the angle between �p1 and �p2, and �p2 × �p1 ≡
p1

2 p2
1 − p2

2 p1
1 [22].

The three dimensional O (N) vector theory with a λ
N (φaφa)2 in-

teraction has an IR fixed critical point. At this critical point, the 
theory is expected to contain a state with dimension � = 2, a 
boundary field in the standard AdS/CFT correspondence with the 
standard positive branch for the expression of the dimension of 
the operator [4], and no longer the � = 1 state present in the UV 
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critical point. Although general arguments exist relating the two 
through a Legendre transformation [23], in practice the IR fixed 
point is described in terms of a non-linear sigma model [24,25]. 
In this description, the Lagrange multiplier field is naturally identi-
fied with the � = 2 state, but it is certainly not apparent that the 
� = 1 is no longer present in the theory, or equivalently, that the 
constraint is enforced beyond the leading large N order.

These issues were discussed and successfully resolved in [26]
directly in terms of the λ

N (φaφa)2 theory, using bilocal fields on the 
field theory boundary. The two point function for bilocals appro-
priate to the path integral description of the boundary field theory 
(a Bethe-Sapeter equation [27] in terms of the original field the-
ory variables) was obtained, and shown to take a universal form 
at the I R critical point.3 It consists of the two free propagators 
present in the U V limit plus a connected piece with a pole identi-
fied with the � = 2 state. This bilocal propagator was then shown 
to be equivalent to the spectrum equation arising in the Hamilto-
nian bilocal approach as a result of integration of an intermediate 
energy variable. In both cases, the absence of a boundary � = 1
state was demonstrated.

In this communication, we address the question of whether the 
map (2)–(5) and the construction of bulk fields, established for the 
U V critical point, is still applicable at the I R fixed point, or if it 
needs adjusting. It will be shown that the map remains valid, and 
that by introducing a suitable field redefinition in the definition 
of bulk higher spin fields, the connected piece of the propagator / 
spectrum equation precisely removes the s = 0 state from the bulk 
higher spin field.

This letter is organised as follows. Overall, Section 2 discusses 
the bilocal description of the boundary. Subsection 2.1 briefly de-
scribes the conformal IR fixed point of the λ

N (φaφa)2 theory at 
leading order in N . In Subsection 2.2, the bilocal spectrum equa-
tion of the 1/N quadratic Hamiltonian fluctuations is obtained, 
and a potential scattering problem ensues. In Subsection 2.3, the 
most general solution to the spectrum equation is obtained, and 
is shown to take a universal form at IR criticality. Section 3 de-
scribes the construction of the bulk. Using a change of variables 
from bilocal momenta to bulk momenta (as dictated by the map 
(2)–(5)), and instituting a field redefinition to define bulk higher 
spin fields, a bulk Hamiltonian is obtained in Subsection 3.1 for the 
free case that is simply the sum of Hamiltonians of massless spin 
s fields in an equal time slice of AdS4. In Subsection 3.2, again us-
ing the same field redefinition and the map (2)–(5), we are able to 
obtain the bulk description of the universal boundary eigenstates 
at the IR critical point. It is then shown directly in the bulk that 
the s = 0 (or � = 1 state) is exactly removed from the spectrum. It 
is remarkable that this direct construction of the bulk is obtained 
by a simple change of variables (2)–(5) accompanied by a field 
redefinition in defining bulk higher spin fields from boundary bilo-
cals. Subsection 3.3 exhibits how the bulk � = 2 state becomes a 
boundary state at IR criticality. In addition, we show explicitly that 
the bulk AdS4 × S1 Hamiltonian projects to the boundary Hamilto-
nian with the correct dispersion relation for a single mode bound 
state. This was the expected result and serves as a further check of 
our bulk higher spin field redefinitions. Section 4 is left for a brief 
discussion and outlook.

2. Bilocal boundary

2.1. Bilocal Hamiltonian and large-N conformal background

Our starting point is the Hamiltonian density of a three (space-
time) dimensional scalar vector theory with a quartic interaction 

3 Path integral bilocal holography was previously discussed in [28], and more re-
cently with the use of conformal group techniques in [29], [30].
2

λ
N (φaφa)2, a = 1, ..., N:

H = 1

2
πaπa + 1

2
�∇φa · �∇φa + 1

2
m2φaφa + λ

4!N
(
φaφa)2

,

πa(�x) = −i
∂

∂φa(�x) .

We use the collective field theory method [31] to re-express the 
above Hamiltonian in terms of O (N) invariant equal time bilocals

ψ�x1�x2
(t) =

N∑
a=1

φa (
t, �x1

)
φa (

t, �x2
)
, (6)

and their canonical conjugates, as appropriate to an Hamiltonian 
approach. This is achieved by a simple change of variables from 
the original fields of the scalar theory to the invariant bilocals, and 
by a similarity transformation:

∂α → ∂α − 1

2
∂α ln J , α ≡ ψ �x1 �x2

.

J is the Jacobian induced by the change of variables, and the above 
transformation ensures that the collective Hamiltonian is explicitly 
hermitian. For vector models the large N form of the Jacobian is 
known (see for instance [32], [27]) and its leading large N form is 
given by:

ln J = N

2
Tr lnψ.

The trace is in (spatial) functional space. One obtains the form of 
the collective field theory Hamiltonian sufficient to generate the 
large N background and spectrum:

H = 2

N
Tr�ψ� + N

8
Tr(ψ−1)

+N

∫
dd−1�x

(
−1

2
lim
�x→�y

∂2
�yψ�x�y + 1

2
m2ψ�x�x + λ

4!ψ
2
�x�x

)

≡ 2

N
Tr�ψ� + N V ef f , ��x�y = −i

∂

∂ψ�x�y
. (7)

The fields have been rescaled ψ → Nψ to make explicit the N
dependence. In the large N limit the kinetic term is subleading, 
and with the large N translationally invariant ansatz:

ψ0
�x�y =

∫
d2k

(2π)2
ei�k·(�x−�y)

ψ0
�k , (8)

the standard gap equation

s = 1

2

∫
d2�k

(2π)2

1√
�k2 + m2 + λ

6 s
, s =

∫
d2�k

(2π)2
ψ0

�k , (9)

is obtained. Defining α ≡ m2 + λ
6 s, one has4

6

λ
(α − m2) =

∫
d2�k

(2π)2

1

2
√�k2 + α

=
∫

d3k

(2π)3

i

k2 − α

=
∫

d3kE

(2π)3

1

k2
E + α

.

Our regularization is defined as:

4 Our notations are as follows: k = (E, �k) with Minkowski signature (+, −, −) and 
kE is the euclidean momentum 3-vector.



C. Johnson, M. Mulokwe and J.P. Rodrigues Physics Letters B 829 (2022) 137056
∫
ddkE

(2π)d

1

k2
E + α

= 1

(4π)d/2
�

(
1 − d

2

)
α

d−2
2 → − 1

4π

√
α,

for d = 3. (10)

Thus one obtains the equation α + λ
24π

√
α − m2 = 0. The IR fixed 

point is associated with the root:

√
α = 24πm2

λ
+ O (

m4

λ3
) (11)

and is approached by keeping m2 finite and taking |λ| → ∞. At the 
critical point then, the background propagator takes the conformal 
form:

ψ0
�k = 1

2|�k| , (12)

and is the O (N) invariant two point function of the underlying 
scalar fields.

2.2. Quadratic Hamiltonian and spectrum equation

1/N corrections yield the spectrum, which is obtained from 
small fluctuations about the large-N conformal background. One 
shifts,

ψ�x1�x2
= ψ0

�x1�x2
+ 1√

N
η�x1�x2

; ��x1�x2
= √

Nπ�x1�x2
,

from which the quadratic Hamiltonian follows:

H (2) = 2Tr
(
πψ0π

)
+ 1

8
Tr

(
(ψ0)−1η(ψ0)−1η(ψ0)−1

)
+ λ

4!
∫

d2�xη2
�x�x. (13)

The equations of motion for η are then:

η̈ �x1 �x2
= −1

4

[
(ψ0)

−1
η(ψ0)−1 + η(ψ0)−2 + (ψ0)−2η

+ (ψ0)−1η(ψ0)−1]
�x1 �x2

− λ

6

(
ψ0

�x1 �x2
(η �x1 �x1 + η �x2 �x2

)
)

.

Looking for eigen-frequencies, and Fourier transforming:

η �x1 �x2
(t) = e−iEtη �x1 �x2

,

η �x1 �x2
=

∫
d2�k1

2π

∫
d2�k2

2π
ei�k1�x1+i�k2�x2η�k1�k2

,

one obtains the spectrum equation:

E2η�k1�k2
= 1

4

(
(ψ0

�k1
)−1 + (ψ0

�k2
)−1

)2
η�k1�k2

+ λ

6

(
ψ0

�k1
+ ψ0

�k2

)∫
d2�l

(2π)2
η�k1+�k2−�l,�l. (14)

At the UV point (λ = 0), the large N background is also conformal, 
and

E2
�k1�k2

= 1

4

(
(ψ0

�k1
)−1 + (ψ0

�k2
)−1

)2 =
(
| �k1| + | �k2|

)2
, (15)

a result known for some time [33] and at the root of the 
AdS4/C F T3 constructive map [19,22] at the free UV fixed point. 
At the IR fixed point, the spectrum is to be understood as that of a 
quantum mechanical (relativistic) potential scattering problem for 

the set of continuum states with E2
�k1�k2

=
(
| �k1| + | �k2|

)2
. It can then 

be expected that the AdS4/C F T3 constructive map of [22] remains 
valid.
3

2.3. States on the bilocal boundary

As is well known, the most general solution of the spec-
trum equation (14) for potential scattering with (squared) energy 
E2

�p1 �p2
= (| �p1| + |�p2|)2 can be written as:

η
�p1,�p2
�k1, �k2

= ρ
�p1 �p2
�k1, �k2

+ λ

12

1

E2
�p1 �p2

− (| �k1| + | �k2|)2

( 1

| �k1|
+ 1

| �k2|
)

×
∫

d2�l
(2π)2

η
�p1 �p2
�k1+ �k2−�l,�l,

where ρ �p1 �p2
�k1, �k2

is a solution of the free equation, which we normalize 

to ρ �p1 �p2
�k1, �k2

= δ2( �p1 − �k1)δ
2( �p2 − �k2). In the above, ( �p1, �p2) labels the 

states and ( �k1, �k2) are momentum coordinates.
Integration of both sides of the full scattering solution results 

in ([26])∫
d2l

(2π)2
η

�p1,�p2
�k1+ �k2−�l,�l = δ2(�p1 + �p2 − �k1 − �k2)

(2π)2
(

1 + λ
6i

∫ d3l
(2π)3

1
l2(p1+p2−l)2

) , (16)

where we have used the result [26]

1

E2
�p − (|�l| + |�p −�l|)2

( 1

|�l| + 1

|�p −�l|
)

= 2i

∫
dEl

(2π)

1

l2(p − l)2
. (17)

Since∫
d3l

(2π)3

1

l2(p − l)2
= i

8 |pE | ,
the form of the scattering solution for finite λ is:

η
�p1,�p2
�k1,�k2

= δ2(�p1 − �k1)δ
2(�p2 − �k2) (18)

+ δ2(�p1 + �p2 − �k1 − �k2)

E2
�p1 �p2

− (|�k1| + |�k2|)2

( 1

|�k1|
+ 1

|�k2|
)( λ

48π2

) 1

1 + λ
48|pE |

,

with |pE | =
√

− (|p1| + |p2|)2 + (�p1 + �p2
)2. At the IR critical point 

(|λ| → ∞), the scattering states take a universal critical form:

η
�p1,�p2
�k1,�k2

= δ2(�p1 − �k1)δ
2(�p2 − �k2)

+ |pE |
π2

δ2(�p1 + �p2 − �k1 − �k2)

E2
�p1 �p2

−
(
|�k1| + |�k2|

)2

(
1

|�k1|
+ 1

|�k2|
)

(19)

where E2
�p1 �p2

= (|�p1| + |�p2|
)2. On the boundary, that the � = 1

state is no longer in the spectrum is more simply shown by taking 
the limit |λ| → ∞ in equation (16).5

Alternatively it can also be confirmed directly from the critical 
form (19), by integration with �k1 + �k2 fixed, and using the integral 
results stated in the above. This agrees with results obtained with 
path integral bilocal correlators at criticality [26].

Bound states are well known to correspond to eigenspectrum 
solutions in the absence of an incident wave, or equivalently as 
particular solutions of (14):

ηB
�k1�k2

= λ

12

1

E2 −
(
|�k1| + |�k2|

)2

(
1

|�k1|
+ 1

|�k2|
)∫

d2l

(2π)2
ηB

�k1+ �k2−�l,�l

Use of the integral results stated above determines its energy to be

5 η�x�x = ∫
d2 pei�p·�x ∫ d2l

2 η� �� is a boundary field, as z ∼ (�x1 − �x2) · �f (�p1, �p2).

(2π) p−l,l
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E2 = (�k1 + �k2)
2 − (

λ

48
)2

As expected, bound states can also be identified as poles in 
the connected piece (transmission amplitude) of (18) ocuring at 
48|pE | = −λ.

This is a state of infinite (tachyon) squared mass present as 
λ → −∞. It appears as an infinite pole |pE | → ∞ in the universal 
connected piece of (19). This is the � = 2 state [26].6

3. Constructing the bulk

3.1. Higher spin fields in the bulk - field redefinition and quadratic 
Hamiltonian

We now wish to use the map (2)–(5) to explicitly construct the 
higher spin fields in the bulk. We first discuss the free case.

The Jacobian for the change of variables from bilocals to AdS
coordinates [22] is given by∣∣∣∣∣∂

�kAdS×S1

∂�kbilocal

∣∣∣∣∣ = 1

|�k1|
+ 1

|�k2|
. (20)

We use the notation �kAdS×S1 = (�k, kz, θ) ≡ �κ and �kbilocal = (�k1, �k2). 
The equal time slice is the same.

We wish to preserve the canonical structure under this change 
of variables:[

π�k1�k2
, η�k′

1
�k′

2

]
= −iδ2(�k1 − �k′

1)δ
2(�k2 − �k′

2)

= −i

(
1

|�k1|
+ 1

|�k2|
)

δ(�kAdS×S1 − �k′
AdS×S1)

⇒
[
π�k1�k2

, η�k′
1
�k′

2

]
1

|�k1| + 1
|�k2|

= −iδ(�kAdS×S1 − �k′
AdS×S1)

This requires a redefinition of at least one of the fields.
Let us now consider the form of the (free) quadratic Hamilto-

nian (13) in momentum space:

H2 =
∫

d2k1

∫
d2k2

(
π�k1�k2

(
ψ0

�k1
+ ψ0

�k2

)
π−�k2−�k1

)

+ 1

16

∫
d2k1

∫
d2k2 η�k1�k2(

(ψ0
�k1

)−2(ψ0
�k2

)−1 + (ψ0
�k2

)−2(ψ0
�k1

)−1
)
η−�k2−�k1

=
∫

d2k1

∫
d2k2

1

2

(
π�k1�k2

(
1

|�k1|
+ 1

|�k2|
)

π−�k2−�k1

)

+1

2
η�k1�k2

(
|�k1|2|�k2| + |�k2|2|�k1|

)
η−�k2−�k1

.

By factorizing the Jacobian, this can be re-written as

H2 =
∫

d2k1

∫
d2k2

(
1

|�k1|
+ 1

|�k2|
)

1

2

[(
π�k1�k2

π−�k2−�k1

)

+
η�k1�k2

(
|�k1| + |�k2|

)2
η−�k2−�k1(

1
|�k1| + 1

|�k2|
)(

1
|�k1| + 1

|�k2|
)

⎤
⎥⎦ . (21)

This then suggests that we define the bulk higher spin field and its 
conjugate field as [34,35]7

6 In 3 euclidean dimensions ∫ d3 x
x4 eikE x ∼ |kE |.

7 This is opposite to the c = 1 case [36] where it is the conjugate momentum 
that is rescaled in the change of variables to (asymptotic) Liouville coordinates.
4

H(�κ) = H
(�k,kz, θ

)
≡ η�k1�k2

1
|�k1| + 1

|�k2|

∣∣∣∣∣∣�k1,�k2

(�k,kz,θ
) (22)

�(�κ) = �H
(�k.kz, θ

)
= π�k1�k2

∣∣∣�k1,�k2

(�k,kz,θ
) . (23)

Since by construction (2), |�k1| + |�k2| = E =
√

�k2 + (kz)2 ≡ (P 0)AdS , 
the Hamiltonian can be written directly as an integral over AdS ×
S1:

H2 = 1

2

∫
d�kAdS×S1

[(
�H(�k,kz, θ)�H(−�k,−kz,−θ)

)

+
(

P 0
)2

H(�k,kz, θ)H(−�k,−kz,−θ)

]
.

In other words, we have obtained a bulk quadratic Hamiltonian in 
AdS4 × S1 by field redefinition and a simple change of variables:

H2 = 1

2

∫
d�κ

[
�(�κ)�(−�κ) + (P 0)2H(�κ)H(−�κ)

]
. (24)

We expand in spin fields [22]

h(kz, �k, θ) =
∞∑

s=0,±2,...

eisθ

√
π

hs(k
z, �k). (25)

The spin field hs(kz, �k) can be further expanded [22], but for the 
purposes of this communication it is sufficient to observe the im-
portant property that θ ∈ [0, π ]. Indeed, from (5), θ ∼ θ + π , and 
the fact that s is even follows. This corresponds to the spectrum 
of the minimal type A Vasiliev higher spin theory with a � = 1
scalar.

We then recognise (24) as a sum of Hamiltonians of massless 
spin s fields in AdS4

8:

H2 = 1

2

∞∑
s=0,±2,...

∫
d�kAdS [πs(�k,kz)πs (−�k,−kz) + (P 0)2hs(�k,kz)

× hs(−�k,−kz)] (26)

3.2. Bulk higher spin fields at the IR critical point

At the IR critical point, recall that the universal form (19) of the 
energy eigenstates was found to be:

η
�p1,�p2
�k1,�k2

= δ2(�p1 − �k1)δ
2(�p2 − �k2)

+ |pE |
π2

δ2(�p1 + �p2 − �k1 − �k2)

E2
�p1 �p2

−
(
|�k1| + |�k2|

)2

(
1

|�k1|
+ 1

|�k2|
)

.

Further recall that ( �k1, �k2) are momentum coordinates and that 
( �p1, �p2) label the states with (squared) energy E2

�p1 �p2
= (| �p1| +

|�p2|)2. We observe that

|pE | =
√

− (|p1| + |p2|)2 + (�p1 + �p2
)2

= i
√

(|p1| + |p2|)2 − (�p1 + �p2
) · (�p1 + �p2

)
= i|pz|,

using the map (2)–(5).

8 πs and hs are canonically conjugate fields.
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The most general solution to the spectrum equations can then 
be written as an arbitrary linear combination of the universal en-
ergy eigenstates:

η�k1�k2
=

∫
d�p1

∫
d�p2 η

�p1,�p2
�k1,�k2

ψ�p1 �p2

= ψ�k1�k2
+ i

π2

∫
d�p1

∫
d�p2

∣∣pz
∣∣

δd−1(�p1 + �p2 − �k1 − �k2)
(

1
|�k1| + 1

|�k2|
)

E2
�p1 �p2

−
(
|�k1| + |�k2|

)2
ψ�p1 �p2

.

Following the prescription of the previous subsection, to change to 
bulk higher spin variables, we make the identification

H(�κ) ≡ η�k1�k2(
1

|�k1| + 1
|�k2|

)

h(�κ) ≡ ψ�k1�k2(
1

|�k1| + 1
|�k2|

) ,

and change variables to AdS4 × S1 coordinates. Hence we obtain, 
in the bulk:

H(�κ) = h(�κ) + i

π2

∫
d�p

∫
dpz

∫
dθ

∣∣pz
∣∣

δ2(�p − �k)

(pz)2 + (�p)2 − (kz)2 − (�k)2
h(pz, �p, θ)

= h(kz, �k, θ�k)

+ i

π2

∫
dpz

∫
dθ

∣∣pz
∣∣

(pz)2 − (kz)2
h(pz, �k, θ).

Under mild assumptions on the behaviour of h(pz, �k, θ) as |pz| →
∞ (also requiring that h(−kz) = h(kz)), one has∫

dpz

∣∣pz
∣∣h(pz, �k, θ)

(pz)2 − (kz)2 − iε
= iπh(kz, �k, θ),

so that

H(kz, �k, θ) = h(kz, �k, θ) − 1

π

π∫
0

dθ h(kz, �k, θ). (27)

Expanding h(kz, �k, θ) in spin s fields as in (25):

h(kz, �k, θ) =
∞∑

s=0,±2,...

eisθ

√
π

hs(k
z, �k)

with 0 < θ < π , we see that the latter term in equation (27) pre-
cisely removes the s = 0 field (� = s + 1 = 1) in the bulk, and thus

H(kz, �k, θ) =
∞∑

s =0, s=±2,...

eisθ

√
π

hs(k
z, �k),

in agreement with [37]. More precisely, our result corresponds, in 
terms of higher spin representations without � = 1, to the spectra 
of the (antisymmetric) direct product of two 3d free O (N) Majo-
rana Di singletons.9 That is,

[Di ⊗ Di]A = (2,0) ⊕ ∞⊕
s=1

(2s + 1,2s) (28)

9 The S O  (3,2) representations are labelled by (�, s) and Di = (
1, 1

2

)
.
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The 3d free O (N) Majorana fermion theory is dual to the mini-
mal type B Vasiliev higher spin theory which, in d = 3, has the 
same spectra, up to boundary conditions for the scalar field, as the 
minimal type A Vasiliev higher spin theory with a � = 2 scalar 
[7,8]. This provides conclusive evidence of the appropriateness of 
the identification of the bulk higher spin fields as in (22) and (23).

It is left to observe that the interaction term λ
4!

∫
dd−2�x (η�x�x)2

of the Hamiltonian does not contribute at the critical point, since

η�x�x ∼ 1/λ +O(1/λ2).

As such, the expression for the Hamiltonian (26) simply changes to 
exclude the s = 0 term:

H2 = 1

2

∑
s =0, s=±2,...

∫
d�kAdS [πs(�k,kz)πs (−�k,−kz)

+ (P 0)2hs(�k,kz)hs(−�k,−kz)]
3.3. The � = 2 state and its Hamiltonian

Returning to the � = 2 state, we recall that the particular solu-
tion wave function of (14) is given by

ηB
�k1�k2

= λ

48π2

1

E2 −
(
|�k1| + |�k2|

)2

(
1

|�k1|
+ 1

|�k2|
)

J (�k1 + �k2),

J (�k1 + �k2) =
∫

d2l ηB
�k1+ �k2−�l,�l ,

provided

E2 = E2
�k1+�k2

= (�k1 + �k2)
2 − (

λ

48
)2. (29)

In other words,

ηB
�k1�k2(

1
|�k1| + 1

|�k2|
) = λ

48π2

J (�k1 + �k2)

(�k1 + �k2)2 −
(
|�k1| + |�k2|

)2 − ( λ
48 )2

We can now implement the map (2)–(5) and the field redefinition 
(22) to obtain the state directly in the bulk:

H B(�κ) = − λ

48π2

J (�k)

(kz)2 + ( λ
48 )2

, (30)

∫
dkzeikz z H B(�κ) ∼ e−|λz|/48. (31)

The above bulk description of the � = 2 state establishes it as a 
spin 0 state with an exponential decay into the bulk. At criticality, 
the state is then a boundary state, in agreement with [26].

In order to obtain the Hamiltonian description of the state, we 
investigate the bulk properties of J (�k1 + �k2):

J (�k1 + �k2) =
∫

d2l ηB
�k1+ �k2−�l,�l

=
∫

d2l1d2l2 δ2(�k1 + �k2 −�l1 +�l2)ηB
�l1�l2

=
∫

d�lAdSδ
2(�k −�l) H B(lz,�l, θl)

=
∫

dlz
∫

dθl H B(lz, �k, θl) = J (�k)

J (�k) is then a spin 0 boundary (z = 0) state. For finite λ, consis-
tency of the solution (30) can be established directly in the bulk, 
requiring λ < 0.
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The interaction term in equation (13) now takes the form:

λ

4!
∫

d2�xη2
�x�x = λ

96π2

∫
d2k J (�k) J (−�k)

From the quadratic Hamiltonian (21) and the field redefinitions 
(22) and (23), it follows that �H (κ) = Ḣ(−κ), so that

�B
H (κ) = − λ

48π2

� J (−�k)

(kz)2 + ( λ
48 )2

, (32)

where � J (�k) is the canonical conjugate to the boundary field J (�k). 
Substituting (30) and (32) into the Hamiltonian (24), performing 
the integrals over kz and (trivially) over θ and finally adding the 
above interaction contribution results in the Hamiltonian:

H B
2 = 24

π2|λ|
{

1

2

∫
d2k � J (�k)� J (−�k)

+ 1

2

∫
d2k

(
�k2 − (

λ

48
)2

)
J (�k) J (−�k)

}

This is, up to a factor, the expected Hamiltonian for a single mode 
with dispersion relation (29).

4. Discussion and outlook

In this paper, we built on the constructive approach which was 
developed in Refs. [19,22] in both the light-cone gauge and the 
temporal gauge for the free theory, in which an explicit map be-
tween the conformal field theory in d = 2 + 1 dimensions and the 
higher spin theory in AdS4 × S1 was established. In the Hamil-
tonian approach, the 1 + 2 + 2 = 5 coordinates of the equal time 
bilocals, map (in phase space) to the coordinates of AdS4 × S1. We 
made use of the Hamiltonian approach in a time like gauge [22], 
and for the IR critical point, we considered an O (N) vector theory 
with a quartic interaction [26]. The quartic interaction contributes 
linearly in the bilocal field fluctuation equations, and the spectrum 
problem is then that of a potential scattering problem. The eigen-
state solutions take a universal form at the critical point [26].

The bulk description of these boundary eigenstates was ob-
tained by developing a remarkably simple first principles approach, 
consisting of a simple change of variables from bilocal momenta to 
bulk momenta (2)–(5), but requiring a field redefinition in defining 
the bulk higher spin field. In this way, simple quadratic Klein-
Gordon bulk Hamiltonians are derived for the higher spin fields 
in both UV and IR critical points, and, at the IR critical point, the 
absence of an AdS4 spin 0 field is established directly in the bulk. 
The � = 2 state is shown to be a boundary state at IR criticality. 
Moreover, after integrating over kz and θ , the boundary quadratic 
Hamiltonian was obtained and has the expected dispersion relation 
for the bound state. In future, it will be interesting to look also at 
the non-decaying states which corresponds to mass deformations 
in the bulk dual theory [30].

The higher spin fields considered in this communication are dif-
ferent from those in [22], but the approach should be equivalent, 
at quadratic level, to the oscillator expressions obtained in that 
article for the conformal generators. An extensive and comprehen-
sive study of the conformal algebra using the approach described 
in this communication was carried out in [35] and shown to be in-
deed equivalent to the bulk oscillator expressions obtained in [22]. 
This will be reported elsewhere [38].

It is of great interest to apply the approach developed in this 
communication to generate interactions. The 1/N expansion of the 
collective field Hamiltonian is well established (e.g. [39], [21]). 
Work in this direction is currently underway.
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