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Abstract: Realising a low-complexity Farrow channelisation algorithm for multi-standard receivers
in software-defined radio is a challenging task. A Farrow filter operates best at low frequencies
while its performance degrades towards the Nyquist region. This makes wideband channelisation
in software-defined radio a challenging task with high computational complexity. In this paper,
a hybrid Farrow algorithm that combines a modulated Farrow filter with a frequency response
interpolated coefficient decimated masking filter is proposed for the design of a novel filter with
low computational complexity. A design example shows that the HFarrow filter bank achieved
multiplier reduction of 50%, 70% and 64%, respectively, in comparison with non-uniform modulated
discrete Fourier transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated
coefficient decimated (ICDM) filter algorithms. The HFarrow filter bank is able to provide the same
number of sub-band channels as other algorithms such as non-uniform modulated discrete Fourier
transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated coefficient
decimated (ICDM) filter algorithms, but with less computational complexity.

Keywords: channelisation; Farrow filter; frequency response masking filter; fractional delay filter;
coefficient decimation

1. Introduction

Recent rises in new and emerging technologies warrant low-complexity channelisation
algorithms for multi-standard software-defined radio (SDR) channels. Channelisation
is one of the applications of software-defined radio (SDR) for processing channels of
choice from wideband input channels and it is useful in signal processing [1] and image
compression [2]. It usually takes place at the digital front-end of the receiver. The extent
of computational complexity differs in different channelisation algorithms, from uniform
channelisation algorithms, such as the per-channel (PC), pipelined/binary algorithm and
pipelined frequency transform (PFT), to the non-uniform algorithms [3]. A Farrow filter
bank is typically used for extracting uniform as well as non-uniform channels. However,
at higher frequencies, its performance degrades and high computational complexities are
required to extract such channels. The resultant effects of bigger filter length, longer filter
coefficient, and the huge number of multipliers consumed by the Farrow filter, render it
unfit for the upcoming mobile communication services. Therefore, the Farrow filter bank
must be improved upon with low-complexity features.

A Farrow filter is a variable digital filter with adjustable control parameters. These
control parameters may be adjustable with arbitrary delay. A Farrow filter is used in multi-
standard receiver channelisation algorithms and for sample rate conversion [4]. It performs
best at low frequencies but with significant performance degradation at higher frequency
bands. The magnitude response of the Farrow structure is flat at low frequencies only,
which limits its adaptability to other frequency bands. However, introducing an adaptive
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rational sample rate converter (SRC) and filtering at every branch of the channeliser allow
different sub-band signals to be isolated, but with signal distortion.

Different attempts to reduce complexity and improve the performance of channelisa-
tion algorithms have been developed. A modified Farrow structure [5] has proven efficient
for implementing rational sampling rate conversion by reducing the number of operators
in the Farrow structure. A transposed modified Farrow structure [6,7] was proposed for
reducing complexity in a Farrow filter by transposing the modified filter and thereby
reducing the number of operators. Using a transposed modified Farrow structure, major
advantages were lower sample conversion and reduced computational complexity [6,7].
Apart from these approaches, a variable cut-off frequency (VCF) method was developed
to control the cut-off frequency of a variable filter in order to reduce its computational
load [8]. A fixed-coefficient VCF filter with discrete control over frequency uses techniques
such as a coefficient decimation method (CDM)-based filter and a frequency-response-
masking-based filter. The coefficient decimation method (CDM) [9–12] was proposed to
achieve low complexity by using one prototype filter or modal filter. Different signals
with different passband widths and passband locations can be extracted with minimum
overhead. Coefficient decimation method 1 (CDM-1) allows the extraction of different
multiband frequency responses whereas CDM-11offers flexible passband width and pass-
band centre frequency of the prototype filter [9,13–15]. A modified form of CDM known as
the modified coefficient decimation method (MCDM) was proposed to offer a solution to
the variable digital filter [16]. The MCDM technique provides higher frequency response
flexibility and offers twice the centre frequency resolution than the classical coefficient
decimation method (CDM). Two coefficient decimation operations can be performed on
MCDM. One of the operations is for extracting different multi-band frequency responses
(termed MCDM-1) and the other operation offers flexible passband width and passband
centre frequency of the prototype filter (termed MCDM-11). The combination of coefficient
decimation method 1 (CDM-1) and the modified coefficient decimation method (MCDM-1)
is referred to as an improved coefficient decimation method (ICDM-1) [17], whereas the
combination of coefficient decimation method 11 (CDM1-11) and modified coefficient
decimation method 11 (MCDM-11) is termed an improved coefficient decimation method
(ICDM-11). The main drawback of coefficient decimation is that the passband ripples and
stop-band attenuation deteriorates in the frequency responses by a factor of D. The number
of multipliers consumed by the CDM method [18] was 901.

A low-complexity, sharp-variable cut-off filter can be designed by using frequency
response masking (FRM) [19]. Frequency response masking is used to extract multiple
non-uniform channels. Hybridising a variable digital filter with FRM can result in lower
computational complexity. FRM in combination with the CDM method was used for
lowering the complexity of a variable filter [17,20]. Multi-stage FRM can also be used
to reduce the complexity of a variable filter [21,22]. Weighted FRM can also be used
for reducing the complexity of a variable filter [23,24]. Farrow interpolation [25,26] was
designed for converting the sample rate by a fractional or rational factor. In this method, the
Dth coefficients of the prototype filters are grouped together while discarding the remaining
coefficients. L− 1 zeros are inserted in between the selected coefficients. The number of
multipliers used were very high [19]. An FRM-based tree structure non-uniform filter bank
was designed to reduce the complexity of the filter to the minimum [27]. A substantial
reduction in the complexity of the variable digital filter can be achieved by combining a
modulated digital filter bank with the FRM approach, as can be seen with methods such
as the non-uniform modulated discrete Fourier transform (MDFT) and modulated cosine
filter [9]. A modulated generalised discrete Fourier transform (GDFT) filter bank was
proposed to reduce the complexity of the Farrow filter [28]. The filter operates on a series
of frequency-shifted oversampled sub-band signals. The approach attained −55 dB in
reconstruction error.

Further complexity reductions were seen when frequency-response masking (FRM)
and a non-maximally decimated filter bank (NMDUFB) were used [9]. A hybrid modified
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improved coefficient decimation method (HMICDM) was developed to improve the com-
plexity of a variable digital filter [29]. The Lagrange interpolation method [30] was used
for fractional delay approximation in a Farrow filter. The method increases the sampling
rate of signals while the computational complexities are reduced to minimal. The lower
complexity implementation and lower cost of a cosine modulated filter bank [3] can also
be exploited.

Table 1 recaps the comparison study of the different channelisation algorithms.

Table 1. Comparison study of the different channelisation algorithms.

Channelisation Algorithm Computational Load

Modified Farrow [5] Very High

Transposed modified Farrow [6,7] High

Coefficient decimation type 1 [9,11,12,18] Medium

Coefficient decimation type 11 [9,11,12,18] High

MCD 1 and 11 [9–12] Low

ICDM 1 and II [31] Low

Interpolation FRM [20] Very Low

CDM + interpolation FRM [20] Low

ICDM [17,31] Very High

Interpolation + Farrow structure [30] Very High

Cosine modulated filter bank [3,32] Low

FRM [15,31] High

FRM on tree structure NUFB [9] High

FRM NU MDFT [4,9] High

HMICDM [29] High
Very High: higher filter order and filter coefficients; High: high filter order and filter coefficients; Medium:
medium filter order and filter coefficients; Low: low filter order and filter coefficients; Very Low: very low filter
order and filter coefficients.

From Table 1, it can be seen that computation complexity is still high for Farrow-
based filters. The goal of this work is towards improving on this performance. The
solution approach explored here involves the development of a modulated Farrow filter
and the hybridisation of the modulated Farrow filter with a frequency response interpolated
coefficient decimated masking filter. The filter based on the algorithm is simulated and
tested using Matlab. It is hoped that the hybrid algorithm will improve the filter order,
number of multipliers consumed, stop-band attenuation and pass band ripples, and gives
a Farrow filter with low computational complexity.

The main novelties of this work are:

• Development of a low Farrow filter using a first-order differential method;
• Development of symmetrical frequency responses;
• Development of a modulation Farrow filter;
• Hybridisation of a modulation Farrow with frequency response masking filter and

interpolation coefficient decimation filter.

2. Hybrid Farrow Filter Derivation

The algorithm development here involves modulation of a Farrow filter and its op-
timisation by using a hybrid of a frequency response masking (FRM)-based interpolated
filter bank and a coefficient decimating filter (CD-1). The algorithm development is divided
into two stages. The first stage involves the development of a low Farrow coefficient using
a first-order differential method, development of symmetrical frequency responses and
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development of a modulating Farrow filter in which the first two steps above are used
during its implementation. The second stage combines the modulating Farrow filter with a
frequency masking filter and interpolation coefficient decimation to produce the algorithm
referred to as the hybrid Farrow (HFarrow) filter algorithm in this context forthwith. The
chronological order of the methods used is highlighted below.

• Development of low Farrow filter using first-order differential method;
• Development of symmetrical frequency responses;
• Development of modulation Farrow filter;
• Hybridisation of modulation Farrow with frequency response masking filter and

interpolation coefficient decimation filter.

Figure 1 shows the flowchart description of the investigation procedure for the HFar-
row algorithm.

Development of low Farrow filter using first order 
differential method

Development of symmetrical frequency response 
algorithm

Development of modulated Farrow algorithm

Hybridisation of modulated Farrow + FRM + CDM 
method

Development of Hybrid Farrow channelisation 
algorithm

Simulation on Matlab

Results

Performance of modulated  Farrow algorithm

Performance of modulated  interpolated coefficient 
decimated Farrow algorithm

Multiplication complexity comparison

Methods

Results

Figure 1. Flowchart depicting the HFarrow procedure.

2.1. Farrow Interpolation Using First-Order Differential Approach

The Farrow structure was implemented using the LaGrange polynomial. It is a
piecewise approximation of the filter into a polynomial form that shares a common set
of coefficients, which results in the interpolation of input signals. Two important design
parameters are polynomial order, k, and Farrow sub-filter, N [6,7,33]. It is implemented
as a direct form of the FIR filter structure and it is obtained as an approximation of the
continuous time function, Xc(t), by fractional delay, d, as indicated in Equation (1) [34].

y(n) = h(d) ∗ x(n)

y(n) = h(n, d) ∗ x(n)

= ∑ x(n) ∗ Ckdk

(1)
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The impulse response is computed using the Lagrange method. From the impulse
response h(n, d), the fixed coefficients can be determined. The coefficients, Ck, from
Equation (1) are derived from the set of N + 1 linear equations. These coefficients are
expressed in terms of fractional delay in such a way that 0 ≤ d ≤ 1. The filter coefficient,
h(n), can be expressed in terms of Ck as C0 + C1 + C2 + ...+ Cn. The Farrow filter relies
on a filter bank structure whereby each filter coefficient is approximated as the Nth order
polynomial, d, as shown in Equation (2) [35].

h(n, d) = ∑ ck(n)dk

n=0,1,..., N
0 ≤ d ≤ 1

(2)

Expressing Equation (2) in the z-domain, the filter transfer function is represented as
in Equation (3).

Hd(z) =
N

∑
n=0

h(n, d)z−n

=
N

∑
n=0

∣∣∣∣ p

∑
k=0

Ck(n)z−n
∣∣∣∣dk

=

∣∣∣∣ p

∑
k=0

Ck(z)dk
∣∣∣∣

(3)

where Ck(z) represents the set of M + 1 FIR sub-filters. From the relation in Equation (3),
the filter structure is made up of a bank of fixed-weighted fractional delay, d, and summed
u at the output of every tap.

h(n, d) =
n

∏
(k=0,k 6=0)

d− k
n− k

= (−1)(N−n)
(

d
n

)(
d− n− 1

N − n

)
=

d
n

X
d− 1
n− 1

X
d− n + 1

1
X

d− n− 1
−1

X
d− n
n− N

for n = 0, 1, 2, 3, ..., N

(4)

When N = 3 and the fractional delay is d, the impulse response is shown in Equations (5)
and (7).

h(n, d) =
3

∏
(k=0,k 6=0)

d− k
n− k

for n = 0,1,2,3

(5)

The coefficient for the fourth-order poly-phase filter is calculated using Equations (6),
(7), (9) and (11).
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h(0, d) =
3

∏
(k=0,k=1,k 6=0)

d− k
0− k

=
d− 1
−1

× d− 2
−2

× d− 3
−3

=
1
6
(d3 − 6d2 − 8d− 6)

h(1, d) =
3

∏
(k=0,k=2,k 6=1)

×d− k
1− k

=
d
1
× d− 2
−1

× d− 3
−2

=
1
2
(d3 − 5d2 + 6d)

h(2, d) =
2

∏
(k=0,k=1,k 6=2)

d− k
2− k

=
d
2
× d− 1

1
× d− 3
−1

=
−1
2

(d3 − 4d2 + 3d)

h(3, d) =
3

∏
(k=0,k=1,k 6=3)

d− k
3− k

=
d
3
× d− 1
−2

× d− 2
1

=
1
6
(d3 − 3d2 + 2d)

(6)

Hd(z) =
N

∑
n=0

(h, d)z−n = h(0, d) + h(1, d)z−1 + h(2, d)z−2

=
1
6
(d3 − 6d2 − 8d− 6) +

1
2
(d3 − 5d2 + 6d)

(7)

C0(z) = 1

C1(z) =
8
6
+ 3z−1 − 3

2
z−2 +

2
6

z−3

C2(z) =
−5
6
− 5

2
z−1 + 2z2 − 1

2
z−3

C3(z) =
1
6
+

1
2

z−1 − 1
2

z−2 +
1
6

z−3

C(z) = ΦTz =


C0(z)
C1(z)
C2(z)
C3(z)



(8)

Φ =



1 0 0 0
−8
6

3
−3
2

−1
3

6
6

−5
2

2
−1
2

−1
6

1
2

−1
2

1
6

 (9)
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The number of operators is further reduced by finding the first derivatives of each
filter impulse, h(n, d), as shown in Equation (10).

h′(0, d) =
1
6
(3d2 − 12d− 8)

h′(1, d) =
1
2
(3d2 − 10d + 6)

h′(2, d) =
−1
2

(3d2 − 8d + 3)

h′(3, d) =
1
6
(3d2 − 6d + 2)

(10)

C0(z) =
8
6
+ 3z−1 − 3

2
z−2 +

1
3

z−3

C1(z) = −2− 5z−1 + 4z−2 − z−3

C2(z) =
1
2
− 3

2
z−2 +

1
2

z−3

C3(z) = 0 + 0− 0 + 0

C(z) = ΦTz =


C0(z)
C1(z)
C2(z)
C3(z)


(11)

Φ =


8
6

3
3
2

1
3

2 −5 4 −1
1
2

3
2
−3
2

1
2

0 0 0 0

 (12)

Figure 2 shows the Farrow sub-filters. The filter is made up of fixed filters weighted
by the fractional delay d and summed at the output of each tap. Figure 2 shows shared
elements such as unit delays, which make the structure very efficient.

z
-1

z
-2

z
-3

1

+

+

+

+
+

-1-5 4

Wa or wc

+

z
-1

z
-2

z
-3

+

+

+

+

3/2 -3/2

+

z
-1

z
-2

z
-3

+

+

+

+
+

+

3 3/4

1

+

8/6 1/321/2 1/2

d d
d

Figure 2. Farrow sub-filters.
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2.2. Exploring Frequency Responses of Symmetrical Farrow Filter Polynomial Functions

The continuous impulse response, hc(t), of the Farrow structure is represented as a
linear combination of basis functions as can be seen in Equation (13) [34,36].

hc(t) =


∑M

m=0 Ck(n)( t
Ti
+ tn)n, (dmin − tn)T1 ≤ t ≤ (dmax − tn)Tk

for n = 0,1,2, ......., N
0, otherwise

(13)

where tn is the base-point value, T1 is the input sampling frequency and Ck is the kth

sub-filter coefficient. The interval of the fractional delay d is represented as follows in
Equation (14).

N−1
2 ≤ d ≤ N+1

2

n =

⌊
t

T1

⌋
d = t1

T1
− d

(14)

The inter-sample interval is given as in Equation (15).

0 ≤ d ≤ 1 (15)

By introducing the basis function for piecewise polynomials that are zero outside a
given interval, Equation (16) was derived.

f (m, d) =

{
dk, dmin ≤ d ≤ dmax

0, otherwise
(16)

Therefore, the continuous impulse response, hc(t), is shown in Equation (17).

hc(t) =
N

∑
n=0

M

∑
m=0

Ck f (m, d) (17)

The frequency domain representation of the impulse response is represented in
Equation (18).

H(ejw, d) =
M

∑
n=0

Ck(ω)dk

H(ω, d) =
M

∑
m=0

Ck(ω)dk

=
M

∑
m=0

Ck(ω)G(ω)

where G(ω) = dk

(18)

Then, by applying a Fourier transform, the fractional delay G(ω) can be expressed as
indicated in Equation (19).

G(k, m, ω) = F{g(m, n, ω)} (19)

The frequency variable ω is normalised to the input sampling period, that is, ω = ΩT1,
and delay d is replaced with µ. In order to obtain the continuous frequency responses,
three cases are considered. The first to consider is when N is odd while the second one for
consideration is when N is even and finally when N > 0.

G(m, n, ω) =
∫ ∞

−∞
g(m, n, ω)e−jωµdµ (20)
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For odd N,

g(m, n, ω) =


(µ + n + 1

2 )
k, −n− 1 ≤ µ ≤ −n

(−1)k(µ− n− 1
2 )

k, n ≤ µ ≤ n + 1
0, otherwise

(21)

Therefore, the discrete version of fractional delay can be expressed as shown in
Equation (22).

G(m, n, ω) =
∫ ∞

−∞
g(m, n, ω)e−jωµdµ

=
∫ −n

−n−1
(µ + n +

1
2
)kωe−jωµdµ +

∫ n+1

n
(−1)k(µ− n− 1

2
)kωe−jωµdµ

=
∫ 1

2

− 1
2

µ1ωe−jωµ1−[n+ 1
2 ]dµ +

∫ 1
2

− 1
2

(−1)mµ2ωe−jωµ2−[n+ 1
2 ]dµ

= ej(n+ 1
2 ω)

∫ 1
2

− 1
2

µ1ωe−jωµ1 dµ1 + (−1)mej(n+ 1
2 )ω

∫ 1
2

− 1
2

(−1)mµ2ωe−jωµ2 dµ2

= [ej(n+ 1
2 )ω + (−1)mej(n+ 1

2 )ω ]
∫ 1

2

− 1
2

µ1ωe−jωdµ

(22)

Fractional delay G(m, n, ω) can be expressed as a function of two variables. That is,
φ(m, n, ω) and ψ(m, ω).

G(m, n, ω) = φ(m, n, ω)ψ(m, ω) (23)

where φ(m, n, ω) =

{
2cos([n + 1

2 ]ω), for m=even , N = odd
2jsin([n + 1

2 ]ω), for m=even , N = odd
(24)

In another instance, when N = even and n > 0, then

G(m, n, ω) =
∫ −n+ 1

2

−n− 1
2

(µ + n)kωe−jωµdµ +
∫ n+ 1

2

n− 1
2

(−1)k(µ− n)kωe−jωµdµ

G(m, n, ω) = [ejω + (−1)mejω ]
∫ 1

2

− 1
2

µme−jωµk

= φ(m, n, ω)ψ(m, ω)

where ψ(m, ω) =
∫ 1

2

− 1
2

µme−jωdµ

(25)

G(m, n, ω) = φ(m, n, ω) =

{
2cos(nω), m = even, N = odd
2jsin(n, ω), m = odd, N > 0

(26)

Lastly, for n = even, n = 0 and m = even

G(m, 0, ω) =
∫ 1

2

− 1
2

(µ)kωe−jωµdµ +
∫ n+ 1

2

n− 1
2

(−1)k(µ− n)kωe−jωµdµ (27)

G(m, 0, ω) = φ(m, n, ω)with =

{
φ(m, n, ω) = 1, N = even, m = even, n = 0
φ(m, n, ω) = 0, N = even, m = odd, n = 0

(28)

The different variants of the basis functions G(m, n, ω) are represented as follows in
Equation (29).
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φ(m, n, ω) =



1, N = even, n = 0, m = even
0, N = even, n = 0, m = odd
2cos(n, ω), N = even, n > 0, m = even
2jsin(n, ω), N = even, n > 0, m = odd
2cos([n + 1

2 ], ω), N = odd, m = even
2jsin([n + 1

2 ], ω), N = odd, m = even

(29)

Considering the scaling function as shown in Equation (30):

ψ(m, ω) =
∫ 1

2

− 1
2

µme−jωµdµ (30)

By multiplying the integral with a unit rectangle ∏(µ), Equation (31) is obtained.

ψ(m, ω) =
∫ 1

2

− 1
2
∏(µ)µme−jωµdµ (31)

Expressing the scaling function in terms of a Fourier transform:

ψ(m, ω) = F{∏(µ)µm}
= jm µm

µωm sinc(ω
2 )

(32)

The basis function G(m, n, ω) = ψ(m, ω)φ(m, n, ω) is both real and even. This implies
that Hc(jω) is both a real and even function and is a derivative of the real-valued and
symmetrical nature of hc(t). The basis function G(m, n, ω) can be represented as real-
valued functions for φ(m, n, ω) and ψ(m, ω) by transposing the imaginary unit j from
φ(m, n, ω) to ψ(m, ω) for odd m. This can be represented as shown in Equation (33).

G(m, n, ω) = ψ(m, ω)φ(m, n, ω) with ψ(m, ω) = (−1)m µm

µωm sinc(
ω

2
) (33)

Expressing the scaling function as a real value as indicated by Equation (35):

ψ(m, ω) = sinc(ω
2 )

ψ(m, ω) = ∑∞
k=0 akωk

where ∑∞
k=0 akωk with ak =

 (−1)
k+m

2 (k+1)
2k+m(k+m+1)!

, k + m is even

0, k + m is odd

(34)

The values for ψ(m, ω) are identical for the real variant of ψ(m, 0) when ω = 0 as
indicated in Equation (35).

ψ(m, 0) = jmam
0 =

 (−1)
m
2

(m+1)!2m , m is even

0, m is odd
(35)

The impulse response is scaled proportionally and this is able to reduce the distortion
or numerical oscillation of the impulse response to minimal.

2.3. Modulation of Farrow Filter

Having seen the symmetrically scaled impulse response of the Farrow filter, the Farrow
filter can be modulated to reduce the computational complexity. The value of µ can be
determined using Equation (36) with channel centre frequency ωk and is represented as
shown in Equation (37) [34].

π

ωs
(36)
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ωk =
2π(k + k0)

K
(37)

where ωk is the centre frequency of the channels.
The modulated Farrow filter can be represented as shown in Equation (38).

H(ejw, µ) = ΣM
m=0Ck(ω)G(ω)

= ΣM
m=0Ck(ω)(2cos(n, ω) + 2jsin(n, ω))

= ΣM
m=0Ck(ω)

[
ejωnµ + (−1)mejωnµ

] (38)

Thus, by modulating Equation (1) with e−jωmd, newly generated Farrow filter y′(n) is
obtained as shown in Equation (39).

y(n) = h(n, µ) ∗ x(n)

y(n) = h(n, µ) ∗ x(n)

y′(n) = ∑ x(n) ∗ h(ω, µ)e−jωMnµ

(39)

If the channel signal is critically sampled, the decimation ratio and the bandwidth are
related as follows in Equation (40).

M =
K
2

(40)

Thus, the new Farrow filter bank can be reduced to the following filter bank in
Equation (41).

y′k(m) = (−1)kmΣN
n=−M−1Ck(n)hk(mK− 1)x(n) (41)

If m is replaced by L and K is replaced by 2M, and if linear-phase prototype low-pass

filter H(z) of order N has a pass-band edge of θa =
2mπ−ωω∆

M and stop-band edge of

φa =
2mπ−ωω∆

M , with ω∆ as the width of the transition band, then for even multiples of the
number M of sub-bands, the length is N + 1; that is, N = (2LM− 1).

Here, the impulse response hk(mK − 1) will be reduced as follows. It can be seen
that hk contains terms that multiply hn and this can be expressed as variable D as seen in
Equation (42).

hk(n) = Ck(n)h(n)
(

2cos
{
(2M + 1) π

2M

[
(N + 2kM)− N

2 + Φ
]}

+2jsin
{
(2M + 1) π

2M

[
(N + 2kM)− N

2 + Φ
]})

(42)

where ejωn1d = 2cos
{
(2M + 1) π

2M [(N + 2kM)− N
2 + Φ]

}
(−1)mejωn2d = 2jsin

{
(2M + 1) π

2M [(N + 2kM)− N
2 + Φ]

}
(43)

However, by exploiting symmetry in Equations (43) and (44) this becomes

hk(n) = Ck(n)h(n)
(

2cos
{
(2M + 1) π

2M

[
(N + 2kM)− N

2 + Φ
]})

hk(n) = Cnh(n)
[

ejωn1µ

]
ψ(m, ω)

(44)
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The poly-phase representation of the analysis filter bank can be described as shown in
Equation (45).

Hk(z) =
N

∑
n=0

Ck(n)hk(n)z(−n)

Hk(z) =
L−1

∑
l=0

2M−1

∑
j=0

[
ejωn1µ1ψ(m, ω) + ejωn2µ2ψ(m, ω)

]
Ck(2LM + j)hk(2LM + j)z−(2LM+j)

(45)

The prototype filter can be decomposed into 2M poly-phase components, as follows

in Equation (46), where Sj(z) =
L−1

∑
i=0

Ck(2LM + j)hk(2LM + j)z(−L) are the poly-phase

components of the filter H(z).

H(z) =
2M−1

∑
j=0

z−j
L−1

∑
l=0

ψ(m, ω)

[
ejωn1µ + ejωn2µ

]
Ck(2LM + j)hk(2LM + j)z(−2M−j)

=
2M−1

∑
j=0

z−j
L−1

∑
l=0

ψ(m, ω)

[
ejωn1µ + (−1)mejωn2µ

]
Ck(2LM + j)hk(2LM + j)z(−2M−j)

=
2M−1

∑
j=0

ψ(m, ω)

[
ejωn1µ + (−1)mejωn2µ

]
z−jSj(z−2M)

(46)

Representing D1= ψ(m, ω)(ejωn1µ1) and D2= ψ(m, ω)(ejωn2µ1).
From Equation (47), it can be shown that D1 and D2 are M× N matrices, whose (m, j)

elements are Dm,j and Dm,j+m, respectively, for m, j = 0, 1, . . . (m− 1).

H(z) =



H0(z)
H1(z)

...

...
Hm−1(z)

 =
[
D1 D2

]


S0(z2M)
z−1S1(z2M)

...

...
z(−2m−1)S2m−1(z2M)

 (47)

Representing δ(z) as shown in Equation (48):

δ(z) =
[
1 z−1 · · · z−M+1]T (48)

The poly-phase representation of the matrix can be represented as in Equation (50),
where S(z) is the poly-phase matrix.

H(z) =
[
D1 D2

]


S0(z2M) 0
S1(z2M)

. . .
. . .
0 S2m−1(z2M)


[

δ(z)
z−mδ(z)

]
(49)
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H(z) =



D1



S0(z2M) 0
S1(z2M)

. . .
. . .
0 S2m−1(z2M)


+

z−mD2



S0(z2M) 0
SM+1(z2M)

. . .
. . .
0 S2m−1(z2M)





δ(z) (50)

2.4. Combined Modulated Farrow and Interpolated Coefficient Decimated Filter

After improvements obtained from the modulation algorithm, further work was
performed to achieve some improvements by hybridising the modulated algorithm with
the frequency response masking algorithm [15].

The design involves a hybrid of a frequency response masking (FRM)-based interpo-
lated coefficient decimated filter and a modulated Farrow filter.

The hybrid Farrow (HFarrow)-based filter bank consists of two branches; namely,
the upper and the lower branches. The upper branch is made up of the FRM coefficient
decimated filter and the masking filter, whereas the lower branch consists of the com-
plementary FRM coefficient decimated filter and the complementary masking filter. A
low-pass coefficient base interpolated linear phase FIR filter, Ha(z

L
M ), is formed from the

cascade of the base interpolating filter, Ha(zL), and the coefficient decimating filter, Hcd(zL),
to extract the sharp narrow-band channel of choice.

In addition, a bandpass edge complementary coefficient base interpolating filter,
Hc(z

L
M ), is formed from the cascade of the complementary base interpolating filter, H′a(zL),

and the complementary coefficient decimating filter, H′cd(z
M), to isolate multi-band fre-

quency responses. The low-pass coefficient base interpolated filter, Ha(zL/M), cascades
with the farrow masking filter, Ak(z), in the upper branch while the bandpass comple-
mentary coefficient base interpolating filter, Hc(zL/M), cascades with the complementary
masking filter, Bk(z), in the lower branch to produce low computational multi-narrow
frequency bands.

The transfer function of the FRM coefficient decimation filter is given using Equation (51).

H(z) =
L
M

[
Ha(z

L
M )A(z) + Hc(z

L
M )B(z)

]
(51)

The coefficient decimated base and complementary filters are symmetrical and asym-
metrical linear phase FIR filter which can be expressed as Ha(z

L
M ) = Hc(−z

L
M ). A half-band

filter is introduced into the coefficient decimated based FRM filter to further reduce its com-
putation complexity. This is possible as a result of the symmetrical properties possessed
by the half-band filter. The time-domain impulse response of the CD-1 technique requires
every other component to be zero except the components at the centre. That indicates that
it is symmetrical around the centre. This translates to reduced complexity in terms of the
number of the multiplies required by the filter.
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The transfer function of the half-band masking FRM coefficient decimated filter band
can be expressed in terms of two polyphase components as shown in Equation (52).

Ha(z
L
M ) =

L
M

[
Ha0(z

2L
M ) + z−

2L
M Ha1(z

2L
M )

]
Hc(z

L
M ) =

L
M

[
Ha0(z

2L
M )− z−

2L
M

1
M

Ha1(z
2L
M )

] (52)

The masking filters are replaced with two farrow filters as shown in the Figure 3.
Masking filters Ak(z) and Bk(z) extract one or several pass-bands of the periodic model
filter Ha(z

L
M ) and the complementary periodic model filter Hc(−z

L
M ). The transfer function

for the HFarrow masking algorithm can be expressed as shown in Equation (53).

Ha(z
2L
M ) =

L
M

[(
Ha0(z

2L
M ) + z−

2L
M Ha1(z

2L
M )

)
A(z)

]
(53)

Ha(z
L/M

)

Hc(z
L/M

)

x(n)

+ -

y11(n)

y12(n)

y20(n)

y2k-2(n)

y2k-1(n)

y10(n)

Farrow complementary 

filter

Farrow masking filter

Figure 3. Block diagram of coefficient decimated FRM Farrow-based FIR filter.

The impulse response of the HFarrow channelisation algorithm is approximated with
different fixed delay variables using polynomial interpolation methods. A set of sub-filters
with fixed delay µi, such that i = 0, 1, . . . i − 1, is designed. The impulse response is
interpolated by the Lth order using µ as the variable. The resultant impulse response is
the interpolated version of HFarrow parameterised by delay µ. The parameter µ allows
full unabridged control over the available bandwidth and the cut-off frequencies of the
multi-band channels.

The input band of the masking FRM-CD signal is decomposed into multiple sub-
bands, each with distinct bandwidth (BW). Each bandwidth is phase-shift modulated by
fractional delay µk. Applying the poly-phase decomposition as seen in Equation (46) will
result in Equation (54), where Ski(z−2M) are the K poly-phase components of Ak(z) and
Bk(z).

Ak(z) =
2M−1

∑
n=0

ψ(m, ω)

(
ejωn1µ + (−1)mejωn2µ

)
z−nSn(z−2M)

Bk(z) =
2M−1

∑
n=0

ψ(m, ω)

(
ejωn1µ − (−1)mejωn2µ

)
z−nSn(z−2M)

(54)

Finally, Equation (55) shows the representation of each of the modulated masking
bandpass filters and the block diagram for the hybrid Farrow masking filter is depicted in
Figure 4.
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Ha(z
2L
M ) =

L
M

[
Ha0(z

2L
M ) + z

−2L
M Ha1(z

2L
M )

2M−1

∑
n=0

ψ(m, ω)

(
ejωn1µ + (−1)mejωn2µ

)
z−nSn(z−

2L
M )

]

Ha(z
2L
M ) =

L
M

[
Ha0(z

2L
M ) + z−

2L
M Ha1(z

2L
M )

2M−1

∑
n=0

z−n(D1 + D2)Sn(z−
L
M )

] (55)

x(n) M

M

M

SA0(z
2L/M)

SA1(z
2L/M)

SA2(z
2L/M)

M SAK-1(z
2L/M)

M

SA3(z
2L/M)

SA4(z
2L/M)

D1

z-1

z-1

y0(n)
z-1

z-1

z-1

M

Ha0(z
2L/M)

k-1

0 0

k-1

D2

k-1

0 0

k-1

z-2L/M

M

M

M

SB0(z
2L/M)

SB1(z
2L/M)

SB2(z
2L/M)

M SBK-1(z
2L/M)

M

SB3(z
2L/M)

SB4(z
2L/M)

z-1

z-1

z-1

z-1

z-1

M

Ha1(z
2L/M)

y1(n)

y2(n)

y3(n)

y4(n)

yk-1(n)

L

L

L

L

L

L

L

L

L

L

L

L

Figure 4. Diagram depicting HFarrow channelisation algorithm.

The transfer function of the FRM coefficient decimation filter is given using Equation (56).

H(z) =
L
M

[
Ha(z

L
M )A(z) + Hc(z

L
M )B(z)

]
But,

Ha(z
L
M ) = Hc(−z

L
M )

Therefore,

H(z
2L
M ) =

2L
M

[
Ha0(z

2L
M ) + z−

2L
M Ha1(z

2L
M )

2M−1

∑
n=0

z−n(D1 + D2)Sn(z−
2L
M )

]
(56)
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The final output sequence, y(n), can be expressed in terms of the convolution of x(n)
and the filter transfer function, h(n).

y(n) = x(n) ∗ h(n)
Y(z) = X(z)H(z)

(57)

Figure 4 illustrates the HFarrow channelisation algorithm. Different signal sub-bands,
Sn(z−

2L
M ), can be derived or obtained from masking filter Ha(−z

L
M ) and prototype comple-

mentary masking filter Hc(−z
L
M ), respectively.

The centre frequency component of each band is shifted precisely by a phase of
fractional delay, µ. The phase to be shifted is at π and −π for different fractional delays,
while the transition band of H-Farrow FB is centred at π

2 rad. The H-Farrow FB design is
made up of three filtering stages; namely, the base filter, Ha(z), the coefficient decimation
filter, Hcd(z) and the masking filter A(z). The design used the Parks–McClellan algorithm
and the filter is realised using the direct transposed FIR in its implementation.

3. Hybrid Farrow Channelisation Algorithm

The procedure for the HFarrow channelisation algorithm is as follows:

1. Normalise all the channel bandwidths (Cs), such that the Ci and transition bandwidth

∆i specifications range from 0 to 1; 1 corresponds to fs
2 , where fs is the sampling

frequency.
2. Compute the channel stop band frequency, ωsi, such that ωsi =

Ci
2 , where Ci is the

channel bandwidth.
3. Determine the prototype stop band frequency as, fproto= GCD(C′1,C′2,C′3)

2 where fproto is
the prototype stop band frequency and the procedure is to find the greatest common.

4. The decimation factor M and the interpolation factor L of the filter are computed as

follows, Mma =
π

ωms
, Lma =

⌊
π

ωms

⌋
. The value dk is computed using Lma

Mma
, where dk is

the fractional delay rate of the filter.
5. The decimation factor Mmc and the interpolation factor Lmc for the complementary

filter are computed as follows: M = π
π+ωmcs

, L =

⌊
π

π+ωmcs

⌋
. Thus, the fractional rate

for complementary filter can be calculated thus: Lmc
Mmc

.
6. Calculate the transition bandwidth for masking and complementary filter, using

∆′k = ∆k × dk.
7. Determine the base modal or complementary modal TBW as

∆modal=min(∆′1, ∆′2, ..., ∆′n). This corresponds to the modal transition width.
8. Calculate the prototype, masking and complementary passband width using

ωp = ωs − ∆′k.
9. Compute the stop band ripple and passband peak ripple using δ′s1 = δs1

Li
Mi

and
δpmodal=min(δ′p1, δ′p2, ..., δ′pn).

10. Use the filter order N =
−2log10(δ

′
pδ′s)

3∆TBW
−1 [37] to calculate the channel filter length

for prototype, masking and complementary filter.

Figure 5 represents the step-by-step procedure for demonstrating the HFarrow chan-
nelisation algorithm.
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Compute channel bandwidth

Normalize channel bandwidth

Determine prototype stop band frequency

Compute masking decimation factor M and interpolation factor L

Compute complementary masking L and M

Calculate transition bandwidth for masking and complementary filter

Determine base modal and complementary transition bandwidth

Calculate prototype passband width

Compute stop band ripples and pass band ripples for masking and 

complementary filter

Determine the filter order and length

Figure 5. Step-by-step procedure for illustrating HFarrow filter.

4. Simulations and Results

Using Matlab 2020 as the simulation tool, the developed hybrid Farrow algorithm
was applied to Zigbee, Bluetooth (BT) and wideband code division multiplexers access
(WCDMA). Channel bandwidth parameters used for BT, Zigbee, and WCDMA were
1 MHz, 4 MHz and 5 MHz, respectively. In addition, BT, Zigbee and WCDMA transition
widths were specified as 50 kHz, 200 kHz and 500 kHz, respectively. The passband ripples
and stop band attenuation for BT and Zigbee were specified as 0.1 and −40 dB, while
WCDMA channel passband ripples and stop band attenuation were specified as 0.1 and
−55 dB, respectively. The algorithm procedure in Section 3 was implemented and the filter
results were recorded.
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The metrics used for the computational complexity are filter order, number of multi-
pliers, stop band attenuation and passband ripples.

Using the information contained in the algorithm procedure 3, the normalised channel
bandwidth of BT, ZigBee and WCDMA were 0.05, 0.2 and 0.25, respectively. The channel
bandwidths were 0.025, 0.1 and 0.125. From Step 2 of Section 3, the passband width of
the prototype filter was set to the greatest common divisor of the signal bandwidth. The
modal filter normalised frequency value was 0.025, which corresponds to the modal stop
band frequency.

4.1. Performance of Modulation Farrow Algorithm

From Table 2, If k = 2 and m = 2 and N = 40, the weighted scale is set to 0.000013
for BT, with stop band attenuation of 38.3, passband ripples of 0.09877 and filter order
of 205. Zigbee has a filter order of 98 with stop band attenuation of 41.22 and passband
ripples of 0.0989. When N = 8, WCDMA signals have a filter order of 72 with the stop
band attenuation of 56 and passband ripples of 0.997. The total number of multipliers
used was 564. Also from Table 3, when k = 2 and m = 8 and N = 40, the total number of
multipliers used by the filter was 690.

Table 2. The frequency characteristics of the modulated Farrow filter when m = 2, k = 2.

Filter m M
Stop Band Passband Passband Stop Band Filter

Bank Frequency Frequency Ripples Attenuation Length(ωms) (ωmp) (δms) (δmp)

Modal filter,Ha 2 40 0.025 0.0225 0.9877 56.9 205
Bluetooth,Hma 2 40 0.025 0.0225 0.998 43.9 189

Zigbee, Hma 2 10 0.1 0.09 0.989 41.22 98
WCDMA,Hma 2 8 0.2 0.175 0.997 56 72

Table 3. The frequency characteristics of the modulated filter when m = 10.

Filter Stop Band Passband Passband Stop Band
Weight Weight Filter

Bank Frequency Frequency Ripples Attenuation Length(ωms) (ωmp) (δms) (δmp)

Modal filter, Ha 0.025 0.0225 0.998 −58 10 39 240
Bluetooth,Hma 0.025 0.0225 0.998 −58 10 39 240

Zigbee, Hma 0.1 0.09 0.989 −62 10 39 120
WCDMA,Hma 0.2 0.175 0.987 −68 10 670 90

4.2. Performance of Modulated Interpolated Coefficient Decimated Farrow Algorithm

Table 4 shows the frequency characteristics of masking filter using HFarrow algorithm.
The following were the decimation factors for the modal filter, BT, Zigbee and WCDMA:
39
40 , 39

40 , 9
10 and 7

8 , respectively. The modal decimation factor was found to be 39
40 . When a

fractional rate, dk, of 39
40 , was applied to the modal filter, the transition bandwidth computed

was 0.002375, with a passband peak ripple of 0.1 dB, stop band peak ripple of −50 dB and
the filter length of 132. In addition, when a fractional rate, dk, of 39

40 , was applied to the BT
channels, the transition bandwidth computed was 0, 0026, with a passband peak ripple of
0.00975 dB, stop-band peak ripple of −39 dB, and a filter length of 107.
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When the fractional rate of 9
10 was applied to Zigbee, the transition bandwidth was

calculated to be 0.011, with a passband ripple of 0.09, a stop band peak ripple of −39 and
a filter order of 24. When the fractional rate of 7

8 was applied to WCDMA, the transition
bandwidth was calculated to be 0, 021, with a passband ripple of 0.0875, a stop band peak
ripple of −48.125 and a filter order of 9. In addition, the stop band for complementary
masking frequency ωmcs was calculated as shown in Table 5. The values of the stop band
edge, passband edge and the fractional rate were calculated using design Steps 5 through
to Steps 9 in Section 3. The complementary masking decimator factor for the modal filter,
BT, Zigbee and WCDMA were 8

9 , 8
9 , 8

9 and 7
8 , respectively. The complementary masking

transition bandwidth for the modal filter, BT, Zigbee and WCDMA were 0.00222, 0.00222,
0.0089, 0.021875 with the filter order of 209, 150, 37 and 13.

Table 4. The frequency characteristics of masking filters implemented using the HFarrow filter bank.

Filter
dk

Stop band Passband Passband Stop band Filter
Bank Frequency Frequency Ripples Attenuation Length(ωms) (ωmp) (δms) (δmp)

Modal filter, Ha
39
40 0.025 0.022625 0.1 50 132

Bluetooth,Hma
39
40 0.025 0.0224 0.0975 −39 107

Zigbee, Hma
9
10 0.1 0.089 0.09 −39 24

WCDMA,Hma
7
8 0.2 0.125 0.0875 −48.25 9

Table 5. The frequency characteristics of the complementary masking filter implemented using the
HFarrow filter bank.

Filter
dkc

Stop band Passband Passband Stop band Filter
Bank Frequency Frequency Ripples Attenuation Length(ωms) (ωmp) (δms) (δmp)

Modal filter 8
9 0.027307 0.02269 0.1 −50 147

Bluetooth 8
9 0.027307 0.02269 0.092 −36.92 134

Zigbee 8
9 0.1080 0.0911 0.088 −35.5 29

WCDMA 7
8 0.2 0.125 0.0875 −48.25 9

Figures 6–9 show the magnitude response of the modal filter, Bluetooth, Zigbee and
WCDMA, respectively. Figure 6 shows the magnitude responses of the modal filter with
stopband attenuation of−50 dB. Figure 7 shows the magnitude response of the BT masking
filter when HFarrow operations were carried out with a fractional rate of L

M equal to 39
40 ,

stop band attenuation of −39 dB and a filter order of 107. Figure 8 shows the magnitude
responses of the Zigbee masking filter when HFarrow operations were carried out with
fractional rate of L

M equal to 9
10 , stop band attenuation of −39 dB and a filter order of 24.

Figure 9 shows the magnitude responses of the WCDMA masking filter when HFarrow
operations were carried out with a fractional rate of L

M equal to 7
8 , stop band attenuation of

−48.125 dB and a filter order of 9. The number of multipliers utilised by the HFarrow filter
bank was analysed, compared and found to be lower than the CDFB [18] and ICDM [31]
methods as indicated in Tables 6 and 7.
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Figure 6. Magnitude response for the modal filter using the HFarrow algorithm.

 

Figure 7. Magnitude response for the Bluetooth masking filter using the HFarrow algorithm.

 

Figure 8. Magnitude response for the Zigbee masking filter using the HFarrow algorithm.
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Figure 9. Magnitude response for the WCDMA masking filter using the HFarrow algorithm.

Table 6. Multiplication complexity for non-uniform filter bank.

Filter Bank Filter Order Total Number of MultiplicationsHa Hma Hmc

Modal filter 279 - - 187
BT - 107 134 156

Zigbee - 24 29 37
WCDMA - 9 9 9

Table 7. Comparison of different multiplication complexities for non-uniform filter bank.

Filter Bank Filter Order Total Number of MultiplicationsHa Hma Hmc

CDFB [18] 3089 400 - 1745
ICDM FB [31] 2929 160 - 1545

NU-MDFT FB [4] 187 430 469 1090
HFarrow filter Bank 187 100 102 389

From Table 7, the total number of multipliers used by the HFarrow filter bank was 389
while the ICDM expended 1545 multipliers, NU MDFFB consumed up to 1090 and CDFB
used up to 1745. Thus, the total number of multipliers utilised by HFarrow channelisation
was 22% of the total number of multipliers in the CDFB algorithm, while it depleted
25% of the total number of multipliers in ICDM. The percentage of multipliers used by
the HFarrow algorithm in comparison with NU MDFT FB was 37%. HFarrow showed
reductions in the following: 78% in comparison with CDFB, 75% in comparison with ICDM
and 63% in comparison with NU MDFT. There was a remarkable reduction in the number
of multipliers used in HFarrow compared with the algorithms used for the comparison as
shown in the literature.

5. Conclusions

In this paper, a low-complexity Farrow channelisation algorithm based on a hybrid Far-
row filter (HFarrow) method was designed by modulating the Farrow filter and cascading
it with a frequency response masking interpolated coefficient decimating filter.

The investigation was carried out by test application of Bluetooth, Zigbee and wide-
band code division multiplexer access (WCDMA) to the HFarrow algorithm, by varying
parameters such as filter order, stop band attenuation, passband ripples and the number of
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multipliers. The design example demonstrated that the HFarrow filter showed multiplier
reduction rates as follows: 70% reduction in comparison with CDFB, 64% reduction rate
in comparison with ICDM and 50% reduction in comparison with NU MDFT. Thus, the
HFarrow filter should be a better choice of low-complexity multistandard receiver chan-
nelisation algorithm instead of the conventional Farrow method. However, this is at the
expense of an increase in architectural design. In the future, a multiplierless hybrid Farrow
filter should be considered. The main results obtained from HFarrow filter are as follows:

• The total number of multipliers used by the HFarrow filter bank were 389 while the
ICDM expended 1545 multipliers, NU MDFFB consumed up to 1090 and CDFB used
up to 1745.

• The total number of multipliers utilised by HFarrow channelisation was 22% of the
total number of multipliers in the CDFB algorithm, while it depleted 25% of the total
number of multipliers in ICDM.

• HFarrow showed reductions in the following: 78% in comparison with CDFB, 75% in
comparison with ICDM and 63% in comparison with NU MDFT.
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