
An Investigation into Performance-related
Issues of Regular Expression Matching

by

Pieter Steyn van Litsenborgh

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Science (Computer Science) in the

Faculty of Science at Stellenbosch University

Supervisor: Prof. Brink van der Merwe

Co-supervisor: Mr. Willem Bester

December 2022

The financial assistance of the National Research Foundation (NRF) and the National Institute for The-
oretical and Computational Sciences (NITheCS) towards this research is hereby acknowledged. Opinions
expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to
the NRF or the NITheCS.

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

2022/10/04Date: .

Copyright © 2022 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

An Investigation into Performance-related Issues of
Regular Expression Matching

P.S. van Litsenborgh
Department of Computer Science,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc (Computer Science)
December 2022

Regular expressions (regexes) constitute a concise, powerful, and useful pattern
matching language for strings. They are widely supported in programming
languages, text processing programs, and (advanced) text editors. In general,
regex matching is performed efficiently, but in some cases, a vulnerable regex
(and an exploit string) can cause the matching procedure to take exponential
time in the length of the input string. As regexes are frequently used in user-
facing circumstances, vulnerable regexes open up the underlying application to
a potential denial of service vector. Several regex engines choose to implement
an algorithm that will always match an input string in linear time, but can
only support a subset of modern regex constructs.

We show how to implement a construct known as Regular Expressions
with Lookahead (REwLA), and investigate various state complexity results
when converting REwLA to equivalent deterministic finite automata (DFA).
The relationship between REwLA with atomic operations and REwLA with-
out is investigated, and an algorithm for translating a REwLA with atomic
operations to a REwLA without is provided.

Vulnerable regexes only exist when the regex engine implements a back-
tracking algorithm. We extend non-deterministic finite automata (NFA) and
regexes by adding memoization to these formalisms. Furthermore, we gener-
alise the concept of ambiguity in order to be applicable to memoized extensions.
These extensions are aimed at improving the matching time of backtracking
regex engines.

ii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

’n Ondersoek in prestasieverwante kwessies van
ooreenstemende algoritmes in regulêre uitdrukkings

P.S. van Litsenborgh
Departement Rekenaarwetenskap,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.
Tesis: MSc (Rekenaarwetenskap)

Desember 2022

Regulêre uitdrukkings (regekse) vorm ’n bondige, kragtige en bruikbare taal
vir die patroon-ooreenstemming van stringe. Hulle word ondersteun in ’n groot
hoeveelheid van programmeertale, teksverwerkingsprogramme en (gevorderde)
teksredigeerders. Oor die algemeen word regeks-passing doeltreffend uitgevoer,
maar in sommige gevalle kan ’n kwesbare regeks (en ’n uitbuit-string) veroor-
saak dat die ooreenstemming prosedure eksponensiële tyd in die lengte van die
invoerstring neem. Aangesien regekse gereeld gebruik word in omstandighede
waar die gebruiker die hoof akteur is, maak dit kwesbare regekse oop tot ’n
moontlike ontkenning van diens aanval. Verskeie regeks-enjins kies om ’n al-
goritme te implementeer wat altyd ’n invoerstring in lineêre tyd sal pas, maar
kan slegs ’n deelversameling van moderne regeks-konstruksies ondersteun.

Ons wys hoe om ’n konstruksie, bekend as “Regular Expressions with
Lookahead” (REwLA) te implementeer en ondersoek verskeie toestandskom-
pleksiteitsresultate wanneer REwLA na ekwivalente deterministiese eindige
outomatiese (DFA) omgeskakel word. Die verband tussen REwLA met ato-
miese operatore en REwLA daarsonder word ondersoek en ’n algoritme vir die
vertaling van REwLA met atomiese operatore na REwLA daarsonder word
verskaf.

Kwesbare regekse bestaan slegs wanneer die regex-enjin ’n terugspooralgo-
ritme implementeer. Ons brei nie-deterministiese eindige outomatiese (NFA)
en regekse uit deur memoisering by hierdie formalisme te voeg. Verder ver-
algemeen ons die konsep van dubbelsinnigheid om van toepassing te wees op
gememoriseerde uitbreidings. Hierdie uitbreidings is daarop gemik om die pas-
singstyd van terugsporing van regeks-enjins te verbeter.

iii

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 A Tale of Two Engines . 2
1.2 Scientific Contributions . 3
1.3 Thesis Outline . 4

2 Background and Literature 5
2.1 Fundamentals of Formal Language Theory 5
2.2 Ambiguity of NFA . 9
2.3 Alternating Automata . 12
2.4 Regular Expressions . 16
2.5 Regular Expression Matching . 20

3 Related Work 23
3.1 Regular Expressions with Lookahead 23
3.2 Atomic Subgroups in Regular Expressions 24
3.3 Regular Expression Denial of Service 24
3.4 Using Memoization to Enhance Regular Expression Matching . 26
3.5 Empirical Research on Regular Expression Usage 29

4 Regular Expressions with Lookahead 31
4.1 Introduction . 31
4.2 Preliminaries . 33
4.3 Automata Construction for REwLA 38

iv

Stellenbosch University https://scholar.sun.ac.za

CONTENTS v

4.4 State Complexity Considerations 44
4.5 Experimental Results . 47
4.6 Conclusion . 48

5 Atomic Subgroups and Submatching 49
5.1 Introduction . 49
5.2 Preliminaries . 50
5.3 Submatch Considerations . 52
5.4 Translating aREwLA into REwLA 54
5.5 Experimental Results . 56
5.6 Conclusion . 57

6 Memoized Regular Expressions 58
6.1 Introduction . 58
6.2 Preliminaries . 60
6.3 Generalization of Mohri’s ambiguity results to mNFA 65
6.4 Hardness Results . 68
6.5 Memoization Schemes . 70
6.6 Experimental Results . 70
6.7 Future Work . 72

7 Conclusions and Future Work 73
7.1 Conclusions . 73
7.2 Future Work . 74

Appendices 76

A Symbolic Automata 77

B IAR Experimental Results 79

C Backtracking Matching and Prefix Ambiguity 80

D Catastrophic Backtracking Prevention in the Java Regular
Expression Engine 83

E Backtracking Elimination in .NET 5 85

List of References 87

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 A DFA M that recognises strings over the alphabet {a, b}, where
∀w ∈ L(M), the number of occurrences of “a” in w is equal to a
non-zero multiple of 2. 6

2.2 An NFA M that recognises strings over the alphabet {a, b}, where
∀w ∈ L(M), w has a “b” in the third position from the right. 7

2.3 An NFA M that recognises strings over the alphabet {a} with
length a multiple of 3 or 5. 9

2.4 An abstract NFA with IDA of degree at least 1. 10
2.5 An abstract NFA with IDA of degree at least 2. 10
2.6 An abstract NFA with IDA of degree at least n. 11
2.7 An abstract NFA with EDA. 11
2.8 An AFA A that recognises strings over the alphabet {a, b}, where

∀w ∈ L(A), there is an odd number of symbols after each a. 14
2.9 An execution tree of the AFA A on the input string “babbbab”. . . 15
2.10 An NFA constructed from the regex a(b|b)c using Thompson’s

construction (with ε-transitions removed). 20

4.1 The structure of the alternating finite automaton A(r) constructed
from a REwLA r by the procedure described in Section 4.3. 39

6.1 The average number of states needed to be memoized given the
selective memoization scheme. Results were obtained by evaluating
the regexes in the RegExLib and Davis polyglot corpus. 71

6.2 The average execution time (ms) required to determine the subset
of nodes that need to be memoized. Results were obtained by
evaluating the regexes in the RegExLib and Davis polyglot corpus. 71

6.3 The average matching time of different versions of the Java regular
expression engine (including our own modified version) on regexes
from the RegExLib and Davis polyglot corpus against (generated)
inputs. 72

vi

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 The transition function g of a Boolean automaton that map states
of the automaton into the set of all functions Σ × BQ. 15

2.2 A list of popular predefined character classes (metacharacters) found
in the PCRE specification. 18

2.3 An overview of the different types of lookaround assertions. 19

3.1 The components of a memoized finite-state automaton (M-NFA). 26
3.2 Properties of the memoization table encoding schemes. 28

7.1 A list of artefacts for reproducibility. 74

vii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Patterns exist all over the world in innumerable different forms. Some patterns
are regularities in the physical world, whereas others are abstract patterns we
can only observe by way of analysis. Humans have long ago embarked on the
journey of “teaching” computers to solve pattern recognition problems [Glantz
1956]. When it comes to computing, many pattern recognition problems take
the shape of string matching problems. A business’ web server might validate
that the email address of a newly registered user resembles the structure of a
valid email address. Comparably, a data engineer might want to perform data
mining and cleaning tasks on a large corpus of unstructured text by searching
for phrases of interest, such as phone numbers.

When expressing pattern recognition problems as string matching prob-
lems, computers can effortlessly automate what we would otherwise consider
time-consuming manual labour. The work in this dissertation focuses on the
processing of data in its simplest form: strings of symbols. With deep roots in
automata theory and formal languages, one widely used technique for solving
string matching problems is regular expressions (regexes), an algebraic formal-
ism with a comprehensive body of theory. Their laconic form and appealing
computational properties have made them a popular choice for specifying pat-
terns of interest in text. A regex is used to describe a set of strings that
share a property—in formal language theory, regexes provide a suitable way
to describe the class of regular languages.

Instead of enumerating every string in the language of the regex, a regex
provides the apparatus to be transformed into a pattern that generalises the
set of strings. One example of a pattern that can describe the set of valid email
addresses could be a non-empty sequence of either any alphanumeric character,
“_”, “.”, or “-” followed by “@” and then a non-empty sequence of characters.
An example of this regex using Perl Compatible Regular Expressions (PCRE)
notation is [A-Za-z0-9+_\.-]+@.+.

Many real world problems can be expressed in the form of string matching
using regexes [Friedl 2006]. Due to the prevalence of string matching problems,
regexes are a popular tool and most programming languages implement them.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

One empirical study showed that regexes are utilised in up to 40% of open-
source software projects [Chapman and Stolee 2016]. Furthermore, regexes
can be used for the decoding of data formats and protocols, validating user
input, searching for relevant code snippets, and static code analysis tools or
compiler construction [Aho et al. 1986].

In general, software engineers regard regex matching as fast. Although
this assumption holds for most cases, regex matching can be excessively slow
in specific scenarios. Given a regex—if certain conditions are met—then there
exists a set of input strings that will cause the matching process to take expo-
nential time in the length of the regex and the input string [Rathnayake and
Thielecke 2014; Berglund et al. 2014; Wüstholz et al. 2017]. When this is the
case, the regex is said to be vulnerable to a class of algorithmic complexity at-
tacks, known as regular expression denial of service (ReDoS) attacks. During
a ReDoS attack, the program in execution (for example, a web server) will halt
its normal execution as a result of the program being stuck trying to perform
a regular expression match. Two examples of large-scale production service
outages resulting from ReDoS attacks are (i) an outage in 2016 at the online
programming question-and-answer forum, Stack Overflow, which made the site
unresponsive for 34 minutes [Exchange 2016] and (ii) a 27-minute outage [Gra-
ham-Cumming 2019] at the internet infrastructure company, Cloudflare, who
serve approximately 5–10% of all internet traffic [Nehman 2018].

1.1 A Tale of Two Engines
Even though regular expressions are often used in non-harmful and transient
ways, for example, during program comprehension [Singer et al. 1997], they are
also used in performance-critical applications. Thus, the time complexity of the
underlying regex engine of these applications are crucial—as already elucidated
above. Although there are many algorithms for performing regular expression
matching, we focus our work on two specific algorithms—with different trade-
offs—used in established programming languages and regex libraries.

The first algorithm, Thompson’s lockstep algorithm [Thompson 1968], sim-
ulates non-deterministic choices in an automaton and matches a regex and an
input string in linear time. This algorithm is used in the Go and Rust pro-
gramming languages and in the RE2 regex library [Cox 2010]. The authors of
these engines (most notably influenced by Russ Cox) put emphasis on perfor-
mance and only support a subset of regular expression constructs that can be
implemented using Thompson’s lockstep algorithm.

With the availability of algorithms and regex engines that can perform
matching in linear time, one might wonder how ReDoS attacks in the real
world are even possible—particularly at the scale shown in the examples above.
With the rise of the World Wide Web and modern programming languages,
users of regex libraries called for the support of additional constructs. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

includes the lookahead assertion—a construct that recognises the class of regu-
lar languages [Berglund et al. 2021]—which is not supported by engines based
on Thompson’s algorithm (such as Go, Rust, and RE2) because of the lack of
a straightforward implementation. Furthermore, when adding the backrefer-
ence construct, languages beyond the class of regular languages are recognised,
making it impractical (or even impossible) to implement using a lockstep-based
approach.

An algorithm where non-deterministic choices are simulated using back-
tracking, which we refer to as the Spencer backtracking algorithm [Spencer
1994], can support all modern regex constructs. One caveat of a backtrack-
ing regex engine is that the worst-case time complexity can be exponential in
the length of the input string for some regexes. This worst-case complexity is
what exposes applications (using a backtracking matcher) to potential ReDoS
attacks.

An interesting observation stems from the fact that very often the vul-
nerable regex could have been matched against the input string using a lock-
step based algorithm—showing once more (i) the carelessness from the ap-
plication developers on which regex engine to use and (ii) makes one wonder
why the maintainers of these regex engines have not updated the implemen-
tation to (rightly) implement different algorithms based on the structure of
the regex. Both the regexes that caused the high-profile outages at Cloudflare
and Stack Overflow could have been matched in linear time using a lock-step
algorithm [Davis 2020, p. 49–51].

1.2 Scientific Contributions
This dissertation has contributed to computer science in the following ways:
(i) We show how to translate Regular Expressions with Lookahead, abbre-

viated to REwLA, into alternating (and Boolean) automata. Next, we
provide various state complexity results when converting REwLA to
equivalent deterministic finite-state automata (DFA), improving results
by [Miyazaki and Minamide 2019] (for all but REwLA of length of 1 and
2). Additionally, we provide state complexity results for the commonly
occurring case of lookaheads not contained in Kleene starred subexpres-
sions (approximately 92% of all REwLA in the wild, see Section 4.5.1).
Our algorithms were implemented in (i) a high-level Java symbolic au-
tomaton package [D’Antoni 2015] by extending the library internals to
support our models and algorithms and (ii) extending a low-level C pro-
totype regex engine [Cox 2007]—which implement a lockstep-based algo-
rithm with support for submatch tracking—by adding support for regular
expressions with lookaheads not contained in Kleene starred subexpres-
sions (a first of its kind). We successfully published this work in the In-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

ternational Journal of Universal Computer Science (J.UCS) on 28 April
2021 [Berglund et al. 2021].

(ii) We provide an algorithm for translating regular expressions containing
the atomic operator into REwLA. This translation is useful since not ev-
ery PCRE-based engine provides support for atomic operators. Further-
more, this translation can be used to automatically determine whether
the language of a subexpression in a regex will reduce when made atomic;
the automatic insertion of atomic operators to remove vulnerabilities in
some regexes was suggested by [Weideman 2017], but mentions how the
strategy cannot be used considering there is no easy way to determine
whether the language of the regex will be influenced. We discuss the
submatch behaviour of regexes and lookahead expressions in general and
provide a decision procedure to determine whether two lookahead expres-
sions are equivalent in terms of how they perform submatching. All of
our developed algorithms have been implemented in the same symbolic
automaton package [D’Antoni 2015] as our work on REwLA.

(iii) We extend non-deterministic finite automata (NFAs) and regexes by
adding memoization to these formalisms. These extensions improve the
matching time of backtracking regex engines. We generalise the concept
of ambiguity in order to apply to memoized extensions of regexes and
NFAs. This may then be used to analyse the matching time of backtrack-
ing regex engines enhanced with memoization. All the selective memo-
ization schemes and memoization table encodings were implemented in
a prototype backtracking regex engine. On top of that, we forked and
modified the OpenJDK source code and implemented several selective
memoization schemes in order to test the feasibility of optimising a pro-
duction level backtracking engine. This work was successfully presented
at the International Conference on Implementation and Application of
Automata (CIAA 2021) and was subsequently published in the Lecture
Notes in Computer Science book series (LNCS, volume 12803) [van der
Merwe et al. 2021].

1.3 Thesis Outline
The outline of this thesis is as follows: we start in Chapter 2 with a study of the
background and literature of formal language theory and regular expressions.
Next, in Chapter 3 we discuss previous works that are most closely related to
our work. In Chapter 4 we investigate regular expressions which are enriched
with lookaheads. After this, in Chapter 5, we investigate the relationship be-
tween atomic subgroups and REwLA. Subsequently, in Chapter 6 we explore
the concept of memoized regexes. Chapter 7 concludes with a summary of our
findings and opportunities for future work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background and Literature

In this chapter, we lay down the foundation on which we build in subsequent
chapters of this dissertation. We do this by first familiarising the reader with
the relevant parts of formal language theory, i.e. the theoretical underpinnings
of regular expressions. Then, we discuss the notion of ambiguity regarding
regexes, NFAs, and backtracking matching. Thereafter, we discuss alternating
(and Boolean) automata, which are models that generalise the standard notion
of nondeterminism. Subsequently, we provide an overview of regular expres-
sions and show how their embodiment in computer software complicated the
theoretical point of view. In what follows immediately, we present a concise
survey of the two most common algorithms for testing whether a string belongs
to the language of a regular expression, referred to as the membership problem.

2.1 Fundamentals of Formal Language Theory

2.1.1 Historical Background

Back in the 1930s, before there were computers, researchers studied an abstract
machine with all the capabilities of a modern day computer. Pioneering work
by [Gödel 1931], [Church 1936], and [Turing 1937] set out to discover the
dividing line of what a computational machine could do and what it could not
do.

What followed this was work by [McCulloch and Pitts 1943] where they pro-
posed to use these machines, referred to as “neural nets”, to model brain func-
tions. Extensions of these machines are now known as finite-state automata.
Kleene proposed an algebra that aimed to describe the “regular events” recog-
nised by these automata models and showed the equivalence between these
two models [Kleene 1951].

Later, [Rabin and Scott 1959] introduced various generalisations of the no-
tion of an automaton and showed which class of decision problems were solv-
able by efficient algorithms and which ones were not. Meanwhile, [N. Chomsky

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 6

q1 q2 q3

b

a

b

a

b

a

Figure 2.1: A DFA M that recognises strings over the alphabet {a, b}, where
∀w ∈ L(M), the number of occurrences of “a” in w is equal to a non-zero
multiple of 2.

1956] set out to show the limits in expressive power of various automata mod-
els and grouped natural languages into nested classes of increasingly complex
types, now knows as the Chomsky Hierarchy. We refer the reader to [Sipser
2013] and [Hopcroft et al. 2001] for a more thorough treatment of both the
research efforts and underlying theory discussed in this dissertation.

2.1.2 Finite Automata and Regular Languages

Assume that we are given some finite set of symbols Σ, referred to as the
alphabet. A string is a finite (possibly empty) sequence of symbols from the
alphabet. For a string w, let ∣w∣ denote the length of the string, which is the
number of symbols in w. We use wk to denote k successive copies of a string
w. If for some string w, we have ∣w∣ = 0, then w is said to be the empty string,
denoted by ε. Naturally, appending the empty string to another string v will
result in the same string, that is, εv = vε. The letters u, v, and w are used
when referring to strings. In general, it is assumed that ε /∈ Σ and we denote
{ε} ∪Σ by Σε. The (infinite) set of all strings over an alphabet Σ, is denoted
by Σ∗.

Next, we define and discuss finite-state automata. The state diagram in
Figure. 2.1 represents a deterministic finite-state automaton (DFA). States
are represented by circles and are identified by the symbols within them.
The arrows represent transitions in the automaton and are labelled by one or
more symbols. A single state in the DFA is selected as the initial starting
state, which is, for example, indicated by the incoming arrow to state q1 in
Figure 2.1. Any given state can either be an accepting state or not, with
accepting states drawn as double circles. Next, we formally define a DFA.

Definition 2.1. A DFA is a 5-tuple M = (Q,Σ, δ, q0, F), where:
(i) Q is a finite set of states;
(ii) Σ is the input alphabet;
(iii) δ ∶ Q ×Σ→ Q is the deterministic transition function;
(iv) q0 is the initial state; and
(v) F ⊆ Q is the set of final states.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 7

q1 q2 q3 q4

a, b

b a, b a, b

Figure 2.2: An NFAM that recognises strings over the alphabet {a, b}, where
∀w ∈ L(M), w has a “b” in the third position from the right.

Denote by M∣Q∣ the number of states in Q, that is, M∣Q∣ = ∣Q∣. Similarly, let
δ∣M ∣ = ∣Σ∣ ∣Q∣ denote the number of transitions in M .

Every DFA M is associated with a set of strings, denoted by L(M), which
is referred to as the language recognised by the DFA. Given a DFA M and
string w, starting from the initial state, we can apply the transition function a
total of ∣w∣ times; one transition for each character in the input string. If after
reading the input w, the current state q is an accepting state, that is, q ∈ F ,
then M accepts the string w and we have that w ∈ L(M). Conversely, if q /∈ F
then w is not in the language of the DFA, thus w /∈ L(M).

The DFA M in Figure 2.1 accept strings over the alphabet {a, b} where
for any string w in the language of M , the number of occurrences of “a” in w
is a non-zero multiple of 2. Both states q1 and q2 will loop to itself indefinitely
on reading “b” and will only go to the next state on reading “a”. When a run
has reached q3, the DFA will always have read a non-zero even number of the
symbol “a” and it is, therefore, an accepting state.

Next, we discuss nondeterministic finite-state automata (NFA), a general-
isation of DFAs. Whether an automaton is deterministic or non-deterministic
depends on the transition function. A DFA has the property that, for any
input string, there is precisely one path through the DFA. For a transition
function to be deterministic, it has to satisfy the following constraint: ∀q ∈ Q
and ∀α ∈ Σ, we have that ∣δ(q,α)∣ = 1.

A transition function is non-deterministic (and not deterministic) when an
NFA can go from a state to more than one states on the same alphabet symbol
or some transitions on ε exist. More formally, ∃q ∈ Q and ∃α ∈ Σ such that
∣δ(q,α)∣ > 1 or ∣δ(q, ε)∣ ≥ 1 . When an NFA processes a string w, the next
state from a given state is selected non-deterministically from a set of possible
states. Keep in mind that the NFA can also nondeterministically select not to
read any input symbol. When no input symbol is read we say that the NFA
consumed an ε, in other words, the empty string was read. These transitions
are referred to as ε-transitions and are labelled by the symbol ε in the NFA.

Suppose we have an NFA M and an input string w. To better understand
the concept of nondeterminism, we can picture M concurrently traversing all
reachable paths while reading w. The string w is accepted by M if, at the
minimum, one of the paths end in a state that is an accept state.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 8

The NFA in Figure 2.2 accepts strings over the alphabet {a, b} where for
any string w in the language of M , w has a “b” in the third position from the
right. The NFA M processes a string in the following way: if M is currently
in state q1 and processes the input symbol “b”, then the automaton either
stays in state q1 or M predict that this symbol is the third symbol from the
right in w. For the latter, M will switch to state q2 and then confirm that
there are indeed exactly two remaining symbols in w. A formal definition of
an NFA is of the same form as the DFA defined in Definition 2.1, that is, a
5-tuple automaton M = (Q,Σ, δ, q0, F), with the transition function redefined
as δ ∶ Q×Σε → P(Q), where P(Q) denotes the power set of Q. Next, we define
a run of an NFA on an input string.

Definition 2.2. Let M be a NFA and let w ∈ Σ∗. Then M accepts the
input string w, if w can be decomposed into the form w = α1α2 . . . αn, where
αi ∈ Σε and ∀i with 1 ≤ i ≤ n there exists a sequence of states s0, s1, . . . , sn such
that:
(i) s0 = q0;
(ii) si+1 ∈ δ(si, αi+1) for i = 0,1, . . . , n − 1; and
(iii) sn ∈ F .

Similar to a DFA, the set of all strings accepted by an NFAM is referred to
as the language ofM , denoted by L(M). Before moving on, we briefly consider
storage cost associated with a finite-state automaton. An automaton M can
have at most O(M2

∣Q∣) edges , where M∣Q∣ denotes the number of states in M .
A common encoding scheme, a transition table, is a two-dimensional matrix
where the columns are used for states and the rows for alphabet symbols.
Every entry in the matrix is a (possibly empty) set of states. Since this table
contains ∣Q∣ columns, ∣Σε∣ rows, and up to ∣Q∣ states per entry, the transition
table encoding scheme has a storage cost of O(M2

∣Q∣ ⋅ ∣Σε∣).

2.1.3 Equivalence of DFAs and NFAs

The definitions of DFAs and NFAs are equivalent, except for the transition
function. The transition function of a DFA outputs a state, whereas an NFA
outputs a set of possible states. Furthermore, the transition function of an
NFA allows the empty string (denoted by ε) as an input symbol. Considering
the differences in transition function and the allowance of ε-transitions in an
NFA, one might think that NFAs are more powerful and can recognise more
languages than DFAs. Surprisingly, this is not the case and both recognise
the class of regular languages, thus making them equivalent.

Several regular languages can be described much more succinctly by an
NFA compared to a DFA. This property makes NFAs useful in various appli-
cations. In the worst case, a DFA is exponential, in terms of number of states,
compared to an equivalent NFA [Aho et al. 1986].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 9

q0 q1 q2 q3

q4 q5 q6 q7 q8

ε a a

aε

a a a a

a

Figure 2.3: An NFA M that recognises strings over the alphabet {a} with
length a multiple of 3 or 5.

2.2 Ambiguity of NFA
The ambiguity of both regular expressions and the underlying automaton struc-
ture have been studied and formalised in numerous equivalent ways. A regular
expression is said to be unambiguous if there is a distinct parse tree for every
string in the language of the regex [Brabrand and Thomsen 2010; Sulzmann
and Lu 2017]. Contrarily, a regular expression is said to be ambiguous if there
are strings in the language of the regex that can be matched in more than
one way. Ambiguity, as it is defined for regular expressions, is comparable to
the ambiguity of context-free grammars [Brabrand et al. 2007; Earley 1970].
Analysis techniques for calculating the ambiguity of a regex have been pro-
posed by either looking directly at the regex [Brabrand and Thomsen 2010;
Sulzmann and Lu 2017] or through analysis of the underlying equivalent au-
tomaton [Allauzen et al. 2008; Book et al. 1971; Ravikumar 1999]. We focus
in our work on the latter and provide an overview of ambiguity when working
with an NFA in this section.

When an NFA processes an input string and the NFA can find more than
one distinct path of states and transitions that will end in an accepting run,
then the NFA is said to be ambiguous. The degree of ambiguity of an NFA
M is defined as the maximum number of unique paths through the NFA that
will result in an accepting run for any string in L(M). Similarly, the degree
of ambiguity of a string w (in M) is the number of distinct accepting runs of
w in M .

We briefly explain the concept of ambiguity. Figure 2.3 shows an NFA
that recognises the language (Σ = {a}) of strings, where each string has the
property that its length is a multiple of 3 or 5. Strings that are a multiple of
3 or 5—but not both—are examples of unambiguous strings. When a string
w is a multiple of 3 (but not 5) then the only accepting path is the loop of
states q1, q2, q3. In contrast, when w is a multiple of 5 (but not 3) then the
only accepting path is the loop of states q4, q5, q6, q7, q8. When a string w is a
multiple of both 3 and 5 the string is in fact ambiguous. Given that there are

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 10

p0 q0

E0,0

E0,1

E0,2

Figure 2.4: An abstract NFA with IDA of degree at least 1.

p0 q0 p1 q1

E0,0

E0,1

E0,2

F0

E1,0

E1,1

E1,2

Figure 2.5: An abstract NFA with IDA of degree at least 2.

only two accepting paths for these strings, they have a degree of ambiguity of
2. Also, due to there being no other strings in L(M), the degree of ambiguity
of the NFA M is 2.

2.2.1 Infinite Degree of Ambiguity

Suppose we have some NFA M that has no upper bound on the number of
distinct accepting runs for all input strings (∀w ∈ Σ∗

M). In other words, if
there exists a string w ∈ L(M) that has k unique accepting runs, then there
exists another string in L(M) that has more than k unique accepting runs.
When this is the case, we say that the NFA has infinite degree of ambiguity
(IDA) [Weber and Seidl 1991]. Occasionally, it can happen that a fixed-length
input string is accepted by an NFA in an infinite number of ways. This occurs
when there is a loop in the NFA that only goes along ε-transitions (referred
to as an ε-loop). In most cases, we ignore these types of NFAs, and it can
usually be assumed that when we refer to the degree of ambiguity of an NFA,
that the NFA does not have any ε-loops. Alternatively, the more interesting
case of NFAs with IDA is when the degree of ambiguity grows in relation to
the length of the input string.

Suppose we have an NFA M that has IDA. We say that M has IDA of
degree 1, when the degree of ambiguity grows linear with respect to the length
of the input string. An example of IDA with degree 1 would be when two
different states p0 ∈ QM and q0 ∈ QM have self-loops on the same input w ∈ ΣM

and there exists a path from p0 to q0 while reading w [Allauzen et al. 2008].
An abstract NFA with IDA of degree at least 1 is shown in Figure 2.4, where
dotted transitions denote substructures that recognise the language of some
arbitrary expression E. For reasons of clarity, we assume that the expressions
on dotted transitions are unambiguous.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 11

p0 q0 p1 q1 ⋯ pn−1

qn−1

E0,0

E0,1

E0,2

F0

E1,0

E1,1

E1,2

F1 Fn−2

En−1,0

En−1,1

En−1,2

Figure 2.6: An abstract NFA with IDA of degree at least n.

p0

E0,0

E0,1

Figure 2.7: An abstract NFA with EDA.

To understand why the NFA in Figure 2.4 has IDA of degree 1: assume
all three expressions E0,0,E0,1,E0,2 recognise some string w, in other words,
w ∈ L(E0,0)∩L(E0,1)∩L(E0,2). The input string ww has a degree of ambiguity
of 2 given that it can be recognised by either p0

wÐ→ p0
wÐ→ q0 or p0

wÐ→ q0
wÐ→ q0.

Furthermore, for the input string www, there will be the following accepting
paths: p0

wÐ→ p0
wÐ→ p0

wÐ→ q0, p0
wÐ→ p0

wÐ→ q0
wÐ→ q0, and p0

wÐ→ q0
wÐ→ q0

wÐ→ q0—which
means www has a degree of ambiguity of 3.

Suppose the degree of ambiguity of an NFA M has an order of growth
O(n2), with n being the length of the input string, then M has IDA of degree
2. Figure 2.5 shows an example of an abstract NFA that has IDA of (at
least) degree 2. Consider the strings w0 ∈ L(E0,0) ∩ L(E0,1) ∩ L(E0,2), w1 ∈
L(E1,0)∩L(E1,1)∩L(E1,2), and v0 ∈ F0. Then, for an input string of the form
wn0 v0wn1 , there is a quadratic number of ways (in n) to divide the two substrings
w0 and w1 between the four loops in the NFA. In Figure 2.6 we show how this
concept can be generalised to an NFA with IDA of degree n.

2.2.2 Exponential Degree of Ambiguity

In cases where the rate of growth of the degree of ambiguity is exponential
in the length of the input string, we say the NFA has exponential degree of
ambiguity (EDA). An exponential degree of ambiguity happens when there is
a state in an NFA, such that the state can loop back to itself in two or more

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 12

ways. This concept is shown by the abstract NFA in Figure 2.7. Suppose we
have some string w ∈ L(E0,0) ∩ L(E0,1). For an input string of the form wn,
every w substring can be matched by either E0,0 or E0,1. Consequently, every
w appended to the input string will have the effect that the number of ways
to divide the w substrings between E0,0 and E0,1 is doubled. Thus, the degree
of ambiguity is exponential in the length of the input string and the NFA is
said to be exponentially ambiguous. We conclude this section with formal
definitions for infinite and exponential degree of ambiguity.

Definition 2.3. (see [Weideman 2017]) The degree of ambiguity for w ∈ Σ∗,
with respect to the NFA M (without ε-loops), denoted by dM(w), is the num-
ber of accepting runs on w in M . The degree of ambiguity of M is the max-
imum degree of ambiguity for all w ∈ Σ∗, which might be infinite, in which
case we say M has infinite degree of ambiguity (IDA). When M has IDA, we
consider the rate at which the maximum number of accepting runs grows in
proportion to the length of the input strings. This rate might be exponen-
tial, described by saying M has exponential degree of ambiguity (EDA), or
polynomial, described as M being polynomially ambiguous.

2.3 Alternating Automata
In this section, we introduce and discuss the notion of alternation, which gen-
eralises the standard notion of nondeterminism. Nondeterminism provides a
computing device with existential choice, and the dual of this is universal
choice. It is thus natural to consider computing devices that possess both
the power of existential and universal choice; such devices are referred to as
alternating.

Alternation was studied in [Kozen 1976; Chandra et al. 1981] in the context
of Turing machines and in [Brzozowski and Leiss 1980; Chandra et al. 1981]
for finite automata. Even though the formalism for alternation was intro-
duced separately, they are equivalent. Numerous alternating models, such as
alternating Turing machines and alternating pushdown automata, and their
relationship to complexity classes were studied in [Chang et al. 1987; Inoue
et al. 1983; Ladner et al. 1978; Paul et al. 1980; Ruzzo 1980].

In general, an alternating finite automaton (AFA) has a single initial state
and the transition function of an AFA on a given alphabet symbol from a given
state can be an arbitrary Boolean function over states. Around the same time
as when AFA were introduced, a study of Boolean automata was initiated
by [Brzozowski and Leiss 1980]. Boolean automata and alternating automata
are identical, with one distinguishing difference: the initial state of a Boolean
automaton can be an arbitrary Boolean formula instead of a single initial state.

Based on our use cases for this dissertation, we consider the following two
classes of automata: (i) AFA (with ε-transitions) having a single initial state

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 13

and a transition function which can be represented as a conjunction or disjunc-
tion over states, with all transitions from a given state making use of either a
conjunction or a disjunction, and (ii) Boolean automata (without ε-transitions)
where we replace the initial state by an arbitrary Boolean formula, and where
we make use of arbitrary Boolean formulas over Q in the transition function.

We denote by B(Q) the set of Boolean formulas over Q, inductively defined
as usual with negation (“not”), conjunction (“and”), disjunction (“or”), over
Q as variables, plus the constant true and false, all defined as usual. Let
B+(Q) ⊂ B(Q) denote the monotone (or positive) Boolean functions over Q, in
other words, Boolean formulas not making use of negation. For any Boolean
formulas f, g ∈ B(Q) and q ∈ Q let fJq ← gK denote the formula resulting
when replacing all occurrences of q in f with a copy of the subformula g. In
cases where the distinction is unimportant, we often identify Boolean formulas
representing equivalent Boolean functions and use the terminology Boolean
formulas and Boolean functions interchangeably.

Our definition of AFA is complicated by including ε-transitions. These
are not usually included in definitions of AFA or Boolean automata, notably,
they are not considered in any of the papers relevant to this dissertation.
They are, however, very helpful when compositionally constructing AFA from
Regular Expressions with Lookahead (REwLA), as we will see in Chapter 4.
To simplify the initial discussion surrounding AFA we relinquish the use of
ε-transitions in this section and return to them in subsequent chapters where
we discuss the problems they induce and how we can address them.

Remark 1. The only two occurrences of ε-transitions included in the defi-
nitions of alternating (or Boolean) automata we could find in the literature
are (i) a proof that emptiness is undecidable when adding ε-transitions to alter-
nating timed automata1 [Lasota and Walukiewicz 2008] and (ii) ε-transitions
added to the definition of an alternating automaton with synchronised uni-
versality and negation to develop an algorithm for the membership problem
when regular expressions are enriched with intersection and complementa-
tion [Kupferman and Zuhovitzky 2002].

2.3.1 Alternating Automaton Example

We can consider the motivation for alternating automata from the following
point of view. Suppose we want to evaluate whether an automaton starting
at a state q accepts an input string w. We can do this by inductively calling
the transition function. For example, δ(q, ε) is true if and only if q ∈ F and
δ(qn,w1w2) = ⋁qm∈δ(qn,w1) δ(qm,w2). In this scenario, the transition function
is interpreted using disjunction (“or”). Contrastingly, we can swap the ⋁ for
a ⋀ which will mean that the transition function is instead interpreted as a

1Timed automata are obtained from nondeterministic automata by adding clocks that
can be reset and are extensively studied models of real-time systems.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 14

∀1 q1 q2 q3

a,b

a
a,b

a,b

a,b

a,b

Figure 2.8: An AFA A that recognises strings over the alphabet {a, b}, where
∀w ∈ L(A), there is an odd number of symbols after each a.

conjunction (“and”). When an automaton allows both these forms to coexist
in the same automaton, we obtain an alternating automaton.

Consider the AFA A given in Figure 2.8. An AFA consists of universal
(∀) and existential (∃) states. Universal states are labelled as ∀1, . . . ,∀n and
existential states as q1, . . . , qn. An AFA is of the form A = (Q∃,Q∀,Σ, q0, δ, F).
When A is currently at state ∀1, the AFA will read the entire input, since on
both alphabet characters the automaton will loop back to ∀1. However, since
the state is a universal state when processing the symbol “a” the automaton
will spawn an additional copy at state q1 to process the remainder of the
input. When we consider the subautomaton with states {q1, q2, q3} it should be
relatively easy to confirm that the language recognised by this subautomaton
consists of strings with an odd number of symbols.

A run of an AFA on an input string w can be visualised as an execution
tree of depth ∣w∣. Figure 2.9 shows an example of an execution tree that is
accepting. Observe how the tree creates a branch when processing “a” when
in state ∀1. It is important to note that a run of an AFA on an input string
can have multiple execution trees, due to the presence of nondeterminism. For
example, in Figure 2.9 in the bottom branch after having processed “b” three
times, the automaton had to make a nondeterministic choice between going to
q1 or q3 (see Figure 2.9, representing one of many execution trees of the AFA in
Figure 2.8 on the input string w = babbbab). If the automaton selected q3, the
resulting execution tree would have represented a rejecting run. Informally, an
AFA A accepts an input string if there exists an execution tree where all leaf
nodes in the tree are labelled by states in F . The language of A, denoted by
L(A), is the set of all words accepted by A.

2.3.2 Boolean Automaton Example

Suppose we have the Boolean automaton A = (Q,Σ, q0, F, g), with a set of
finite states Q = {q0, q1, q2}, Σ = {a, b}, the starting state q0, F = {q2}, and g is
a function of Q into the set of all functions of Σ×BQ. We define the transition
function of A using Table 2.1. We define f ∈ BQ by the condition fq = 1 ⇐⇒
q ∈ F , and we call f the characteristic vector for F . The characteristic vector
for F of A is f = (fq0 , fq1 , fq2) = (0,0,1). Next, g is extended into a function

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 15

∀1 ∀1

∀1

q1

∀1 ∀1 ∀1

∀1

q1

∀1

q2

q2 q1 q2 q1 q2

b
a

a

b b b
a

a

b

b

b b b a b

Figure 2.9: An execution tree of the AFA A on the input string “babbbab”.

Table 2.1: The transition function g of a Boolean automaton that map states
of the automaton into the set of all functions Σ × BQ.

State a b
q0 q1 ∧ q2 0
q1 q2 q1 ∧ q2

q2 q1 ∧ q2 q1 ∨ q2

of Q that map to the set of all functions Σ∗ × BQ → B as follows:

gq(w,u) =
⎧⎪⎪⎨⎪⎪⎩

uq, if w = ε
gq(a, g(w′, u)), if w = aw′ with a ∈ Σ and w′ ∈ Σ∗,

where w ∈ Σ∗ and u ∈ BQ. A string w ∈ Σ∗ is accepted by a Boolean automaton
A = (Q,Σ, q0, F, g) if and only if gq0(w,f) = 1. The language recognised by A
is L(A) = {w ∈ Σ∗ ∣ gq0(w,f) = 1}.

Example 2.1. Suppose w = aba (w ∈ L(A)), then w is accepted as follows:

gq0(aba, f)
= gq1(ba, f) ∧ gq2(ba, f)
= (gq1(a, f) ∧ gq2(a, f)) ∧ (gq1(a, f) ∨ gq2(a, f))

= (gq2(ε, f) ∧ (gq1(ε, f)) ∧ gq2(ε, f))) ∧ (gq2(ε, f) ∨ gq1(ε, f) ∧ gq2(ε, f)

= (fq2 ∧ (fq1 ∧ fq2)) ∧ (fq2 ∨ fq1 ∧ fq2)
= (1 ∧ (0 ∧ 1)) ∧ (1 ∨ 0 ∧ 1)
= 1

In [Chandra et al. 1981] it is proved that alternating (and Boolean) finite
automata are precisely as powerful as deterministic finite automata as far as
language recognition is concerned. It is also shown in [Chandra et al. 1981]
that there exists a n-state AFA such that any equivalent complete DFA has

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 16

22n states. We can find a more detailed treatment of AFA and their properties
in [Fellah et al. 1990].

2.4 Regular Expressions
Although regular expressions emerged from well-developed theory (see Sec-
tion 2.4.1), the implementation of regexes in programming languages and soft-
ware packages often extends the capability of this theory with various trade-
offs. In this section, we start by giving a brief description of the theory of
regular expressions and conclude with an overview of the constructs provided
by modern regular expression matchers.

2.4.1 Regular Expressions in Theory

The class of regular events (see Section 2.1.1) was introduced by Kleene [Kleene
1951]. A regular event is built inductively from ∅, ε, a ∈ Σ and using a finite
number of disjunctions, concatenations, and repetitions (referred to as the
regular operations). Adapted from [Sipser 2013, p. 64], we define a regular
expression formally in the next definition.

Definition 2.4. We say that r is a regular expression if r is
(i) a for some a in an alphabet Σ;
(ii) ε, the empty string;
(iii) ∅, the empty language;
(iv) r1 ∣ r2, where r1 and r2 are regular expressions;
(v) r1 ⋅ r2, where r1 and r2 are regular expressions; or
(vi) r∗1 , where r1 is a regular expression.
We write L(r) for the language recognised by the regular expression r. For
items i and ii, L(a) = {a} and L(ε) = {ε}. In items iv and v, the expressions
represent taking the union and concatenation of L(r1) and L(r2), respectively,
and the expression in item vi denotes the Kleene closure of L(r1). We can also
define L(r∗1) as ∪∞i=0L(ri1), where ri1 denotes the concatenation of i copies of ri,
with r0

1 being ε.

Regular expressions recognise the class of regular languages and are equiva-
lent to both NFAs and DFAs. We can find a procedure for constructing an NFA
from a regular expression in [Sipser 2013, p. 67]. Conversely, several methods
for translating finite automata to regular expressions have been proposed, such
as the transitive closure method [McNaughton and Yamada 1960], the state
elimination algorithm [Brzozowski and McCluskey 1963], and a method based
on solving a system of linear equations [Arden 1961; Kozen 1994].

Example 2.2. Suppose we have the regular expression r = (a ⋅ b∗ ⋅ a) ∣ (a ⋅ b).
The set of strings recognised by r is either (i) one a followed by zero or more
b’s, followed by an a; or (ii) an a followed by a b.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 17

2.4.2 Regular Expressions in Practice

As hinted at earlier, the implementation of regexes in the wild extends that
of theoretical regular expressions. In this section, we provide a short overview
of the history of regex engine implementations, followed by an overview of the
constructs they offer and touch on the important distinctions between them
and the regexes discussed in Section 2.4.1.

In 1968, the application of regexes in computing (specifically for search-
ing text) was pointed out by Thompson [Thompson 1968]. Thompson imple-
mented regexes in the editor QED which culminated in the UNIX search tool
we know today as grep. Researchers also quickly perceived the effectiveness of
using regexes when building lexical analysers for programming language com-
pilers. The first regex implementation to be used as third-party software was
developed by Henry Spencer [Spencer 1994] and subsequently adopted and
extended for the Perl programming language [Hazel 2015].

As a consequence of regexes being built into the syntax of the language,
Perl quickly became popular for string manipulation tasks, and it is because
of this that people refer to regex engines that behave similarly to the Perl
engine as “Perl Compatible Regular Expressions” (PCRE). We refer the reader
to [Friedl 2006] for a more comprehensive overview of the history and con-
structs of regexes.

Similar to how a regular expression, in theory, would work over an alphabet,
regexes in the wild also work over alphabets, but with alphabets of much
larger sizes, such as the US-ASCII character set. Modern runtimes such as the
Java Virtual Machine (JVM) and .NET utilise an encoding scheme with an
alphabet size of up to 216. We refer the reader to Appendix A for a discussion
on symbolic automata and how symbolic transitions can be used to efficiently
support large alphabet sizes.

2.4.2.1 Capturing Groups

Traditionally, a regex matches an input string if the entire input string is a
member of the language of the regex, referred to as full matching. Alter-
natively, in many instances, it is of interest whether a substring of the input
string can be matched by the regular expression, referred to as submatching.
The concept of capturing groups was introduced to regex matching in order to
extract information on how a string was matched by a regex.

Given a regex and an input string, every parenthesis in the regex repre-
sents a capturing group2 and it is the job of the regex engine (if capturing
groups are supported) to keep track of the position of the substring matched
by the corresponding subexpression. Although capturing groups seem useful

2Nearly all regex implementations will allow a user to make a regex group non-capturing
with the following notation (?:r) where r is some arbitrary regular expression.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 18

Table 2.2: A list of popular predefined character classes (metacharacters) found
in the PCRE specification.

Metacharacter Description Negated

\d Matches a numerical digit. \D
\w Matches an alphanumeric character or (in some

implementations) the underscore character.
\W

\s Matches a white space character. \S
\b Matches a word boundary, that is, the position

between a word and a space.
\B

\h Matches any horizontal white space character. \H
\r Matches a carriage return character. \R

and harmless at first glance, they complicate the matching procedure due to
ambiguity.

For example, when performing submatching on the regex a|aa with input
string “aa”, both matches “a” and “aa” are valid matches. For the former, the
first alternative of the regex was used in the matching process and for the latter,
the second alternative. The Kleene star operator can also cause complications
with capturing groups. For example, consider (c*d)* and the input string
“cdcccd”. Then, it is unclear whether the engine should return “cd” or “cccd”
for the substring captured. When the subexpression in the Kleene closure is
also ambiguous, the situation can be much more complicated [Berglund et al.
2014]. We refer the reader to [Friedl 2006] and [Berglund et al. 2018] for a
thorough treatment of how regex engines prioritise multiple submatches by
way of disambiguation policies.

2.4.2.2 Character Classes

Character classes were introduced as a compressed way to express a set of
symbols where any single symbol can be matched. For example, the character
class [abe-g] can match any of the symbols “a”, “b”, “e”, “f”, or “g”. As seen in
the example, the “-” can be used to express a range of characters compactly.
A character class can also be negated, for example, [ˆabe-g] will match any
symbol that is not “a”, “b”, “e”, “f”, or “g”. Owing to its practicality, most
regex implementations provide multiple predefined character classes—a list of
popular generic character types defined in the PCRE specification can be found
in Table 2.2.

2.4.2.3 Lookaround Assertions

Lookaround assertions were introduced into regex engines to allow users to
place restrictions on prefixes (or suffixes) starting (or ending) at particular po-
sitions in the input string. Table 2.3 provide an overview of the four main types

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 19

Table 2.3: An overview of the different types of lookaround assertions.

Name Description Example

Positive
Lookahead

Assert that at some position an operand subex-
pression should match a prefix of the suffix
starting at that point.

(?=r1)r2

Negative
Lookahead

Assert that at some position an operand subex-
pression should not match a prefix of the suffix
starting at that point.

(?!r1)r2

Positive
Lookbehind

Assert that at some position in the input string,
a suffix of the currently matched substring,
should be matched by a given regex.

(r1(?<=r2))

Negative
Lookbehind

Assert that at some position in the input string,
a suffix of the currently matched substring,
should not be matched by a given regex.

(r1(?<!r2))

of lookaround assertions. It is important to note that lookaround assertions
only assert and does not consume any of the input string. This is accomplished
by resetting the matching position in the input string to the position prior to
when matching with the lookaround assertion has started.

For the positive lookahead example, the subexpression (?=r1) signifies the
positive lookahead using r1 and the language recognised by the entire regex is
L(r1Σ∗)∩L(r2). Likewise, for the positive lookbehind example, the subexpres-
sion (?<=r2) indicates the positive lookbehind using r2. A regex engine will
match the regex with an input string when some suffix of a string matched by
r1 can also be matched by r2. Their counterparts—the negative lookahead and
negative lookbehind—behave similarly, but rather assert that at some position
in the input string the operand subexpression should not match a prefix or a
suffix. In our work, we focus more on lookaheads and in Chapter 4 we show
how to translate Regular Expressions with Lookahead (REwLA) into alter-
nating (and Boolean) automata, and provide various state complexity results
when converting REwLA to equivalent DFA.

2.4.2.4 Backreferences

The use of capturing groups enables another regex feature called a backrefer-
ence. The user can write \1, \2, ... to refer back to substrings matched by
capturing groups earlier in the expression. For example, the regex a(b*)c\1d
will match strings of the form

abb ... b´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n times

cbb ... b´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n times

d

The language recognised by this regular expression can not be expressed by
classical automata or regular expressions. Regex engines that support back-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 20

q0 q1

q2

q3

q4
a

b

b

c

c

Figure 2.10: An NFA constructed from the regex a(b|b)c using Thompson’s
construction (with ε-transitions removed).

references do so by implementing a backtracking algorithm (see Section 2.5.2).

2.5 Regular Expression Matching
In this section, we explore the decision problem where we are given a regular
expression and an input string, and we should determine whether the string
is contained in the language defined by the regex (the membership testing
problem). Although these algorithms have been extended to support sub-
matching (see Section 2.4.2.1) we only focus in this section on full matching,
that is, the membership testing problem.

The algorithms use the equivalence of regular expression and finite au-
tomata to solve the membership testing problem through automaton simula-
tion. Centrally, the idea being to first convert the regex to an equivalent au-
tomaton and then subsequently simulate the automaton on the input string.
We assume the automata constructed by these algorithms all have a particular
sink state, qΦ, such that ∀a ∈ Σ we have that δ(qΦ, a) = qΦ.

The automaton in Figure 2.10 recognise the language of the regex a(b|b)c
and was built using Thompson’s construction. The automaton was simplified
by removing ε-transitions, and it is important to note that the automaton is
nondeterministic seeing as q1 can transition to q2 or q3 on the input “b”. We
refer to Figure 2.10 often when discussing these algorithms.

2.5.1 Thompson’s Lockstep Algorithm

An algorithm where nondeterministic choices are simulated simultaneously
was proposed by [Thompson 1968] and is commonly referred to as the lockstep
algorithm. Thompson’s algorithm keeps a record of all the unexplored paths in
a set of states referred to as the frontier. During execution, the algorithm stores
the current set of possible states, denoted by Ψcurr ⊆ Q. Whenever a character
is consumed, Ψnext ⊆ Q is computed by using the transition function (i.e. δ)
and Ψcurr, and then Ψnext is copied back to Ψcurr. The lockstep algorithm will

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 21

thus update the frontier of possible states in the NFA ∣w∣ times, where w is
the input string to be matched.

Example 2.3. Suppose we want to match the input string w =“aba” with the
NFA in Figure 2.10. The behaviour of Thompson’s algorithm will be:
(i) The frontier set is populated with the initial state: Ψcurr = {q0}.
(ii) The character “a” is consumed and the transition function is applied to

all the states in Ψcurr. The algorithm produces Ψnext = {q1} and then
replaces the content of Ψcurr by Ψnext.

(iii) Replicating this on the input character “b” we obtain Ψnext = {q2, q3},
which then becomes the updated version of Ψcurr .

(iv) Continuing by consuming the next character “a” will produce Ψnext =
{qΦ}, since both q2 and q3 does not have a transition on “a”.

(v) After processing the entire input string, the algorithm will determine
whether Ψcurr ∩ F ≠ ∅.

(vi) Seeing that Ψcurr = {qΦ}, the algorithm reports that the input string is
not in the language of the regex.

The lockstep algorithm only maintains the sets Ψcurr and Ψnext. The space
complexity of storing the NFA and of simulating the NFA using lockstep , is
O(∣r∣), where ∣r∣ is the number of symbols in r, excluding parenthesis. The
time complexity of constructing an NFA from a regex r is O(∣r∣), and the
time complexity of matching is O(∣r∣∣w∣). We refer the reader to [Davis 2020,
p. 23] for pseudocode of Thompson’s algorithm.

2.5.2 Spencer’s Backtracking Algorithm

The algorithm that is found in most modern regular expression engines is
the Spencer backtracking algorithm [Spencer 1994]. Similar to Thompson’s
algorithm, Spencer’s approach also operates on an NFA by simulating nonde-
terminism. The algorithm is carried out by simulating the nondeterministic
choices using backtracking [Birman and Ullman 1973; Mitchell 2005]. Dur-
ing execution, when the algorithm encounters an ambiguous choice, one path
is attempted first and if that path fails, then the algorithm backtracks and
attempts the remaining choices.

Spencer’s approach performs a Depth-first search (DFS) over the state
graph, while Thompson’s algorithm performs a Breadth-first search (BFS).
A backtracking stack 3 is used to keep track of all the unexplored paths. If
any of the paths end in an accept state, then the algorithm will return a
successful match, and it is redundant to explore any other path. However,
when a path fails, the backtracking stack is used to find the position where

3The backtracking stack can either be implicit or explicit. An implicit stack is used when
the algorithm is implemented using recursion, while alternatively, a stack data structure can
be explicitly declared and updated.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND LITERATURE 22

another nondeterministic choice could have been made (that might lead to a
match).

Example 2.4. Suppose we want to match the input string w =“aba” with
the NFA in Figure 2.10. Spencer’s algorithm will behave as follows. The
simulation starts at ⟨q0,0⟩, where the second element represents the position
in the input string, that is, w[0] = “a”. The first input character is consumed
and applied to the transition function, δ(q0,a) = {q1}. Replicating this on the
input character “b” we obtain δ(q1,b) = {q2, q3}. Spencer’s algorithm will order
these states and, in practice, we use a disambiguation policy for this purpose.
Suppose q2 is chosen first, then the algorithm will push the other state (and
position in the input string) onto the backtracking stack. After exploring the
path starting at q2, the algorithm will come across δ(q2,a) = {qΦ} and will
have processed the entire input string as far as possible. Spencer’s algorithm
will then backtrack, pop the alternative choice from the stack, and see if this
path will lead to a successful match. Ultimately, the algorithm will find that
δ(q3,a) = {qΦ}. Seeing that the backtracking stack is empty, the algorithm
reports that the input string is not in the language of the regex.

The space complexity of storing the NFA is O(∣r∣), and the space complexity of
simulating the NFA using Spencer’s algorithm is O(∣r∣∣w∣). Regarding the time
complexity, it costs O(∣r∣) to construct an NFA from a regex r. By counting
the number of simulation states during the backtracking procedure, the worst
case time complexity of simulating Spencer’s algorithm can be bounded by
O(∣r∣∣w∣).

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Related Work

3.1 Regular Expressions with Lookahead
Regular Expressions with Lookahead (REwLA) were originally proposed by
Morihita [Morihita 2012]. In his work, he considers a transformation, simi-
lar to Thompson’s construction [Thompson 1968], from REwLA to Boolean
automata.

The only overlap between our work and his work is that we also provide a
technique similar to [Thompson 1968] for translating a REwLA into an alter-
nating automaton. We achieve our construction by adding ε-transitions to the
definition of an alternating automaton, whereas Morihita uses an auxiliary
function. We also construct an AFA that recognises a specific string represen-
tation of lookahead languages, which we define as the # string encoding (see
Definition 4.7). The # string encoding is used as a stand-in for a finitely deco-
rating transducer. Additionally, our alternating finite automaton construction
is used to provide novel state complexity results in Section 4.4.

Follow-up work was provided by [Miyazaki and Minamide 2019], where the
use of derivatives [Brzozowski 1964] was extended to lookahead languages. It
was shown in [Miyazaki and Minamide 2019] that a REwLA of size n can
be converted into a DFA with at most (22n + 1) states, and asymptotically
at least 22Ω(

√
n) states in the worst case. The lower bound 22Ω(

√
n) is obtained

by using the common strategy (in these cases) of considering the language
where, when going back k symbols from the right of a word, we get a specific
symbol and then expressing k (which is required to be a product of distinct
primes) by using the intersection of languages. In Section 4.4 we improve
results by [Miyazaki and Minamide 2019] (for all but REwLA of length 1 or
2).

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 24

3.2 Atomic Subgroups in Regular Expressions
Atomic subgroups can be used to indicate to the regex engine that any sub-
string matched by the subexpression that is contained in the atomic group,
should be regarded as an entity. What this means, is that as soon as an
atomic group has successfully performed a local match, that the regex engine
will throw away any information regarding alternative ways the subexpression
could have matched any remaining prefix of the string by the atomic group.
Consequently, the engine will thus never backtrack back into the subexpression
of the atomic group if an earlier match has been found.

A study into the semantics of atomic subgroups in regular expression
matching was carried out in [Berglund et al. 2017] and [Weideman 2017].
In [Berglund et al. 2017], the matching semantics of atomic regular expressions
(a-regexes) were formalised. The authors established that a-regexes preserve
regularity, that is, a-regexes match precisely the class of regular languages.

The primary purpose of atomic subgroups is to mitigate worst-case match-
ing time in vulnerable regular expressions by directing the regex engine to
not backtrack into the atomic group, after obtaining a match with this group.
Suppose we have the regexes r1 = a and r2 = aa, then the regex r = (r1 ∣ r2)∗ has
exponential degree of ambiguity. Strings of the form anb will cause a Spencer-
style engine to exhibit catastrophic backtracking [Berglund et al. 2014] as n
grow larger. The atomic operator can be used here to remove the possibility
of ReDoS, by rather using the a-regex (▷(r1 ∣ r2)∗).

Unfortunately, using this technique to remove vulnerabilities from regexes
that match in super-linear time is not always workable, as pointed out by [Wei-
deman 2017]. Under certain conditions, swapping a group with an atomic
group in a regex will cause the language recognised by the regex to be re-
duced. For example, consider the (vulnerable) regex ((a|b)*)*b, which is
susceptible to strings of the form anb. Attempting to rewrite the regex as
either (▷((a|b)*)*)b or (▷(a|b)*)*b will remove strings of the form anb
from the language of the regex. Different attempts at making certain groups
atomic in the regex will either lead to the language being reduced or cause the
a-regex to still be vulnerable to a set of exploit strings.

A formal treatment of atomic groups, in the more general setting of looka-
head languages, is given in Section 5.2. Otherwise, the reader should con-
sult [Berglund et al. 2017], which is the only other formal treatment of atomic
groups that we are aware of.

3.3 Regular Expression Denial of Service
In this section, we provide an overview of research done on ReDoS attacks.
When the algorithm implemented by a regex engine is a backtracking algo-
rithm, then any application that depends on it opens itself up to a denial of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 25

service attack. For a ReDoS attack to be plausible, the following conditions
should be met: (i) the attacked service handle requests from multiple users, in
other words, a malicious attack will have a negative impact on multiple clients,
(ii) the attacked service uses an application that relies on a regex engine which
uses a backtracking algorithm, (iii) the attacked service uses a regex—usu-
ally highly ambiguous—that will cause catastrophic backtracking in the regex
engine, (iv) improper input validation is done on the input string (from a ma-
licious user), and (v) the attacked service does not cap a user’s resource usage
as a fail-safe.

It is important to note that an essential property for a regex to be vulner-
able to worst-case super-linear matching time is for the regex to be ambiguous
(see Section 2.2). Since the initial proposal of ReDoS attacks and their rel-
evancy [Crosby 2003], we have seen vital advances in this area of research.
Methods have been proposed for determining whether a regex can be vulner-
able to ReDoS by using static analysis techniques [Kirrage et al. 2013; Rath-
nayake and Thielecke 2014; Berglund et al. 2014]. While researchers have taken
several approaches to identify vulnerable regexes, most of them are equivalent
to traversing the paths of an NFA constructed from the regex in question. The
analysis attempt to find a path that has the following three parts: (i) a prefix
string which when processed by the NFA will reach the ambiguous sub-NFA,
(ii) a pump string which is used to exploit the ambiguity in the NFA by giving
rise to catastrophic backtracking when the length of the pump is increased,
and (iii) a suffix string that will cause the regex match to fail.

On top of the static analysis approaches, researchers have also proposed
the use of dynamic analysis techniques to determine the worst-case match-
ing time of a regex. On the testing side of the spectrum, we have seen the
development of fuzzing techniques [Sullivan 2010]—making use of the work
from [Miller et al. 1990]—which randomly generate inputs and measure how
long matching takes. The aim is to identify a set of inputs that will cause the
regex engine to take long when performing a match and, from this, to estimate
the worst-case matching time of the regex. Sullivan utilised the Microsoft regex
input generator, Rex [Veanes et al. 2010], which is used to generate inputs for
a regex by translating the regex into a symbolic finite automaton (SFA) and
then encoding the SFA as input to the SMT solver Z3 .

In addition, Petsios et al. [Petsios et al. 2017] and Shen et al. [Shen et al.
2018] proposed the use of genetic programming to generate ReDoS strings
which highlight vulnerabilities in a given regex. These authors measured
fitness by the amount of operations performed by the regex engine during the
matching process. Researchers have also looked into regex anti-patterns, that
is, heuristics that help developers identify regexes that should be considered
particularly risky [Friedl 2006; Goyvaerts and Levithan 2012].

On a language level, authors of regex libraries have provided us with fea-
tures to prevent catastrophic backtracking, for example, in .NET 4.0 the user
can provide a time-out interval after which the engine should throw a runtime

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 26

Table 3.1: The components of a memoized finite-state automaton (M-NFA).

Component Description

Q The (finite) set of states of the automaton.
q0 ∈ Q The starting state of the automaton.

Σ The input alphabet of the automaton.
δ ∶ Q ×Σ ∪ {ε}→ P(Q) The original transition function.

F ⊆ Q The set of accepting states of the automaton.

M ∶ Q ×N∣w∣ → {0,1} The memoization function of the automaton.
δM ∶ Q ×Σ ∪ {ε} ×N∣w∣ → P(Q) The memoized transition function.

exception. At the engine level, some regular expression implementations opt
to not support features that require a backtracking engine.

3.4 Using Memoization to Enhance Regular
Expression Matching

The majority of production regular expression matching engines implement a
backtracking algorithm, with the notable exceptions being Rust, Golang, and
RE2. As already alluded to, this was mainly done to provide users with more
regex features—such as backreferences and lookaround assertions—and given
that the backtracking algorithm is straightforward to implement. Although
there has not been an abundance of reported instances where exponential regex
matching plays havoc with a web service, when they do, there were significant
consequences spanning across thousands of websites [Staicu and Pradel 2018].
The bulk of these regex engine maintainers do not even feel a need to address
this frailty at an engine level, and believe that regexes which would cause this
behaviour are unrealistic and are seen as some sort of parlour trick [Davis
2020].

Maintainers of critical software—such as a regex engine—strongly live by a
philosophy of “if it ain’t broke, don’t fix it” and even in the unlikely event that
maintainers are willing to change the underlying algorithm of the engine, such
as switching from a Spencer backtracking algorithm to a Thompson lockstep
algorithm, it would likely not be feasible because of portability concerns [Davis
et al. 2019]. This section explores the use of memoization to optimise a back-
tracking regex matcher by eliminating unnecessary paths that cause exponen-
tial time matching. Adding memoization to an existing backtracking matcher
is substantially easier than implementing a different algorithm or revamping
the existing engine, and does not pose any portability concerns.

Memoization is an optimisation technique for speeding up a program or
algorithm with the drawback of spending more on space. The vital idea of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 27

storing known input-output pairs of a function to avoid evaluating the function
more than once was first proposed by [Michie 1968] and can significantly reduce
the running time if the function is repeatedly invoked with the same inputs.
The use of memoization is routinely found in functional, logic, and dynamic
programming. Various techniques for reducing the space cost associated with
memoization has been proposed, such as incorporating partial memoization
through symbolic analysis of a function’s dependencies [Amtoft and Träff 1992;
Ziarek et al. 2009], automatic approaches including garbage collection [Cook
and Launchbury 1997; Hughes 1985], and selective memoization schemes [Acar
et al. 2003] that only track a subset of all the feasible memoization states.

The idea of memoization has been examined and declined by the bulk of
researchers due to uneasiness regarding the estimated space complexity [Cox
2007; Berglund and van der Merwe 2015; Berglund et al. 2014; Schwarz et al.
2015]. Albeit most regex processing involves strings of small sizes, it is realistic
that regexes can be used in, for example, large-scale biological or natural
language processing applications. Regarding production regex matchers, as
far as we are aware, only the RE2 and Perl regex engines (and recently, in a
limited sense, the Java matcher) perform some sort of memoization. In contrast
to most matchers, RE2 uses Thompson’s lockstep algorithm, but to resolve
specific types of queries, RE2 memoizes a backtracking NFA simulation [Cox
2010]. The Perl regex engine has a more complex memoization scheme [Acar
et al. 2003] with its origins dating back to 1999, with few considerable changes
since its inception. The memoization scheme tracks the backtracking visits to
a subset of “complex” states. More precisely, the engine keeps track of visits to
the first k states associated with a “complex” unbounded repetition of the form
r∗. We refer the reader to [Davis 2020, p. 246] for a more detailed discussion
of the Perl regex engine memoization scheme, including an overview of three
families of regexes that are protected by memoization in the engine.

Given the recent surge in high profile ReDoS cases, Davis proposed that
memoization in backtracking matchers should be revised as a feasible solution
to the ReDoS problem [Davis 2020]. Davis proposes (i) selective memoization
schemes [Acar et al. 2003] intended to reduce the storage cost of memoization
and (ii) efficient memoization table encodings to reduce the cost of storing at
which of the ∣w∣ candidate string indices an automaton state was visited. To
achieve this, Davis extended the definition of an NFA to include memoization
in order to perform a precise analysis of the selective memoization schemes. We
refer to this automaton as a Memoized NFA (M-NFA) and Table 3.1 provide
an overview of its components.

3.4.1 Selective Memoization Schemes

Davis put forward two selective memoization schemes with the goal of decreas-
ing the storage cost of memoization [Davis 2020; Davis et al. 2021].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 28

Table 3.2: Properties of the memoization table encoding schemes.

Encoding scheme Access time Space complexity

Memo table O(1) Θ(∣Qsel. × ∣w∣)
Positive entries O(1) Ω(∣w∣) ; O(Qsel. × ∣w∣)

Run-length encoding O(log k) Ω(∣Qsel.)∣) ; O(∣Qsel.∣ × ∣w∣)

Select all vertices: (Qall) For completeness, we include the scheme where
the simulation position π = ⟨q ∈ Q, i ∈ N∣w∣⟩ (an automaton state and an index
i into the string w) corresponding to every state in the M-NFA is stored.

Select vertices with in-degree > 1: (Qin−deg>1) This scheme memoizes
states in the NFA that have in-degree greater than one. We have, for example,
this condition in Figure 2.10 at state q4.

Select cycle ancestors: (Qancestor) This scheme memoizes states in the
NFA that, using a topological sort from q0, are cycle ancestors. The Qancestor

scheme put a stop to the amplification of ambiguity—in other words, infinite
ambiguity is removed. It is important to note that cycle ancestor states only
come about when Kleene stars are used.

3.4.2 Memoization Table Encoding Schemes

By employing the selective memoization schemes discussed in Section 3.4.1
we can reduce the number of automaton states tracked by the memoization
function. If these states can be represented in a memory-efficient way—then
the total overhead space cost of memoization can be made minimal. The en-
coding schemes suggested by [Davis et al. 2021] are discussed below. Table 3.2
provides a summary of the properties of the memo table encoding schemes.

Memo table An array with cells indicating each input-output pair. For
classical regexes, this would be a two-dimensional array whose cells are 0-1
valued.

Positive entries The use of a data structure with efficient random access
and update times (such as a hash table) can be used to store the cells that
have been visited. If an entry is missing, we can assume we have not visited
the cell.

Run-length encoding The interpretation of the memo table as an array
of ∣Qsel∣ visit vectors, one per memoized NFA state, each of length ∣w∣. Next,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 29

these visit vectors are compressed using Run-length encoding (RLE) [van Beek
2006].

3.5 Empirical Research on Regular Expression
Usage

In this section, we switch our focus to the empirical research literature on reg-
ular expressions. These studies focus on how regexes are used from a software
engineering perspective. Singer et al. were the first to investigate how regular
expressions are used in the real world [Singer et al. 1997]. Interestingly, their
findings (on how software engineers use regexes) lined up with the applica-
tions Goebelbecker mentions in his introductory text on regexes [Goebelbecker
1995], such as, using regexes to search for files. Chapman and Stolee surveyed
close to 20 software engineers at a (small) software company. The goal of this
research was to determine how frequently the developers use regexes and what
problems they solve using regexes. Chapman et al. [Chapman et al. 2017]
explored how well regular expressions are understood and used by developers.
Furthermore, a study of regular expression evolution was introduced and in-
vestigated in [Wang et al. 2019]. The theme of this work was to “shed light”
on the historical changes of regexes in source code and how they are edited
over time.

Most recently, studies of regular expression usage in practice were done
by [Michael IV 2019] and [Donohue 2019]. The authors performed these studies
on a much larger scale compared to the previous ones, surveying close to
300 software engineers from various companies. Similar to earlier studies, the
results from these showed that developers find writing regular expressions hard.
Wang and Stolee proposed the use of test metrics for graph-based coverage
over the DFA representation of regular expressions [Wang and Stolee 2018].
Their findings reported that, although test suites for software projects cover
the source code lines which contain regexes, the test suites provided poor
coverage of the underlying structure of the regexes. They found that the
input strings to the regexes only provided average regex coverage of around
45%. Furthermore, they pointed out that the use of a state-of-the-art input
generation tool, Rex [Veanes et al. 2010], failed at generating diversified inputs
(for the graph representation of the regex) and even generating a large set of
input strings would yield low regex coverage. We believe one reason for the
low average regex coverage is that Rex only generates input strings that are
in the language of the regex.

The results from these studies show that (i) practitioners do not compre-
hend regexes well, (ii) practitioners care little about the performance of the
regexes they write, and (iii) regexes are used in performance-critical applica-
tions. Many of these studies contributed regex corpora which can be used

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. RELATED WORK 30

in future analysis (we use some of these corpora in later chapters) and can
also act as a valuable resource when developing new regex engines and tools.
Because of the abundant evidence showing the importance of regexes and the
lack of understanding from practitioners, tools have been put forward to assist
practitioners with their regexes which we discuss next.

A variety of tools have been developed with the sole purpose of aiding
the process of crafting regular expressions. Some tools provide the user with
a debugging environment, which, given a regular expression, and a string,
identifies which capturing groups will capture what in the string and provide
options such as easily switching between regex flavours. Other tools present
a graphical representation of the regular expression via an automaton. Some
tools, given a regular expression, automatically generate input strings [Kieżun
et al. 2012; Veanes et al. 2010; Larson and Kirk 2016; Møller 2001], while
other tools, given a set of labelled strings, apply some learning algorithm that
generates a regular expression consistent with the strings [Angluin 1987; Li
et al. 2008; Babbar and Singh 2010].

While these tools have demonstrated their viability in practice, their power
is limited by a lack of support for regex features supported by modern match-
ers and by generating only matching strings. One possible way of generating
non-matching input strings for a regex can be attained through regular expres-
sion mutation [Arcaini et al. 2017; 2018]. Some research focuses on mutating
input strings for a regular expression [Larson and Kirk 2016], while others
explore a fault-based approach to generating regular expression tests through
mutation testing techniques [Arcaini et al. 2018]. The latter means that faults
are injected into the regular expression and then strings are generated from
the modified regex.

While the primary focus of this dissertation is not on empirical aspects, we
do attempt to fill some gaps in this area. For example, none of the previous
studies considered regular expressions extended with lookaheads (see Chap-
ter 4), lookbehinds, or atomic subgroups (see Chapter 5). This new empirical
evidence provides additional motivation for our work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Regular Expressions with
Lookahead

4.1 Introduction
As regular expressions paved their way into everything from programming
languages to databases, the standard notion was enriched with several con-
structs. To accommodate this, many implementations have resorted to using
algorithms based on backtracking, which has the weakness that matching takes
exponential time (in the length of the input string) in the worst case unless po-
tentially memory expensive memoization techniques are added to backtracking
matchers [Davis 2019]. Consequently, not only did this create a gap between
regular expressions in theory and practice, but gave rise to security vulnera-
bilities when misused in practice [Staicu and Pradel 2018; Davis et al. 2018].

Arguably, the most common difference between how regular expressions are
used in practice, in contrast to how they have been studied, is the fact that
more often than not regular expressions are used in submatching mode. That
is, programmers use them to find the first submatch, from the left, in an input
string (often iterating this procedure). This point of view is complicated by
the lookahead extension (typically implemented using backtracking), making it
possible to supply a lookahead expression at any point in a regular expression,
describing in addition to the conditions enforced by the regular expression
(without the lookaheads) the constraint that the lookahead expression should
match (or fail to match) a prefix of the remainder of the input string.

It is important to note that once we consider regular expressions in sub-
matching mode, where it might be possible for a regular expression to return
more than one submatch starting at a given position in an input string, that
a disambiguation policy, such as the commonly used greedy (used in Perl-
compatible engines, the standard example being PCRE [Hazel 2015]) or the
less often encountered posix policy [Stallman 2008], be specified in order to
select one of these possible submatches.

31

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 32

The combination of submatching with lookaheads causes regular expres-
sions to have an influence on the possible suffixes beyond the returned sub-
match. Thus, regular expressions with lookaheads describe what gets matched
and what is left over after the submatch. In many regular expression engines,
(?=r) and (?!r) denote the positive and negative lookahead of r, respectively.

Lookaheads are also used in parsing expression grammars (PEGs) [Ford
2004], and in [Chida and Kuramitsu 2017], linear PEGs, a subclass of PEGs
that parse regular languages, is defined, demonstrating a close link between
PEGs and regular expressions with lookaheads (REwLA). Several automata-
based regular expression engines (such as those found in RE2, Rust, and
Golang) do not support lookahead assertions, claiming that they do not sup-
port constructs for which only backtracking solutions are known to exist [Cox
2010]. Although we are not aware of regular expression engines with support
for lookaheads that are not based on a backtracking algorithm, the results
presented here can be directly applied to implement such an engine.

Lookaheads are zero-length assertions (i.e. they do not consume characters
in the input string) that specify what should or should not follow the current
position in the input string. Consider, for example, the regular expression
[0-9]+(?=U). On input 123 the match fails, since 123 is followed by ε and
not the character U. On input 123U we match 123 with remainder U, and on
input 123U12 we match 123 with remainder U12. We thus consider this regular
expression with lookahead U, to describe the language of one or more digits
followed by strings starting with U as lookahead. This concept of describing
what gets matched and what should follow a given match, is formalized in the
notion of a lookahead language.

The anchors ˆ and $ are used to force the regular expression to match from
the beginning and match all the way to the end of the input string, respectively.
We ignore the ˆ anchor, assuming all matches start from the beginning of the
input string instead of skipping a prefix (the shortest possible), i.e. we assume
that all regular expressions begin with the anchor symbol ˆ (which we do
not indicate). The reason for ignoring ˆ follows from the observation that
the submatching behaviour of two regular expressions with lookaheads are
equivalent, whether we check equivalence when both expressions are forced to
match from the beginning of an input string, or both are allowed to skip a
prefix (the shortest possible) before (possibly) succeeding with a sub or full
match. To see this, let E and F be regular expressions not starting with ˆ. If
ˆE and ˆF matches identical prefixes of any string, then E and F will certainly
match identical substrings of any given string and vice versa. But in contrast,
for the anchor $ we have that if E and F denotes ˆ(?=ab)a$ and ˆ(?=ac)a$
respectively, then both expressions match no string, since a$ forces strings that
could be matched to be only the symbol a, whereas the lookaheads require at
least two symbols. However, if E′ and F ′ denote ˆ(?=ab)a and ˆ(?=ac)a
respectively, then E′ matches the first symbol of a string when it is a, but only
when a is directly followed by a suffix starting with a b, whereas F ′ match a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 33

first symbol if it is an a directly followed by a suffix starting with c.
REwLA were originally formalized by Morihita [Morihita 2012], and in the

follow-up [Miyazaki and Minamide 2019] it was shown that a REwLA of size
n can be converted into DFA with at most (22n +1) states, and asymptotically
at least 22Ω(

√
n) states in the worst case. It is interesting to compare DFA

state complexity of REwLA to that of regular expressions that are extended
by intersection and complement, where we have that it is not bounded from
below by an elementary function [Stockmeyer and Meyer 1973].

Our contributions are (i) showing how to translate REwLA into alternat-
ing (and Boolean) automata, and (ii) various state complexity results when
converting REwLA to equivalent DFA, improving results by [Miyazaki and
Minamide 2019] (for all but REwLA of length 1 or 2).

The outline of the chapter is as follows. Next, we introduce the neces-
sary definitions and notation, which is followed by a section describing how to
translate REwLA into alternating automata which get converted into Boolean
automata having at most three more states than the length of the correspond-
ing REwLA. This is followed by Section 4.4, where we give various state
complexity results. After this, we provide some empirical results followed by
our conclusions.

4.2 Preliminaries
Recall by Σ we denote a finite alphabet, ε is the empty string, Σε = Σ ∪ {ε}
and ∣w∣ is the length of w, in particular, ∣ε∣ = 0. We denote the empty set by
∅. For any set A, let 2A be the power set of A.

A lookahead language is a subset of Σ∗×Σ∗, which describes what is matched
and what follows subsequently. For example, the language {(ab, c)} contains
the string “ab”, if it is followed precisely by “c”. Concatenation of lookahead
languages is defined as R ⋅ S = {(xy, z) ∣ (x, yz) ∈ R, (y, z) ∈ S}. It is shown
in [Miyazaki and Minamide 2019] that lookahead languages form a monoid
under concatenation, with unit element I = {ε} ×Σ∗, and that concatenation
for R,S ⊆ I (which is equivalent to intersection in this case) is commutative
and idempotent. The Kleene star operator is defined for lookahead languages
in terms of concatenation and union as usual, with R∗ = ⋃∞

i=0R
i, assuming

R0 = I and Rn+1 = Rn ⋅R.
Next, we define lookahead assertions. As in [Miyazaki and Minamide 2019],

we adopt the notation of PEGs [Ford 2004]. PEGs is a formalism consisting of
a set of rules for recognizing strings in a language, and syntactically they look
similar to context-free grammars, but they have a different interpretation and
are closer to how string recognition tends to be done in practice by a recursive
descent parser. As in PEGs, &R and !R denote positive and negative looka-
heads, respectively. We define the positive lookahead of a lookahead language
R, denoted by &R, as {ε}× {xy ∣ (x, y) ∈ R}. The positive lookahead operator

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 34

satisfies the following relationships: &(&R) = &R, &(R ∪ S) = &R ∪&S, and
if R ⊆ I, then &(R ⋅ S) = R ⋅&S. We define the negative lookahead of a looka-
head language R, denoted as !R, by {ε}×(Σ∗ ∖ {xy ∣ (x, y) ∈ R}). Positive and
negative lookahead operators are related as follows: &R = !(!R).

Definition 4.1. The set of regular expressions with lookaheads over the al-
phabet Σ, denoted as REwLA(Σ) (or simply REwLA if Σ is clear from the
context), is defined inductively as follows, where r1 and r2 denote REwLA
already defined:
(i) ∅, the empty language; (ii) ε, the empty string; (iii) a, for a ∈ Σ; (iv)
(r1 ∣ r2); (v) (r1 ⋅ r2); (vi) (r∗1); (vii) (!r1).

For r ∈ REwLA(Σ), let ∥r∥ denote the number of symbols from Σ that
occur in r. We refer to ∥r∥ as the length of the REwLA r.

Remarks.
1. For r ∈ REwLA, (&r) denotes (!(!r)).
2. Although character classes, for example [A-Z] (denoting any letter in the

uppercase alphabet in the English language) or \d (denoting any digit)
should be considered from a practical point of view, we (beyond in some
examples) leave considerations dealing with large alphabet sizes as future
work, although we do use the metacharacter “.” as an abbreviation for
a1∣⋯∣an, where Σ = {a1, . . . , an}. We should point out that it is easy
to verify that our state complexity results extend to the case where we
allow character classes and count a character class as contributing one
to the length of a REwLA.

3. Regular expressions are defined as usual, i.e. as in the definition above
for REwLA, but without allowing !r1 (and &r). The set of regular
expressions over the alphabet Σ is denoted by Reg(Σ) or simply Reg if
Σ is clear from the context. We thus regard Reg ⊂ REwLA.

4. Regular expressions set in typewriter font are examples of the Java
syntax, which is mostly similar to other libraries. See [Davis et al. 2019]
for an examination of how portable regular expressions are between pro-
gramming languages.

Definition 4.2. The matching semantics of REwLA is defined by the function
B ∶ REwLA Ð→ Σ∗ × Σ∗, which maps REwLA to languages with lookaheads.
The function B is defined inductively as follows:
(i) B(∅) = ∅; (ii) B(ε) = I; (iii) B(a) = {a}×Σ∗; (iv) B((r1 ∣ r2)) = B(r1)∪B(r2);
(v) B((r1 ⋅ r2)) = B(r1) ⋅ B(r2); (vi) B((r∗)) = B(r)∗; (vii) B((!r)) = !B(r).

Example 4.1. In this example we show how to use lookaheads to describe
the intersections of regular languages, by using both Java regular expression
syntax and PEGs notation. The regular expression r given by

(?=.*[a-zA-Z])(?=.*\d)(?=.*[!@#$(),:;]).{8,}$

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 35

can be used to validate passwords (on a web server) that satisfy each of the
following conditions: (i) a password contains at least one letter from [a-zA-Z],
at least one digit, and at least one of the specified special symbols (these three
conditions are validated individually by each of the three lookahead expres-
sions), and (ii) should have a minimum length of eight, as encoded by the
subexpression .{8,}, the only part of the expression not in a lookahead (often
called the “main” part). By making use of PEGs notation, we can write this
regular expression as the REwLA

&(.*[a-zA-Z])&(.*\d)&(.*[!@#$(),:;]).{8,}$

if we extend our REwLA notation to allow the subexpressions [!@#$(),:;]
and .{8,}. By making use of lookahead expressions and preceding these ex-
pressions by .*, we instruct the lookahead expression to match any character
until it starts matching the expressions following the .* expression. Given
that a lookahead expression will only assert conditions and not consume any
characters, the only subexpression in r consuming characters is the “main”
part. All three lookahead expressions and the “main” part of r each describe a
regular language. A password is valid if a prefix of the password is in the lan-
guage described by each of the lookaheads, and if it is matched by the “main”
part of r.

In general, suppose we have two regular expressions r1 and r2, then the
regular expression (?= r1$)(?= r2$).*$ (where the subexpression .* matches
any string), represents the intersection of the languages described by r1 and r2.
One can similarly encode the negation of a (language described by a) regular
expression using a negative lookahead.

Lemma 4.3. For r ∈ REwLA, B((&r)) = &B(r).

Proof. The result follows by noting that &r denotes !(!r), the identity &B(r) =
!(!B(r)) and observing that B(!(!r)) = !(!B(r)).

Definition 4.4. The language of r ∈ REwLA, denoted L(r), is defined as
{x ∣ (x, ε) ∈ B(r)} (which is a regular language).

Note for r, r′ ∈ REwLA, B(r) = B(r′) implies L(r) = L(r′), but the converse
obviously does not hold in general. Also, we refer to B(r) as the lookahead
language of r.

Remark 2. For r ∈ REwLA, we define the following additional iterative op-
erators. The optional match (r?) abbreviates (r ∣ ε), and the positive closure
(r+) abbreviates (rr∗).

The end of string anchor “$” asserts that we are at the end of the input and
can thus only match ε followed by ε. The “$” expression can be represented
by “ !.” and we have that B($) = {ε} × {ε}. Furthermore, B(r$) = L(r) × {ε}.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 36

Next, we define the type of alternating automata (AFA) required for our
purposes. In general, the transition function of an AFA on a given alpha-
bet symbol from a given state, can be an arbitrary Boolean function over
states. Based on our use cases, we consider the following two classes of au-
tomata (with our version of AFA contained in the class of Boolean automata, as
usual, once we apply the ε-removal procedure described later): (i) AFA (with
ε-transitions) having a single initial state and a transition function making use
of Boolean formulas in the transition function which can be represented as a
conjunction or disjunction over states, with all transitions from a given state
making use of either only conjunction or only disjunction, and (ii) Boolean
automata (without ε-transitions) where we replace the initial state by an arbi-
trary Boolean formula, and where we make use of arbitrary Boolean formulas
over Q in the transition function. Recall that we denote by B(Q) the set of
Boolean formulas over Q, inductively defined as usual with negation (“not”),
conjunction (“and”), disjunction (“or”), over Q as variables, plus the constants
true and false, all defined as usual. Let B+(Q) ⊂ B(Q) denote the monotone
(or positive) Boolean functions over Q, i.e. Boolean formulas not making use
of negation. For any Boolean formulas f, g ∈ B(Q) and q ∈ Q let fJq ← gK
denote the formula resulting when replacing all occurrences of q in f with a
copy of the formula g. Our definition of AFA is complicated by the inclusion
of epsilon transitions.

Definition 4.5. An alternating finite automaton (AFA), with Q being the
disjoint union of Q∃ and Q∀, is a tuple A = (Q∃,Q∀,Σ, q0, δ, F), where:
(i) Q∃ is the finite set of existential states ; (ii) Q∀ is the finite set of universal
states ; (iii) Σ is the input alphabet ; (iv) q0 ∈ Q is the initial state; (v) δ ∶
Q ×Σε → 2Q is the transition function; (vi) F ⊆ Q is the set of final states.

For a Boolean automaton the state set is simply Q (there are no distin-
guished existential or universal states), we replace q0 ∈ Q by q′0 ∈ B(Q), and
the transition function δ ∶ Q ×Σε → 2Q by δ′ ∶ Q ×Σ→ B(Q).

To simplify our discussion, we assume that if there is a transition on epsilon
from a given state in an AFA, then there are no transitions on alphabet symbols
from this state.

Next, we define the language accepted by an AFA in terms of accepting
runs. We begin with a preliminary definition to handle ε-transitions.

Definition 4.6. Let A = (Q∃,Q∀,Σ, q0, δ, F) be any AFA. The forall epsilon
closure of a set of states P ⊆ Q, denoted C∀(P), is the smallest set such that
P ⊆ C∀(P) and {q′ ∣ q ∈ C∀(P) ∩ Q∀, (q, ε, q′) ∈ δ} ⊆ C∀(P). Further, the
full epsilon closure of P is the smallest set of sets CF (P) ⊆ 2Q, such that
C∀(P) ∈ CF (P), and for P ′ ∈ CF (P), q ∈ P ′ ∩Q∃, and (q, ε, q′) ∈ δ, we have
((P ′ ∖ {q}) ∪C∀({q′})) ∈ CF (P).

That is, C∀(P) is the set resulting when starting from P and inductively
adding any state reachable on an ε-transition from a ∀-state already in P , while

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 37

CF (P) contains the ∀-closure for every way to take any number (including
zero) of ε-transitions from an ∃-state in a set in CF (P). We denote by CF (P)
the set of non-empty sets obtained by deleting states with epsilon outgoing
transitions from the sets in CF (P). We assume that CF ({q}) /= ∅ for all states
q, to avoid having to define acceptance for the situation of having a state q′
reachable after having read an input word, being such that all states reachable
from q′ on ε-transitions, having (only) epsilon outgoing transitions.

A run of an AFA A = (Q∃,Q∀,Σ, q0, δ, F) on a string w = a1 . . . an is a
sequence of non-empty sets of states Q0,Q′

0, . . . ,Qn,Q′
n ⊆ Q∃ ∪Q∀ which fulfill

the following conditions.
• As a base case Q0 = {q0}.
• For each i the set Q′

i is in the full epsilon closure of Qi, i.e. Q′
i ∈ CF (Qi).

• Finally, Qi+1 corresponds to (one way of) reading the symbol ai+1 when in
the states Q′

i. Specifically, Qi+1 is the smallest set containing the states
dictated by

– if q ∈ Q′
i ∩Q∀ then δ(q, ai+1) ⊆ Qi+1, or

– if q ∈ Q′
i ∩Q∃ then some q′ ∈ δ(q, ai+1) is in Qi+1.

A run Q0,Q′
0, . . . ,Qn,Q′

n is accepting if Q′
n ⊆ F .

We remove ε-transitions from an AFA and convert AFA to Boolean au-
tomata as follows. We begin by removing all states from Q having (only)
epsilon outgoing transitions, replacing δ by δ′ ∶ Q × Σ → B+(Q), and replac-
ing q0 with q′0 ∈ B+(Q). Next, we describe how to obtain q′0 and δ′. For
P ⊆ Q, let C

B

F (P) be the Boolean formula over Q obtained by replacing each
P ′ ∈ CF (P) by the conjunction over the states in P ′, and then taking the
disjunction over all conjuncts obtained for each P ′ ∈ CF (P). We obtain q′0
by taking C

B

F ({q0}). Similarly, δ′(q, a) is the disjunction or conjunction over
C
B

F ({q′}), for all q′ ∈ δ(q, a), depending on if q is an existential or universal
state. Once we have a Boolean automaton with δ′ making use only of pos-
itive Boolean formulas written in disjunctive normal form, we generalize the
definition of a run Q0,Q′

0, . . . ,Qn,Q′
n by making each Qi a formula, and each

Q′
i is a way of choosing a single conjunction from Qi (so Q′

i implies Qi). A
straightforward argument can be used to verify that the accepted language is
not altered when applying the described ε-transition removal procedure.

Acceptance of strings by Boolean automata can also be considered from the
point of view described next. We start with the initial Boolean formula, and
then use the transition function that maps pairs of states and input symbols
to Boolean formulas. As the input is read (from left to right), the automaton
“builds” a Boolean formula, starting with the formula q′0, and on reading an
input symbol a ∈ Σ, replacing every q ∈ Q in the current formula by δ′(q, a),
i.e. the formula f turns into the formula fJ{q ← δ′(q, a) ∣ q ∈ Q}K. The input is
accepted if the formula f constructed on reading the whole input is such that
fJ{q ← true ∣ q ∈ F}KJ{q′ ← false ∣ q′ ∈ (Q∖F)}K evaluates to true (i.e. simplifies

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 38

to true as no variables remain). When converting a Boolean automaton to an
equivalent (minimal) DFA, we identify Boolean formulas with states of the
DFA, with equivalent Boolean formulas (i.e. Boolean formulas defining the
same Boolean function) being identified with the same state. In the case
where we consider only formulas from B+(Q), we thus obtain an upper bound
on the number of states of the equivalent minimal DFA, of D(n) states, where
n is the number of states in the corresponding Boolean automaton, and D(n)
being the nth Dedekind number, since the nth Dedekind number is the number
of monotone Boolean functions on n variables ([Kleitman 1969] and [Sloane
1964]). Note that D(n) < 2n

n for n ≥ 1, with 2n
n being an upper bound on the

number of states in the minimal DFA obtained when converting an arbitrary
Boolean automaton with n states to a DFA.

4.3 Automata Construction for REwLA
In this section, we develop a translation from REwLA to finite automata by
applying a bottom-up technique similar to [Thompson 1968], but producing
an AFA (with “and” and “or” states) as the result. As we make use of standard
Boolean automata and DFA in this section, we need a string representation
of lookahead languages. We thus define three slightly different encodings of
lookaheads as strings.

Definition 4.7. For a lookahead language L over the alphabet Σ, we define
the following string encodings:

• The # string encoding is the string language {u#v ∣ (u, v) ∈ L} where we
assume # ∉ Σ.

• The ∼ string encoding, used in [Miyazaki and Minamide 2019], is the
string language {uṽ1⋯ṽk ∣ (u, v) ∈ L, v = v1⋯vk where vi ∈ Σ for each i}
over the alphabet Σ ∪ Σ̃, where Σ̃ is Σ with each symbol decorated with
a tilde and assumed to be disjoint from Σ.

• The null string encoding is the string language {uv ∣ (u, v) ∈ L}. This
case is discussed in Remark 3.

Example 4.2. Consider the lookahead word (aab, bacb) ∈ L, where L is a
lookahead language over Σ. When using the # string encoding we obtain the
string aab#bacb, the ∼ string encoding gives us the string aabb̃ãc̃b̃, and finally
the null encoding the string aabbacb.

In this section, we construct automata which match the # string encoded
language of a REwLA. As we will see, it is straightforward to convert this to
either of the other two encodings. The automaton constructed to accept the #
string encoding of a language matched by a REwLA will be of the form shown
in Figure 4.1 (when all lookaheads are positive lookaheads). Specifically, the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 39

“main” automaton #
Σ

the “main tail”

#
{#} ∪Σ

lookahead

#
{#} ∪Σ

lookahead

#
{#} ∪Σ

(nested) lookahead

∀

ε

ε

∀

ε

ε

∀

ε

ε

Figure 4.1: The structure of the alternating finite automaton A(r) constructed
from a REwLA r by the procedure described in Section 4.3.

automaton consists of a “main” part and one subautomaton for each looka-
head subexpression. In Figure 4.1, r has three lookaheads, where one is nested
within one of the others. Every ∀ (“and”) state (note that we denote “or” states
as blank circles) has precisely two outgoing edges, both labeled ε. The first
stays inside the current subautomaton and the other is the unique transition
entering the subexpression corresponding to the lookahead. The “main” subau-
tomaton is responsible for matching the part of the expression not contained in
any lookahead, with the addition that where the expression would accept, the
“main” subautomaton instead reads a single # and then reads any #-free suffix
(this part of the “main” subautomaton is called the “main tail”). In contrast,
in the lookaheads every “or”-state, without epsilon outgoing transitions, has a
self-loop labeled # and contain no other #-labeled transitions (i.e. if a looka-
head subautomaton accepts a string w then it also accepts a string v derived
from w by adding and removing any number of instances of the symbol #). As
will be pointed out later in this section, subautomata for negative lookaheads
have a different structure than the lookahead subautomata in Figure 4.1 in
terms of which states are respectively “and” and “or” states, and also in terms
of which states are accepting.

Remark 3. It is important to keep in mind that the real-world use-case will
have no # marker or ∼ string encoding. Rather the expression is matched
against a full string, where the main and lookahead parts are initially undis-
tinguished. This is a problem for [Miyazaki and Minamide 2019], as changing

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 40

the ∼-encoding to a null encoding (by replacing ã by a for a ∈ Σ, on a transi-
tion in the corresponding DFA) makes the DFA constructed non-deterministic,
requiring another round of determinization and can thus only be used to estab-
lish a triple-exponential bound on the state complexity. As our construction
first produces an AFA, one can simply replace the #-labeled transition in the
main tail by an ε-transition (and remove the other #-labeled loops), and in
a practical implementation it will be straightforward to extract a potential #
position from an automaton run.

The null encoding being important in practice, and the ∼-encoding preex-
isting, raises the question of what the motivation for the # encoding is. It is
used here as a stand-in for a finitely decorating transducer; a string transducer
which adds a constant (in our case precisely one) number of symbols to its
output to indicate a simple kind of parse. Specifically, here, the transducer
would take a null-encoded string as input and produce a #-encoded string as
output, adding a single symbol to indicate the end of the main match. Much
of this work overlaps with the idea of captures in regular expressions, in effect
a parse that records which substrings are last matched by a subexpression,
which is well modelled by a finitely decorating transducer, e.g. as in [Berglund
et al. 2018]. Such simple transducers have many attractive properties (draw-
ing upon the theory of transducers with origins [Bojańczyk 2014]) which can
be leveraged for parsing algorithms. While fully developing these ideas are
beyond the scope of this thesis, we work with the # string encoding to make
it possible in the future to incorporate these concepts.

We will from here inductively define the alternating finite automaton that
accepts the string language which is the # encoding of the lookahead language
matched by a given REwLA, by defining the effect each operation has on the
AFA constructed for the subexpressions involved. For any REwLA r let A(r)
denote the AFA constructed for r by this procedure. From here let r1 and r2

be two REwLA for which A(r1) and A(r2) have been inductively constructed,
with the automata being schematically drawn as follows:

r2
#

Σ

A(r2)

r1
#

Σ

A(r1)

Main tails will often be removed when constructing a new automaton from one
or two subautomata, but the newly constructed automaton will always have a
unique main tail.

4.3.1 Terminal symbols

The AFA A(a) for the expression a consisting of a single terminal symbol
a ∈ Σ is constructed as follows. The epsilon transition from the initial state is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 41

included to ensure consistency, i.e. all constructed AFA will have only epsilon
outgoing transitions from their respective initial states.

ε a #
Σ

4.3.2 Union

For any REwLA r1 and r2 the AFA A(r1 ∣ r2) is constructed as follows.

ε

ε

r1

r2

ε

ε

#
Σ

Note here that this is schematically almost the same as union in a Thompson
construction, with the change that the main tail of r1 and r2 is cut off and a
new common main tail is added (keeping the tail unique). Further, remember
that A(r1) and A(r2) may contain lookaheads, which contain final states and
have associated “and” states, but the union is only concerned with the initial
and main tail states.

4.3.3 Concatenation

For any REwLA r1 and r2 the AFA A(r1 ⋅ r2) is constructed as follows.

ε εr1 r2
#

Σ

Thus, we remove the main tail of A(r1) and replace the #-transition in the
main tail of A(r1) with an ε-transition to the initial state of A(r2). Note that
this construction is not applicable to AFA concatenation in general, since we
do nothing to any number of final states which correspond to lookaheads inside
A(r1) and A(r2). The REwLA concatenation definition indeed operates in
this way, adding a suffix language only to the main part of A(r1), and this is
also fortunate, as AFA concatenation in general will in some cases cause an
exponential blowup [Hospodár and Jirásková 2018]!

4.3.4 Kleene closure

Finally, among the classic regular expression operators, for any REwLA r1

the AFA A(r∗1) is constructed as follows.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 42

ε εr1
#

Σ

ε

ε

Thus, we again mimic the Thompson construction and ignore the final states
in lookaheads.

4.3.5 Lookahead

Although it follows from Definition 4.2 and Lemma 4.3 that it is not required
to consider positive lookahead, we discuss this case to simplify the explanation
of the construction of the negative lookahead case. For any REwLA r1 we
construct A(&r1) by building the following AFA.

∀ ε #
Σ

r′1ε

{#} ∪Σ

The r′1 subautomaton is derived from A(r1) by adding a #-labeled self-loop
to each “or”-state which is not a state with epsilon outgoing transitions and
which does not have a #-labeled self-loop, ensuring the invariant noted in
Figure 4.1 that when a lookahead subautomaton accepts a string, it will accept
every string derivable by just adding or removing # symbols. Furthermore,
the #-transition on the main tail in A(r1) is replaced by an ε-transition in
the lookahead subautomaton in A(&r1). The leading initial state is somewhat
extraneous, but ensures all AFA have an “or” state as its initial state.

4.3.6 Negative lookahead

Finally, for any REwLA r1 the automaton A(!r1) is constructed by building
the following AFA.

∀ ε #
Σ

r′′1∀ε

{#} ∪Σ

In this case, r′′1 is the negation of r′1 with r′1 as in the positive lookahead
construction above (i.e. w ∈ L(r′′1) if and only if w ∉ L(r′1)). As is well
known [Chandra et al. 1981] (although this argument should be extended to
also allow for ε-transitions) one can negate the alternating finite automaton

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 43

r′1 in linear time by first making r′1 complete by adding a sink reject state,
and then without adding any additional states or transitions replacing each
“or”-state with an “and”-state, and vice versa, and making each non-final state
final, and vice versa. Note since states in the lookahead of the AFA for A(&r1)
and A(!r1), with a self-loop on {#} ∪ Σ, only have the self-loop as outgoing
transition, it does not matter if we regard these states as universal or exis-
tential.

Theorem 4.1. For any REwLA r we have w ∈ L(A(r)) if and only if w =
u#v for some (u, v) ∈ B(r) (as in Definition 4.2). That is to say, the AFA
construction is correct.

Proof. We prove this by structural induction on the expression r, but rather
than enumerate every case (as they are very similar) we demonstrate some
key cases and leave the remainder as an exercise to the reader. Note that
A(r) accepts only strings with precisely one #, as the “main” part accepts
only such strings (and is in a logical conjunction, i.e. a series of “ands”, with
the lookahead parts), and specifically that all the lookahead parts do not care
about # symbols, staying in the same state (after possibly taking ε-transitions)
upon reading one.

Start by noting that B(a) = {a} × Σ∗, and that A(a) (as shown in the
“terminal symbol” case) accepts precisely this language (by reading a, reading
#, then looping on Σ in an accepting state).

Next, we consider the lookahead case. By definition B(&r1) = {(ε, xy) ∣
(x, y) ∈ B(r1)}, so we need to show that L(A(&r)) = {#xy ∣ x#y ∈ L(A(r1))}.
The lookahead construction does precisely this:

1. If x#y is accepted by A(r1) then the new “main” part in A(&r1) matches
#Σ∗ and the new lookahead will match #xy, not caring about the marker
moving (as lookaheads by construction do not “care” about the # symbol
at all).

2. In the other direction, if A(&r1) matches #x (note that the # is always
leading by construction) then A(r1) matches y#z for some yz = x. This
is the case as the lookahead subautomaton in A(&r1) is A(r1) made not
to care about # symbols.

As a final example case, we consider concatenation. By definition, if
(x, yz) ∈ B(r1) and (y, z) ∈ B(r2) then (xy, z) ∈ B(r1 ⋅ r2). As such, we need
to prove that if x#yz ∈ A(r1) and y#z ∈ A(r2) then xy#z ∈ A(r1 ⋅ r2). This is
the case as x#yz ∈ A(r1) means that A(r1) reaches the main tail after reading
x, and the concatenation construction attaches this state (of A(r1) before the
main tail) to the initial state in A(r2), which then goes on to reach its main tail
after y, read a # and accept z looping on its final state. From the perspective
of the lookahead subautomata in A(r1) and A(r2), they accept the same suffix
pertaining to xyz (and yz) as before the concatenation, ignoring the fact that
has moved, since lookaheads ignore all # markers by construction.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 44

The arguments for the remaining cases (union and negative lookahead)
follow the same structure and can be easily derived by the reader.

4.4 State Complexity Considerations
The alternating finite automaton construction of Section 4.3 establishes upper
bounds on the state complexity of REwLA, depending on the string encoding
used (recall Definition 4.7). By using this construction, we begin by consider-
ing the number of states required in Boolean automata (obtained by removing
states with epsilon outgoing transitions from A(r)) for REwLA r, before mov-
ing on to state complexity for DFA constructed from REwLA (obtained by
converting Boolean automata to DFA).

Theorem 4.2. A Boolean automaton, using only monotone Boolean functions
in its transition function and accepting the language of a REwLA r, can be
constructed with at most ∥r∥+1 states for the null string encoding, and at most
∥r∥ + 2 and ∥r∥ + 3 states respectively for the ∼ and # string encodings.

Proof. First, we give an argument for the # string encoding case. We argue
inductively over the various constructions given in the previous section. The
induction assumption is that in addition to ∥r∥ states, we need the following
three special states: (i) a non-accepting state having only a # outgoing tran-
sition (to a state of type (ii)), (ii) an accepting state having a self-loop on Σ,
and (iii) possibly an accepting state having a self-loop on {#} ∪Σ.

We begin by making sure the statement holds for the base case where we
consider the AFA for a REwLA consisting of a single alphabet symbol (with no
lookaheads), and then remove the initial state, since it has only an epsilon out-
going transition. Thus, for the base case, we need a single state and two more
states (of types (i) and (ii) respectively) for the main tail. Next we consider
the inductive case where a Boolean automaton is constructed for a REwLA
of a union, concatenation, Kleene closure, lookahead or negative lookahead,
given Boolean automata are already constructed for the subexpressions used
by any of these operators, and assuming that the Boolean automata for these
subexpressions satisfy the inductive hypothesis. After applying the construc-
tions outlined in the previous section for the various operators, we remove
states with epsilon outgoing transitions. Note that a non-accepting state with
a self-loop on {#} ∪Σ, is a sink reject state, and can simply be removed with
all transitions going to it. Also, states (i) and (ii) are required for the main
tail, and state (iii) in the construction of lookaheads. All states of type (iii)
can be merged into a single state of this type, and there will be only one state
of each of the types (i) and (ii).

In using the constructed Boolean automaton for the # string encoding, we
construct the Boolean automaton for the null string encoding by using the
automaton for the # string encoding, replacing # on transitions by ε (except

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 45

#-loops which we simply remove), and observing that this will make it possible
to remove state (i) and merge states (ii) and (iii). A similar procedure is used
for the ∼ string encoding, except that we add to transitions in lookaheads and
negative lookaheads also ∼ versions of alphabet symbols, which will have the
effect that we can no longer merge states (ii) and (iii) as in the null string
encoding case, since where the one will have a loop on Σ, the other will have
a loop on Σ ∪ Σ̃.

It is interesting to observe that in contrast to regular expressions with
intersection and negation, REwLA do not suffer from non-elementary state
complexity when converted to DFA, although they do contain a form of inter-
section and negation.

Our upper bound in the next theorem, for the ∼ string encoding case should
be compared to the upper bound of 22∥r∥ +1, given in [Miyazaki and Minamide
2019]. Recall that D(n) denotes the n-th Dedekind number, with D(n) < 22n

for n ≥ 1. The value of D(n) is only known for 0 ≤ n ≤ 8 [Sloane 1964],
and using these values for D(2), D(3) and D(4), we obtain that the bound
by [Miyazaki and Minamide 2019] is better for ∥r∥ = 1 or 2, where ours (stated
in the next theorem) is better from 3 onwards. This can be seen by noting that
(223 + 1) > D(4) and observing that from the definition of Dedekind numbers
follows that D(n + 1) ≤ D(n) ⋅ D(n) (whereas 22n+1 = 22n ⋅ 22n), since we can
obtain all monotone Boolean functions on (n+1) variables from the product of
the monotone Boolean functions that always exclude the (n+1)st variable from
the sets of states in its domain with those monotone Boolean functions that
always include it in its sets of states. Also, when considering the number of
states for the three types of non-equivalent REwLA of size 1, i.e. a, !a and &a,
we obtain that the optimal upper bound for ∥r∥ = 1 for the null, ∼ and # string
encodings are 3, 3 and 4 respectively, where our bounds in the next theorem
are 3, 6 and 20 respectively. Using these precise bounds for the case ∥r∥ = 1
in combination with the argument used in the proof of the next theorem, we
obtain that the bound in Theorem 4.2 is tight for the null encoding case, but
it could be off by 1 in the ∼ and # cases.

Theorem 4.3. A minimal (complete) DFA accepting the encoding of the looka-
head language matched by a REwLA r has a number of states bounded from
above as follows, depending on the string encoding used: (i) D(∥r∥) for null,
(ii) D(∥r∥ + 1) for ∼, and finally, (iii) D(∥r∥ + 2) for the # string encoding.

Proof. We apply to the result of the previous theorem the observation that
when converting Boolean automata to equivalent DFA, we may regard the
states of the DFA as Boolean formulas over the states of the original Boolean
automaton (with equivalent Boolean formulas being identified). We can ignore
a sink accept state in the Boolean automaton, since it corresponds to the
Boolean formula True (and similarly for a sink reject state, although sink
reject states are already excluded from the result of our previous theorem).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 46

Furthermore, since we do not make use of negation in the transition functions
of our Boolean automata, we have Dedekind numbers (instead of 22∥r∥) in our
bounds.

Remark 4. In [Miyazaki and Minamide 2019] an asymptotic lower bound for
DFA state complexity of 22Ω(

√

∥r∥) when converting REwLA to DFA, when using
the ∼ string encoding, is given. The class of examples constructed (in their
Section 3.6) has no negative lookaheads, so it also provides an asymptotic lower
bound for the case without negative lookaheads. While their lower bound class
of examples is constructed for the ∼ string encoding, the construction forces
all lookahead words (u, v) to have v = ε, so the construction works the same
for the null string encoding and requires one additional state for the # string
encoding. We offer no improvement on this lower bound here.

To wrap-up this section, we parameterize REwLA over the non-negative
integers. Our next definition is inspired by the definitions and results obtained
in [Keeler and Salomaa 2020]. This definition and the following theorem also
generalizes the reason for why better DFA state complexity is possible for
the password example from the introduction, compared to the general case as
stated in Theorem 4.3. We state the next definition and final theorem of this
section, only for the # string encoding case. The fact that the next definition
only applies to the # string encoding case follows from the fact that A(r)
accepts the # string encoding of tuples in B(r).

Definition 4.8. A REwLA r is m-universally bounded if every input string
accepted by A(r) can be accepted by a run Q0,Q′

0, . . . ,Qn,Q′
n such that we

have max0≤i≤n ∣Q′
i∣ ≤m.

That is, we can check string acceptance while keeping track of at most m
states after epsilon closure in each intermediary step (which means A(r) can
be implemented so that it nondeterministically rejects any run which features
more than m states without this changing the accepted language).

Note that all REwLA r are m-universally bounded with m equal to the
number of states in A(r) not having epsilon outgoing transitions.

Example 4.3. The password example in the introduction, here in PEGs
notation,

&(.*[a-zA-Z])&(.*\d)&(.*[!@#$(),:;]).{8,}$

is 4-universally bounded, given that this REwLA begins with three positive
lookaheads, followed by a main part, and thus at any step a run will contain (at
most) one state from each of the three positive lookaheads and one state from
the main part. In general, a REwLA with k positive lookaheads, with none
of the lookaheads in a Kleene star, will be (k + 1)-universally bounded, since
at any step a run will contain at most one state from each of the k lookaheads
and one state from the main part.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 47

In the final result of this section, we state the DFA state complexity for
m-universally bounded REwLA.

Theorem 4.4. A minimal (complete) DFA accepting the # string encoding of
an m-universally bounded REwLA r with k lookaheads, has a number of states
bounded from above by 2∑

m
i=1 (

∥r∥+k+2
i
).

Proof. This result follow from the definition of m-universally boundedness and
the argument used in the proof of Theorem 4.2, to obtain that we need (∥r∥+
k + 2) states in A(r) without epsilon outgoing transitions, if we do not merge
the accept states in lookaheads with loops on Σ∪{#}, as is done in the proof of
Theorem 4.2. Thus, for NFA state complexity, at most ∑m

i=1 (∥r∥+k+2
i

) states is
required, since we have (∥r∥+k+2

i
) number of choices for a set of i states at each

step of a run, and therefore the DFA state complexity is at most 2∑
m
i=1 (

∥r∥+k+2
i
)

states.

4.5 Experimental Results
We implemented (i) our alternating (and Boolean) automata models, (ii) our
algorithm converting a REwLA to an AFA, and (iii) our epsilon removal pro-
cedure for transforming an AFA with ε-transitions to a Boolean automaton
without ε-transitions, by extending an existing Java symbolic automata pack-
age [D’Antoni 2015]. Moreover, we implemented a low-level regex engine in C
that follow Thompson’s algorithm, but uses the strategy of implementing a vir-
tual machine that executes a regex that has been compiled into text-matching
bytecodes [Cox 2009]. Support for m-universally bounded REwLA was added
to this engine, and the entire Perl regex engine test suite was used to validate
that our implementation is working as intended. Table 7.1 contain the links
to these repositories.

4.5.1 Empirical Results

In this short section, we provide an overview of how often the features studied
in this chapter are used by developers. We used the polyglot regular expression
(with lookahead) corpus of [Davis et al. 2019], consisting of 537,806 REwLA
from 8 different programming languages. Of the 8 programming languages,
6 support lookaheads. Of the 505,455 REwLA that belong to programming
languages that support lookaheads, positive lookaheads occurred in 1.28% of
REwLA, while negative lookaheads occurred in 1.23% of the REwLA. Of
these 12,665 REwLA that contain lookaheads, lookaheads used in a nested
fashion occurred in only 1.38% of them. Furthermore, we found that in 92%
of these 12,665 REwLA, lookaheads were not contained in Kleene starred
(or plus) subexpressions (empirically motivating the m-universally bounded
restriction studied at the end of Section 4.4).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REGULAR EXPRESSIONS WITH LOOKAHEAD 48

As far as we know, every previous empirical regular expression study solely
focused on regular expressions in the context of full matching. To better
understand how regular expression libraries are used and whether substring
matching is used in practice as often as we think, we analyzed the usage of the
java.util.regex package of 68,164 Java projects obtained through RepoRe-
aper, which provides a curated list of GitHub projects. Of the 68,164 projects,
the java.util.regex package was used in 13,608 of them. Of the 39,264 reg-
ular expressions analyzed, 27.66% were used in the functions String.matches
and Pattern.matches, that perform complete matching. We found that 11%
of the REwLA that were compiled using Pattern.compile and then used to
find a submatch, were enclosed in the full matching anchors (ˆ..$). Whether
this was intentional or not is obviously unknown. Furthermore, we found that
47% of the REwLA were used for submatching and that for 11.22% of these,
repeated submatching was performed.

4.6 Conclusion
We showed how to translate REwLA into AFA with ε-transitions followed by
an epsilon removal procedure to obtain Boolean automata without ε-transitions
from the AFA. The Boolean automata consist of a number of states that is
at most 1, 2, or 3 more, depending on the string encoding used, than the
length of the corresponding REwLA. Our subclass of Boolean (and alternat-
ing) automata, in contrast to Boolean automata in general, behaves well under
our definition of concatenation (that is, the size of the concatenated Boolean
automaton is the sum of the sizes of the two individual Boolean automata).

For future work, we will investigate REwLA in the context of large al-
phabet sizes, in other words, showing how to extend REwLA to the symbolic
case, and also consider additional occurring features found in regular expres-
sion matching libraries (in conjunction with lookaheads), such as lookbehinds.
Furthermore, we will consider the addition of the greedy disambiguation policy
to REwLA, which at a minimum will partition a lookahead string matched by
a REwLA uniquely in its main and lookahead parts. Our state complexity
result when converting REwLA into DFA, as stated in Theorem 4.3, deserves
further investigation to see if we can improve on these bounds. Additionally,
if we could remove one state from the Boolean state complexity result of The-
orem 4.2 in the case of the ∼ string encoding (and perhaps also in the # string
encoding case), then after using the result from Theorem 4.2 in the proof of
Theorem 4.3, we will end up with a result in Theorem 4.3 that is better than
the corresponding result from [Miyazaki and Minamide 2019], even in the two
remaining cases where ∥r∥ = 1 or 2. Of course, these two cases can be handled
separately in an exhaustive way by considering all possible REwLA of lengths
1 and 2. Finally, we would like to focus in more detail on the investigation
started in the last part of Section 4.4 on m-universally bounded REwLA.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Atomic Subgroups and
Submatching

This chapter aims to motivate the utility of atomic operators and show how
to add them to REwLA. After this, we discuss how to translate a subclass
of REwLA with atomic operators, into REwLA (without atomic operators).
This translation is motivated by noting that not all PCRE-based engines pro-
vide support for atomic operators, and even though it is possible to mimic
the atomic operator if the engine supports backreferences [Friedl 2006], using
regular (or lookahead) expressions containing backreferences for matching can
be computationally expensive (unless P equals NP).

We also discuss the submatch behaviour of regular expressions and looka-
head expressions in general and argue why two lookahead expressions are
equivalent in terms of how they perform submatching, if by adding the atomic
operator to the front of each of the two expressions (i.e. changing both ex-
pressions to a single atomic group), we obtain lookahead language equivalent
expressions.

5.1 Introduction
Some regular expression libraries that implement a Spencer-style engine, such
as those found in Java, C#, and Ruby, provide atomic subgroups to help prevent
excessive backtracking. The engine will not reconsider choices made within the
atomic subgroup once it starts matching the expression that follows the group.
The engine may reconsider the choices made before entering the atomic sub-
group, in which case the atomic subgroup matching will also be reconsidered.

The primary reason for using the atomic operator in practice is to reduce
ambiguity and prevent catastrophic backtracking, which can cause severe per-
formance issues in Spencer-style engines. Consider, for example, a (simplified)
regular expression used to validate email addresses:

[\d\w]+([-\w.]*[\d\w])*@(([-\w.]*[\d\w])*)+[a-z]{2,}

49

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 50

The underlined subexpression (repeated again later in the regular expres-
sion) can be considered potentially harmful. The subexpression is (exponen-
tially) ambiguous on input strings from \w⋯\w, since both collections of char-
acter classes, [-\w.] and [\d\w], contains \w (which is shorthand for match-
ing “word characters”, including e.g. a through z). For example, the input
string “ab” can be matched in more than one way by the underlined subex-
pression. By inserting the atomic operator in the subexpression, changing it to
(?>([-\w.]*[\d\w])*), the engine is not allowed to backtrack back into this
subexpression. It is important to note that the language of the entire regular
expression is not reduced (which often happens when some subexpressions are
made atomic), since the next input symbol to read is “@”, which is not a letter
in any string matched by the subexpression.

5.2 Preliminaries
Definition 5.1. The set of atomic REwLA (aREwLA) over Σ is defined
as the set of REwLA in Definition 4.1, with the additional rule that if r ∈
aREwLA, then we also have (▷r) ∈ aREwLA. The subexpression (▷r) is
referred to as an atomic subgroup (commonly denoted as (?>r) in regular
expression libraries).

For classical regular expressions (and REwLA) the (lookahead) language
being accepted can be defined inductively in terms of operations on the lan-
guages accepted by the subexpressions, but this is not the case for aREwLA.
Atomic subgroups force us to consider the ordering defined by a PCRE matcher
on lookahead words (w1,w2), with w1w2 = w for a fixed w. In [Berglund
et al. 2017] the semantics of atomic groups were formalised by analyzing the
java.util.regex library. Next, we generalise this formalisation to lookahead
expressions.

Definition 5.2. For an aREwLA r, let r′ be the aREwLA obtained from r
with lookahead subexpressions deleted, and r′′ the REwLA obtained from r
with atomic operators deleted (i.e. inductively replace each (▷s) subexpres-
sion with just s). For a string w, let B(r′′,w) = (w1,w′

1), . . . , (wk,w′
k) be the

lookahead words in B(r′′) with w = wiw′
i. We use r′ to define inductively (on

the structure of r′) an (ordered) sequence m′(r′,w) of lookahead words of the
form (v, v′) with vv′ = w and let m(r,w) be m′(r′,w) modified by deleting
lookahead words not in B(r′′,w).

1. m′(ε,w) = (ε,w), the list consisting of a single element and with the
empty string as main match;

2. m′(α,w) = (α,α∖w) if α ∈ Σ and w starts with α, otherwisem′(α,w) = ∅;
3. m′(s ∣ t,w) = dedup(m′(s,w),m′(t,w)), the concatenation of the two

lists deduplicated;

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 51

4. m′(s∗,w) = dedup(v1σ1, v2σ2, . . . , vnσn, (ε,w)) if m′(s,w) = v1, . . . , vn,
with vi = (v′i, v′′i), and for each i, σi = m′(s∗, v′i ∖ w) if vi ≠ (ε,w), and
σi = (ε,w) otherwise, and viσi is the concatenation of the lookahead word
vi with the sequence of lookahead words σi;

5. m′(s ⋅ t,w) = dedup(v1m′(t, v′1∖w), . . . , vnm′(t, v′n∖w)) where m′(s,w) =
v1, . . . , vn, vi = (v′i, v′′i), and vim′(t, v′i ∖ w) is the concatenation of the
lookahead word vi with the sequence of lookahead words m′(t, v′i ∖w);

6. m′(▷s,w) = v1 if m′(s,w) /= ∅ and equal to v1, . . . , vn, otherwise
m′(▷s,w) = ∅.

The lookahead language matched by r is defined to be B(r) = {(wi,w′
i) ∣

(wi,w′
i) is in m(r,w) for w ∈ Σ∗} and the language, matched by r, is L(r) =

{v ∣ (v, ε) ∈ B(r)}.

The above definition was derived by ensuring that it agrees, in the case
of regular expressions with atomic operators, with the definition provided
in [Berglund et al. 2017]. For the more general case where lookaheads are
present in an expression, the logic was used that the definition should be ex-
tended by filtering out matches prohibited by lookaheads. To experimentally
validate Definition 5.2 we created an implementation computing m(r,w) for
any r ∈ aREwLA and string w. This was tested against Java by compar-
ing (i) with the full match case, that is, verifying that (wi, ε) ∈m(r$,w) if and
only if r$ matches w in Java, and (ii) comparing the first submatch, which is
done by comparing the prefix of w matched by r in Java to the first component
of the first lookahead word in m(r,w). A test suite consisting of 40 aREwLA
and 117 input strings were constructed. As an additional sanity check, we gen-
erated 1,508,593 aREwLA with Σ = {a, b, c}. All strings w ∈ Σ∗ with ∣w∣ ≤ 9
were tested against all the generated aREwLA. We found no discrepancies
between Java and our definition.

Example 5.1. In this example, we illustrate Definition 5.2. Consider the
following three aREwLA:

(1) r1 = (▷(a|ab|abb)); (2) r2 = (▷(&ab+)(a|ab|abb)); and (3) r3 =
(▷(&ab+$)(a|ab|abb)$). The first aREwLA is in fact only a regular ex-
pression (with no lookaheads) and L(r1) = {a}, indicating for example that
(a|ab|abb) will return a as submatch on input abb. Also, B(r1) = {(a,w) ∣
w ∈ Σ∗}, thus (a|ab|abb) will do a submatch on any input string starting with
a. For r2, we have L(r1) = L(r2), but B(r2) = {(a,w1w2) ∣ w1 ∈ L(b+),w2 ∈ Σ∗}.
Also r3, by having a $ at the end of the lookahead and the lookahead thus hav-
ing to perform its match only on the main part of the input, have L(r3) = {ab}
and B(r3) = {(ab, ε)}.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 52

5.3 Submatch Considerations
In cases where a PCRE matcher divides an input string w in more than one
way as (w1,w2) with w = w1w2 (when matching with a lookahead expression
r), PCRE semantics (defined in (1)–(5) in Definition 5.2 is used to select one
of these possible ways. Thus, for r ∈ aREwLA and w ∈ Σ∗, if some (w1,w2)
with w = w1w2 is in B(r), then a PCRE matcher will divide w as (w1,w2) with
(w1,w2) the unique element in B(▷r) with w = w1w2. We thus obtain the
following definition (also illustrated by examples given later in this section).

Definition 5.3. Two lookahead expressions r and s are submatch equivalent
if B(▷r) = B(▷s).

From Lemma 6 in [Berglund et al. 2017], we have that if r is a regu-
lar expression of size ∣r∣ with k atomic subgroups, then we can construct an
equivalent NFA A of size 2O((k+1)∣r∣). Thus, since NFA equivalence is PSPACE-
complete, we can decide submatch equivalence for two regular expressions in
EXPSPACE. A precise analysis of this complexity bound and an algorithm to
decide submatch equivalence for lookahead expressions, in general, is left as
future work.

Remark 5. If a regular expression library does not support atomic grouping,
but supports: (i) backreferences, and (ii) positive lookaheads with support for
capturing within the lookaheads, then we can mimic atomic grouping with the
regular expression (?=(regex))\1, where \1 is the backreference that refers
back to the match made by the lookahead assertion (?=(regex)).

In practice, the primary reason for using regular (or lookahead) expressions
is to find substring matches in text. The matcher does this by finding the
left-most longest substring which matches the expression. Given two regular
(or lookahead) expressions r1 and r2, we might have that L(r1) = L(r2) (or
B(r1) = B(r2)), but this does not necessarily imply that r1 and r2 are equivalent
(in terms of behaviour) when searching a string for submatches. Furthermore,
if we want to test two lookahead expressions for submatch equivalence, we also
have to take into account that the lookaheads potentially match beyond the
returned submatch.

At this point, it is instructive to turn to examples to show the difference be-
tween sub and full matching. First, we describe the notion of capturing, which
a matcher can use to report which substring was matched by which group.
For a regular (or lookahead) expression r and a matcher that supports captur-
ing, we work under the assumption that all opening parentheses are indexed
from 1 onward, from left to right, with the corresponding closing parentheses
indexed similarly. We assume that the matcher will replace r by (0r)0, prior
to starting the matching procedure. Suppose we match (aa)(a?)(b) with the
input string “aab”. This corresponds to the match [0[1aa]1[2]2[3b]3]0. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 53

notation indicates that group 1 matched the substring “aa”, group 2 matched
ε, and group 3 matched “b”.

Example 5.2.
(a) Consider matching the input string w = “aab” with r = (1a*)1(2ab)*2(3b)3.

Matching w with r gives us the full match f0 = [1aa]1[2]2[3b]3 and the
submatch s0 = [1aa]1[2]2[3b]3. However, now consider matching w =
“aabb” with r, then we get the full match f1 = [1a]1[2ab]2[3b]3 and
the submatch s1 = [1aa]1[2]2[3b]3. During substring matching, group 1
consumes all the “a” characters in our input string, and group 2 can
never have a successful local match since the remainder of the input
available for group 2 to match will never start with the character “a”.

(b) Given r1 = abb|a*(ab)*b and r2 = a*(ab)*b, r1 and r2 are equivalent
when doing full matching, but not equivalent in submatching mode. This
can be seen by noting that abb ∈ L(▷r1), but abb /∈ L(▷r2).

Let r be a lookahead expression and consider ((.∗?)(▷r))∗(.∗). We assume
that matching returns all capturing information of the subexpressions (.∗?),
(▷r), and (.∗), where ∗? denotes the lazy Kleene star, i.e. (.∗?) consumes as
few characters as possible to still ensure an overall match (if an overall match is
indeed possible). Also, as is the case with PCRE matchers, assume the Kleene
star in the subexpression ((.∗?)(▷r))∗ is greedy, i.e. it gets applied as many
times as possible. Denote by Ls(r) the language of ((.∗?)(▷r))∗(.∗), with
capturing information included. We define Ls(r) as the submatch language of
r. Alternatively, we can also repeatedly do a submatch with r, which will be
equivalent to our definition of Ls(r).

Next, we propose two more definitions for a submatch language. Let Ls,1(r)
denote the language of (.∗?)(▷r)(.∗), again with capturing information in-
cluded. The language Ls,1(r) encodes a single submatch, instead of repeated
submatching as in Ls(r). Notice that this definition takes into account the
effect of positive and negative lookaheads matching beyond the returned sub-
match of r, which is encoded in the capture of the subexpression (.∗). Next,
we denote by Ls,1 the language of (▷r)(.∗), again with capturing information
included. In Ls,1 we ignore the prefix, present in strings in Ls,1, that should
first be consumed before matching with r. Using the definition of submatch
equivalent lookahead expressions and the three proposed definitions for the
submatch language of a lookahead expression, we obtain the following result.

Corollary 5.1. Given two lookahead expressions r1 and r2 with a PCRE dis-
ambiguation policy, then r1 and r2 are submatch equivalent if any of the fol-
lowing equivalent conditions hold:
(i) Ls(r1) = Ls(r2); (ii) Ls,1(r1) = Ls,1(r2); (iii) Ls,1(r1) = Ls,1(r2).

So far, when discussing submatching, we assumed that we are working
within the context of a matcher that follows a PCRE disambiguation policy.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 54

Amatcher can instead opt to follow the policy described in the posix standard,
where the matcher favours a leftmost-longest match. Submatch equivalence
depends on whether PCRE or posix disambiguation is used. While fully
investigating submatch equivalence in the context of posix disambiguation is
left for future work, we provide an example below to showcase the differences
between PCRE and posix semantics.

Example 5.3.
(a) Consider matching the input string w = “ababa” with r = (1aba|a*b)*1.

Matching w with r using PCRE semantics gives the submatch s0 =
[0[1aba]1]0 (since preference is given to the left-most subexpression of
an “or” in the case of PCRE), while following posix semantics gives
the submatch s1 = [0[1ab]1[1aba]1]0 (since this is the longest possible
submatch).

(b) Let r1 = (1a|ab)1(2aba)*2 and r2 = (1ab|a)1(2aba)*2. Given the input
string w = “ababa”, matching w with r1 using PCRE semantics gives the
submatch s0 = [0[1a]1]0, while matching with r2 using PCRE semantics
gives the submatch s1 = [0[1ab]1[2aba]2]0. However, when matching
w using posix disambiguation, both r1 and r2 give the submatch s2 =
[0[1ab]1[2aba]2]0. We have that r1 and r2 are submatch equivalent in
the context of posix semantics, but not in the context of PCRE (i.e. the
“or” operator is commutative for posix, but not for PCRE).

5.4 Translating aREwLA into REwLA
The next four definitions, culminating in Definition 5.7, are used to translate
regular expressions containing the atomic operator, but not in a nested fashion
(denoted as aReg′), into REwLA. The more technical challenge of translating
arbitrary aREwLA into REwLA, is left for future work.

Definition 5.4. Let φr ∶ sub(r)→ {true, false} map subexpressions of a regular
expression r, sub(r), to a boolean value (which indicates if a subexpression is
a right-most subexpression of r). We define φr as follows:

φr(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φr(e∗) if e∗ is a subexpression of r;
φr(e ∣ f) if e ∣ f is a subexpression of r;
φr(f ∣ e) if f ∣ e is a subexpression of r;
φr(f ⋅ e) if f ⋅ e is a subexpression of r;
false if e ⋅ f is a subexpression of r;
true if e = r.

Definition 5.5. Let νr ∶ sub(r)→ Reg, referred to as the follow function, map
subexpressions of a regular expression r to regular expressions. We define νr

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 55

as follows:

νr(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if φr(e) = true;
νr(e∗) if e∗ is a subexpression of r;
νr(e ∣ f) if e ∣ f is a subexpression of r;
νr(f ∣ e) if f ∣ e is a subexpression of r;
νr(f ⋅ e) if f ⋅ e is a subexpression of r;
f ⋅ νr(f) if e ⋅ f is a subexpression of r.

The next definition is the main building block for the function T in Defi-
nition 5.7 used for translating aReg′ to equivalent REwLA.

Definition 5.6. We define τ ∶ Reg → REwLA, referred to as the translation
function, inductively as follows:

• τ(∅) = ∅;
• τ(ε) = ε;
• τ(α) = α, for α ∈ Σ;

• τ(e ⋅ f) = τ(e) ⋅ τ(f);
• τ(e∗) = τ(e)∗⋅ !(e ⋅ νr(e∗));
• τ(e ∣ f) = τ(e) ∣ !(e ⋅νr(e)) ⋅ τ(f).

The intuition encoded in the next definition is illustrated in the example
following the definition.

Definition 5.7. Define T ∶ aReg′ → REwLA, as τ on atomic subgroups and
the identity function on the remainder of the expression.

Example 5.4.
(a) Let r = a*(abb|b), then

T (▷r) = τ(r) = τ(a*) ⋅ τ(abb|b)
= a*!(a ⋅ νr(a*)) ⋅ (abb|!(abb ⋅ νr(abb)) ⋅ τ(b))
= a*!(a(abb|b))(abb|!(abb)b)

Note that the last expression can be simplified to a*b and thus abb ∈ L(r),
but abb ∉ L(τ(▷r)). This corresponds to using r in submatching mode
on any input string starting with, for example the prefix abb, and then
returning only the substring ab as submatch.

(b) Let r = a*(▷bc|b)c, then

T (r) = a* ⋅ τ((▷bc|b)) ⋅ c
= a*(bc|!(bc)b)c

Note that L(r) = L(T (r)) = a*bcc.

Theorem 5.1. For r ∈ aReg′, T (r) ∈ REwLA with L(r) = L(T (r)).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 56

Proof. The result follows by using the definition of the atomic operator (for
regular expressions) and observing that T is defined by rewriting r in such
a way that for atomic groups, the second operator in a union can not be
taken if the first can be used to match a prefix of the remainder of the input,
and similarly for a Kleene starred subexpression, the subexpression following
the Kleene starred subexpression can not be used if the subexpression that is
starred can be used another time while still matching a prefix of the remainder
of the input.

Although each union or star inside an atomic group will add a negative
lookahead at most the size of the original regular expression when using T , the
increase in size from r to T (r) for small atomic groups is not so excessive in
nature to render T of no practical use (see Section 5.5). Additionally, one can
argue that T can also be applied to scenarios where the increase in size from
r to T (r) is insignificant.

In practice, developers shy away from using atomic operators (see Sec-
tion 5.5), which can either mean (i) they do not care about the performance
of their regular expressions, or (ii) when they try to use atomic operators they
get unexpected semantics (when some subexpressions are made atomic the
language of the entire regular expression can be reduced) and strings that the
developer intended to be matched by the regular expression are not matched.

Taking it a step further, one can consider the automatic addition of atomic
operators to regular expressions. In a recent blog post [Taub 2020] regarding
regular expression performance in the .NET 5 Framework, it is revealed that
the engine will now attempt to add atomic operators where it can determine
that it will not make a semantic difference. It only does this for a few cases
where the next node in the parse tree does not match anything that the current
node matches, and “calls to action” the improvement of automatic addition of
atomic groups for cases such as the Kleene star and union, which should be
achievable via the use of T .

5.5 Experimental Results
We implemented our algorithm for translating atomic regular expressions with-
out nested atomic operators to REwLA in the same symbolic automaton
package [D’Antoni 2015] as the algorithms in Chapter 4. Testing regular ex-
pressions for submatch equivalence was done by adding an atomic operator
to the front of regular expressions (that is, making the complete regular ex-
pression a single atomic group), converting these expressions to REwLA, and
finally constructing AFA for these REwLA and checking the equivalence of
the AFA using an algorithm based on bisimulation up to congruence [D’Antoni
et al. 2018], which is included in the automaton package. See Table 7.1 for a
link to the implementation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ATOMIC SUBGROUPS AND SUBMATCHING 57

Similar to Section 4.5, we provide a brief overview of how the features
studied in this chapter are used by developers. We used the polyglot regular
expression (with lookahead and atomic groups) corpus of [Davis et al. 2019],
consisting of 537,806 aREwLA from 8 different programming languages. Of
the 8 programming languages, 4 support atomic subgroups. Surprisingly, of
the 313,771 aREwLA that can possibly contain atomic groups (i.e. aREwLA
in programming languages supporting atomic groups), they only occurred in
0.09% of them, possibly supporting prior research showing that developers do
not care much about the performance of their aREwLA.

With regard to the REwLA that contain atomic groups, 1 in every 3 con-
tain nested atomic groups. However, for 78% of these REwLA, every subex-
pression in the REwLA were made atomic, suggesting either possible misuse
of the atomic operator or the intention of preventing any possible backtrack-
ing. Next, using the regular expressions that contained (non-nested) atomic
subgroups, we empirically investigated the size increase when T is applied. We
found an average increase in size of 63%.

5.6 Conclusion
We showed how to translate a subclass of REwLA with atomic operators, into
REwLA (without atomic operators). We discussed the submatch behaviour
of regular expressions and lookahead expressions in general, and argued why
two lookahead expressions are equivalent in terms of how they perform sub-
matching when adding the atomic operator to the front of each of the two
expressions. For future work, we should explore the viability of using atomic
groups to remove vulnerabilities in regexes. An interesting research question
would be how often the language of an ambiguous expression is reduced when
applying the atomic operator. The development of a code editor plugin where
subexpressions of a regex are automatically made atomic, when the language
described by the regex is not reduced, would be of value.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Memoized Regular Expressions

6.1 Introduction
Regular expressions (regexes) provide a convenient way to describe the class
of regular languages and are frequently used as textual pattern descriptors in
practical string-matching tasks. The backtracking algorithm used by many
regex matchers can however become very slow under conditions identifiable by
ambiguity considerations. This exposes a vulnerability in applications making
use of backtracking regex matchers which can be exploited in a denial of service
attack, known as a regular expression denial of service (ReDoS) attack [Davis
et al. 2021]. It has been established empirically that software engineers
often use ReDoS-vulnerable regexes and thus thousands of web services are
exploitable [Davis 2020].

As pointed out by Davis in his PhD dissertation [Davis 2020], the propor-
tion of regexes that exhibit exponential or non-linear polynomial worst-case
matching time varies widely by language. According to Davis, regex engines
can be categorized into the following categories, based on worst-case matching
time: (i) Slow (JavaScript, Java, Python, Ruby), (ii) Medium (PHP, Perl), and
(iii) Fast (Go, Rust). A Thompson-style regex engine, employing an on-the-fly
subset construction, is used by Go and Rust, but these matching engines do not
support, amongst others, lookahead assertions. The six remaining languages
employ a Spencer-style backtracking regex engine [Spencer 1994], performing
an input-directed depth-first search on a Thompson (or similar) constructed
NFA. In PHP and Perl, run-time caps short circuit long-running evaluations.
Davis et al. considered in [Davis et al. 2021], mostly from an empirical point
of view, the effectiveness of memoization to curb the occurrence of worst-case
superlinear matching time. It is easy to reason (as done by Davis) that when
keeping track of the combination of an NFA state and input string position
from where matching is not possible, that the resulting backtracking regex
engine (without backreferences) will have a worst case linear matching time
in the length of input strings. This form of memoization comes at the cost of

58

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 59

a significant increase in space usage. Davis therefore also proposes two more
memoization schemes to reduce space usage, and refer to these schemes as
being selective, since they memoize only some (and often significantly fewer)
of the Thompson NFA states.

A form of memoization has been added to the Java 14 regex matcher, as
can be established when inspecting the source code. In Java 14 we observed
the following behaviour on a few sample regexes that could potentially have
bad matching time, based on ambiguity considerations as discussed in [Wei-
deman et al. 2016]. We used input strings of the form “a. . . ab”, which are
rejected by all three regexes discussed next. As expected, ˆ(a|a){0,100}$
and ˆ(((a+)+)+)$ takes an excessive amount of time to reject the input,
but ˆ(a|a)*$ does not trigger catastrophic backtracking (whereas it does in
Java 8). By analysing the source code of the Java matcher, we concluded
that ReDoS protection was added to the Java regex matcher that protects
the matcher in some situations, but not others. The ˆ and $ anchors in the
regex examples above, indicate that the matcher should start matching from
the start and match all the way to the end of the input string if possible,
instead of doing substring matching. Since we only consider full matching in
this chapter, we do not indicate the anchorsˆand $, and assume that they are
always implicitly present. An overview of regex notation is given in the next
section.

It should be pointed out that memoization is not the only way to address ex-
cessive backtracking in regex matchers, but atomic operators (see Chapter 5),
designed specifically to reduce backtracking, may also change the language
accepted in difficult to determine ways [Berglund et al. 2017].

It was shown in [Weideman et al. 2016] that algorithms identifying infinite
or exponential ambiguity in NFAs, are well-suited to identify regexes with bad
matching time. Our contribution is to show how to extend these ambiguity
concepts to regexes and NFAs enhanced with memoization. This can then be
used again to analyse matching time when using backtracking regex matchers
enhanced with memoization.

The outline of this chapter is as follows. We start by giving the required
definitions. This is followed by a section in which we generalize some ambiguity
results from [Weber and Seidl 1991; Allauzen et al. 2008] to memoized NFAs.
Next, we investigate the hardness of determining the minimal number of NFA
states required to memoize in order to achieve finite ambiguity. Then we
discuss selective memoization schemes that can be used to turn regexes and
NFAs into memoized regexes and NFAs having much lower ambiguity. Some
of these schemes guarantee finite ambiguity and thus ensure linear matching
time in the length of input strings. Finally, we list future work.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 60

6.2 Preliminaries
We extend the standard definition of strong ambiguity on regexes in this sec-
tion. In [Brüggemann-Klein 1993], strong ambiguity is studied and compared
to weak ambiguity, and we refer to our extended version simply as ambiguity.
We first introduce some required preliminary notation and concepts; we then
consider ambiguity concepts for NFAs, before finally considering regexes.

We denote by Σ+ the set of strings Σ∗∖{ε}. For Σ′ ⊆ Σ and w = a1 . . . an ∈ Σ∗

(or w = ε), with ai ∈ Σ, we let πΣ′(w) be the word b1 . . . bn over Σ′, with bi = ai
if ai ∈ Σ′, and bi = ε otherwise (and πΣ′(ε) = ε). Recall, ∣w∣ denotes the
number of symbols (from Σ) in w. The cardinality of a set A is denoted by ∣A∣
(always finite in our setting), and P(A) denotes the powerset of A.

6.2.1 Memoized NFA

Next, we define memoized non-deterministic finite automata, where a sub-
set of the states are distinguished as memoized. The choice of memoized states
never changes the language accepted by the automaton.

Definition 6.1 (see [Davis et al. 2021]). A memoized non-deterministic finite
automaton (mNFA) is a tuple A = (M,Q,Σ, δ, q0, F) where: (i) Q is a non-
empty finite set of states ; (ii)M ⊆ Q is a set of memoized states ; (iii) Σ is the
input alphabet; (iii) the function δ ∶ Q ×Σε → P(Q) is the transition function;
(iv) q0 ∈ Q is the initial state; and (v) F ⊆ Q is the set of final states.

Also, ∣A∣δ ∶= ∑q∈Q,a∈Σε
∣δ(q, a)∣ is the transition size of A.

When M = ∅, the mNFA is an NFA. Next, we define (accepting) runs of
an mNFA.

Definition 6.2. For an mNFA A = (M,Q,Σ, δ, q0, F) and w ∈ Σ∗, a run on
w is a string r = s0α1s1⋯sn−1αnsn, with s0 = q0, si ∈ Q and αi ∈ Σε such that
si+1 ∈ δ(si, αi+1), πΣ(r) = w, and r is not allowed to contain a substring from
Q∗ with more than one instance of any specific qq′ ∈ Q2, i.e. no ε-transition
is allowed to be repeated without reading an intermediate symbol from Σ. A
run is accepting if sn ∈ F . The set of accepting runs on w and all accepting
runs are denoted by RA(w) and RA respectively. The language accepted by
A, denoted by L(A), is {πΣ(r) ∣ r ∈RA} ⊆ Σ∗.

Although a restriction of not allowing runs to contain a substring from
Q∗ with more than one instance of any specific state, seems more natural to
ensure that RA(w) is finite, this does not correspond to how regex matchers
handle ε-loops in NFAs (more on this later in Example 6.2).

For brevity, for a run r = s0α1s1⋯sn−1αnsn, let ri = s0α1s1⋯si−1αisi, when
i ≤ n. The setM in an mNFA A plays no role in the definition of L(A), but

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 61

influences ambiguity. We assume that all states p in an mNFA are useful, i.e.
each p ∈ Q is on an accepting run of some string w.

Definition 6.3. For an mNFA A = (M,Q,Σ, δ, q0, F) and string w, we define
the ambiguity of w in A as the maximum cardinality of a set RA(w) ⊆RA(w),
with the property: If r = s0α1s1⋯sn−1αnsn and r′ = s′0α′1s′1⋯s′n′−1α

′
n′s

′
n′ are in

RA(w), then if si = s′i′ ∈M and πΣ(ri) = πΣ(r′i′), we have ri = r′i′ . We denote
the ambiguity of w in A by a′A(w) and let aA(n) = max∣w∣≤n a

′
A(w).

If aA(n) ≤ 1 for all n ∈ N, A is unambiguous. Let d ∈ N be minimal such
that aA(n) ≤ h(n) (if aA(n) is polynomial bounded), with h a polynomial of
degree d. If such an exponent d exists, A has ambiguity of degree d. If d = 0,
A has finite ambiguity. If aA(n) is not polynomial bounded, the ambiguity of
A is exponential.

In [Weber and Seidl 1991], terminology such as infinite degree of ambiguity
and degree of growth of ambiguity is used. We will, in our more general setting,
simply refer to these as infinite ambiguity and degree of ambiguity respectively.
Note that memoizing more states will keep ambiguity the same or reduce it.

We let Aall be the mNFA obtained from the mNFA A by making all states
in A accepting. We refer to aAall(n) as the prefix ambiguity of A, and use
terminology prefix unambiguous, prefix ambiguity of degree d and exponential
prefix ambiguity for A, when Aall is unambiguous, has ambiguity of degree d,
or has exponential ambiguity respectively. If A has a single final state that
is also memoized, then A is unambiguous, but this does not imply that Aall
is unambiguous, i.e. A may in fact have exponential prefix ambiguity. This
is important in practice, as it implies that matching a string w with A using
depth-first search may still explore a large number of non-accepting (prefixes
of) runs before finding an accepting run, or ultimately rejecting, even though
the ambiguity of A might be small.

For q ∈ Q, we denote by Aq the mNFA obtained by setting the final states
of A equal to {q}. We refer to the ambiguity of Aq as the ambiguity of A at
state q, and say A is unambiguous at q or has finite ambiguity at q, etc., when
these statements hold true for Aq. In particular, it will be of interest when
A is unambiguous at all states or has finite ambiguity at all states, i.e. these
statements are true about Aq, for all q ∈ Q. Certainly, aA(n) ≤ ∑q∈F aAq(n) and
aAall(n) ≤ ∑q∈Q aAq(n), thus if A is unambiguous at all states, then aAall(n) ≤
∣Q∣ for all n, and A has finite prefix ambiguity if and only if Aq has finite
ambiguity for all q ∈ Q.

6.2.2 Memoized Regular Expressions

Next, we add memoization to regexes, an extension not considered before
as far as we know. A memoized regular expression (m-regex), over an alphabet
Σ, where we assume Σ∩ { ∣ , ⋅ , ∗ , ↦,↤, ε,∅} = ∅ to avoid confusion, is defined

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 62

inductively as follows. Elements from Σ ∪ {ε,∅} are m-regexes, and if E and
F are m-regexes, then so are the expressions (E ∣ F), (E ⋅ F), (E∗), (↦E) or
(E↤). Regular expressions (regexes) are those m-regexes without the memo-
ization operators↦ and↤. Some parentheses may be dropped from m-regexes,
using that operators are ordered according to precedence from high to low as
follows: ↦ (left memoization), ↤ (right memoization), ∗ (Kleene closure or
star), ⋅ (concatenation), and finally ∣ (union). Furthermore, outermost paren-
theses may be dropped, and E ⋅E′ written as EE′. We use E+ as shorthand for
E ⋅E∗, and E{m,n}, with m ≤ n, m,n ∈ N, as shorthand for (Em∣Em+1∣⋯∣En),
where Ei denotes the concatenation of i copies of E with itself, and E0 de-
noting ε. We denote by r(E) the regex obtained by removing all memoization
operators from E. The language of an m-regex E, denoted L(E), is obtained
by evaluating r(E) as usual. When we say that E matches a string w, we
mean that w ∈ L(E), as opposed to vwv′ ∈ L(E), for v, v′ ∈ Σ∗. We exclude m-
regexes containing ∅ in the remainder of our discussion, i.e. for all m-regexes
E we have L(E) /= ∅.

Now that we have defined regexes, we point out, via an example, the distinc-
tion between what is referred to as weak and strong ambiguity in [Brüggemann-
Klein 1993], in particular since we generalize strong ambiguity, which we refer
to simply as ambiguity. Let E = (a∗∣ b∗)∗, then E is weakly unambiguous (i.e.
have no weak ambiguity), since no symbol from Σ is present in E more than
once. Thus, each symbol in an input string matched by E can be uniquely
identified with a symbol from Σ in E that was used during the match, in con-
trast to F = (a ∣a)∗. The regex E is, however, not strongly unambiguous, since
the string aa can be matched in multiple ways using E, by using the outer
Kleene closure a different number of times when matching an empty substring
of aa either with the subexpression a∗ or b∗ in different places in aa.

We denote by N′ the set N ∪ {i ∣ i ∈ N}. Let E be an m-regex over Σ
with Σ ∩ N′ = ∅. For F = r(E), we obtain F0 from F inductively as fol-
lows. We replace ε by 0 ⋅ ε ⋅ 0, a ∈ Σ by 0 ⋅ a ⋅ 0, and (H ∣ I), (H ⋅ I), (H∗) by
0 ⋅ (H0 ∣ I0) ⋅ 0,H0 ⋅ I0 and 0 ⋅ (H0)∗ ⋅ 0 respectively. Next, relabel all symbols
equal to 0 in F0 uniquely using symbols in N, starting from the left in F0, in
increasing order from 0, with each of the finitely many elements used from N
regarded as a single symbol, to obtain a regex G over Σ ∪N. We relabel i ∈ N
as i in G if the corresponding subexpression in E, immediately following i in
G, was left memoized in E, and similarly if the subexpression immediately
preceding i in G was right memoized. Left memoizing a subexpression that is
already left memoized has no effect, and similarly for right memoization. We
denote the regex over Σ ∪ N′ obtained in this way from E by E. Although
L(E) depends on if we use left or right associativity for union in E, the choice
we make in terms of associativity will not influence our further work. To avoid
any confusion, we make the arbitrary choice of selecting left associativity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 63

Example 6.1. If E = (a∗)∗, then E = 0(1(2a3)∗4)∗5, and ↦(a∣a)∗ =
0(1(2a3∣4a5)6)∗7 (using that we assume that ↦ binds tighter than Kleene
star).

Definition 6.4. For an m-regex E and string w, we define an accepting run
for w over E as a string r in L(E) with πΣ(r) = w and with r not having
any substring r′ ∈ (N′)∗, where r′ contains a specific nn′ ∈ (N′)2 more than
once. We denote the set of accepting runs for w over E by RE(w) and let
RE = ∪w∈Σ∗RE(w).

Prefix runs of w of length k, denoted by RpreE (w,k), are defined to be
prefixes r′ of runs r ∈ RE, with πΣ(r′) a prefix of w, ∣πΣ(r′)∣ = k and with r′
ending on an element from N′. We let all prefix runs of w be ∪0≤k≤∣w∣RpreE (w,k)
and denote this set by RpreE (w). Also, RpreE indicates the set of all prefix runs,
i.e. ∪w∈Σ∗RpreE (w).

Example 6.2. For E = (a∗)∗, RE(ε) = {05,0145} and RE(a) ={012a345,
012a34145}, since E = 0(1(2a3)∗4)∗5. The sets RE(ε) and RE(a) are finite,
because of the restriction that runs r should not have any substring r′ ∈ (N′)∗,
where r′ contains a specific nn′ ∈ (N′)2 more than once. If we replace this re-
striction with the more natural seeming restriction of not allowing any specific
n ∈ N′ to be repeated, then 012a34145 falls away from RE(a), which will then
disagree with for example the Java and Python regex matchers preferring the
run 012a34145 over 012a345, and reporting an empty (last) capture/match
with the subexpression a∗ when matching a with (a∗)∗.

For the m-regex F given by ↦(a∣a)∗, we have that 012a3614a567 is one of
the four possible accepting runs of aa, since F = 0(1(2a3∣4a5)6)∗7.

Definition 6.5. For an m-regex E, let AE(w) be the maximum cardinality of a
subset RE(w) of RE(w) with the following property: If v1, v2 ∈RE(w), where
r1i, r2i, with i ∈ N, are prefixes of v1 and v2 respectively with πΣ(r1) = πΣ(r2),
then r1 = r2. We let aE(n) = maxw∈Σ∗, ∣w∣≤nAE(w) ∈ N. The function aE is
referred to as the ambiguity of E.

We get apreE by replacing RE(w) with RpreE (w) to obtain a set RpreE (w)
of maximum cardinality Apre(w). Next let apreE (n) = maxw∈Σ∗, k≤nA

pre
E (w,k),

with ApreE (w,k) = ∣RpreE (w)∩RpreE (w,k)∣. We refer to apreE as the prefix ambiguity
of E.

Similarly to how we used aA in Definition 6.3 to define when A is unam-
biguous, has finite ambiguity, ambiguity of degree d or exponential ambiguity,
we use aE to define the same notions for E. We define E to be prefix unam-
biguous, or has prefix ambiguity of degree d, or exponential prefix ambiguity
analogously as in the case of mNFAs, but using apreE .

Example 6.3. For E1 = a∗a∗, E1 = 0(1a2)∗34(5a6)∗7, and RE1 =
{0(1a2)n034(5a6)n17 ∣ n0, n1 ≥ 0}. Note πΣ(0(1a2)n034(5a6)n17) = an0+n1 ,
which implies aE1(n) = n + 1 and therefore E1 has ambiguity of degree 1. For

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 64

E2 = a∗(↦a∗), E2 = 0(1a2)∗34(5a6)∗7, and ∣RE2(an)∣ = 2 for n ≥ 1, and thus
E2 is finitely ambiguous but not unambiguous.

For an m-regex E, denote by T (E) the NFA constructed from r(E) using
the Thompson construction [Thompson 1968]. Since the Thompson construc-
tion mirrors our construction of how we obtain E from E, we identify the runs
in RE(w) with those on w in T (E). We turn T (E) into an mNFA, by mem-
oizing the states in T (E) corresponding to how and which subexpressions are
memoized in E, with ↦ memoizing an initial state corresponding to a subex-
pression and ↤ a final state. In the remainder of this chapter, the notation
T (E) is used to indicate the memoized version of the NFA constructed from
the m-regex E. We thus regard the Thompson construction as a way of con-
structing mNFAs from m-regexes, and not simply a way of constructing NFAs
from regexes. It should be noted that each memoization operator memoize
precisely one state in T (E) (except for the case where we apply a left memo-
ization operator more than once to the same subexpression, and similarly for
right memoization). We denote by T all(E) the mNFA obtained by making all
states in T (E) accepting, similar to the notation Aall used for an mNFA A.

From the respective definitions it follows that (prefix) ambiguity agrees on
E and T (E).

Proposition 6.1. If E is an m-regex, aE(n) = aT (E)(n) and apreE (n) =
aT all(E)(n) for all n ∈ N.

Proof. This follows from the observation that accepting runs in E and T (E)
can be uniquely identified with each other, and similarly for prefix runs in E
and accepting runs in T all(E).

It can be seen that aE (and apre) can be bounded by an exponential function
by considering accepting runs in T (E) (or T all(E)), and using Proposition 6.1.
Note that it is straightforward to reason that the number of (accepting) runs
of w in T (E) (or T all(E)) is bounded by a function exponential in ∣w∣.

Next, we discuss briefly why the product of the prefix ambiguity of an m-
regex E and n, and equivalently, the product of the ambiguity of T all(E) (i.e.
the prefix ambiguity of T (E)) and n, is an upper bound for the worst-case
matching time of a backtracking matcher respecting memoization information,
when matching strings up to length n using T (E). When given an input string
w, with ∣w∣ ≤ n, a backtracking matcher performs an input-directed depth-first
search on T (E). For an input string w, we consider an ordered tree btrE(w),
referred to as the backtracking tree of w, with a prefix traversal of btrE(w)
producing the nodes in the order they are visited by the matcher. The nodes
in the rightmost path in btr(w) are the states in an accepting run of w, if
w ∈ L(E), and thus once the matcher determines that a match is possible,
the further exploration of prefix runs of w are terminated. The matcher uses
the memoization information by not revisiting a memoized state after having

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 65

read the same prefix of w as before, and having determined that no match is
possible from this state using the remaining suffix of w. To improve the time
complexity of our analysis in exchange for obtaining less precise matching
time estimates, but always upper bound estimates, we bound the size of the
backtracking tree btrE(w), by c ⋅ ∣w∣ ⋅ max0≤k≤∣w∣A

pre
E (w,k) ≤ c ⋅ ∣w∣ ⋅ apreE (∣w∣),

where c is a constant such that the longest prefix run of w goes through at
most c ⋅ ∣w∣ states in T (E).

6.3 Generalization of Mohri’s ambiguity results
to mNFA

In this section, we generalize results from [Weber and Seidl 1991] and [Al-
lauzen et al. 2008] to be applicable to mNFAs. The next definition is taken
from [Allauzen et al. 2008], but modified in a way to take memoization and
ε-loops (by enforcing v, vi ∈ Σ+, and not simply v, vi ∈ Σ∗) into account.

Definition 6.6. The following are the three required properties for the char-
acterization of ambiguity of an mNFA A.
(i) (EDA) There exists a state p with at least two distinct cycles on v ∈ Σ+

containing no memoized state.
(ii) (IDA) There exist two distinct states p and q with paths on v ∈ Σ+ from

p to p, p to q, and q to q. The loop on q should contain no memoized
state.

(iii) (IDAd) There exist 2d states p1, . . . pd, q1, . . . , qd in A and 2d − 1 strings
v1, . . . , vd ∈ Σ+ and u1, . . . , ud−1 ∈ Σ∗, such that for all 1 ≤ i ≤ d, pi /= qi,
we can read vi on some path from pi to pi, pi to qi and qi to qi, while
encountering no memoized state from qi to qi, and also read ui on some
path from qi to pi+1.

Note that EDA implies IDA, since the two states required for IDA can be
obtained from the two loops at p on v with no memoized states. Starting at p,
there must be a first state q at which we obtain a split to states r and r′ while
reading v and looping back to p. These two states, in any order, can now be
used as the two states required for IDA.

Theorem 6.1. We can decide IDA for an mNFA A = (M,Q,Σ, δ, q0, F) in
time O(∣A∣3δ) if A is ε-loop free, and in time O(∣A∣2δ ∣Q∣2) otherwise.

Proof. First, we provide the argument for when A has no ε-transitions, and
then we point out how to add ε-transitions to our previous argument by using
Mohri’s filter transducer from [Allauzen et al. 2008], and finally, how to also
allow ε-loops.

Let P = Q ∖M and R = Q ×Q × P . If P = ∅, then A does not have IDA,
so we assume P /= ∅. First assume A has no ε-transitions. We generalize the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 66

argument used in the proof of Lemma 3.4 in [Weber and Seidl 1991] on how to
decide if an NFA, with no ε-transitions, has IDA. Let G3 = (R,E3) and G4 =
(R,E4) be graphs with nodes given by R and edges E3 and E4 respectively,
where we define E3 and E4 next. We let E3 be all edges ((p1, p2, p3), (q1, q2, q3)),
with qi ∈ δ(pi, a) for some a ∈ Σ, i = 1,2,3. Let E4 = E3 ∪E′

3 with E′
3 all edges

((p, q, q), (p, p, q)) such that p ∈ Q, q ∈ P and p /= q. We can characterize IDA
as (p, q, q) being reachable from (p, p, q) in G3 for p /= q, or as having a strongly
connected component C in G4 with C2 ∩ E′

3 /= ∅. This establishes the result
when we assume A has no ε-transitions.

Next, assume we have ε-transitions, but no ε-loops. In this case, when
using δ(pi, ε), for i = 1,2,3, to transition from one node to another in R, we
are also allowed to simply stay at one or more of the pi’s without using δ.
Just as is done in [Allauzen et al. 2008], where the result from [Weber and
Seidl 1991] on deciding IDA is extended from NFAs without ε-transitions to
NFAs with ε-transitions, by using what Mohri refers to as a filter transducer,
we also apply the exact same filter transducer. This transducer ensures that
the number of paths in a product NFA is counted correctly when ε-transitions
are present, and also ensures that we do not only stay at p, or only at q,
while taking only ε-transitions from p to q (on the 2nd component), when
determining that we have a path from (p, p, q) to (p, q, q) in R.

Finally, we consider the case where ε-loops are also allowed. In this case,
we remove all ε-transitions from the 3rd component P in R at the price of
potentially increasing the number of transitions in P to ∣Q∣2, but without
changing whether IDA is present or not. To achieve this, first note that ε
self-loops at any given state can be removed, unless they are at a state that
forms part of a loop while reading a non-empty word, in which case they cause
EDA (and thus IDA). Otherwise, if q ∈ δ(p, a), and we have a path from q
to q′ while reading ε, we remove the ε-transitions and add q′ as one of the
destination states of δ(p, a), but if q′ is already in this set, we end up with a
parallel transition on a from p to q′. Again, parallel transitions do not influence
IDA, unless they form part of a loop, in which case they also cause EDA (and
thus IDA). Now we repeat the argument in the previous paragraph, since if we
obtain the necessary paths for IDA, the fact that we changed P not to have
ε-transitions, and the fact that the filter transducer will not allow paths from
(p, p, q) to (p, q, q) to only stay at the same 3rd component q, will ensure that
a path from (p, p, q) to (p, q, q) never involves reading only ε.

Next, we generalize more results of Mohri, for the case where we allow
ε-loops.

Lemma 6.7. Let A be an NFA (i.e. no states are memoized). Then A has:
(i) Exponential ambiguity if and only if it has EDA;
(ii) Infinite ambiguity if and only if it has IDA; and
(iii) Ambiguity of degree at least d, with d ≥ 1, if and only if it has IDAd.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 67

Proof. In [Allauzen et al. 2008], it is shown that the three conditions EDA,
IDA and IDAd are necessary and sufficient if we do not have ε-loops. Consider
the NFA A = (Q,Σ, δ, q0, F), having ε-loops. We show how to extend Mohri’s
results to A. We construct an NFA Aε = (Qε,Σ, δε, (q0,∅), Fε) from A, with
no ε-loops, satisfying EDA, IDA or IDAd if and only if A does, and also having
ambiguity equal to that of A. This will imply that the ambiguity results of
Mohri are applicable even for NFA with ε-loops. We let Qε = {(p,S) ∣ S ∈
P(Q × Q)}, δε((p,S), a) = {(q,∅) ∣ q ∈ δ(p, a)} if a ∈ Σ, and δε((p,S), ε) =
{(q, S ∪ {(p, q)}) ∣ q ∈ δ(p, ε), (p, q) /∈ S}, and Fε = {(p,S) ∈ Qε ∣ p ∈ F}.
Note that the definition of δε((p,S), ε) implies Aε has no ε-loops, and we can
apply Mohri’s results to Aε and then obtained the desired ambiguity results
for A.

Theorem 6.2. Let A be an mNFA. Then A has:
(i) Exponential prefix ambiguity if and only if A has EDA;
(ii) Prefix ambiguity of degree d, with d ≥ 1, if and only if A has IDAd.

Proof. It is clear that EDA and IDAd imply exponential prefix ambiguity and
prefix ambiguity of degree d respectively.

Conversely, assume A has exponential (or polynomial of degree d) ambi-
guity and let A = (M,Q,Σ, δ, q0, F). Recall, Ap denotes the mNFA obtained
by changing the set of final states of A to {p}. We make the simplifying
assumption that no state in A has outgoing transitions both on ε and some
symbols from Σ (although it is easy to extend our argument to the general
case), which is for example the case for mNFAs of the form T (E). For p ∈ Q,
let I(p) = {q ∈ Q ∣ δ(q, a) = p for some a ∈ Σ}, and I ′(p) = {q ∈ Q ∣ δ(q, ε) = p}.
Note for p ∈ Q we have aAp(n) ≤ ∑q∈I(p) aAq(n−1)+∑q∈I′(p) aAq(n). Combining
this inequality with Lemma 6.7 and the additional observations listed next,
we obtain that a second loop at a state p reading the same word as the first,
but containing a memoized state, will not cause exponential prefix ambiguity,
and similar for IDAd and loops at the qi containing memoized states, and thus
provide us with the desired result. Additional observations: (1) If q ∈M, then
aAq(n−1) = aAq(n) = 1; (2) the mNFA A has exponential (polynomial of degree
d) prefix ambiguity if and only if Ap has exponential (polynomial of degree d)
ambiguity at some p (and not a higher degree of ambiguity at other states);
(3) additional memoization can only decrease ambiguity; (4) memoizing a state
in a loop at p for IDA or pi for IDAd (with p and pi as in Definition 6.6), will
not remove IDA or lower the degree of ambiguity.

Example 6.4. Applying the previous theorem to the Thompson constructed
mNFA for each m-regex given next, we obtain the following ambiguity. We
have that (a ∣a)∗ is exponentially ambiguous, ↦(a ∣a)∗ is finitely prefix am-
biguous (but not prefix unambiguous) and (a ∣a)∗↤ is unambiguous, but ex-
ponentially prefix ambiguous. Also, (a∗)∗ is exponentially ambiguous, ↦(a∗)∗
has ambiguity of degree 1 and (↦a∗)∗ has finite ambiguity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 68

To wrap up this section, we consider relationships between ambiguity and
prefix ambiguity, as well as relationships between (prefix) ambiguity of subex-
pressions of an m-regex and (prefix) ambiguity of the m-regex as a whole.
Clearly, prefix ambiguity is an upper bound for ambiguity, and since all states
are useful by assumption, Lemma 6.7 shows that for an NFA A, A has finite,
polynomial of degree d or exponential prefix ambiguity, if and only if A has
finite, polynomial of degree d or exponential ambiguity respectively. Also,
Proposition 6.1 and Theorem 6.2 implies that we have the following prefix
ambiguity relationships between an m-regex and its subexpressions. (1) If in
the m-regex G = (E ∣F), both E and F have (prefix) ambiguity of degree at
most d and at least one of E or F has (prefix) ambiguity of degree d, then G
has (prefix) ambiguity of degree d. A similar statement holds for exponential
(prefix) ambiguity. (2) The m-regex E∗ has exponential ambiguity if and only
if E is ambiguous. (3) The m-regex E ⋅ F has exponential prefix ambiguity if
at least one of E or F has exponential prefix ambiguity, but E and F could
both be unambiguous while E ⋅ F has infinite ambiguity.

6.4 Hardness Results
In this section, we prove that it is computationally difficult to find a minimal
set of states to memoize in an NFA A to obtain an mNFA with finite prefix
ambiguity.

Definition 6.8. A directed graph G = (V,E) and a natural number k ∈ N is
an instance of the Feedback Vertex Set problem if and only if there exists
some V ′ ⊆ V such that ∣V ′∣ ≤ k and every directed cycle in G contains at least
one vertex from V ′.

That is, (G,k) is in Feedback Vertex Set if it is possible to break all
cycles by the removal of at most k vertices.

Theorem 6.3 (see [Karp 1972]). Deciding Feedback Vertex Set is NP-
complete.

We now show by reduction from Feedback Vertex Set, that given an
NFA A = (Q,Σ, q0, δ, F), it is NP-hard to find some smallest M ⊆ Q such
that AM = (M,Q,Σ, q0, δ, F) has finite prefix ambiguity, or equivalently, by
Theorem 6.2, that AM does not have IDA. Next, we state this as a decision
problem.

Definition 6.9. For an NFA A = (Q,Σ, q0, δ, F) and k ∈ N, (A,k) is an in-
stance of the Small mNFA Memoization problem if and only if there exists
someM ⊆ Q, with ∣M∣ ≤ k, such that the mNFA AM = (M,Q,Σ, q0, δ, F) has
finite prefix ambiguity (or equivalently, AM does not have IDA).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 69

Lemma 6.10. Small mNFA Memoization is NP-hard.

Proof. We show this by reduction from Feedback Vertex Set. Let G =
(V,E) be a directed graph and k ∈ N. We construct an NFA AGM, such that
(AGM, ∣M∣), with ∣M∣ ≤ k, is an instance of Small mNFA Memoization if
and only if (G,k) is an instance of the Vertex Feedback Set problem by
the following procedure.

Let AG = (Q,{a}, q0, δ,{qf}), with Q = V ∪ {q0, qf}) (q0, qf are new states
not in V), and in δ we have the transitions: (1) v′ ∈ δ(v, a) for (v, v′) ∈ E; (2)
q0, v ∈ δ(q0, a) for v ∈ V ; (3) qf ∈ δ(v, a) for v ∈ V . That is, we turn G into an
NFA by making each edge a transition reading a single ‘a’, we add an initial
state with a self-loop on ‘a’, from which every vertex in G is reachable on a
single ‘a’, and a final state reachable from any vertex in G on an a-transition.
That is, G gets turned into an NFA by having every edge read ‘a’, adding a
new initial and final state, having every “state” in G reachable from the initial
state on ‘a’, and having an a-transition from each “state” in G to the final
state.

q0 G qf

a

a

a

a

a

a

a

a

a

a

aWe leave the k the same in
the reduction. Assume there is a
V ′ ⊆ V , with ∣V ′∣ ≤ k, such that
G contains no cycles when all ver-
tices in V ′ are removed. Choose
M = V ′, and note that the mNFA AGM = (M,Q,{a}, q0, δ,{qf}) cannot have
IDA, as it contains only a single cycle without a state fromM (the one on q0).

Conversely, assume we have M ⊆ Q, ∣M∣ = k, that removes IDA from A,
i.e. AGM does not have IDA. Given the definition of IDA, we may assume that
both q0 and qf are not in M. But then (G,k), with G being the subgraph
obtained from AG by removing q0 and qf , is in Feedback Vertex Set,
as any memoization-free cycle in that subautomaton in combination with the
cycle on q0 would cause IDA in AG.

Finally, membership in NP is established by the algorithm from Theo-
rem 6.1.

Theorem 6.4. Small mNFA Memoization is NP-complete.

Proof. This combines Lemma 6.10 and Theorem 6.1. The latter establishes
membership in NP since we can nondeterministically guess a certificate M
and verify it in polynomial time by the algorithm presented in the proof of
Theorem 6.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 70

6.5 Memoization Schemes
The NP-hardness of finding minimal memoizations raises interest in both
heuristics and focusing on NFAs of the form T (E), for selecting a small subset
of states, to conserve space used by the matcher as much as possible. In [Davis
et al. 2021], Davis proposed two such selective memoization schemes. The first
memoizes all states with in-degree at least two, and the second memoizes all
states which are “cycle ancestors”, which on an m-regex E corresponds to
memoizing every subexpression F ∗ as (↦F)∗. We call this the Closure Node
scheme, denoting the m-regex obtained by CN(E), and observing that Theo-
rem 6.2 implies T (CN(E)) has finite prefix ambiguity.

On an m-regex E, the scheme of memoizing all states with in-degree at
least two, denoted as IN(E), memoizes each subexpression F ∗ as ↦F ∗↤, and
each subexpression (F ∣G) as (F ∣G)↤, and thus (possibly) add additional
memoization operators when compared to CN(E). From the definition of
ambiguity, it follows that T (IN(E)) is unambiguous at all states.

We propose the Infinite Ambiguity Removal (IAR) memoization scheme,
which for an m-regex E takes CN(E) and removes precisely those memoization
operators corresponding to memoizing states in T (E), that is not a state p for
EDA, or a state q for IDA, with p and q as in Definition 6.6. This can be done
with a modification to the algorithm outlined in the proof of Theorem 6.1 (with
a formal discussion of the algorithm and its complexity left as future work).
From Theorem 6.2, we have that IAR(E) has finite prefix ambiguity. We
leave it as future work to determine if this produces a memoization of minimal
size, conjecturing this to be the case. Note that this would not contradict
Theorem 6.4 as the hardness reduction relies on the construction of a general
mNFA, where the Thompson automaton T (E) is of a restricted form.

Example 6.5. For E = (a∗ ∣a∗)∗, we have that CN(E), IN(E) and IAR(E) are
given by ↦(↦a∗ ∣↦a∗)∗, ↦((↦a∗↤ ∣↦a∗↤)↤)∗↤ and ↦(a∗ ∣a∗)∗ respectively,
but for E′ = a∗b∗, CN(E′) equals (↦a∗)(↦b∗), whereas IAR(E′) = E′ (recall,
↦ has higher priority than Kleene star). For Fk = (a ∣a){1, k}, with k ∈ N,
prefix ambiguity is 2k for strings an, n ≥ k, but IN(Fk) = ((a ∣a)↤){1, k} has
prefix ambiguity at most 2, and IN is the only memoization scheme introduced
reducing ambiguity when applied to Fk.

6.6 Experimental Results
To implement IAR, we extended the implementation to identify IDA and EDA
in T (E), as discussed in [Weideman et al. 2016]. We evaluated this implemen-
tation on (i) the RegExLib repository [RegExLib 2001], and (ii) the Davis
polyglot regex corpus [Davis et al. 2019], a dataset containing over 500,000
regexes extracted from a large sample of software projects covering over eight

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 71

IAR IN CN
Memoization Scheme

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f N
od

es
 to

 M
em

oi
ze

Node Sizes of Memoization Schemes (RegExLib)

IAR IN CN
Memoization Scheme

0

1

2

3

4

5

Nu
m

m
be

r o
f N

od
es

 to
 M

em
oi

ze

Node Sizes of Memoization Schemes (Polyglot)

Figure 6.1: The average number of states needed to be memoized given the
selective memoization scheme. Results were obtained by evaluating the regexes
in the RegExLib and Davis polyglot corpus.

IAR IN CN
Memoization Scheme

0

50

100

150

200

Ti
m

e
(m

s)

Execution Time of Memoization Schemes (RegExLib)

IAR IN CN
Memoization Scheme

0

50

100

150

200

Ti
m

e
(m

s)
Execution Time of Memoization Schemes (Polyglot)

Figure 6.2: The average execution time (ms) required to determine the subset
of nodes that need to be memoized. Results were obtained by evaluating the
regexes in the RegExLib and Davis polyglot corpus.

different major programming languages. For both RegExLib and the polyglot
corpus, more than 70% of regexes could be analysed based on regex features
supported by our implementation, and for 12% of the RegExLib repository,
the states to be memoized in order to determine IAR(E), took more than 1
second to compute, while for the polyglot corpus, only 3% of the regexes took
in excess of 1 second.

The selective memoization schemes IAR(E), CN(E), and IN(E) were eval-
uated on both the RegExLib dataset and the Davis polyglot corpus. We were
interested in the number of nodes selected to be memoized by the different
selective memoization schemes and the execution time required to determine
the nodes. We show our findings in Figure 6.1 and Figure 6.2. As we can see,
the IAR scheme memoizes the least amount of nodes, but takes the longest of
the three schemes to determine these nodes.

In Java 9, a scheme referred to as Top Level Closure Node (TLCN) memo-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. MEMOIZED REGULAR EXPRESSIONS 72

JDK8 JDK9 JDK11 JDK11-modified
OpenJDK Version

100

101

102

103

Ti
m

e
(m

s)

Matching time of Java versions on RegExLib dataset (Log-log)

JDK8 JDK9 JDK11 JDK11-modified
OpenJDK Version

100

101

102

103

Ti
m

e
(m

s)

Matching time of Java versions on Polyglot Corpus (Log-log)

Figure 6.3: The average matching time of different versions of the Java regular
expression engine (including our own modified version) on regexes from the
RegExLib and Davis polyglot corpus against (generated) inputs.

ization was introduced. This scheme obtains TLCN(E), from E, by memoizing
each subexpression F ∗ which is not a proper subexpression of another closure
subexpression E∗, as (↦F)∗. We implemented the CN memoization scheme
in a version of OpenJDK11 (see Table 7.1). By using the RegExLib dataset
and polyglot corpus we obtained all the regexes that have at least one IAR
node and then for all these regexes generate exploit strings using the approach
from [Weideman 2017]. These regexes and input strings were then evaluated
against different versions of the Java regular expression matching engine (in-
cluding our own modified version). The results are shown in Figure 6.3.

6.7 Future Work
We are working on developing memoization schemes in which we combine the
search for where IDA is present in T (E) (for a regex E), with the use of the
atomic operator [Berglund et al. 2017]. These schemes will be evaluated on
repositories of regexes typically used by developers. It could be argued that
the required subexpressions to be memoized or to which the atomic operator
should be applied, could be computed offline, and then developers are allowed
to specify memoization information in m-regexes (in addition to where to ap-
ply the atomic operator), but this will require matching engines to support
m-regexes. Another option could be to let users specify which memoization
scheme they would like to use, from a list of well-studied memoization schemes,
based on memory and matching time requirements. We should do an investi-
gation into the interplay between memoization and various regexes extensions,
as was already started for lookaheads and backreferences in [Davis et al. 2021].

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusions and Future Work

In this dissertation, we investigated several closely related problems regarding
regular expression matching. We hope this dissertation has made it evident
that the area of regular expressions still contains compelling problems (despite
their comprehensive theory) and a wide array of practical applications.

7.1 Conclusions
First, we examined regex engines that —in favour of performance—choose to
implement an algorithm that matches a regex and an input string in linear
time, but only supports a subset of modern regex constructs. We showed
how to support an additional construct, Regular Expressions with Lookahead
(REwLA), using this algorithm and provided results that can be directly
applied to implementing such an engine. We provided a procedure for re-
moving ε-transitions from an AFA to obtain a Boolean automaton without
ε-transitions. In addition, we provided various state complexity results when
converting REwLA to equivalent DFA, improving results by [Miyazaki and
Minamide 2019] (for all but REwLA of length 1 or 2). We implemented all of
our algorithms and models in two non-identical regular expression engines.

We showed how to translate a subclass of REwLA with atomic operators,
into REwLA (without atomic operators). We also discussed the submatch
behaviour of regular expressions and lookahead expressions in general, and
argued why two lookahead expressions are equivalent in terms of how they
perform submatching when adding the atomic operator to the front of each of
the two expressions. We implemented our algorithms in the same regex engine
as one of our REwLA implementations.

Furthermore, we extended non-deterministic finite automata (NFA) and
regular expressions by adding memoization to these formalisms. We gener-
alised the concept of ambiguity in order to be applicable to memoized ex-
tensions of regexes and NFAs. These extensions are aimed at improving the
matching time of backtracking regex engines. We investigated the hardness of

73

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 74

Table 7.1: A list of artefacts for reproducibility.

Material Chapter(s) Link to artefact

Our REwLAmodels and algo-
rithms implemented in a Java
symbolic automaton library.

Chapter 4 https://github.com/steyn
vl/symbolicautomata

A fast regex engine with
support for m-universally
bounded REwLA.

Chapter 4 https://github.com/steyn
vl/rel.

Our algorithm for translat-
ing an atomic REwLA to a
REwLA without.

Chapter 4, 5 https://github.com/steyn
vl/symbolicautomata

A prototype backtracking
regex engine with support for
memoization.

Chapter 6 https://github.com/steyn
vl/memoized-regex-engine

Benchmarking and modifica-
tion of the Java regular expres-
sion engine.

Chapter 6 https://github.com/steyn
vl/java-regex-engine-ana
lysis

determining the minimal number of NFA states required to memoize in order
to achieve finite ambiguity. All the selective memoization schemes and mem-
oization table encodings were implemented in a prototype backtracking engine
and selective memoization schemes were implemented in the Java regex engine
to verify the practicality of optimising a production level backtracking engine
through memoization without changing the matching semantics of the engine.

7.2 Future Work
A cardinal number of extensions to our work is clear, and a few issues persist
that are not fully investigated. These are summarised in the paragraphs that
follow.

Regular Expressions with Lookahead Investigating REwLA in the con-
text of large alphabet sizes, that is, showing how to extend REwLA to the
symbolic case (see Appendix A). When going with the symbolic setting, the
derivative approach should also be considered [Stanford et al. 2021]. Improving
on the bounds when convertingREwLA into DFA, as stated in Theorem 4.3. It
could be of interest to further investigate the m-universally bounded REwLA
restriction studied in Section 4.4, given the frequency of these regexes in prac-
tice (see Section 4.5.1).

Stellenbosch University https://scholar.sun.ac.za

https://github.com/steynvl/symbolicautomata
https://github.com/steynvl/symbolicautomata
https://github.com/steynvl/rel
https://github.com/steynvl/rel
https://github.com/steynvl/symbolicautomata
https://github.com/steynvl/symbolicautomata
https://github.com/steynvl/memoized-regex-engine
https://github.com/steynvl/memoized-regex-engine
https://github.com/steynvl/java-regex-engine-analysis
https://github.com/steynvl/java-regex-engine-analysis
https://github.com/steynvl/java-regex-engine-analysis

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 75

Atomic Groups Our work on atomic operators should make it possible to
thoroughly explore the viability of using atomic groups to remove vulnerabil-
ities in regexes as suggested by [Weideman 2017]. It would be of interest to
verify how often the language of an ambiguous expression is reduced when ap-
plying the atomic operator on a large regex corpus, such as the Davis polyglot
corpus. An interesting tool would be the implementation of an Integrated De-
velopment Environment (IDE) plugin where subexpressions are automatically
made atomic (when the language will not be reduced) when the user writes a
regex.

Memoized Regular Expressions Memoization schemes should be devel-
oped in which the search for where IDA is present in T (r) (for a regex r),
and the use of the atomic operator [Berglund et al. 2017], are combined. The
implementation of a regex engine where atomic operators are automatically
added to subexpressions where the language will not be reduced and memo-
ization is applied to the remaining subexpressions would be very compelling.
We should confirm that the hardness results of Section 6.4 do not apply to
NFAs of the form T (r).

Stellenbosch University https://scholar.sun.ac.za

Appendices

76

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Symbolic Automata

In classical automata theory, two basic assumptions are made: (i) there is a
finite state space, and (ii) there is a finite alphabet. A major drawback of
classical finite-state automata is that they do not scale well for large alpha-
bets. Provided with this knowledge, various techniques have been proposed to
address the scalability problem, such as partial transition functions to avoid
irrelevant or unused characters [Béal and Crochemore 2008; Valmari and Lehti-
nen 2008], binary decision diagrams for succinct representation of transition
functions [Henriksen et al. 1995], as well as numerous automata extensions,
such as register automata [Kaminski and Francez 1994; Bojanczyk et al. 2006],
and extended finite automata [Smith et al. 2008]. Most of these techniques
have some sort of limitation, for example, register automata in general lead to
infinite-state systems or exhibit a lack of closure properties.

In an attempt to overcome these limitations, symbolic automata and trans-
ducers were introduced, which allow transitions to carry predicates and func-
tions over a specified alphabet theory. The concept of automata with pred-
icates instead of concrete symbols was first mentioned in [Watson 1996] and
was discussed in [van Noord and Gerdemann 2001] in the context of natu-
ral language processing. Our interest in symbolic transitions stems from the
need to support real-world regular expressions. Although the connection be-
tween automata and regular expressions has been studied for several decades,
real-world regular expressions are much more complex than the simple model
described in a typical theory of computation course [Sipser 2013].

In practice, the runtime representation of characters in modern runtimes,
such as the JVM and .NET, utilises the UTF16 encoding scheme [Becker et al.
1987]. Regarding regular expressions, the alphabet is the set of unsigned inte-
gers less than 216. Additionally, regexes do not directly support symbols in the
supplementary Unicode planes, that is, symbols that are formed from surro-
gate pairs and whose Unicode code points is greater than 216. For example, the
surrogate pair \uD83D\uDEOA encodes a © and will be treated as two separate
characters by a regex. The inability of classic automata to efficiently handle
large alphabets is what started the study of symbolic automata. We assume

77

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SYMBOLIC AUTOMATA 78

the alphabet theory in symbolic automata to be an effective Boolean algebra.
The main intuition is that a symbolic automaton uses an alphabet as a plug-
in-play through an API or interface; with the only requirement being that
the interface supports operations of a Boolean algebra. Symbolic automata
also allow us to seamlessly add support for the regex character class notation,
which is used frequently in practice [Chapman and Stolee 2016].

Most of the work in our dissertation uses finite automata, and we leave
the consideration of large alphabets for future work. We do not believe it
would be too complicated to adapt our methods to symbolic automata, and
we implemented our algorithms for Chapter 4 and Chapter 5 in a symbolic
automata Java library.

Stellenbosch University https://scholar.sun.ac.za

Appendix B

IAR Experimental Results

In this appendix, we first provide more detail on experimental results obtained
with our Infinite Ambiguity Removal (IAR) memoization scheme. Then we
extend our explanation of the relationship between backtracking matching and
prefix ambiguity, adding detail to the discussion near the end of Section 6.2.
Following this, we expand on our exposition in the introduction on catastrophic
backtracking prevention measures added to recent versions of the Java regex
matcher. Finally, we discuss how the atomic operator is used in the regular
matching library of the .NET framework.

IAR Experimental Results

We implemented an algorithm to determine which subexpressions to memoize
for the IAR scheme, based on generalisations of ideas presented in the proof
of Theorem 6.1 (which we will not discuss here). We obtained the following
results on the approximately 70% of regexes supported by this implementation.
On 12% of the RegExLib repository, IAR(E) took more than 1 second to
compute, and for the polyglot corpus, only on 3% of the regexes IAR(E) took
in access of 1 second to compute. For the polyglot corpus, we found that only
0.25% of regexes exceeded a time-out bound of 30 seconds when computing
IAR(E). We tested our implementation for correctness by verifying that for
regexes with non-linear matching time, that matching time becomes linear (on
a custom matcher) after memoization when using input strings that showcase
worst-case matching time behaviour on the regexes without memoization. The
algorithm to obtain these strings showcasing bad matching time is discussed
in [Weideman et al. 2016].

79

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Backtracking Matching and Prefix
Ambiguity

In this part of the appendix, we discuss why the product of prefix ambigu-
ity of an m-regex E with n, and equivalently, the product of the ambiguity
of T all(E) with n, is an upper bound for the worst-case matching time of
a backtracking matcher respecting memoization information when matching
strings up to length n. Our discussion will be informal, but it should be easy
to add the necessary rigour. We also do not discuss the extra technicalities
caused by problematic m-regexes, i.e. m-regexes having subexpressions E∗ with
ε ∈ L(E). Thus, we do not consider the case with T (E) having one or more
ε-loops. See [Frisch and Cardelli 2004] for a discussion on greedy matching
semantics of problematic regexes.

When given an input string w (∣w∣ ≤ n), a backtracking matcher performs
an input-directed depth-first search (DFS) on T (E). NFA need to be replaced
by prioritised NFA (pNFA), as was done in [Weideman et al. 2016] (but with-
out memoization considerations as required here), in order to model accurately
the time complexity of backtracking matching. Although ambiguity might be
present in an m-regex E, the pNFA p(E) removes ambiguity by in subexpres-
sions of the form (F1∣F2), first attempting to match with F1, and only once it is
determined that matching with F1 is impossible, making use of F2. Also, with
subexpressions of the from F ∗, matching with F is attempted as many times
as possible, before matching with F a fewer number of times, but still match-
ing with F as many times as possible while still ensuring an overall match (if
possible). Both behaviours in terms of subexpressions of the form (F1∣F2) and
F ∗, correspond to how matching is done by backtracking matchers. In addi-
tion to these considerations, a memoized version of the pNFA p(E) should be
considered here. Thus p(E) allows a subset of states to be memoized, but also
have priority information in terms of which transition should be attempted
first at nodes having non-determinism otherwise. We obtain p(E) by adding
the necessary priority information to T (E). The input string w in conjunction
with p(E) produces an ordered tree btrE(w), referred to as the backtracking

80

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. BACKTRACKING MATCHING AND PREFIX AMBIGUITY81

tree of w. The nodes of btrE(w) are the states visited when performing a DFS
on p(E) while reading w and respecting priorities, but stopping once a match
is found. A prefix traversal of btrE(w) produces the nodes in the order they
were visited during the DFS of p(E). The nodes in the rightmost path in
btr(w) are the states in an accepting run of w, if w ∈ L(E), and thus once
the matcher determines that a match is possible, the exploration of p(E) is
terminated. The matcher uses the memoization information in p(E) by not
revisiting a memoized state in p(E), after having read the same prefix of w as
before and having determined that no match is possible from this state using
the remaining suffix of w.

To improve the time complexity of our analysis of matching time, in ex-
change for obtaining less precise matching time estimates, but always upper
bound matching time estimates, we replace the memoized pNFA p(E) and the
backtracking tree btrE(w), by the mNFA T (E) and a unordered tree utrE(w).
We ignore memoization information in utr(w). The nodes of utr(w) are some
of the states in T (E), used possibly multiple times, with the root node the
initial state of T (E). The nodes encountered on a root to leave path of the
tree utr(w), are those in a run while reading a prefix of w. The children of a
node q in utr(w) are nodes q′, where we can reach q′ form q using the tran-
sition function of T (E) on ε or the next input symbol in w. Thus, the leaf
nodes in utr(w) are those where no further transitions are possible, given the
next symbol in w, or those where we have reached the end of w and no fur-
ther ε-transitions are possible. We let tE,w be any largest subtree constructed
from utrE(w) respecting memoization information. Thus, there is at most one
node labelled by a given memoized state after having read a specific prefix of
w. The number of nodes in tE,w is an upper bound for the number of nodes
in btrE(w). But the number of nodes in tE,w is also bounded from above by
c ⋅ ∣w∣ ⋅ max0≤k≤∣w∣Apre(w,k) ≤ c ⋅ ∣w∣ ⋅ aE(∣w∣), where c is a constant such that
runs of strings of length n goes through at most c ⋅ n states.

An example where using prefix ambiguity provides an excessive upper
bound is given by the regex E = .∗ ∣ (a∗)∗ (‘ . ’ matches any symbol from Σ) and
input string w = a . . . ab. Let E′ = (a∗)∗ ∣ .∗ and note that E and E′ have equal
(prefix) ambiguity, but only E′ will have exponential matching time (in ∣w∣)
when matching w with a backtracking matcher (unless memoization is used).
When matching with E, once a match is obtained using the subexpression .∗,
no further runs are considered. These observations are reflected in the relative
sizes of the trees btrE(w), btrE′(w), utrE(w) and utrE′(w), with btrE(w) hav-
ing a linear number of nodes in ∣w∣, but all of btrE′(w), utrE(w) and utrE′(w)
having an exponential number of nodes in w, which is seen by noting that
there are exponentially many prefix runs of w in E and E′.

Let us summarise the reasons why prefix ambiguity is sometimes an exces-
sive upper bound for the matching time of a backtracking matcher. Firstly,
prefix runs ignore the fact that the matcher considers prefix runs in a specific
order, and terminates once a match is found. Secondly, prefix ambiguity con-

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. BACKTRACKING MATCHING AND PREFIX AMBIGUITY82

siders the maximum number of prefix runs respecting ambiguity information,
whereas in a matcher, only a prefix closed set of prefix runs are considered
since if a matcher uses a run r of a prefix of w, it will necessarily also use
prefixes of r.

In [Weideman et al. 2016], matching time of backtracking matchers not
make use of memoization is considered. Both an approach ignoring priorities
of subexpressions, referred to simple analysis, running in polynomial time (with
low exponent) in the length of the regex, and one taking priorities of regexes
into account, but leading to an exponential analysis time, in the length of
the regex, to determine when we have linear matching time and when not,
referred to full analysis, is considered. When no subexpressions are memoized,
our approach is identical to simple analysis.

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Catastrophic Backtracking
Prevention in the Java Regular
Expression Engine

Newer versions of the Java programming language regex library exhibit catas-
trophic backtracking on fewer regexes than older versions. After careful ex-
amination of the regex source code for OpenJDK 8, 9, 11, and 14, we came
to the conclusion that in OpenJDK 9 an optimisation was added to prevent
catastrophic backtracking in certain situations. The engine does this by keep-
ing track of all “top level closure nodes” (TLCNs) in the regex and verifying
whether it has already tried and failed to match with a given TLCN, starting
at a specific position i. Excessive backtracking is not prevented in regexes
with backreference. TLCNs, by definition, are formed by greedy repetitions,
that is, *, +, and {n,}, and when they do not match a prefix of the remain-
der of the input at a certain position, the input cursor position is memoized.
The matcher uses a custom lightweight hashset implementation to keep track
of the beginning index of a failed repetition match. First, consider the regex
(a|a)* when matching “aa . . . ab”. OpenJDK 8 exhibits catastrophic back-
tracking, but OpenJDK 9 will fail fast, indicating that excessive backtracking
is prevented, at least in this situation.

Given that only top level repetition nodes are memoized, it is relatively
easy to construct examples where the regex matcher exhibit exponential back-
tracking. For example, the regexes ((a|a)*)* and ((a+)+)+, on input strings
of the form “aa . . . ab”, still exhibits catastrophic backtracking in OpenJDK
9 and later. This is because in both cases the only repetition node that is
memoized, is the outermost node and opting not to memoize the inner repe-
tition nodes causes the engine to exhibit catastrophic backtracking on these
examples. The source code filters out all inner closure nodes from the TLCNs
list, and when we modified the code to keep the inner closure nodes in the
list to be memoized, we could not trigger any catastrophic backtracking (at
least on various examples we tried), raising the question as to why the engine

83

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. CATASTROPHIC BACKTRACKING PREVENTION IN THE
JAVA REGULAR EXPRESSION ENGINE 84

maintainers decided only to include top level nodes in the list of nodes to be
memoized. Most likely, the memory overhead of tracking all closure nodes
may sometimes be too high. Secondly, the only time when the repetition of
subexpressions of the form E{n,m} are memoized, is when the closure is of the
form {n,}, that is, when the subexpression must occur at least n times. This
means that a relatively straightforward example, such as (a|a){0,50}, will
with input of the form “aa . . . ab”, also cause OpenJDK 9 and later to exhibit
excessive matching time. Dealing with subexpressions of the form E{n,m}, at
least when E is ambiguous and m is relatively large, should be considered in
future iterations of the engine.

Stellenbosch University https://scholar.sun.ac.za

Appendix E

Backtracking Elimination in .NET
5

There has been regex support in the .NET framework since the early days of
.NET 1.1. For fifteen years the .NET regex engine stayed mostly the same,
with minor changes such as a new caching strategy introduced in .NET 2, but
with the release of .NET 5, the regex engine went through a substantial list of
significant improvements [Taub 2020]. Among others, this includes optimising
the lookup time for character classes and generating more efficient Common
Intermediate Language (CIL) opcodes. Additionally, the regex engine now
attempts to perform some backtracking elimination, which we discuss next.

Nearly all regex engines opt to perform matching using a compact list of op-
codes that represent the instructions for the match. Usually, the regex engine
will compile the raw regex directly into these opcodes, but the .NET engine is
unique in that it first compiles the regex into an intermediate tree represen-
tation. To some extent, the Java regex engine also uses a tree representation
but does not analyse this tree (beyond memoizing Top Level Closure Nodes)
to improve matching time performance.

In .NET this intermediate tree is analysed to generate opcodes that are
more efficient at matching. During this “node optimisation phase”, the engine
transforms subexpressions into atomic groups when it is clear that the change
will not make a semantic difference. Several regex engines that implement a
backtracking algorithm, such as those found in Java, Perl, and Ruby provide
an atomic operator that developers can use to prevent excessive backtracking.
These engines will not reconsider choices made within the atomic subgroup,
once it starts matching the expression that follows the group. The engine may
reconsider the choices made before entering the atomic subgroup, in which case
what the atomic subgroup matches will also be reconsidered. We denote the
application of the atomic operator to a subexpression r as (▷r). This is com-
monly styled as (?>r) when using regex libraries, with us using very similar
notation for memoization operators, intentionally, to indicate that the atomic
operator and both memoization operators are designed to reduce backtracking.

85

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. BACKTRACKING ELIMINATION IN .NET 5 86

This idea of analysing a regex at compile time and inserting atomic opera-
tors where appropriate, is the first attempt of this nature in a commonly used
matching engine, that we are aware of. For example, the regex a*([bc]|d)
is transformed into (▷a*)([bc]|d) (assuming ▷ binds weaker than Kleene
star), since successfully matching with a last “a”, will be followed by matching
one of “b”, “c”, or “d” (or failing), and there is no overlap between these two
matching options (i.e. the option of matching with an a, or of matching with
one of b, c or d). Unfortunately, the .NET engine is very conservative when it
comes to adding atomic operators during the optimisation phase. For exam-
ple, the regex a*b*c could be transformed into (▷a*)(▷b*)c, but is rather
transformed into a*(▷b*)c. This is because the engine only looks at the next
node (or subexpression), and because b* could match the empty string, the
subexpression following b* could be used after matching with a*. But the
engine does not inspect this subexpression and thus does not rule out that c*
could potentially match substrings starting with an “a”.

An underlying problem with a general strategy of inserting atomic opera-
tors (and using it in a much more general way than in the .NET 5 matcher),
is that when it is used to ensure a regex is not vulnerable, it could poten-
tially reduce the set of strings matched by the regex [Berglund et al. 2017].
For example, the regex a*a*a can be exploited using strings of the form anb,
but modifying it to be (▷a*)(▷a*)a will have the effect that it now rejects
all strings. Additionally, determining when the insertion of atomic operators
reduce the language defined by a regex is computationally too expensive in
general [Berglund et al. 2017]. Investigating a more extensive approach than
the one currently used in .NET 5, one that is fast to compute and still safe
in the sense of not reducing the language being matched, is definitely an in-
teresting avenue for future exploration. In fact, it should be considered if the
atomic operator can be combined with memoization in useful ways to avoid
excessive matching time.

Stellenbosch University https://scholar.sun.ac.za

List of References

U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization. In In Proceedings
of the 30th Annual ACM Symposium on Principles of Programming Languages,
pages 14–25. ACM Press, 2003. ISBN 1-58113-628-5.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
ISBN 978-0-321-48681-3.

C. Allauzen, M. Mohri, and A. Rastogi. General Algorithms for Testing the Ambi-
guity of Finite Automata. In M. Ito and M. Toyama, editors, Developments in
Language Theory, pages 108–120, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

T. Amtoft and J. L. Träff. Partial Memoization for Obtaining Linear Time Behavior
of a 2DPDA. Theor. Comput. Sci., 98:347–356, 1992.

D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987. ISSN 0890-5401.

P. Arcaini, A. Gargantini, and E. Riccobene. MutRex: A Mutation-Based Generator
of Fault Detecting Strings for Regular Expressions. In 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 87–96, Mar. 2017.

P. Arcaini, A. Gargantini, and E. Riccobene. Fault-based test generation for regular
expressions by mutation. Software Testing, Verification and Reliability, 29, 2018.

D. N. Arden. Delayed-Logic and Finite-State Machines. In Proceedings of the 2nd
Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1961),
FOCS ’61, pages 133–151, USA, 1961. IEEE Computer Society.

R. Babbar and N. Singh. Clustering Based Approach to Learning Regular Expres-
sions over Large Alphabet for Noisy Unstructured Text. In Proceedings of the
Fourth Workshop on Analytics for Noisy Unstructured Text Data, AND ’10, pages
43–50, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0376-7.

J. Becker, L. Collins, and M. Davis. Emoticons, Unicode standard, v.12.1.0, 1987.
URL https://www.unicode.org/versions/Unicode12.1.0/.

87

Stellenbosch University https://scholar.sun.ac.za

https://www.unicode.org/versions/Unicode12.1.0/

LIST OF REFERENCES 88

M. Berglund and B. van der Merwe. On the Semantics of Regular Expression Parsing
in the Wild. In F. Drewes, editor, Implementation and Application of Automata,
pages 292–304, Cham, 2015. Springer International Publishing.

M. Berglund, F. Drewes, and B. Van der Merwe. Analyzing Catastrophic Backtrack-
ing Behavior in Practical Regular Expression Matching. In Z. Ésik and Z. Fülöp,
editors, Proceedings of the 14th International Conference on Automata and Formal
Languages, AFL 2014, pages 109–123, May 2014.

M. Berglund, B. van der Merwe, B. Watson, and N. Weideman. On the Semantics of
Atomic Subgroups in Practical Regular Expressions. In A. Carayol and C. Nicaud,
editors, Implementation and Application of Automata, pages 14–26, Cham, 2017.
Springer International Publishing.

M. Berglund, W. Bester, and B. van der Merwe. Formalising boost POSIX regu-
lar expression matching. In International Colloquium on Theoretical Aspects of
Computing, pages 99–115. Springer, 2018.

M. Berglund, B. v. d. Merwe, and S. v. Litsenborgh. Regular Expressions with
Lookahead. JUCS - Journal of Universal Computer Science, 27(4):324–340, 2021.
ISSN 0948-695X.

A. Birman and J. D. Ullman. Parsing algorithms with backtrack. Information and
Control, 23(1):1–34, Aug. 1973. ISSN 0019-9958.

M. Bojanczyk, A. Muscholl, T. Schwentick, Luc Segoufin, and C. David. Two-
Variable Logic on Words with Data. In 21st Annual IEEE Symposium on Logic
in Computer Science (LICS’06), pages 7–16, Aug. 2006.

M. Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages, and Programming, pages 26–37, 2014.

R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity in Graphs and Expressions.
IEEE Transactions on Computers, C-20(2):149–153, 1971.

C. Brabrand and J. G. Thomsen. Typed and Unambiguous Pattern Matching on
Strings Using Regular Expressions. In Proceedings of the 12th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming,
PPDP ’10, pages 243–254, New York, NY, USA, 2010. Association for Computing
Machinery. ISBN 978-1-4503-0132-9. event-place: Hagenberg, Austria.

C. Brabrand, R. Giegerich, and A. Møller. Analyzing Ambiguity of Context-Free
Grammars. In J. Holub and J. Žďárek, editors, Implementation and Application
of Automata, pages 214–225, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-76336-9.

J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM),
11(4):481–494, 1964. ISSN 0004-5411.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 89

J. A. Brzozowski and E. Leiss. On equations for regular languages, finite automata,
and sequential networks. Theoretical Computer Science, 10(1):19 – 35, 1980. ISSN
0304-3975.

J. A. Brzozowski and E. J. McCluskey. Signal Flow Graph Techniques for Sequential
Circuit State Diagrams. IEEE Transactions on Electronic Computers, EC-12(2):
67–76, Apr. 1963.

A. Brüggemann-Klein. Regular Expressions into Finite Automata. Theor. Comput.
Sci., 120(2):197–213, 1993.

M.-P. Béal and M. Crochemore. Minimizing incomplete automata. In FSMNLP
2008, 2008.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):
114–133, Jan. 1981. ISSN 0004-5411.

J. H. Chang, O. H. Ibarra, B. Ravikumar, and L. Berman. Some observations
concerning alternating turing machines using small space. Information Processing
Letters, 25(1):1–9, Apr. 1987. ISSN 0020-0190.

C. Chapman and K. T. Stolee. Exploring Regular Expression Usage and Context in
Python. In Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, pages 282–293, New York, NY, USA, 2016. ACM.

C. Chapman, P. Wang, and K. T. Stolee. Exploring Regular Expression Compre-
hension. In Proceedings of the 32Nd IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2017, pages 405–416, Piscataway, NJ, USA,
2017. IEEE Press.

N. Chida and K. Kuramitsu. Linear Parsing Expression Grammars. In F. Drewes,
C. Martín-Vide, and B. Truthe, editors, Language and Automata Theory and Ap-
plications, pages 275–286, Cham, 2017. Springer International Publishing.

A. Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):
40–41, 1936. Publisher: Cambridge University Press.

B. Cook and J. Launchbury. Disposable Memo Functions. In In Proceedings of the
1997 Haskell Workshop, 1997.

R. Cox. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...), 2007. URL https://swtch.com/~rsc/regexp/rege
xp1.html.

R. Cox. Regular Expression Matching: the Virtual Machine Approach, 2009. URL
https://swtch.com/~rsc/regexp/regexp1.html.

R. Cox. Regular Expression Matching in the Wild, 2010. URL https://swtch.co
m/~rsc/regexp/regexp1.html.

Stellenbosch University https://scholar.sun.ac.za

https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html

LIST OF REFERENCES 90

S. Crosby. Denial of service through regular expressions. Usenix Security work in
progress report, 2003.

L. D’Antoni. Library for symbolic automata., 2015. URL https://github.com/l
orisdanto/symbolicautomata.

L. D’Antoni, Z. Kincaid, and F. Wang. A Symbolic Decision Procedure for Symbolic
Alternating Finite Automata. Electronic Notes in Theoretical Computer Science,
336:79–99, Apr. 2018. ISSN 1571-0661.

J. Davis. On the Impact and Defeat of Regular Expression Denial of Service. PhD
Thesis, Virginia Polytechnic Institute and State University, 2020.

J. C. Davis. Rethinking Regex engines to address ReDoS. In M. Dumas, D. Pfahl,
S. Apel, and A. Russo, editors, Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, pages 1256–1258, 2019.

J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. The Impact of Regular Expres-
sion Denial of Service (ReDoS) in Practice: An Empirical Study at the Ecosystem
Scale. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2018, pages 246–256, New York, NY, USA, 2018. Association for
Computing Machinery. event-place: Lake Buena Vista, FL, USA.

J. C. Davis, L. G. Michael IV, C. A. Coghlan, F. Servant, and D. Lee. Why Aren’t
Regular Expressions a Lingua Franca? An Empirical Study on the Re-Use and
Portability of Regular Expressions. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pages 443–454, New York,
NY, USA, 2019. Association for Computing Machinery. event-place: Tallinn,
Estonia.

J. C. Davis, F. Servant, and D. Lee. Using Selective Memoization to Defeat Regular
Expression Denial of Service (ReDoS). In 2021 IEEE Symposium on Security and
Privacy (SP), pages 543–559, Los Alamitos, CA, USA, May 2021. IEEE Computer
Society.

J. Donohue. Industrial developers’ perspectives and processes around regular expres-
sion use and ReDoS. PhD Thesis, University of Bradford, 2019.

J. Earley. An Efficient Context-Free Parsing Algorithm. Commun. ACM, 13(2):
94–102, Feb. 1970. ISSN 0001-0782.

S. Exchange. Stack Exchange. Outage postmortem., 2016. URL http://web.arch
ive.org/web/20180801005940/http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016.

A. Fellah, H. Jürgensen, and S. Yu. Constructions for alternating finite automata *.
International Journal of Computer Mathematics, 35:117–132, 1990.

Stellenbosch University https://scholar.sun.ac.za

https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

LIST OF REFERENCES 91

B. Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation.
In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, pages 111–122, New York, NY, USA, 2004.
Association for Computing Machinery. event-place: Venice, Italy.

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, 1005 Gravenstein Highway
North, Sebastopol, CA 95472, 3 edition, 2006.

A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In J. Díaz,
J. Karhumäki, A. Lepistö, and D. Sannella, editors, Automata, Languages and
Programming, ICALP 2004: 31st International Colloquium, Turku, Finland, July
12-16, 2004, Proceedings, volume 3142 of Lecture Notes in Computer Science,
pages 618–629. Springer, 2004. ISBN 978-3-540-27836-8.

H. T. Glantz. On the Recognition of Information with a Digital Computer. In
Proceedings of the 1956 11th ACM National Meeting, ACM ’56, pages 126–129,
New York, NY, USA, 1956. Association for Computing Machinery.

E. Goebelbecker. Using Grep: Moving from DOS? Discover the Power of This Linux
Utility. Linux J., 1995(18es):2–es, Oct. 1995. ISSN 1075-3583. Place: Houston,
TX Publisher: Belltown Media.

J. Goyvaerts and S. Levithan. Regular expressions cookbook. O’reilly, 2012.

J. Graham-Cumming. Details of the cloudflare outage on july 2, 2019., 2019. URL
https://web.archive.org/web/20190712160002/https://blog.cloudflare.
com/details-of-the-cloudflare-outage-on-july-2-2019/.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–198, Dec.
1931. ISSN 1436-5081.

P. Hazel. PCRE - Perl Compatible Regular Expressions., 2015. URL https://www.
pcre.org/.

J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In E. Brinksma,
W. R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 89–110, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation, 2nd Edition. SIGACT News, 32(1):60–65, Mar.
2001. ISSN 0163-5700. Place: New York, NY, USA Publisher: Association for
Computing Machinery.

M. Hospodár and G. Jirásková. The complexity of concatenation on deterministic
and alternating finite automata. RAIRO-Theor. Inf. Appl., 52(2-3-4):153–168,
2018.

Stellenbosch University https://scholar.sun.ac.za

https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/ details-of-the-cloudflare-outage-on-july-2-2019/
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/ details-of-the-cloudflare-outage-on-july-2-2019/
https://www.pcre.org/
https://www.pcre.org/

LIST OF REFERENCES 92

J. Hughes. Lazy memo-functions. In J.-P. Jouannaud, editor, Functional Program-
ming Languages and Computer Architecture, pages 129–146, Berlin, Heidelberg,
1985. Springer Berlin Heidelberg. ISBN 978-3-540-39677-2.

K. Inoue, I. Takanami, and H. Taniguchi. Two-dimensional alternating turing ma-
chines. Theoretical Computer Science, 27(1):61–83, Jan. 1983. ISSN 0304-3975.

M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Sci-
ence, 134(2):329 – 363, 1994.

R. M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

C. Keeler and K. Salomaa. Alternating Finite Automata with Limited Universal
Branching. In International Conference on Language and Automata Theory and
Applications, pages 196–207. Springer, 2020.

A. Kieżun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI:
A solver for word equations over strings, regular expressions, and context-free
grammars. ACM Transactions on Software Engineering and Methodology, 21(4):
25:1–25:28, Nov. 2012. ISSN 1049-331X.

J. Kirrage, A. Rathnayake, and H. Thielecke. Static Analysis for Regular Expression
Denial-of-Service Attacks. In J. Lopez, X. Huang, and R. Sandhu, editors, Network
and System Security, pages 135–148, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-38631-2.

S. C. Kleene. Representation of events in nerve nets and finite automata. Princeton
University Press, 1951.

D. J. Kleitman. On Dedekind’s problem: The number of monotone Boolean func-
tions. Proc. Amer. Math. Soc., 21:677–682, 1969.

D. Kozen. On parallelism in turing machines. 17th Annual Symposium on Founda-
tions of Computer Science (sfcs 1976), pages 89–97, 1976.

D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Information and Computation, 110(2):366–390, 1994. ISSN 0890-5401.

O. Kupferman and S. Zuhovitzky. An Improved Algorithm for the Membership
Problem for Extended Regular Expressions. In K. Diks and W. Rytter, editors,
Mathematical Foundations of Computer Science 2002, pages 446–458, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45687-2.

R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown automata.
In 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pages
92–106, 1978.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 93

E. Larson and A. Kirk. Generating Evil Test Strings for Regular Expressions. In 2016
IEEE International Conference on Software Testing, Verification and Validation
(ICST), pages 309–319, Apr. 2016.

S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Transactions on
Computational Logic (TOCL), 9(2):1–27, 2008.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish. Reg-
ular Expression Learning for Information Extraction. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages
21–30, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec. 1943. ISSN
1522-9602.

R. McNaughton and H. Yamada. Regular Expressions and State Graphs for Au-
tomata. IRE Transactions on Electronic Computers, EC-9(1):39–47, 1960.

L. G. Michael IV. Exploring the Process and Challenges of Programming with Regular
Expressions. PhD Thesis, Virginia Tech, 2019.

D. Michie. “Memo” Functions and Machine Learning. Nature, 218(5136):19–22, Apr.
1968. ISSN 1476-4687.

B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of
UNIX Utilities. Commun. ACM, 33(12):32–44, Dec. 1990. ISSN 0001-0782.

D. Mitchell. A SAT solver primer. Bulletin of the EATCS, 85:112–132, Jan. 2005.

T. Miyazaki and Y. Minamide. Derivatives of Regular Expressions with Lookahead.
Journal of Information Processing, 27:422–430, 2019.

A. Morihita. Translation of Regular Expression with Lookahead into Finite State
Automaton. Computer Software, 29(1):147–158, 2012.

A. Møller. dk.brics.automaton – Finite-State Automata and Regular Expressions for
Java, 2001.

N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, Sept. 1956. ISSN 2168-2712.

L. H. Nehman. Cloudflare’s plan to protect the whole internet comes into focus.,
2018. URL https://www.wired.com/story/cloudflare-spectrum-iot-protec
tion/.

W. J. Paul, E. J. Prauß, and R. Reischuk. On alternation. Acta Informatica, 14(3):
243–255, Sept. 1980. ISSN 1432-0525.

Stellenbosch University https://scholar.sun.ac.za

https://www.wired.com/story/cloudflare-spectrum-iot-protection/
https://www.wired.com/story/cloudflare-spectrum-iot-protection/

LIST OF REFERENCES 94

T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vulnerabilities. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’17, pages 2155–2168, New York, NY, USA, 2017. ACM.

M. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM Journal
of Research and Development, 3:114–125, Apr. 1959.

A. Rathnayake and H. Thielecke. Static Analysis for Regular Expression Exponential
Runtime via Substructural Logics. ArXiv, abs/1405.7058, 2014.

B. Ravikumar. Parallel Algorithms for Finite Automata Problems. In P. M. Pardalos
and S. Rajasekaran, editors, Advances in Randomized Parallel Computing, pages
209–239. Springer US, Boston, MA, 1999. ISBN 978-1-4613-3282-4.

RegExLib. Regular Expression Library, 2001. URL https://www.regexlib.com/.

W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21(2):218–235, Oct. 1980. ISSN 0022-0000.

N. Schwarz, A. Karper, and O. Nierstrasz. Efficiently extracting full parse trees using
regular expressions with capture groups. PeerJ Prepr., 3:e1248, 2015.

Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu. ReScue: crafting regular
expression DoS attacks. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 225–235. ACM, 2018.

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of software
engineering work practices. In Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative research, page 21, 1997.

M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston,
MA, third edition, 2013.

N. Sloane. The online encyclopedia of integer sequences, 1964.

R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: Fast and scalable
deep packet inspection with extended finite automata. In SIGCOMM, volume 38,
pages 207–218, 2008.

H. Spencer. A Regular-Expression Matcher. In Software Solutions in C, pages 35–71.
Academic Press Professional, Inc., USA, 1994.

C.-A. Staicu and M. Pradel. Freezing the Web: A Study of ReDoS Vulnerabilities in
JavaScript-based Web Servers. In 27th USENIX Security Symposium (USENIX
Security 18), pages 361–376, Baltimore, MD, Aug. 2018. USENIX Association.

R. Stallman. IEEE Standard for Information Technology - Portable Operating Sys-
tem Interface (POSIX(R)). IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-
2004), pages 1–3874, Dec. 2008.

Stellenbosch University https://scholar.sun.ac.za

https://www.regexlib.com/

LIST OF REFERENCES 95

C. Stanford, M. Veanes, and N. Bjørner. Symbolic boolean derivatives for efficiently
solving extended regular expression constraints. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Im-
plementation, PLDI 2021, page 620–635, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383912. doi: 10.1145/3453483.3454066.
URL https://doi.org/10.1145/3453483.3454066.

L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential
Time(Preliminary Report). In Proceedings of the Fifth Annual ACM Symposium
on Theory of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973. As-
sociation for Computing Machinery. event-place: Austin, Texas, USA.

B. Sullivan. Security Briefs - Regular Expression Denial of Service Attacks and
Defenses. Technical Report, Microsoft, 2010. URL https://msdn.microsoft.c
om/en-us/magazine/ff646973.aspx.

M. Sulzmann and K. Z. M. Lu. Derivative-Based Diagnosis of Regular Expression
Ambiguity. International Journal of Foundations of Computer Science, 28:543–
561, Aug. 2017.

S. Taub. Regex Performance Improvements in .NET 5, 2020. URL https://devb
logs.microsoft.com/dotnet/regex-performance-improvements-in-net-5/.

K. Thompson. Programming Techniques: Regular Expression Search Algorithm.
Commun. ACM, 11(6):419–422, June 1968.

A. M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–265,
Jan. 1937. ISSN 0024-6115.

A. Valmari and P. Lehtinen. Efficient Minimization of DFAs with Partial Transition
Functions. ArXiv, abs/0802.2826, 2008.

P. van Beek. Backtracking Search Algorithms. Handbook of Constraint Programming,
page 83, 2006.

B. van der Merwe, J. Mouton, S. van Litsenborgh, and M. Berglund. Memoized
Regular Expressions. In S. Maneth, editor, Implementation and Application of
Automata, pages 39–52, Cham, 2021. Springer International Publishing. ISBN
978-3-030-79121-6.

G. van Noord and D. Gerdemann. Finite State Transducers with Predicates and
Identities. Grammars, 4, 2001.

M. Veanes, P. d. Halleux, and N. Tillmann. Rex: Symbolic Regular Expression Ex-
plorer. In 2010 Third International Conference on Software Testing, Verification
and Validation, pages 498–507, Apr. 2010.

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/3453483.3454066
https://msdn.microsoft.com/en-us/ magazine/ff646973.aspx
https://msdn.microsoft.com/en-us/ magazine/ff646973.aspx
https://devblogs.microsoft.com/dotnet/regex-performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/regex-performance-improvements-in-net-5/

LIST OF REFERENCES 96

P. Wang and K. T. Stolee. How Well Are Regular Expressions Tested in the Wild?
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2018, pages 668–678, New York, NY, USA, 2018. ACM.

P. Wang, G. R. Bai, and K. T. Stolee. Exploring Regular Expression Evolution.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 502–513, 2019.

B. W. Watson. Implementing and Using Finite Automata Toolkits. Nat. Lang. Eng.,
2(4):295–302, Dec. 1996.

A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325 – 349, 1991. ISSN 0304-3975.

N. Weideman, B. v. d. Merwe, M. Berglund, and B. W. Watson. Analyzing Matching
Time Behavior of Backtracking Regular Expression Matchers by Using Ambiguity
of NFA. In Y.-S. Han and K. Salomaa, editors, Implementation and Application of
Automata - 21st International Conference, CIAA 2016, Seoul, South Korea, July
19-22, 2016, Proceedings, volume 9705 of Lecture Notes in Computer Science,
pages 322–334. Springer, 2016.

N. H. Weideman. Static analysis of regular expressions. PhD Thesis, Stellenbosch:
Stellenbosch University, 2017.

V. Wüstholz, O. Olivo, M. J. Heule, and I. Dillig. Static Detection of DoS Vulner-
abilities in Programs That Use Regular Expressions. In Proceedings, Part II, of
the 23rd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems - Volume 10206, pages 3–20, Berlin, Heidelberg, 2017.
Springer-Verlag. ISBN 978-3-662-54579-9.

L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan. Partial Memoization of Con-
currency and Communication. In Sigplan Notices - SIGPLAN, volume 44, pages
161–172, Aug. 2009.

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Contents
	List of Figures
	List of Tables
	Introduction
	A Tale of Two Engines
	Scientific Contributions
	Thesis Outline

	Background and Literature
	Fundamentals of Formal Language Theory
	Ambiguity of NFA
	Alternating Automata
	Regular Expressions
	Regular Expression Matching

	Related Work
	Regular Expressions with Lookahead
	Atomic Subgroups in Regular Expressions
	Regular Expression Denial of Service
	Using Memoization to Enhance Regular Expression Matching
	Empirical Research on Regular Expression Usage

	Regular Expressions with Lookahead
	Introduction
	Preliminaries
	Automata Construction for REwLA
	State Complexity Considerations
	Experimental Results
	Conclusion

	Atomic Subgroups and Submatching
	Introduction
	Preliminaries
	Submatch Considerations
	Translating aREwLA into REwLA
	Experimental Results
	Conclusion

	Memoized Regular Expressions
	Introduction
	Preliminaries
	Generalization of Mohri's ambiguity results to mNFA
	Hardness Results
	Memoization Schemes
	Experimental Results
	Future Work

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Symbolic Automata
	IAR Experimental Results
	Backtracking Matching and Prefix Ambiguity
	Catastrophic Backtracking Prevention in the Java Regular Expression Engine
	Backtracking Elimination in .NET 5
	List of References

