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Changes in subcutaneous adipose 
tissue microRNA expression 
in response to exercise training 
in African women with obesity
Carmen Pheiffer 1,2,3*, Stephanie Dias 1, Amy E. Mendham 4,5, Babalwa Jack 1,2, 
Tarryn Willmer 1,2, Nasr Eshibona 6, Hocine Bendou 6, Ashley Pretorius 7 & Julia H. Goedecke 1,5

The mechanisms that underlie exercise-induced adaptations in adipose tissue have not been 
elucidated, yet, accumulating studies suggest an important role for microRNAs (miRNAs). This study 
aimed to investigate miRNA expression in gluteal subcutaneous adipose tissue (GSAT) in response to 
a 12-week exercise intervention in South African women with obesity, and to assess depot-specific 
differences in miRNA expression in GSAT and abdominal subcutaneous adipose tissue (ASAT). In 
addition, the association between exercise-induced changes in miRNA expression and metabolic risk 
was evaluated. Women underwent 12-weeks of supervised aerobic and resistance training (n = 19) or 
maintained their regular physical activity during this period (n = 12). Exercise-induced miRNAs were 
identified in GSAT using Illumina sequencing, followed by analysis of differentially expressed miRNAs 
in GSAT and ASAT using quantitative real-time PCR. Associations between the changes (pre- and post-
exercise training) in miRNA expression and metabolic parameters were evaluated using Spearman’s 
correlation tests. Exercise training significantly increased the expression of miR-155-5p (1.5-fold, 
p = 0.045), miR-329-3p (2.1-fold, p < 0.001) and miR-377-3p (1.7-fold, p = 0.013) in GSAT, but not in 
ASAT. In addition, a novel miRNA, MYN0617, was identified in GSAT, with low expression in ASAT. 
The exercise-induced differences in miRNA expression were correlated with each other and associated 
with changes in high-density lipoprotein concentrations. Exercise training induced adipose-depot 
specific miRNA expression within subcutaneous adipose tissue depots from South African women 
with obesity. The significance of the association between exercise-induced miRNAs and metabolic risk 
warrants further investigation.

Obesity is recognized as a worldwide epidemic that increases the risk for metabolic diseases such as insulin 
resistance and type 2 diabetes1. Adipose tissue location is a key determinant of metabolic risk2. Excessive fat 
accumulation within adipose depots in the abdominal or android region is associated with greater metabolic risk, 
while lower-body fat in the gynoid region is thought to be protective against metabolic disease3,4. The mecha-
nisms that underlie the association between adipose tissue depot and metabolic risk are not known, although 
studies have suggested that epigenetic and transcriptome profiles may account for the functional differences and 
consequences for disease2,5,6.
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MicroRNAs (miRNAs) have emerged as powerful epigenetic regulators of a variety of developmental pro-
cesses and disease7,8. MiRNAs are single-stranded, non-coding RNA molecules approximately 22 nucleotides 
in length that bind to the 3′ untranslated region (UTR) of messenger RNA (mRNA) inducing degradation or 
translational repression of the mRNA transcript9. Accumulating literature reports that miRNAs regulate gene 
expression in response to environmental and nutritional cues to orchestrate cellular responses in obesity and 
insulin resistance10. In adipose tissue, miRNAs regulate adipocyte differentiation and tissue expansion, with over 
40 miRNAs correlated with obesity and type 2 diabetes10,11. Adipose tissue miRNAs have also been implicated in 
the control of metabolic and inflammatory processes12, and have been shown to vary between adipose depots5. 
In recent years, a growing body of evidence have reported that miRNAs are key players in adaptive responses to 
exercise in patients with obesity and obesity-related disorders13.

Exercise training is an important non-pharmacological strategy that prevents obesity and metabolic diseases 
by stimulating lipid catabolism in adipose tissue leading to decreased adipose mass and improving whole-body 
metabolic health14,15. Exercise induces lipolysis, a process whereby triacylglycerols, an energy reservoir in adi-
pose tissue, are hydrolyzed to free fatty acids (FAs), which are released into circulation providing fuel to skeletal 
muscle. The beneficial effects of exercise may be mediated by epigenetic mechanisms in adipose tissue14 and 
may be adipose depot specific5.

This study aimed to investigate miRNA expression in gluteal subcutaneous adipose tissue (GSAT) in response 
to a 12-week exercise intervention in South African women with obesity, and to assess depot-specific differences 
in miRNA expression in GSAT and abdominal subcutaneous adipose tissue (ASAT). In addition, we evaluated 
the association between exercise-induced changes in miRNA expression and metabolic risk.

Results
Participant characteristics.  The characteristics of participants in this study have been described in detail 
previously16,17 and are summarized in Table 1. All participants were obese (body mass index (BMI) > 30 kg/m2), 
insulin resistant, and between 21 and 28 years of age. The 12-week exercise intervention resulted in a significant 

Table 1.   Participant’s characteristics before and after the 12-week intervention. Data are presented as 
the mean ± SD for normally distributed variables or as the median and interquartile range for skewed 
variables. HDL, high density lipoprotein; HOMA-IR, homeostatic model of insulin resistance; LDL, low 
density lipoprotein; SI, insulin sensitivity; TNFα, tumor necrosis factor alpha; VO2peak, peak rate of oxygen 
consumption. a p < 0.05; bp < 0.01; cp < 0.001.

Variable

Control (n = 12) Exercise (n = 19) Group Time Interaction

Pre Post Pre Post P value P value P value

Age (years) 24 (22;28) – 22 (21;24) – – – –

VO2peak (ml/min) 2085 (313) 2021 (212)a 2090 (210)b 2289 (232)a,b 0.961 0.406 0.007

VO2peak (ml/min/kg) 23.5 (3.1) 22.6 (2.7)c 24.8 (2.4)b 27.5 (3.4)b,c 0.211 0.286 0.001

Body fat distribution

Weight (kg) 85.6 (79.1;94.5) 87.2 (81.0;95.5) 83.0 (78.7;91.6) 82.6 (76.1;92.0) 0.306 0.047 0.006

Body mass index (kg/m2) 33.0 (31.1;36.5) 33.3 (31.6;36.5) 34.9 (32.8;36.4) 34.7 (30.4;37.0) 0.399 0.047 0.006

Waist circumference (cm) 103.5 (8.9)a 106.7 (8.5)a 103.9 (7.4)b 100.7 (8.8)b 0.886 0.003 < 0.001

Waist-to-hip ratio 0.87 (0.1) 0.90 (0.1) 0.91 (0.1) 0.89 (0.1) 0.150 0.034 0.005

Fat mass (%) 49.1 (47.0;51.9) 49.6 (47.3;52.3) 50.5 (48.5;52.6) 50.2 (48.3;52.8) 0.305 0.695 0.579

Android fat mass (% fat 
mass) 8.3 (1.4) 8.1 (1.6) 8.3 (1.0) 8.2 (1.0) 0.901 0.098 0.781

Gynoid fat mass (% fat 
mass) 19.4 (2.6) 19.5 (2.6) 18.4 (1.7)a 18.2 (1.6)a 0.217 0.197 0.003

VAT (cm3) 981.6 (472.5) 1014.2 (427.5) 931.4 (326.7) 916.3 (353.4) 0.662 0.276 0.244

SAT (cm3) 5630.2 (1873.5) 5662.2 (1968.2) 5603.9 (945.2) 5567.0 (1169.3) 0.915 0.044 0.065

Metabolic parameters

Fasting glucose (mmol/L) 4.9 (0.6) 5.1 (0.8) 5.5 (0.8) 5.1 (1.0) 0.048 0.533 0.148

Fasting insulin (pmol/L) 13.4 (11.2;18.7) 14.3 (11.4;20.0) 14.8 (6.4;19.1) 12.5 (10.5;17.1) 0.428 0.853 0.926

HOMA-IR 2.9 (2.4;4.3) 3.4 (2.8;4.3) 3.6 (1.6;5.2) 3.2 (2.1;4.7) 0.856 0.663 0.543

SI (× 10–4 min−1/(uU/ml) 2.0 (1.3;3.2) 1.8 (1.6;2.6) 2.0 (1.2;2.8)a 2.2 (1.5;3.7)a 0.204 0.680 0.049

Leptin (ng/ml) 70.1 (17.5) 73.4 (21.6) 67.1 (24.9) 65.4 (22.6) 0.713 0.459 0.389

C-reactive protein (µg/ml) 2.5 (2.0;8.7) 4.0 (2.5;7.8) 6.1 (2.2;13.8) 4.9 (2.8; 9.1) 0.312 0.159 0.263

TNFα (pg/ml) 7.4 (6.1;9.1) 7.6 (5.6;12.5) 5.2 (3.3;8.4) 4.6 (4.0;9.3) 0.285 0.201 0.407

Triglycerides (mmol/L) 0.8 (0.6;1.1) 0.7 (0.5;0.9) 0.7 (0.6;0.8)b 0.9 (0.7;1.0)b 0.092 0.187 0.001

LDL (mmol/L) HDL 
(mmol/L) triglycerides 
(mmol/L)

2.0 (1.6;2.7) 1.7 (1.4–2.9) 2.7 (2.0;3.1) 2.7 (1.9;3.5) 0.301 0.388 0.442

HDL (mmol/L) 0.95 (0.21) 0.97 (0.21) 1.01 (0.23) 1.05 (0.18) 0.442 0.761 0.825

Total cholesterol (mmol/L) 3.9 (1.3) 3.5 (1.2) 4.0 (0.8) 4.3 (0.9) 0.703 0.240 0.122
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increase in peak oxygen consumption (VO2peak, p = 0.007), an indicator of cardiorespiratory fitness, as well as 
insulin sensitivity (SI, p = 0.042) and circulating triglycerides levels (p = 0.002). In contrast, waist circumference 
(p = 0.001), and gynoid fat mass (p = 0.010) decreased in response to exercise training. Waist circumference of 
the control group increased during the 12-week experimental period (p = 0.018). Energy intake, macronutrient 
distribution, physical activity and alcohol consumption remained unchanged in the exercise and control groups 
(Supplementary Table S5).

Exercise‑induced microRNAs identified using Illumina sequencing.  The effect of exercise training 
on miRNA expression in GSAT was investigated using Illumina sequencing. GSAT was selected for sequencing 
based on previous findings which showed that GSAT is more metabolically active than ASAT in our population2. 
MiRNAs isolated from GSAT pre- and post-experimental period were sequenced in the exercise group (n = 8) 
and controls (n = 4) to identify exercise-induced miRNAs. On average 10,844,112 clean reads and 10,733,160 
adapter-trimmed reads (length ≥ 15 nucleotides) were identified, of which, 8,412,296 aligned to known human 
pre-miRNA in miRBase21 (http://​mirba​se.​org). MiRNAs identified by sequencing are listed in the Supplemen-
tary Table S1. MiRNAs that showed a significant difference in response to the exercise training intervention were 
selected for subsequent qRT-PCR (Table 2).

Effect of exercise intervention on miRNA expression.  TaqMan quantitative real-time PCR (qRT-
PCR) was conducted to confirm the differential expression of miRNAs observed by sequencing. MiR-155-5p (↑ 
1.5-fold, p = 0.045), miR-329-3p (↑ 2.1-fold, p < 0.001), miR-377-3p (↑ 1.7-fold, p = 0.013) and MYN0617 (↑ 1.5-
fold, p = 0.012) showed increased expression in GSAT in response to exercise training, thus confirming sequenc-
ing results (Fig. 1A). The expression of miR-155-5p, miR-329-3p, miR-377-3p, miR-676-3p and miR-1306-5p 
did not change in the controls (p < 0.05), however, the expression of MYN067 was increased 1.5-fold (p = 0.042) 
in the control group over the 12-week period (Fig. 1B). In ASAT, the expression of miR-155-5p increased 1.3-
fold after exercise training, however, the difference was not statistically significant (p < 0.05) (Fig.  1C). Low 
expression of MYN067 was observed in ASAT. MiR-329-3p and miR-377-3p were not detected in ASAT. No 
difference in the expression of miR-155-5p was observed in the control group (Fig. 1D). In a paired analysis of 
the combined sample (exercise and control groups) at baseline the expression of miR-155-5p was approximately 
3.6-fold (p < 0.001) higher in ASAT compared to GSAT (Supplementary Figure S1).

Correlations between exercise‑induced miRNAs and associations with metabolic risk.  We 
next assessed associations between the post-training change from baseline (Δ) in miRNA expression and meta-
bolic risk (Fig. 2). Exercise-induced changes in miR-155-5p levels in GSAT were correlated with TNFα gene 
expression in GSAT, although the association was not statistically significant (rs = 0.449, p = 0.054). A negative 
correlation between miR-329-3p (rs = − 0.474, p = 0.041) levels in GSAT and high-density lipoprotein (HDL) 
concentrations were observed. In addition, changes in miRNA levels were positively correlated with each other. 
MiR-155-5p levels were correlated with miR-329-3p (rs = 0.493, p = 0.032) and miR-377-3p (rs = 0.446, p = 0.056), 
while miR-329-3p and miR-377-3p were correlated with each other (rs = 0.870, p < 0.001).

Increased miR‑155‑5p expression during conditions of obesity, inflammation and lipoly-
sis.  We next assessed the expression of miRNAs in a cell model of obesity, inflammation and lipolysis com-
monly used to decipher the molecular mechanisms that underlie human obesity18. 3T3-L1 adipocytes were 
exposed to lipopolysaccharide (LPS), palmitic acid (PA) and tumor necrosis factor alpha (TNFα) to stimulate 
inflammation and dyslipidemia. The expression of miR-155-5p was increased in lipolytic and TNFα-, but not 
LPS- and PA- exposed adipocytes (Fig. 3). MiR-329-3p, miR-377-3p and MYN0617 were not detected in 3T3-L1 
adipocytes.

Bioinformatic analysis.  MiR-155-5p, miR-329-3p, miR-377-3p and MYN067 were associated with vari-
ous pathways associated with lipid metabolism and insulin signaling (Supplementary Table S3 and Table S4).

Table 2.   MiRNA fold-regulation in GSAT pre- and post-exercise training. MiRNA expression was quantified 
as transcripts per million of total aligned miRNA Illumina reads. Fold regulation represents miRNA 
expressionpost-exercise/pre-exercise. a hsa-miR-novel-chr3_31164.

MiRNA Fold regulation P value

Increased

MiR-155-5p ↑ 1.7 0.035

MiR-329-3p ↑ 1.2 0.045

MiR-377-3p ↑ 1.2 0.011

MYN0617a ↑ 1.1 0.024

Decreased

MiR-676-3p ↓ 1.1 0.002

MiR-1306-5p ↓ 1.1 0.030

http://mirbase.org
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Discussion
A growing body of evidence demonstrates that exercise training improves obesity and metabolic health by modu-
lating miRNA expression in adipose tissue13. The current study provides novel evidence to show that exercise 
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Figure 1.   MiRNA expression in GSAT in the exercise training (A) and control (B) groups, and in ASAT in 
the exercise training (C) and control (D) groups. MiRNA expression was quantified using TaqMan qRT-PCR. 
Results are expressed as the mean ± SD (exercise group n = 19; controls n = 12). *p < 0.05, ***p < 0.001.
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training induces miRNA expression differences in adipose tissue from South African women with obesity and 
insulin resistance, which occurs in an adipose-depot specific manner. Furthermore, we show that the exercise-
induced miRNA differences correlated with changes in measures of metabolic risk in response to exercise.

Exercise training is an important non-pharmacological strategy to prevent obesity and metabolic diseases19,20. 
While both aerobic and resistance training improve health, the combination of aerobic and strength training has 
been recommended as an effective strategy for weight loss and to promote metabolic health21,22. Therefore, as 
anticipated, combined exercise training increased cardiorespiratory fitness and insulin sensitivity, and decreased 
gynoid fat mass and waist circumference. Cardiorespiratory fitness23 and insulin sensitivity24 are inversely associ-
ated with metabolic risk, while waist circumference is a measure of central obesity and has been identified as a 
modifiable risk factor for insulin resistance and cardiometabolic disease25. These findings show that 12-weeks 
of an exercise training program with combined aerobic and strength training reduced metabolic risk in South 
African women with obesity and insulin resistance and demonstrates the benefits of exercise in our population.
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Figure 2.   Spearman’s correlation analysis of the post-training change from baseline (Δ) in miR-155-5p 
expression and changes in TNFα gene expression in GSAT (A), miR-329-3p expression in GSAT and high-
density lipoprotein (HDL) levels (B), miR-155-5p and miR-329-3p expression in GSAT (C), miR-155-5p and 
miR-377-3p expression in GSAT (D) and miR-329-3p and miR-377-3p expression in GSAT (E). Each point 
represents a participant. Linear regression lines used for descriptive purposes only.
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High levels of circulating triglycerides are associated with obesity and metabolic risk26, therefore, the finding 
of increased triglyceride levels in response to exercise training may seem counterintuitive. Previous studies have 
suggested that exercise training prevents obesity and metabolic diseases by stimulating lipolysis in adipose tissue 
and releasing FAs into circulation to be utilized by skeletal muscle as fuel during exercise14,15. Our findings of 
increased expression of the exercise-induced miR-155-5p in GSAT as well as in an adipocyte cell model of lipoly-
sis and inflammation, suggests that the exercise intervention may decrease gynoid fat mass and waist circumfer-
ence by inducing miR-155-5p expression and stimulating lipolysis, thereby increasing circulating triglycerides. 
A previous study using the same study participants as us showed that the 12-week exercise intervention reduced 
gynoid fat mass through increased fat oxidation27. Rydén and Arner investigated lipolysis regulation in adipose 
tissues from one thousand and sixty-six men and women and reported a significant correlation between lipolysis 
and circulating triglyceride levels28, while Vechetti et al. reported increased miR-1 expression and lipolysis in 
white adipose tissue in response to exercise training29.

MiRNA profiling revealed that 12-weeks of exercise training significantly increased miR-155-5p, miR-329-3p 
and miR-377-3p in GSAT, but not in ASAT. Moreover, miR-329-3p and miR-377-3p were not detected in ASAT. 
A novel miRNA, MYN067, which was increased in GSAT after the exercise intervention, was shown to be 
associated with biological pathways related to insulin and glucose metabolism. MYN067 was increased in the 
control group as well, illustrating that the induction of this miRNA over the study period occurred independent 
of the exercise intervention and could be due to other environmental or dietary factors. Our inability to detect 
significant differences in ASAT could be due to the smaller sample size available for this depot or due to inherent 
differences between GSAT and ASAT, as previous studies by Nono Nankam et al. demonstrated whole-genome 
transcriptomic30 and inflammatory gene expression31 differences in these tissues from the same study population. 
The exercise-induced change in expression of miR-329-3p in GSAT was negatively correlated with changes in 
HDL concentrations. To the best of our knowledge, these adipose-depot dependent miRNA expression differ-
ences and associations with metabolic risk have not been previously described and warrants further work to 
determine the significance of these associations.

MiR-155-5p knockdown experiments in mice and cell models provide clues about its function, albeit with 
inconsistent results. Velázquez et al. demonstrated that miR-155 deletion in high‐fat diet (HFD) fed male mice 
exacerbated adipose tissue fibrosis32. Another study where miR-155 was knocked down in HFD fed female and 
male mice showed that miR-155 deletion prevents fat accumulation in female, and to a lesser extent, in male 
mice33. However, in contrast, another study found that knockdown of miR-155 was associated with increased 
adipogenesis and greater expression of three key adipogenic transcription factors, CCAAT/enhancer-binding pro-
tein alpha (C/EBPα), C/EBP beta (C/EBPβ), and peroxisome proliferator-activated receptor gamma (PPARγ)34. 
A mouse knockdown model provided evidence that miR-155 is a positive regulator of insulin sensitivity with 
potential applications for diabetes treatment35. This study showed that overexpression of miR-155 in female 
and male mice improved glucose tolerance and insulin sensitivity, while conversely, miR-155 deficiency caused 
hyperglycemia, impaired glucose tolerance and insulin resistance. These effects were suggested to be mediated 
through increased Protein kinase B (AKT) and Insulin receptor substrate 1 (IRS1) phosphorylation in liver, 
adipose tissue and skeletal muscle cells35. In vitro studies in 3T3-L1 adipocytes demonstrated that increased 
expression of miR-155 was associated with decreased adipogenesis36, while miR-155 knockdown in preadipocytes 
increases adipogenesis33. Given the discrepant results of these studies, it is evident that more studies are needed 
to elucidate the role of miR-155 in obesity development.
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Figure 3.   MiR-155-5p expression in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were treated with 
100 ng/ml LPS, 750 µM PA and 10 ng/ml TNFα or a combination of these compounds. MiRNA expression was 
quantified using qRT-PCR. Results are expressed as the mean ± SD of triplicate experiments. Significance is 
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Our findings are in contrast to a previous study that reported no difference in plasma miR-155-5p expression 
in response to marathon running in male athletes37. MiR-155-5p is a pro-inflammatory miRNA that is increased 
during macrophage differentiation to a M1 or inflammatory phenotype38. A study by Bao et al. reported that 
an acute exercise session consisting of 30 min of moderate intensity on a treadmill induced the expression of 
inflammatory circulating miRNAs in obese individuals39, although miR-155 levels were not measured in this 
study. Our in vitro findings showed that miR-155-5p is increased in adipocytes exposed to TNFα, but not in 
LPA or PA treated adipocytes, supporting its pro-inflammatory properties. Another exercise-induced miRNA, 
miR-329-3p, has been reported to possess insulin sensitizing effects40,41, while miRNA, miR-377, has an impor-
tant regulatory role in adipogenesis and triglyceride metabolism42,43. Bioinformatics confirmed an important 
role for these miRNAs in insulin and lipid homeostasis, warranting further work to elucidate their precise role 
in the exercise-induced improvement in insulin sensitivity. Taken together, our findings suggest that increased 
miR-155-5p, miR-329-3p and miR-377-3p expression in GSAT is associated with exercise-induced adaptations 
in lipolysis and inflammation leading to reductions in gynoid fat mass and whole-body improvement in insulin 
sensitivity. We propose that the exercise-induced expression of miRNAs induce lipolysis, leading to decreased 
lipogenesis and reduction in gynoid fat mass. These miRNAs may increase insulin sensitivity by activating AKT 
and IRS1 (Fig. 4).

In contrast to our findings, previous studies on miRNA profiling in adipocytes in response to exercise train-
ing have suggested that adipose tissue miRNAs are resistant to exercise-induced changes. A study that investi-
gated miRNA expression in biopsies from GSAT and ASAT found no exercise-induced miRNAs after 6 weeks 
of endurance training44, albeit that this study was conducted in men. Similarly, a study conducted in females, 
showed no miRNA differences in GSAT and ASAT in response to 16 weeks of high intensity interval training45. 
These contradictory findings may be due to differing exercise intensities and population characteristics such as 
ethnicity, body distribution, metabolic state, and gender. Notably, in our study, significant miRNA differences 
were detected in GSAT only, an adipose depot that may be more prominent in black African women than in the 
Caucasians investigated in the previous studies46.

Our study has several strengths. To the best of our knowledge, this is the first study to investigate the effect 
of an exercise training intervention on miRNA expression in GSAT and ASAT from South African women with 
obesity and insulin resistance. Exercise-induced miRNAs were identified in GSAT using an unbiased sequenc-
ing approach, which identified miRNAs represented in our population. Furthermore, this study investigated the 
effect of exercise on miRNA expression in adipose tissue, the primary affected organ during obesity development, 
compared to many other studies which used peripheral blood13,44. The participants in this study were advised to 
maintain their diet, therefore, allowing for the exclusion of dietary influence on miRNA expression. An additional 
strength of this study is the inclusion of both GSAT and ASAT, thus enabling direct comparison between these 
depots and their associations with metabolic disease.

Our study also has several limitations to consider. Due to the invasiveness of obtaining adipose tissue biopsies, 
the samples size is small and may have been underpowered to detect all exercise-induced miRNAs, particularly in 
ASAT, due to the smaller sample size available for this depot. Therefore, this study is exploratory by nature, and 
future studies should confirm the findings from this study in larger populations. Furthermore, study participants 
were South African women with obesity and insulin resistance, therefore we cannot generalize our findings to 

Figure 4.   Proposed model of study findings showing how the exercise intervention can lead to reduced waist 
circumference and gynoid fat mass and improve whole-body insulin sensitivity. Exercise induces the expression 
of miR-155-5p, miR-329-3p and miR-377-3p in GSAT, stimulating lipolysis and increasing circulating 
triglycerides. Inhibition of C/EBPα/β and PPARγ leads to decreased lipogenesis, with concomitant stimulation 
of AKT and IRS1, and insulin signaling. Abbreviations: AKT, Protein kinase B; C/EBPα/β, CCAAT/enhancer-
binding protein alpha/beta; GSAT, Gluteal subcutaneous adipose tissue; IRS1, Insulin receptor substrate 1. 
Diagram created in Bio-Render (https://​biore​nder.​com/).

https://biorender.com/
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other populations or males. In addition, miRNAs are epigenetic mechanisms, thus factors such as diet, physical 
activity, smoking and alcohol consumption47 may have confounded our analysis. We did not adjust for these 
confounders due to the small sample size and risk of overfitting the data. It is also important to acknowledge 
that adipose tissue consists of adipocytes, mesenchymal stem cells, pre-adipocytes, macrophages, neutrophils, 
lymphocytes and endothelial cells48, therefore we cannot exclude these cells as the source of the exercise-induced 
miRNAs. Lastly, due to limited tissue availability, we were not able to measure gene expression levels in GSAT, 
and therefore could not validate the expression of in silico predicted miRNA gene targets.

In conclusion, we showed that a 12-week combined aerobic and resistance exercise training intervention 
induced adipose-depot specific miRNA expression patterns and improved the metabolic profile of South Afri-
can women with obesity and insulin resistance. These miRNAs were associated with decreased adiposity and 
improved cardiorespiratory fitness and metabolic risk, highlighting the important role for depot specific miRNAs 
in metabolic regulation. Further work in larger samples is required to assess the role of these exercise-induced 
miRNAs as mediators in adipocyte adaptation to the beneficial effects of exercise training.

Material and methods
Participants.  Details of the study design have been described previously16. This study was approved by the 
Human Research Ethics Committee at the University of Cape Town (HREC REF:054/2015) and registered in 
the Pan African Clinical Trial Registry on 21 November 2017 (trial registration: PACTR201711002789113). The 
study was performed in accordance with the principles of the Declaration of Helsinki (1964, amended 2013) and 
written, informed consent was obtained from all participants prior to screening and recruitment. The study was 
conducted over a period of 18 months, between July 2015 and December 2016. Sedentary, obese South African 
women were recruited through advertisements and selected based on the following inclusion criteria: (1) black, 
South African women (based on parental Xhosa ancestry) between the ages of 20–35 years; (2) obese (BMI 
30–40 kg/m2); (3) weight stable (no change in weight more than 5 kg/no change in clothing size over 6 months 
prior to selection); (4) sedentary (within the last 12 months had not participated in exercise training (more 
than one session lasting more than 20  min per week); (5) on injectable contraceptive (minimum 2  months; 
depot medroxyprogesterone acetate 400 mg); (6) no known metabolic/inflammatory disease; (7) no hyperten-
sion (≥ 140/90 mm Hg), diabetes (random plasma glucose concentration > 11.1 mmol/L or glycated hemoglobin 
(HbA1C) > 6.5%); (8) not currently on any medications; (9) non-smokers; (10) not currently pregnant/lactating; 
(11) no medical problems preventing participation in training; (12) no surgical procedures 6 months prior to 
study; and (13) human immunodeficiency virus (HIV) negative. A total of 118 women were assessed for eli-
gibility, of whom 73 were excluded due to unwillingness to participate (n = 21), not on contraception (n = 15), 
BMI < 30 kg/m2 (n = 12), BMI > 40 kg/m2 (n = 12), HIV positive (n = 2), 20 years old (n = 1), taking medication 
(n = 1) or being uncontactable (n = 9). A total of 45 women were randomized to the exercise intervention (n = 23) 
or control group (n = 22). The final sample that was analyzed included 20 exercise and 15 control participants16. 
Three women in the exercise group did not complete the study due to lack of time commitment (n = 2) and 
becoming pregnant (n = 1) during the study. Seven women in the control group did not complete the study due 
to loss to follow up (n = 2) and lack of time commitment (n = 5). Based on the availability of samples, only 31 
participants (19 exercise and 12 control participants) were included in the current study.

Intervention.  The intervention has been described previously16,17. Briefly, women were randomized to 
receive 12-weeks of supervised aerobic and resistance training at a moderate-vigorous intensity for 40–60 min, 
four days per week by a trained facilitator (exercise group) or to continue with their usual behaviors (control 
group). Aerobic exercises included dancing, running, skipping, and stepping at a moderate-vigorous intensity 
(75–80% peak heart rate). Resistance exercises included upper and lower body exercises using body weight that 
progressed to the use of equipment (i.e. bands and free weights) at a prescribed intensity of 60–70% peak heart 
rate. A heart rate monitor (Polar A300, Kempele, Finland) was worn to ensure the prescribed exercise intensity 
was maintained. The intensity of training was maintained throughout the study by adjusting exercise activity. 
Both groups were instructed to maintain their usual dietary intake. Following intervention testing, the control 
participants were given the opportunity to participate in the 12-week supervised exercise program.

Pre‑ and post‑experimental testing.  All participants underwent pre- and post-testing; where cardiores-
piratory fitness, body composition, metabolic and biochemical data, alcohol consumption, dietary intake and 
physical activity were assessed16,17,27.

Cardiorespiratory fitness.  Peak oxygen consumption (VO2peak) was measured using a walking tread-
mill-based (C, Quasar LE500CE, HP Cosmos, Nussdorf-Traunstein, Germany) graded exercise test as previ-
ously reported16. Pulmonary gas exchange was measured by determining O2 and CO2 concentrations and ven-
tilation to calculate VO2 consumption using a metabolic gas analysis system (CPET, Cosmed, Rome, Italy)16.

Body composition.  Anthropometric measurements (weight, height, waist and hip circumference), whole 
body fat composition (including fat mass and fat free soft tissue mass), and regional body fat distribution (gynoid 
and android fat mass) were assessed using dual-energy-x-ray absorptiometry (DEXA) (Discovery-W, Software 
version 12.7.3.7; Hologic Inc., Medford, Massachusetts, United States). Visceral adipose tissue and abdominal 
subcutaneous adipose tissue volumes were analysed using a 3 Tesla whole-body human MRI scanner (MAG-
NETOM Skyra; Siemens Medical Solutions) using a two-point Dixon method as described previously17.
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Frequently sampled intravenous glucose tolerance test.  After an overnight fast (10–12 h) blood 
samples were drawn for the subsequent determination of plasma glucose and serum insulin, triglycerides and 
TNFα levels. Thereafter, an insulin-modified frequently sampled intravenous glucose tolerance test was used 
to calculate insulin sensitivity. Briefly, baseline samples were collected at − 5 and − 1 min before a bolus of glu-
cose (50% dextrose; 11.4 g/m2 × body surface area) was infused intravenously over 60 s beginning at time 0. At 
20 min, human insulin (0.02 U/kg; NovoRapid, Novo Nordisk) was infused over 5 min at a constant rate (HK400 
Hawkmed Syringe Pump, Shenzhen Hawk Medical Instrument Co., Shenzhen, China) and samples were col-
lected up to 240 min. Bergman’s minimal model of glucose kinetics was used to calculate the insulin sensitivity 
index (SI)49.

Biochemical analysis.  Plasma glucose and serum lipids concentrations were determined using colorimet-
ric assays (Randox, Midrand, Gauteng, South Africa) and serum insulin concentrations were measured using 
immunochemiluminometric assays (IMMULITE 1000 immunoassay system, Siemens Healthcare, Midrand, 
Gauteng, South Africa). TNFα concentrations were measured using the Milliplex MAP MAG Human Cytokine 
kit (Merck, Johannesburg, South Africa) and xMAP technology (Luminex, Austin, Texas, United States) accord-
ing to the manufacturer’s instruction. Homeostatic model assessment of insulin resistance (HOMA-IR) was 
calculated using fasting glucose and insulin levels ((glucose (mmol/L) × insulin (pmol/L))/22.5).

Alcohol consumption.  Alcohol consumption was measured as the intake of a standard drink of 10 g of 
pure alcohol.

Dietary intake.  Pre- and post-experimental period dietary intake was calculated as the average daily intake 
from a 24-h dietary recall and a 3-day dietary record as previously reported27. The 24-h dietary recall was com-
pleted with a registered dietitian at pre-testing and every 4 weeks thereafter and the 3-day food records were 
completed in the same format, including one weekend day.

Physical activity.  Physical activity was objectively measured using accelerometry (ActivPAL, PAL Tech-
nologies Ltd, Glasgow, UK) one week before the experimental period (baseline) and again one week before the 
end of the experimental period (12 weeks). The activPAL was attached to the mid anterior right thigh and worn 
continuously for 7 days. Data were analyzed using the activPAL software (PAL Technologies, version 7.2.32, 
Glasgow, UK). Total physical activity was calculated as the sum of light, moderate and vigorous physical activity 
using reported as minutes/day.

Adipose tissue biopsies.  Adipose tissue biopsies from ASAT and GSAT (2–3 cm3) were collected by mini-
liposuction after a 4–6 h fast50 and at least 48–72 h after the last exercise training session. ASAT samples were 
obtained from the area directly above the umbilicus, whereas GSAT samples were obtained from the right upper 
outer quadrant16. Samples were washed with saline until no blood was visible, snap frozen in liquid nitrogen and 
stored at − 80 °C.

MicroRNA extraction from adipose tissue.  MiRNA enriched total RNA was isolated from 100 mg of 
ASAT and GSAT biopsies using the miRNeasy mini-Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions. MiRNA concentrations were measured using the NanoDrop ND-1000 Spectrophotometer 
(NanoDrop Products, Wilmington, North Carolina, United States), and quality assessed using the Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, California, United States) system and small RNA kits (Agilent 
Technologies), according to the manufacturer’s instructions.

MicroRNA sequencing.  MiRNAs isolated from 12 GSAT biopsies of six participants, pre- and post-exercise 
(n = 4) and pre-and post-experiment for controls (n = 2) were sequenced on an Illumina NextGen 500 instru-
ment (Illumina Inc., San Diego, California, United States) using the Illumina TruSeq Rapid SBS preparation 
protocol (Arraystar Inc., Rockville, Maryland, United States). After quality control, miRNA sequencing libraries 
were prepared as follows: Total RNA was sequentially ligated to 3′ and 5′ small RNA adapters and complimen-
tary DNA (cDNA) synthesized and amplified using Illumina’s propriety reverse transcription and amplification 
primers. Amplicons were separated using polyacrylamide gel electrophoresis and amplified fragments corre-
sponding to the molecular size of miRNA fragments with ligated adapters (~ 130 to 150 bp) were excised from 
the gel for subsequent sequencing. Completed libraries were quantified with an Agilent 2100 Bioanalyzer (Agi-
lent Technologies). The cDNA libraries were diluted to a final concentration of 8 pM and cluster generation was 
performed on the Illumina cBot using the TruSeq Rapid SR cluster kit, according to manufacturer’s instructions. 
DNA fragments in the libraries were denatured with 0.1 M NaOH to generate single-stranded DNA molecules, 
captured on Illumina flow cells, amplified in situ and finally sequenced for 51 cycles on Illumina Nextseq accord-
ing to the manufacturer’s instruction. Raw sequences were generated as clean reads from Illumina Nextseq by 
real-time base calling and quality filtering. The clean reads were recorded in FASTQ format, containing the read 
information, sequences and quality encoding. Subsequently, the 3′ adapter sequence was trimmed from the 
clean reads and the reads with lengths shorter than 15 nucleotides were discarded. As the 5′-adaptor was also 
used as the sequencing primer site, the 5′-adaptor sequence is not present in the sequencing reads. The trimmed 
reads were recorded in FASTA format and were aligned to the human pre-miRNA in miRBase 21 (http://​mirba​
se.​org) using Novoalign software (v2.07.11). For miRNA alignment, the maximum mismatch was 1. Reads with 
counts less than 2 were discarded when calculating miRNA expression. MiRNA expression levels were measured 

http://mirbase.org
http://mirbase.org


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18408  | https://doi.org/10.1038/s41598-022-23290-x

www.nature.com/scientificreports/

and normalized as transcripts per million of total aligned miRNA reads. The miRNA read counts were used to 
estimate the expression level of each miRNA. Differentially expressed miRNAs between two groups were ana-
lyzed using the two tailed, homoscedastic t-test.

Quantitative real‑time PCR.  A total of 10 ng of miRNA-enriched total RNA from GSAT and ASAT was 
reverse transcribed to cDNA using the TaqMan Advanced MiRNA cDNA Synthesis Kit (Life Technologies, 
Carlsbad, California, United States), according to the manufacturer’s instructions. Briefly, 5 µl of diluted cDNA 
(1:10), 1 µl of TaqMan Advanced miRNA Assays (Supplementary Table S2), 10 µl of TaqMan Fast Advanced 
Master Mix (Life Technologies) and nuclease free water in a total reaction volume of 20 µl were used to quantify 
miRNA expression using qRT-PCR. Novel miRNA MYN0617 expression was quantified using qRT-PCR with 
custom-designed TaqMan Assays based on the miRNA sequence obtained by Illumina sequencing (Life Tech-
nologies). Briefly, 10 ng of miRNA-enriched total RNA was reverse transcribed using the TaqMan MicroRNA 
Reverse Transcription kit (Life Technologies). Thereafter, 1.33 µl of cDNA was amplified using 1 µl of Small RNA 
Assays, 10 µl of Universal PCR Master Mix (no UNG) (Life Technologies), and nuclease free water in a total 
reaction volume of 20 µl. All qRT-PCR reactions were performed on the QuantStudio 7 Flex Real-Time PCR 
System using default settings (Life Technologies). The average expression of miR-191 and miR-423 were used 
as endogenous controls, and miRNA expression levels were calculated using the relative quantification standard 
curve method.

In vitro analysis in 3T3‑L1 adipocytes.  To further investigate the role of differentially expressed miR-
NAs, we measured their expression in a cell model of obesity18. 3T3-L1 adipocytes were exposed to LPS, PA 
and TNFα, compounds that have been shown to stimulate inflammation and dyslipidemia in 3T3-L1 adipo-
cyte models of metabolic dysregulation. Mouse 3T3-L1 embryonic fibroblasts (American Type Culture Col-
lection, Manassas, Virginia, United States) were cultured in growth medium containing Dulbecco’s modified 
eagle’s medium (DMEM, Lonza, Walkersville, Maryland, United States) supplemented with 10% fetal bovine 
serum (FBS, Thermo Fisher, Waltham, Massachusetts, United States) and cultured at 37 °C in humidified air 
with 5% CO2, and differentiated as previously described51. Fully confluent 3T3-L1 pre-adipocytes were seeded 
at 6 × 104 cells/well in 6-well plates and induced to differentiate by replacing growth media with adipocyte dif-
ferentiation medium (DMEM supplemented with 10% FBS, 500 µM isobutyl-1-methylxanthine, 1 μg/ml insulin 
and 1 μM dexamethasone (Sigma-Aldrich, St. Louis, Missouri, United States)) from day 0 to day 3, followed by 
replacing adipocyte differentiation media with adipocyte maintenance media (DMEM supplemented with 1 µg/
ml insulin) and incubating cells for a further 48 h. At day 5, the differentiated adipocytes were cultured in growth 
medium until they became fully differentiated at day 8 and were subsequently treated with LPS (100 ng/ml, 
Sigma-Aldrich), PA (750 µM, Sigma-Aldrich) and TNFα (10 ng/ml, Sigma-Aldrich) individually or in combina-
tion for 24 h. After treatment, RNA was extracted from 3T3-L1 adipocytes using the AllPrep DNA/RNA/Protein 
Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. MiRNA expression analysis 
was conducted using qRT-PCR as previously described, using mouse miRNA assays (Supplementary Table S2).

Bioinformatics.  Bioinformatics was conducted to identify biological pathways affected by the differentially 
expressed miRNAs. MiRNAs were mapped to pathways based on their mRNA targets using miRNA Pathway 
Dictionary Database (miRPathDB) 2.0 accessible52 at https://​mpd.​bioinf.​uni-​sb.​de/. miRPathDB identifies path-
ways from various databases (Gene Ontology, KEGG, miRbase, miRCarta, Reactome and WikiPathways) and 
gene targets are identified using MiRanda 3.3a, miRTarBase 7 and TargetScan 7.1. Due to the unavailability of 
sequence information for the novel miRNA in miRPathDB, gene target prediction was conducted using miRDB 
database, accessible53 at http://​mirdb.​org/. The seed region sequence obtained by sequencing was submitted for 
gene target prediction. MiRDB implements on the back-end an algorithm, MirTarget, for custom target predic-
tion. The web server collects the miRNA sequence and the selected species from the submission web form. The 
server thereafter imports all 3’-UTR sequences of the selected species from a precompiled sequence file. It scans 
for binding sites in the 3’-UTR regions that map and match to the seed region of the miRNA sequence and gen-
erates targeting features for MirTarget prediction. The algorithm ranks and attributes a score for each predicted 
target gene which the server uses to sort the prediction results in descending order for web presentation53. The 
list of target genes was filtered out by considering only genes with a target score above 90%. The output obtained 
was submitted to the Database for Annotation, Visualisation, and Integrated Discovery (DAVID)54 in order to 
perform disease enrichment analysis focusing only on the genes associated with diabetes. The results obtained 
from this analysis were further submitted to the KEGG pathway database (https://​www.​genome.​jp/​kegg/​pathw​
ay.​html) to identify pathways that respective genes were involved in.

Statistics.  Statistical analysis was performed using STATA version 14.0 (StataCorp, College Station, Texas, 
United States) and GraphPad Prism® version 8.4.3 (GraphPad Software, San Diego, California, United States). 
The Shapiro–Wilk test was used to test for normality. Participant data pre- and post-experimental period were 
compared using the repeated measures mixed model and Bonferroni pairwise analysis. MiRNA data were com-
pared using the Wilcoxon matched pairs signed rank tests. Spearman correlation analyses were conducted to 
investigate the association between exercise-induced changes in miRNA expression and metabolic characteris-
tics. A P-value ≤ 0.05 was considered statistically significant.

Ethics approval and consent to participate.  This study was approved by the Human Research Ethics 
Committee at the University of Cape Town (HREC REF:054/2015) and registered in the Pan African Clinical 
Trial Registry on 21 November 2017 (trial registration: PACTR201711002789113). The study was performed in 
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accordance with the principles of the Declaration of Helsinki (1964, revised 2013). Participants provided written 
informed consent before screening and participation.

Data availability
The datasets generated for this study are available on request to the corresponding author.
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