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Abstract

Yield Analysis and Optimization of Microwave Devices
and Antennas using Non-Linear Partial-Least-Squares

Based Polynomial Chaos Expansion

D.G. Klink

Department of Electrical and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (E&E)
December 2022

Polynomial Chaos Expansion (PCE is introduced as an alternative to clas-
sical sensitivity analysis techniques, such as Monte Carlo analysis, for elec-
tromagnetic applications. After a su�ciently accurate PCE surrogate is con-
structed, the statistical information estimates can be extracted from the PCE 
coe�cients. The construction of the PCE surrogate typically requires fewer 
frequency sweeps than statistical information estimation using Monte Carlo 
analysis. The advantages of PCE are thus two-fold, it provides a computa-
tionally inexpensive surrogate and the statistical information estimates can be 
extracted directly from the PCE coe�cients.

Di�erent coe�cient calculation methods are considered to construct the 
most e�cient PCE using the smallest number of samples. A simple inset-fed 
patch antenna is chosen as a benchmark problem. Cross-polarisation is chosen 
as a performance characteristic and the position of the feed is identi�ed as the 
most sensitive parameter associated with cross-polarization. PCE models are 
constructed for each coe�cient calculation method and statistical information 
estimates (mean and variance are extracted and compared to a Monte Carlo 
analysis, whereafter the most e�cient PCE coe�cient calculation method is 
determined.

PCE construction for complex structures with a large number of sensitive 
system parameters is prohibitive since a large number of samples are required. 
The NLPLS-based PCE method is proposed, where a surrogate model is con-
structed with a massive reduction in system parameters using NLPLS, and the 
statistical information is determined simultaneously with the same sample set
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ABSTRACT iii

using PCE. This method is successfully applied to a dual-band patch antenna
problem with 8 system parameters and a diplexer problem with 37 system
parameters. This allows accurate yield estimates using only 20 and 30 sam-
ples for the dual-band patch antenna and the diplexer respectively, whereas a
Monte Carlo analysis requires 500 samples.

A variance-based global sensitivity analysis seamlessly follows the NLPLS-
based PCE surrogate, and global sensitivity analysis of the dual-band patch an-
tenna, the diplexer, and a diplexer optimized for manufacturing is performed.

Multiple NLPLS-based PCE derivate yield optimization algorithms are pro-
posed and applied to optimize the yield of the manufactured diplexer, with
38 system parameters, and a 100 GHz �lter with 43 system parameters. A
performance-guided random walk algorithm improved the yield of the manu-
factured diplexer from 57.28 % to 100 % after only 4 iterations. The same
algorithm improved the yield of the 100 GHz �lter from 7.67 % to roughly 90
% after only 8 iterations.
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Uittreksel

Opbrengsanalise en Optimering van Mikrogolftoestelle en
Antennas deur gebruik te maak van Nie-Lineêre
Gedeeltelike-Kleinste-Kwadrate-Gebaseerde

Polinoom-Chaos-Uitbreiding

(�Yield Analysis and Optimization of Microwave Devices and Antennas using 
Non-Linear Partial-Least-Squares Based Polynomial Chaos Expansion�)

D.G. Klink
Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD (E&E)
Desember 2022

Polinomiese Chaos Uitbreiding (PCE word bekendgestel as 'n alternatief vir 
klassieke sensitiwiteitsanalise tegnieke, soos Monte Carlo-analise, vir elektro-
magnetiese toepassings. Na 'n voldoende akkurate PCE-surrogaat gekonstru-
eer word, kan die statistiese inligtingskattings uit die PCE-koë�siënte ont-
trek word. Die konstruksie van die PCE-surrogaat vereis gewoonlik minder 
frekwensie punte as wat statistiese inligtingskatting met behulp van Monte 
Carlo analise vereis. Die voordele van PCE is dus tweeledig, dit bied 'n koste-
e�ektiewe surrogaat aan en die statistiese inligtingskattings kan direk uit die 
PCE-koë�siënte onttrek word.

Verskillende koë�siënt berekeningsmetodes word oorweeg om die mees 
doeltre�ende PCE te konstrueer deur die kleinste aantal monsters te gebruik. 
'n Eenvoudige inset-gevoede mikrostrook antenna word as 'n maatstafprobleem 
gekies. Kruispolarisasie word as prestasie kenmerk gekies en die posisie van die 
voer word geïdenti�seer as die mees sensitiewe parameter wat met kruispolari-
sasie geassosieer word. PCE-modelle word vir elke koë�siënt berekeningsme-
tode saamgestel en statistiese inligtingskattings (gemiddeld en variansie word 
onttrek en vergelyk met 'n Monte Carlo analise, waarna die mees doeltre�ende 
PCE-koë�siënt berekeningsmetode bepaal word.

PCE-konstruksie vir komplekse strukture met 'n groot aantal sensitiewe 
stelselparameters is onaantreklik, aangesien 'n groot aantal monsters benodig

iv

Stellenbosch University https://scholar.sun.ac.za



UITTREKSEL v

word. Die NPLLS-gebaseerde PCE metode word voorgestel, waar 'n surro-
gaatmodel gekonstrueer word met 'n massiewe vermindering in stelselparame-
ters deur gebruik te maak van NLPLS, en die statistiese inligting gelyktydig
met die dieselfde monster-stel onttrek word met behulp van PCE. Hierdie me-
tode word suksesvol toegepas op 'n dubbelband-mikrostrook-antenna probleem
met 8 stelselparameters en 'n diplekser probleem met 37 stelselparameters.
Dit het akkurate opbrengs moontlik gemaak met slegs 20 en 30 monsters vir
die dubbelband-mikrostrook-antenna en die diplekser onderskeidelik, waar 'n
Monte Carlo-analise 500 monsters vereis het.

'n Variansie-gebaseerde globale sensitiwiteitsanalise volg direk
die NLPLS-gebaseerde PCE surrogaat, en globale sensitiwiteitsanalise van die
dubbelband-mikrostrook-antenna, die diplekser en 'n diplekser geoptimeer vir
vervaardiging, is suksesvol uitgevoer.

Veelvuldige NPLS-gebaseerde PCE-afgeleide opbrengs-optimeringsalgorit-
mes word voorgestel en toegepas om die opbrengs van die vervaardigde diplek-
ser te optimeer met 38 stelselparameters, en 'n 100 GHz-�lter met 43 stelselpa-
rameters. 'n Prestasiegeleide ewekansige stap-algoritme het die opbrengs van
die vervaardigde diplekser van 57.28 % tot 100 % verbeter na slegs 4 iterasies.
Dieselfde algoritme het die opbrengs van die 100 GHz-�lter verbeter van 7.67
% tot ongeveer 90 % na slegs 8 iterasies.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Computational models are commonly used in the design phase of most engi-
neering applications. This allows engineers to reduce the necessity of expensive
tests, measurements, and refabrications. Large-scale production, however, pro-
vides additional challenges. Uncertainties regarding system parameters, which
are negligible for small-scale production, become important due to the tol-
erances associated with the fabrication process. In an electromagnetic (EM)
design, geometrical uncertainties typically have the largest in�uence on perfor-
mance yield for high-volume production. Modern engineering requires rigorous
designs which include the modeling of uncertainties relating to the fabrication
processes. In EM designs, with extremely sensitive system parameters, the
inclusion of these uncertainties is of utmost importance to ensure that most
of the produced electromagnetic structures function within the allowed perfor-
mance band.

Uncertainty is typically expressed in terms of statistical variables such as
the mean value and the standard deviation. Classical Monte Carlo analysis [2]
is the most widely used technique used to determine the in�uence of uncer-
tainties due to the simplicity of implementation, but improved methods such
as Latin Hypercube Sampling [3] or quasi-Monte Carlo [4] are also used in
the industry. These methods do, however, all su�er from the limitation of a
requirement of a large number of samples to converge to a su�ciently accurate
value. Consequently, if a single simulation is computationally expensive, these
stochastic simulations require a large amount of time to perform.

An alternative to Monte Carlo is the substitution of the simulation model
with a surrogate. This surrogate is usually cheaper to evaluate or has certain
properties that reduce the number of evaluations necessary for the conver-
gence of statistical information. Polynomial Chaos Expansion (PCE) [5] is a
surrogate modeling technique, where the simulation model is described as a
polynomial expansion relating the chosen performance metric to its related

1
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CHAPTER 1. INTRODUCTION 2

system parameters. PCE di�ers from other surrogate models in that the poly-
nomials are based on the statistical properties of the variables.

In PCE the coe�cients of the polynomial expansion can be calculated from
a small set of simulations whereafter all statistical information can be extracted
directly from the coe�cients. Determining the minimum number of samples
required to build this polynomial expansion is of critical importance since the
simulation time is sample size dependent.

PCE has been used in various studies, where multiple methods of coe�-
cient calculation techniques were used to determine the PCE coe�cients. In [6],
variations in the textile antenna's resonance frequency under random bending
are statistically quanti�ed using PCE in combination with a dedicated cav-
ity model for curved textile antennas. The non-intrusive Spectral Projection
(SP) method is used to determine the coe�cients and PCE provides statistical
estimates at least as accurate as Monte Carlo while being at least 100 times
faster.

In [7], disturbances in antennas and the corresponding variation in the far-
�eld are statistically modeled in a two-phase method. The radiated far-�eld
is transformed into a parsimonious form using the spherical modes expansion
method, whereafter a PCE model is constructed, relating the parsimonious
far-�eld to the chosen input parameters. The performance of this method
is demonstrated with a dipole undergoing three independent random defor-
mations. The two-phase method is computationally costless since complete
knowledge of the �eld is not required. A su�ciently accurate model is also
constructed using 280 samples.

PCE, in combination with Sobol indices, is used for a sensitivity analysis
to determine the most sensitive parameters of an E-shaped patch antenna and
a split-ring resonator [8]. The ordinary least squares (OLS) method is used to
determine the PCE coe�cients. The study determined that the performance
is highly dependent on the variability of the structure parameters.

In [9], the performance of the GeReLEO-SMART antenna under sensitiv-
ity is quanti�ed using PCE built from very few full-wave simulations. The
least-angle regression method is used to determine the PCE coe�cients, and
the PCE provided accurate estimates using 600 samples. These estimates were
compared to measured results since Monte Carlo estimates would be compu-
tationally expensive to calculate.

Variability analysis of multiport systems is done using PCE. In [10], SP
and OLS were used to determine the PCE coe�cients, providing a solution as
accurate as Monte Carlo with a signi�cant reduction in computational cost.
This provided a computationally inexpensive method that is suitable for the
analysis of many modern electrical systems.

Lastly, stochastic simulation of interconnects, illuminated by random ex-
ternal �elds, is done using a PCE-based strategy. The PCE coe�cients were
calculated using an intrusive Galerkin method. This method provided accurate
solutions up to 450 times faster than classical Monte Carlo [11].
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CHAPTER 1. INTRODUCTION 3

While numerous coe�cient calculation methods exist, optimal solutions are
normally problem-speci�c. When applied to antenna problems, the underlying
physics constrains the nature of equations signi�cantly, which then conversely
in�uences the performance of the various coe�cient calculation techniques. No
comparison has, however, been made between coe�cient calculation methods
and sampling techniques.

Furthermore, general PCE with varying methods of coe�cient calculation
does not allow the utilization of PCE for EM problems with a large number
of sensitive system parameters. Some PCE hybrid methods do exist, e.g. a
PCE-Kriging method proposed by [12], but they do not reduce the computa-
tional burden to such an extent as to allow complex stochastic analysis. Other
methods, which do not utilize PCE, also exist, but none provide a solution for
high-dimensional statistical analysis. Consequently, these methods also do not
provide a computationally e�cient solution for yield analysis and optimization
of complex high-dimensional EM problems.

In this dissertation, an advanced Non-Linear-Least-Square-based PCE
(NLPLS-based PCE) method is introduced, where a surrogate model is con-
structed with a massive reduction in system parameters using NLPLS, and the
statistical information is determined simultaneously with the same sample set
using PCE. This provides an e�cient solution to estimate the yield for high-
dimensional complex EM problems. Multiple yield optimization algorithms
are presented and a performance-guided random walk optimization algorithm
provided the most e�cient solution, requiring a minuscule number of frequency
sweeps to optimize the yield of complex and high-dimensional EM problems.
A comparison is also made on the range of coe�cient calculation techniques
used in literature to construct a PCE surrogate.

1.2 Contributions

The work contains the following main contributions:

� An NLPLS-based PCE yield analysis method is developed and success-
fully applied to a dual-band patch antenna with 8 system parameters
and a diplexer with 37 system parameters [13].

� Novel NLPLS-based yield optimization algorithms are developed and
successfully applied to a diplexer previously optimized for manufactur-
ing with 38 system parameters and a 100 GHz �lter with 43 system
parameters.

� A comparison of techniques for �nding coe�cients of polynomial chaos
models for antenna problems is presented [14].

Smaller contributions include:
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CHAPTER 1. INTRODUCTION 4

� A PCE yield analysis of quad-mode antennas [15].

� A comparison of coe�cient calculation techniques for NLPLS-based PCE
models of antennas [16].

� An e�cient sensitivity analysis of electromagnetic structures using
NLPLS-based PCE [17].

1.3 Organization of Text

The text �rstly provides a theoretical understanding of classical sensitivity
analysis techniques and the proposed surrogate modeling-based PCE tech-
nique, also including a practical understanding of each coe�cient calculation
method. The rest of the text provides a well-known benchmark problem to
e�ectively compare the classical method with the proposed method with an
analytical solution. An example problem is set up to determine the prac-
tical bene�ts and limitations of this method for a simple antenna problem.
The NLPLS-based PCE method is proposed for yield analysis of complex
high-dimensional EM problems. A variance-based global sensitivity analysis
seamlessly follows the yield analysis. Yield optimization algorithms are �nally
developed to optimize the yield of complex high-dimensional EM problems.

The thesis is organized as follows: in Chapter 2, sensitivity analysis and the
well-known Monte Carlo method are introduced as a standard benchmark for
the PCE method. Chapter 3 describes the theory behind PCE, multiple meth-
ods to build a PCE, and sampling methods to further improve the advantages
of PCE. Chapter 4 provides a benchmark problem to e�ectively compare the
Monte Carlo method and PCE with an analytical solution. Chapter 5 intro-
duces a simple patch antenna problem to determine the practical advantages
and limitations of the PCE method. Chapter 6 introduces the NLPLS-based
PCE methods to allow for yield analysis of complex high-dimensional EM
problems. Chapter 7 introduces a global sensitivity analysis method that e�-
ciently follows the information provided by the NLPLS-based PCE surrogate.
Chapter 8 introduces multiple yield-optimization methods and a performance-
guided random walk yield optimization algorithm is chosen as the most optimal
method from a set of candidate solutions. Chapter 9 concludes this work with
recommendations for future work.
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Chapter 2

Stochastic Analysis

This chapter will introduce fundamental stochastic analysis concepts which are
used to quantify the e�ciency and accuracy of the stochastic analysis method
introduced in later chapters. Since fabrication tolerances introduce uncertainty
to system parameters, the system parameters become random variables. The
system performance parameters can consequently be modeled as a random
process and its statistical characteristics can be quanti�ed using statistical
methods. The statistical characteristics most important to the work, namely,
the expected value (mean), the variance, and the probability density function
(PDF) is discussed. This chapter also introduces and presents the Monte Carlo
(MC) method, a method widely used in practice to estimate these statistical
characteristics due to its simplicity to implement in complex systems.

2.1 Probabilistic Framework

This work will consider an n-dimensional random system parameter vector
x = {x1, · · · , xn} and its corresponding performance parameter vector y(x).
The components of the random system parameter vector are considered to be
statistically independent. The PDF of the ith random system parameter xi is
de�ned as fxi

(xi) : Γi → R, where Γi is the support of the i
th random system

parameter and R the set of positive real numbers. The support Γi of a PDF is
the set of points where fxi

(xi) is non-zero. The joint PDF of x is then de�ned
due to statistical independence in (2.1.1):

fx(x) =
n∏

i=1

fxi
(xi) (2.1.1)

The joint support is then de�ned due to statistical independence in (2.1.2):

Γ =
n∏

i=1

Γi (2.1.2)

5
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CHAPTER 2. STOCHASTIC ANALYSIS 6

When a random process is continuous, or a correlation among some random
system parameters exists, the random system parameter vector can no longer
be assumed to be statistically independent. Many techniques exist to decom-
pose the random system parameter vector into a set of uncorrelated, and thus
independent random variables. These methods will not be discussed in this
work, as the random system parameter vector is assumed to always be statis-
tically independent. It is worth noting that each random system parameter xi
is assumed to have standard distributions with well-known properties. This
work limits the random system parameters to uniform and normal distribu-
tions. These limitations are applied to limit the scope and better illustrate the
working of the methods introduced in future chapters. For the applications
discussed in this dissertation, xi will be the dimensions of a structure, pro-
duced by a manufacturing process. The limitation imposed by the assumption
of independence is therefore small.

Random system parameters, propagated through a system to quantify the
corresponding random system performance parameter uncertainty, translates
to random variable transformation. The following random variable transfor-
mation equations are exact analytical solutions that are used as a reference to
quantify the accuracy of stochastic analysis techniques. The expected value of
a transformed random variable can be calculated using (2.1.3).

E{y(x)} =

∫
Γ

y(x)fx(x)dx (2.1.3)

The variance of the transformed variable can be calculated using (2.1.4).

Var{y(x)} =

∫
Γ

y(x)2fx(x)dx− E2{y(x)} (2.1.4)

These equations can be extended to n-dimensional random system parame-
ters as a tensor product of each random system parameter, resulting in an
n-dimensional integral for both the expected value and the variance.

2.2 Monte Carlo Analysis

Monte Carlo (MC) is a stochastic analysis technique widely used in practice
due to its simplicity to implement in complex systems. This results in MC
being well understood and documented. The MC method can be summarized
in 4 steps:

1. Choose random system parameters of interest and determine their re-
spective distributions.

2. Generate a set of samples for each random system parameter according
to their respective distributions.
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3. Perform a deterministic computation for each sample set.

4. Aggregate the results and extract statistical information.

Figure 2.1: Uncertainty propagation

Figure 2.1 provides a visual understanding of MC using a simpli�ed example.
The random system parameter x is a normal random variable with a mean
of 0 and a variance of 1, symbolized as x ∼ N (0, 1). N samples are taken
from the normal distribution associated with the random system parameter
x, symbolized using shorthand notation as {xi}Ni=1, where xi is the i

th sample
and N is the total number of samples. N deterministic solutions are computed
using this sample set resulting in a set of N system evaluations, symbolized
using the same shorthand notation. The results are then aggregated and an
estimate of the system performance uncertainty is quanti�ed, symbolized as
the PDF fy(y).

An MC consisting of N model evaluations produces a corresponding ran-
dom system performance parameter Y = {y1, · · · , yN}, where Y is the vector
of model evaluations with {y1, · · · , yN} symbolizing each of the N model eval-
uation outputs. The mean value of the random system performance parameter
Y can be calculated using (2.2.1).

µy = E{Y} ≈ µ̂y =
1

N

N∑
i=1

yi (2.2.1)

The analytical mean of y(x) is symbolized by µy, while the estimated mean of
y(x) is symbolized by µ̂y. It is worth noting that µ̂y is itself a random variable
which would result in di�erent values given di�erent random system parameter
sample sets. It can be proven that µ̂y is unbiased, meaning the value coincides
with the value it estimates. The variance of µ̂y is calculated using (2.2.2).

Var{µ̂y} =
Var{Y}
N

=
σ2
y

N
(2.2.2)
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CHAPTER 2. STOCHASTIC ANALYSIS 8

It is clear from (2.2.2) that the variance, symbolized by σ2
y , of µ̂y will approach

0 as the number of model evaluations, N , is increased. Furthermore, µ̂y ap-
proaches a normal distribution with an increase in samples N according to the
central limit theorem.

An unbiased estimator of the variance of y(x) is calculated using (2.2.3).

σ2
y = Var{Y} ≈ σ̂2

y =
1

N − 1

N∑
i=1

(yi − µ̂)2 (2.2.3)

The analytical variance is symbolized by σ2
y , while the estimated variance is

symbolized by σ̂2
y . In this case, there is no explicit expression for the variance

of σ̂2
y , but (2.2.3) does, however, allow us to draw a general conclusion that

the convergence rate σ̂2
y is similar to the convergence rate of µ̂y.

To better illustrate the workings and properties of the MC method, the
statistical characteristics of a polynomial function, y(τ), shown in (2.2.4), is
estimated:

y(τ) = τ 2 − 2τ − 3 (2.2.4)

The random system parameter τ is a normal random variable with a mean of 2
and a variance of 0.5, symbolized as, τ ∼ N (2, 0.5). Sample sets of increasing
size are generated according to the PDF associated with the random system
parameter. Model evaluation sets are constructed from these sample sets,
whereafter the results are aggregated and the statistical information, namely
the estimated mean and estimated variance, is extracted. These estimates
are compared to the analytical values determined using (2.1.3) and (2.1.4) to
quantify the accuracy and point of convergence. The point of convergence is
de�ned as the point where the di�erence between the MC estimators and the
analytical values is less than 5%. These results are summarized in Table 2.1:

Samples N µ̂y Error σ̂2
y Error

10 -2.97 7.86% 0.93 16.99%
100 -2.80 1.84% 1.05 6.76%
1000 -2.74 0.24% 1.20 6.70%
10000 -2.76 0.29% 1.09 2.79%
100000 -2.75 0.04% 1.13 0.24%

Table 2.1: MC Mean and variance estimates. Correct values are µ = −2.75,
σ2 = 1.125

From Table 2.1, it is worth noting that the estimated variance requires a
much larger number of samples to converge when compared to the estimated
mean. 1000 - 100000 samples are required to estimate both the mean and
variance accurately. The convergence of the MC estimates is more clearly
demonstrated in Figure 2.2.
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(b) MC variance estimate

Figure 2.2: MC statistical estimates

While MC is a very simple and well-known technique, it typically requires
a high number of samples to provide accurate statistical estimates.
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Chapter 3

Polynomial Chaos Theory

The previous chapter introduced important statistical properties and consid-
ered Monte Carlo (MC) to estimate the statistical characteristics of a random
system performance parameter. MC is simple to implement and intuitive to
understand but requires a large number of model evaluations to accurately
estimate the statistical characteristics of a random system performance pa-
rameter. MC becomes unfeasible when the random system performance pa-
rameter is sensitive to a large number of random system parameters (a very
large number of model evaluations is required for accurate estimates) or the
computational model is complex (the computational model is computationally
expensive to evaluate). Electromagnetic (EM) simulations are generally com-
plex and EM simulators such as CST are generally computationally expensive.
The sensitivity of the random system performance parameter is often di�cult
to intuitively determine, and a large number of random system parameters
typically need to be included to accurately estimate the statistical character-
istics of the random system performance parameter. This chapter introduces
a stochastic analysis method, namely Polynomial Chaos Expansions (PCE),
which requires signi�cantly fewer model evaluations to estimate the statistical
characteristics of the random system performance parameter. PCE attempts
to overcome both limitations of MC, providing a computationally inexpensive
surrogate model of the random system performance parameter and allowing
direct extraction of statistical characteristic estimates of the random system
performance parameter, from the PCE surrogate. PCE and adaptations of
PCE have been applied to many EM applications, including, but not limited
to, a conduction array of split-ring resonators (7 variables, requiring a few
hundred samples for convergence) [18], a construction of stochastic surrogate
models of deformable antennas (6 variables, requiring 694 samples for conver-
gence) [19], statistical modeling of disturbed antennas (3 variables, requiring
260 samples for convergence) [7], a hybrid Method of Moments (MoM) ap-
proach for dimensionality reduction for EM problems (8 variables, requiring
241 samples for convergence) [20], stochastic analysis of substrate compres-
sion of textile antennas (2 variables, requiring 81 samples for convergence)

10
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CHAPTER 3. POLYNOMIAL CHAOS THEORY 11

Distribution (PDF) Class of Orthogonal Polynomials Support Γ

Uniform Legendre [−1,+1]
Gaussian Hermite (−∞,+∞)
Beta Jacobi [−1,+1]

Gamma Laguerre [ 0,+∞)

Table 3.1: Wiener-askey polynomial chaos

[21], uncertainty in resonance frequency of textile antennas due to bending (4
variables, requiring 33 samples for convergence) [6], and �nally, a fast PCE
approach for uncertainty quanti�cation in stochastic EM problems (5 vari-
ables, requiring 53 samples for convergence) [22]. This chapter also presents
truncation methods, coe�cient calculation methods, and sampling methods to
further improve the advantages of PCE.

3.1 Polynomial Chaos

Polynomial Chaos is a surrogate modeling technique, which represents a ran-
dom system performance parameter in terms of orthogonal polynomial expan-
sions of random system parameters [11]. A surrogate model is a computation-
ally inexpensive substitution of a computationally expensive model.

The polynomial bases are chosen according to the probability density func-
tion (PDF) of the random system parameters. These optimal bases are typ-
ically determined using the Wiener-Askey scheme [23]. A list of polynomial
bases associated with common distributions is shown in Table 3.1.

The appropriate polynomial basis functions are chosen using the Wiener-
Askey Scheme, whereafter the coe�cients of the polynomials are determined.
The main advantage of creating these PCEs is the ability to extract the statis-
tical characteristic estimates directly from the coe�cients. Fewer model eval-
uations are typically required to construct an accurate PCE surrogate, com-
pared to the number of model evaluations required to estimate the statistical
characteristics using MC. This dramatically reduces the computation expense
to estimate the statistical characteristics of the random system performance
parameter. This thesis will be limited to uniform and normal (Gaussian) ran-
dom system parameters and will therefore exclusively make use of Legendre
and Hermite polynomials as bases respectively.

3.2 Polynomial Chaos Expansions

A PCE is a surrogate model ŷ(x) which approximates a computational model
y(x) as a sum of weighted polynomials as shown in (3.2.1), where ϕk̄(x) denotes
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the polynomials and ck denotes the weights.

ŷ(x) =
N∑
k=0

ckϕk̄(x) (3.2.1)

The PCE aims to represent an approximate solution to the random system
performance parameter. An in�nite series thus relates to an exact solution
and truncation is applied to only include the polynomials that best describe
the random system performance parameter. After an appropriate method
of truncation is applied, the unknown expansion coe�cients are determined.
The following sections aim to provide an understanding of the construction
of the PCE, including the construction of the polynomial bases, truncation of
the PCE to a speci�ed polynomial degree, and truncation methods to further
reduce the expansion whilst maintaining su�cient approximation accuracy.
A section follows describing a range of coe�cient calculation techniques and
methods to reduce the number of model evaluations required to construct an
accurate PCE surrogate.

3.3 Basis Functions

Each random system parameter xi has an appropriate univariate polynomial
family which is orthogonal to its associated PDF as determined using the
Wiener-Askey scheme summarized in Table 3.1. This orthogonal property can
be expressed mathematically as seen in (3.3.1), where ϕ denotes the univariate
polynomial, k denotes the degree of the polynomial, z denotes the family of
polynomial, and xi denotes the ith random system parameter. The PDF,
previously symbolized as fxi

(xi), is now denoted as w(xi) to emphasize its use
as a weighting function.

⟨ϕ(z)
k (xi), ϕ

(z)
j (xi)⟩ =

∫
Γ

ϕ
(z)
k (xi)ϕ

(z)
j (xi)w(xi)dxi = α2

kδkj (3.3.1)

The Kronecker delta function δkj in (3.3.1) is de�ned as (3.3.2) and ⟨·⟩ denotes
the inner product.

δkj =

{
0, if j ̸= k

1, if j = k
(3.3.2)

The normalization factor α2
k in (3.3.1) is de�ned as (3.3.3).

α2
k = ⟨ϕ(z)

k (xi), ϕ
(z)
k (xi)⟩ =

∫
Γ

ϕ2
k(xi)w(xi)dxi (3.3.3)

The polynomials can be normalized such that α2
k ≡ 1,∀k. The univariate or-

thonormal polynomials can be constructed through the division of the univari-
ate orthogonal polynomials with their respective normalization factors shown
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in (3.3.4).

φk(xi) =
ϕk(xi)

α2
k

(3.3.4)

The multivariate orthogonal polynomials are constructed as tensor products of
their univariate counterparts [24]. This is expressed mathematically in (3.3.5),
where k̄ is a multi-index that corresponds to the order of the multivariate
polynomial. Each value in k̄ relates to the set of multivariate polynomial com-
binations of a total order equal to the value in k̄. The degree of each univariate
polynomial is denoted by ki, with i being the ith univariate polynomial, while
x denotes the random system parameter vector, with |x| denoting the size of
the random system parameter vector. This is better illustrated in the following
2 subsections.

ϕk̄(x) =

|x|∏
i=1

ϕki(xi) (3.3.5)

3.3.1 Normal Distribution | Hermite Polynomials

A clear presentation of Hermite polynomials can be found in [25]. This section
presents a brief overview.

The Hermite polynomials are orthogonal to the PDF of a standard normal
variable de�ned as N (0, 1) [23], where N denotes a normal random variable
and (0, 1) denotes the mean and variance of the normal random variable re-
spectively. Hermite polynomials are related to the following weighting function
in (3.3.6).

w(x) =
1√
2π
e−x2/2 (3.3.6)

The Hermite polynomials can be obtained using the following generating func-
tion (3.3.7), where k is the degree of the polynomial.

Hk = (−1)kex
2/2 d

k

dxk
e−x2/2 (3.3.7)

The Hermite polynomials can also be obtained using the following three-term
recurrence relation (3.3.8).

Hk+1(x) = xHk(x)− kHk−1(x) (3.3.8)

Given that k > 1 and from (3.3.7), that H0 = 1 and H1 = x, it can be shown
that the Hermite polynomials satisfy the orthogonal property given by (3.3.1).

⟨Hk(xi), Hj(xi)⟩ =
1√
2π

∫ +∞

−∞
Hk(xi)Hj(xi)e

−x2
i /2dxi = α2

kδkj (3.3.9)

The normalisation factor α2
k can be calculated using (3.3.10).

α2
k = ⟨Hk, Hk⟩ = k! (3.3.10)
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The �rst 4 Hermite polynomials (Hermite polynomials up to the 3rd order) are
listed in Table 3.2 for a univariate system.

Index k Hermite Polynomials ⟨Hk, Hk⟩

0 H0(x) = 1 1

1 H1(x) = x 1

2 H2(x) = x2 − 1 2

3 H3(x) = x3 − 3x 6

Table 3.2: Univariate Hermite polynomials

A multivariate Hermite polynomial basis can be constructed as a tensor
product of its univariate Hermite polynomial counterparts [24] according to
(3.3.5). The normalization factor of a multivariate Hermite polynomial basis
can be calculated as a tensor product of (3.3.10), giving (3.3.11).

α2
k = ⟨Hk, Hk⟩ =

n∏
i=1

ki! (3.3.11)

A bivariate Hermite polynomial basis truncated to a polynomial degree of 3
is shown in Table 3.3 to illustrate the construction of a multivariate Hermite
polynomial basis. Table 3.3 also provides a better understanding of the nota-
tion used in this thesis, speci�cally the use of the multi-index k̄.

3.3.2 Uniform Distribution | Legendre Polynomials

A clear presentation of Legendre polynomials can be found in [25]. This section
provides a brief overview.

The Legendre polynomials are orthogonal to the PDF of a standard uni-
form random variable de�ned as U(−1, 1), where U denotes a uniform random
variable and (−1, 1) denotes the domain of the support. Legendre polynomials
are related to the following weighting function in (3.3.12).

w(x) =

{
1
2

−1 ≤ x ≤ 1

0 otherwise
(3.3.12)

The Legendre polynomials can be obtained using the following generating func-
tion (3.3.13), where k is the degree of the polynomial.

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k (3.3.13)
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Index k Total Degree Index k̄ Basis function ϕk̄(x) = Hki(x1)Hki(x2) ⟨ϕk̄, ϕk̄⟩

0 0 [0, 0] ϕ0(x) = H0(x1)H0(x2) = 1 1

l
1

[1, 0] ϕ1(x) = H1(x1)H0(x2) = x1 1

2 [0, 1] ϕ2(x) = H0(x1)H1(x2) = x2 1

3

2

[2, 0] ϕ3(x) = H2(x1)H0(x2) = x21 − 1 2

4 [1, 1] ϕ4(x) = H1(x1)H1(x2) = x1x2 1

5 [0, 2] ϕ5(x) = H0(x1)H2(x2) = x22 − 1 2

6

3

[3, 0] ϕ6(x) = H3(x1)H0(x2) = x31 − 3x1 6

7 [2, 1] ϕ7(x) = H2(x1)H1(x2) = x21x2 − x2 2

8 [1, 2] ϕ8(x) = H1(x1)H2(x2) = x2x
2
2 − x1 2

9 [0, 3] ϕ9(x) = H0(x1)H3(x2) = x32 − 3x2 6

Table 3.3: Bivariate Hermite polynomial basis

The Legendre polynomials can also be obtained using the following three-term
recurrence relation (3.3.14).

Pk+1(x)
2k + 1

k + 1
xPk(x)−

k

k + 1
Pk−1(x) (3.3.14)

Given that k > 1 and from (3.3.13), that P0 = 1 and P1 = x, it can be shown
that the Legendre polynomials satisfy the orthogonal property given by (3.3.1).

⟨Pk(xi), Pj(xi)⟩ =
1

2

∫ +1

−1

Pk(xi)Pj(xi)dxi = α2
kδkj (3.3.15)

The normalisation factor α2
k can be calculated using (3.3.16).

α2
k = ⟨Pk, Pk⟩ =

1

2k + 1
(3.3.16)

The �rst 4 Legendre polynomials (Legendre polynomials up to the 3rd order)
are listed in Table 3.4 for a univariate system.
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Index k Total Degree Index k̄ Basis function ϕk̄(x) = Pki(x1)Pki(x2) ⟨ϕk̄, ϕk̄⟩

0 0 [0, 0] ϕ0(x) = P0(x1)P0(x2) = 1 1

l
1

[1, 0] ϕ1(x) = P1(x1)P0(x2) = x1
1
3

2 [0, 1] ϕ2(x) = P0(x1)P1(x2) = x2
1
3

3

2

[2, 0] ϕ3(x) = P2(x1)P0(x2) =
3
2
x21 − 1

2
1
5

4 [1, 1] ϕ4(x) = P1(x1)P1(x2) = x1x2
1
9

5 [0, 2] ϕ5(x) = P0(x1)P2(x2) =
3
2
x22 − 1

2
1
5

6

3

[3, 0] ϕ6(x) = P3(x1)P0(x2) =
5
2
x31 − 3

2
x1

1
7

7 [2, 1] ϕ7(x) = P2(x1)P1(x2) =
3
2
x21x2 − 1

2
x2

1
15

8 [1, 2] ϕ8(x) = P1(x1)P2(x2) =
3
2
x22x1 − 1

2
x1

1
15

9 [0, 3] ϕ9(x) = P0(x1)P3(x2) =
5
2
x32 − 3

2
x2

1
7

Table 3.5: Bivariate Legendre polynomial basis

Index k Legendre Polynomials ⟨Pk, Pk⟩

0 P0(x) = 1 1

1 P1(x) = x 1
3

2 P2(x) =
3
2
x2 − 1

2
1
5

3 P3(x) =
5
2
x3 − 3

2
x 1

7

Table 3.4: Univariate Legendre polynomials

A multivariate Legendre polynomial basis can be constructed as a tensor
product of its univariate Legendre polynomial counterparts [24] according to
(3.3.5). The normalization factor of a multivariate Legendre polynomial basis
can be calculated as a tensor product of (3.3.16), giving (3.3.17).

α2
k = ⟨ϕk, ϕk⟩ =

n∏
i=1

1

2ki + 1
(3.3.17)

A bivariate Legendre polynomial basis truncated to a polynomial degree of 3
is shown in Table 3.5 to illustrate the construction of a multivariate Legendre
polynomial basis, speci�cally the use of the multi-index k̄.
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3.4 Truncation Schemes

Truncation schemes aim to reduce the number of terms in the PCE, while
still providing a su�ciently accurate PCE surrogate of the random system
performance parameter. Reducing the PCE to only include the important
terms also reduces the number of coe�cients that need to be calculated for
the PCE. This consequently reduces the complexity of the PCE and fewer
model evaluations are required to construct a su�ciently accurate PCE. Many
truncation schemes exist. For the purposes of this dissertation, only three
main schemes are used, namely basis truncation [26], maximum interaction
truncation [26] and hyperbolic truncation [27].

3.4.1 Basis Truncation Schemes

The most basic truncation scheme is to reduce the PCE to only include terms
of degrees less than or equal to p as in (3.4.1) [26], where ῡ denotes the
truncated multi-index containing multivariate polynomials up to degree p, k̄
denotes the full multi-index containing multivariate polynomials up to degree
∞, and ||k̄|| denotes the degree of the multivariate polynomial. The degree of
the polynomial is de�ned as a sum of the degrees of the univariate polynomials
ki, with |x| denoting the number of univariate polynomials used to build the
multivariate polynomial.

ῡ = {k̄ : ||k̄|| ≤ p} ||k̄|| =
|x|∑
i=1

ki (3.4.1)

A bivariate example of basis truncation follows, to provide a better under-
standing of (3.4.1).

Basis Truncation Example

Given a bivariate polynomial with |x| = 2, basis truncation for a degree of
p = 1 is applied.

||k̄|| =
|x|∑
i=1

ki with |x| = 2

=
2∑

i=1

ki

=


||0|| = 01 + 02 = 0

||1|| = 11 + 02 = 1

||2|| = 01 + 12 = 1

||3|| = 11 + 12 = 2
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⇒ ῡ = {0, 1, 2}

The values of k̄ indicate the set of indexes of the bivariate combinations re-
lating to a certain degree of ||k̄||. The degree of the univariate counterparts
is summed to equal the total degree of the bivariate combination. The �nal ῡ
only includes bivariate polynomials up to a degree of p = 1.

Figure 3.1 further illustrates the basis truncation scheme for a bivariate
polynomial. Basis truncation ranging from a 3rd order polynomial to a 6th

order polynomial is shown. Each dot represents the total degree of the bivariate
polynomial, with the x- and the y-axis representing the degree contribution of
each random system parameter.

Figure 3.1: Basis truncation scheme

After careful investigation of Figure 3.1 it is worth noting that the cardinal-
ity can be determined using the binomial coe�cient [24] described in (3.4.2).

card(ῡ) =

(
|x|+ p

p

)
(3.4.2)

3.4.2 Maximum Interaction

Interaction is de�ned as the multivariate terms in a multivariate polynomial.
The interaction of a multivariate polynomial is then equal to the number of
variables it contains. Maximum interaction attempts to reduce the PCE to
only include terms of interaction less than or equal to r as shown in (3.4.3) [26],
where τ̄ denotes the truncated multi-index containing only interaction terms
less than or equal to r, ῡ denotes the basis truncation containing multivariate
polynomials up to degree p and ||ῡ||0 denotes the interaction of each term in
ῡ. The interaction of the polynomial is de�ned as the sum of the number of
terms in ῡ with a degree greater than 0.

τ̄ = {ῡ : ||ῡ||0 ≤ r} ||ῡ||0 =
|x|∑
i=1

1{ki>0} (3.4.3)

The cardinality of the basis is reduced by limiting the number of interaction
terms, which is most e�ective when the random system output parameter is
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described by a large set of random system parameters (high dimensionality).
When r = p, maximum interaction reduces to basis truncation. A bivariate
example truncated using basis truncation to a degree of p = 2 follows, to
provide a better understanding of (3.4.3).

Maximum Interaction Example

Given a bivariate polynomial with |x| = 2, maximum interaction for r = 1 is
applied. This reduces the polynomial to include no interaction terms.

||ῡ||0 =
|x|∑
i=1

1{ki>0} with |x| = 2

=
2∑

i=1

1{ki>0}

=



||0||0 = 01 + 02 = 0 + 0 = 0

||1||0 = 11 + 02 = 1 + 0 = 1

||2||0 = 01 + 12 = 0 + 1 = 1

||3||0 = 21 + 02 = 1 + 0 = 1

||4||0 = 11 + 12 = 1 + 1 = 2

||5||0 = 01 + 22 = 0 + 1 = 1

⇒ τ̄ = {0, 1, 2, 3, 5}

The values of ῡ indicate the set of indexes of the bivariate combinations re-
lating to a certain degree less than or equal to p. The amount of univariate
polynomials with a degree higher than 0 is then summed to equal the inter-
action of the speci�c term of the multivariate polynomial. The �nal τ̄ only
includes the interaction term which is less than or equal to r.

Maximum interaction truncation ranging from a 3rd degree polynomial to a
6th degree polynomial can be seen in Figure 3.2. Each dot represents the total
degree of the bivariate polynomial, with the x- and the y-axis representing the
degree contribution of each random system parameter.

Figure 3.2: Maximum interaction truncation scheme

Investigating Figure 3.2 it is worth noting that card(τ) = 2p + 1 for a
bivariate polynomial truncated to include no interaction terms.
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3.4.3 Hyperbolic Truncation

Hyperbolic truncation attempts to reduce the PCE using the parametric q-
norm as shown in (3.4.4) [27], where κ̄ denotes the truncated multi-index
containing only terms with a parametric q-norm less than or equal to p, ῡ
denotes the basis truncation containing multivariate polynomials up to degree
p and ||ῡ||q denotes the parametric q-norm values of each term in ῡ. The
parametric q-norm is de�ned as the sum of the degrees of the terms to a power
of q raised to a power of 1

q
.

κ̄ = {ῡ : ||ῡ||q ≤ p} ||ῡ||q = (

|x|∑
i=1

kqi )
1
q (3.4.4)

The cardinality is reduced by reducing the number of interaction terms ac-
cording to the value of q. For q = 1 hyperbolic truncation reduces to the
basis truncation scheme and for q → 0, hyperbolic truncation reduces to the
maximum interaction truncation scheme. A bivariate example truncated using
basis truncation to a degree of p = 2 and a q-value of 0.75 follows, to provide
a better understanding of (3.4.4).

Hyperbolic Truncation Example

Given a bivariate polynomial with |x| = 2, hyperbolic truncation for q = 0.75
is applied.

||ῡ||q = (

|x|∑
i=1

kqi )
1
q with |x| = 2

= (
2∑

i=1

kqi )
1
q

=



||0||q = (00.75 + 00.75)
1

0.75 = 0

||1||q = (10.75 + 00.75)
1

0.75 = 1

||2||q = (00.75 + 10.75)
1

0.75 = 1

||3||q = (10.75 + 10.75)
1

0.75 = 2.2

||4||q = (20.75 + 00.75)
1

0.75 = 2

||5||q = (00.75 + 20.75)
1

0.75 = 2

⇒ κ̄ = {0, 1, 2, 4, 5}

The values of ῡ indicate the set of indexes of the bivariate combinations re-
lating to a certain degree less than or equal to p. The hyperbolic q-norm is
applied, and the �nal κ̄ only includes the terms with a hyperbolic q-norm less
than p.
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Hyperbolic truncation ranging from a 3rd degree polynomial to a 6th degree
polynomial can be seen in Figure 3.3. Each dot represents the total degree of
the bivariate polynomial, with the x- and the y-axis representing the degree
contribution of each random system parameter.

Figure 3.3: Hyperbolic truncation scheme

3.5 Statistical Information

The PCE given by (3.2.1) provides an analytical relationship between the
random system performance parameter y(x) and the random system param-
eter vector x. When the PCE is su�ciently accurate, statistical information
(the statistical characteristics) of the random system performance parameter
y(x) can be obtained from the PCE approximation of the random system per-
formance parameter ŷ(x). The mean of y(x) can be estimated using (3.5.1),
where E{y(x)} denotes the mean, more commonly referred to the expectation,
of y(x).

E{y(x)} ≈ E{ŷ(x)} =

∫
Γ

ŷ(x)w(x)dx =
P∑

k=0

ck

∫
Γ

ϕk(x)w(x)dx

≡
P∑

k=0

ck
1

α0

⟨ϕk, ϕ0⟩

= c0α0

(3.5.1)
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Furthermore, the variance can be estimated using (3.5.2).

Var{y(x)} ≈ Var{ŷ(x)} =

∫
Γ

ŷ2(x)w(x)dx− E{ŷ(x)}2

=
P∑

k=0

P∑
j=0

ckcj

∫
Γ

ϕk(x)ϕj(x)w(x)dx− c20α
2
0

=
P∑

k=0

P∑
j=0

ckcj⟨ϕk, ϕj⟩ − c20α
2
0

=
P∑

k=0

c2kα
2
k − c20α

2
0

=
P∑

k=1

c2kα
2
k (3.5.2)

This unique property of PCE allows statistical information estimation without
requiring time-consuming MC analysis methods since no further simulations
are required.

3.5.1 Analytical Example

To better illustrate the construction and statistical information estimation of
a PCE, a PCE of the same equation provided by 2.2.4 is constructed, which is
repeated here as 3.5.3 for convenience.

y(τ) = τ 2 − 2τ − 3 (3.5.3)

The same random system parameter is used, meaning that τ is a normal ran-
dom variable with a mean of 2 and a variance of 0.5, symbolized as τ ∼
N (2, 0.5). Constructing a PCE of (3.5.3) requires that it to be represented
using a standardized normal random variable. The standardized τ is shown in
3.5.4, where a standard normal variable is shifted with the mean and scaled
with the variance of τ .

τ = 2 + 0.5x (3.5.4)

This transform is applied to 3.5.3, providing us with a standardized function
3.5.5.

y(x) = 0.25x2 + x− 3 (3.5.5)

This function is already in a polynomial form, which means it can easily be
re-written as a second-order Hermite polynomial expansion as 3.5.6.

y(x) = c0H0(x) + c1H1(x) + c2H2(x)

= −0.275H0(x) + 1H1(x) + 0.25H2(x)
(3.5.6)
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The mean and variance estimates can be calculated using (3.5.1) and (3.5.2)
respectively, resulting in an estimated mean and variance of:

E{y(x)} = c0α0

= −2.75× 0!

= −2.75

(3.5.7)

Var{y(x)} =
P∑

k=1

c2kα
2
k

= 12 × 1! + 0.252 × 2!

= 1.125

(3.5.8)

The results are compared to the analytical mean and variance provided in
Section 2.2. The PCE mean and variance estimates are exactly equal to the
analytical values of −2.75 and 1.125 respectively, and did not require a single
model evaluation.

3.6 Coe�cient Calculation

After an appropriate method of truncation is chosen and a polynomial basis
is constructed, the remaining di�culty arises in the calculation of the PCE
coe�cients ck in (3.2.1). Many PCE coe�cient calculation methods exist, but
most of them can be divided into two groups, namely, intrusive- and non-
intrusive methods. Intrusive methods require prior knowledge of the system,
whilst non-intrusive methods do not.

This study is limited to non-intrusive methods where PCE coe�cients are
calculated using a set of model evaluations of a pre-determined sample set.
The obvious advantage of non-intrusive methods are that no prior knowledge
of the system is required. The disadvantage, being the requirement of a large
number of model evaluations, can be reduced using sophisticated sampling
techniques and specialized coe�cient calculation methods.

3.6.1 Ordinary Least Squares

The in�nite series denoted by (3.2.1) can be represented as a sum of the basis
truncated series and a residual as seen in (3.6.1), where P is equal to the
cardinality of the expansion (calculated using an equation determined by the
applied truncation method), c = {c0, · · · , cP}⊺ is a vector containing all the
PCE coe�cients, Φ(x) = {Φ0, · · · ,ΦP}⊺ is a matrix containing all the values
of the orthogonal polynomials and ϵP is the error due to the truncation of the
in�nite series.

y(x) =
P∑

k=0

ckϕk̄(x) + ϵP ≡ c⊺Φ(x) + ϵP (3.6.1)
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The least-squares minimization problem [28] can be formulated as the mini-
mization of the truncation error, shown in (3.6.2), where E denotes the ex-
pectation integral and argmin denotes the minimization of said expectation
integral.

ĉ = argmin E
{
(c⊺Φ(x)− y(x))2

}
(3.6.2)

A solution of (3.6.2) can be found using Ordinary Least Squares (OLS). Given
a sample set of size N of the random system parameter vector
X =

{
x(0), · · · ,x(N)

}⊺
, where X represents the matrix containing N samples

for each of the random system parameters included in the random system
parameter vector x, and the corresponding model evaluations
Y =

{
y(0), · · · , y(N)

}⊺
, where Y represents the random system performance

parameter given the corresponding sample set matrix X , the OLS solution
can be described by (3.6.3).

ĉ = (A⊺A)−1 A⊺Y (3.6.3)

The matrix A contains all the values of the orthogonal polynomials evaluated
at X (shown in (3.6.4). An accurate solution requires that the system be
overdetermined. This means that a minimum number of samples of p+ 1 are
required, where p is the truncated degree of the polynomial, although 2(p+1)
is recommended.

A =

ϕ0(x
(0)) · · · ϕ0(x

(N))
...

. . .
...

ϕP (x
(0)) · · · ϕP (x

(N))

 (3.6.4)

Error Estimation

The leave-one-out (LOO) cross-validation error ϵLOO is used to determine the
accuracy and predictive quality of the PCE surrogate model. It consists in
building N PCE surrogate models ŷi(x), for i = 1, 2, · · · , N , each built using
a reduced set of samples, and comparing its prediction on the excluded point
xi on the real value yi. The LOO cross-validation error can be written as:

ϵLOO =

∑N
i=1(y(x

i)− ŷi(xi))2∑N
i=1(y(x

i)− µ̂Y)2
(3.6.5)

When the results of the least-squares minimization problem are available, the
following equation can be used to calculate the LOO cross-validation error:

ϵLOO =
N∑
i=1

(
y(xi)− ŷ(xi)

1− hi
)2/

N∑
i=1

(y(xi)− µ̂Y)
2, (3.6.6)

where hi is the i
th component of the vector given by:

h = diag(A(ATA)−1AT ), (3.6.7)

where A is the matrix described by (3.6.4).
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Ordinary Least Squares Example

The analytical function shown in (3.5.3) is used as a reference to determine the
e�ectiveness of OLS as a PCE coe�cient calculation method. The standard-
ized function given by (3.5.5) is a 2nd degree polynomial, requiring a minimum
number of 3 random samples. The random samples X are drawn from a
normal distribution with the same mean and variance as the random system
parameter included in (3.5.3) and is listed in (3.6.8). The corresponding model
evaluations Y and the matrix A are also shown in (3.6.8).

X =

 −0.649
1.1812
−0.7585

 ,Y =

−3.5437
−1.47
−3.6146

 ,A =

 1 1 1
−0.649 1.1812 −0.7585
−0.5788 0.3952 −0.4247


(3.6.8)

The solution is calculated using (3.6.3) and the estimated PCE coe�cients are
listed in (3.6.9).

ĉ =

−2.75
1

0.25

 (3.6.9)

The estimated coe�cients are precisely equal to those calculated in the ana-
lytical example and the LOO cross-validation error ϵLOO will consequently be
0.

3.6.2 Spectral Projection

Using the orthogonality relation of the PCE described in (3.3.1), the PCE
coe�cients can be calculated by taking the inner product of the random system
performance parameter y(x) with the normalized orthogonal basis functions
as shown in (3.6.10).

ck =
⟨y(x), ϕk̄(x)⟩
⟨ϕk̄(x), ϕk̄(x)⟩

=
1

α2
k

∫
Γ

y(x)ϕk̄(x)w(x)dx (3.6.10)

This integral can be evaluated using an intrusive Galerkin method [24] or a
non-intrusive numerical integration scheme. Spectral Projection (SP) is the
non-intrusive Gaussian quadrature [29] solution to the inner product integral
de�ned in (3.6.2).

Gaussian Quadrature

Gaussian quadrature [30] yields exact values for integrals of polynomial func-
tions f(x) with a support Γ = [−1, 1] of degree up to 2n− 1, where n denotes
the number of nodes required for an optimal solution. Optimal node values xi
are chosen at which to evaluate the polynomial function f(x) and scaled with
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corresponding weights wi. This is mathematically expressed in (3.6.11).∫ −1

−1

f(x)w(x)dx =
n∑

i=0

f(xi)wi (3.6.11)

Linear transformations are applied to account for non-standard supports. The
quadrature rule extends to multi-dimensional integrals via tensor product sum-
mations along each dimension as shown in (3.6.12).∫

Γ

f(x)w(x)dx =
K∑
i=0

f(xi)ŵi (3.6.12)

Here, K = nN , where N is the dimensionality of the vector x, the random
system parameter vector, xi the tensor product combination of the univariate
nodes xi and the weights ŵi the tensor product of the weights wi. The weights
and nodes are chosen using de�ned equations associated with the appropriate
orthogonal polynomial family.

Gauss-Hermite Quadrature

Given the focus of this dissertation on normal random system parameters,
which are in turn orthogonal to the Hermite polynomial family according to the
Wiener-Askey scheme, the Gauss-Hermite quadrature is of signi�cant interest.
The Gauss-Hermite quadrature provides the following approximation:∫ +∞

−∞
f(x)

e−x2/2

√
2π

dx ≈
n∑

i=0

f(xi)wi (3.6.13)

The nodes and weights can be obtained using the Golub-Welsch algorithm
[31], due to the monic property of the Hermite polynomial family. They can
thus be determined as a solution to the eigenvalue problem (3.6.14), where J
is a (n + 1) × (n + 1) triangular matrix with entries Jii = 0, i = 0, · · · , n and
Ji,i−1 = Ji−1,i =

√
i, i = 0, · · · , n. The nodes coincide with the eigenvalues

of J, i.e xi = Λkk. The corresponding weights are then squares of the �rst
element of each eigenvector, i.e. wi = W 2

0k [31].

W−1JW = Λ (3.6.14)

Gauss-Legendre Quadrature

Given the focus of this dissertation on uniform random system parameters,
which are in turn orthogonal to the Legendre polynomial family according to
the Wiener-Askey scheme, the Gauss-Legendre quadrature is of signi�cant in-
terest. The Gauss-Legendre quadrature provides the following approximation:

1

2

∫ +1

−1

f(x)dx ≈
n∑

i=0

f(xi)wi (3.6.15)
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The nodes xi in (3.6.15) are the roots of the (n + 1)th Legendre polynomial.
The weights wi can be calculated using (3.6.16) [25].

wi =
1

[1− (xi)2][P
′
n+1(xi)]

2
(3.6.16)

Error Estimation

The expectation value of the residual mean-square error (RMSE) E[(y(x) −
ŷ(x))2] is integrated using the same quadrature rules and on the same nodes
to determine the accuracy and predictive quality of the PCE surrogate model.

ϵres ≈
∑N

i=1[wi(y(xi)− cTΦ(xi))]
2∑N

i=1(y(xi)− µ̂Y)2
, (3.6.17)

where c is the vector of polynomial coe�cients, Φ(xi) is a vector containing
the values of the polynomial bases at the nodes xi and µ̂Y is the sample mean
of the set of nodes.

Spectral Projection Example

The function de�ned in (3.5.3) is once more used to determine if the SP method
of PCE coe�cient estimation provides accurate estimates. The random sys-
tem parameter is normal and orthogonal to the Hermite polynomials according
to the Wiener-Askey scheme. The inner-product integral is estimated using
Gauss-Hermite quadrature and the optimal values and weights are calculated
using the Golub-Welsch algorithm. The optimal values and weights are sum-
marised in (3.6.18).

x =

−1.7321
0

1.7321

 ,w =

0.16670.6667
0.1667

 (3.6.18)

The estimated coe�cients are calculated as follows:

c0 =
1

α0

0∑
i=0

f(xi)wi =
1

α0

(f(x0)w0) = −2.75

c1 =
1

α1

1∑
i=0

f(xi)wi =
1

α1

(f(x0)w0 + f(x1)w1) = 1

c2 =
1

α2

1∑
i=0

f(xi)wi =
1

α2

(f(x0)w0 + f(x1)w1 + f(x2)w2) = 0.5

(3.6.19)

The estimated coe�cients are exactly equal to the analytical solution.
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3.6.3 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) [32] iteratively retrieves the polynomial
basis that is most correlated with the current approximation residual and adds
them to the active set of regressors. A greedy iterative strategy is used, which
minimizes the residual at each iteration until the residual equals 0 or some
threshold value. The coe�cients are estimated using OLS, which results in
OMP having the same sample size restrictions as OLS. The main bene�t of
OMP is its ability to favor low-rank solutions which is most bene�cial when a
system has a large number of random system parameters, i.e. the system has
high dimensionality. This algorithm is summarised in Algorithm 1.

Result: ĉ
Construct a matrix X of N samples for each random system
parameter in x, and the corresponding model evaluations Y ;
Calculate the weight vector λ associated with the polynomial basis
vector ϕp of order {0, 1, · · · , p} and Y where λ = A⊺Y ;
Choose the polynomial basis ϕn associated with the largest weight λn;
Add ϕn to ANEW and remove ϕn from A;
Calculate the residual vector r = Y − λnϕn;
De�ne the error tolerance ϵ ;
while r > ϵ do

Calculate the weights λ associated with ϕp and r where λ = A⊺r;
Choose the polynomial basis ϕm associated with the largest weight
λm;
Add ϕm to ANEW and remove ϕm from A;

Solve the OLS problem: ĉ = (ANEW
⊺ANEW)−1 ANEW

⊺Y ;
Update ĉ and λ with the OLS solution;
Calculate the residual vector r = Y −ANEWλ;

end
Algorithm 1: OMP Algorithm

Error Estimation

The leave-one-out (LOO) cross-validation error ϵLOO is used to determine the
accuracy and predictive quality of the PCE surrogate model. Since the results
of the least-squares minimization problem are available, (3.6.6) will be used to
calculate the LOO cross-validation error.

Orthogonal Matching Pursuit Example

Given the sample set X of a normally distributed random system parameter,
the corresponding model evaluations Y and the matrix A de�ned in 3.6.4 from
the OLS example seen in (3.6.8), which is repeated for convenience below as
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(3.6.20) and (3.6.21).

X =

 −0.649
1.1812
−0.7585

 ,Y =

−3.5437
−1.47
−3.6146

 (3.6.20)

A =

ϕ0(x
(1)) ϕ0(x

(2)) ϕ0(x
(3))

ϕ1(x
(1)) ϕ1(x

(2)) ϕ1(x
(3))

ϕ2(x
(1)) ϕ2(x

(2)) ϕ2(x
(3))

 =

 1 1 1
−0.649 1.1812 −0.7585
−0.5788 0.3952 −0.4247


=

[
ϕ1 ϕ2 ϕ3

]
(3.6.21)

The weight vector λ is calculated as:

λ = A⊺Y =

λ1λ2
λ3

 =

−0.4975
−6.7084
−0.8934

 (3.6.22)

The polynomial basis ϕ2 is associated with the largest weight vector compo-
nent λ2, removed from A and added to ANEW. The weight λ2 is removed from
λ and added to ĉ.

ANEW =
[
0 ϕ2 0

]
; ĉ =

[
0 λ2 0

]
(3.6.23)

The residual vector r is calculated as:

r = Y − λ2ϕ2 =

−6.7084
−7.9238
−2.6509

 (3.6.24)

The weight vector is recalculated as:

λ = A⊺r =

[
λ1
λ3

]
=

[
−0.0315
0.4273

]
(3.6.25)

The polynomial basis ϕ3 associated with the largest weight vector component
λ3 is removed from A and added to ANEW. The weight λ3 is removed from λ
and added to ĉ.

ANEW =

[
ϕ2

ϕ3

]
, ĉ =

[
λ2
λ3

]
(3.6.26)

The estimated coe�cients of ĉ are calculated using OLS:

ĉ = (ANEW
⊺ANEW)−1 ANEW

⊺Y (3.6.27)

λ is updated with the estimated coe�cient values ĉ and the residual vector r
is calculated as:

r = Y −ANEWλ (3.6.28)
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This algorithm is repeated until the norm of the residual vector r is equal to
0 or some threshold value ϵ. The �nal answer after n iterations is:

ĉ =

−2.7918
1.1178

0

 (3.6.29)

The estimated coe�cients di�er by 1.3% from the analytical coe�cients. It is
important to note that the 3rd coe�cient is reduced to 0 due to the feature
selection inherent in OMP. OMP reduces the estimated PCE coe�cient vector
to only include the coe�cients that most contribute to the PCE surrogate
model.

3.6.4 Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) is a modi�cation of
OLS with the addition of a regularisation term (shrinkage penalty) which forces
the minimization to favor low-rank solutions [33]. The LASSO minimization
problem is shown in (3.6.30):

ĉ = argmin E{(c⊺Φ− y)2}+ λ||c||1 (3.6.30)

The �rst term relates to the least-squares minimization problem where it at-
tempts to minimize the residual mean-square error (RMSE). The regularisation
term includes the tuning parameter λ and the l1 penalty ||c||1. The tuning
parameter controls the relative impact of the shrinkage penalty on the coe�-
cient estimates. When λ = 0, the shrinkage penalty has no e�ect and LASSO
will produce the least-squares estimate. As λ→ ∞, the impact of the shrink-
age penalty grows and the coe�cients will tend to 0. The shrinkage penalty
(l1 penalty) has the e�ect of forcing some of the coe�cients to 0 when λ is
su�ciently large (it limits the size of the coe�cients). It thus yields low-rank
solutions by generating sparse models (models that only involve a subset of
the polynomials) [34]. The value of λ is thus of critical importance. A tuning
parameter vector λ is de�ned and PCE coe�cient estimates are calculated for
each tuning parameter value in λ. An error estimation technique is used to
determine the best λ and PCE coe�cient estimates pair.

Error Estimation

The leave-one-out (LOO) cross-validation error ϵLOO is used to determine the
accuracy and predictive quality of the PCE surrogate model. Since the results
of the least-squares minimization problem are available, (3.6.6) will be used to
calculate the LOO cross-validation error.
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LASSO Example

The same sample set X of a normally distributed random system parameter,
the corresponding model evaluations Y and the matrix A de�ned in 3.6.4
from the OLS example is used for this example. MATLAB has a built-in lasso
function which was used in this thesis. [B,F itInfo] = lasso(X ,Y) returns the
OLS coe�cients for a range of λ values, with X the sampled random system
parameter vector and Y being the corresponding model observations. The
ϵLOO is calculated for each value of λ and the PCE coe�cients associated with
the smallest ϵLOO are chosen as a �nal solution. Coe�cients for di�ering values
of λ is shown in (3.6.31) below to illustrate the e�ect of the shrinkage penalty.
3.6.31 below:

ĉλ=0.029 =

−2.7592
0.9865
0.2097

 , ĉλ=0.2244 =

−2.8087
0.8866

0

 , ĉλ=0.9945 =

−2.8761
0
0


(3.6.31)

ϵLOO(λ = 0.029) ≈ 0, ϵLOO(λ = 0.2244) = 0.0508, ϵLOO(λ = 0.9945) = 0.9894
(3.6.32)

The optimal solution is the �rst PCE coe�cients vector, associated with λ =
0.029. The sparse property of LASSO is demonstrated since the coe�cients
are reduced to 0 as λ is increased.

3.7 Sampling Methods

Sampling methods are employed to better estimate the PDF of each random
system parameter using fewer samples. The number of samples required to
estimate the PCE coe�cients are reduced and will consequently reduce the
number of model evaluation necessary to construct a su�ciently accurate PCE
surrogate.

3.7.1 Random Sampling

Random samples are generated according to some PDF. This simple method is
most commonly employed and is used as a reference for more complex sampling
schemes. The MATLAB functions rand and normrnd are used in this thesis
to generate uniform sample sets and normal sample sets.

3.7.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) divides the associated empirical Cumulative
Density Function (CDF) into k uniform blocks. A random sample is then taken
from each block and added to the sample set [35]. Figure 3.4 provides a visual
explanation this algorithm.
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Figure 3.4: 1-D LHS

This method can be readily extended to generate a sample set for n-
dimensional random system parameter vector x. Figure 3.5 visually describes
this algorithm for a random system parameter vector containing two random
system parameters.

Figure 3.5: 2-D LHS

The MATLAB function lhsdesign is used to generate a uniform LHS sam-
ple set. This uniformly distributed sample set can then be transformed to a
normally distributed sample set using the inverse tranformation method.

3.7.3 K-Means Sampling

The k-means sampling algorithm is split between two parts, namely, k-means
clustering [36] and k-nearest-neighbor [37]. K-means clustering aims to par-
tition the sample set into K distinct non-overlapping clusters [33]. K-means
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clustering is performed by specifying the desired number of clusters, K, and
assigning each random system parameter sample to one of the K clusters. The
k-means procedure iteratively moves the centers to minimize the total within-
cluster variance. The k-means algorithm thus alternates between the following
two steps:

1. For each cluster center, a subset of samples is identi�ed which is closest
to it

2. The means of the samples in each cluster is computed and this vector
becomes the new cluster center

These two steps are then repeated until convergence. The k-means function in
MATLAB is used to assign the samples to K clusters. An example of k-means
clustering can be seen in Figure 3.6. Two random system parameters of the
Fischer's Iris data-set are chosen and each set of samples is assigned to 1 of 5
clusters. K-nearest-neighbour �nds the k points closest in distance to a given
point x0 [38]. K-nearest-neighbour is applied to �nd N

K
points closest to the

K clusters' centroids. This completes the k-means sampling algorithm. An
example can be seen in Figure 3.6, where the MATLAB function knnsearch is
applied to the previous k-means clustering example to extract 1 sample closest
to each of the 5 centroids.

Figure 3.6: K-Means sampling
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Chapter 4

Polynomial Chaos Benchmark

A benchmark problem is set up to determine the advantages of using Polyno-
mial Chaos Expansion (PCE) statistical estimates compared to using classical
Monte Carlo (MC) statistical estimates. The well-known analytical Ishigami
function [39] is used as a benchmark problem. The analytical mean and vari-
ance are calculated using the methods shown in 2.1.3 and 2.1.4. The analytical
mean and variance are compared to both the MC statistical estimates and the
PCE statistical estimates. The conclusion on the e�ectiveness of using a PCE
surrogate to extract statistical information will be made based on the compar-
ative sample size required for convergence and the accuracy of the statistical
estimates.

4.1 Ishigami Function Reference Problem

The Ishigami function [39], in (4.1.1), is an analytical 3-dimensional function,
which is non-monotonous and non-linear.

f(x) = sin(x1) + asin2(x2) + bx43sin(x1) (4.1.1)

Each variable belongs to a uniform distribution with a support Γ ∈ [−1, 1]
de�ned as U(−1, 1). The scaling parameters a and b are equal to 0.5 and 2
respectively. The analytical mean and variance are calculated using the ten-
sor product de�nition of (2.1.3) and (2.1.4) respectively as 0.1363 and 0.6244
respectively.

4.2 Monte Carlo Estimates | Ishigami Function

The convergence of the MC statistical estimates is determined by running an
MC analysis for an increasing sample set size. The convergence of the mean
and variance estimates can be seen in Figure 4.1. A ±5% tolerance band is also
included in Figure 4.1. Convergence is de�ned as the point where consecutive

34
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statistical estimates are within the tolerance band. It is clear that both the
mean and variance estimates converge around 1000 samples.
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Figure 4.1: Ishigami MC statistical estimates

The convergence of the Monte Carlo for increasing sample sets is also sum-
marised in Table 4.1.

Samples N µ̂y Error σ̂2
y Error

10 -0.0819 160% 1.131 81.0%
100 0.2061 51.2% 0.4604 26.3%
1000 0.0.1282 5.96% 0.6269 0.39%
10000 0.1390 1.97% 0.6101 2.28%
100000 0.1374 0.78% 0.6232 0.20%

Table 4.1: Ishigami MC mean and variance estimation

Next, the convergence rate of the MC analysis is compared to the PCE
surrogate statistical estimate convergence rate. This is done for all coe�cient
calculation methods, and sampling methods mentioned in Chapter 3.

4.3 PCE Estimates - Coe�cient Calculation

A PCE surrogate of (4.1.1) is constructed using the basis truncation scheme
described in (3.4.1), with a polynomial degree associated with the PCE surro-
gate with the lowest ϵLOO or ϵres. The coe�cients of the PCE are determined
using the methods described in Section 3.6. The convergence rate of the PCE
statistical estimates extracted from each coe�cient calculation is compared to
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the MC statistical estimates convergence. A conclusion is made on the coe�-
cient calculation method used to construct the PCE surrogate with the fastest
PCE statistical estimate rate.

4.3.1 Ordinary Least Square PCE | Ishigami Function

The Ordinary Least Squares (OLS) technique described in Section 3.6.1 is ap-
plied to calculate the coe�cients of the Ishigami PCE surrogate. The PCE
mean and variance estimates convergence can be seen in Figure 4.2. The num-
ber of samples needed for convergence of both the mean and variance estimates
is 370 samples, which is a large reduction in samples needed compared to the
1000 samples required for MC statistical estimate convergence.
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(b) Ishigami OLS PCE variance

Figure 4.2: Ishigami OLS PCE estimates

The mean and variance estimates for increasing sample set sizes are also
summarized in Table 4.2. The mean and variance are completely inaccurate
(with the majority of the estimates lying outside the boundaries of Figure
4.2) when the sample size is not su�ciently large and is precisely equal to the
analytical mean and variance when the sample set is su�ciently large. The
di�erence in accuracy, even when both the MC and OLS PCE estimators are
converged, is signi�cant since OLS PCE converges to exactly the analytical
mean and variance. The practical implication of this observation is that the
PCE solution is more likely to be accurate when an analytical solution is not
available, which is the case for most practical applications.
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Samples N µ̂y Error σ̂2
y Error

100 -0.9106 767% 470 7.52e4%
200 4.6933 3.34e3% 5.49e3 8.79e5%
300 -0.7858 676% 610.3 9.76e4%
400 0.1363 0% 0.6244 0%

Table 4.2: Ishigami OLS PCE mean and variance estimation

4.3.2 Spectral Projection PCE | Ishigami Function

The Spectral Projection (SP) technique described in Section 3.6.2 is applied
to calculate the coe�cients of the Ishigami PCE surrogate. The PCE mean
and variance estimates convergence can be seen in Figure 4.3. The number of
samples needed for convergence of both the mean and variance estimates is 4
samples, which is a large reduction in samples compared to the 1000 samples
required for MC statistical estimate convergence.
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Figure 4.3: Ishigami SP PCE estimates

The mean and variance for increasing sample set sizes are summarized in
Table 4.3. The mean and variance converge to exactly the analytical values
with a minuscule number of 4 samples. The di�erence in accuracy, even when
both the MC and OLS PCE estimators are converged, is signi�cant since SP
PCE converges to exactly the analytical mean and variance.
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Samples N µ̂y Error σ̂2
y Error

2 0.1490 9.25% 0.445 28.7%
4 0.1363 0.006% 0.6178 1.06%
6 0.1363 0% 0.6244 0.002%
8 0.1363 0% 0.6244 0%

Table 4.3: Ishigami SP PCE mean and variance estimation

4.3.3 Orthogonal Matching Pursuit PCE | Ishigami
Function

The Orthogonal Matching Pursuit (OMP) technique described in Section 3.6.3
is applied to calculate the coe�cients of the Ishigami PCE surrogate. The
PCE mean and variance estimates convergence can be seen in Figure 4.4. The
number of samples needed for convergence of both the mean and variance
estimates is 60 samples, which is a large reduction in samples compared to the
1000 samples required for MC statistical estimate convergence.
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Figure 4.4: Ishigami OMP PCE estimates

The mean and variance estimates for increasing sample set sizes are also
summarized in Table 4.4. The mean and variance are completely inaccurate
(with the majority of the estimates lying outside the boundaries of Figure
4.4) when the sample size is not su�ciently large and is precisely equal to the
analytical mean and variance when the sample set is su�ciently large. The
di�erence in accuracy, even when both the MC and OMP PCE estimators are
converged, is signi�cant since OMP PCE converges to exactly the analytical
mean and variance.
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Samples N µ̂y Error σ̂2
y Error

100 0.136 0.003% 0.6243 0.0167%
200 0.136 0.004% 0.6244 0.001%
300 0.136 0.013% 0.6245 0.004%
400 0.136 0.006% 0.6244 0.004%

Table 4.4: Ishigami OMP PCE mean and variance estimation

4.3.4 Least Absolute Shrinkage and Selection Operator
PCE | Ishigami Function

The Least Absolute Shrinkage and Selection Operator (LASSO) technique de-
scribed in Section 3.6.4 is applied to calculate the coe�cients of the Ishigami
PCE surrogate. The PCE mean and variance estimates convergence can be
seen in Figure 4.5. The number of samples needed for convergence of both
the mean and variance estimates is 70 samples, which is a large reduction in
samples compared to the 1000 samples required for MC statistical estimate
convergence.
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Figure 4.5: Ishigami LASSO PCE estimates

The mean and variance estimates for increasing sample set sizes are also
summarized in Table 4.5. The mean and variance are completely inaccurate
(with the majority of the estimates lying outside the boundaries of Figure 4.5)
when the sample size is not su�ciently large and is equal to the analytical
mean and variance when the sample set is su�ciently large. The LASSO PCE
statistical estimates do not converge to the analytical values but remain within
±5% accuracy range.
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Samples N µ̂y Error σ̂2
y Error

100 0.1376 0.893% 0.5940 4.879%
200 0.1362 0.131% 0.5971 4.375%
300 0.1388 1.839% 0.6016 3.657%
400 0.1358 0.404% 0.6022 3.559%

Table 4.5: Ishigami LASSO PCE mean and variance estimation

4.3.5 Latin Hypercube Sampling OLS PCE | Ishigami
Function

The Latin Hypercube Sampling (LHS) OLS PCE surrogate is constructed
using the same parameters as in (4.3.1), but with an LHS sample set. The
PCE mean and variance estimates convergence can be seen in Figure 4.6. The
number of samples needed for convergence of both the mean and variance
estimates is 370 samples, which is a large reduction in samples compared to
the 1000 samples required for MC statistical estimate convergence.
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Figure 4.6: Ishigami LHS Sampled OLS PCE estimates

The mean and variance estimates for increasing sample set sizes are also
summarized in Table 4.6. The mean and variance are completely inaccurate
(with the majority of the estimates lying outside the boundaries of Figure
�g:Ishigami LHS Sampled OLS PCE Estimators) when the sample size is not
su�ciently large and is precisely equal to the analytical mean and variance
when the sample set is su�ciently large. The di�erence in accuracy, even when
both the MC and OLS PCE estimators are converged, is signi�cant since OLS
PCE converges to exactly the analytical mean and variance. applications.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. POLYNOMIAL CHAOS BENCHMARK 41

Samples N µ̂y Error σ̂2
y Error

100 -0.2235 263.9% 213.5 3.41e4%
200 -2.9963 2.29e3% 756.5 1.21e5%
300 -0.0558 140.9% 19.4 3e3%
400 0.1368 0% 0.6244 0%

Table 4.6: Ishigami LHS OLS PCE mean and variance estimation

4.3.6 Conclusion

The SP technique provides a PCE surrogate with the fastest converging statis-
tical estimates, requiring only 4 samples to estimate the statistical estimates
exactly. This is most likely due to the Ishigami function being well described
mathematically. Su�ciently accurate statistical estimates are obtained from
the SP PCE surrogate using 250 times fewer samples when compared to the
MC statistical estimates. It also converges to precisely the analytical values,
providing a more consistent and accurate estimate. It is also worth noting
that the other coe�cient calculation methods will most likely perform best for
a practical non-intrusive application. The LHS method provided no bene�t
when compared to standard random sampling.
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Chapter 5

PCE Model of Patch Antenna

The work presented in this chapter was published as an article in the In-
ternational Journal of RF and Microwave Computer-Aided Engineering [14].
The PCE method can be illustrated very well using the classic problem of a
microstrip patch antenna. Patch antennas are microstrip antennas that are
etched out in metal �lms on dielectric plates. Chemical etching is mostly used
in the mass production of these antennas. Patch antennas are used intensively
in the industry due to their well-known properties and low manufacturing costs.
Patch antennas can be excited in several ways, but this chapter is limited to
a microstrip-line fed patch antenna. This section will describe a simple single
variable, one output, system to illustrate the usefulness of the PCE approach.
More complex problems are presented in the following chapters.

Figure 5.1: Microstrip-fed patch antenna

The patch antenna used for this study is designed to operate at 2.4 GHz

42

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PCE MODEL OF PATCH ANTENNA 43

System Parameter Parameter Values

Operating Frequency (fc) 2.45 GHz
Substrate Height (SH) 1.52 mm
Substrate Width (SW ) 82.7 mm
Substrate Length (SL) 65.7 mm

ϵr 3.38
Feed Inset (Fi) 11.6 mm

Feed Line Spacing (FLS) 4.74 mm
Feed Line Width (FLW ) 3.53 mm
Feed Line Length (FLL) 37.5 mm

Patch Width (PW ) 41.3 mm
Patch Length (PL) 32.8 mm

Table 5.1: Microstrip-fed patch antenna system parameter values

for Wi-Fi applications. The �nal parameter values are summarised in Table
5.1. The co-polarization and cross-polarization can be seen in Figure 5.2. It
is worth noting that the cross-polarization is at its minimum when the co-
polarization is at its maximum, providing maximum radiation e�ciency.
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Figure 5.2: Patch antenna radiation pattern (IEEE Gain)

The |s11| of the patch antenna can be seen in Figure 5.3, with a value of
-22 dB at the design frequency, indicating that the antenna operates at the
correct frequency.

Tolerances associated with chemical etching are of signi�cance since these
tolerances describe the systems parameter distributions used to determine the
statistical properties of the system output. These tolerances are summarised
in Table 5.2 and will be used to construct stochastic models in the following
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sections. The standard tolerances in Table 5.2 describe the standard deviation
of the normal distribution with a zero mean of the system parameters.
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Figure 5.3: Patch antenna |S11|

Material Thickness Standard Tolerance

0.025 mm - 0.050 mm ±0.025 mm
0.050 mm - 0.100 mm ±0.025 mm
0.100 mm - 0.125 mm ±0.025 mm
0.125 mm - 0.150 mm ±0.025 mm
0.150 mm - 0.200 mm ±0.025 mm
0.200 mm - 0.250 mm ±0.025 mm
0.250 mm - 0.500 mm ±10 % metal thickness
0.500 mm - 1.000 mm ±10 % metal thickness
1.000 mm - 1.500 mm ±10 % metal thickness

Table 5.2: Chemical etching tolerances[1]

5.1 Key Performance Index

The cross-polarization of the microstrip-fed patch antenna is chosen as a key
performance index due to its extreme sensitivity to the position of the in-
set feed. The cross-polarization is also of interest due to its e�ect on the
polarization e�ciency de�ned in (5.1.2). The smaller the gain value of the
cross-polarization, the more co-polarized power is radiated as described by
(5.1.1), which consequently increases the polarization e�ciency. Ideally, the
cross-polarization should be as close to zero to ensure that all the radiated
power is radiated in the co-polar �eld.

Prad =
1

2η

∫ ∫
4π

[
|Gco(θ, φ)|2 + |Gxp(θ, φ)|2

]
sinθdθdφ (5.1.1)

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PCE MODEL OF PATCH ANTENNA 45

epol =
|Gco(0

◦, 0◦)|2

|Gco(0◦, 0◦)|2 + |Gxp(0◦, 0◦)|2
(5.1.2)

The center position of the inset-feed, as seen in Figure 5.1, is chosen as a
random system parameter. The feed line width (FLW ) and feed line spacing
(FLS) is thus horizontally shifted in combination according to a normal distri-
bution with a mean of 0 mm and a variance of 0.025 mm as determined by the
chemical etching tolerance table 5.2. A basic local sensitivity analysis can be
done by sweeping the center position values to determine the in�uence of the
horizontal shift of the inset-feed on the cross-polarisation, as seen in Figure
5.4. The cross-polarisation is extremely sensitive to the position of the inset
feed. Given the sharp changes in gradient seen in Figure 5.4a, the linear values
of the cross-polarization results were used to build the PCE model. This is
done in an attempt to reduce the degree of the PCE required for a su�ciently
accurate model. A local sensitivity analysis using linear values can be seen in
Figure 5.4b. The Monte Carlo analysis is also done using the linear values of
the cross-polarisation results.
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Figure 5.4: 1-D Sensitivity analysis

5.2 Monte Carlo Estimates | Patch Antenna

A 1000 sample MC analysis is done to estimate the mean and variance. The
point of convergence is de�ned as the point where the change in the estimated
mean and variance for a larger sample set is less than ±5% of the previous and
following sample set size estimates. Figure 5.5 summarizes the convergence of
the Monte Carlo mean and variance estimates. The tolerance seen in Figure
5.5, is a ±5% tolerance for the full 1000 samples sample set MC estimates.
The full 1000 sample set MC estimate is shown with the dotted line. The
point of convergence for the mean estimators occurs at 700 samples, while the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PCE MODEL OF PATCH ANTENNA 46

point of convergence for the standard deviation also occurs at 700 samples.
The minimum samples required for an accurate estimate is consequently 700
samples. The mean and standard deviation converged to a value of 2e-4 and
1.5e-4 respectively.

100 200 300 400 500 600 700 800 900 1000

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

10
-4

(a) 1-D MC mean
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Figure 5.5: 1-D MC estimates

5.3 PCE Estimates | Patch Antenna

A PCE surrogate of the inset-fed patch antenna is constructed using the basis
truncation scheme described in Section 3.4.1, with a polynomial degree asso-
ciated with the PCE surrogate with the lowest ϵLOO or ϵres. The coe�cients
of the PCE is determined using the methods described in Section 3.6. The
convergence rate of the PCE statistical estimates extracted from each coef-
�cient calculation is compared to the MC statistical estimates convergence.
The aforementioned de�nition of convergence is used to determine the point of
convergence. The reference values to determine the accuracy of the estimates
are the 1000 sample MC values. A conclusion is made on the coe�cient cal-
culation method used to construct the PCE surrogate with the fastest PCE
statistical estimate rate.

5.3.1 Ordinary Least Squares PCE | Patch Antenna

The Ordinary Least Squares (OLS) technique described in Section 3.6.1 is ap-
plied to calculate the coe�cients of the patch antenna PCE surrogate. The
PCE mean and variance estimates convergence can be seen in Figure 5.6. The
number of samples needed for convergence of both the mean and variance esti-
mates is 140 samples, which is a large reduction in samples needed compared to
the 700 samples required for MC statistical estimate convergence. The mean
and standard deviation converge to a value of 2e-4 and 1.45e-4 respectively.
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Figure 5.6: Patch Antenna OLS PCE estimates

5.3.2 Spectral Projection PCE | Patch Antenna

The Spectral Projection (SP) technique described in Section 3.6.2 is applied to
calculate the coe�cients of the patch antenna PCE surrogate. The PCE mean
and variance estimates convergence can be seen in Figure 5.7. The number
of samples needed for convergence of both the mean and variance estimates
is 51 samples, which is a large reduction in samples needed compared to the
700 samples required for MC statistical estimate convergence. The mean and
standard deviation converge to a value of 1.97e-4 and 1.4e-4 respectively.
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(b) Patch SP PCE standard deviation

Figure 5.7: Patch Antenna SP PCE estimates
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5.3.3 Orthogonal Matching Pursuit PCE | Patch
Antenna

The Orthogonal Matching Pursuit (OMP) technique described in Section 3.6.3
is applied to calculate the coe�cients of the patch antenna PCE surrogate. The
PCE mean and variance estimates convergence can be seen in Figure 5.8. The
mean estimate converges at 60 samples, while the standard deviation does not
converge at all. The mean converges to a value of 2e-4.
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Figure 5.8: Patch Antenna OMP PCE estimates

5.3.4 Least Absolute Shrinkage and Selection Operator
PCE | Patch Antenna

The Least Absolute Shrinkage and Selection Operator (LASSO) technique de-
scribed in Section 3.6.4 is applied to calculate the coe�cients of the patch
antenna PCE surrogate. The PCE mean and variance estimates convergence
can be seen in Figure 5.9. The number of samples needed for convergence of
both the mean and variance estimates is 120 samples, which is a large reduc-
tion in samples needed compared to the 700 samples required for MC statistical
estimate convergence. The mean and standard deviation converge to a value
of 2e-4 and 1.55e-4 respectively.
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Figure 5.9: Patch Antenna LASSO PCE estimates

5.3.5 Latin Hypercube Sampling OLS PCE | Patch
Antenna

The Latin Hypercube Sampling (LHS) OLS PCE surrogate is constructed
using the same parameters as in (4.3.1), but with an LHS sample set. The
PCE mean and variance estimates convergence can be seen in Figure 5.10.
The number of samples needed for convergence of both the mean and variance
estimates is 40 samples, which is a large reduction in samples needed compared
to the 700 samples required for MC statistical estimate convergence. The mean
and standard deviation converge to a value of 2e-4 and 1.5e-4 respectively.
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Figure 5.10: Patch Antenna LHS OLS PCE
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5.4 Conclusion

The SP PCE technique constructs a patch antenna PCE surrogate with the
fastest converging statistical estimates, requiring only 51 samples. This method
has model evaluations at pre-de�ned quadrature points, which are scaled with
the mean and the variance of the PDF associated with each random system
parameter in the random system parameter vector. These random values can
sometimes result in non-valid EM models, where certain system parameters are
no longer a sensible value. The LHS OLS technique, thus, constructs a patch
antenna PCE surrogate with the fastest, and most reliable, converging statis-
tical estimate, requiring only 60 samples. This method requires 12 times fewer
samples than compared to classical MC. It is worth noting that the number of
samples required to accurately estimate the statistical information using PCE
will increase as the number of random system parameters is increased. Simple
PCE using any of the coe�cient calculation methods and sampling methods
do not converge quickly enough to enable yield analysis of complex structures
with many sensitive random system parameters.
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Chapter 6

Antenna Yield Estimation

The work presented in this chapter was published as an article in the IEEE
Transactions on Antennas and Propagation [13]. Antenna yield estimation is
an increasingly important step in high-volume antenna production. This is
especially important when the antenna is complex with many sensitive sys-
tem parameters. Tolerances associated with the fabrication process need to be
included in a Monte Carlo (MC) [2] or alternative stochastic analysis to accu-
rately estimate the yield. For antenna problems, each analysis point for the
MC-analysis requires a full 3D electromagnetic (EM) analysis. These stochas-
tic simulations become increasingly expensive when the number of sensitive
system parameters becomes large. Many methods have been introduced to
reduce the computational burden of yield estimation, including, trust-region
gradient-search with Jacobian updates [40], trust-region gradient-search with
sensitivity updates [41], sequential optimization using auxiliary Kriging inter-
polation models [12], low-cost design optimization using adjoint sensitivity [42],
domain-con�ned performance-driven surrogates [43], response feature technol-
ogy [44] and, �nally, polynomial chaos-based Kriging meta-modelling [45]. Of
these methods, Polynomial Chaos Expansion (PCE) has proved to yield excel-
lent results, for very small numbers of analysis points. Recently, a comparative
study of PCE techniques by the author showed that very optimal statistical
models can be obtained for antenna structures using PCE [46], and the yield
of even a complex structure, such as a quad-mode antenna, can be determined
very e�ciently using this technique [15]. These models also highlight one of the
biggest problems with the standard PCE implementation, namely the rapid
growth of the model with increasing variables, which signi�cantly a�ects the
usability of the technique for practical applications. In principle, a given prob-
lem can be signi�cantly reduced if only the statistically important parameters
can be found.

This chapter introduces a combination of two techniques to simultaneously
reduce the number of variables, and create an accurate PCE model, for the
problem of patch antennas and passive EM structures, where multiple dimen-
sions are a�ected by manufacturing processes [13]. This technique, combining

51
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Non-Linear Partial-Least-Squares (NLPLS) and PCE were �rst proposed in
[47] as a general mathematical solution and are applied here for the �rst time
in the analysis of antennas. This method constructs a meta-model with a
massive reduction in system parameters using NLPLS and determines the sta-
tistical information simultaneously with the same sample set using PCE. Well-
known surrogate-based methods are also introduced and used as a benchmark
for NLPLS-based PCE. These methods are PCE, Kriging [48], PCE-Kriging
[49], and Low-Rank Approximations (LRA) [50].

6.1 Non-Linear Partial-Least-Squares

As described in [51], Partial-Least-Squares (PLS) is a metamodelling method
that attempts to �nd relations between observable system parameters and
latent variables (inferred variables). PLS attempts to �nd uncorrelated linear
transformations of the system parameters that have high covariance with the
performance parameter of interest.

PLS assumes a linear relationship between the performance parameter and
the latent variable. This approach cannot be used when the underlying struc-
ture exhibits non-linear characteristics and a Non-Linear PLS (NLPLS) ap-
proach as proposed by [52] is used instead.

A data matrix is de�ned as X , where a set of N samples is taken from
a random system parameter vector x = {x1, x2, · · · , xn}. A response vector,
Y , is then de�ned as the performance parameter values for the electromag-
netic (EM) evaluations on X . Standard PLS projects the data matrix X to
the latent components ti = {t1i , t2i , · · · , tNi } by sequentially maximising the co-
variance between Y and ti. A non-linear relationship between Y and ti are
then modeled as some polynomial function, and the coe�cients are determined
using Ordinary Least Squares (OLS).

The procedure starts by evaluating the projection to the �rst latent compo-
nent t1 = Xw1, where w1 = {w1

1, w
2
1, · · · , wn

1}, by maximising the covariance
between t1 and Y under the constraint ||w1|| = 1. The corresponding opti-
mization problem is then stated as:

w1 = argmaxw:w∈Rn,||w||=1 cov(Y⊺Xw,Y⊺Xw) (6.1.1)

The solution to the optimization problem stated in (6.1.1) is given by:

w1 =
X ⊺Y

||X ⊺Y||
(6.1.2)

The regression problem is stated as:

Y = f(t1) + e, (6.1.3)

where f(t1) denotes a polynomial function of t1 = Xw1 and e denotes the
regression errors. The coe�cients for (6.1.3) are solved using OLS. The weight
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vector w1 is iteratively modi�ed using a Newton-Raphson linearization of
(6.1.3). This is done by performing a �rst-order Taylor expansion of (6.1.3)
with respect to w1 and then solving the Taylor expansion for the increment
∆w1, which is given by:

∆w1 = (A⊺A)−A⊺e, (6.1.4)

where (A⊺A)− denotes the Moore-Penrose inverse [53] of a matrix and A =
∇wf(Xw1) is the gradient of the polynomial function with respect to the
weights. The vector w1 is updated as w1 = w1 + ∆w1 and normalized. The
latent component t1 is then recalculated and �tted anew, whereafter the next
∆w1 is calculated. This process is repeated until ∆w1 is su�ciently small.

The next latent component is obtained by evaluating the residual matrix
E and the residual vector F for the data matrix X and the response vector
Y respectively. This is done by subtracting from X and Y their respective
rank-one approximation based on t1 and f(t1) respectively.

E = X − t1p
⊺
1, (6.1.5)

F = Y − f(t1), (6.1.6)

where p1 denotes the load vector corresponding to t1 and de�nes the projection
of the rows of X on the �rst latent component. This is de�ned as:

p1 =
X ⊺t1
t⊺1t1

(6.1.7)

The procedure is continued by extracting the next component from the de-
�ated matrices until an error criterion is satis�ed (typically until ||F|| ≤ ϵy),
returning a sum of m polynomial functions for m latent components

The result is a metamodel, relating latent m ≤ n components with high
covariance with the performance parameter of interest, to the performance
parameter of interest.

6.2 Transformed PCE Basis

The transformed latent variables are used to construct the NLPLS-based PCE.
It is important to consider the impact of this transformation on the construc-
tion of an appropriate PCE and the calculation of the PCE coe�cients.

Consider the following coordinate transformation, which de�nes a projec-
tion of x on the columns of Q:

Z = Q⊺x, (6.2.1)

where Q is an n × n orthogonal matrix. Given the independent standard
Gaussian distribution assumption of x in Section (3.2), which is rotationally
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symmetrical, this allows any orthogonal transformation of x to also be inde-
pendent standard Gaussian.

Ŷ Q
p (x) =

P∑
|k|≤p

bkΨk(Z) =
P∑

|k|≤p

bkΨk(Q
⊺x) (6.2.2)

The PCE representations in (3.6.1) and (6.2.2) are equivalent, meaning the
coe�cients bk can be expressed in terms of ck and vice versa [54].

6.3 NLPLS-based PCE

NLPLS-based PCE, as proposed by [47], incorporates PCE as the non-linear
polynomial described in Section 6.1. This is possible under the assumption
that x̃ → x, with x̃ = x − X̄ . This assumption is correct when the number
of samples N → ∞, or a sampling method is employed that aims to enforce
this assumption for �nite N . A modi�ed version of the Latin Hypercube
Sampling (LHS) scheme [55], which minimizes the correlation between samples,
successfully enforces this assumption [47]. PCE is incorporated in NLPLS
using a PCE as the non-linear polynomial relating the latent component ti with
the response vector Y . This provides a one-dimensional Hermite polynomial
expansion of degree p.

Ŷ p
i (t) =

p∑
j=1

ĉpijψj(ti) (6.3.1)

The PCE regression problem for the �rst latent variable is then stated as:

Y =

p∑
j

cp1jψj(t1) + e (6.3.2)

The PDF of transformed basis t1 remains orthogonal to the Hermite polyno-
mial base, as described in Section 6.2 and stated by [54] .

To obtain the PLS directions that re�ect the non-linear nature of the un-
derlying process while avoiding over-�tting, we choose the polynomial degree
for each latent variable by evaluating each latent component for a di�erent
polynomial degree q = {1, · · · , p} and retaining the one with the smallest
leave-one-out (LOO) error ϵqLOO [47]. The residual vector F is then de�ated
using the aforementioned retained PCE and the NLPLS algorithm described
in Section (6.1) is continued until an error criterion is met, whereafter a set of
m latent components, m weights, and m PCE models are returned. The �nal
NLPLS-based PCE metamodel is then constructed as:

Ŷ PLS
m (x) = b0 +

m∑
i=1

Ŷ qi
i [(rqi

i )
⊺x̃], (6.3.3)
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where qi denotes the degree of the i-th latent component PCE with the lowest
ϵLOO, and ri is the i-th column of a matrix R. The matrix R is a matrix used
to express T = {t1, t2, · · · , tm} as a projection of the data matrix X on R.
This is de�ned as:

R = W (P ⊺W )−1, (6.3.4)

where W = {w1,w2, · · · ,wm} denotes the weight matrix and
P = {p1,p2, · · · ,pm} denotes the load matrix. This metamodel is validated
against the model evaluations using the Root Mean Square Error (RMSE),
which is de�ned as:

RMSE =

√√√√ N∑
i=1

(Ŷi − Yi)2/N (6.3.5)

If the metamodel is deemed to be su�ciently accurate, i.e. the RMSE is suf-
�ciently small, statistical information can then be extracted directly from the
coe�cients of the linear PCEs, as a sum of each latent component's variance
and mean estimate:

µ̂Y PLS
m

=
m∑
i

µŶ
qi
i

(6.3.6)

σ̂Y PLS
m

=
m∑
i

σŶ qi
i

(6.3.7)

The NLPLS-based PCE algorithm identi�es the PLS directions, i.e. reducing
the dimensionality, and the PCE coe�cients, i.e. the statistical information,
simultaneously and using the same sample-set.

6.4 Surrogate Modelling Methods

Many surrogate modeling methods exist that attempt to reduce the compu-
tational burden associated with complex EM structures. To determine the
e�ectiveness of the NLPLS-based PCE method, a comparison is made with
well-known e�ective surrogate models. Some of these surrogate models esti-
mate the statistical information using the same properties of PCE (NLPLS-
based PCE, LRA), while the other methods approximate the EM model, and
a Monte Carlo analysis of the surrogate is used to estimate the statistical in-
formation (Kriging, PC-Kriging). The surrogate modeling methods that will
be used for comparison are Kriging, PC-Kriging, and LRA. These methods are
chosen based on their ability to provide su�ciently accurate estimates for high-
dimensional problems using a massively reduced sample set. A brief overview
of each method follows.
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6.4.1 Kriging

Kriging, �rst developed by [56] and formalized by [57], is a statistical method
that capitalizes on Gaussian (normal) processes to interpolate a wide range
of complex functions [48]. Kriging assumes that the random system output
parameter is a realization of a Gaussian process. A Kriging surrogate model
is described as follows:

ŷ(x) = β⊺f(x) + σ2Z(x, ω), (6.4.1)

where the �rst term β⊺f(x), is the mean of the Gaussian process (commonly
referred to as the trend function) with f(x) denoting a vector of p arbitrary
functions and β denoting the corresponding vector of p coe�cients. The second
term consists of the variance of the Gaussian process σ2 and a zero-mean, unit-
variance, stationary Gaussian process Z(x, ω). The underlying probability
space is represented by ω and is de�ned in terms of a correlation function R
and the hyperparameters θassociated with the R. The correlation function
R = R(x,x′;θ) describes the correlation between two sample points in the
system output, that depends on x, x′ and the hyperparameters θ [48]. The
construction of a Kriging model (choice of the trend function, choice of the
correlation function) and the calculation of the Kriging parameters (the trend
function coe�cients, the hyperparameters) is discussed fully in [48], [58] and
[59]. The open-source UQLab code [48] is used in this work to construct the
comparative Kriging surrogate model.

6.4.2 PC-Kriging

PC-Kriging, �rst developed by [60], makes use of PCE to capture the global
behavior of the computational model as well as the interpolation-type Kriging
to capture the local variations. This results in a surrogate modeling method
that is more e�cient than PCE and kriging separately [49]. This combination
is done, by using a PCE as the trend function described in 6.4.1, resulting in
the PC-Kriging surrogate described as follows:

ŷ(x) =
P∑

k=0

ckϕk̄(x) + σ2Z(x, ω), (6.4.2)

The construction of the PC-Kriging surrogate model follows the same formu-
lation as the construction of a PCE surrogate model and the construction of
the Kriging surrogate model. The PC-Kriging construction is discussed fully
in [60], and the open-source UQLab code [49] is used in this work to construct
the comparative PC-Kriging surrogate model.
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6.4.3 Low-Rank Approximations

An R-rank LRA surrogate is constructed as follows:

ŷ(x) =
R∑
l=1

bl(
M∏
i=1

v
(i)
l (xi)), (6.4.3)

where v
(i)
l denotes the ith-dimensional univariate function in the lth rank-

one component and bl are the scalar weighting factors. Assuming that the
number R of rank-one terms are small, the right-hand side of 6.4.3 represents
a canonical low-rank approximation. By expanding vil onto a polynomial basis
that is orthonormal to the PDFs of the random system parameter vector, 6.4.3
takes the form:

ŷ(x) =
R∑
l=1

bl(
M∏
i=1

(

pi∑
k=0

z
(i)
k,lϕ

(i)
k (x))), (6.4.4)

where ϕ
(i)
k denotes the k-th degree univariate polynomial in the i-th input

variable, pi is the maximum degree of ψi
k and z

(i)
k,l is the coe�cient of ϕ

(i)
k

in the l-th rank-one component. The same univariate polynomials used to
formulate the multivariate PCE basis are used to form the univariate functions
in the LRA. The LRA does, however, retain the tensor-product form of the
multivariate basis de�ned in Section 3.3. The advantage of representing the
PCE expansion in the form of a tensor decomposition is that it sets up a
framework that allows solving for the coe�cients in each dimension separately
without explicitly carrying out the tensor product. In this way, it facilitates
uncertainty propagation through models with inputs of high dimensions. The
mean and the variance can also be estimated directly from the surrogate model
using the polynomial coe�cients and the weighting factors. The convergence
rate of these estimates is then highly dependent on the calculation techniques
used to determine the LRA coe�cients [50]. The construction of the LRA
surrogate is fully discussed in [61], [62], [63], and [50]. The open-source UQLab
code [50] is used in this work to construct the comparative LRA surrogate
model.

µ̂ =
R∑
l=1

bl(
M∏
i=1

z
(i)
0,l ) (6.4.5)

σ̂2 =
R∑
l=1

R∑
l′=1

blbl′((
M∏
i=1

(

pi∑
k=0

z
(i)
k,lz

(i)
k,l′))− (

M∏
i=1

z
(i)
0,lz

(i)
0,l′)) (6.4.6)

6.5 Yield Estimation

To estimate yield, many algorithms use a very simple classi�cation system.
With R(x) denoted as the performance requirement of interest, and x de-
noting the system parameters, R(x) = 1 when the requirement is met and
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R(x) = 0 when the requirement is not met for a set of system parameter val-
ues. The deviation from a set of system parameter values is denoted as dx.
This deviation is a Probability Density Function (PDF), speci�cally a normal
PDF, with some mean and standard deviation associated with a fabrication
process. The complete design, which includes both the optimal system param-
eters and the deviation from the optimal design, is described as x0 + dx. A
counting function is then de�ned as:

H(x)

{
1 ifR(x) satis�es the design requirements
0 otherwise

(6.5.1)

The percentage H(x) satisfying the performance requirement out of N total
deviations, sampled from the PDF associated with the fabrication process,
from the optimal design x0, estimates the yield. This is summarized as:

Y (x0) =

∑N
i=1H(x0 + dxi)

N
, (6.5.2)

where dxi denotes the 1, 2, . . . , N samples taken from the fabrication process
associated PDF. The samples are typically taken in a naive random sense and
the yield is typically estimated as a Monte Carlo (MC) simulation. This is
computationally very expensive since a large number of samples are required
for statistical convergence and the electromagnetic (EM) model is also expen-
sive to evaluate.

In NLPLS-based PCE, however, the yield can be estimated very e�ciently
using the values for the mean and the standard deviation, which are pro-
duced naturally from the application of the technique, without any additional
computation. It should be evident that such an approach, with no require-
ment for an MC-analysis, is much more e�cient. A normal distribution is
assumed for the performance variable according to the central limit theorem,
and the standard deviation, mean, and performance requirement are used to
construct a standard normal distribution. The central limit theorem is valid
for a large sum of statistically independent random variables. The PCE al-
gorithm is built on the assumption that each random variable is statistically
independent. The NLPLS-based PCE surrogate will consequently also contain
a large sum of statistically independent variables, increasing as the number of
dimensions increases. The central limit is deemed valid to estimate the PDF
of the performance variable. The yield is determined as the probability of the
performance variable having a value better than the performance requirement
and is calculated from the PDF using simple integration.

The only statistical information that is necessary for an accurate result is
consequently the mean (the �rst moment about the origin) and the variance
(the second central moment). The NLPLS-based PCE surrogate is therefore
used to estimate only these statistical moments and not the output values.
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6.6 Inset-Fed Microstrip Patch Antenna

Application

The inset-fed microstrip patch antenna introduced in Chapter 5, where a 1-
D standard PCE surrogate is constructed, is repeated here for a full analysis
including a full set of 8 random system parameters. The inset-fed microstrip
patch antenna is shown in Figure 6.1, and is used as an initial example for the
proposed NLPLS-based PCE. The same fabrication process, namely chemical
etching, is used as in Chapter 5 and the same tolerances, namely normal
random variables with a mean of 0 mm and a standard deviation of 0.025 mm,
are used for each random system parameter. In Chapter 5, this example was
analyzed for the case of only one variable, due to limitations of the basic PCE
algorithms. The NLPLS-based PCE however allows for an analysis in which
statistical deviations can be applied to all system parameters, in this case,
eight.

Figure 6.1: Inset-fed patch antenna

The antenna is designed to operate at a center frequency (fc) of 2.45 GHz.
The nominal design as determined in Chapter 5 is summarised in Table 6.1.
The cross-polarization is once more chosen as a performance parameter. A
single case study is done, where a normal deviation with a mean and a standard
deviation of 0 mm and 0.025 mm respectively (N (0, 0.025)) are applied to each
of the eight random system parameters of the optimal design set, x0. The
cross-polarization for the nominal point and 500 Monte Carlo simulations are
shown in Figure 6.2. The green plot indicates the nominal cross-polarization
and the gray plots indicate the cross-polarization for 500 perturbations.
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System Parameter Parameter Values x0

SW 82.7 mm
SL 65.7 mm
Fi 11.6 mm
FLS 4.74 mm
FLW 3.53 mm
FLL 37.5 mm
PW 41.3 mm
PL 32.8 mm

Table 6.1: Inset-fed microstrip patch antenna system parameter values

0

30

60

90

120

150

180

210

240

270

300

330

-80

-60

-40

-20

0

Figure 6.2: Inset-fed patch yield analysis

The NLPLS-based PCE method results for the standard deviation of the
random performance parameter, for the case where NLPLS is set to use only
one latent variable (m = 1), can be seen in Figure 6.3. A 5% tolerance
band is de�ned as ±5% of the value predicted by a full Monte-Carlo (MC)
analysis, which in this case required N = 1000 electromagnetic (EM) analyses.
The converged MC-value is shown as a dotted line, with the ±5% range as
the colored region. The NLPLS-based PCE convergence is then de�ned as
the number of samples required to consecutively have a standard deviation
estimate within this region. From Figure 6.3, it is clear that the standard
deviation of the cross-polarization converges to within 5% of the N = 1000
MC-value, after only 90 samples. This is achieved without any interference
by the user and is one of the most powerful aspects of the combined process.
The mean can directly be extracted from the surrogate without any additional
computation, while the standard deviation is simply the square root of the
variance. This statistical information, together with a speci�c performance
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requirement, is normalized and the yield is determined as the probability of the
performance variable having a value better than the performance requirement.
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Figure 6.3: Standard deviation of the X-pol of an inset-fed patch antenna using
NLPLS-based PCE

For comparison to Chapter 5, the standard deviation is shown here instead
of the yield. Figure 6.3 shows that, compared to Chapter 5, with an eightfold
increase of the variable space from 1 to 8, an increase of 40 samples achieves
convergence of the standard deviation. The NLPLS-based PCE surrogate is
also constructed using only one latent variable, with the inclusion of more la-
tent variables providing no signi�cant improvement. This most likely suggests
that the cross-polarization is only sensitive to one system parameter, but a
global sensitivity analysis can be done easily using the post-processing steps
in [64]. This is a signi�cant result, providing the antenna designer with an
e�cient method to swiftly estimate the yield before fabrication. This allows
the antenna designer to experiment with more creative designs, which could
result in antenna designs with better performance.

6.7 Multiband Patch Antenna Application

The microstrip dual-band patch antenna, �rst proposed by [65], and shown
in Figure 6.4, is used as a second example for the proposed NLPLS-based
PCE method. This application provides a computationally expensive problem,
with many sensitive system parameters, ideal for showcasing the advantages
provided by NLPLS-based PCE. This method will be compared to a range
of well-known surrogate-assisted approaches, including PCE, Kriging, PCE-
Kriging, and Low-Rank Approximations (LRA).
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System Parameter x0

L 14.18 mm
l1 3.47 mm
l2 12.44 mm
l3 5.06 mm
W 15.56 mm
w1 0.65 mm
w2 8.29 mm
g 5.6 mm

Table 6.2: Multiband patch antenna system parameter values

Figure 6.4: Multi-band patch antenna

The antenna is implemented on a 0.762 mm thick Taconic RF-35 dielectric
substrate, with ϵr = 3.5. The statistically signi�cant system parameters and
nominal design x0 for antenna resonances at the frequencies, 2.4 GHz and 5.8
GHz are summarised in Table 6.2. The remaining optimal static geometry
parameters [o w0 l0 s] are [7 1.7 10 0.5], with all dimensions in mm.

The yield speci�cation of the dual-band antenna is a |s11| ≤ −10 dB for
both antenna resonances at 2.4 GHz and 5.8 GHz. A single case study is done,
where a normal deviation with a mean and standard deviation of 0 mm and
0.05 mm respectively (N (0, 0.05)) is applied to each variable of the optimal
design x0. This input distribution is the same input distribution used in [45].
This allows a means of comparison. The |s11| for the nominal point and 200
Monte Carlo simulations are shown in Figure 6.5. The green plot indicates
the nominal |s11|, the red plot indicates the performance requirement, and the
gray plots indicate the |s11| for 200 perturbations.

The NLPLS-based PCE method results can be seen in Figure 6.6. A 5%
tolerance band, where the tolerance is de�ned as ±5% of the estimated Monte
Carlo (MC) yield for N = 500, is shown as an aid to determine convergence.
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Figure 6.5: Dual-band patch yield analysis

Convergence is then de�ned as the number of samples required to consecu-
tively have a yield estimate within this region. The proposed NLPLS-based
PCE method has convergence at 10 samples. For comparison, PCE-Kriging,
Kriging, PCE, and LRA were implemented for the same problem, with the
results shown in Figure 6.6. It is clear that Kriging and PCE-Kriging converge
within 120 and 50 samples respectively, while PCE and LRA do not converge.
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Figure 6.6: Yield convergence - multiband patch

NLPLS-based PCE is determined to require the fewest number of samples,
and also has a convergence closest to that of the MC-yield. NLPLS-based PCE
is also simpler to implement, and in addition, provides the data necessary to
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perform a global sensitivity analysis using the post-processing steps shown in
[64].

A probability density estimate of the random performance parameter for
all methods is shown in Figure 6.7. The surrogate-assisted methods are com-
pared to a 1850 Latin-Hypercube-Sampled (LHS) MC to determine their ac-
curacy. All methods approximate the PDF well, with PCE-Kriging, Kriging,
and NLPLS-based PCE providing the closest approximations.

-60 -50 -40 -30 -20 -10 0 10 20

0

50

100

150

200

250

300

350

Figure 6.7: PDF estimate - multiband patch

To further illustrate the added advantage of the e�ective dimensionality
reduction inherent to NLPLS-based PCE, Figure 6.8 provides a Root-Mean-
Square-Error (RMSE, calculated using Equation 6.3.5) convergence for an in-
crease in the number of latent variables used to construct the metamodel, for
an increasing sample set. Using 2 latent variables as opposed to 1 latent vari-
able provides a small reduction in RMSE, with no added advantage for a larger
number of latent components.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. ANTENNA YIELD ESTIMATION 65

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3
10

-5

Figure 6.8: NLPLS-based PCE latent variables convergence - dual-band patch

.

6.8 Diplexer

The diplexer seen in Figure 6.9 is used as a �nal example for the proposed
NLPLS-based PCE method. This application provides a signi�cantly high
dimensional problem, with 37 sensitive system parameters, further showcasing
the advantages of this method. The diplexer is designed to split or merge
two input signals propagating at two bands 1.15 GHz ≤ f1 ≤ 1.3 GHz and
1.55 GHz ≤ f2 ≤ 1.62 GHz respectively. The statistically signi�cant system
parameters and nominal design x0 for |s11| ≤ −23 dB for both frequency bands
f1 and f2 is summarised in Table 6.3. Large passive structures, like a diplexer,
are typically manufactured using a machining process such as milling. The
sensitive system parameters are de�ned to replicate the starting and stopping
points of the milling machine, to easily include the random variables in these
system parameters. A single case study is done, where a normal deviation with
a mean of 0 mm and a standard deviation of 0.02 mm respectively (N (0, 0.02))
is applied to the nominal design x0. This input distribution is determined as
typical for a milling fabrication process. The |s11| for the nominal point and 200
Monte Carlo simulations are shown in Figure 6.10. The purple plot indicates
the nominal |s11|, the red plot indicates the performance requirement, and the
gray plots indicate the |s11| for 200 perturbations.

The NLPLS-based PCE method results can be seen in Figure 6.11. A 5%
tolerance band, where the tolerance is de�ned as ±5% of the estimated Monte
Carlo (MC) yield for N = 500, is shown as an aid to determine convergence.
Convergence is then de�ned as the number of samples required to consecutively
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Figure 6.9: Diplexer

System Parameter x0 System Parameter x0

cl1 61.1 mm w1 4 mm
cl2 47.3 mm w2 12.4 mm
cw 138.88 mm w3 15.74 mm
cg1 3 mm w4 23.74 mm
cg2 3 mm w5 32.44 mm
cg3 3 mm w6 40.44 mm
dl1 1.9 mm w7 49.28 mm
dl2 1.6 mm w8 57.28 mm
dl3 1.85 mm w9 60.6 mm
dl4 1.9 mm w10 69 mm
dl5 1.98 mm w11 73.42 mm
dl6 2.65 mm w12 81.42 mm
H 9 mm w13 93.75 mm
rg1 5.68 mm w14 101.75 mm
rg2 5.68 mm w15 113.87 mm
rg3 5.68 mm w16 121.87 mm
rg4 6.09 mm w17 126.18 mm
rg5 6.09 mm w18 134.88 mm
rg6 6.09 mm

Table 6.3: Diplexer system parameter values
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Figure 6.10: Diplexer yield analysis

20 40 60 80 100 120 140 160 180 200

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 6.11: Yield convergence - diplexer

have a yield estimate within this region. The proposed NLPLS-based PCE
method has convergence at 30 samples. PCE, Kriging, PCE-Kriging, and
LRA converge at 60, 90, 50, 40 samples respectively.

NLPLS-based PCE is determined to require the fewest number of samples,
and also has a convergence closest to that of the MC-yield. NLPLS-based PCE
is also, once more, simpler to implement, and in addition, provides the data
necessary to perform a global sensitivity analysis using the post-processing
steps shown in [64].

A probability density estimate for all methods is shown in Figure 6.12. The
surrogate-assisted methods are compared to a 1850 LHS-MC to determine their
accuracy. All methods estimate the PDF well.

Tuning screws are usually installed in the diplexer after fabrication to en-
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Figure 6.12: PDF estimate - diplexer

sure that each diplexer meets the performance requirements. NLPLS-based
PCE provides an extremely e�cient method to estimate the yield, and can
consequently be used to determine the necessity of tuning screws. The design
can also be further optimized to potentially prevent the use of tuning screws.
This reduces fabrication time, and for this reason, cost, since there is no need
to tune each fabricated diplexer.

To further illustrate the added advantage of the e�ective dimensionality
reduction inherent to NLPLS-based PCE, Figure 6.13 provides an RMSE con-
vergence for an increase in the number of latent variables used to construct
the metamodel, for an increasing sample set. Using 2 latent variables as op-
posed to 1 latent variable provides a small reduction in RMSE, with no added
advantage for a larger number of latent components.

6.9 Conclusion

NLPLS-based PCE was introduced as a method for yield estimation. This
method was successfully applied to a simple inset-fed microstrip patch antenna,
a multi-band patch antenna, and a diplexer. An accurate standard deviation
estimate was determined for the 8-variable inset-fed microstrip patch antenna
using only 90 samples, an accurate yield estimation was determined for the 8-
variable multi-band patch antenna using only 10 samples, and an accurate yield
estimation was determined for a 37-variable diplexer using only 30 samples.

The fewest number of samples required for an 8-variable application in
PCE-based applications [18] - [22] was 241 samples. Our approach delivers a
solution with a speed-up of 24.1. The NLPLS-based PCE approach also out-
performed comparative yield analysis methods. To our knowledge, no investi-
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Figure 6.13: NLPLS-based PCE latent variables convergence - diplexer

gation has been done on a problem with 37 or more variables for an antenna
or electromagnetic application. A global sensitivity analysis can also be done
directly from the NLPLS-based PCE surrogate as demonstrated in [64] and
will be further investigated in Chapter 7.
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Sensitivity Analysis

The work presented in this chapter was published as a conference article at the
2022 International Conference on Electromagnetics in Advanced Applications
(ICEAA) [17]. Sensitivity analysis and yield estimation are crucial steps in
the design of antennas and passive microwave subsystems intended for high-
volume production. Tolerances introduced by the fabrication processes of these
structures introduce variations in performance, which can result in the non-
compliance of a signi�cant portion of the �nal systems. This is especially
troublesome in complex designs where very sensitive system parameters may
be present. It is thus important to both estimate the yield of these structures
and determine the sensitivity of their associated system parameters in order
to ensure a robust, pro�table design. For sensitivity, the typical approach is
to calculate a set of local sensitivities, with the change in the performance
requirement measured as each speci�c system parameter is changed around
a nominal point. This is usually determined based on a computation of the
gradient of the performance variable with respect to the system parameter
of interest around some nominal value. Many methods to compute the gra-
dient e�ciently exist, such as �nite-di�erence schemes, and direct or adjoint
di�erentiation methods [66]. Adjoint di�erentiation methods (commonly re-
ferred to as adjoint-variable methods) are known to be most e�cient, and
consequently most prevalent, in electromagnetic (EM) applications, since this
method avoids the e�ect of an increasing number of system parameters [67].
This method has been applied and improved on for many EM applications such
as [67], [68], [69] and [70]. These local sensitivity analysis methods, however,
neglect the combined sensitivity of the entire set of sensitive system parame-
ters, denoted the global sensitivity. A Monte Carlo or alternative stochastic
simulation which attempts to estimate the global sensitivity is usually dra-
matically more computationally expensive. For antennas and other passive
components, each analysis point for the Monte Carlo analysis requires a full
3D electromagnetic analysis. The number of analysis points required to ac-
curately estimate the yield typically increases dramatically as the number of
sensitive system parameters increases. Complex designs with a large number of

70
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sensitive parameters are typically impossible to analyze with standard Monte
Carlo and stochastic simulation techniques.

Global sensitivity analysis methods can be summarized according to three
categories. The �rst set of methods, typically denoted as regression-based
methods, aims at linearly regressing the outputs on the inputs with the aim
of identifying global sensitivity indices. The second set of methods, typically
denoted as analysis of variance methods, attempts to determine each system
parameter's in�uence on the total variance of the performance parameter. The
third set of methods, typically denoted as the 'distribution-based' methods,
aims to quantify the sensitivity of the performance variable to a given system
parameter by computing the probability of exceeding a performance threshold
given the system parameters' distribution. Of these methods, analysis of vari-
ance methods is extremely attractive, since the sensitivity analysis can usually
be done as a post-processing step after a yield analysis or similar stochastic
analysis is applied. Standard Monte Carlo [71] methods, �nite-di�erence time-
and frequency domain [72],[73] methods, stochastic collocation methods [74]
and Polynomial Chaos Expansion (PCE) methods [75] have been successfully
implemented for EM applications. The main problem with these methods is
the large increase in computational burden as the number of system parameters
increases.

In the �elds of reliability engineering and physics, a signi�cant step in ef-
�ciency was made towards the solution to this problem by [47], who used a
Non-Linear Partial-Least-Squares-based Polynomial Chaos Expansion
(NLPLS-based PCE) method to construct a meta-model with a massive re-
duction in system parameters, with the statistical information determined si-
multaneously with the same sample set using PCE. As a post-processing step,
the technique by [64] was applied to the NLPLS-based PCE surrogate, to con-
struct a standard PCE surrogate described by the full set of original system
parameters. A variance-based sensitivity analysis could then be performed
using the PCE coe�cients associated with each system parameter. Chapter
6 proposed the application of the NLPLS-based PCE surrogate to the �eld
of antenna and microwave structures, showing that it o�ers an exceptionally
e�cient way of calculating yield.

This chapter expands on Chapter 6 by applying the basic principles of
[47] and [64] to the models developed in Chapter 6, to propose a very e�cient
solution to the problem of global sensitivity analysis in the �eld of antennas and
microwave structures. To achieve this, an NLPLS-based PCE surrogate is �rst
constructed and then transformed into a standard PCE surrogate, whereafter
a variance-based sensitivity analysis is performed. The technique is illustrated
on a dual-band patch antenna and two high-order diplexers. For an 8-variable
dual-band patch antenna, the technique requires only 10 frequency sweeps to
accurately estimate both the statistical properties and global sensitivity. Even
better results are obtained for a 37-variable diplexer, where only 30 frequency
sweeps are required to accurately estimate both the statistical properties and
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the global sensitivity. Two variations of the diplexer are investigated, with
one a standard design, and the other optimized for manufacturing cost. In
this comparison, the rapid yield and sensitivity analysis o�er the designer
excellent insight into the trade-o� between cost and yield, and directly shows
the important dimensional parameters which a�ect these performance metrics.

7.1 Global Sensitivity Analysis

The global sensitivity analysis is done as a post-processing step, after a su�-
ciently accurate NLPLS-based PCE surrogate is constructed. The surrogate
is �rst transformed into a regular PCE, described by the full set of system pa-
rameters. The partial in�uence of each system parameter is then determined
and compared to the total variance of the performance parameter to deter-
mine their respective in�uence. The Sobol indices variance-based sensitivity
is �rst explained, whereafter the PCE interpretation is deduced. The �nal
NLPLS-based PCE sensitivity is then explained.

7.1.1 Variance-based Sensitivity Analysis

To determine each system parameter's in�uence on the total variance of the
performance parameter, the performance parameter's variance needs to be ex-
pressed as a function of each system parameter's variance. Given that the
system parameters are limited to be Gaussian and independent, this can be
achieved by projecting the performance parameter onto the appropriate Her-
mite orthogonal basis. The performance parameter can then be represented
by the Sobol' decomposition given in (7.1.1) [76].

f(x) = f0 +
d∑

i=1

fi(xi) +
d∑

i=1

d∑
j=i+1

fij(xi, xj)

+ · · ·+ f1,··· ,d(x1, · · · , x2)

(7.1.1)

Each summand in (7.1.1) represents the in�uence of a distinct variable subset
of x, xA, and due to the orthogonality property, the partial variance associated
with A is given immediately by V [fA] [64]. The subset A is typically the set
of terms containing any degree of the system parameter xi, with i = 1, · · · , N ,
with N equal to the dimensionality of the system.

Sf(x),A = V [fA]/V [f(x)] (7.1.2)

Equation (7.1.2) fails to capture the interaction terms of the system parameter
xi. Equation (7.1.3) provides a solution containing the in�uence of each term
containing the system parameter xi. This is done by sweeping over every term
in (7.1.1), denoted by the subset B, and summing the partial variance if the
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subset B contains the subset A. The total-e�ect Sobol' index, ST is then given
by:

ST
f(x),A =

∑
A∩B̸=∅

V [fB]/V [f(x)] (7.1.3)

7.1.2 PCE Sensitivity Analysis

As shown in Section 3.5, the mean and variance can simply be extracted from
a su�ciently accurate truncated PCE with P terms, as given by (3.4.1), using
(3.5.1) and (3.5.2) respectively. The formulation provided by [66], further
showed that the Sobol' indices SŶ,A and ST

Ŷ,A of (3.4.1) can be found by post-

processing the coe�cients ĉ.
For a given subset of the input variables denoted by the index A, we de�ne

a boolean index vector IA ∈ {0, 1}d×1 so that IA
i = 0 if i /∈ A and IA

i = 1 if
i ∈ A. In the same way, we de�ne such a boolean vector for the multi-index k
so that Ik

i = 0 if ki = 0 and Ik
i = 1 if ki > 0. The total PCE-based sensitivity

indices are then �nally given by [64]:

ŜT
Ŷ,A =

1

V [Ŷ ]

∑
(IA)T Ik ̸=0

c2k (7.1.4)

7.1.3 NLPLS-based PCE Sensitivity Analysis

It has been shown in [64], that the NLPLS-based PCE surrogate, Ŷ PLS
m , can

be used to calculate the sensitivities to the original system parameter vector
x. The NLPLS-based PCE coe�cients b is transformed to standard PCE
coe�cient c as follows:

ck =
m∑
i=1

bqii|k|
√

|k|!
d∏

i=1

rklil√
kl!
, (7.1.5)

where ril is the il-th entry in the matrix R, m is the number of latent compo-
nents, k is the multi-index and b is the NLPLS-based PCE coe�cients. These
coe�cients can be used to represent the NLPLS-based PCE surrogate in the
standard PCE format:

Ŷ PLS
m = c0 +

∑
|k|≤qmax

ckΨk(x), (7.1.6)

where
qmax = argmaxi∈{1,··· ,m}(qi) (7.1.7)

This formulation is valid for the same assumptions presented in NLPLS-based
PCE, that is, x̃ → x, with x̃ = x−X̄ . This assumption is correct when either
the number of samples N → ∞, or a sampling method is employed that aims
to enforce this assumption for �nite N .
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Figure 7.1: Global sensitivity f1 - dual-band patch

7.2 Dual-band Patch Antenna Sensitivity

Analysis

The same application as in Section 6.7 is used to illustrate the seamless global
sensitivity analysis from the already constructed NLPLS-based PCE surro-
gate model. This application also provides a computationally expensive prob-
lem, with 8 random system parameters, ideal for showcasing the advantages
provided by NLPLS. This method will be compared to well-known surrogate-
assisted approaches where the same variance-based methods can be used for
global sensitivity analysis, including PCE and LRA. The accuracy of the
NLPLS-based surrogate model is already veri�ed in Chapter 6. The �nal
post-processed global sensitivity analysis for the two frequency bands of in-
terest can be seen in Figures 7.1 and 7.2 respectively. The global sensitivity
for the lower-frequency band seen in Figure 7.1 shows good agreement for all
three methods. Figure 7.1 indicates that the re�ection for the lower-frequency
band is most sensitive to changes in the width of the coupling section w1 and
the distance between the ground plane and the larger patch g. The global
sensitivity for the upper-frequency band seen in Figure 7.2 shows good agree-
ment for all three methods. Figure 7.2 indicates that the re�ection for the
upper-frequency band is most sensitive to changes in the length of the larger
patch L and the width of the coupling section w1.
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Figure 7.2: Global sensitivity f2 - dual-band patch

Figure 7.3: Diplexer

7.3 Diplexer Sensitivity Analysis

The same diplexer used in Chapter 6 is used as the second example for the
proposed NLPLS-based PCE global sensitivity analysis. The EM structure is
shown again in Figure 7.3 for convenience. The same application is used to
illustrate the seamless global sensitivity analysis from the already constructed
NLPLS-based PCE surrogate model. This application also provides a com-
putationally expensive problem, with 37 random system parameters, ideal for
showcasing the advantages provided by NLPLS. This method will be com-
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Figure 7.4: Global sensitivity f1 - diplexer

pared to well-known surrogate-assisted approaches where the same variance-
based methods can be used for global sensitivity analysis, including PCE and
LRA. The accuracy of the NLPLS-based surrogate model is already veri�ed
in Chapter 6. The �nal post-processed global sensitivity analysis for the two
frequency bands of interest can be seen in Figures 7.4 and 7.5 respectively.
The global sensitivity for the lower-frequency band seen in Figure 7.4 shows
good agreement for all three methods. Figure 7.4 indicates that the re�ection
for the lower-frequency band is most sensitive to changes in variables x3−5 and
x12−14. These random variables correspond to the parameters rg1−3 and w2−4.
This indicates that the re�ection for the lower-frequency band is most sensitive
to changes in the lengths of pins 2− 4 and changes in the widths of pins 1− 2.
The global sensitivity for the upper-frequency band seen in Figure 7.5 shows
good agreement for all three methods. Figure 7.5 indicates that the re�ection
for the upper-frequency band is most sensitive to changes in variables x7−9.
These random variables correspond to the parameters rg4−6. This indicates
that the re�ection for the upper-frequency band is most sensitive to changes
in the length of pins 6− 8.

7.4 Manufactured Diplexer Sensitivity Analysis

The diplexer as seen in Figure 7.3 is altered to make it feasible for manufac-
turing. The �nal design of the diplexer can be seen in Figure 7.6. This design
does not require tuning stubs, as it was previously optimized to always op-
erate within the allowed performance irrelevant of manufacturing tolerances.
The connectors are also moved and an extra resonating pin is added to both
the lower- and upper-band sections. The manufactured diplexer and the mea-
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Figure 7.5: Global sensitivity f2 - diplexer

Figure 7.6: Manufactured diplexer schematic

surement setup can be seen in Figure 7.7. The measured re�ection coe�cient
compared to the simulated re�ection coe�cient can be seen in Figure 7.8. The
measured performance is close to the simulated performance and the design
performs as expected. The system parameters and nominal design x0 for
|s11| ≤ −23 dB for both frequency bands f1 and f2 is summarised in Table
7.1. A single case study is done, where a normal deviation with a mean of 0
mm and a standard deviation of 0.02 mm respectively (N (0, 0.02)) is applied
to the nominal design x0. This input distribution is determined as typical for
a milling fabrication process. Figure 7.4 indicates that the re�ection for the
lower-frequency band of the original diplexer is most sensitive to changes in
variables x3−5 and x12−14. These random variables correspond to the parame-
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Figure 7.7: Manufactured diplexer
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Figure 7.8: Simulated vs measured re�ection coe�cient
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System Parameter x0 System Parameter x0

H 26 mm w5 30.1 mm
WB2 92.67 mm w6 42.8 mm
L1 69 mm w7 51.3 mm
L2 56 mm w8 66.8 mm
p1 55.8 mm w9 75.3 mm
p2 54.1 mm w10 88 mm
p3 53.7 mm w11 96.5 mm
p4 53.9 mm w12 100.5 mm
p5 55 mm w13 109 mm
p6 55.8 mm w14 113.27 mm
p7 40.3 mm w15 121.27 mm
p8 40.5 mm w16 134.77 mm
p9 40.7 mm w17 142.77 mm
p10 41.1 mm w18 159.07 mm
p11 42.8 mm w19 167.07 mm
w1 5 mm w20 180.57 mm
w2 9 mm w21 188.57 mm
w3 17.4 mm w22 192.97 mm
w4 21.6 mm w23 201.67 mm

Table 7.1: Manufactured diplexer system parameter values

ters rg1−3 and w2−4. This indicates that the re�ection for the lower-frequency
band is most sensitive to changes in the lengths of pins 2 − 4 and changes in
the widths of pins 1 − 2. Comparatively, Figure 7.9 indicates that re�ection
for the lower-frequency band of the manufactured diplexer is most sensitive to
changes in variables x18 - x27. These random variables correspond the parame-
ters w3 - w12. This indicates that the re�ection for the lower-frequency band is
most sensitive to changes in the widths of pins 1− 6. Figure 7.5 indicates that
the re�ection for the upper-frequency band of the original diplexer is most sen-
sitive to changes in variables x7−9. These random variables correspond to the
parameters rg4−6. This indicates that the re�ection for the upper-frequency
band is most sensitive to changes in the length of pins 6− 8. Comparatively,
Figure 7.10 indicates that re�ection for the upper-frequency band of the man-
ufactured diplexer is most sensitive to changes in variables x27 - x37. These
random variables correspond the parameters w12 - w23. This indicates that
the re�ection for the lower-frequency band is most sensitive to changes in the
widths of pins 6− 11.
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Figure 7.9: Global sensitivity f1 - manufactured diplexer
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Figure 7.10: Global sensitivity f2 - manufactured diplexer
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7.5 Conclusion

NLPLS-based PCE was introduced as a method for analysis of variance global
sensitivity analysis. This method was successfully applied to the dual-band
patch antenna and diplexer introduced in Chapter 6. An accurate global sen-
sitivity analysis was performed seamlessly from the NLPLS-based PCE sur-
rogates constructed in Chapter 6. The global sensitivity results agreed well
with other known methods. The global sensitivity was also analyzed using
signi�cantly fewer samples. The passive diplexer structure is optimized for
manufacturing and a single structure is fabricated and measured. The sim-
ulated and measured results were in agreement and an NLPLS-based PCE
global sensitivity analysis is performed on the newly manufactured diplexer.
The manufactured diplexer structure's global sensitivity di�ers signi�cantly
from the original design since tuning stubs are no longer included in the �nal
design.
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Chapter 8

Yield Optimization

Antenna yield optimization directly follows antenna yield estimation. Directly
optimizing yield from an expensive to evaluate electromagnetic Monte Carlo
simulation is consequently prohibitive and following the results from chapter 7,
deemed infeasible. Many methods to alleviate the computational burden have
been introduced, and these methods can typically be summarized in three
categories: space mapping, feature-based statistical design, and simulation-
driven surrogate-assisted multi-objective design optimization [77]. Polynomial
Chaos-based (PC-based) approaches have been incorporated in space-mapping
methods [78], and feature-based Statistical design [79], [80], [81], [82]. These
methods all incorporate standard PCE surrogate construction, mostly utilizing
a Spectral Projection (SP) approach to determine the coe�cients. They all
consequently su�er from a large computational burden for high dimensional
model construction and the highest dimensional application only includes 6
system parameters.

Yield optimization methods that do not incorporate PCE are also prevalent
in the literature. These methods optimize yield using performance-driven sur-
rogates in reduced domains determined from a few pre-optimized designs [43],
a Freeze-Thaw Bayesian technique [83], a support vector machine (SVM) sur-
rogate model method [84], Gaussian process regression [85], a neuro-transfer
function surrogate [86], and a performance-based nested surrogate modeling
method [87]. These methods are also unfeasible for high dimensions and the
highest dimensional application only includes 10 system parameters. The
NLPLS-based PCE surrogate provides multiple opportunities to alleviate the
computational burden of yield optimization. The �rst advantage is the e�cient
construction of a high-dimensional surrogate model. The second is the direct
extraction of a variance-based global sensitivity, which can be incorporated
into a gradient-descent-based optimization algorithm to scale the step size for
each system parameter according to its in�uence on the variance of the sys-
tem performance parameter. Finally, the random model evaluations required
to construct the NLPLS-based PCE surrogate can be used in a performance-
guided random walk to optimize the design. This chapter explores all these

82
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methods and applies them to a high-dimensional diplexer (as discussed In chap-
ter 7) and a 100 GHz �lter. These applications have 38 and 43 random system
parameters respectively, providing a challenging yield optimization problem.

8.1 NLPLS-based PCE Yield-Driven

Optimization

The NLPLS-based PCE surrogate can be exploited for e�cient yield optimiza-
tion in 3 ways:

� The random model evaluations can be re-used in a performance-guided
random walk process to iteratively model the design in an optimal direc-
tion.

� The NLPLS-based PCE surrogate allows e�cient construction of high-
dimensional surrogates and can be used in a surrogate-assisted gradient-
descent algorithm.

� The variance-based global sensitivities extracted from the NLPLS-based
PCE surrogate can be used to scale the step size in the aforementioned
gradient-descent approach to more e�ectively move in the optimal design
direction.

These methods are elaborated on in the following sections.

8.1.1 NLPLS-based PCE Performance-Guided Random
Walk

A pre-determined nominal system parameter vector x0 associated with a spe-
ci�c nominal performance variable y(x0) has a speci�c yield u(x0) deter-
mined using the NLPLS-based PCE surrogate. The NLPLS-based PCE sur-
rogate is constructed using a set of N perturbations of the nominal design
X = {x0 + x1, · · · ,x0 + xN} and an associated set of N model evaluations
Y = {y(x0 + x1), · · · , y(x0 + xN)}. The N perturbations are drawn accord-
ing to an LHS scheme and the corresponding model evaluations are used to
determine the optimization direction in the system parameter vector. The
perturbation of the nominal design associated with the best performing model
evaluation is chosen as the new nominal system parameter vector xi and the
yield is once again determined using the NLPLS-based PCE surrogate. The
best performing model evaluation is determined according to a speci�cation
variable S, where the performance is determined as R = S − y(x0 + xi). A
positive value of R corresponds to an acceptable performance if S is an upper
speci�cation and a negative value of R corresponds to an acceptable perfor-
mance if S is a lower speci�cation. This can be generalized toM speci�cations
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as Rj = Sj − yj(x
0 + xi), where j = {1, · · · ,M}. The mean is determined for

each performance vector with acceptable performance for each speci�cation.
The system parameter perturbation associated with the best performance vec-
tor mean is chosen as the new nominal system parameter vector xi and the
optimization is repeated until a pre-de�ned number of iterations is performed
or a yield is greater or equal to a pre-de�ned tolerance value. The algorithm
is visually depicted in Figures 8.1 and 8.2. Figure 8.2 shows a performance
guided random walk for a problem with 2 random system parameters and a
single performance output parameter. The guided walk is performed for 2 it-
erations and shows the movement direction in three dimensions, including the
performance of each sample set.

8.1.2 NLPLS-based PCE assisted gradient descent

A polynomial chaos-based approach to yield-driven electromagnetic optimiza-
tion introduced by [79] is used to incorporate the PCE coe�cients into the
formulation of the objective function. The sensitivities of the PCE coe�cients
concerning the nominal point and the sensitivities of the objective functions
concerning the coe�cients are then used in a gradient-based optimization al-
gorithm to �nd an optimal solution. A one-sided least pth objective function
is presented in [88], where the objective functions are congregated from the
simulated responses related to design speci�cations for all the circuit outcomes
randomly generated around a nominal point, is used as a starting point. The
resulting objective function, which includes both upper and lower speci�ca-
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tions, is shown in (8.1.1):

U(x0) =
∑
j∈J

Vj(x
0) +

∑
j∈Ju

(c0j − Sj), (8.1.1)

where J is a vector that contains the indices of the speci�cations, Ju is a vector
that contains the indices of the upper speci�cations, Sj is the jth speci�cation,
c0j is the �rst PCE coe�cients related to the jth speci�cation and Vj(x

0) is
computed from the coe�cients in (8.1.2)as follows:

Vj(x
0) = σj(x

0)

[
ϕ(γj(x

0))γj(x
0) +

1√
2π

exp(−1

2
γ2j (x

0))

]
, (8.1.2)

where σj(x
0) is the standard deviation calculated according to (8.1.3), ϕ(γj(x

0))
is the probability that the jth speci�cation is satis�ed or violated for an up-
per speci�cation or a lower speci�cation respectively, γj(x

0) is the normalised
standard Gaussian random variable according to 8.1.4

σj(x
0) =

√√√√ P∑
i=1

c2ijα
2
i (8.1.3)

γj(x
0) =

Sj − c0j(x
0)

σj(x0)
(8.1.4)

The coe�cients of the NPLS-based PCE is determined using OLS. This di�ers
from the coe�cient calculation method presented in [79]. The derivatives of the
PCE coe�cients concerning the nominal point x0 are consequently obtained
di�erently from [79]. The same formulation used to estimate the coe�cients
is used to derive the sensitivities and since the Vandemore matrix A is only
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dependent on the perturbations and not the nominal point, the derivatives
are only dependent on the model sensitivities

∂yj(x)

∂x
. The model sensitivities

determined in [79] are simply extracted from the speci�c EM solver used.
The model sensitivities in this application are determined di�erently since the
available EM solver does not have this feature.

∂cj(x
0)

∂x0
= (A⊺A)−1A⊺∂yj(x)

∂x
, (8.1.5)

where A is the Vandemore matrix de�ned in 3.6.4, and
∂yj(x)

∂x
is the model

sensitivities according to 8.1.6:

∂yj(x)

∂x
=
yj(x

0)− Yj

x0 −X
, (8.1.6)

where yj(x
0) is the model evaluation at the nominal point for speci�cation j, Yj

is the model evaluations at X for the speci�cation j, and X is the LHS sample
set. The derivative of the objective function concerning the PCE coe�cients
is determined according to 8.1.7:

∂U(x0)

∂cij(x0)
=


1− ϕ(γj(x

0)) for i = 0, j ∈ Ju

−ϕ(γj(x0)) for i = 0, j ∈ Jl

2cijα
2
i

1√
2π

1
σj(x0)

e(−
1
2
γ2
j (x

0)) for i = 1, · · · , P, j ∈ J

, (8.1.7)

where Jl is a vector containing all the lower speci�cations indices. The �nal
sensitivities of the objective function concerning the nominal point are simply
the multiplication of (8.1.5) with (8.1.7) for each speci�cation, resulting in
8.1.8:

∂U(x0)

∂x0
=

∑
j∈J

∂cj(x
0)

∂x0

∂U(x0)

∂cj(x0)
(8.1.8)

The full derivation of the objective function, using [88] as a starting point, and
the complete derivation of the gradient of the objective function concerning
the nominal point, using the PCE coe�cients, can be found in [79]. It is worth
noting that the PCE is constructed using NLPLS-based PCE, which allows this
formulation to be used for much higher-dimensional problems. This does not,
however, alleviate the problems concerning high dimensional gradient-based
optimization algorithms, and the number of iterations to successfully optimize
a structure is expected to be high. The gradient-based algorithm used in this
work is a simple gradient-descent method formulated as:

xn+1 = xn − δn
∂U(xn)

∂xn
, (8.1.9)

where the stepsize δn is �rst determined using line-search, whereafter the
Barzilai-Borwein method [89] is used in an attempt to ensure convergence
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to a local minimum. This method calculates the next step size iteratively as:

δn =
|(xn − xn−1)⊺

[
∂U(xn)
∂xn − ∂U(xn−1)

∂xn−1

]
|

||
[
∂U(xn)
∂xn − ∂U(xn−1)

∂xn−1

]
||2

(8.1.10)

This further deviates from the quasi-Newton method used in [79] (the speci�cs
of the algorithm are not mentioned in [79]). It is assumed that they used the
following formulation:

xn+1 = xn −∆xn, (8.1.11)

where ∆xn is determined as:

∆xn = −δnB−1
n ▽f(xn), (8.1.12)

where ▽f(xn) represents the gradient ∂U(x0)
∂x0 , δn represents the step-size and

Bn represents the Hessian matrix of second-order derivatives. The Hessian
matrix is �rst estimated as:

Bn = ▽f(xn)⊺▽f(xn), (8.1.13)

and iteratively updates using the BFGS algorithm as:

Bn+1 = Bn +
yny

⊺
n

y⊺n∆xn
− Bn∆xn(Bn∆xn)⊺

(∆xn)⊺Bk∆xn
, (8.1.14)

where yn = ▽f(xn+1) − ▽f(xn). It is known that the quasi-Newton method
attracts saddle points, which are common for high-dimensional problems. Both
methods are used to determine which performs best for high-dimensional EM
applications.

The formulation presented in [79] uses a one-sided least pth objective func-
tion �rst presented in [88]. The objective function is congregated from the
simulated response related to design speci�cations for all the circuit outcomes
randomly generated around the nominal point. The assumption that the EM
response follows a normal distribution is used to simplify the objective func-
tion presented in [88], and the �nal objective function directly results from this
assumption. The yield analysis presented in Chapter 6 also utilized the same
assumption and an l1 objective function is presented here as an alternative.
Since the performance variable is assumed to be a normal random variable
with some associated mean µy(x) and standard deviation σy(x), the yield is
determined as the probability that the performance variable will have a value
less than or equal to some speci�cation S. The yield is determined in Chapter
6 for only the upper speci�cation S and the following formulation will follow
that restriction. The objective function can be stated as a minimization of an
l1 error function, where the error function is given by:

e = yieldd|S − yieldy(x)|S, (8.1.15)
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where d indicates the desired yield (1 in the case of Chapter 6), and S is the
performance speci�cation. The term yieldd|S thus indicates a yield value of d
conditional on a certain performance speci�cation S. The objective function
where yieldd|S has a value of 1 is as follows:

U(x) = 1−
∫ S

∞

1

σ(x)
√
2π

exp(−0.5(
y − µ(x)

σ(x)
)2)∂y, (8.1.16)

where the standard deviation is described by the PCE coe�cients as:

σ(x) =

[
P∑
i=1

c2iα
2
i

]0.5

, (8.1.17)

and where the mean is described by the PCE coe�cients as:

µ(x) = c0α0 (8.1.18)

The derivation continues in Appendix A, and the �nal result of the full deriva-
tive is:

(
1√
2π

)(σ(x)−2)(µ(x)−1)(α2
i )(ci)[σ(x)

∫ S−µ(x)
σ(x)

−∞
z2 exp(−0.5(z)2)∂z

−
∫ S−µ(x)

σ(x)

−∞

[
exp(−0.5(z)2)

]
∂z]

(8.1.19)

This objective function for lower speci�cation simply changes the yield calcu-
lation to the probability of the performance variable having a value higher or
equal to some value S. The same formulation provided in [79] is used, with an
alternative objective function.

8.1.3 NLPLS-based PCE assisted gradient descent with
sensitivity updates

The global sensitivity of the system parameter vector concerning the variance
performance parameter can be directly extracted from the NLPLS-based PCE
surrogate. These sensitivities can be included in the gradient-based method to
allow the step size to be scaled for each system parameter according to their
global in�uence on the performance parameter variance. This could allow
faster statistical convergence since the gradient-based algorithms determine
the gradient based on the change in the performance parameter for a change
in the system parameter vector. The global sensitivity is determined for each
speci�cation Sj according to 7.1.4, denoted KT

j here for convenience. The
global sensitivity is normalized as:

K̂T
j =

KT
j

|KT
j |

(8.1.20)
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The normalized global sensitivity of each system parameter for each system
speci�cation is summed and normalized again:

K̂ =

∑
j∈J K̂T

j

|
∑

j∈J K̂T
j |

(8.1.21)

The global sensitivity described for the full set of speci�cations is then added
to the gradients descent algorithm described in 8.1.9, resulting in:

xn+1 = xn − δnK̂
∂U(xn)

∂xn
, (8.1.22)

8.2 Manufactured Diplexer Yield Optimization

The manufactured diplexer presented in Chapter 7 and shown in Figure 7.6
is used as an initial example for the proposed yield optimization algorithms.
This is a complex and high-dimensional EM structure with 38 system parame-
ters. Each system parameter is normally distributed around the nominal point
with a mean of 0 mm and a standard deviation of 0.02 mm (N (0, 0.02)). The
performance requirement S1 is a re�ection coe�cient value lower than -23 dB
for 1.15 GHz ≤ f1 ≤ 1.3 GHz and the performance requirement S2 is a re�ec-
tion coe�cient value lower than -23 dB for 1.55 GHz ≤ f2 ≤ 1.62 GHz. The
yield for the initial nominal design x0 is estimated using 30 frequency sweeps
as 57.28 % for S1 and 80.40 % for S2. The gradient descent algorithm and the
performance-guided random walk algorithm are allowed a maximum of 8 iter-
ations, while the other algorithms are allowed a maximum of 4 iterations. The
results of the gradient-based yield optimization algorithms are shown in Ta-
ble 8.1. The standard gradient-descent method and the quasi-newton method
provide no signi�cant improvement for both objective functions. The sensi-
tivity update methods improve the yield of the band S1 and S2 to 72.29 %
and 89.12 % for the �rst objective function and to 83.15 % and 81.72 % for
the second objective function. The most signi�cant improvement is provided
by the performance-guided random walk method, improving the yield of both
bands to 100 % after only 4 iterations. This results in an optimized yield after
only 120 frequency sweeps. The optimized system parameter vector is shown
in Table 8.2.

The re�ection coe�cients for the nominal points of the initial design and
the performance-guided random walk solution are shown in Figure 8.3. The
yellow plot indicates the nominal re�ection coe�cient, the red plot indicates
the performance requirements S, and the gray plot indicates the re�ection
coe�cient for a large set of perturbations from the respective nominal point.
It is consequently clear from Figures 8.3 that the performance-guided random
walk solution improved the yield to 100 %.
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Objective Function 1
Method S1[%] S2[%] Iterations
Gradient Descent 94.24 56.96 8
Quasi-Newton 96.08 42.31 4
Sensitivity Updates 72.29 89.12 4

Objective Function 2
Method S1[%] S2[%] Iterations
Gradient Descent 35.49 46.16 8
Quasi-Newton 90.33 12.20 4
Sensitivity Updates 83.15 81.72 4

Table 8.1: Gradient-based optimization results - diplexer
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Figure 8.3: Diplexer yield graphs

8.3 100 GHz Filter Yield Optimization

A 100 GHz ridged waveguide �lter shown in Figure 8.4 is used as a �nal
example for the proposed yield algorithms. The nominal system parameter
vector is shown in Table 8.3. This is a complex, extremely sensitive and high-
dimensional EM structure with 43 system parameters. Each system parameter
is chosen to replicate the starting and stopping points of the CNC machine
normally distributed around the nominal point with a mean of 0 mm and
a standard deviation of 1 µm (N (0, 1µm)). This distribution is typical for
specialized highly accurate CNC machining. The performance requirement S1

is a re�ection coe�cient lower than -15 dB for 103.25 GHz ≤ f1 ≤ 108.25
GHz and the performance requirement S2 is a transmission coe�cient lower
than -15 dB for f2 ≤ 102 GHz and a transmission coe�cient lower than -
15 dB for f3 ≥ 109.5 GHz. The yield for the initial nominal design x0 is
estimated using 30 frequency sweeps as 7.67 % for S1 and 98.06 % for S2.
Each optimization method is allowed a maximum of 10 iterations. The results
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System Parameter x4 System Parameter x4

H 25.898 mm w5 30.074mm
WB2 92.722 mm w6 42.736 mm
L1 68.994 mm w7 51.292 mm
L2 55.970 mm w8 66.750 mm
p1 55.846 mm w9 75.254 mm
p2 54.026 mm w10 88.083 mm
p3 53.673 mm w11 96.461 mm
p4 53.857 mm w12 100.481 mm
p5 55.001 mm w13 109.066 mm
p6 55.846 mm w14 113.319 mm
p7 40.277 mm w15 121.310 mm
p8 40.430 mm w16 134.848 mm
p9 40.694 mm w17 142.765 mm
p10 41.068 mm w18 159.093 mm
p11 42.848 mm w19 167.0159 mm
w1 5.000 mm w20 180.572 mm
w2 9.01 mm w21 188.577 mm
w3 17.457 mm w22 192.917 mm
w4 21.565 mm w23 201.649 mm

Table 8.2: Optimized manufactured diplexer system parameter values

of the gradient-based yield optimization algorithms are shown in Table 8.4.
The standard gradient-descent method applied to the �rst objective function
provided the best solution, improving the yield of S1 and S2 to 56.85 % and
88.86 % after 9 iterations. The quasi-newton method applied to the �rst
objective function marginally improved the yield of S1 and S2 to 13.46 % and
98.22 % after 7 iterations. The sensitivity updates method applied to the �rst
objective function signi�cantly improved the yield of S1 and S2 to 56.84 % and
71.83 % after 10 iterations. The improvements provided by the �rst objective
function outperform that provided by the second objective function, with the
best solution the quasi-newton method improving the yield of S1 and S2 to
38.08 % and 97.45 % respectively. The most signi�cant improvement is once
again provided by the performance-guided random walk solution, improving
the yield of S1 and S2 to 89.62 % and 90.67 % respectively. The optimized
system parameter vector is shown in Table 8.5. This results in an optimized
yield after only 240 frequency sweeps.

The re�ection coe�cients for the nominal points of the initial design and
the performance-guided random walk solution are shown in Figure 8.5. The
yellow plot indicates the nominal re�ection coe�cient, the red plot indicates
the performance requirements S1, and the gray plot indicates the re�ection
coe�cient for a large set of perturbations from the respective nominal point.
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Figure 8.4: 100 GHz �lter schematic
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Figure 8.5: Filter yield graphs - re�ection coe�cient

The transmission coe�cients for the nominal points of the initial design and
the performance-guided random walk solution are shown in Figure 8.6. The
yellow plot indicates the nominal transmission coe�cient, the red plot indicates
the performance requirements S2, and the gray plot indicates the transmission
coe�cient for a large set of perturbations from the respective nominal point.
It is consequently clear from Figures 8.5 and 8.6 that the performance-guided
random walk solution improved the yield to around 90 %.
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System Parameter x0 System Parameter x0

d1 0.1 mm l8 6.3128 mm
d2 0.5175 mm l9 7.8686 mm
d3 0.5175 mm l10 8.0686 mm
d4 0.5175 mm l11 9.4497 mm
d5 0.5175 mm l12 9.6497 mm
d6 0.5175 mm l13 10.6497 mm
d7 0.5175 mm rw1 0.1254 mm
d8 0.5175 mm rw2 1.1446 mm
d9 0.5175 mm rw3 0.2802 mm
d10 0.5175 mm w1 0.9898 mm
d11 0.5175 mm w2 0.3092 mm
d12 0.5175 mm w3 0.9608 mm
d13 0.5175 mm w4 0.3092 mm
d14 0.5175 mm w5 0.9608 mm
d15 0.5175 mm w6 0.2802 mm
l1 1 mm w7 0.9898 mm
l2 1.2 mm w8 0.1254 mm
l3 2.5811 mm w9 1.1446 mm
l4 2.7811 mm w10 0.19 mm
l5 4.3368 mm w11 1.08 mm
l6 4.5368 mm w12 1.27 mm
l7 6.1128 mm

Table 8.3: 100 GHz �lter system parameter values

Objective Function 1
Method S1[%] S2[%] Iterations
Gradient Descent 56.85 88.86 9
Quasi-Newton 13.46 98.22 7
Sensitivity Updates 56.84 71.83 10

Objective Function 2
Method S1[%] S2[%] Iterations
Gradient Descent 13.62 98.22 7
Quasi-Newton 38.08 97.45 4
Sensitivity Updates 25.07 99.45 5

Table 8.4: Gradient-based optimization results - 100 GHz �lter

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. YIELD OPTIMIZATION 94

95 100 105 110 115

-80

-70

-60

-50

-40

-30

-20

-10

0

(a) Yield iteration 0

95 100 105 110 115

-80

-70

-60

-50

-40

-30

-20

-10

0

(b) Random walk yield iteration 8

Figure 8.6: Filter yield graphs - transmission coe�cient

System Parameter x8 System Parameter x8

d1 0.1021 mm l8 6.3113 mm
d2 0.5128 mm l9 7.8694 mm
d3 0.5147 mm l10 8.0694 mm
d4 0.5174 mm l11 9.4523 mm
d5 0.5119 mm l12 9.6458 mm
d6 0.5196 mm l13 10.6487 mm
d7 0.5227 mm rw1 0.1312 mm
d8 0.5186 mm rw2 1.1489 mm
d9 0.5225 mm rw3 0.2822 mm
d10 0.5136 mm w1 0.9963 mm
d11 0.5198 mm w2 0.3065 mm
d12 0.5195 mm w3 0.9612 mm
d13 0.5222 mm w4 0.3100 mm
d14 0.5236 mm w5 0.9629 mm
d15 0.5170 mm w6 0.2796 mm
l1 1.0014 mm w7 0.9898 mm
l2 1.2001 mm w8 0.1173 mm
l3 2.585 mm w9 1.1472 mm
l4 2.7798 mm w10 0.1888 mm
l5 4.3361 mm w11 1.079 mm
l6 4.5341 mm w12 1.2721 mm
l7 6.1129 mm

Table 8.5: Optimized 100 GHz �lter system parameter values
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8.4 Conclusion

NLPLS-based PCE gradient-based optimization algorithms and an NLPS-
based PCE performance-guided random walk algorithm are proposed as possi-
ble solutions for complex high dimensional yield optimization. These methods
are applied to a 38 variable diplexer and a 43 variable 100 GHz �lter. Most al-
gorithms successfully improved the yield, but the performance-guided random
walk algorithm consistently improved the yield signi�cantly. The performance-
guided random walk algorithm improved the yield of the diplexer for S1 and
S2 from 57.28 % and 80.4 % to 100 % and 100 % respectively. The yield of
the 100 GHz �lter improved for S1 and S2 from 7.67 % and 98.06 % to 89.62
% and 90.67 % respectively.
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Chapter 9

Conclusion

PCE is introduced to alleviate the computational burden of statistical analy-
sis typically done using Monte Carlo analysis methods. Multiple methods to
construct an accurate PCE surrogate are investigated and the most e�cient
method, requiring the smallest number of frequency sweeps, is chosen as the
optimal method. PCE is successfully applied to an inset-fed patch antenna
problem, providing accurate estimates using only 60 frequency sweeps com-
pared to the 700 required by Monte Carlo analysis. PCE remains prohibitive
for complex high-dimensional problems and an NLPLS-based PCE algorithm
is proposed to allow yield analysis of these problems. NLPLS-based PCE esti-
mated the yield of a 37 variable diplexer using only 30 frequency sweeps com-
pared to the 500 required by Monte Carlo analysis and NLPLS-based PCE also
outperformed other state-of-the-art benchmark methods. NLPLS-based PCE
also seamlessly provides global sensitivity information. This NLPLS-based
PCE algorithm is used in multiple novel yield optimization algorithms and
two complex microwave structures are successfully optimized. The NLPLS-
based PCE performance-guided random walk algorithm improved the yield of
the diplexer for S1 and S2 from 57.28 % and 80.4 % to 100 % and 100 % re-
spectively. The yield of the 100 GHz �lter improved for S1 and S2 from 7.67 %
and 98.06 % to 89.62 % and 90.67 % respectively. These results are achieved
after only 120 and 240 frequency sweeps respectively. This is a signi�cant re-
sult since the Monte Carlo analysis provided accurate yield estimates after 500
frequency sweeps. This NLPLS-based PCE performance guided random walk
thus optimized the yield using fewer samples than the Monte Carlo required
to estimate the yield.

Future work would involve either extending the algorithm to be used for
multiple probability density functions or improving the algorithm to require
even fewer samples for yield estimation or yield optimization. The �rst im-
provement would simply require an extension to existing code, but many av-
enues are available for the second improvement. A rational PCE extension
could allow better PCE approximation for di�cult to approximate functions,
such as functions with sharp dips and singularities. The latent variable con-
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structed using NLPLS can be used to optimize an objective function in the
reduced latent space. This can converge signi�cantly quicker than the standard
solution since the complexity of the objective function is signi�cantly reduced.
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Appendix A

Objective Function Derivation

Since the performance variable is assumed to be a normal random variable
with some associated mean µy(x) and standard deviation σy(x), the yield is
determined as the probability that the performance variable will have a value
less than or equal to some speci�cation S. The yield is determined in Chapter
6 for only the upper speci�cation S and the following formulation will follow
that restriction. The objective function can be stated as a minimization of an
l1 error function, where the error function is given by:

e = yieldd|S − yieldy(x)|S, (A.0.1)

where d indicates the desired yield (1 in the case of Chapter 6), and S is the
performance speci�cation. The term yieldd|S thus indicates a yield value of d
conditional on a certain performance speci�cation S. The objective function
where yieldd|S has a value of 1 as follows:

U(x) = 1−
∫ S

∞

1

σ(x)
√
2π

exp(−0.5(
y − µ(x)

σ(x)
)2)∂y, (A.0.2)

where the standard deviation is described by the PCE coe�cients as:

σ(x) =

[
P∑
i=1

c2iα
2
i

]0.5

, (A.0.3)

and where the mean is described by the PCE coe�cients as:

µ(x) = c0α0 (A.0.4)

We would like to determine the gradient of the objective function concerning
the coe�cients. Since c0 and ci with i = 0, · · · , P is independent, we only need
to calculate two derivatives, resulting in:

∂U(x)

∂ci(x)
=

{
∂U(x)
∂c0(x)

for i = 0
∂U(x)
∂ci(x)

for i = 1, · · · , P
(A.0.5)
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The calculation of the derivate of the objective function concerning the �rst
coe�cient follows:

∂U(x)

∂c0(x)
= − 1

σ(x)
√
2π

∫ S

−∞

[
∂

∂c0(x)
exp(−0.5(

y − c0(x)α0

σ(x)
)2)

]
∂y, (A.0.6)

Excluding the derivative from the equation results in:

∂

∂c0(x)
exp(−0.5(

y − c0(x)α0

σ(x)
)2), (A.0.7)

The derivate according to the chain rule is:

(−0.5)(−2α0)

σ(x)2
(y − c0(x)α0) exp(−0.5(

y − c0(x)α0

σ(x)
)2), (A.0.8)

Simplifying this equation results in:

α0

σ(x)2
(y − c0(x)α0) exp(−0.5(

y − c0(x)α0

σ(x)
)2), (A.0.9)

Substituting this back into the original problem A.0.6 yields:

∂U(x)

∂c0(x)
= − 1

σ(x)
√
2π

∫ S

−∞

α0

σ(x)2
(y − c0(x)α0) exp(−0.5(

y − c0(x)α0

σ(x)
)2)∂y,

(A.0.10)
Substituting z:

z =
y − c0(x)α0

σ(x)
(A.0.11)

Substituting the gradient of z:

∂z

∂y
=

−c0(x)α0

σ(x)
(A.0.12)

∂y = − σ(x)

c0(x)α0

∂z (A.0.13)

Substituting this back into the original problem A.0.6 yields the �nal solution:

∂U(x)

∂c0(x)
=

1

σ(x)c0(x)

∫ S−c0(x)α0
σ(x)

−∞

1√
2π
z exp(−z

2

2
)∂z (A.0.14)

The derivative of the objective function concerning the ith PCE coe�cient can
be derived for a single coe�cient ci, which is generalized for the rest of the
coe�cients since each coe�cient is independent of the other. The derivation
follows for ci:

∂U(x)

∂ci(x)
= − 1√

2π

∫ S

−∞

∂

∂ci

[ P∑
i=1

c2iα
2
i

]−0.5

exp(−0.5(y − µ(x))2

[
P∑
i=1

c2iα
2
i

]−1

)


(A.0.15)
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The standard deviation is substituted by the PCE standard deviation repre-
sentation and the derivate is determined using both the product and chain
rule. The �rst term of the full derivative is: ∂

∂ci

[
P∑
i=1

c2iα
2
i

]−0.5
 exp(−0.5(

y − µ(x)

σ(x)
)2) (A.0.16)

Excluding the derivate:

∂

∂ci

[
P∑
i=1

c2iα
2
i

]−0.5

(A.0.17)

This results in:

(−0.5)(α2
i )(2)(ci)

[
P∑
i=1

c2iα
2
i

]−1.5

(A.0.18)

Simplifying:

− (α2
i )(ci)

[
P∑
i=1

c2iα
2
i

]−1.5

(A.0.19)

The �rst term of the product rule is then:

− (α2
i )(ci)(σ(x)

−3) exp(−0.5(
y − µ(x)

σ(x)
)2) (A.0.20)

Substituting back into the integral of the �rst term results in:

− 1√
2π

∫ S

−∞

[
−(α2

i )(ci)(σ(x)
−3) exp(−0.5(

y − µ(x)

σ(x)
)2)

]
∂y (A.0.21)

Simplifying and substituting with z equals:

1√
2π

∫ S−µ(x)
σ(x)

−∞

[
(α2

i )(ci)(σ(x)
−3) exp(−0.5(z)2)

]
(−σ(x)
µ(x)

)∂z (A.0.22)

The �nal result for the �rst term of the derivative is:

− 1√
2π

(σ(x)−2)(µ(x)−1)(α2
i )(ci)

∫ S−µ(x)
σ(x)

−∞

[
exp(−0.5(z)2)

]
∂z (A.0.23)

The second term of the product rule is:[
P∑
i=1

c2iα
2
i

]−0.5

∂

∂ci

exp(−0.5(y − µ(x))2

[
P∑
i=1

c2iα
2
i

]−1

)

 (A.0.24)
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Excluding the derivative:

∂

∂ci

exp(−0.5(y − µ(x))2

[
P∑
i=1

c2iα
2
i

]−1

)

 (A.0.25)

This results in:

(−0.5)(y−µ(x))2(−1)(α2
i )(2ci)

[
P∑
i=1

c2iα
2
i

]−1.5

exp(−0.5(y−µ(x))2
[

P∑
i=1

c2iα
2
i

]−1

)

(A.0.26)
Simplifying:

(ci)(α
2
i )(y − µ(x))2(σ(x)−3) exp(−0.5(

y − µ(x)

σ(x)
)2) (A.0.27)

The second term is then:

(ci)(α
2
i )(y − µ(x))2(σ(x)−4) exp(−0.5(

y − µ(x)

σ(x)
)2) (A.0.28)

Substituting back into the integral of the �rst term results in:

− 1√
2π

∫ S

−∞
(ci)(α

2
i )(y − µ(x))2(σ(x)−4) exp(−0.5(

y − µ(x)

σ(x)
)2)∂y (A.0.29)

Substitution of z

− 1√
2π

∫ S−µ(x)
σ(x)

−∞
(ci)(α

2
i )(z)

2(σ(x)−2) exp(−0.5(z)2)(−σ(x)
µ(x)

∂z) (A.0.30)

Simplifying:

1√
2π

(ci)(α
2
i )(σ(x)

−1)(µ(x)−1)

∫ S−µ(x)
σ(x)

−∞
(z)2 exp(−0.5(z)2)∂z (A.0.31)

The �nal result of the full derivative is then:

(
1√
2π

)(σ(x)−2)(µ(x)−1)(α2
i )(ci)[σ(x)

∫ S−µ(x)
σ(x)

−∞
z2 exp(−0.5(z)2)∂z

−
∫ S−µ(x)

σ(x)

−∞

[
exp(−0.5(z)2)

]
∂z]

(A.0.32)

This objective function for lower speci�cation simply changes the yield calcu-
lation to the probability of the performance variable having a value higher or
equal to some value S. The same formulation provided in [79] is used, with an
alternative objective function.
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