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Abstract

This research considers the problem of the No-Free-Launch-Theorem, which states that no

one machine learning algorithm performs best on all problems due to algorithms having

different inductive biases. Another problem is that the combinations of experts of the

same type, referred to as a mixture of homogeneous experts, do not capitalize on the

different inductive biases of different machine learning algorithms. Research has shown

that mixtures of homogeneous experts deliver improved accuracy compared to that of

the base experts in the mixture. However, the predictive power of a homogeneous

mixture of experts is still limited by the inductive bias of the algorithm that makes up

the mixture of experts. Therefore, this research proposes the development of mixtures of

heterogeneous experts through the combination of different machine learning algorithms

to take advantage of the strengths of the machine learning algorithms and to reduce the

adverse effects of the inductive biases of the different algorithms.

A set of different machine learning algorithms are selected to develop four different types

of mixtures of experts in the research. Empirical analyses are performed using non-

parametric statistical tests to compare the generalization performance of the ensembles.

The comparison is carried out to investigate the performance of the homogeneous

and heterogeneous ensembles in a number of modelling studies examined on a set

of classification and regression problems using selected performance measures. The

problems represent varying levels of complexity and characteristics to determine the

characteristics and complexities for which the heterogeneous ensembles outperform
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homogeneous ensembles.

For classification problems, the empirical results across six modelling studies indicate

that heterogeneous ensembles generate improved predictive performance compared to

the developed homogeneous ensembles by taking advantage of the different inductive

biases of the different base experts in the ensembles. Specifically, the heterogeneous

ensembles developed using different machine learning algorithms, with the same and

different configurations, showed superiority over other heterogeneous ensembles and the

homogeneous ensembles developed in this research. The ensembles achieved the best

and second-best overall accuracy rank across the classification datasets in each modelling

study.

For regression problems, the heterogeneous ensembles outperformed the homogeneous

ensembles across five modelling studies. Although, a random forest algorithm

achieved competitive generalization performance compared to that of the heterogeneous

ensembles. Based on the average ranks, the heterogeneous ensembles developed using

different machine learning algorithms where the base members consist of the same and

different configurations still produced better predictive performance than a number of

heterogeneous ensembles and homogeneous ensembles across the modelling studies.

Therefore, the implementation of a mixture of heterogeneous experts removes the need

for the computationally expensive process of finding the best performing homogeneous

ensemble. The heterogeneous ensembles of different machine learning algorithms are

consistently the most or one of the most accurate ensembles across all classification and

regression problems. This is attributed to the advantage of capitalizing on the inductive

biases of the different machine learning algorithms and the different configurations of the

base members in the ensembles.
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Opsomming

Hierdie navorsing oorweeg die probleem van die No-Free-Launch-Theorem, wat aandui

dat geen masjienleer algoritme die beste op alle probleme presteer nie, as gevolg van

algoritmes wat verskillende induktiewe vooroordele het. Nog ’n probleem is dat die

kombinasies van kundiges van dieselfde tipe, waarna verwys word as ’n mengsel

van homogene kundiges, nie munt slaan uit die verskillende induktiewe vooroordele

van verskillende masjienleer algoritmes nie. Navorsing het getoon dat mengsels van

homogene kundiges verbeterde akkuraatheid lewer in vergelyking met dié van die

basis kundiges in die mengsel. Die voorspellings krag van ’n homogene mengsel

van kundiges word egter steeds beperk deur die induktiewe vooroordeel van die

algoritme waaruit die mengsel van kundiges bestaan. Daarom stel hierdie navorsing

die ontwikkeling van mengsels van heterogene kundiges voor deur die kombinasie van

verskillende masjienleer algoritmes om voordeel te trek uit die sterk punte van die

masjienleer algoritmes en om die nadelige effekte van die induktiewe vooroordele van

die verskillende algoritmes te verminder.

’n Stel verskillende masjienleer algoritmes word gekies om vier verskillende tipes

mengsels van kundiges in die navorsing te ontwikkel. Empiriese ontledings word

uitgevoer met behulp van nie-parametriese statistiese toetse om die veralgemenings

prestasie van die ensembles te vergelyk. Die vergelyking word uitgevoer om die prestasie

van die homogene en heterogene ensembles te ondersoek in ’n aantal modellering studies

wat ondersoek is op ’n stel klassifikasie- en regressie probleme deur gebruik te maak van

iv
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geselekteerde prestasiemaatstawwe. Die probleme verteenwoordig verskillende vlakke

van kompleksiteit en kenmerke om die kenmerke en kompleksiteite te bepaal waarvoor

die heterogene ensembles beter as homogene ensembles presteer.

Vir klassifikasie probleme dui die empiriese resultate oor ses modellering studies aan

dat heterogene ensembles verbeterde voorspellende prestasie genereer in vergelyking

met die ontwikkelde homogene ensembles deur voordeel te trek uit die verskillende

induktiewe vooroordele van die verskillende basis kundiges in die ensembles. Spesifiek,

die heterogene ensembles wat ontwikkel is deur gebruik te maak van verskillende

masjienleer algoritmes, met dieselfde en verskillende konfigurasies, het superioriteit

getoon bo ander heterogene ensembles en die homogene ensembles wat in hierdie studie

ontwikkel is. Die ensembles het die beste en tweede beste algehele akkuraatheid rangorde

oor die klassifikasie datastelle in elke modellering studie behaal.

Vir regressie probleme het die heterogene ensembles beter gevaar as die homogene

ensembles oor vyf modellering studies. Alhoewel, ’n ewekansige woud algoritme

het mededingende veralgemenings prestasie behaal in vergelyking met die van die

heterogene ensembles. Gebaseer op die gemiddelde geledere, het die heterogene

ensembles ontwikkel deur gebruik te maak van verskillende masjienleer algoritmes

waar die basis lede uit dieselfde bestaan en verskillende konfigurasies steeds beter

voorspellende prestasie gelewer het as ’n aantal heterogene ensembles en homogene

ensembles oor die modellering studies heen.

Daarom verwyder die implementering van ’n mengsel van heterogene kundiges die

behoefte aan die rekenkundig duur proses om die beste presterende homogene ensemble

te vind. Die heterogene ensembles van verskillende masjienleer algoritmes is konsekwent

die meeste of een van die akkuraatste ensembles oor alle klassifikasie- en regressie

probleme. Dit word toegeskryf aan die voordeel om munt te slaan uit die induktiewe

vooroordele van die verskillende masjienleer algoritmes en die verskillende konfigurasies

van die basis lede in die ensembles.
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Chapter 1

Introduction

1.1 Research Background

The fourth industrial revolution (4IR) is characterized by a fusion of technologies that

have increased the rate at which data is generated from different sources, including

networks, computers, and data-driven devices. The pervasive generation of data from

these sources has further resulted in the emergence of large, diverse sets of big data

(Lee et al., 2018). Over the years, researchers and professionals of many different fields

have relied on conventional statistical methods to analyze the available generated data.

However, these methods are only efficient when applied to a considerable amount of

data and data complexities. As a result, the methods are limited in the current big data

evolution to obtain better predictive models that drive effective decision making (Tan

et al., 2017).

Artificial intelligence (AI) is one of the technological deliverables of the 4IR, and the rapid

advancement of AI has contributed to the field of machine learning (ML). ML has been

introduced to complement the existing statistical methods to process large and complex

data in order to derive actionable insights. With the ability to process large amounts

of structured and unstructured data, ML algorithms provide the possibility to develop

intelligent models that automatically learn to capture trends and patterns, and to extract

1
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Chapter 1. Introduction 2

valuable insight from big data (Feng et al., 2021).

Ideally, ML involves training of a learning algorithm to capture the relationship between

the input features and the corresponding target values of historical data. Then the trained

model obtained from the algorithm is an expert that makes predictions for new data

derived from similar data distribution as the historical data (Mitchell, 1997; Das and

Behera, 2017). The theories, techniques and tools of ML have been applied to solve

different problems, including classification, regression, estimation, clustering, and others

(Tsai et al., 2011; Elish et al., 2013; Kelleher et al., 2015; Dudek, 2017; Sharma et al., 2020).

Single ML algorithms have been used to develop models for different problems with

good prediction performance (Goh and Ubeynarayana, 2017; Poh et al., 2018; Sarkar et al.,

2020). However, research has shown that there is no single ML algorithm that performs

best on all problems because a ML algorithm generates different views on individual

problems (Wolpert, 1996).

These different views arise primarily from the complexities in the structures and

mathematical foundation of a ML algorithm, which result in different performance from

one problem to another. Due to the complexities and intrinsic nature of the algorithm,

the generation of a better predictive outcome by a single model on a problem is uncertain

(Feng et al., 2021; Alshdaifat et al., 2021). Therefore, the combination of the decisions of

multiple ML algorithms to construct a mixture of experts, also referred to as an ensemble,

offers an efficient solution to obtain improved predictive performance better than a single

ML algorithm (Hansen and Salamon, 1990; Wolpert, 1996; Kittler et al., 1998).

Ensemble learning is one of the most promising research directions in ML. The benefits

of ensemble learning have been shown in different domains with encouraging predictive

outcomes as summarized in Duin (2002) and Polikar (2006). The success of an ensemble

is attributed to the possibility of minimizing the influence of sub-optimal learners within

an ensemble to generate optimal performance. In addition, the ability to obtain a better

approximation for an unknown input-target attribute relationship in a dataset is one of

the motivations of ensemble learning (Nguyen et al., 2019b). Thus, the realization of

the successes of ensemble learning has transformed ML research into the possibilities of

combining the predictions of multiple experts to achieve more accurate predictions and

generalization performance than individual experts (Wolpert, 1996; Dietterich, 2000).

Stellenbosch University https://scholar.sun.ac.za
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A ML ensemble is expected to perform better than the average performance of the

individual component or base experts within the ensemble. However, the performance

of ensembles varies considerably due to various factors such as the type of base learners,

accuracy of the individual base experts, the number of base learners in the ensemble (i.e.

ensemble size), combination and decision-making strategy, data sampling technique, and

diversity among the individual experts (Bian and Wang, 2006).

Diversity is widely regarded to have a significant impact on the performance of

ensembles. Therefore, the crux for developing ensembles is not only to get accurate

predictions better than a random guess, but also to create diverse base experts that

generate different assumptions and classification errors in their predictions (Verma

and Mehta, 2017). Diversity within an ensemble represents the key to improve the

generalization performance of the ensemble.

Due to the requirement of diversity in ensembles, combinations of multiple instances of

similar or different ML algorithms are possible in order to construct a homogeneous or

heterogeneous ensemble. A heterogeneous ensemble is a combination of experts where

the individual experts that make up the ensemble are generated from different types of

ML algorithms. Each algorithm in a heterogeneous mixture has distinct strategies that

induce different assumptions to relate input features to target values in a dataset. These

assumptions are referred to as the inductive biases of each algorithm. Therefore, different

ML algorithms generate different predictions when trained on the same dataset due to the

differences in inductive biases of the algorithms (Mitchell, 1980). This research considers

the development of heterogeneous ensembles by capitalizing on the benefits of diversity

within the ensembles and the inductive biases of the base algorithms used to construct

the ensembles.

1.2 Problem Statement

As is the case with human experts, ML algorithms have a learned bias which results

in different ML experts created from the same dataset, resulting in different predictive

behaviours. To address the learning bias of ML algorithms, mixtures of experts,

such as support vector machine (SVM) ensembles, neural network (NN) ensembles,

random forests (RFs), k-nearest neighbour (kNN) ensembles, amongst others, have

Stellenbosch University https://scholar.sun.ac.za
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been developed. These mixtures of experts generally produce better performance than

individual ML algorithms. However, current mixtures of expert models are mostly

homogeneous. All of the experts in the mixture model are the same ML algorithm (e.g.

a typical NN ensemble consists of only neural networks as members of the ensemble or

a RF, which consists of only decision trees). While such an approach is still efficient,

the performance of mixtures of experts can be significantly improved if different ML

algorithms are included, thus capitalizing on the strengths and inductive biases of a

diverse set of experts. In this research, heterogeneous mixtures of experts are developed,

where the members of the mixture model are different ML algorithms.

1.3 Rationale of the Research

The rationale behind this approach to mixture modelling is the No-Free-Launch theorem

(Wolpert, 1996) with different ML algorithms exhibiting different learning (inductive)

biases, and therefore performing differently on the same data set. As a result, it is also the

case that no one ML algorithm performs best on all problems and that different algorithms

show different advantages and disadvantages based on the problem characteristics and

data. Moreover, homogeneous ensembles do not capitalize on the inductive biases of

different ML algorithms. The heterogeneous mixture model will take advantage of the

strengths of the different ML algorithms. In addition, the different inductive biases add

an additional behavioural diversity layer to ensembles. Note that behavioural diversity

among the members of an ensemble is an essential ingredient to maximize performance.

In this research, the heterogeneous mixture models consist of NNs, SVMs, kNN, decision

trees (DT), and naïve Bayes (NB) algorithms. All of these algorithms are known to exhibit

different inductive biases.

1.4 Research Questions

Given the stated research problem and rationale, the following question is identified to

guide this research. “Due to the inductive biases of ML algorithms in an ensemble, can a

heterogeneous mixture of experts result in an ensemble that consistently produces more accurate

predictions than that of a homogeneous mixture of experts by capitalizing on the advantages of the
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experts that make up the heterogeneous mixture"? The research question is examined under

the following dataset configurations: clean data, skewed class distributions, number of outliers,

severity of outliers, bagged subsets, and feature subsets.

1.5 Goal and Objectives of the Research

The goal of this research is to capitalize on the inductive biases of ML algorithms

to develop heterogeneous mixtures of expert models that consistently produce better

accuracy and generalization performance on classification and regression problems. The

specific objectives of the research are to:

• analyze the bias-variance dilemma and the inductive biases of different ML

algorithms;

• investigate different ensemble approaches to create diversity in ensembles;

• investigate different fusion approaches to combine the outcomes of diverse

ensemble members in the mixture model;

• perform a critical review of homogeneous and heterogeneous ensembles;

• develop heterogeneous and homogeneous ensembles by capitalizing on the

inductive biases of ensemble members with better generalization performance;

• evaluate the performance of the heterogeneous and homogeneous ensembles on

simple and complex classification and regression problems;

• conduct empirical analyses to compare the performance of the ensembles on clean

data, skewed class distributions, number of outliers, severity of outliers, bagged

subsets, and feature subsets in the identified classification problems; and

• conduct empirical analyses to compare the performance of the ensembles on clean

data, number of outliers, severity of outliers, bagged subsets, and feature subsets in

the identified regression problems.
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1.6 Research Methodology

It is necessary to provide a clear research strategy in order to achieve the stated research

objectives. The approaches to these objectives follow a ML pipeline that is presented as

follows:

• Problem Identification: The problem identification is that individual ML

algorithms do not perform best on all problems and that homogeneous ensembles

do not capitalize on the different inductive biases of the different ML algorithms.

• Literature Review: This stage involves performing a critical review of literature

on selected ML algorithms, data preprocessing techniques, inductive biases of ML

algorithms, the bias-variance dilemma, homogeneous ensembles, heterogeneous

ensembles, ensemble approaches, and different performance evaluation metrics.

The critical review is essential to capture a detailed body of knowledge in ML to

identify the inductive biases of individual ML algorithms, the optimal data pre-

processing techniques suitable for each ML algorithm, and the components used to

construct of an ensemble. All of these resulted in desired research outcomes.

• Data Collection and Data Pre-processing: Different simple and complex problems

are collected from the University of California Irvine (UCI) ML Repository for

experimentation. The collected datasets are pre-processed under the following

criteria: data normalization, feature selection, feature scaling, data encoding, data

sampling, handling missing values, removal of outliers, handling skewed class

distributions, and handling multi-classes data classification.

• Development of Ensembles: Homogeneous and heterogeneous mixtures of experts

are developed by combining the selected ML algorithms based on the assumptions

made by each ML algorithm in fitting their models on the data. Hence, due

to the inductive biases of the selected base algorithms, four types of ensembles

are developed. The first ensemble type is the development of homogeneous

ensembles using multiple instances of the same ML algorithm, where the instances

consist of the same configurations. The second ensemble type is constructed

using multiple instances of the same ML algorithm, where the instances were

configured differently. The third ensemble type delivers a single ensemble
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developed using multiple instances of different ML algorithms, where the instances

consist of the same configurations. The last ensemble type provides another single

ensemble developed using multiple instances of different ML algorithms, where

the instances were configured differently. An optimization approach was employed

to randomly search through the hyperparameter space of each algorithm in order

to obtain the configurations for the multiple instances of the base algorithms. The

different configurations of the base algorithms deliver different experts that actually

capitalized on the inductive biases of each algorithm with respect to the identified

classification and regression problems. The algorithms are trained, and the obtained

ensemble models are evaluated on the pre-processed datasets. The ensembles

are developed by capitalizing on different ensemble approaches to enhance the

objective of diversity in the research. Model implementation was done in the Python

programming language.

• Empirical Analysis of Results: The performance of the ensembles are evaluated on

a number of classification and regression problems, ranging from simple problems,

having small number of features, classes, and samples, to complex problems,

having many samples, many features, many classes, skewed class distributions,

and outliers. Furthermore, the ensembles are evaluated on the different modelling

studies, (i.e. clean data, skewed class distributions, number of outliers, severity of outliers,

bagged subsets, and feature subsets) for the selected classification and regression

problems. The results of the ensembles in each modelling study are analysed

using formal statistical tests to determine if differences in the performance of the

ensembles are significant or not. Then, a comparative analysis is performed between

heterogeneous and homogeneous ensembles using the following performance

measures: accuracy, generalization factor, F1-score, and root mean squared error.

1.7 Thesis Organization

This section describes the organization of this thesis. Chapter 1 provided the motivation

and goals of the research, while Chapter 2 discusses the concept of ML, the bias-variance

dilemma, and the inductive biases of ML algorithms. ML ensemble approaches are

discussed in Chapter 3. The reviews of homogeneous and heterogeneous ensembles are
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provided in Chapters 4 and 5 respectively.

Chapter 6 describes the ensemble developmental approaches and training methods

for the selected ML algorithms to construct diverse mixtures of heterogeneous and

homogeneous experts in this research. The empirical process used to evaluate the

heterogeneous and homogeneous ensembles is presented in Chapter 7. Chapters 8 and 9

discuss the results for classification and regression problems respectively, while Chapter

10 presents the conclusions and possible future work for the research.
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Chapter 2

Machine Learning and Bias-Variance

Dilemma

2.1 Background

The need to capture, analyze, interpret, and utilize large, complex and information-rich

data has become the next strategic solution to generate useful insight from data. This

strategic possibility is achieved by the technological advancement of AI through the

introduction of ML algorithms to complement existing statistical methods in order to

develop models that learn hidden information, complex relationships, and patterns in

data consisting of different characteristics and complexities.

To develop ML models from data with good generalization performance, it therefore

becomes imperative to analyze the inductive biases of ML algorithms and the bias-

variance tradeoff. Thus, the concept of ML is discussed in Section 2.2, while Section 2.3

discusses the bias-variance dilemma. Section 2.4 describes the inductive biases of selected

ML algorithms in this research, while Section 2.5 concludes the chapter with a summary.

9
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2.2 Machine Learning

This section provides general background knowledge of ML. The concept of ML as a

subfield of AI is discussed in Section 2.2.1, while Section 2.2.2 presents the categories of

learning methods applied to different ML problems.

2.2.1 Concept of Machine Learning

ML is a sub-field of AI that implements a learning algorithm to search through an n-

dimensional space of a given dataset to find acceptable generalizations from the data.

Generalization in this context indicates that the knowledge and experience learned by a

ML model from the samples in the data are used to estimate future predictions on unseen

samples (Himika et al., 2008; Muhammad and Yan, 2015; Musumeci et al., 2019; Shailaja

et al., 2019).

Formally, “ a computer program is said to learn from experience E with respect to a set of

tasks T and performance measure P, if the performance of the program at a task in T, as

measured by P, improves with experience E " (Mitchell, 1997). Experience in ML refers

to historical data available to a ML algorithm to construct a prediction model. The data

is usually a benchmark and digitized human-labelled data or real-world dataset collected

through interactions with the environment (Sharma et al., 2020).

The Mitchell (1997) formalization shows the difference between a ML system and a

classical information system: In a classical information system, a mathematical model of

the environmental observations is initially formulated, then model validation with actual

data is performed, which is followed by system building based on the model formed. In

contrast, a ML system is constructed directly on the actual data with the data allowed to

speak for itself (Kantardzic, 2011).

One of the fundamental tasks in ML is “inductive learning”, where an unpredictable input-

output mapping function of a system is estimated using a limited number of known data

samples. The known data samples are referred to as a “training dataset” from which a ML

algorithm learns and gathers knowledge about the hidden information embedded in the

data. In contrast, unknown data samples, referred to as the “test dataset” are generated

from the same source of data distribution as the training dataset. The test dataset is then

Stellenbosch University https://scholar.sun.ac.za



Chapter 2. Machine Learning and Bias-Variance Dilemma 11

used to evaluate the performance of the trained ML model for prediction.

Typically, inductive learning of a ML algorithm leads to generalizations that are

formalized as a set of functions that approximate the behaviour of a system as

(Kantardzic, 2011):

Y = f (X, w) (2.1)

where Y is an output for every input vector X, w ∈ W, such that w is a parameter of the

function f , and W is a set of parameters used to index the set of functions. The variable f

in equation (2.1), can be any set of approximate functions which may represent different

estimations about the system.

2.2.2 Categories of Machine Learning Methods

There are four main categories of ML methods applied to different ML problems. A

proper understanding of the characteristics of a problem will provide insight into the type

of learning problem to be solved. This section discusses the different learning methods,

namely supervised, unsupervised, semi-supervised, and reinforcement learning, applied

to different learning problems (Dey, 2016; Das and Behera, 2017; Celik and Altunaydin,

2018; Shailaja et al., 2019; Choi et al., 2020).

Supervised Learning

In supervised learning, datasets with known target labels for each sample in the dataset

are split into training and test sets, and a learning algorithm explores the patterns in

the training dataset to map input features to the target values. Then a learned model is

inferred to make accurate predictions on the test dataset (Choi et al., 2020). The learning

tasks in supervised learning include classification and regression (Geurts, 2002).

Unsupervised Learning

Unsupervised learning captures the relationship among input data for theme analysis

or grouping purposes when no information about target values is available (Lee and

Shin, 2020). Since there are no target values that can relate to input data, the goal is
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to identify patterns between the samples in the input dataset and to group the samples

to gain meaningful insights. Clustering and association rule mining tasks are usually

performed in unsupervised learning (Lee and Shin, 2020).

Semi-supervised Learning

Semi-supervised learning combines the strength of both supervised and unsupervised

learning. The learning method is useful for datasets with labelled and unlabelled samples

(Choi et al., 2020). A supervised learning method is usually applied to a ML problem

when the numbers of labelled samples are significantly less than the number of unlabelled

samples. Thus, the inadequate unlabelled samples are used to deduce a pattern about the

data (Celik and Altunaydin, 2018).

Reinforcement Learning

In reinforcement learning, a software agent is trained on how to behave using

environmental feedback and a reward system. The training provides the software agent

to acquire the ability to perceive and interpret its environment, take actions and learn

through trial and error. The environmental feedback indicates the degree to which an

output, known as “action”, fulfils the goals of the agent (Simeone, 2018). Then the

objective of the agent is to use the shortest way and correct actions to reach a goal.

When the agent exhibits the desired actions, positive rewards are given to motivate the

agent, while negative rewards are assigned for undesired behaviours. In both ways,

learning occurs on the way to the goal, and the focus of the agent is to seek long-term and

maximum overall reward to achieve an optimal solution (Celik and Altunaydin, 2018).

Having presented the different ML methods for different tasks, the focus of this research

is on supervised learning, in which case the goal is to learn a mapping function,

f : RI → RK (2.2)

from a given dataset such that good generalization performance is achieved. From

equation (2.2), I is a set of input features, and K is a target value which could be class labels

for classification problems or real-valued quantity for regression problems. However, no
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modelling technique is perfect because there is a gap between the best model developed

and the true function. The gap is a loss or error obtained due to the bias or variance of the

model.

2.3 Bias-Variance Dilemma

The key aspect of every learning system is the ability to produce good generalization

performance. However, the generalization performance of a ML model is affected by

errors from different sources that subvert the performance of the model. This section

discusses the bias-variance dilemma in ML. Section 2.3.1 presents the bias-variance loss,

while Section 2.3.2 discusses the bias-variance tradeoff. Sections 2.3.3 and 2.3.4 present the

bias-variance loss decomposition and the generalization of ML models, which is followed

by the discussion of the factors influencing the bias-variance tradeoff in Section 2.3.5.

2.3.1 Bias-Variance Loss

The realization of an efficient ML model that generalizes well on test data is usually

affected by errors categorized into:

• Irreducible error: The irreducible error refers to the random intrinsic noise in a

dataset that cannot simply be explained by a specific model. The irreducible error is

not considered an error that affects the generalization performance of a ML model,

because the mean of the noise usually equates to zero (Geman et al., 1992).

• Reducible error: The reducible error refers to the expected errors that a ML model

can reduce. The reducible error is decomposed into “bias error” and “variance error”.

Therefore, an understanding of the difference between the bias and variance errors

helps to develop models that may better estimate the true form underlying an

observed data (Geman et al., 1992).

The focus of the research is on supervised learning. Thus, the reducible error of a ML

model, characterized by the bias and variance errors, occurs due to the complexity of the

model and functional mapping induced from the data representing either classification

or regression problems.

The bias error refers to the difference between the expected or average prediction of a
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model and the target value (Prachi et al., 2019). The error occurs due to the simplifying

assumptions made by a model to ensure that the target function is easily learned. For

instance, while most linear ML algorithms are easy to understand and train quickly, the

algorithms are less flexible. As a result, lower predictive performance is obtained on

complex problems that fail to meet the simplifying assumptions of the bias associated

with the linear algorithms.

The variance error refers to the variability of the prediction of a model given a change

in the training data (Raschka, 2018). Since the target function is estimated from the

training data, the model may generate different levels of variance. The variance error

of a ML model is strongly influenced by the sensitivity of the model to the specifics of the

training data, which may influence the number and types of parameters used to induce

the mapping function between the input features and target values.

Therefore, to obtain a good predictive model, there is a need to find an optimal balance

between the bias and variance errors in a modelling process. Striking a balance between

these errors often requires understanding the bias-variance dilemma, selecting models

with appropriate complexity and flexibility, and suitable training data.

2.3.2 Bias-Variance Tradeoff

As discussed earlier, finding a balance between bias and variance is critical to obtaining a

model that generalizes well on data. It is often the case that the techniques employed to

reduce variance result in an increase in bias and vice versa. This phenomenon is referred

to as the “bias-variance tradeoff ". Balancing the bias-variance tradeoff in the performance

of a model requires an efficient approximation of the mapping function between the input

features and target values in a training dataset. Then, the expectation is to ensure that the

trained model generalizes well to a test dataset.

The bias-variance tradeoff is interpreted as follows: a low biased model indicates the

average model prediction is close to the actual value. A model with a high bias means

that the average prediction of the model is far from the actual value because the model

is not sufficiently flexible, and individual predictions are not adequately adapted to the

data.

On the other hand, a model with low variance means that the model is stable with respect
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to a given dataset out of all possible datasets the model encounters. Hence, individual

predictions of the model tend to be similar to one another and are close to the average

prediction of the model. A model with high variance indicates strong sensitivity to the

dataset seen by the model. As a result, individual predictions are different from one

another and are far from the average prediction of the model. The bias-variance tradeoff

is illustrated in Figure 2.1.

Low Variance
(Precise)

High Variance
(Not Precise)

Low Bias
(Accurate)

High Bias
(Not Accurate)

Figure 2.1: Graphical illustration of the bias-variance tradeoff

In Figure 2.1, the center of the target represents the perfect prediction of the actual value

for a test point. The portions of the target away from the center represent predictions with

errors. Each point represents one manifestation of a model, given the chance variability

in the training dataset. The extent to which the center of the point cluster approximates

or moves closer to the center of the target represents the bias of the model. The extent

to which the different points cluster tightly, i.e. the spread within the dots, represents

the variance of the model. Therefore, the bias-variance tradeoff provides a solution to

obtain better generalization performance by carefully striking a balance to minimize the

bias (being right on average) error and the variance error (being stable with respect to

variation in training datasets) (Knox, 2018).
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2.3.3 Bias-Variance Loss Decomposition

The bias-variance tradeoff in ML has a long history that is rooted in statistics (Neal, 2019).

Early work presented by Geman et al. (1992) on “neural networks and the bias-variance

dilemma" is the most cited work in the analysis of the bias-variance dilemma. The work

of Geman et al. (1992) introduced the bias-variance decomposition to the ML research

community.

While the insight into the bias-variance loss decomposition was derived from the field

of regression using a squared loss function (Geman et al., 1992; Valentini and Dietterich,

2004), Domingos (2000) defined the bias-variance loss decomposition for classification

problems in the context of a 0-1 loss function.

The total error of a learning system is decomposed into three non-negative quantities as

Totalerr = Bias2[h(x)] + Variance[h(x)] + noise (2.3)

where h(x) is the predicted target value learned from the data. Given that noise is an

irreducible error with a mean of zero, the noise is not considered when analyzing the loss

functions of a ML system. The focus is on the reducible errors that are decomposed into

bias and variance, respectively. Formally, the bias-variance tradeoff is defined as follows

(Raschka, 2018):

Given a point estimator θ̂ of a true function θ, the bias is the difference between the

expected value of the estimator and the true value, given as

Bias(θ̂) = E[θ̂]− θ (2.4)

where E is the average prediction of the estimator. That is, E is the expectation over

training sets and not the expectation over samples in the training set. If the bias is larger

than zero, the estimator is positively biased. If the bias is smaller than zero, the estimator

is negatively biased, and if the bias is exactly zero, the estimator is unbiased. On the other

hand, variance is defined as the difference between the expected value of the squared

estimator and the squared expectation of the estimator, given as
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Var(θ̂) = E[θ̂2]− (E[θ̂])2 (2.5)

2.3.4 Generalization and Underfitting-Overfitting of Machine Learning

Models

The overall goal in ML is to obtain a model that generalizes well from the training data to

new test data (Geman et al., 1992). As earlier stated, generalization is the ability of a model

to give accurate outputs based on how well the model fits the training and test datasets

(Jakubovitz et al., 2019). For the ML model to provide better generalization performance,

the model should not memorize the training dataset, but rather learn the underlying rules

associated with the data generation process. Then the model derives the capability to

extrapolate the learned rules from the training dataset to a new test dataset. However, the

construction of a well-generalized ML model depends on the notion that ML algorithms

suffer from poor performance due to underfitting or overfitting. A model that generalizes

well is a model that neither underfits nor overfits (Jakubovitz et al., 2019).

Underfitting occurs when a ML model fails to correctly capture the underlying trend of

a training dataset. Underfitting usually happens when an algorithm tends to build an

accurate model with less complexity or training data. On the other hand, overfitting

occurs when a model is too complex and is trained on excessive training data until the

model starts to learn and memorize the inherent noise and inaccurate entries in the data

(Nautiyal, 2018).

Understanding of the dynamics of underfitting and overfitting of ML models is greatly

influenced by the bias-variance tradeoff to obtain an optimal predictive model (Brady and

Brockmeier, 2018). Therefore, dealing with bias and variance is directed to dealing with

the underfitting and overfitting of ML models (Raschka, 2018). The relationship between

bias-variance errors and underfitting and overfitting of ML models is presented in figure

2.2.

From figure 2.2, underfitting is derived from erroneous simplifying assumptions in the

learning model, which leads to high bias and low variance. The high biased model

generates both high training and test errors. In overfitting, the highly complex model

interpolates the training data perfectly with the noise or outliers in the training data.
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The result is a model with low bias and high variance in prediction. A model with high

variance generates a low training error but high test error (Thorhallsson and Singh, 2017).

Total
Test Error

Optimum Model Complexity

Variance

Bias2

Model Complexity

Error

Underfitting Overfitting

Test Error

Training Errorsweet spot

Model Complexity

Error

Figure 2.2: Relationship between Underfitting-Overfitting and Bias-Variance Errors

2.3.5 Factors Influencing Bias-Variance Tradeoff in Machine Learning

Several factors influence the bias-variance tradeoff. The effect of model complexity and

changes in the size of training data on the bias-variance tradeoff are discussed in this

section.

Model Complexity and Bias-Variance Tradeoff

The critical variable modulating bias and variance is model complexity. Model

complexity indicates the number of free parameters of a model used to approximate the

true functional mapping between input features and the target values (Mehta et al., 2019).

Models with too few free parameters are inaccurate for a given training data size and will

underfit, causing high bias. Also, models with too many free parameters are incorrect

and will overfit the training data leading to high variance.

Therefore, as more parameters are added to a model, the complexity of the model

increases and bias decreases monotonically, while variance becomes the main concern

(Merentitis et al., 2014). It is crucial to select appropriate model complexity for the model

to generalize well to a test dataset. The influence of model complexity on the bias-variance

tradeoff is illustrated in Figure 2.2.
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Training Data Size and Bias-Variance Tradeoff

The effect of training data size on the bias and variance tradeoff is observed with

increasing and decreasing sample size and feature dimension. For small training sample

sizes, low training and high test errors are generated for a highly biased model. As the

training sample size increases, the training error increases rapidly while the test error

decreases slowly. A point is reached where the training and test errors flatten and remain

high as the sample size increases. Therefore, increasing the number of samples may not

necessarily reduce the generalization error for a highly biased model (Medicherla, 2018).

For a model with high variance, the training error is usually low, while the test error

becomes very high for a small training sample size. With increasing training set, the

training error increases slowly, but the test error decreases quickly. A point is reached

where the training and test errors flatten and remain low as the sample size increases.

Thus, increasing the sample size is significant in the minimization of the generalization

error for a model with high variance, provided that the model is not complex and that the

increased sample does not increase the noise (Medicherla, 2018).

A graphical representation of how training data size influences the bias-variance tradeoff

is given in Figure 2.3:

Eout

Error

Ein

Number of data points

Bias2

Variance

Figure 2.3: Influence of training data size on the bias-variance tradeoff

Furthermore, increasing and decreasing feature size in training data also influence the

bias-variance tradeoff. A model trained on fewer features will generate high training

and testing errors indicating high bias. Addition of more features to the data gradually

decreases the bias. Additionally, a model suffers from high variance when trained
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with large and irrelevant features. The reduction of the feature dimension of the data

progressively decreases the variance (Medicherla, 2018).

2.4 Inductive Biases of Selected Machine Learning

Algorithms

The concept of the bias-variance tradeoff has been established in section 2.3. For a ML

model to generalize well on a dataset, it is beneficial to analyze the inductive biases of

the ML algorithm that induces the model. This section discusses the inductive biases of

selected ML algorithms for this research. Section 2.4.1 introduces the concept of inductive

bias in ML, while Section 2.4.2 discusses NN algorithm and the corresponding inductive

biases of NNs. Sections 2.4.3 and 2.4.4 present the SVM and DT algorithms including the

inductive biases of the algorithms, while Sections 2.4.5 and 2.4.6 discuss the kNN and NB

algorithms, as well as the inductive biases of the algorithms. Then Section 2.5 concludes

the chapter with a summary.

2.4.1 Concept of Inductive Bias

The inductive bias of a ML algorithm refers to the specific assumption made by the

algorithm when inferring a relationship between input features and target values in a

dataset (Mitchell, 1980, 1997). In the absence of inductive bias, every ML algorithm would

make the same predictions on the same dataset (Dietterich and Kong, 1995).

In many cases, ML algorithms operate stochastically and deal with noisy, erroneous and

inconsistent datasets. Due to the stochastic nature of the algorithms, the inductive biases

of a ML algorithm produce different model generalizations. As a result, there is no one

model inductive bias that is best on all problems, because different model inductive biases

are better fits for different problems (Wolpert, 1996; Mitchell, 1997).

According to Dietterich and Kong (1995), the inductive biases of ML algorithms also

influence the performance of the induced model with respect to the bias-variance tradeoff.

Dietterich and Kong (1995) reported that a very strong and inappropriate inductive bias

(very low model complexity) leads to low variance and high bias in the performance of a ML

model. When the inductive bias is too weak but appropriate (very high model complexity),
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the performance of the model results in high variance and low bias. Therefore, finding

the optimal inductive bias may better balance the bias-variance tradeoff (Dietterich and

Kong, 1995).

Following the brief introduction of inductive bias in ML and the relationship with the

bias-variance tradeoff, the concepts and the inductive biases of NN, SVM, kNN, NB and

DT algorithms are discussed next.

2.4.2 Neural Networks

A NN also referred to as “artificial neural network”, is a ML algorithm constructed to model

the decision-making process of the human brain. A NN is a massive parallel distributed

processor made up of simple processing units referred to as “neurons". These neurons

learn experiential knowledge expressed through inter-unit connection strengths and can

make such knowledge available for use (Kantardzic, 2011).

The massive parallel distributed structure of a NN provides the algorithm with high

computational power and the ability to learn and generalize on a dataset. While it

is impossible to model the entire human brain, small NNs having different network

structures are constructed to solve various tasks such as classification, regression,

estimation, and others (Owens and Tanner, 2017).

The network structure used in this research is the multi-layered feedforward NN

(Rosenblatt, 1957), where stochastic gradient descent (SGD) backpropagation algorithm

is used as weight optimization algorithm (Rumelhart et al., 1986). Figure 2.4 presents

the structure of a NN with five layers. The input layer accepts the input signal xi to the

network, where I is the number of inputs. The input layer is connected to the first hidden

layer using synaptic weights denoted as wi j. It is in the hidden layer that learning occurs

in the network. The last hidden layer is connected to the output layer. The output layer

provides the output signals, ye, of the network, where E is the number of outputs.

Learning in a NN is an iterative process in which the free parameters of the network

(including weights and biases) are adapted through a process of stimulation by the

environment the network is embedded in (Haykin, 1994). Through adaptive learning,

the performance of a NN is improved using an interactive process of adjustments applied

to the synaptic weights and biases of the network. Then, after every iteration, the network
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captures more information about the underlying relationship between the input features

and target values (Bonala, 2009).

x1

x2

x3

xi

...

h(1)1

h(1)2

h(1)j

...

h(2)1

h(2)2

h(2)j

...

h(3)1

h(3)2

h(3)j

...

y1

ye

...

Input

layer Hidden

layer 1

Hidden

layer 2

Hidden

layer N Output

layer

Figure 2.4: Structure of a Feedforward Neural Network

The first phase of training is the feedforward pass. This phase simply calculates the

activations of the hidden and output neurons. The next phase is backward propagation.

This phase updates the weights using the SGD algorithm to minimize an error function.

The error function indicates the difference between the output of the NN and the target

value (i.e. error) for each sample in the training set. The error function performs an

aggregation of errors over the outputs of the network. Thus, the error function, used as

the objective function to be minimized, is the average sum squared error (also known as

L1 loss) over all available outputs. Other possible error functions include mean absolute

error (also referred to as L1 loss), cross-entropy (consisting of binary, categorical and sparse

cross entropy), log loss, exponential loss, hinge loss, Kullback-Leibler divergence loss, and

Huber Loss (Bishop, 1995; Feiping et al., 2018).

The different parameters of NNs (including weight optimization algorithm, network

size, activation functions, loss functions, learning rate, stopping criterion, epoch, batch

size, and others) define the complexity of the network during inductive learning. While

there is no standard rule to select the appropriate model complexity for a NN, obtaining

an appropriate model complexity plays a significant role to balance the bias-variance

tradeoff (Geman et al., 1992). For instance, selection of the appropriate network size

defined by the number of hidden layers and hidden nodes in each hidden layer of the

network is a factor that influences the generalization performance of NNs (Geman et al.,
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1992; Tetko et al., 1995). Several works in literature have provided the possibility of

defining the appropriate network complexity for different problems by finding an optimal

architecture through trial-and-error, using pruning approaches, growing approaches,

regularization, and NN architecture search methods.

Breiman (1996b) categorized NNs as unstable learners making the algorithms susceptible

to high variance, which is a result of a too complex network trained on small datasets.

The strategies to deal with high variance in NNs include stopping the network early

during training to avoid overtraining. Pruning of the network and increasing the size

of the training dataset are approaches used to minimize high variance. Other approaches

include the introduction of L1 and L2 weight regularization to modify the loss function

and soft weight sharing (Geman et al., 1992; Nowlan and Hinton, 1992). Dropout is

another technique developed for deep networks to reduce overfitting in the network. The

dropout technique deactivates a certain number of neurons at a layer from firing during

training (Srivastava et al., 2014).

Furthermore, NNs exhibit high bias error when a small network is trained on large and

complex datasets. An increase in the complexity of the network and the combination

of networks may reduce underfitting in the network (Geman et al., 1992; Fitzgerald,

2014). Other techniques are growing approaches which include addition of more features

to the data, allowing the network appropriate training time to capture the underlying

relationship in the data, and reduction of dropout (Tetko et al., 1995; Srivastava et al.,

2014).

Inductive Bias of Neural Networks

An understanding of the inductive bias of NNs is critical to the analysis of the

performance of NNs to generalize to new data. The issues in NNs due to the inductive

biases of the algorithm are presented as follows:

The inductive bias of NNs is the approximation of continuous target functions from input

data to make predictions for corresponding target values. This inductive bias is also

informed by the hyperparameters of a NN, such as the weight optimization algorithm,

network size, activation functions, loss functions, learning rate, stopping criterion, epoch,

batch size, network pruning approaches, network growing approaches, and others.
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Each of these hyperparameters provides separate assumptions in NNs that influence the

prediction results of the model induced by the network (Archer and Wang, 1993).

The SGD error backpropagation algorithm assumes that NNs are more likely to converge

toward a solution with small weights (Snyders and Omlin, 2000). This assumption results

in the possibility for an induced predictive model to become stuck in a local minimum due

to neuron saturation in the hidden layers of the network. Neuron saturation is a problem

that occurs when the hidden neurons in a NN predominantly output values close to the

asymptotic ends of an activation function range. The SGD backpropagation algorithm

requires the gradient to be a non-zero gradient to update the network weights for learning

to occur. The gradient falling to zero usually occurs due to network saturation, which

causes the hidden neurons to lose sensitivity to input signals and the inability of the

network to propagate error signals backwards. Thus, in most cases, the network may

not continue to learn (Bi et al., 2005).

Another inductive bias of NNs is attributed to the complexity of the models obtained from

the network during training. The assumption of a small learning rate tends to influence

the prediction outcome of NN models. Small learning rates result in small step sizes in

the weight space, leading to the possibility that the network may become stuck in a local

minimum. When the step sizes are too large, the likelihood that the network converges

too quickly to a suboptimal solution increases. As a result, the performance of the induced

model may be inconsistent over training epochs (Maier and Dandy, 1998). In addition,

large step sizes may overshoot a good local (or even global) minimum.

The performance of a NN is also subjected to the assumption of an optimal network

size defined by the hidden layers and hidden nodes and weights. Optimality in this

context refers to the smallest network that adequately captures the relationship between

the input features and the target values in the training dataset. Smaller networks

have been reported to provide better generalizability, require fewer physical resources,

and produce higher processing speed during training and testing. However, the error

surface of smaller networks is more complicated and has more local minima (Maier and

Dandy, 1998). In contrast, larger networks tend to learn quickly in terms of number

of training cycles (although slower per training cycle), perform efficiently in complex

decision regions, and has a better possibility of avoiding local minima. However, larger
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networks have high computational costs and require a large training dataset to achieve

a good generalization performance (Maier and Dandy, 1998). Thus, the selection of an

appropriate network size is a critical decision toward the generalizability of the network

because the decision is usually problem-dependent. Additionally, overfitting and

underfitting of the induced NN model is another issue that requires careful consideration

during selection of an optimal network size.

Another critical decision in the selection of the optimal network size is the choice of the

number of nodes in the hidden layers, and hence the number of connection weights.

Given the number of nodes selected, it becomes imperative to find a tradeoff between

obtaining sufficient weights for optimal network performance. An optimal number of

weights ensures that the function to be learned in the training dataset is adequately

approximated. In contrast, an inappropriate number of weights (obtained from too few

or too many number of weights) may lead to the network underfitting or overfitting the

training dataset. As a result, the network may lack the ability to generalize efficiently to

the test dataset.

The stopping criterion decides when to stop the network training process during weight

optimization, and therefore provides an assumption that determines whether the model

has been optimally or sub-optimally trained. Stopping the training prematurely often

subjects the model to not capture sufficient information or patterns in the training dataset,

resulting in underfitting. Also, stopping the training too late allows the model to learn

the inherent noise in the dataset, which leads to overfitting when there are too many

weights. While different approaches have been proposed, research suggests the difficulty

in determining the optimal stopping time that would lead to good generalization

performance.

The selection of appropriate activation functions in the hidden and output layers of a

NN also controls how well the network maps the relationship between the input space

and the target space in the dataset, and the type of prediction made by the induced

NN model. The assumption of a suitable choice of an activation function in the hidden

layer influences the step sizes taken in the weight space, because weight updates are

proportional to the derivative of the activation function.

Also, the prediction outcomes obtained when the backpropagation algorithm is used
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are sensitive to the initial weight conditions. Typically, weights are initialized to zero-

mean random values, and the selection of the upper and lower bounds (-α, α) for the

weights is a careful process that affects the decision of the network. If the value of α

is too small, the gradient becomes smaller as error signals are backpropagated through

the hidden layers, and hence, weight optimization becomes very slow, and in the worst

case, network training may stop. This problem results in minor weight updates and slow

network convergence. The problem is referred to vanishing gradient problem, where the

possibility of weights vanishing to zero is high. In contrast, if α is too large, premature

saturation of the nodes may occur, which in turn will slow down training and result in the

cessation of training at suboptimal levels. In this case, the gradient becomes much larger

as error signals are backpropagated through the hidden layers, causing extremely high

weight updates that may lead to an overflow in gradient computation and inconsistency

in weight optimization. This problem is known as exploding gradient problem, where

weights are likely to explode to infinity (Maier and Dandy, 2000).

The sum square error, when used as the objective loss function, provides easy

computation of the partial derivatives with respect to the weights and is mostly suitable

for data that assume a normal distribution. However, to obtain optimal results, the errors

are expected to be independently and normally distributed, which is not the case when

the training data contain outliers.

Furthermore, research has shown that NNs that do not use a robust estimator are sensitive

to outliers in a dataset, causing the network to experience slow training and overfitting.

A possible solution to minimize the effect of outliers on the network is to remove outliers

in the dataset or use a robust estimator. However, selection of an optimal network

configuration is subjective to the type of activation function selected, choice of an error

function, hidden layers and hidden nodes, loss function, and other parameters. Hence,

NNs without a robust estimator require outliers to be removed from data before model

construction (Klein and Rossin, 1999).

The performance of NNs is sensitive to skew class distributions in a dataset. In an

imbalanced class scenario for a SGD-based NN model, the gradient vector computed by

standard backpropagation for the majority class is much smaller than the gradient vector

computed for the minority class. This indicates that the majority class will dominate the
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net gradient responsible for updating the weights of the NN model. Thus, the error of

the majority class is reduced very quickly during early iterations, while the error of the

minority class increases, causing the network to converge slowly (Anand et al., 1993).

Backpropagation NNs require a complete set of input data to create a mapping between

input features to target values in a dataset. However, data may contain missing

values, and NNs may struggle to handle the missing values, often resulting in biased

predictions. Different approaches have been reported to deal with missing values,

including deleting all missing values, replacing missing values with random values, and

using the mean, median or mode of feature values depending on whether the feature

values are categorical or numerical (Rubin, 1976). However, deleting all missing values

may lead to the loss of potentially valuable information in the dataset, while it may be

challenging to determine the random value to replace missing values. Also, using mean,

median, or mode may introduce bias to the dataset (Ennett et al., 2001).

Lastly, NNs assume the requirement of numerical input to create a mapping between

input space and target space in a dataset. The algorithm cannot work on data consisting

of categorical or multivariate features intrinsically, except the values of the input feature

are encoded into continuous values.

2.4.3 Support Vector Machines

The SVM algorithm was developed by Vapnik and Chervonenkis (Vapnik and Cortes,

1995; Vapnik, 2000) based on statistical learning theory to solve binary classification

problems. The SVM works on the principle of structural risk minimization to find

a function that minimizes the expectation of model error on new data for better

generalization. The principle allows the SVM algorithm to exploit theorems bounding

the actual risk in terms of the empirical risk rather than estimating error using asymptotic

convergence to normality. Hence, even with small sample sizes, SVMs can produce

accurate estimates of the prediction error, while making no distributional assumptions

about the data (Wilson, 2008). Also, the SVM algorithm has been reported to provide

efficient computational performance on high dimensional data (Nah and Lee, 2016).

The SVM decision function can be a classification function (support vector classifier with

binary class labels) or a regression function (support vector regression with real-valued outputs)
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(Kantardzic, 2011).

The SVM represents data in an n-dimensional space, and the goal of the SVM is to find

the hyperplane (also known as decision boundary) out of several hyperplanes that has the

maximum margin in separating samples of two classes in the n-dimensional space. The

process is achieved by searching for the set of samples of opposing classes (referred to as

support vectors) closest to the lines from both the classes such that the margin around the

calculated hyperplane is maximized (Vapnik and Cortes, 1995). The hyperplane for which

the margin is maximum is the optimal hyperplane, illustrated in figure 2.5.

From Figure 2.5, the optimal separating hyperplane represented by the thick centre line

classifies the training samples into two classes with the maximum margin; the positive

class “1” above the hyperplane and the negative class “-1” below the hyperplane. The

filled and unfilled red dots denote the support vectors that influence the optimum

location of the separating hyperplane. The width of the margin is 2
∥w∥ , w is an n-

dimensional vector, x is the set of training data, and b represents the bias term.

x1

x2

w
· x
+

b =
0

w
· x
+

b =
1

w
· x
+

b =
−1

2∥w∥

Figure 2.5: SVM in a 2-D space

The SVM performs different classification tasks that fall under the following problems:

linearly separable, linearly non-separable, non-linearly separable, and multi-class

problems.

SVM learning for a linearly separable problem is illustrated in Figure 2.5, where there

are no training errors, and the optimal hyperplane is the hyperplane that maximizes the

margin. In this case, the optimal hyperplane for a set of training data, xi (i = 1, 2, 3, ..., n),
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where n is the number of training samples, is defined as:

w.x + b = 0 (2.6)

The important properties of this hyperplane include having the least possible error in

the separation of data and that the distance from the closest data of each class must be

maximal. Under these scenarios, data of each class can only be above (yi = 1) or below

(yi = −1) the hyperplane. Therefore, two margins are defined as shown in Figure 2.5 to

separate the data, i.e.

w.x + b

≥ 1 f or yi = 1,

≤ −1 f or yi = −1
(2.7)

However, the generalization region for the hyperplane can be anywhere between 1 and

−1, and there are many margins that can be considered the boundary of each class. Hence,

to find the optimal hyperplane, the distance (d) between the margins should be measured

and maximized using (Nah and Lee, 2016)

d(w, b, x) =
|(w.x + b − 1)− (w.x + b + 1)|

∥ w ∥ =
2

∥ w ∥ (2.8)

Therefore, maximizing the margin is equal to minimizing the dimensional vector w, and

the SVM learning problem is given as

min
w,b

1
2
∥ w ∥2

s.t yi((w.xi) + b) ≥ 1, i = 1, 2, 3, . . . , n.
(2.9)

The Lagrangian method is used to transform equation (2.9) to a quadratic programming

problem to derive the optimal hyperplane as

Lp =
1
2
∥ w ∥2 −

n

∑
i=1

αi{yi(w.xi + b)− 1} (2.10)

where Lp denotes the primal problem and αi are the lagrange multipliers, one for each
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training sample. Following equation (2.10), Lp is minimized with respect to w and b, and

requires that the derivatives of Lp with respect to all αi vanish as

∂L
∂w

=
n

∑
i=1

αiyixi = 0 (2.11)

∂L
∂b

=
n

∑
i=1

αiyi = 0 (2.12)

Finally, substitution of equations (2.11) and (2.12) into equation (2.10) gives the equation

of the SVM for a linear separable problem as (Gholami and Fakhari, 2017)

LD =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyj(xi.xj)

s.t

αi ≥ 0

∑n
i=1 αiyi = 0

(2.13)

LD is the referred to as a dual problem. Thus, the solution to the learning problem is the

minimization of Lp or the maximization of LD. Since there is a Lagrange multiplier αi for

every training sample, the samples for which αi > 0, are the support vectors (SVs) . The

classifier is constructed as

f (x) = sign(w.x + b) = sign

(
∑

i∈SVs
yiαi(xi.x) + b

)
(2.14)

Linearly non-separable problems usually occur due to the similarity of a number of

features or noise in the training data. In this case, the SVM adopts a soft margin approach

by introducing a penalty cost, C, and slack variables, ξi. The penalty cost softly penalizes

misclassified samples, while slack variables denote the distance that is measured and

minimized between the misclassified samples of a class from the margin of the class. The

penalty cost function is given as

min
w,b,ξ

1
2
∥ w ∥2 +C

n

∑
i=1

ξi

s.t yi((w.xi) + b) ≥ 1 − ξi, i = 1, 2, 3, . . . , n.

(2.15)
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The penalty cost C in equation (2.15) is referred to as the “trade-off” parameter added

to maximize the margin and to minimize the classification error (Gholami and Fakhari,

2017). Using Lagrangian multipliers, the optimization problem in equation (2.15) is

converted into a dual problem for a soft margin support vector classifier as

LD =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyj(xi.xj)

s.t

0 ≤ αi ≤ C

∑n
i=1 αiyi = 0

(2.16)

The difference between equations (2.16) and (2.13) is the constraint imposed on the

Langrange multiplier α to be either equal to or less than the penalty cost C.

For nonlinear separable problems, a kernel function, K, is employed to map or transform

the input data x onto a higher dimensional feature space, also referred to as feature or

Hilbert space (Mercer, 1909). The mapping process using the kernel function still allows

the nonlinearity of data in the input space, while ensuring the creation of a linear support

vector classifier in the feature space to separate the data into classes. As a result, the input

data x is represented in the feature space to allow dot product computation (also referred

to as inner product computation) ϕ(x) of the input data in the feature space using a given

kernel function as

K(xi, xj) = ϕ(xi)ϕ(xj) (2.17)

Then, the general dual equation derived for a linearly non-separable problem in equation

(2.16) is reformulated for a nonlinear classification problem as

LD =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyjK(xi, xj)

s.t

0 ≤ αi ≤ C

∑n
i=1 αiyi = 0

(2.18)

Finding the optimal hyperplane in this equation (2.18) is not a straightforward task due

Stellenbosch University https://scholar.sun.ac.za



Chapter 2. Machine Learning and Bias-Variance Dilemma 32

to the unknown value of ϕ, which makes it challenging to calculate the weighting vector

w. The weighting vector w is represented in the feature space as

w =
n

∑
i=1

yiαiϕ(xi) (2.19)

However, knowing that the hyperplane is defined as

d(x) = w.ϕ(x) + b, (2.20)

the kernel trick provides the realization to ignore the computation of the weight vector in

the feature space by substituting equation (2.19) into equation (2.20) to obtain the optimal

hyperplane as

d(x) =
n

∑
i=1

yiαiK(x, xi) + b (2.21)

where f (x) = sign(d(x)) is the classification output. Hence, SVMs can efficiently

solve nonlinear classification problems by selecting an appropriate kernel function

that is usually problem dependent. Commonly used kernel functions include linear,

polynomial, Gaussian radial basis function and the sigmoid function (Liu et al., 2007;

Nan and Xiang, 2014).

The SVM, as discussed thus far, has been developed for binary classification problems.

However, the SVM has to deal with multi-class classification problems. Two common

approaches to scale SVM to multi-class classification problems are (Prakash et al., 2012):

• one-versus-one, where k(k − 1)/2 models are constructed, and k indicates the

number of classes; and

• one-versus-many, where a pairwise classification is performed such that there is one

binary SVM for each pair of classes to separate members of one class from members

of the other.

The working principle of the support vector regression (SVR) involves finding the optimal

hyperplane that can satisfactorily explain the relationship of the real-valued target output

from the input features as
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f (x) = w.x + b (2.22)

where w is the weighting vector and b is the the intercept parameter (referred to as bias

in SVM classification) of the regression model. For regression problems, the optimal

hyperplane is expected to have the minimum possible prediction error when selected.

Therefore, achieving the minimization of the empirical risk (i.e. error) requires defining

an insensitive parameter ε to measure the variation between the real and predicted values

(Vapnik, 2000). The sum of εi can then be minimized using a loss function such as the

mean square error, mean absolute error, mean absolute percentage errors, and others to

obtain the optimal hyperplane.

For a linear SVR problem, the optimal hyperplane is selected such that minimum

deviation from the insensitive ε parameter is derived. As a result, the SVR ignores the

error posed by the input data confined in the ε margins, and considers the remaining

error to find the optimal hyperplane using the slack variables, ξi. The formulation of the

regression learning problem using the SVR is defined by an objective function Lp whose

goal is to find the optimal value of the weighting vector w such that the empirical risk is

minimized as (Gholami and Fakhari, 2017)

Lp =
1
2
∥ w ∥2 +C

n

∑
i=1

(ξi + ξ
′
i)

s.t


yi − w.x − b ≤ ξi + ε

yi + w.x + b ≤ ξi + ε

ξi, xi ≥ 0

(2.23)

where ξi, ξ
′
i are slack variables for the mutually exclusive situations in the constraints. The

constraints introduced in equation (2.23) guarantees that any error less than ε would not

be computed in the objective function, illustrating the insensitivity of the ε loss function

proposed by Vapnik et al. (1996) and Vapnik (2000). The insensitivity ε measures the cost

of the errors on the training points such that the loss is zero if the difference between the

predicted and real value is less than ε; otherwise, the loss is measured as the absolute

difference between the predicted and real values in the input data.
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Like the SVM classification, to resolve the optimization problem in equation (2.23), the

Lagrange multipliers (α, α′) associated with the constraints of the primal problem are

used by following the Karush–Kuhn–Tucker (KKT) conditions as (Karush, 1939; Kuhn

and Tucker, 1951)

∂L
∂w

= 0 ⇒ w =
n

∑
i=1

(αi − α′i)xi (2.24)

∂L
∂b

= 0 ⇒
n

∑
i=1

(αi − α′i) = 0 (2.25)

Substitution of equations (2.24) and (2.25) into equation (2.23) gives the general equation

of the linear SVR formulated as (Steinwart, 2008)

Ld =
1
2

n

∑
i=1

n

∑
j=1

(αi − α′i)xT
i xj(αi − α′ j) +

n

∑
j=1

((αi − α′i)yi − (αi + α′i)ε)

s.t 0 ≤ (αi − α′i) ≤ C

(2.26)

Having obtained nonzero Lagrange multipliers, the weighting vector w of the optimal

hyperplane is derived from equation (2.24). Then the intercept b of the regression

equation is determined in one of the equations below

yi − w.xi − b + ε = 0

−yi + w.xi + b + ε = 0

αi, αj ≺ C

(2.27)

where ≺ denotes an order defined on C such that αi and αj are binary relations of

C. The implementation of the SVR for nonlinear regression problems follows the same

analysis as the linear regression problem presented above, where an insensitive loss

margin is defined to minimize the prediction error. However, the problem of transforming

input data into the high-dimensional feature space has to be determined. The nonlinear

problem is represented as
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f (x) = w.ϕx + b (2.28)

The optimal value of the weighting vector w obtained for a linear regression problem in

equation (2.24) is transformed in the feature space as

w =
n

∑
i=1

(αi − α′i)ϕxi (2.29)

As stated earlier, in the case of SVM classification, the value of ϕ is unknown in the

feature space and therefore it becomes challenging to calculate the weighting vector w.

However, this problem is resolved using the kernel function K, in which case equation

(2.29) is substituted into the nonlinear regression problem in equation (2.28) to formulate

the general equation of the SVR for nonlinear regression problems as

yi =
n

∑
i=1

n

∑
j=1

(αi − α′i)ϕ(xi)
Tϕ(xj) + b =

n

∑
i=1

n

∑
j=1

(αi − α′i)K(xi, xj) + b (2.30)

By capitalizing on the benefit of the kernel function in which the computation of the

weighting vector is ignored, the intercept b of the nonlinear regression equation is

calculated as

b = yi −
nsv

∑
i,j=1

αiyiK(xi, xj) (2.31)

To balance the bias-variance tradeoff, a SVM uses a set of hyperparameters such as the

penalty cost C (also known as a regulation factor), kernel functions, degree of polynomials,

and kernel width, σ, to control the tradeoff between the generalization error and

complexity of a model (Ma et al., 2011). It is important to note that the hyperparameters

are specific to the type of kernel function selected. For all kernels, a small value of C may

result in underfitting the model and leads to high bias for a fixed size training dataset.

A large value of C increases the cost of misclassifying samples, which results in a more

accurate model but generalizes poorly to test data (Elaidi et al., 2018).

For Gaussian radial basis, polynomial and sigmoid kernels, small values of σ cause

high bias in a model, while very high values of σ lead to high variance. The degree
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of polynomial is only applied to the polynomial kernels. For polynomial kernels, the

tradeoff is influenced by the degree of the polynomial and the value of C. While the

polynomial kernel behaves similarly to a linear kernel in terms of the penalty cost C, an

increase in the polynomial degree reduces the high variance caused by an increase in the

value of C (Valentini and Dietterich, 2004).

For regression problems, the ε-insensitive loss function influences the behaviour of the

SVR by allowing a tolerable error during training. Hence, setting of the optimal value of

ε that may better balance the bias-variance is essential, but problem-dependent. A high

value of ε indicates a high tolerable error, which may result in overfitting the model. In

contrast, a small value of ε leads to a low tolerable error, but the model predictions may

be far from the real target value due to the underfitting of the model.

Inductive Bias of Support Vector Machines

The inductive bias of a SVM is the assumption of being designed for binary classification

problems. For multi-class classification problems, one-versus-one or one-versus-all

approaches are required.

Another assumption made by SVMs is that the binary classes to be classified are linearly

separable. The capability of a SVM to solve linearly non-separable problems using its

intrinsic properties and capitalizing on the penalty cost C to softly penalize misclassified

samples is illustrated in equations (2.9) and (2.15). For non-linear problems, this inductive

bias requires the use of a kernel function to transform the input sample space to a high

dimensional feature space. In addition, the optimal kernel function is problem-specific.

Also, an inductive bias of the SVM is the maximum margin for linear separable

problems, which is obtained through the selection of the optimal hyperplane out of

several hyperplanes. The selection of the optimal hyperplane is influenced by the feature

dimensions in the input data and the support vectors that determine the margin of each

class through which the optimal hyperplane is selected.

For the assumption of maximum margin made by SVMs for linear and nonlinear

separable problems, only the data samples on the margin (i.e. the support vectors) contain

non-zero weights in the prediction function, and the data samples beyond the margin are

ignored. As a consequence, the optimal hyperplane is likely to be too sensitive to outliers
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around the margin (if any), and not sufficiently sensitive to the density of data samples

beyond the margin (Liu et al., 2002).

SVM requires that the optimization problem in equation (2.15) is minimized to determine

the optimal hyperplane. Minimization of this problem is equivalent to solving a linearly

constrained quadratic programming problem which becomes challenging as the number

of samples increases. As a result, SVM does not scale well on a large number of samples

in the training dataset (Osuna et al., 1997).

Furthermore, SVMs have problem-dependent parameters that are influenced by the

nature of the input data (i.e. the degree of nonlinearity in the data). Selection of the kernel

functions, the trade-off parameter C, polynomial degree, kernel width, and ε-insensitive

parameter requires computationally expensive control parameter tuning to find the best

SVM for a specific classification or regression problem (Wang et al., 2009; Gholami and

Fakhari, 2017). Selection of the optimal values for these parameters is problem-specific,

and may influence the optimization to be solved to obtain the optimal hyperplane.

Another issue is that SVMs are not very robust to outliers. The presence of outliers in

a dataset may lead to a high rate of misclassifications, especially when the hard margin

approach is used to construct the separating hyperplane. Also, the soft margin approach

allows more misclassifications to accommodate outliers in the dataset. However, for

extreme outlier cases, the naive maximum margin principle of SVMs influences the soft

margin approach to yield poor predictive results, because the separating hyperplane

becomes determined by the outliers (Scholkopf et al., 2000; Kanamori et al., 2014).

While SVMs work well with balanced datasets, SVMs are sensitive to imbalanced datasets

when the soft margin approach is used. The effect of imbalanced datasets on SVM

classification often results in suboptimal predictive results. When training SVMs on a

skewed class dataset, the density of the negative samples in the majority class is higher

than the density of the positive samples in the minority class, even around the class

boundary region, where the ideal hyperplane would pass through. Thus, to reduce

the total number of misclassifications, the separating hyperplane is skewed towards

the majority class. The skewness of the separating hyperplane leads to higher model

predictions towards the majority class, while low model prediction on the minority class

is generated (Batuwita, 2013).
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SVMs cannot work with missing values and requires all feature values to be available in

the dataset. Also, due to samples in a training dataset having more local influence on the

margin with non-linear kernels, missing values are less problematic for linear SVMs than

for non-linear SVMs (Stewart et al., 2018).

Lastly, SVMs can only work with continuous-valued descriptive features. As a result,

input data consisting of categorical or multivariate features are encoded into continuous

values for SVMs to be implemented.

2.4.4 Decision Trees

DTs are hierarchical models that predict target values for samples through the

construction of a tree-like decision structure from a set of input-output samples. The tree

construction follows the application of a top-down strategy that implements sequences

of recursive splitting of the features in a dataset to construct the tree (Quinlan, 1986;

Kantardzic, 2011).

The invention of a DT as a simple and consistent prediction model is credited to the works

presented by Morgan and Sonquist (1963), Quinlan (1986), and Breiman et al. (1993).

The authors proposed different inductive algorithms to induce DTs for classification

and regression problems. Figure 2.6 illustrates the hierarchical structure of a DT, which

consists of a root node, branches, internal nodes and leaf nodes.

Root
Node

Internal
Node

Leaf
Node

Leaf
Node

Leaf
Node

Layer 1

Layer 2

Layer 3

Figure 2.6: Structure of a Decision Tree

As shown in Figure 2.6, the top-down knowledge representation of a DT is induced using
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a single root decision node as the start of the tree, internal decision nodes specifying a

test on one or more features in the training data, and leaf nodes (i.e. terminal node)

representing the final prediction outcome of the tree. The test in the internal decision

nodes produces a sub-tree for each possible outcome of the test through the application

of a divide and conquer strategy.

The strategy performs a greedy search to identify the best split points within a tree. The

best split point in the tree is obtained through the selection of the most important feature

offering the maximum accuracy for classification trees or minimum error for regression

trees at each step or node of the tree-building process. The dataset is then split along the

values of the features such that the target feature values at the resulting nodes are as pure

as possible, i.e. homogeneous. The splitting process is repeated recursively in a top-down

fashion until all or the majority of samples in the dataset have been predicted in the leaf

node, or when a suitable stopping criterion is satisfied (Mitchell, 1997; Patel, 2012).

In the leaf node of the tree, the predicted class value for the samples in a data subset is

the majority label of the samples for classification problems. In the case of regression

problems, the average over the target values of the training samples is the final tree

prediction obtained as the real-valued output.

The steps required for the construction of a DT include splitting, stopping, and pruning.

For the splitting step, the critical decision to induce the DT is how to select a suitable

splitting criterion and the best feature at a node to split the data samples into subsets.

Typical splitting criteria used to select the best feature at a node during the construction

of classification trees include the information gain, entropy, gain ratio, Gini index,

classification error, and twoing criterion (Patel, 2012).

The information gain works on the concept of information entropy obtained from

information theory (Shannon, 1948). Entropy quantifies the amount of impurity present in

the sample values of a training dataset at a node. The range of entropy values is between

0 and 1. Entropy is zero for a homogeneous node where all samples of the data subset are

of the same class. Thus, the node is considered a pure node. On the other hand, when the

classes of samples in the data subset are equally distributed, entropy is 1.

Information gain represents the difference in entropy before and after a split on a given

feature. Maximization of the information gain results in minimization of the information
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entropy. Therefore, in order to select the best feature to split on at a node and to obtain an

optimal DT, the feature with the smallest amount of entropy (or the highest information

gain) is selected at the node. A node with the smallest entropy indicates maximum

purity with reference to the samples of that node, and vice versa (Quinlan, 1986). The

information gain of a dataset T is given as (Ruggieri, 2002)

Gain(D, T) = Entropy(D)−
k

∑
i=1

|Di|
|D| · Entropy(Di) (2.32)

where Di is the subset of the samples with outcome i of the test on a feature, k is the

number of outcomes of a test on the feature, and Entropy(D) is the entropy of the dataset

with respect to class labels, given as

Entropy(D) = −
J

∑
j=1

p(D, j).log2(p(D, j)) (2.33)

where p(D, j) is the proportion of outcomes in D that are associated with the jth class

label and J is the number of class labels. The feature with the highest information gain is

selected as the feature used to form a test.

The Gini index, also referred to as Gini impurity, measures the probability of a given

feature being wrongly classified when the feature is randomly selected. The Gini index

also represents a measure of node purity in a classification tree, and the values of the Gini

index vary between 0 and 1. A Gini index of 0 indicates that all samples are classified

in a certain class or if there exists only one class, while a Gini index of 1 illustrates that

the samples are randomly distributed across various classes (Tangirala, 202). The Gini

impurity index is calculated as

In f o_Gini(D) = 1 −
J

∑
j=1

p(D, j)2 (2.34)

Hence, for the construction of a DT using the Gini index, the feature with the lowest Gini

index is selected for a split at a node.

Regression trees were introduced in the classification and regression trees (CART) system

by Breiman et al. (1993). CART incorporates a decision tree inducer for discrete classes
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and a strategy to induce regression trees. The construction of regression trees follows

a similar process as that of the classification trees, except for predicting a real-valued

output. The other difference between regression and classification trees is the selection of

a loss function as the splitting criterion instead of information gain, entropy, or the Gini

index employed for classification trees. Typical splitting criteria used in regression trees

include mean squared error, mean absolute error, variance, and standard deviation.

For the construction of regression trees, the objective at each node is also to select the

most important feature to split the data into subsets, such that the overall error between

the predicted value and the actual value in the data subset is minimized. Using the mean

squared error, the objective function for regression trees is calculated as

MSE(D) =
D

∑
j=1

∑
i∈dj

(yi − ŷdj)
2 (2.35)

where dj denotes the predictions for samples in dth training subset of D training dataset,

yi is the actual value in the dataset, and ŷdj is the predicted value representing the mean

response for dj.

Having discussed splitting criteria used for classification and regression trees, it is

important to note that the splitting criteria are implemented by different induction

algorithms used to generate DTs. The ID3, C4.5 and C5.0 algorithms (Quinlan, 1986)

consider the information gain to split features at a node, while the classification and

regression tree (CART) algorithm (Breiman et al., 1993) implements the Gini index for

classification trees and various loss functions for regression trees.

While the ID3 algorithm considers only categorical features, the C4.5 algorithm provides

an improvement over the ID3 algorithm by removing the restriction on categorical

features. Hence, C4.5 deals with both discrete and continuous features. Further,

research has shown that the information gain criterion is limited by preferring tests with

many outcomes higher up in the tree (Mitchell, 1997). This preference often subjects

DTs to overfitting, and as a result, the C4.5 algorithm introduces the information gain

ratio obtained from a split information value used to normalize the information gain

(Quinlan, 1986). The split information and information gain ratio are calculated as follows

(Ruggieri, 2002):
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Split_In f o(D, T) = −
k

∑
i=1

|Di|
|D| · log2

|Di|
|D| (2.36)

In f o_Gain_Ratio(D, T) =
In f o_Gain(D, T)
Split_In f o(D, T)

(2.37)

If the outcomes associated with the test are discrete, branches are constructed for each

possible outcome. However, if the values of a feature are numeric, the C4.5 algorithm

determines an appropriate threshold value that splits the feature values as follows

(Podgorelec et al., 2002): The training samples are sorted on the feature values as

v1, v2, v3, ..., vm, where m is the sample with the smallest feature values. Then information

gain is calculated on each midpoint (vi + vi+1)/2, and the midpoint that maximizes

information gain is selected to split the dataset. The C4.5 algorithm ensures that the

selected threshold value appears in the final DT.

Another important step in the construction of DTs is the selection of a suitable stopping

criterion to determine the exact point to stop growing the tree. The selection of an

appropriate stopping criterion also determines the complexity of the trees. Smaller trees

are likely to result in non-pure leaf nodes because the smaller the tree, the more likely the

tree will underfit. In contrast, larger trees will have a higher probability of having pure

nodes, but also a higher chance of overfitting. Therefore, induction to ensure pure nodes

results in larger trees that overfit.

Different stopping criteria are used to control the bias-variance tradeoff in DTs. Possible

stopping criteria include the number of nodes in a tree, number of leaves, number of

features, number of samples in a node before splitting, and the depth of the tree (Song

and Lu, 2015). To illustrate the importance of a stopping criterion to control the bias-

variance tradeoff, when the tree grows deeper, more complex models are induced due to

more split conditions. Thus, the model learns more information including the inherent

noise in the training data. The outcome is a model with low bias and high variance.

For shallow DTs, the induced models generate performance susceptible to high bias and

relatively reduced variance. Therefore, it becomes necessary to select appropriate tree

complexity for optimal performance.

Pruning is another method used to reduce the complexity of DTs and to ensure induction
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to maximize purity in leaf nodes does not result in overfitting and poor generalization.

Pruning involves the removal of nodes that contain features with low importance from

a tree to obtain an optimally sized tree. Optimality in this context is with reference to

obtaining optimal generalization performance. The pruning process is carried out using

one of two approaches, namely, pre-pruning or post-pruning. Pre-pruning, also referred to

as “early stopping”, is performed to prevent the generation of irrelevant nodes in the tree

before a full tree is induced. In contrast, post-pruning is employed to remove nodes after

the full tree has been generated such that the overall accuracy is maximized or the total

error is minimized. Thus, finding an appropriate pruning strategy is necessary to obtain

better generalization performance (Hastie et al., 2001).

From the perspective of the bias-variance tradeoff, Breiman (1996a) provides an empirical

report that categorizes DTs as unstable learners, because DTs are sensitive to small

changes in the sample space of a training dataset. The sensitivity of DTs to the

small changes results in different tree structures that may produce poor generalization

performance on the same dataset. Therefore, DTs are known to be susceptible to high

variance but low bias in prediction (Breiman, 1996a).

Inductive Bias of Decision Trees

For higher branching factors (branching factor depends on the number of values that can

be assigned to a feature) in DTs, the inductive bias of DTs selects shorter trees over longer

trees when the ID3 search strategy is used to induce the trees (Mitchell, 1997).

Another inductive bias of DTs is the preference given to trees that place high information

gain on features close to the root over trees that do not (Mitchell, 1997).

DTs that use information gain have an inductive bias that tests with many outcomes are

favoured higher up in the tree. The result of this inductive bias is very large and bushy

trees (Thakur et al., 2010; Deng et al., 2011). However, this inductive bias is resolved using

the gain ratio.

Furthermore, DTs have an inductive bias due to the requirement that the entropy of leaf

nodes is equal to zero. While this outcome depends on the induction stopping condition

used, the requirement means that DTs are induced to overfit. This inductive bias results in

the possibility to obtain poor generalization performance if test instances are not similar
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to training instances. The inductive bias of trees being induced to overfit is addressed

either by early stopping or post-pruning (Quinlan, 1986; Fitzgerald, 2014).

DTs form axis-parallel decision boundaries, because the test condition involves a single

feature at-a-time. For problems with non-axis parallel boundaries, the induction of DTs

results in more complex trees. This inductive bias has resulted in methods proposed to

find non-axis parallel boundaries, such as oblique and multivariate methods (Heath et al.,

1993).

Regression trees are strongly influenced by outliers in the target features, due to the fact

that the predicted value is the average over all target values. Thus, average is biased by

outliers. In addition, outliers may influence the splitting point and the potential feature

to be selected during tree induction, which could lead to poor predictive performance

(Ch’ng and Mahat, 2020).

Another issue is the sensitivity of DTs to class imbalanced datasets. While sampling

approaches are understood to improve the induction of DTs, the interaction between

sampling and appropriate tree structures is not easily determined (Cieslak and Chawla,

2008). Also, the information gain and Gini measure used by C4.5 and CART algorithms

have been reported to be skew-sensitive to class-imbalanced dataset (Flach, 2003). In

addition, pruning is considered detrimental to learning from class-imbalanced datasets,

because pruning can potentially collapse (small) leaves belonging to the minority class,

thus increasing bias towards the majority class (Chawla, 2003).

Lastly, one of the key strengths of DTs is the ability to handle missing values. However,

there is no unique approach to properly deal with missing values in DTs regarding tree

induction from data. One approach passes all missing values to the node with the highest

number of samples. Another approach considers the distribution of the missing values

to all child nodes, but with diminished weights, proportional to the number of samples

from each child node. A random distribution of the missing values to only one child

node based on a categorical distribution is also used to handle missing values. The

last approach is the surrogate split method. The surrogate split method means that

when a value for a feature is missing, and the feature is required to determine a split,

an alternative feature that is highly correlated with the missing feature is considered to

determine the direction of the split (Breiman et al., 1993; Tierney et al., 2015; Khosravi
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et al., 2020).

2.4.5 k-Nearest Neighbour Algorithm

The kNN algorithm was introduced by Fix and Hodges (Fix and Hodges, 1951) as a

non-parametric method (i.e. a method that makes no assumption about the underlying data

distribution) for classification and regression problems. The algorithm predicts the class

label for a test sample based on the class of the closest k samples in the training data to

the test sample for classification problems. The predicted class label is determined using

majority voting. For regression problems, kNN approximates the relationship between

input features and the real-valued target output by averaging the samples in the same

neighbourhood (Fix and Hodges, 1951; Pandey, 2017).

The value of k in the algorithm represents the number of nearest training samples, also

referred to as nearest neighbours. The closest training sample is obtained by computing the

similarity or distance between the test sample and each sample of the training dataset.

Commonly used distance metrics include the Euclidean distance metric, Minkowski

distance, Manhattan measure, cosine similarity, and Hamming distance. While Hamming

distance is only used for Boolean features, the selection of a specific metric from other

distance metrics depends on the data types of the descriptive features in a dataset (Tahir

and Smith, 2010; Hussain et al., 2012; Devi and Sumanjani, 2015).

kNN algorithms are known as instance-based learners because the training samples are

memorized. The stored samples are then used to predict or estimate a test sample

(Pandey, 2017). Figure 2.7 illustrates kNN classification using three and seven nearest

neighbours for the values of k. For k = 3, the test sample, represented as the “green

square", is predicted class label 2, i.e. the blue triangles. For k = 7, the test sample is

assigned to class 1.

The choice of k is critical to the performance of kNN to obtain a model that offers the

maximum accuracy during prediction. While an odd value of k is usually preferred to

avoid ties for classification problems with an even number of classes, selection of the

optimal value of k and suitable distance or similarity metric is essential. Appropriate

values for these parameters also determine the realization of a generalized kNN model

that may better balance the bias-variance tradeoff.
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Figure 2.7: kNN Classification

Given an appropriate selection of the value of k and distance metric, research has shown

that the generalization performance of a kNN model also depends on the quality of the

training dataset, which can be influenced by a number of factors, such as noise, outliers,

and skewed class distribution. For a training dataset with noise, a small value of k allows

the model predictions to be influenced by the presence of noise in the training dataset and

may lead to overfitting. In contrast, a large value of k is required to lower the impact of

noisy data, because noisy samples become a minority the larger the value of k, and hence

exert little influence on the final vote for classification problems. For regression problems,

the effect of noisy data is minimized due to averaging as the value of k increases.

However, an excessive increase in the value of k leads to expensive computation during

prediction and may result in underfitting (Ougiaroglou and Evangelidis, 2015).

The sensitivity of kNN to outliers is also subject to the value of k, and depends on whether

the problem is a classification or regression problem. For classification problems, outliers

will likely not be selected as a neighbour for a small value of k. On the other hand, for

large values of k, if an outlier is selected as a neighbour, the outlier will be in the minority

and will therefore not have a strong impact on the voting process.

For regression problems, outliers are considered with respect to target features and

descriptive features in a dataset. For target features, outliers strongly influence model

prediction irrespective of the value of k, because the predicted value is the average over
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target values. The effect is that the kNN regression model will show unstable prediction

capability that illustrates more focus on the outliers in the target feature. For descriptive

features, outliers are not likely to be selected for small values of k. Very large values of k

may include outlier descriptive features and may lead to underfitting and poor prediction

performance.

The performance of kNNs is also sensitive to skewed class distributions, where one of

the classes contains more training samples than the other classes. A very large value of

k results in the predictions of a kNN model to be biased towards the majority class. This

is attributed to the likelihood that the closest neighbours to the test sample are in the

majority class, which results in an underfitted prediction. On the other hand, a small

value of k reduces the dominance of the majority samples over the minority samples, and

may lead to overfitted prediction and low generalization performance (Shi, 2020). Thus,

in order to obtain better generalization performance, the requirement is to optimize the

value of k.

Upon the analysis of the performance of kNN algorithms on the bias-variance tradeoff,

kNN algorithms have also been reported to be stable algorithms, because kNN algorithms

are less sensitive to small changes in the training data (Breiman, 1996a; El-Hindi et al.,

2018). While this assertion is problem dependent, the stable nature of the algorithm often

results in little to no significant improvement in prediction performance (Beliakov and Li,

2012).

Inductive Bias of k-Nearest Neighbour Algorithm

For classification problems, the inductive bias of a kNN algorithm is the assumption that

the prediction of a test sample will be similar to the class of the closest training samples.

However, this inductive bias is subject to an appropriate selection of the value of k and

efficient computation of a given distance metric based on the data type (Archana and

Elangovan, 2014).

For regression problems, the assumption is that the predicted value is similar to the target

value of similar samples. However, the average computation is influenced by noise,

outliers in descriptive features, and outliers in target features.

The kNN algorithm assumes that all features are considered with equal importance to
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calculate the distance metric between samples. As a result, the distance computation

requires that input attribute values be normalized to ensure that all input feature values

are of the same scale. If input feature values are not of the same scale, features with large

values will make the most contribution to distance calculation than that of small feature

values.

Furthermore, average prediction is influenced by noise if the noise does not have a zero

mean. Also, outliers in the input features will influence the distance calculation (although

depending on the type of distance metrics). For instance, Euclidean distance is more

sensitive to outliers due to the squaring considered when calculating the distance between

two samples for all features. As a result, outliers in the input feature will dominate other

feature values in the dataset, causing bias during the distance computation (Soundarya

and Balakrishnan, 2014; Boehmke and Greenwell, 2020).

The kNN algorithm provides different predictions that are informed by the choice of the

value of k. As a result, it is necessary to select an optimal value of k to achieve the best

predictive performance.

As discussed earlier, the kNN algorithm is sensitive to noise and outliers for

both classification and regression problems as well as skewed class distributions in

classification problems. The sensitivity of the kNN algorithm to noise, outliers, and

skewed class distributions is subject to the value of k.

kNN implicitly assumes that missing values are uniformly distributed at random in a

dataset. The missing values in the input features are simply ignored in the distance or

similarity computation, provided that samples do not have too many missing values.

2.4.6 Naïve Bayes Algorithm

The NB algorithm predicts the membership probabilities for a given test sample

belonging to a particular class. The NB algorithm is also considered a stable algorithm,

because the algorithm is insensitive to noisy data (Breiman, 1996a). The algorithm has

shown to be competitive to other ML algorithms. The NB algorithm is useful when the

available dataset is characterized by high dimensionality, and has been developed for

classification problems (El-Hindi et al., 2018).
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To classify a test sample x with unknown class label, the class j for x, with posterior

probability, P(j|x), is predicted using

P(j|x) = argmax
j∈j

P(x1, x2, x3, ..., xn|j) · P(j)
P(x1, x2, x3, ..., xn)

(2.38)

where P(j|x) is the posterior probability of class j to be predicted, j is a vector of all class

values and P(j) is the prior probability of class j. P(x1, x2, x3, ..., xn|j) is the likelihood

for the conditional probability that features 1, 2, 3, ..., n will take the values x1, x2, x3, ..., xn

given that the sample is of class j, while P(x1, x2, x3, ..., xn) is the feature prior probability

that feature 1, 2, 3, ..., n will take the values x1, x2, x3, ..., xn respectively (El-Hindi et al.,

2018).

Because P(x1, x2, x3, ..., xn) is the same for all classes, only the product P(x1, x2, x3, ..., xn|j) ·

P(j) is maximized (Kantardzic, 2011). The class prior probability is computed as

P(j) =
|Dj|

n
(2.39)

where Dj contains all samples of each class j in the class vector j, and n is the total number

of training samples. Due to the complex computation of the conditional probability

P(x1, x2, x3, ..., xn|j) for large datasets, the naïve assumption of feature independence is

made given the class label. As a result, the conditional probability of all features given

the class labels is transformed into independent conditional probabilities of each feature

value given the class label. Then the product of the independent probabilities is calculated

as

P(x|j) =
n

∏
i=1

P(xi|j) (2.40)

where xi are values for features in sample x and the probability of P(xi|j) is estimated

from the training dataset. Thus, the new sample x is classified to a particular class by

selecting the class j that yields the largest value in equation (2.40). This decision rule is

referred to as the “maximum a posteriori” rule given as
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P(j|x) = argmax
j∈j

n

∏
i=1

P(xi|j).P(j) (2.41)

To balance the bias-variance tradeoff, Breiman (1996b) reported that the NB algorithm

often generates low variance, but high bias subject to a defined parameter configuration.

The low variance produced by the NB classifier is attributed to the stable nature of the

algorithm, because stable classifiers are insensitive to small changes in the sample space

of a training dataset. However, Breiman (1996b) stated that the use of an effective feature

selection technique may reduce the bias error of an induced NB model.

Inductive Bias of Naïve Bayes Algorithm

The inductive bias of a NB algorithm is the naïve assumption that features in a dataset

are conditionally independent given the target (Shi and Lv, 2010). Despite the non-

applicability of this assumption to most real-world problems, the NB classifier still

produces good generalization performance (Lewis, 1998, 2015).

Another inductive bias of the NB algorithm is the assumption of equal weight for each

training sample when computing the conditional probabilities (Liu et al., 2002).

The naïve assumption of the NB algorithm requires features to be uncorrelated. If there

are correlations between any features, the calculation of the likelihood may result in over-

weighting the correlated features, leading to poor generalization (Gastón and Bagnasco,

2007).

The possibility of a zero probability problem in the dataset is another inductive bias of

the NB algorithm. When a sample in the test dataset has a class label that was absent

during training, the estimation of the frequency probabilities in equation (2.41) will be

zero. Thus, it becomes difficult for the NB algorithm to make predictions (Lowd and

Domingos, 2005).

An inductive bias of the NB algorithm is the preference for small probabilities. Based on

this bias, multiplication of large feature values may lead to an overflow of the probability

estimation due to limited floating-point precision. The problem tends to result in high

classification errors during prediction. This bias is addressed by mapping the posterior

probability to a log space, which does not always lead to an efficient result (Gastón and
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Bagnasco, 2007).

The NB algorithm determines the posterior probabilities of a test sample by computing

the frequency of class label for categorical features as given in equation (2.41). For

continuous features, the algorithm models the feature distribution as a mixture of

Gaussian distributions. With the assumption of a Gaussian distribution, the algorithm

models each numeric feature to associate probabilities with the values of the feature.

While the Gaussian distribution is a reasonable data distribution assumption for many

applications, the distribution is not always accurate in practical applications (John and

Langley, 1995).

Further, the NB algorithm can make different assumptions due to the sensitivity of the

algorithm to outliers in the training dataset. This problem is attributed to the fact that

the prediction of a Gaussian NB algorithm relies on the method of maximum likelihood

for parameter estimation, which is defined by the mean vectors and diagonal covariance

matrix based on the training dataset. The presence of outliers in the dataset may bias

the values of the computed mean vectors and diagonal covariance matrix, leading to an

unreliable prediction outcome (Ahmed et al., 2017).

For skewed class distributions, the computation of the posterior probability may generate

a misleading result due to the computation of the prior probabilities that will most

likely be biased towards the majority classes. Thus, the NB algorithm may achieve

poor prediction performance because the chance of the prior probability of minority class

resulting in zero is increased.

NB is insensitive to missing values because missing values are inherently handled

differently based on whether the missing values exist in the model training or prediction

phase. During training, input features with missing values are not included in the

frequency count for feature value-class combinations. Also, the input features with

missing values are ignored in probability calculation during prediction (Kohavi et al.,

1997; Kalousis and Hilario, 2000). However, it is important to consider the problem that

may arise from a dataset containing many missing values, which will result in the NB

classifier ignoring many input features that may be relevant to the target feature in the

dataset.
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2.5 Chapter Summary

This chapter discussed the concepts of ML and the bias-variance dilemma. The

background information of ML with respect to the conceptual definition and the

categories of ML methods was discussed. The chapter further discussed the bias-variance

dilemma with a focus on the bias-variance tradeoff, bias-variance loss decomposition,

generalization of ML algorithms, and the analysis of underfitting and overfitting of ML

models. Then the inductive biases of selected ML algorithms were described in the

chapter.
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Chapter 3

Machine Learning Ensemble Approaches

3.1 Background

Single ML algorithms have been successfully applied to a wide range of problems

providing good predictive performance (Goh and Ubeynarayana, 2017; Poh et al., 2018;

Sarkar et al., 2020). However, no single ML algorithm performs best on all problems

because different ML algorithms have different inductive biases and exhibit different

predictive performances for different parts of data space. This realization has transformed

ML research into the possibility of combining the predictions of multiple experts into an

ensemble to achieve better generalization performance than the individual experts.

This chapter provides background on ensemble learning. Section 3.2 provides an

introduction to ML ensemble learning, while Section 3.3 discusses different ML ensemble

approaches. Section 3.4 discusses fusion approaches used to aggregate the predictions of

individual experts to obtain an overall ensemble prediction, while Section 3.6 concludes

the chapter with a summary.

53

Stellenbosch University https://scholar.sun.ac.za



Chapter 3. Machine Learning Ensemble Approaches 54

3.2 Machine Learning Ensembles

Ensemble learning is a learning paradigm in which multiple ML experts are trained to

generate different predictions, which are combined to obtain a final ensemble prediction

(Akila, 2017). The ensemble paradigm originated from the work of Hansen and Salamon

(Hansen and Salamon, 1990) to improve the generalization ability of a neural network

through the integration of a number of component neural networks (Chen and Yao, 2009;

Zhao et al., 2015; Larasati, 2017; Zhang and Zimba, 2017).

Ensemble learning has been applied to both classification and regression tasks and has

shown outstanding prediction performance (Tang et al., 2019; Almeida et al., 2019). For

classification problems, the experts learn different decision boundaries on the training

data. The predictions obtained due to the different decision boundaries formed by

the different members of the ensemble are combined by voting in order to reach a

final classification prediction. The combined prediction is expected to outperform

the individual predictions of component experts (Rahman and Verma, 2011). In the

case of regression problems, the members of an ensemble of regressors learn different

relationships between the input features and the target value in the training data.

The resulting experts make different predictions that are averaged, such that the final

ensemble prediction is usually better than any of the single base experts because the error

of the ensemble is reduced. Thus, a ML ensemble is a multiple learner system where each

component expert tries to solve the same task (Zhang and Street, 2008).

There are several reasons for creating a ML ensemble. One of the reasons is for

statistical reasons, where the opinions of multiple experts are consulted to obtain improved

performance and to reduce the overall risk of making poor decisions.

Another reason is to deal with too large and too small datasets. For specific applications,

the amount of data to be analyzed can be too much to be handled effectively by a

single ML algorithm. Training a single ML algorithm with an extremely large dataset

is challenging and usually impracticable. As a result, splitting the dataset into smaller

subsets to train different base learners and combining the predictions of the resulting

experts into an ensemble is often a more efficient solution. For small datasets, where

there is an inadequacy in the representative set of training data, resampling techniques

Stellenbosch University https://scholar.sun.ac.za



Chapter 3. Machine Learning Ensemble Approaches 55

can be used to draw overlapping random subsets of the available data, each of which can

be used to train different base learners to induce experts that make different predictions

combined into an ensemble.

Ensemble learning also performs a divide and conquer function when certain predictive

problems are too difficult for a given ML algorithm to solve. For instance, for a difficult

classification problem, the decision boundary induced by a single classification model

may be too complex to separate samples of different classes. In this case, an ensemble

of classifiers will outperform the single model by efficiently learning the underlying

complex decision boundary in the classification problem. For a difficult regression

problem, a single regressor may induce a regression line (for two-dimensional space) or

a hyperplane (for higher dimensional space) that lacks sufficient complexity to capture

the underlying patterns in a dataset. Also, the single regression model may perform

poorly when the dataset contains outliers, noise, and other issues. On the contrary, an

ensemble of regressors can deliver different regression hyperplanes to efficiently learn

the relationship between input features and target values in the dataset. Moreso, the

ensemble of regressors can neutralize the effect of noise and outliers in the dataset to

achieve better predictive performance than a single regressor model. Lastly, ensemble

learning has successfully been used for applications in which data from different sources

are combined, while single ML algorithms do not perform efficiently for such applications

(Polikar, 2006; Vaghela et al., 2009; Iglesias et al., 2014).

According to Dietterich (2000), a single ML approach produces experts with different

predictions when trained on different data subsets for the same problem. However,

the predictive performance of these experts can be improved by an ensemble of experts

from different ML algorithms or multiple instances of the same ML algorithms trained

on different data subsets to minimize the errors due to bias and variance or both

(Dietterich, 2000). An ensemble can reduce bias-variance errors because the models

obtained from a single ML algorithm may be underfitting or overfitting. For datasets

characterized by small sample and feature sizes, a single ML algorithm easily makes

simplifying assumptions that may be insufficient to capture the underlying trend in the

dataset, leading to underfitting. Even when the algorithm is tuned, the algorithm is still

constrained to learn only an aspect of the structure of the dataset and may not generalize

well on the test dataset.
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On the other hand, when the single ML algorithm is too complex, overtrained or trained

on an extremely large dataset, the algorithm is likely to capture any inherent noise in the

training dataset, which causes overfitting of the resulting model. Therefore, combining

multiple experts can significantly contribute to the required prediction accuracy. This is

because an ensemble of different ML algorithms or an ensemble of multiple instances of

the same ML algorithm trained on different data subsets will provide the capability to

learn different aspects of the training dataset. It is expected that the multiple different

base experts within an ensemble will complement one another, and more patterns from

the underlying structure of the training data can be adequately represented (Brown et al.,

2005).

Furthermore, the rationale behind the introduction of ML ensembles is not only to obtain

improved predictive accuracy, but also to generate diverse base experts that will result in

a reduced generalization error produced by an ensemble in comparison to generalization

errors of individual base experts (Kantardzic, 2011). For an ensemble to achieve the

stated rationale, each base expert is expected to perform better than a random guess. In

addition, the base experts are expected to make different prediction errors on the samples

of the training data, such that the resulting error is adequately reduced by the ensemble

(Boström, 2007; Rahman and Verma, 2011).

In a ML ensemble, different prediction errors are made because the base experts learn

different mapping functions for the data subsets of the same problem, thereby promoting

behavioural diversity among the base experts that form the ensemble (Kantardzic, 2011).

Diversity in this context refers to the differences in the predictions made by base experts

in an ensemble. The role of diversity is crucial to the generalization performance of an

ensemble. Diverse experts result in experts with different decision boundaries (in the

context of classification of problems) or different regression hyperplanes (in the context of

regression of problems). Different decision boundaries or regression hyperplanes result in

experts that make different errors on different samples. Therefore, a combination of the

decision boundaries or regression hyperplanes of different experts results in decisions

more accurate than individual base experts (Polikar, 2006).

Moreso, for a training data subset, a key focus of ensemble learning is to ensure that

the base experts do not agree to similar predictions combined under a given aggregation
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scheme to guarantee diversity. Otherwise, the final prediction of the ensemble will be

identical to that of any individual base expert, thereby invalidating the significance of

ensemble learning (Webb and Zheng, 2004; Domeniconi and Yan, 2004). The diverse

base experts are developed using different ML ensemble approaches, including bagging

(Breiman, 1996a), boosting (Schapire, 1990; Freund and Schapire, 1996), random feature

subspace method (Ho, 1998), stacking (Wolpert, 1992), and others. Furthermore, diversity

among the individual base experts is enhanced by the different inductive biases of the

base experts to generalize in distinctive ways (Zhang and Street, 2008).

Typically, ensemble learning consists of two phases, as illustrated in Figure 3.1. The first

phase involves the generation of multiple base experts, and the second phase considers

the combination of the predictions made by the base experts (Webb and Zheng, 2004). In

the first phase, the central focus is not only to generate multiple base experts, but also

to efficiently select an optimal number of multiple base experts, bag sizes, data sampling

technique, and combination strategy that will guarantee a reduced generalization error

by an ensemble compared to that of the component experts (Bian and Wang, 2006; Cai

and Wu, 2010).
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Figure 3.1: ML Ensemble

Further, the generalization error of an ensemble is reduced from the perspective of bias-

variance loss decomposition. The plausibility is that an ensemble addresses the bias-

variance tradeoff by capitalizing on the benefits of the different ensemble approaches

(Thewsuwan et al., 2018). Each ensemble approach contributes to the reduction of the

generalization error of the ensemble using different strategies. For this reason, it is much

more likely that the ensemble will misclassify less than the individual members of the
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ensemble (Kantardzic, 2011; Alkubaisi, 2019).

3.3 Machine Learning Ensembles Approaches

As stated in Section 3.2, the goals of any ML ensemble are to generate accurate and diverse

base experts. Then, the predictions made by the base experts are combined to obtain

improved generalization performance better than individual component experts of the

ensemble (Yang et al., 2013). This section discusses different ensemble approaches used

to generate diverse base experts within an ensemble.

3.3.1 Bagging

Bagging, coined from boostrap aggregation, is an ensemble approach proposed by Breiman

(Breiman, 1996a) to create diverse experts within an ensemble (Fazelpour et al., 2016).

Breiman (1996a) observed that multiple versions of an expert could be generated using

bootstrapped replicates of a training dataset. The bootstrapped replicates are referred to

as bagged subsets, drawn uniformly using random sampling with replacement (Li et al.,

2011a; Rahman and Verma, 2011).

Sampling with replacement creates the possibility that a training sample may appear

more than once or not at all in a bagged subset (Kantardzic, 2011; Liang and Zhou, 2012).

Therefore, training of individual base experts on the bagged subsets guarantees that the

experts behave differently on each bagged subset. The base experts are homogeneous

in nature, and training on the bagged subsets is performed in parallel, which results in

significant differences in the decisions among experts (Polikar, 2006; Rahman and Verma,

2011).

A fusion method is required to combine the individual predictions of the experts to

obtain an overall prediction of an ensemble. Fusion of expert predictions can be realized

using a voting method for classification problems or an averaging method for regression

problems (Li et al., 2011a). Random forest (Breiman, 2001), pasting small votes method

(Breiman, 1999a), and wagging (Bauer and Kohavi, 1999) are variants of the bagging

approach that have generated reliable results in different ML applications.
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3.3.2 Boosting

Boosting is another ensemble approach, proposed by Freund and Shapire (Schapire, 1990;

Freund and Schapire, 1996), to create diverse base experts within an ensemble. The

boosting approach involves the combination of weak base experts to generate a strong

expert that can correctly classify all but a small fraction of test data using a sequential

learning approach (Schapire, 1990; Polikar, 2006; Ahmadian et al., 2007; Verma and Mehta,

2017; Lawi et al., 2018).

Boosting approaches assign equal initial weights to all samples in a training dataset,

and weak base learners are trained to induce an expert. After the base experts make

predictions, samples in the training data are adjusted to concentrate only on the samples

misclassified by the weak base experts. Then weight adjustment is performed such that

the weights of misclassified samples are increased while the weights of correctly classified

samples are decreased. The misclassified samples are later included in the training set

for the next training. This way, resampling is strategically performed to provide the

most informative training data for consecutive base experts (Wan and Yang, 2013). Then

subsequent base experts are constructed by fitting the misclassified samples of the initial

experts from the training data (Baneriee et al., 2018). The final strong expert is obtained

through the combination of the weighted votes of all weak base experts (Vaghela et al.,

2009).

Boosting approaches include the Adaboost algorithm (Freund and Schapire, 1996),

gradient boosting algorithm (Freund and Schapire, 1997; Breiman, 1999b; Friedman, 2001)

and extreme gradient boosting (XGBoost) algorithm (Chen and Guestrin, 2016).

3.3.3 Stacked Generalization

Another approach to creating diverse experts to generate varying predictions within an

ensemble is to combine different types of ML algorithms. Stacked generalization, also

known as stacking, was proposed by Wolpert (Wolpert, 1992) to improve the predictive

performance of a ML ensemble using different ML algorithms.

The different base learners are trained on random subsets of a training dataset using a

cross-validation method (Lee, 2017). Then by capitalizing on the inductive biases of the
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different underlying base learners, multiple different experts are induced and generate

different predictions. The predictions made by the base experts are combined with the

target class of the original training data to construct meta-data. The meta-data is used as

a new training dataset to train another ML algorithm which performs the function of a

meta-classifier that generates the final prediction of the ensemble (Jurek et al., 2011; Gupta

and Thakkar, 2014; Czarnowski and Jedrzejowicz, 2017; Hnoohom and Jitpattanakul,

2018). Therefore, stacking guarantees diversity within an ensemble by capitalizing on

the intrinsic properties of different ML algorithms used to construct the ensemble (Tahir

and Smith, 2010).

3.3.4 Random Feature Subspace Method

The random feature subspace method (RFSM) is an ensemble approach proposed by Ho

(Ho, 1998). The RFSM approach has been used to solve the problem arising from the curse

of dimensionality in a dataset. The curse of dimensionality in a dataset occurs when the

number of features largely outnumbers the number of samples in the dataset (Biggio and

Corona, 2015). For effective model performance, the dimension of the data is reduced

through feature selection and resampling.

Input features are randomly selected with replacement into different subsets to train the

base learners in order to construct an ensemble. Each feature subset is referred to as a

“feature subspace". Hence, the RFSM ensures that the base experts within the ensemble

behave differently in prediction by generating diverse predictions combined to obtain

the final prediction of the ensemble (Ho, 1998; Wang et al., 2015). The approach also

guarantees augmentation with additional changes, which include using bootstrap or a

random sample of the rows in a training dataset (Ho, 1998).

3.3.5 Parameter and Hyperparameter Tuning

ML algorithms have internal parameters that are not tuned but learned from data during

model training. The parameters are referred to as decision variables. Furthermore, the

algorithms consist of hyperparameters that are tuned during model building and are

referred to as control parameters (Engelbrecht, 2007; Lin et al., 2017).

The tuning of the hyperparameters of ML algorithms has been formalized as an
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optimization problem to address diversity within an ensemble (Cachada et al., 2017;

Preuveneers et al., 2020). The formalization involves selection of different configurations

for the hyperparameters of base learners in the ensemble. As discussed in Section 2.3, the

different configurations of the base learners define different levels of model complexity

obtainable from the learners. Then, the inductive biases and the model complexity of

individual base learners lead to different predictions by the resulting diverse experts.

Due to the large numbers of hyperparameters in different base learners within an

ensemble, the possibility to obtain optimal predictive performance in the ensemble

depends on the methods used to optimize the hyperparameters of the base learners.

Generally, two methods are used to perform hyperparameter optimization of ML

algorithms, i.e. manual search and automatic search methods (Claesen and De Moor, 2015;

Dodge et al., 2017; Gokalp and Tasci, 2019; Wu et al., 2019).

The manual search method is used to tune the values of the hyperparameters of base

learners by hand. The method requires technical experience, which is usually subjected

to trial and error. The key to obtaining optimal ensemble results using manual search

is to select hyperparameters that are more significant for individual base learners in the

ensemble (Wu et al., 2019).

As a result of the subjective requirements of the manual search method, the method is

usually time-consuming (Feurer et al., 2014). Another problem of the manual search

method is managing a large number of hyperparameters and the range of values

for the hyperparameters. In addition, it becomes challenging to handle data with

high dimensions. These challenges often result in possible misinterpretation of the

relationships and trends among hyperparameters (Wu et al., 2019).

Automatic search methods have been proposed to solve the problems of manual

search methods (Feurer et al., 2014; Claesen and De Moor, 2015; Luo, 2016; Dodge

et al., 2017; Mantovani et al., 2019; Kadam and Jadhav, 2020). Grid search (Bergstra

et al., 2011) is a simple automatic method that implements exhaustive search through

specified hyperparameter values (Cachada et al., 2017). Grid search methods train

base learners with different combinations of hyperparameter values to obtain optimal

ensemble performance. However, the performance of base experts quickly drops when

the hyperparameters and the range of values of the hyperparameters increase excessively
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(Wu et al., 2019).

Bergstra and Bengio (2012) proposed a random search method to solve the expensive

computational cost of grid search methods. Random search method provides

optimal hyperparameter values through the selection of important hyperparameters

for individual base learners to achieve optimal performance. The random search

method implements random combinations of hyperparameter values. This way, the

hyperparameter search space is reduced to hyperparameters that only contribute to the

final ensemble results (Wu et al., 2019). However, Bergstra and Bengio (2012) reported

that the random search method might not be effective to optimize complex ML experts

and suggested the use of advanced hyperparameter tuning strategies. Such advanced

optimization methods include the Bayesian optimization and evolutionary algorithms

(Hutter et al., 2011; Bergstra et al., 2011; Bachoc, 2013; Eggensperger et al., 2013).

Bayesian optimization repeatedly fits a probabilistic model as each hyperparameter

combination is tested. The method adopts the Bayesian theorem, and the outputs of any

hyperparameter combination provide good suggestions for the next value combination

(Cachada et al., 2017). Evolutionary optimization strategies include particle swarm

optimization (Kennedy and Eberhart, 1995; Engelbrecht, 2007; Lin et al., 2008; de Miranda

et al., 2012), genetic algorithms (Tsai et al., 2006; Reif et al., 2012), coupled simulated

annealing (Souza et al., 2010), tabu search (Gomes et al., 2012), and racing algorithms

(Birattari et al., 2010).

3.3.6 Class Manipulation

Class manipulation is an approach used to solve multi-class classification problems in

ensemble learning (Joshi and Kulkarni, 2014).

A multi-class problem is transformed into multiple smaller binary classification problems

such that the base learners within an ensemble are trained to solve a two-class problem.

The base learners are constructed with different and simpler representations of the target

classes in the training data. As a result, the scope of the new classes is made smaller than

the original class in the training data.

The different predictions made by the base experts are representative solutions of the

original multi-class problem. Thus, the base learners are considered to solve different
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target concepts, which guarantees diversity in the ensemble. The different predictions are

combined to obtain the final prediction of the ensemble (García-Pedrajas and Ortiz-Boyer,

2011; Rocha and Goldenstein, 2014; Gopika and Azhagusundari, 2014).

Dietterich (2000) discussed a formal analysis of a multi-class problem into learnable two-

class problems by the base learners in an ensemble. The study discussed three methods

to transform a multi-class problem into a multiple binary classification problem. The

methods include one-vs-one (Knerr et al., 1990), one-vs-all (Anand et al., 1995), and

error-correcting output codes (Dietterich and Bakiri, 1995). Each of the methods has

been shown to enhance diversity within an ensemble (Dietterich, 2000; Platt et al., 2000;

Raschka, 2018; Bagheri et al., 2014).

3.4 Fusion Approaches for the Predictions of Experts

A fusion approach is necessary to combine the predictions made by the diverse base

experts in an ensemble. A key factor is to select an appropriate fusion approach to

optimally realize complementarity among the diverse base experts (Zhang et al., 2018).

By complementariness, the individual experts could make up for the deficiencies of one

another in the mixture model to enable the ensemble to generate a correct and improved

decision (Martinez-Muñoz et al., 2009; Yang et al., 2013). This section discusses different

voting and averaging methods used to combine the predictions of experts in an ensemble.

3.4.1 Voting Methods for Classification Problems

Voting is a method used to fuse the decisions of base experts in an ensemble for

classification problems (Zhou, 2012; Xie et al., 2017). The method is mostly used

to combine categorical predictions generated by classification algorithms (Opitz and

Shavlik, 1996; Freund and Schapire, 1997). The different voting methods, i.e., unweighted

and weighted majority voting, are discussed next.

3.4.1.1 Unweighted Voting

Unweighted voting is used to combine the predictions of base experts within an ensemble

when the prediction of each expert is observed as a single vote. Then, the individual
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predictions of the experts are known as votes. The different approaches of the unweighted

voting are presented next.

Majority Voting

Majority voting is considered the most popular voting method. Austen-Smith and Banks

(1996) explained the concept of majority voting in relation to the condercent jury theory.

Austen-Smith and Banks (1996) stated that in an uncertain situation where a decision is to

be made, the probability that the majority will make correct decisions is higher than the

probability of any individual decisions (Austen-Smith and Banks, 1996).

Each base expert votes a single class label, and the final class prediction for an ensemble

is the class that has more than half of the votes. A test sample is rejected when there is no

class label out of the predictions that takes the majority of the votes. While this situation

may not likely occur in an ensemble with many base experts, it is still a potential issue

in majority voting. The outcome will be the inability of the ensemble to classify samples

correctly (Van Erp et al., 2002). Formally, the class label that receives half of the votes is

calculated as

H(x) =

Cj i f ∑T
i=1 hj

i (x) >
1
2 ∑l

k=1 ∑T
i=1 hk

i (x)

reject otherwise
(3.1)

where H(x) is the final ensemble prediction, Cj is returned as the class label with majority

votes, hj
i (x) represent the class prediction for a sample x by a base expert, and T indicates

the total number of base experts in the ensemble. The ensemble will then make a correct

prediction if at least (T/2 + 1) experts select the correct class label (Zhou, 2012). Thus,

majority voting gives the accuracy of the ensemble, Pmaj, as

Pmaj =
n

∑
f=(n/2)+1

(
n

f

)
p f (1 − p)n− f (3.2)

where f indicates the number of majority votes, n is the number of base experts in

the ensemble, and p represents the probability of a base expert to generate an accurate

prediction. The majority voting calculated in equation (3.2) indicates that the accuracy of
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the individual experts within an ensemble is directly proportional to the overall accuracy

of the ensemble. As the value of n approaches infinity, the accuracy of the ensemble, Pmaj,

monotonically increases when p ≥ 0.5 as

Pmaj → 1 i f p > 0.5, (3.3)

while the accuracy monotonically decreases when p ≤ 0.5 as

Pmaj → 0 i f p < 0.5. (3.4)

Also, the accuracy of the ensemble equals 0.5 for any value of n as

Pmaj → 0.5 i f p = 0.5 (3.5)

Plurality Voting

Contrary to majority voting, plurality voting computes the final classification result of an

ensemble as the most frequent class label. This means that the class label that generates

the highest number of votes becomes the ensemble prediction (Zhou, 2012). The final

class label is determined using

H(x) = Carg
j

max

T

∑
i=1

hj
i(x) (3.6)

where C is the class label with majority votes out of j votes. The plurality voting computed

in equation (3.6) illustrates that there is no reject option, unlike the simple majority voting

in equation (3.1). This is because plurality voting always finds a label that receives the

largest number of votes. Moreover, for binary classification problems with only two class

labels, the plurality voting strategy is equivalent to majority voting, because the class

label that has the highest number of votes becomes the class with the majority of the

votes. However, plurality voting is not effective for multi-class classification problems.

The ineffectiveness of plurality voting is attributed to designating the final prediction of

the ensemble as the class label that has not received many votes, but has received more

than any other. Then, as the number of class labels to be predicted increases, so too does

Stellenbosch University https://scholar.sun.ac.za



Chapter 3. Machine Learning Ensemble Approaches 66

the possibility of this drawback occurring (Van Erp et al., 2002; Zhou, 2012).

Amendment Voting

The drawback of plurality voting for multi-class classification problems is solved using

the amendment voting rule. First, the amendment voting rule determines the majority

voting result between two class labels. The label that receives the highest votes is then

matched to the next label with another majority vote. The process continues until a final

class label with the majority votes between the last two labels is obtained. The final

class label becomes the prediction of the ensemble prediction. However, the amendment

voting strategy has been shown to be biased towards the class labels that are matched and

analyzed in the final voting process (Van Erp et al., 2002).

3.4.1.2 Weighted Majority Voting

Weighted majority voting is a strategy used to measure the confidence of the base experts

within an ensemble when the experts generate unequal accuracy. For the weighted

majority strategy, more relevance is given to base experts with more accurate predictions

(Zhou, 2012). This means that weights are assigned to experts based on the classification

performance of individual experts in the ensemble.

Before training begins, the weights of the base learners are initialized to 1. As each

learner processes the training samples, the weights of the experts that correctly predict

the correct class label of a sample are incremented by the ratio of the number of experts

with wrong predictions to the total number of base experts (Dogan and Birant, 2019).

Given the weight wi j of a number of base experts (j = 1, 2, 3, ..., n) on training samples

(i = 1, 2, 3, ..., m), the weight for the vote of each base experts is recalculated as

wi j =

w1−1, j + αi i f jth base expert correctly predict ith sample

w1−1, j i f jth base expert incorrectly predict ith sample
(3.7)

where αi is the change in weight and calculated as αi = Yi/n, where Yi represents the

number of incorrect predictions for the ith sample, and n is the number of base experts.

When all the base experts have traversed all training samples, the obtained weights are

used to achieve the vote for each base expert to predict the class labels of the samples.
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The final decision is computed as the summation of all weighted votes for each class as

gk(x) =
n

∑
j=1

wj djk (3.8)

where wj is the weight assigned to the prediction of jth expert, n represents the number

of base experts, and k is the index of a specific prediction for jth expert. The value djk is

calculated for all class labels as

djk =

1 i f Rj selects Cj

0 i f otherwise
(3.9)

where Rj is a base expert j, and Cj is the predicted class label of a base expert out of all

possible class labels in the training data. The class label that receives the highest weighted

vote is designated as the final ensemble prediction.

The range of the values for the weight assigned to the prediction of an expert after

traversing each training sample is between zero and one. Hence, a normalization

equation is computed to ensure that the weight gain value cannot exceed one as

wj ≥ 0 and
n

∑
j=1

wj = 1 (3.10)

The process of weight assignment to base experts in an ensemble is only efficient

once the performance of each expert has been determined. However, the process is

considered a weakness to the weighted majority voting strategy because determining the

weight values is complex and subjective. When incorrect weight values are assigned

to each expert, the ensemble tends to generate an overall performance worse than the

performance obtained using the unweighted voting strategies (Dogan and Birant, 2019).

3.4.2 Averaging Methods for Regression Problems

Averaging is applied to regression problems to combine real-valued outputs generated by

base experts to obtain the final prediction of an ensemble (Khan et al., 2018). Averaging

methods, which consist of simple and weighted averaging methods, are discussed in this
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section.

3.4.2.1 Simple Averaging

Simple averaging is the most popular averaging method to generate an overall ensemble

prediction (Zhou, 2012). Each base expert within an ensemble has the same influence due

to the assignment of equal weights to the predictions of all experts (Fu and Browne, 2007).

The overall prediction of an ensemble is calculated using the simple averaging method as

H(x) =
1
n

n

∑
i=1

hi(x) (3.11)

where hi(x) is the ith prediction of a base expert for sample x. The simple averaging

method provides the final prediction with the assumption that the errors of the individual

base learners are uncorrelated. However, despite the simplicity of the method, there is an

inefficiency to reduce the prediction errors in an ensemble. The inefficiency is attributed

to the high correlation of the errors generated by the base experts in the ensemble because

the experts are induced on the same problem (Zhou, 2012). Furthermore, the simple

averaging method is adversely influenced by outliers in a dataset, which results in the

possibility of the base experts within an ensemble providing misleading predictions.

These misleading predictions lead to underestimation or overestimation in the final

ensemble prediction (Kwak and Kim, 2017).

3.4.2.2 Weighted Averaging

Weighted averaging measures the importance of the predictions of individual experts

in an ensemble. The weighted sum of the predictions provides an overall prediction of

the ensemble (Fu and Browne, 2007). Weight assignment is performed in terms of the

accuracy of prediction generated by each expert or other selected performance metrics.

An overall ensemble prediction is calculated using the weighted averaging method as

H(x) =
n

∑
i=1

wi hi(x) (3.12)

where wi is the weight assigned to the prediction of each expert, which follows the

approach used to compute weights in equation (3.9). The weights are also subject to the
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constraints given in equation (3.10).

While weighted averaging is considered an advanced case of simple averaging, there has

been no reported superiority between the two methods. Weighted averaging is usually

not preferred when the available data is noisy and insufficient. In addition, learning

different weights when the ensemble size is too large tends to lead to overfitting. Also,

weight determination is regarded as a computationally hard problem (Zhou, 2012). On

the other hand, weighted averaging is preferred when the base experts exhibit different

performances. Therefore, there is no averaging method that is consistently the best

because the selection of each method depends on different factors such as data types,

complexities of data, and base algorithms.

3.4.3 Advanced Fusion Methods

Advanced fusion methods are reported in literature to combine the predictions of base

experts in an ensemble. Bayesian combination computes the weight assigned to each expert

in an ensemble as the posterior probability of the expert given a training dataset (Buntine,

1990). Performance weighting relies on the evaluation of the weight of an expert as a direct

proportion to the accuracy of the expert on a validation set (Opitz and Shavlik, 1995).

Distribution summation computes the sum of the conditional probability vectors obtained

from each expert (Clark and Boswell, 1991).

Another method is the Dempster–Shafer strategy (Dempster, 1967; Shafer, 1976) which

applies the principle of basic probability assignment to combine the predictions of experts

within an ensemble (Shilen, 1990). The variance optimized bagging strategy, also known as

Vogging, has been used to perform optimization of a linear combination of experts to

improve accuracy and to reduce variance (Derbeko et al., 2002).

3.5 Impact of Ensemble Approaches on the Bias-Variance

Dilemma

This section discusses the impact of the ensemble approaches on the bias-variance

tradeoff, to obtain better generalization performance.

For the bagging approach, the diversity among the base experts of an ensemble has its
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origin in the statistics of the random bootstrap sampling process. As discussed in Section

3.2, the number of experts combined in an ensemble is one of the factors that influence

the performance of the ensemble. The number of experts indicates the ensemble size,

which is usually determined by the required accuracy, computational cost, the nature of

the data, number of iterations in training, and the number of processors available for

parallel learning (Rokach, 2009). The ensemble size is significant to the construction of

bagging-based ensembles.

The ensemble size has an influence on balancing the bias-variance tradeoff because the

generalization error of a bagged ensemble becomes smaller as the number of experts

aggregated in the ensemble increases. A point is reached whereby the reduction of

the generalization error reaches a plateau as more experts are added. This point is

considered the best result achieved by the bagging approach (Martinez-Muñoz et al.,

2009). For instance, Breiman (1996a) showed empirically that an ensemble size of 10

experts generated the most significant decrease in misclassification rate and that more

than 25 experts are unnecessary. Hence, the amount of overfitting does not generally

increase with the number of experts combined in the ensemble due to the statistical origin

of error reduction in the bagging approach (Breiman, 2001).

Furthermore, the bagging approach allows the base learners within an ensemble to be

trained in parallel, where the induced base experts make independent and uncorrelated

prediction errors (i.e. variance). It is expected that the combination of these errors made

by the base experts will result in an ensemble that decreases the overall prediction error.

Freund and Schapire (1996) explained the application of the boosting approach to address

the bias-variance tradeoff: boosting reduces the bias error by focusing on misclassified

samples of previous base experts to obtain the next base experts. The final strong expert

is largely different from individual experts in terms of generalization error. In addition,

the boosting approach is credited with the capability to construct a strong expert that

is not producible by the base experts with simple inductive biases. An illustration of

this is to change linear predictions of a classifier into a classifier that contains non-linear

predictions (Opitz and Maclin, 1999). Therefore, due to the different inductive biases of

the base experts, the adaptive weight adjustment of the boosting approach influences the

reduction of the bias error.
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Breiman (1996b) showed empirically that the boosting algorithm is capable of reducing

the variance error using a stopping iteration criterion during training. Very late stopping

of the algorithm may cause the final ensemble model to overfit due to an increase in the

complexity of the final expert. On the other hand, stopping the algorithm too early would

not only lead to higher error on training data, but could as well result in poor predictions

on new data (Mayr et al., 2014).

For stacked generalization, the inductive biases of the different algorithms within an

ensemble contribute to the generation of different prediction errors made by individual

algorithms. This is significant to balancing the bias-variance tradeoff within the

ensemble. The advantage of combining the different algorithms, therefore, influences the

minimization of the generalization error of the ensemble (Wan and Yang, 2013). A meta-

learner is used to combine the predictions of the base algorithms. The meta-learner fits the

prediction errors generated by the different base experts induced by the algorithms. The

combination of these prediction errors results in an overall reduction in the generalization

error of the ensemble (Large et al., 2019). However, the decision to construct a stacked-

based ensemble that will produce effective generalization performance is determined

by different factors. These factors include the types of base algorithms and meta-

learner selected, ensemble size, appropriate configurations of the control parameters

for base learners and meta-learner, and the number of folds required for the cross-

validation process (Gupta and Thakkar, 2014; Moudrik and Neruda, 2015; Kadkhodaei

and Moghadam, 2016).

Ho (1998) stated that the presence of redundant and irrelevant features in a training

dataset leads to high dimensionality in the feature space for RFSM. The redundant

and irrelevant features significantly influence the bias-variance tradeoff in an ensemble.

Removal of irrelevant features has less importance in the reduction of the bias error for

the base learners in the ensemble, because irrelevant features are treated as noise (Van

Der Putten and Van Someren, 2004).

Furthermore, selection of relevant features is directed at reducing the variance error. This

way, individual learners estimate fewer parameters to generate low independent errors

while the amount of relevant information that is removed is minimized. However, the

removal of relevant features may lead to an increase in intrinsic bias (Van Der Putten and
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Van Someren, 2004; Merentitis et al., 2014). Thus, by taking advantage of the principle

of RFSM, minimal bias and variance errors are generated. In addition, the inductive

biases of the diverse base experts in the ensemble contribute to the reduction of the final

generalization error.

Hyperparameter optimization performs an important role in the reduction of the

generalization error of an ensemble. As discussed in Section 2.3.5, a too complex model

will memorize training data and learn the inherent noise present in the training data. The

outcome is a model with poor generalization performance due to model overfitting, i.e.

high variance.

On the other hand, a model with too low complexity will fail to capture all the information

and patterns present in the training data, leading to high bias. The model will also

perform poorly on test data. This refers to model underfitting. Therefore, the selection of

a suitable level of model complexity defined by the hyperparameters of the base learners

in an ensemble is significant in balancing the bias-variance tradeoff.

Class manipulation has been shown to address the bias-variance tradeoff in an ensemble

(Kong and Dietterich, 1995; Windeatt and Ghaderi, 2003; Brown et al., 2005). However,

the approach has received little attention because the application of the method is mainly

found in multi-class classification problems (Furnkranz, 2002). Furthermore, there is

no significant improvement in generalization performance reported over other ensemble

approaches (Wang and Zhang, 2010).

3.6 Chapter Summary

This chapter discussed all relevant information regarding ensemble learning. Section 3.1

presented the background to the chapter. ML ensembles and ensemble approaches to

create diverse experts in an ensemble were discussed in Sections 3.2 and 3.3.

Section 3.4 discussed different fusion approaches to combine the predictions of experts.

The discussion showed that there is no fusion approach that is consistently the best on

every problem. The selection of a suitable fusion approach depends on the formulated

research problem, available data, ensemble approach, selected base ML algorithms, data

types, and complexities of data. The impact of the ensemble approaches on the bias-
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variance dilemma was presented in Section 3.5.
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Chapter 4

Homogeneous Ensembles

4.1 Introduction

This chapter presents a critical review of mixtures of homogeneous experts, i.e.

homogeneous ensembles. The review investigates the different components of a

homogeneous ensemble including diversity approaches, fusion approaches used to

combine the predictions of base experts within the ensemble, ensemble size, and tuning

strategies used to address the inductive biases of the base learners and the bias-variance

dilemma to obtain efficient generalization performance. Section 4.2 presents background

information of the chapter, while Section 4.3 discusses the review strategies followed in

the chapter. Sections 4.4 to 4.8 reviews past studies of SVM ensembles, NN ensembles,

RF, nearest neighhbour ensembles, and NB ensembles algorithm. Section 4.9 presents the

limitations of the different implementations of homogeneous ensembles, while Section

4.10 concludes the chapter with a summary.

4.2 Background

In ML, the “No-Free-Launch” theorem (Wolpert, 1996) presents the concept that there is no

single ML algorithm that performs best on all problems, because different ML algorithms

74
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exhibit different learning biases and different assumptions on data. Hence, integration of

ML algorithms into an ensemble can result in better generalization performance and may

better balance the bias-variance dilemma (Breiman, 1996b) of the base learners (Tang et al.,

2019). This objective is achieved by combining multiple instances of the same learning

algorithm or different learning algorithms to build an ensemble. Combinations of the

same ML algorithms as the base learners in an ensemble are known as “Homogeneous

Ensembles”, while combinations of different base learning algorithms are referred to as

“Heterogeneous Ensembles” (Kilimci et al., 2016).

The crux for developing homogeneous ensembles is not only to get accurate predictions,

but also to create diverse learners that generate different assumptions and prediction

errors. Diversity with respect to the inductive biases of learning algorithms in an

ensemble represents the key to improving the prediction performance of the ensemble

(Polikar, 2006). In a bid to address diversity within an ensemble, several authors have

investigated the significance of introducing diversity in homogeneous ensembles using

various ensemble approaches such as sampling training data, altering feature sets, and

using different parameters and hyperparameters for each ensemble member (Wang et al.,

2018). Also, using a RFSM has been shown to be an effective strategy in enhancing

diversity in homogeneous ensembles (Kilimci et al., 2016). All of these approaches have

been discussed in Section 3.3 of this thesis.

4.3 Review Strategy

The goal of the review conducted in this chapter is to identify and analyze different

implementations of homogeneous ensembles. Therefore, the strategies followed to

perform a detailed systematic review of the construction of different homogeneous

ensembles are discussed next:

• Search for relevant terms and form search strings: The search terminologies

and search strings used include “Machine Learning Ensemble”, “Homogeneous

Ensembles”, “Ensemble Approaches”, “Diversity in Ensembles”, “Fusion

Approaches in Ensembles”, “Hyperparameter Optimization in Ensembles”,

“Ensemble Machine Learning”, “Support Vector Machine Ensemble”, “Neural

Network Ensembles”, “Random Forest”, “Nearest Neighbour Ensembles”, and
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“Naïve Bayes Ensembles”.

• Select Bibliographical Database: The bibliographical databases IEEE Xplore,

Scopus, ACM Digital Library, and PubMed were used to select papers reporting the

implementations of different homogeneous ensembles constructed for the identified

ML algorithms, i.e. SVM, NN, RF, kNN, and NB. The literature studies published

between 2008 and 2022 were considered. A total of 83 articles were finally selected

for the review of homogeneous ensembles developed for each of the ML algorithms.

• Inclusion Criteria: A number of factors were considered as the inclusion criteria for

the selection of relevant studies out of all available studies for each homogeneous

ensemble. One of the factors includes articles that have used SVM, NN, DT, kNN,

and NB as base learners for the construction of individual ensembles. Another factor

considers the articles where the components of an ensemble (i.e. diversity, fusion

approach, tuning approach, and ensemble size) were implemented. Other factors include

articles available in full text, and articles written in English.

• Exclusion Criteria: Also, a number of factors were identified as exclusion criteria

to ignore selection of irrelevant studies out of all available studies for each

homogeneous ensemble. One factor is the exclusion of articles written in other

languages. Duplicated and repeated articles are also excluded. Articles that have

used more than one of the identified ML algorithms as base learners were excluded,

because the focus of the review is mainly pure homogeneous ensembles constructed

with base learners of the same ML algorithms.

• Study, analyze and summarize findings: For each homogeneous ensemble,

the selected articles were studied and analyzed comparatively to examine the

approaches used to implement the components of the homogeneous ensembles. The

findings are summarized and presented in this chapter.

4.4 Support Vector Machine Ensembles

The application of SVMs to various problems has recorded huge success due to the

capability of SVMs to solve both linear and non-linear problems. These capabilities

have motivated different authors to use SVMs to develop homogeneous ensembles. In
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a review of SVM ensembles where the base learners are SVM algorithms, the different

implementations of the components of SVM ensembles are presented in Table 4.1.

Table 4.1: Comparison of the implementations of SVM ensembles

Study Diversity Approach Fusion Method Tuning Approach Ensemble size

Guo et al. (2010) Non-random data sampling Unspecified Grid search Unspecified

Kundu and Ari (2019) Non-random data sampling Simple averaging Manual 5

Bhatnagar et al. (2016) Random data sampling Simple averaging Manual 17

Sun et al. (2013) Cross validation Weighted majority voting Manual 15

Arefi and Chowdhury (2017) Cross validation ANFIS Grid search 6

Pang et al. (2017) Cross validation Majority voting Simulated annealing Unspecified

Ma et al. (2011) Bagging Majority voting Manual 20

Eeti and Buddhiraju (2018) Bagging Majority voting Manual 25

Bhavan et al. (2019) Bagging Simple averaging Manual 20

Liu and Huang (2019) Adaboost Weighted majority voting
Particle swarm

optimization
Unspecified

Nakayama et al. (2009)
Bagging,

Boosting
Majority voting Manual 3

Lu and Wang (2011)
Bagging,

Boosting
(v-SVR) technique Manual Unspecified

Abdullah et al. (2009) RFSM Product rule Grid Search Unspecified

Li et al. (2017a) RFSM SVM metalearner Grid Search 5

Lee and Lee (2014) k-means clustering Simple averaging Manual 20

Ahmed et al. (2010)
RFSM,

k-means clustering

Majority voting,

SVM metalearner
Grid Search Unspecified

Liu et al. (2020) fuzzy c-means clustering Simple averaging
Manual,

Genetic algorithm
4

The comparison of the implementations in Table 4.1 highlights the different approaches

used to address diversity in SVM ensembles. A non-random data sampling approach

was implemented in the studies of Guo et al. (2010) and Kundu and Ari (2019), while

Bhatnagar et al. (2016) randomly sampled the training dataset into different subsets to

train the base learners. Kundu and Ari (2019) improved the work of Bhatnagar et al. (2016)

by scaling the output scores of the base SVM learners before applying a combination rule.

Kundu and Ari (2019) observed that the output scores of base learners were at different
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signal levels and applied a min-max normalization to scale the output scores to a range

of zero and one. The normalization was performed to minimize the effect of the outputs

of the base SVM experts dominating one another in the ensemble. However, the non-

random data sampling is not an efficient approach to guarantee diversity among the base

learners of an SVM ensemble.

Cross validation is another approach used in the studies to ensure that the base learners

generate diverse predictions. This is shown in the work of Sun et al. (2013), Arefi and

Chowdhury (2017), and Pang et al. (2017). Sun et al. (2013) reported that the proposed

SVM ensemble does not perform well on imbalanced datasets. A number of studies have

implemented the bagging approach to ensure diversity in SVM ensembles (Ma et al., 2011;

Eeti and Buddhiraju, 2018; Bhavan et al., 2019). On the other hand, Liu and Huang

(2019) considered training the base learners in a SVM ensemble using the Adaboost

algorithm (Freund and Schapire, 1996). Liu and Huang (2019) employed the particle

swarm optimization algorithm (Kennedy and Eberhart, 1995; Engelbrecht, 2007) to tune

the control parameters of the base learners for efficient generalization performance.

Furthermore, bagging and boosting approaches have been combined in the studies of Lu

and Wang (2011) and Nakayama et al. (2009) to guarantee diversity in an SVM ensemble.

While both studies are implemented in the same domain, Lu and Wang (2011) extended

the work of Nakayama et al. (2009) by employing a variant of SVR (v-SVR) technique

proposed by Scholkopf et al. (2000) to combine the predictions of the base learners in the

ensemble.

Abdullah et al. (2009) and Li et al. (2017a) demonstrated the benefit of the RFSM to ensure

the base learners in a SVM ensemble behave differently. While both studies considered

tuning the base learners using a grid search method, Abdullah et al. (2009) obtained the

final ensemble prediction using a product rule (Tax et al., 1997) and Li et al. (2017a) trained

a SVM algorithm as a meta-learner.

The k-means algorithm (Tou and Gonzalex, 1974) and fuzzy c-means clustering algorithm

(Bezdek et al., 1984) were implemented in the works of Lee and Lee (2014), Ahmed et al.

(2010), and Liu et al. (2020), where base learners are trained on different clusters consisting

of random data and feature subsets. However, the implementations in these studies are

influenced by the optimal value of k and c in the clustering algorithms to induce base
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experts to produce diverse predictions for efficient generalization performance.

Additionally, Table 4.1 further compares the implementations of other components in

the SVM ensemble, including fusion methods, tuning approaches and ensemble size).

The studies employed different fusion approaches to combine the predictions of the base

learners in the ensembles. The majority voting and simple averaging approaches were the

dominant fusion approaches used in the past studies. Also, different tuning approaches

were implemented in the studies, but the manual approach is the main tuning approach

employed to tune the control parameters of the base learners to ensure the ensembles

achieved optimal predictive performance compared to the component members.

4.5 Neural Network Ensembles

The application of NN ensembles (NNEs) to different real-world problems has been

reported in several studies. The successful implementation of NNEs in these studies

has been attributed to the ability of a NN algorithm to model complex non-linear

relationships in large data. Thus, the comparison of the different implementations of

NNEs with respect to the components of NNEs is provided in Table 4.2.

From Table 4.2, a random perturbation of the sample and feature space of a training

dataset to obtain different subsets was implemented by Zhang et al. (2018), Zaamout and

Zhang (2012), Kaur et al. (2018), and Wang et al. (2018), while Khan et al. (2018) utilized

the cross-validation approach due to small size of the training dataset in the study to

ensure the base learners behaved differently. Zhang et al. (2018), Zaamout and Zhang

(2012), Kaur et al. (2018), and Wang et al. (2018) considered backpropagation neural

networks (BPNNs) as the base learners, while Khan et al. (2018) proposed evolutionary

wavelet neural networks (EWNNs) (Khan et al., 2017) as the component members. In

these implementations, Zhang et al. (2018) and Khan et al. (2018) tuned the control

parameters of the base learners using ant lion optimization (Mirjalili, 2015) and genetic

algorithm (Holland, 1975), while other studies employed a manual approach.

Bagging is another approach implemented in the studies to introduce diversity in a NNE.

This is shown in the work of Peng and Zhu (2009), Li et al. (2010), Yan et al. (2016), Li

et al. (2017b), Almeida et al. (2019), and Nguyen et al. (2019a). A notable difference in
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these studies is the introduction of BPNN with random weights (BPNN-RW) (Pao and

Takefuji, 1992) as base learners in the work of Almeida et al. (2019).

Table 4.2: Comparison of the implementations of Neural Network Ensembles

Study Diversity Approach Fusion Method Tuning ApproachEnsemble size Base Learners

Zhang et al. (2018) Random data selection Weighted averaging
Ant Lion

optimization
4 BPNN

Zaamout and Zhang (2012) Random feature subsets BPNN metaclassifier Manual 4 BPNN

Kaur et al. (2018) Random feature subsets Simple averaging Manual 10 BPNN

Wang et al. (2018)
Random data,

feature selection

Simple averaging,

Weighted averaging
Manual 30 BPNN

Khan et al. (2018) Cross validation Majority voting
Genetic

algorithm
14-17 EWNN

Peng and Zhu (2009) Bagging Simple averaging Manual Unspecified BPNN

Li et al. (2010) Bagging
Simple averaging,

Weighted averaging

Bayesian

regularization
6 BPNN

Yan et al. (2016) Bagging Majority voting Manual 10 BPNN

Li et al. (2017b) Bagging Majority voting Manual 5 BPNN

Almeida et al. (2019) Bagging Simple averaging
Full factorial

design
10 BPNN-RW

Nguyen et al. (2019a) Bagging Simple averaging Manual
200,400,500,

600,1000
FFNN-LM

Hui et al. (2015) Adaboost Weighted averaging Manual Unspecified BPNN

Peerlinck et al. (2019) Adaboost Weighted averaging Grid search 5,10,20 FFNN

Osman and Aljahdali (2020) Adaboost Weighted majority voting Manual Unspecified RBFNN

Li et al. (2011b)
Adaboost,

k-means clustering
Majority voting Manual 5,15,25,50 BPNN

Chen and Wang (2016) k-means Weighted averaging Manual Unspecified BPNN

Staroverov and Gnatyuk (2016) Stacking
ElmanBPNN

metaclassifier
Manual 50

different NN

architectures

Zhao et al. (2015)
Hyperparameter

Optimization
Weighted averaging

Multiple PSO

techniques
6 FFNN

Rohman and Kurniawan (2017)
Hyperparameter

Optimization
Majority voting Manual 3 BPNN

Also, Li et al. (2010) tuned the control parameters of the base learners using the Bayesian

regularization approach, while Almeida et al. (2019) used a full factorial design of

experiment (FFDOE) strategy (Montgomery, 2012) to tune the base learners. However,

as noted by Almeida et al. (2019), the assumptions made by the FFDOE strategy that
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populations are normally distributed, populations have equal variances, and samples

are randomly and independently drawn are not always true, which may influence the

ensemble performance. On the other hand, Nguyen et al. (2019a) adopted the Levenberg

Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963) to train the component

BPNNs, while other studies utilized BPNNs.

Furthermore, a boosting approach was implemented by Hui et al. (2015), Peerlinck

et al. (2019), and Osman and Aljahdali (2020) to ensure that the base learners generated

diverse predictions that were combined using weighted averaging and weighted majority

voting, respectively. Hui et al. (2015) developed four NNEs and employed four weight

optimization algorithms, including gradient descent, gradient descent with momentum

with adaptive learning rate backpropagation, conjugate gradient backpropagation with

Fletcher-Reeves updates, and the Broyden–Fletcher–Goldfarb–Shanno algorithm to train

the base learners in each NNE. On the other hand, Peerlinck et al. (2019) developed

three NNEs using two variants of Adaboost algorithm proposed by Solomatine and

Shrestha (2004) and Bertoni et al. (1997), while the third NNE was the combination of the

two variants. Osman and Aljahdali (2020) utilized radial-basis function NNs (RBFNNs)

(Broomhead and Lowe, 1988) as the base learners and pointed out that an efficient

optimization technique is required to improve the performance of the NNE developed

in their work.

The k-means clustering algorithm has also been used in the studies of Li et al. (2011b) and

Chen and Wang (2016) to split the training data into clusters consisting of random data.

The component members are then trained on each cluster to generate diverse predictions.

However, the authors suggested that the performance of the proposed NNEs may be

limited by an inefficient setting of the number of clusters in the algorithm.

Staroverov and Gnatyuk (2016) employed a stacking based approach that is focused on

the base NNs consisting of different architectures to develop a NNE. Staroverov and

Gnatyuk (2016) developed the NNE by considering different optimization algorithms in a

three-level network architecture to forecast energy consumption. The first level consists of

four NNs, the second level consists of two NNs, and the third level is made up of one NN

used as the meta-learner. In the first level, the outputs of two NNs (consisting of Elman

backpropagation and feedforward backpropagation algorithms) and the other two NNs

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Homogeneous Ensembles 82

(consisting of Elman backpropagation and cascadeforward backpropagation algorithms)

served as input to train the two NNs (both consisting of an Elman backpropagation

network) in the second level. Then the outputs of the two NNs in the second level were

fed as input to the last NN (trained with an Elman backpropagation algorithm) in the

third level to generate the final ensemble prediction. Staroverov and Gnatyuk (2016)

showed that the NNE generated low forecast errors for energy consumption schedules

than a single NN.

Also, Zhao et al. (2015) and Rohman and Kurniawan (2017) directly tuned the control

parameters of the base learners consisting of FFNNs and BPNNs to guarantee diversity

in the developed NNEs. While Zhao et al. (2015) capitalized on the benefits of multiple

particle swarm optimization (PSO) techniques to obtain optimal control parameter

values, Rohman and Kurniawan (2017) employed a manual approach which is subjective

to trial and error.

4.6 Random Forest

A RF algorithm is an ensemble of DTs developed through the combination of bagging

and RFSM approaches. In a RF algorithm, bootstrapped subsets are first generated from

a training dataset to train the base trees. Then in order to select the most relevant feature

to determine an optimal split in a decision node, the base trees in a RF consider only

a random subset of possible features when creating each decision split. In contrast, a

single DT considers each feature from the set of features individually to determine the

most relevant features. This is a major difference between DTs and RFs. Thus, bagging

and RFSM approaches introduce different instances of randomness that increase the

diversity in the training dataset and reduces the error correlation among base trees in

the construction of a RF (Breiman, 2001; Bernard et al., 2009).

Based on the problem type, determination of the final RF prediction will vary. For a

classification problem, the final prediction is obtained by taking a majority vote of the

class labels predicted by the base tree models. For a regression problem, the average of

the outputs of all base tree models is computed as the final prediction (Xu et al., 2009).

Several studies have shown the successful application of RF to different classification and

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Homogeneous Ensembles 83

regression problems due to the ability of a RF algorithm to handle large non-linear data

efficiently, perform well on large dimensional and imbalanced data, and to produce faster

tree induction due to the consideration of feature subsets during tree construction (Paul

et al., 2018). A comparison of the implementations of the different components in a RF is

provided in Table 4.3.

Table 4.3: Comparison of the implementations of Random Forest

Study Diversity Approach Fusion Method Tuning Approach Ensemble size

Bernard et al. (2009) Random data subsets Simple averaging Manual 300

Nah and Lee (2016) Random data subsets Majority voting Unspecified Unspecified

Cheng et al. (2012) Random feature subsets Simple averaging Manual Unspecified

Sun et al. (2010) Random data and feature election Majority voting Unspecified Unspecified

Vincenzi et al. (2011) Bagging and RFSM Simple averaging Manual 700

Dong et al. (2013) Bagging and RFSM Majority voting Manual 350

Zhang et al. (2013) Bagging and RFSM Majority voting Manual 200

Fawagreh et al. (2014) Bagging and RFSM Weighted majority voting Manual 500

El-Habib Daho et al. (2014) Bagging and RFSM Weighted majority voting Manual 100

Feng et al. (2015) Bagging and RFSM Weighted majority voting Manual 10

Xue and Li (2015) Bagging and RFSM Majority voting Manual 100-400

Pachange et al. (2016) Bagging and RFSM Majority voting Manual 2-3

Anbarasi and Janani (2017) Bagging and RFSM Majority voting Unspecified Unspecified

Cano et al. (2017) Bagging and RFSM Majority voting Manual 300

Lin et al. (2017) Bagging and RFSM Majority voting Manual 5,10,25,50,100

Man et al. (2018) Bagging and RFSM Majority voting Unspecified Unspecified

Liu and Wu (2018) Bagging and RFSM Majority voting Manual 100

Tang et al. (2019) Bagging and RFSM Simple averaging Manual 25

Yao et al. (2019) Bagging and RFSM Simple averaging Manual 500

Xing et al. (2019) Bagging and RFSM Simple averaging Manual 51,66,68

Victoriano et al. (2020) Bagging and RFSM Majority voting Unspecified Unspecified

The studies of Bernard et al. (2009) and Nah and Lee (2016) considered implementation of

diversity through random splitting of data into subsets, while Cheng et al. (2012) opted to
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randomly split the features in a training dataset into different feature subsets. Sun et al.

(2010) trained the base trees on random data subsets, but utilized random selection of a

single feature during node splitting.

The classical bagging and RFSM approaches in a RF were implemented by the majority

of the studies as shown in Table 4.3. Also, a number of studies provided a significant

contribution to the implementation of a RF. Man et al. (2018) combined ID3 and CART

algorithms during tree induction to achieve better prediction performance.

El-Habib Daho et al. (2014) experimented with the replacement of the Gini index with

twoing and deviance metrics to split decision nodes during tree construction. To improve

the prediction performance of the RF model developed by Yao et al. (2019), the authors

first capitalized on the feature importance property of a RF algorithm to rank features

in a training dataset in descending order. Then the top 20 features formed a subset,

followed by the top 40, top 60, top 80, and top 100 features, which were used to train

the RF algorithm.

Zhang et al. (2013) proposed an instance-based RF with rotated feature space to improve

the diversity of component trees in a RF. The authors achieved diversity by partitioning

the feature space into several subspaces, and each subspace was rotated using a rotation

matrix algorithm and principal component analysis (PCA). Then the rotated subspaces

were concatenated with the original feature in the training dataset to train the base trees.

Zhang et al. (2013) coined an instance-based approach to select the tree models that

provided accurate predictions, while models with wrong predictions were deleted.

Fawagreh et al. (2014) enhanced the diversity of a RF using an absolute predictive power

(APP) approach proposed by Cuzzocrea et al. (2013) to assign a weight to each training

subset based on the predictive power of the base trees. The APP approach was also

employed in the prediction stage of the base learners to implement a weighted voting

technique to combine the diverse predictions of the base learners.

For the fusion approaches, Fawagreh et al. (2014), El-Habib Daho et al. (2014), and Feng

et al. (2015) employed the weighted majority voting technique to combine the predictions

of the base trees, while other studies utilized the majority voting and simple averaging

techniques.

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Homogeneous Ensembles 85

Furthermore, it can be observed that a number of studies did not provide information

or considered tuning the control parameters of base trees. This is shown in the works of

Nah and Lee (2016), Sun et al. (2010), Anbarasi and Janani (2017), Man et al. (2018), and

Victoriano et al. (2020). Other studies manually configured the control parameters of the

base trees such as the number of trees, and the number of features for each base tree.

4.7 Nearest Neighbour Ensembles

Research has shown the successful application of kNN ensembles to different problems.

Although, the stable nature of a kNN algorithm has also been reported to limit the

wide applicability of the algorithm to develop kNN ensembles that will provide efficient

generalization performance compared to the base learners in the ensemble (Breiman,

1996a; El-Hindi et al., 2018). Breiman (1996a) pointed out that stable algorithms, such

as kNN and naïve Bayes, do not often yield improved predictive performance when

the training dataset is randomly perturbed to develop ensembles. However, while

the suggestion made by Breiman (1996a) may be considered to be problem-dependent,

several studies have since applied kNN ensembles to different problems due to the

simple implementation and interpretation of a kNN algorithm. Thus, the review of

nearest neighbour ensembles (NNGBEs) is provided in Table 4.4 with an emphasis on

the implementation of the components of the ensemble.

For diversity approaches, the RFSM has been implemented to ensure that the base

learners in a NNGBE behave differently (Okun and Priisalu, 2009; Hamzeloo et al., 2012;

Yu et al., 2016). Due to the small size of the dataset used to train the kNN ensemble

developed by Okun and Priisalu (2009), a bolstered re-substitution error (BRE) technique

(Braga-Neto and Dougherty, 2004) was adopted to generate artificial data for better

ensemble performance. However, Okun and Priisalu (2009) suggested that the BRE

technique may subject the ensemble to overfitting. On the other hand, Hamzeloo et al.

(2012) introduced two probability functions to adaptively split the training features into

different subsets. However, the authors suggested that the computation of a negative

constant value by the probability functions during feature selection could impair the

predictive performance of the ensemble.

Zhang et al. (2022) trained the base learners in a NNGBE using a bagging approach, while
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Wang et al. (2019b) randomly split the data into subsets to introduce diversity among the

base learners. However, Wang et al. (2019b) opined that the performance of the developed

ensemble would negatively be affected by the manually configured threshold and the size

of the sliding window introduced in the study. A related work to Wang et al. (2019b) was

conducted by Bandaragoda et al. (2015) where the base learners were trained on random

data and feature subsets.

Table 4.4: Comparison of the implementations of Nearest Neighbour Ensembles

Study Diversity Approach Fusion Method Tuning Approach Ensemble size

Okun and Priisalu (2009) RFSM Majority voting Manual 3,5,7,9

Hamzeloo et al. (2012) RFSM Weighted majority voting Manual 21

Yu et al. (2016) RFSM Majority voting Manual 20

Zhang et al. (2022) Bagging Simple averaging Manual 1-12

Wang et al. (2019b) Random data subsets Weighted majority voting Manual 50-200

Bandaragoda et al. (2015) Random data and feature subsets Simple averaging Manual 25

Tahir and Smith (2010)
Different feature subsets,

different distance metrics
Majority voting Manual Unspecified

Fuchs et al. (2015) Cross validation Weighted averaging Manual Unspecified

Abed et al. (2018) Cross validation Simple averaging Manual 3

Khan et al. (2020) Cross validation and RFSM Majority voting Manual Unspecified

Sun et al. (2020) LOOCV and Different distance functions Simple averaging Grid search 2-8

Haixiang et al. (2016) Adaboost and RFSM Majority voting Manual Unspecified

Iswarya and Radha (2015) Single pass clustering Majority voting Manual Unspecified

Tahir and Smith (2010) and Sun et al. (2020) considered the use of different distance

metrics for the base learners to develop a NNGBE. To train the base learners in the

ensemble, Tahir and Smith (2010) used different feature subsets that were selected by

a Tabu search technique (Glover, 1989). In contrast, Sun et al. (2020) trained the base

learners using a leave-one-out cross-validation approach (LOOCV). The cross-validation

approach was also considered in the studies of Fuchs et al. (2015), Abed et al. (2018), and

Khan et al. (2018).

Furthermore, the comparison of the implementation of the other components is provided

in Table 4.4. Majority voting and simple averaging are the mostly used fusion approaches
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in the reported studies. Hamzeloo et al. (2012) and Wang et al. (2019b) employed a

weighted majority voting approach to combine the decisions of the base learners, while

Fuchs et al. (2015) utilized a weighted average to obtain the final prediction of the

ensemble developed in the study. Also, while Sun et al. (2020) tuned the control parameter

values of the base learners using a grid search, other studies implemented the manual

approach, i.e. trial and error.

4.8 Naïve Bayes Ensembles

The assumption of feature independence made by a NB algorithm has been reported to

limit the predictive performance of a NB ensemble (NBE). Also, the stable nature of a

NB has further influenced the wide applicability of a NB algorithm to develop efficient

NBEs, compared to ensembles developed using other algorithms. Though stability makes

the NB algorithm robust to noise, it also makes it challenging to construct a NB ensemble

using bagging and boosting approaches. This is actually the case with any stable classifier.

The reason behind it is the fact that slightly different data samples do not cause a base

learner to generate sufficiently diverse classifiers (Breiman, 1996a; El-Hindi et al., 2018).

However, despite the assumption of feature independence and the stable nature of a NB

algorithm, NBEs have shown remarkable performance in a number of studies (El-Hindi

et al., 2018; Li and Hao, 2009), where different approaches were proposed to construct a

NBE with better generalization performance. Thus, the review of NBEs is provided in

Table 4.5 to investigate the implementation of the components of a NBE.

For the implementation of diversity in a NBE, Klement et al. (2012) and Lutu (2015)

trained the base learners on random subsets of a training dataset, resulting in diverse

predictions combined using a majority voting approach. While the ensembles in the

studies by Klement et al. (2012) and Lutu (2015) outperformed single base learners,

Klement et al. (2012) reported that the developed ensemble recorded a high false negative

error, illustrating inconsistency in the prediction performance of the ensemble.

The bagging approach has also been utilized to guarantee diversity in NBE, as shown

in the studies of Li and Hao (2009) and El-Hindi et al. (2018). A notable difference

between the studies is the introduction of a random oracle selection technique (Kuncheva

and Rodriguez, 2007) by Li and Hao (2009) to complement the bagging approach for
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improved diversity in a NBE. Li and Hao (2009) used the oracle selection technique to

create hyperplanes of data subsets on which base NB learners were trained. However,

while Li and Hao (2009) did not apply any tuning approach to improve the generalization

performance of the NBE, Klement et al. (2012) proposed a fine-tune NB algorithm (FTNB)

(El-Hindi, 2014) to optimize the parameter computation of the likelihood and class prior

probabilities. The FTNB was introduced to solve the stability problem of the base NB

learners.

Table 4.5: Comparison of the implementations of Naïve Bayes Ensembles

Study Diversity Approach Fusion Method Tuning Approach Ensemble size

Klement et al. (2012) Random data subsets Majority voting Unspecified 10

Lutu (2015) Random data subsets Majority voting Manual 3

Li and Hao (2009) Bagging, Oracle Selection Majority voting Unspecified 10-50

El-Hindi et al. (2018) Bagging Majority voting FTNB 10

Shi and Lv (2010) Adaboost Weighted majority voting
Parameter

expectation
Unspecified

Nikolić et al. (2014) Adaboost Majority voting Unspecified 3

Srisuan and Hanskunatai (2014) Different feature subsets Majority voting Unspecified Unspecified

Maia et al. (2021) RBS Majority voting Unspecified 500

Bang and Wu (2016) k-means clustering Majority voting Unspecified 7

Sumathi and Poorna (2017) Fuzzy k-medoids clustering
Majority voting,

Weighted averaging
Unspecified Unspecified

Kilimci et al. (2016)
Bagging, RFSM,

Adaboost, RF

Majority voting,

Weighted Majority voting
Unspecified 100

Alkubaisi (2019) MNB and MVNB Majority voting Manual 2

The boosting approach was also used to implement diversity in a NBE. Shi and Lv

(2010) and Nikolić et al. (2014) trained the base learners in a NBE using the Adaboost

algorithm to generate diverse predictions combined using weighted and simple majority

voting approaches, respectively. To improve the generalizability of a NBE, Shi and Lv

(2010) proposed an approach referred to as “parameter expectation” to sum the weighting

parameters of the base learners when training the base learners based on Adaboost

architecture. Parameter expectation was included in the computation of the conditional

probability.
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The construction of a NBE based on training the base learners on different feature subsets

was implemented in the studies of Srisuan and Hanskunatai (2014) and Maia et al.

(2021). Srisuan and Hanskunatai (2014) used two feature selection techniques, i.e. ReliefF

(Kononenko, 1994) and Chi-square to generate different feature subsets on which the

base learners were trained. In contrast, Maia et al. (2021) introduced a probability-

based feature bias to the classical RFSM approach, termed as “RBS” to measure and

select features with low noise. The selected features were split into subsets to train the

base learners. Srisuan and Hanskunatai (2014) and Maia et al. (2021) obtained the final

ensemble prediction using a majority approach.

Bang and Wu (2016) and Sumathi and Poorna (2017) explored the potential of k-means

and Fuzzy k-medoids (Krishnapuram et al., 1999) clustering algorithms to cluster the

training dataset into different subsets used to train the base learners in a NBE. Kilimci

et al. (2016) developed four NBEs using bagging, Adaboost, RFSM, and RF approaches.

Kilimci et al. (2016) adapted the base learners of the RF algorithm to include changing the

classical base tree models to NB classifiers. Additionally, Alkubaisi (2019) capitalized on

the advantage of two variants of a NB algorithm, i.e. multinomial NB (MNB) (McCallum

and Nigam, 1998) and multivariate Bernouli NB (MVNB) (Kalt and Croft, 1996), to

achieve diversity in a NBE. However, both base learners belong to the same NB algorithm.

4.9 Limitations of the Different Implementations of

Homogeneous Ensembles

Generally, by examining the reported studies for each ensemble type from Sections

4.4 to 4.8, it is noteworthy to conclude that the aforementioned approaches did not

efficiently explore the inductive biases of the base learners in each ensemble type. Also,

while tuning approaches were implemented to ensure that the ensembles achieved

better generalization performance compared to a single learner, the base learners within

each ensemble were mostly configured only with fixed parameter values which do not

consider the inductive biases of the base learner that would result in different base

experts. It is important that the base learners consist of different control parameter values

to induce different experts within each ensemble.

Stellenbosch University https://scholar.sun.ac.za



Chapter 4. Homogeneous Ensembles 90

Further, despite tuning the control parameter values of the base learners, there

were studies where the ensembles showed inconsistent generalization performance.

Additionally, the reported implementations are limited with respect to the number of

classification and regression problems for the evaluation of the ensembles. Most of the

datasets used to evaluate the ensembles consist of small sizes, which do not adequately

reflect efficient generalization performance when trained with the ensembles. Also, the

review showed that the ensemble size is problem-dependent.

4.10 Chapter Summary

The chapter provided an extensive review of the construction of homogeneous ensembles

considering the implementation of the components of an ensemble, i.e. approaches used

to address diversity in an ensemble, fusion approaches to combine the predictions of base

experts, ensemble size, and strategies used to control overfitting for better generalization

performance. It was observed that authors agreed that homogeneous ensembles

significantly generate better predictive performance than a single ML algorithm due to

the combination of diverse and multiple experts.

However, despite achieving good results through the application of homogeneous

ensembles in different domains, limitations of the ensembles to effectively address

diversity, inductive biases, and the bias-variance tradeoff are still observed.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5

Heterogeneous Ensembles

5.1 Background

A heterogeneous ensemble (HTE) is developed using different ML algorithms. The

rationale to develop a HTE is to obtain improved generalization performance, better

than the individual experts of the ensemble. For a HTE, the different advantages and

characteristics of the base ML algorithms serve as a source of diversity in the ensemble

(Dudek, 2016). Due to different inductive biases, diversity is obtained when individual

ML algorithms generate different predictions when trained on the same dataset. This

chapter provides a review of HTEs. The review focuses on the implementation of the

different components of a HTE, which include the approaches used to address diversity

within the ensemble, fusion approaches to combine the predictions of base experts,

tuning strategies used to balance the bias-variance tradeoff, ensemble size, and the

base algorithms selected. Section 5.2 provides the review strategy used in this chapter,

while Section 5.3 discusses the past studies on the construction of HTEs, i.e HTEs. The

limitations of the different implementations of HTEs are discussed in Section 5.4, and

Section 5.5 presents the summary of this chapter.
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5.2 Review Strategy

The review conducted in this chapter aims to identify and analyze different

implementations of HTEs. The strategy to perform a detailed systematic review

of the construction of different HTEs follow the same strategy used for the review

of homogeneous ensembles. However, there are a number of differences in the

strategy. The first difference is the consideration of relevant terms in the search

strings to identify articles where HTEs were implemented. The relevant terms

include “Heterogeneous Ensembles”, “Heterogeneous Mixtures of Experts”, “Mixtures

of Heterogeneous Experts”, “Combination of Machine Learning Algorithms”, and

“Mixtures of Machine Learning Algorithms”.

Another difference is the selection of articles in bibliographical databases where two or

more different ML algorithms were identified as the base learners for the construction of

HTEs. A total of 25 relevant articles were selected for the review of HTEs.

For the inclusion criteria, the review considers articles that have used different ML

algorithms such as SVM, NN, DT, kNN, NB, and others as base learners for the

construction of a HTE.

For the exclusion criteria, articles where an ensemble was developed using multiple

instances of the same ML algorithm, were excluded, because the focus of the review is

mainly on HTEs constructed using different ML algorithms.

5.3 Review of Heterogeneous Ensembles

Several experimental studies have reported the superiority of HTEs over homogeneous

ensembles and a single learner, based on improved predictive performance generated

for a given task (Wichard et al., 2002). The superior performance of HTEs has been

attributed to low correlation error terms of the different base models induced by the

different ML algorithms within the ensemble (Dudek, 2016). While these studies have

investigated the development and applications of HTEs across various domains, not

much attention has been given to effectively discuss the inductive biases of the base

algorithms, to address diversity and the bias-variance dilemma. Moreover, with respect
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to diversity, very little work has been done in the selection of the best algorithmic-specific

data preprocessing techniques suitable for individual base experts that may better result

in optimal performance of a HTE. Thus, the implementation of the different components

of a HTE is provided in Table 5.1, which is followed by the discussion of the studies.

As provided in Table 5.1, Balogun et al. (2017) trained NB, RBFNN, and repeated

incremental pruning to produce error reduction (RIPPER) (Cohen, 1995) on random

data subsets to implement diversity in the proposed HTE. Luong et al. (2020) employed

random projections (John, 1995) to generate different training subsets on which the base

learners were trained. While both studies considered majority voting as one of the

fusion approaches, Balogun et al. (2017) also used a meta-classifier, multi-scheme, and

minimum probability (Min Prob) approaches, while Luong et al. (2020) introduced a sum

rule (Kittler et al., 1998) to combine the predictions of base learners. However, in the

work of Balogun et al. (2017), different unstable results were generated by the HTEs and

individual base classifiers, in which most single learners outperformed the HTEs. In

contrast, Luong et al. (2020) suggested using better ensemble approaches and unstable

base learners to construct a HTE to realize improved prediction performance.

Tuarob et al. (2014) and Sagayaraj and Santhoshkumar (2020) achieved diversity by

training the base learners on different feature subsets. Tuarob et al. (2014) selected RF,

SVM, RIPPER, and MVNB as the base algorithms, while Sagayaraj and Santhoshkumar

(2020) used a DT and logistic regression (LogR) (Cox, 1958). Feng et al. (2021) opted

to randomly split features in the training datasets into subsets to train the base learners

consisting of DT, RF, SVM, extreme gradient boosting (XGboost) (Chen and Guestrin,

2016), and light gradient boosting machine (LGBM) (Ke et al., 2017). Aside from the

implementation of majority voting and weighted averaging approaches to combine the

predictions of the base learners, Tuarob et al. (2014) also used multi-staging (MS) and

reversed multi-staging (RevMS) approaches (Ted, 2005). On the other hand, Feng et al.

(2021) proposed a weighted area under curve-based integration mechanism (WAUCE) as

the fusion approach. A critical analysis of the work of Tuarob et al. (2014) showed that

there is no significant improvement in the performance of the HTE over the single base

classifiers in terms of accuracy, and Sagayaraj and Santhoshkumar (2020) did not specify

the approach used to tune the base learners. Additionally, Feng et al. (2021) reported that

the proposed HTE was developed using a relatively small dataset and may perform
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Table 5.1: Comparison of the implementations of Heterogeneous Ensembles

Study Diversity Approach Fusion Method
Tuning

Approach

Ensemble

size
Base Learners

Vinay et al. (2011)
Adaboost,

Stacking

Majority voting,

DECORATE
Manual 7

DT, RF, NB, kNN,

SVM, RBFNN, BPNN

Tsai et al. (2011) Bagging Majority voting Manual 3 BPNN, DT, LogR

Marqués et al. (2012)
Bagging, Adaboost,

DECORATE, RFSM, RFST
Majority voting Manual 10

BPNN, DT, SVM,

1-NN, NB, LogR

Son et al. (2013) Cross validation Majority voting Manual 6
SVM, BPNN, DT,

NB, LogR, kNN

Elish et al. (2013) Bagging, Boosting
Linear,

Non-Linear combiners

Genetic

algorithm
3

BPNN, SVR,

ANFIS

Tuarob et al. (2014) Different feature subsets

Majority voting,

Weighted averaging,

MS, RevMS

Manual 5
RF, SVM, RIPPER,

MVNB, MNB

Chali et al. (2014) Cross validation Weighted voting Manual 4
SVM, HMM,

CRF, Max Ent

Ala’Raj and Abbod (2015) Bagging Majority voting Manual 3 LogR, BPNN, SVM

Mendes-Moreira et al. (2015) Cross validation DWS Manual 5,10,15,20,25 RF, SVM PPR

Chaudhary et al. (2016) Bagging Majority voting Unspecified 2 LogR, NB

Balogun et al. (2017) Random data subsets

Majority voting,

Meta-classifier,

multi-scheme,

Min Prob

Manual 3
NB, RBFNN,

RIPPER

Palaninathan et al. (2017) CEEMDAN Median aggregate Manual 3 SVR, BPNN, RF

Kilimci et al. (2017) Cross validation
Majority voting,

Meta-learner
Unspecified 4

MVNB, MNB,

SVM, RF

Li et al. (2018) Cross validation Weighted averaging TPE 3 XGBoost, DNN, LogR

Nguyen et al. (2018) Cross validation Fuzzy meta-classifier Manual 3 LDA, NB, kNN

Xu and Zhang (2019) Unspecified BPNN meta-classifier Manual 2 1D-CNN, LSTM

Nguyen et al. (2019b) Cross validation Sum Rule, MLR Manual 3 kNN, LogR, NB

Nguyen et al. (2020) Cross validation Sum Rule Manual 5
kNN, LogR,

MVNB, DT, RF

Luong et al. (2020) Random projections
Sum rule,

Majority voting
Manual 3 LDA, NB, kNN

Zhao et al. (2020) Cross validation DNN meta-classifier Grid search 6
SVM, DT, NB,

kNN, RF, LogR

Sagayaraj and Santhoshkumar (2020) Different feature subsets Majority voting Unspecified 2 DT, LogR

Zain et al. (2020) Stacking

Majority voting,

Decision template,

Dempster-shafer

Manual 3 ELM, SVM, RF

Tewari and Dwivedi (2020) Stacking
Majority voting,

LGBM meta-classifier
Grid search 4

BPNN, SVM,

RF, LGBM

Alshdaifat et al. (2021) Cross validation
Majority voting,

Average probability
Unspecified 6

NB, DT, RB,

SVM, kNN, BPNN

Feng et al. (2021) Different feature subsets WAUCE Unspecified 5
DT, RF, SVM,

XGBoost, LGBM
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poorly on a larger dataset consisting of skewed class distributions and noise

characteristics.

Furthermore, it can be observed that the cross-validation approach was implemented in

a number of studies to guarantee diversity in a HTE. The cross validation approach is

implemented in the work of Son et al. (2013), Chali et al. (2014), Mendes-Moreira et al.

(2015), Kilimci et al. (2017), Li et al. (2018), Nguyen et al. (2018), Nguyen et al. (2019b),

Nguyen et al. (2020), Zhao et al. (2020), Alshdaifat et al. (2021), and Tewari and Dwivedi

(2020). While voting and averaging approaches were used in these studies, Mendes-

Moreira et al. (2015) applied a dynamic weighting with selection (DWS) method (Rooney

et al., 2004) to combine the outcomes of the base learners consisting of RF, SVM, and

projection pursuit regression (PPR) (Friedman and Stuetzle, 1981).

A notable difference in the tuning component of the studies is in the work of Li et al.

(2018), where a variant of Bayesian optimization, called tree parzen estimator (TPE)

(Bergstra et al., 2011) was implemented to tune the control parameters of the base learners

for a better prediction performance. Li et al. (2018) used XGBoost, deep neural network

(DNN) (Bengio, 2009) and LogR as base learners. Another notable difference is in the

studies of Nguyen et al. (2018, 2019b, 2020) which employed a fuzzy rules selection

algorithm (Ishibuchi et al., 1999), BPNN, sum rule, and multi-response linear regression

(MLR) (Ting and Witten, 1999) as meta-classifiers to obtain the final prediction of a

HTE. Nguyen et al. (2018, 2019b, 2020) considered NB, kNN, LogR, MVNB, DT, RF and

linear discriminant analysis (LDA) (Fisher, 1936) as base algorithms in the proposed

HTEs. However, despite the implementation of a cross-validation approach and other

components to develop HTEs that outperformed a single learner in these studies, the

following limitations are still observed. In the work of Son et al. (2013), a weighted count

of errors and correct results (WCEC) method (Aksela and Laaksonen, 2006) was adopted

to measure the diversity of errors in the base classifiers, and the classifiers having the best

WCEC value and validation accuracy were selected as ensemble members. However, Son

et al. (2013) reported that WCEC may not effectively manage diversity when the base

classifiers generate high diversity errors in the ensemble. Also, the HTE developed by

Chali et al. (2014) achieved very low F1-scores illustrating poor prediction of positive

classes. Mendes-Moreira et al. (2015) stated the HTE developed in the study recorded

high computational complexity leading to inconsistent prediction performance in certain
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cases, while the meta-learner for the proposed ensemble in Kilimci et al. (2017) could not

be ascertained.

Furthermore, the HTE developed by Li et al. (2018) did not achieve much improvement

over the base classifiers, while the use of stable base algorithms in Nguyen et al. (2018)

and Nguyen et al. (2019b) does not guarantee efficient predictive performance, as pointed

out by Breiman (1996a). Also, Zhao et al. (2020) suggested the potential of training

base learners in the study on different dataset features to achieve better predictive

performance. Alshdaifat et al. (2021) defined a threshold value to determine the best

classifiers in an ensemble. However, the threshold value is subjective to the authors and

may not effectively define the boundary to exclude poor performing classifiers.

Another diversity approach used to ensure the base learners in a HTE produce different

predictions is bagging, which is considered in Tsai et al. (2006), Marqués et al. (2012),

Elish et al. (2013), Ala’Raj and Abbod (2015), and Chaudhary et al. (2016). A boosting

approach was also implemented in Marqués et al. (2012) and Elish et al. (2013). Marqués

et al. (2012) considered diverse ensemble creation by oppositional relabelling of artificial

training examples (DECORATE) (Melville and Mooney, 2005) and rotation forest (RFST)

(Rodriguez et al., 2006) approaches to develop HTEs. All of these studies, except

Elish et al. (2013), employed a majority voting to combine the predictions of the base

learners. Elish et al. (2013) experimented with different fusion approaches using simple

and weighted averaging as linear combiners, and a number of meta-learners, including

BPNN, SVR, fuzzy c-means clustering (FCM), subtractive clustering (SC) (Chiu, 1994),

adaptive neuro-fuzzy inference system (Jang, 1993) (ANFIS)-FCM, and ANFIS-SC. A

critical analysis of the ensembles developed in Tsai et al. (2006) showed that there is

little difference in performance between the developed heterogeneous and homogeneous

ensembles based on the predictions for return on investment. Marqués et al. (2012)

stated that the best individual classifier did not contribute significantly to the ensemble

performance, which was attributed to the manual approach used to tune the base learners.

Ala’Raj and Abbod (2015) reported that the proposed HTE generated high false negatives

with respect to the high risk of classifying bad loan applicants as good loan applicants.

Thus, efficient risk prediction by the HTE could not be achieved in certain cases.

Stacking is another approach used to guarantee diversity in a HTE, which is implemented
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in the works of Zain et al. (2020) and Tewari and Dwivedi (2020). To obtain the final

prediction of a stacked-based HTE, Zain et al. (2020) employed majority voting, decision

template (Kuncheva et al., 2001) and Dempster-Shafer approaches. However, Zain et al.

(2020) considered an extreme learning machine (ELM) (Huang et al., 2004) implemented

with a single hidden layer as one of the base learners, which produced low computational

complexity on the high dimensional Mallay dataset used in the study. Thus, the ELM

may perform poorly on large datasets with respect to samples and features, which could

degrade the predictive performance of the ensemble. In contrast, Tewari and Dwivedi

(2020) used majority voting and a LGBM meta-classifier to combine the predictions of the

base learners. Tewari and Dwivedi (2020) reported that the developed HTE outperformed

other classifiers for small classes in the oil-field dataset used in the study. However, the

authors stated that the HTE may perform poorly on a large dataset with a large number of

classes. Moreover, all HTEs developed in the study were evaluated with only one dataset.

A different diversity approach was used in Palaninathan et al. (2017). The authors

employed a complete ensemble empirical mode decomposition with adaptive noise

(CEEMDAN) method (Torres et al., 2011) to split a training dataset into different data

subsets. The base learners were trained on the data subsets to develop a HTE that

forecasted four output horizons. In the study, two base models were selected at a time

to forecast each horizon. However, Palaninathan et al. (2017) suggested that using more

than two base models may improve the load demand forecast of the HTE.

Fernandez-Aleman et al. (2019) presented a systematic review of 107 published articles to

investigate the methods used to construct ML ensembles for the diagnosis and prediction

of potential diabetes disease. The authors reported that the first application of a ML

ensemble for diabetes classification appeared in a paper published in 2003 and stated

that 12 different single ML algorithms with each variant of the algorithms have been

applied to construct both homogeneous and heterogeneous ensembles. Fernandez-

Aleman et al. (2019) stated that NNs, SVMs, and DTs have been the most frequently used

base classifiers.

Following this, a high percentage (85%) of homogeneous ensembles were reported

to have been extensively applied to diabetes classification in contrast to a small

percentage (15%) of applying HTEs for the same task. Different diversity measures were
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reported in the study, where bagging, boosting, and RSM methods were the frequently

used approaches to achieve diversity, mostly in homogeneous ensembles. Then, 17

combination rules have been used to obtain a final ensemble prediction, stating that

the majority voting and weighted majority voting rules still served as the most widely

used fusion approaches. Given the small percentage of HTE applications in diabetes

classification literature, Fernandez-Aleman et al. (2019) concluded the review by stating

that the continuous application of HTEs for different classification problems is still an

interesting area to explore. It is noteworthy to mention that this research also extended

the conclusion of Fernandez-Aleman et al. (2019) to the domain of regression problems.

5.4 Limitations of the Different Implementations of

Heterogeneous Ensembles

Generally, apart from the limitations reported for each study, the limitations of the

constructed HTEs in the studies are also identified, and a summary of the limitations

is provided below:

• Inefficient implementation of the strategies used to address the bias-variance

tradeoff with respect to underfitting and overfitting of the ensembles.

• While a number of studies did not tune the control parameters of the base learners

for optimal prediction performance, most studies employed a manual approach

which is also subject to trial and error.

• Elish et al. (2013) considered a genetic algorithm to tune the base learners, while a

grid search method was implemented in the works of Zhao et al. (2020) and Tewari

and Dwivedi (2020). However, a grid search method is adversely influenced by an

expensive computational cost due to the exhaustive search of the optimal control

parameter value for each base learner. Hence, the performance of base learners

quickly drops when the control parameters and the range of values of the control

parameters increase excessively (Wu et al., 2019; Cachada et al., 2017).

• Additionally, the tuning process performed across the studies was only to obtain

the best single parameter value for each base algorithm. In contrast, this research

focuses on considering different parameter values for multiple instances of the base
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algorithm to induce diverse base experts in the HTEs proposed in the study.

• Furthermore, no efficient strategies are used to address the inductive biases of the

base algorithm to develop efficient HTEs.

• More importantly, the reported studies did not consider different cases of exploring

and analyzing the inductive biases of the base algorithms towards the construction

of the HTEs.

• The inductive biases of the base algorithms are considered as additional behavioural

diversity layers to the classical diversity approaches, i.e. bagging, boosting,

stacking, and others for the construction of the HTEs proposed in this research. This

aspect is not considered in these past studies.

5.5 Chapter Summary

The chapter provided a review of HTEs. Sections 5.1 and 5.2 provided a brief introduction

to the chapter and the strategies followed in conducting the review. The review of the

past studies of HTEs is discussed in Section 5.3. The review focused on the different

components of a HTE, including approaches used to address diversity, fusion approaches,

and the tuning approaches used to balance the bias-variance tradeoff for improved

predictive performance. In addition, the ensemble size and ML algorithms selected to

construct HTEs in the studies were discussed.
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Ensembling Diverse Heterogeneous and

Homogeneous Experts

6.1 Introduction

This chapter presents the approaches used to develop the heterogeneous and

homogeneous ensembles of this research. Section 6.2 presents the different types of

ensembles developed in this research, while Section 6.3 discusses the sampling approach

used to create bagged and feature subsets from training datasets. Section 6.4 describes

the training process of the individual ML algorithms that make up an ensemble. The

approaches used to determine the predictions of an ensemble are described in Section 6.5,

and Section 6.6 provides a summary of the chapter.

6.2 Ensemble Model Development

This section describes the four types of ensembles developed in this research. The

ensemble types were developed to explore the inductive biases of the selected ML

algorithms, and to maximize the benefits inherent in the control parameter configurations

of the base learners that would result in efficient base experts within the ensembles. The
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four ensemble types are as follows:

• Ensembles where multiple instances of the same ML algorithm are used, where the

instances consist of the same control parameter configuration. The ensembles are

referred to as “pure homogeneous ensembles” in this research and are denoted as NBE,

kNNE, DTE, SVME, and NNE. The RF algorithm is also used.

• Ensembles where multiple instances of the same ML algorithm are used, and the

instances consist of different control parameter configurations that actually result

in different experts. The ensembles in this category are denoted as NBhte, kNNhte,

DThte, SVMhte, and NNhte.

• An ensemble where multiple instances of different ML algorithms are considered as

members of the ensemble, and the instances of each ML algorithm of the ensemble

have the same control parameter configuration. The ensemble is denoted as HTEsm.

• An ensemble where multiple instances of different ML algorithms are considered,

where the instances of each ML algorithm have different control parameter

configurations. The ensemble is denoted as HTEdf.

Generally, the HTEs and homogeneous ensembles were constructed with NB, kNN,

DT, RF, SVM, and NN algorithms for classification problems. The regressors of these

algorithms were considered in the case of regression problems, except for the exclusion

of the NB algorithm, because the NB algorithm is basically developed for classification

problems. Also, SVR was used for regression problems instead of SVM.

Thus, the different types of ensembles developed in this research resulted in the

construction of 13 ensembles for classification problems and 11 ensembles for regression

problems, in which NBE and NBhte were excluded. Each ensemble consists of 10

component members that define the size of the individual ensembles. The selected

ensemble size has been shown to produce good generalization performance across

different problems (Hansen and Salamon, 1990; Breiman, 1996a; El-Hindi et al., 2018).

6.3 Data Sampling

Due to the recursive nature and complex implementation of boosting approaches, which

is outside the scope of creating ensembles for this research, the bagging approach is
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used to create bagged subsets for classification and regression problems. As discussed in

Section 3.3.1, the bagging approach randomly samples training data with replacement to

obtain bootstrapped replicates. The first phase of the sampling process in the research is to

randomly split the entire dataset into 70% training and 30% testing datasets. The second

phase is to create bagged subsets from the training set, on which multiple instances of

base algorithms are trained to induce experts that generate different predictions on the

test dataset. It is essential to sample bagged subsets only from the training datasets. If

not, the algorithms would have already seen the samples in the testing dataset during

model evaluation.

Another justification for the selection of the bagging approach to develop ensembles

in this research is discussed in Hansen and Salamon (1990) and Breiman (1996a). The

bagging approach basically produces an overall reduced generalization error using

an ensemble when compared to the generalization errors produced by the individual

learners within the ensemble. This is possible because the base learners are trained

in parallel, and each induced base expert makes independent generalization errors on

different subsets of the input space. It is then expected that the combination of the

independent errors of these experts, given the selection of an appropriate ensemble size,

will result in minimization of the overall generalization error produced by the ensemble

compared to that of the base experts.

Additionally, for the experiment on feature subsets, the RFSM ensemble approach was

used to construct ensembles to further investigate the significance of diversity in the

research. The feature subsets were obtained by sampling the input features in the training

dataset. The performance of the ensembles were evaluated on these feature subsets across

all classification and regression problems.

6.4 Training of Machine Learning Algorithms

The ML algorithms to be combined to develop the ensembles in this research contain

different characteristics and training processes. Based on the goal of this research,

the training behaviour, high-performance, and inductive biases of the selected ML

algorithms discussed in Section 2.4, motivated the choice of the NB, kNN, NN, SVM,

DT, and RF algorithms for the research. The selection of these algorithms is further
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justified by the different intrinsic properties of the algorithms with respect to the

mathematical foundation, model architecture, model structure, and model complexity

of the algorithms. These intrinsic properties inform the differences in training and

generalization performance produced by the algorithms when trained on the same

dataset. The algorithms also provide specific diversity benefits to the development

of the ensembles with respect to the combination of the intrinsic inductive biases of

the algorithms. Additionally, the algorithms provide specific assumptions based on

the characteristics and complexities of the selected datasets identified for this research.

Therefore, this section discusses the training process for individual algorithms, the

algorithm-specific parameters, and the default methods of the algorithms in the Python

programming language.

6.4.1 Naïve Bayes

As discussed in Section 2.4.6, the NB classifier predicts the target label based on the

calculations of conditional posterior probabilities. Laplace smoothing is used to avoid

the problem of frequency-based zero probability. The problem occurs when the NB

classifier encounters an input feature value in the test dataset that has not appeared in

the training dataset and vice versa. Without Laplace smoothing, probabilities calculated

by the classifier are equal to zero if there exists a frequency-based zero probability. Thus,

the NB classifier will be unable to make a prediction.

The NB algorithm used in implementations assumes different data distributions such

as Gaussian, Multinomial, Bernoulli and categorical for integer-valued and continuous-

valued variables. These assumed distributions remove the need for the discretization of

numeric variables. The NB classifier is accessed through the naive_bayes package of the

sklearn library in Python.

6.4.2 k-Nearest Neighbour

The kNN algorithm makes predictions for a test data sample based on the closest samples

in the training dataset. The number of surrounding samples to be considered depends on

the value of k, denoting the number of nearest neighbours. The different values of k used

by the kNN base learners influence the generation of diverse base experts within each
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ensemble. The kNN algorithm is accessed in the neigbors package of the sklearn library in

Python.

6.4.3 Decision Tree

The DT algorithm induces a tree-based model based on the features and samples in the

training set. The CART induction algorithm is used to construct trees, as discussed in

Section 2.4.4. CART is very similar to C4.5, but differs in that it supports numerical target

variables for regression problems.

CART constructs binary trees using the feature and threshold that yield the largest

information gain at each node. The default CART functions perform post-pruning, and

use the Gini index and information gain for splitting. The sklearn library implements DT

algorithms using an optimized version of the CART algorithm that is accessed via the tree

package.

6.4.4 Support Vector Machines

By default, the SVM algorithm creates a separating hyperplane that allows the

classification of samples in the training and test sets for binary class datasets. The one-vs-

all approach to SVM was used for multi-class classification problems. The SVM method

requires pre-determined parameters, including the kernel function, cost of misclassifying

points, C, and kernel width, γ, all of which control the bias-variance tradeoff of the

algorithm.

As discussed in Section 2.4.3, the kernel function selection is problem-dependent. The

C parameter performs a regularization function for the penalty cost of misclassifying

samples, while γ defines the influence of a single sample during training. A low γ value

means little influence, and a high γ value indicates a significant influence. The SVM

algorithm is accessed from the svm package of the sklearn library in Python.

6.4.5 Neural Networks

NNs map a set of inputs to produce output values through an interactive process of

adjustments applied to the synaptic input weights and bias levels of the network. The

weight adjustment of a NN ensures that the free parameters of the network are adapted
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through forward and backward learning processes. As discussed in Section 2.4.2, the

multi-layer perceptron (MLP) is selected to develop ensembles and the standard gradient-

descent backpropagation algorithm is used for weight optimization.

The MLP python method requires setting a number of parameters including the number

of hidden layers, number of hidden nodes, weight optimizer (solver), the maximum

number of iterations, learning rate, tolerance value, momentum, and activation function.

The maximum number of iterations indicates the number of iterations before the training

process of a NN learner is stopped. The tolerance value is used to set a condition on which

a stopping criterion for weight optimization is defined. When the change in the error of

the backpropagation process is less than the tolerance value, the algorithm performs no

further optimization. It is important to use a set of parameters to implement NNs in

order to achieve an optimal balance between generalization accuracy and computational

complexity of the network. The neural_network package in the sklearn library is used to

access neural networks in Python.

6.4.6 Random Forest

As described in Section 4.5, a RF algorithm combines multiple classification or regression

trees to obtain better generalization performance. A RF algorithm gives the final

prediction as the majority vote of the predictions of base trees for classification problems.

For regression problems, the average of the predictions of base trees in the forest is

obtained. In Python, the RF algorithm is accessed from the “ensemble" package in the

“sklearn" library.

6.5 Fusion of the Predictions of Experts

For classification problems, majority voting is used to combine the predictions of base

experts within an ensemble, and ties are determined arbitrarily. The majority voting

determines the final prediction as the label that is most frequently predicted for each

sample of the test set. For regression problems, the average of the predictions of the base

experts is computed. Majority voting and averaging were discussed in Section 3.4.
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6.6 Chapter Summary

The methods used to construct the ensembles of this research were discussed in this

chapter. The ensembles consider multiple instances of the base algorithms, the inductive

biases of base algorithms, and diversity within the ensemble. In addition, the ensembles

capitalized on the advantage of combining the strength of multiple instances of the

selected base algorithms.
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Empirical Process

7.1 Introduction

The empirical process provides all the information necessary for the comparison of

HTEs and homogeneous ensembles developed in this research. The research question

to compare the HTEs and homogeneous ensembles states that “due to the inductive biases

of the base algorithms in an ensemble, can a heterogeneous mixture of experts result in an ensemble

that consistently produces more accurate predictions than that of a homogeneous mixture of experts

by capitalizing on the advantages of the experts that make up the heterogeneous mixture"? This

research question is examined under the following dataset configurations: clean data,

skewed class distributions, outliers, bagged subsets, and feature subsets.

The empirical process to follow to answer the research question under each dataset

configuration, also referred to as the modelling study, is discussed in the following

sections. Section 7.2 presents the modelling studies on which the developed ensembles

were evaluated, while Section 7.3 presents the selected benchmark problems on which

individual ensembles were developed. The pre-processing of the datasets is discussed

in Section 7.4, and Section 7.5 describes the performance measures used to compare the

HTEs and homogeneous ensembles. Section 7.7 provides the algorithm control parameter

values for the selected ML algorithms. Section 7.8 describes the statistical tests used

107
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to investigate statistically significant differences between the HTEs and homogeneous

ensembles. Lastly, Section 7.9 provides a summary of the chapter.

7.2 Modelling Studies

The research question identified in this research resulted in six modelling studies on

classification problems and five modelling studies on regression problems. The modelling

studies conducted on classification problems are provided as follows:

• Clean Data: This study involves the development of the ensembles on clean training

dataset consisting of full sample and features with balanced classes as well as

removal of outliers and missing values.

• Skewed classes: The study involves the introduction of skewed class distributions

in various percentages to the clean dataset. For binary classification problems, the

skewed classes were considered in the range of 10-90%, 15-85%, 20-80%, 25-75%, 30-

70%, 35-65%, 40-60%, 45-55%, and 50-50%. For multi-class classification problems,

one of the classes was undersampled while the other classes were balanced.

• Number of outliers: In this study, outliers were introduced to the clean data in

various percentages. The number of outliers was included within a range of 1%

to 5%. This range was considered due to the significant impact of outliers in the

predictive performance of ML models.

• Severity of outliers. The introduction of outliers to the clean data is presented in this

modelling study and outliers were included from 2.0, 2.5, 3.0, 3.5, to 4.0 standard

deviations from the mean.

• Different bagged subsets: This modelling study considers the investigation of the

performance of the ensembles on different bag sizes of the clean training data

sampled in various percentages. The different bagged sizes range from 10%, 20%,

30%, ... to 80%, 90%, and 100% as provided in Table 7.1.

• Different feature subsets: The performance of the ensembles was also investigated

on different feature sizes of the clean training data sampled in various percentages.

The different feature sizes range from 10%, 20%, 30%, ... to 80%, 90%, and 100% as

provided in Table 7.1
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For regression problems, all modelling studies were performed except for the skewed

class distribution study, because the prediction outcome of a regression problem is a

numeric value and not a class label. The choice of sampling in all modelling studies except

for the clean data study provides sufficient resolution to investigate the relationship of the

ensemble performance with the different sampling sizes in each study. All of the ensemble

models identified in Section 6.2, i.e. 13 ensemble models for classification problems and

11 ensemble models for regression problems, were implemented for each of the modelling

studies.

Table 7.1: Data Configurations

Skewed Classes (%) Number (%) Severity (σ) Bag Size (%) Feature size (%) k-fold runs

10-90% - 50-50% 1-5 2-4 10-100 10-100 10 10

7.3 Selection of Benchmark Problems

In order to conduct a critical empirical analysis of the HTEs and homogeneous ensembles,

different benchmark problems were selected from the University of California Irvine

(UCI) ML repository. The datasets found in the UCI ML repository are publicly available

datasets that provide information about different problems across several applications1.

The selected datasets cover a range of problem characteristics and complexities.

Datasets of different complexities ensure that a general conclusion is reached about the

performance of the different ensembles. The scope of this research is the analysis of

the performance of different ensembles on classification and regression problems, and

therefore both classification and regression problems are included. Ten classification

and ten regression problems were selected. The characteristics and complexities of the

selected problems are presented as follows:

• The number of samples in the dataset: Datasets with small and large numbers

of samples represent different levels of complexity. While datasets having small

samples were collected, more focus was on the collection of larger datasets because

it is for large problems that ensembles have been developed.

• The number of input features: The more input features, the higher the complexity

1https://archive.ics.uci.edu/ml/datasets.php
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of a problem. Datasets that consist of a large number of input features lead to the

curse of dimensionality problem.

• The distribution of class features: If the class distribution of the target feature is

imbalanced, a problem is deemed more difficult. Datasets with class imbalance

often result in biased predictions towards the majority class in the datasets.

• The number of class labels: Binary and multi-class classification problems

represent different levels of complexity due to varying methods in training

ensembles. For instance, a number of ML algorithms, including kNN, DT, NB,

inherently support multi-class classification while the SVM algorithm does not. The

SVM algorithm naively supports binary classification, but requires extensions such

as one-vs-one or one-vs-all to handle multi-class classification. For each extension,

the SVM algorithm needs to handle additional parameters and constraints in solving

the optimization problem to perform multi-class classification efficiently.

• The type of input feature data: Datasets with a variety of input feature types,

such as categorical or numeric, are more challenging. For instance, NN, SVM

and kNN algorithms intrinsically perform well with numeric features while the DT

algorithms are designed to work with categorical features. However, research has

shown that DTs and NNs do not perform well on data with a mix of categorical

and numeric types. This is not the case for kNN, NB and SVM algorithms because

these algorithms work well with data having a mix of input feature types. However,

pre-processing is required for the algorithms.

• Problems with noise and outliers: Datasets with different noise characteristics and

outliers in input and target features present different levels of complexity.

7.3.1 Classification Problems

The selected classification problems for this research are discussed in this section. The

characteristics of these classification problems are summarized in Table 7.2.

Sonar Dataset

The sonar dataset specifies sonar returns collected from a metal cylinder and a

cylindrically shaped rock positioned on a sandy ocean floor. The classification problem
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specified in the dataset is to classify if a sonar sample is labelled as a mine metal cylinder

(M) or a rock (R) sonar signal (Gorman and Sejnowski, 1988). There are 60 continuous

input features that describe sonar samples. The input features represent energy within a

particular frequency band achieved from the received sonar signals.

The complexity of this dataset refers to the characteristics of the dataset having a binary

classification problem with an almost balanced distribution of target feature classes, a

small number of samples, a large number of features, and features of the continuous type.

Table 7.2: Characteristics of Selected Classification Problems

Dataset
Total

Samples
Features

Majority

Samples

Minority

Samples

Imbal. Ratio

(Maj./Min.)

Number of

Classes

Feature

Type

Sonar 208 60 111 97 1.14 2 Continuous

Breast Cancer 286 9 201 85 2.36 2 Categorical

Indian Liver 583 10 416 167 2.49 2 Multivariate

Credit Approval 690 15 383 307 1.25 2 Multivariate

Red Wine 1600 12 1519 81 18.75 6 Continuous

Car Evaluation 1728 6 1594 134 11.89 4 Categorical

White Wine 4898 12 4873 25 194.92 7 Continuous

Nursery 12960 9 12630 330 38.27 4 Categorical

Bank Marketing 45211 17 36535 8676 4.21 2 Multivariate

Censor Income 48842 14 37155 11687 3.18 2 Multivariate

Breast Cancer Dataset

The breast cancer dataset consists of nine input features predicting whether the breast

cancer of a patient is recurring or not (Tan and Eshelman, 1988). The complexity of this

dataset refers to the characteristics of the dataset consisting of a binary classification

problem with an unbalanced class distribution, a small number of samples, a small

number of features, and input features of the categorical type.

Indian Liver Patient Dataset

The Indian liver patient dataset consists of 10 input features that specify liver disease in

patients. Such input features include age, gender, total Bilirubin, direct Bilirubin, total

proteins, among other features (Ramana et al., 2011). The target feature is a selector

representing a class label associated with the presence or absence of liver disease in a
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patient. The complexity of this dataset refers to the characteristics of the dataset including

a binary classification problem with an unbalanced class distribution, a small-moderate

number of samples, a small number of features, and multiple input features types.

Credit Approval Dataset

The credit approval dataset is made up of samples representing approved or declined

requests for credit cards in a financial company (Quinlan, 1987). The complexity of the

dataset refers to the characteristics of the dataset consisting of a binary classification

problem with an almost balanced target class distribution, a small number of samples,

a moderate number of features, and multiple input feature types.

Red Wine Dataset

The red wine dataset describes red wine quality using 11 input features. The target feature

is a class label associated with the quality of wine samples. The input features consist of

features such as acidity, residual sugar and alcohol, among other features (Cortez et al.,

2009). The complexity of this dataset refers to the characteristics of the dataset having

multiple classes to predict, an unbalanced class distribution, a small-moderate number of

samples, a small number of features, and input features of the continuous type.

Car Evaluation Dataset

The car dataset describes the specifications of cars based on six categorical input features.

These features include technical characteristics such as comfort, safety, and price data.

The target feature consists of four classes such as unacceptable, acceptable, good and

very good (Bohanec and Rajkovic, 1988; Dua and Graff, 2019). The complexity of this

dataset refers to the characteristics of the dataset consisting of multiple classes with

an unbalanced distribution, a small-moderate number of samples, a small number of

features, and input features of the categorical type.

White Wine Dataset

The white wine dataset has the same input features as the red wine dataset. The white

wine dataset, however, has a different class distribution than the red wine dataset, more

samples and an additional quality class label (Cortez et al., 2009; Dua and Graff, 2019).
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The complexity of the white wine dataset refers to the characteristics of the dataset

having multiple classes to predict, an unbalanced class distribution, a moderate number

of samples, and a low number of features with input features of the continuous type.

Additionally, the dataset is characterized by outliers in the values of the features.

Nursery Dataset

The nursery dataset contains eight categorical input features that describe the ranking of a

nursery school admission application. These features include the employment of parents,

family structure of a child, financial status of the parents, social and health profiles of the

family, among others. The target feature represents one of four levels of recommendation

for each nursery application (Olave et al., 1989; Zupan et al., 1997). The target feature is

almost balanced, with three significant classes having an almost even distribution.

The complexity of this dataset refers to the characteristics of the dataset having multiple

classes with an almost equal distribution of target class features, a large number of

samples, a small number of features, and features of the categorical type.

Bank Marketing Dataset

The bank marketing dataset specifies the direct marketing campaigns of a banking

institution based on phone calls. The dataset consists of 20 multivariate features that

describe the characteristics of a bank client to classify if the client makes a bank term

deposit or not. These features include information such as client age, education, type of

job and marital status, among others (Moro et al., 2014).

The complexity of this dataset refers to the characteristics of the dataset consisting of a

binary classification problem with an unbalanced class distribution, a moderate number

of features, a large number of samples, and multiple input feature types.

Censor Income Dataset

The censor income dataset, also known as the “Adult" dataset, contains 13 multivariate

input features. The target feature describes whether the sample, representing an adult,

earns more or less than $50,000 a year (Kohavi, 1996; Dua and Graff, 2019). The input

features include information such as the age of the adult, native country, education and
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work class, among other features.

The complexity of this dataset refers to the characteristics of the dataset having a binary

classification problem, an unbalanced target feature distribution, a large number of

samples, a small number of features, and multiple input feature types.

7.3.2 Regression Problems

The selected regression problems for this research are discussed in this section. The

characteristics of these regression problems are summarized in Table 7.3.

Table 7.3: Characteristics of Selected Regression Problems

Dataset Samples Features Feature Type

Yacht Hydrodynamics 308 7 Continuous

Residential Building 372 105 Continuous

Student Performance 395 33 Continuous

Real Estate 414 7 Multivariate

Energy Efficiency 768 8 Multivariate

Concrete 1030 9 Multivariate

Parkinsons Disease 5875 26 Multivariate

Air Quality 9358 15 Multivariate

Bike Sharing 17389 16 Continuous

Gas Turbine 36733 11 Multivariate

Yacht Hydrodynamics Dataset

The yacht hydrodynamics dataset consists of seven input features used to estimate the

hydrodynamic performance of sailing yachts. The regression problem in the dataset is

to predict the residuary resistance of sailing yachts at initial design stage (Ortigosa et al.,

2007). The complexity of this dataset refers to the characteristics of the dataset having a

small number of samples, a small number of features, the presence of outliers in feature

values, and continuous input feature type.
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Residential Building Dataset

The residential building dataset describes 105 physical, financial, and economic features

to construct different residential buildings. These features are used to estimate the sales

price of a residential apartment (Rafiei and Adeli, 2016). The complexity of this dataset

refers to the characteristics of the dataset consisting of a small number of samples, a large

number of features, and continuous input features types.

Student Performance Dataset

The student performance dataset provides information about student performances in

secondary education. The regression problem is to predict student performance in a high

school mathematics subject (Cortez and Silva, 2008). The complexity of this dataset refers

to the characteristics of the dataset including a small-moderate number of samples, a large

number of features and multiple input features types.

Real Estate Dataset

In the real estate dataset, a regression problem is solved by determining the monetary

valuation of a given real estate. The dataset consists of features such as transaction

date, house age, geographical coordinates, among others (Yeh and Hsu, 2018). The

complexity of the real estate dataset refers to the characteristics of the dataset having a

small-moderate number of samples, a small number of features, and multiple features

types.

Energy Efficiency Dataset

The energy efficiency dataset has eight features used to estimate the energy efficiency of

the shapes of different buildings. These features, which include relative compactness,

surface area, well area, roof area, among others, are used to predict two real-valued

outputs corresponding to the heating load and cooling load requirements of the buildings

(Tsanas and Xifara, 2012).

The complexity of this dataset refers to the characteristics of the dataset consisting of

a small-moderate number of samples, a small number of features, and multiple input

features types.
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Concrete Dataset

The concrete dataset is made up of eight features that quantitatively determine concrete

compressive strengths (Yeh, 1998). Such features include cement, blast furnace slag, fly

ash, water, among others. The complexity of this dataset refers to the characteristics of the

dataset, including a moderate number of samples, a small number of features, presence

of outliers in atttribute values, and features of the continuous type.

Parkinsons Disease Telemonitoring Dataset

The Parkinsons disease telemonitoring dataset provides information about biomedical

voice signal recordings captured by a telemonitoring device to detect early-stage

symptoms of parkinsons disease in clinical subjects. The dataset is made up of 26 features

describing the prediction of clinical motor and unified Parkinson’s disease rating scale

(UPDRS) scores of each clinical subject (Tsanas et al., 2009).

The complexity of this dataset refers to the characteristics of the dataset having a large

number of samples, a moderate number of features, and multiple input features types.

Air Quality Dataset

The air quality dataset consists of hourly averaged features used to predict the net hourly

concentrations of Nitrogen Dioxide (NO2) of a chemical multi-sensor device to determine

the air quality of the device. Such features include temperature, absolute humidity,

relative humidity, among others (De Vito et al., 2008). The complexity of this dataset refers

to the characteristics of the dataset consisting of a large number of samples, a moderate

number of features, and input features of the continuous type.

Bike Sharing Dataset

The regression problem of the bike sharing dataset is to predict the hourly count of

bike rentals for environmental and seasonal features. Such features present in the

dataset include season, holiday, weekday, workingday, weather, temperature, wind

speed, number of registered users and others (Fanaee and Gama, 2013).

The complexity of this dataset refers to the characteristics of the dataset having a large

number of samples, a moderate number of features, and multiple input features types.
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Gas Turbine Dataset

The gas turbine dataset provides information regarding the study of flue gas emissions.

The regression problem of this dataset is to use the eleven ambient variables in the

dataset to predict the turbine energy yield of a gas plant with the regression outputs

corresponding to carbon monoxide and nitrogen oxides gases respectively (Kaya et al.,

2019).

The complexity of this dataset refers to the characteristics of the dataset, including a large

number of samples, a small number of features, the presence of outliers in features, and

input features of continuous type.

7.4 Pre-processing of Datasets

Data pre-processing is an important step to ensure that optimal performance of ML

algorithms is achieved. Different algorithms require different representations of data

due to algorithm-specific assumptions about data types, the number of classes, and

data quality aspects. Therefore, this section describes the approaches to pre-processing

applicable to all of the datasets and algorithms for the development of ensembles in the

research. Section 7.4.1 discusses the general data preprocessing methods applicable to

all selected algorithms in the research, while Sections 7.4.2 and 7.4.3 present the methods

used to handle outliers and class imbalance in the datasets. The implementation of the

data sampling to obtain the bagged and feature subsets is discussed in Section 7.4.4, while

Section 7.5 provides algorithm specific preprocessing methods.

7.4.1 General Pre-processing

Training datasets are bootstrapped replicates drawn from an algorithm-specific pre-

processed dataset. The pre-processed training datasets contain the same samples and

input features for each algorithm. The problem of missing values was resolved for all

modelling studies in both classification and regression problems.

The next section discusses the methods used to handle missing values, feature selection,

feature scaling, and data encoding in the research.
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Missing Values

The presence of missing values is often attributed to either an error in data collection, data

integration or the process of generating values for a feature. Most ML algorithms, such as

NNs and SVMs, suffer from missing values and require the implementation of a strategy

to deal with missing values. On the other hand, ML algorithms such as DTs and kNNs

are robust to the presence of missing values. However, for consistency, missing values

are dealt with the same way for all algorithms. Therefore, missing values are imputed

according to Kelleher et al. (2015).

In the case that a large proportion of values for a required feature or sample is missing,

usually over 30%, the information within the feature or sample is deemed irrelevant, and

the feature or sample was removed; otherwise, missing values were imputed. Missing

values in categorical features were imputed with the mode of the feature values, while

numeric features were imputed with the mean of the feature values. If outliers are present

in the feature, the outliers were removed.

Feature Selection

Feature selection, also known as “attribute selection", is a process of selecting features

that provide significant contribution to the prediction of a ML model. It is important

to perform feature selection because the construction of a model on irrelevant features

in the datasets tends to decrease the accuracy of the model, increase training time, and

allows the model to easily learn the noise in the data which allows overfitting of the

model (Kantardzic, 2011).

The Pearson correlation coefficient, a statistical filter-based feature selection method

(Hastie et al., 2001), was used to evaluate the relationship between each input feature

and the target feature in the datasets. The relationship is captured in a correlation matrix

annotated using a heatmap to visually identify the most correlated features to the target

feature. The matrix also displays the correlation coefficients between each input feature

and the target feature in a tabular form. The input features that significantly correlate

with the target feature were selected while irrelevant features were not considered.

The strength of the relationship is defined in terms of direction (i.e., high or low) and
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magnitude (i.e., positive or negative) of association between the input and target features.

The Pearson correlation coefficient, r, for a set of input feature X and target features Y is

calculated as

r = ∑[(X − µX)(Y − µY)]√
σX · σY

(7.1)

where µ and σ represent the mean and standard deviation of the input and target feature

values.

As described by Obilor and Amadi (2018) and Schober et al. (2018), the interpretation

of the Pearson correlation coefficient shows that a value of r = -1 and +1 indicates perfect

negative and perfect positive correlation coefficients, respectively. A value of r = 0 implies

no correlation (i.e., zero relationship), r values lower than ±0.40 are said to be low, r values

between ±0.40 and ±0.60 are moderate, while r values above ±0.60 are high. It is important

to note that the relevance of categorical features with reference to the target feature was

analyzed prior to selection for model development.

Feature Scaling

Feature scaling is performed using min-max normalization and standardization. For

min-max normalization, feature values are shifted and rescaled to ensure that the values

are in range between 0 and 1. The min-max normalization is often used when the

data distribution does not assume a Gaussian distribution (Suarez-Alvarez et al., 2012).

Feature values are normalized using

X′ =
X − Xmin

Xmax − Xmin
(7.2)

where X′ represents the normalized value, Xmax and Xmin represent the previous range

(i.e maximum and minimum values of a feature) of the unnormalized feature values while

X represents the original unnormalized value, i.e the feature value to be scaled.

Standardization, also referred to as “z-normalization", is another scaling technique where

feature values are centered around the mean with a unit standard deviation. This means

that the mean of the feature becomes zero and the resultant distribution has a standard

deviation of one.
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Standardization is applied on datasets having numeric feature values that assume a

Gaussian distribution (Suarez-Alvarez et al., 2012). The transformed feature values are

not restricted to a particular range. Feature values are standardized using

X′ =
X − µ

σ
(7.3)

where µ is the mean of the feature values and σ is the standard deviation of the feature

values. The effect of outliers in the dataset is somewhat minimized when the feature

values are scaled or normalized to a specific range of values before model development.

Encoding Categorical Features

Most real-world problems consist of categorical, numeric, or a mix of categorical and

numeric feature values. As discussed in Section 7.3, a number of the selected ML

algorithms perform well on datasets with categorical features while others work well on

numeric features. As a result of this, there is a challenge to obtain optimal performance

from the combination of these ML algorithms on datasets consisting of a mix of categorical

and numeric features. However, research has shown that ML algorithms that work well

on categorical features have also produced remarkable performance on numeric features

through different extensions and modifications. Therefore, it becomes imperative to

encode the categorical feature values in a dataset into numeric values. The encoding

process is performed using the one-hot encoding scheme in this research (Potdar et al.,

2017)

One-hot encoding transforms a single variable with i samples and j distinct values, to j

binary variables with i samples each. Each sample shows the presence (1) or absence (0)

of the binary variable (Potdar et al., 2017). One-hot encoding is illustrated in Table 7.4.

Although, the procedure of the one-hot encoding may lead to the generation of a

large number of features which may increase the dimension of the dataset and the

multicollinearity among features that may lower the accuracy of a model. However, the

process of feature selection and scaling is expected to minimize the downsides of the one-

hot encoding because only the relevant features are selected in the dataset, leading to the

reduction in the dimension of the dataset.
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Table 7.4: Illustration of One-Hot Encoding

Original Dataset

Samples color

1 red

2 blue

3 green

4 blue

One-Hot Encoding

Samples color_red color_blue color_green

1 1 0 0

2 0 1 0

3 0 0 1

4 0 1 0

7.4.2 Outliers

Outliers are classified as values that lie far away from the central tendency of a feature.

Outliers can be smaller or larger than the vast majority of the samples. Outliers bias the

predictive model towards the outlying values. A few outliers are sometimes enough to

distort the predictions of an ensemble either by altering the mean performance of base

learners or by increasing variability (Cousineau and Chartier, 2010).

Research has shown that a number of ML algorithms exhibit different sensitivities to

outliers during the inductive learning of the algorithms while others do not. The

classification trees, RF, NB and kNN algorithms with large values of k are robust to

outliers in a dataset. On the other hand, regression trees, kNN for regression, kNN with

small values of k, NNs that do not use a robust estimator, and SVMs with soft margin

approaches often show sensitivity to outliers and require that outliers be removed from

the dataset (Bandaragoda et al., 2018; Wang et al., 2019a).

Many techniques have been developed to detect outliers. The techniques include

graphical methods, parametric and non-parametric statistical methods, distance-based

method, density-based methods, clustering methods and learning-based methods (Wang

et al., 2019a). Automatic methods have also been developed for outlier detection

(Bandaragoda et al., 2018). Such methods include isolation forests, minimum covariance

determinant, local outlier factor and one-class SVM (Liu et al., 2008; Bandaragoda et al.,

2018; Wang et al., 2019b).

For consistent treatment of outliers in the clean data study, all outliers were removed

using the inter-quartile range (IQR) method proposed by Tukey (1977). The IQR method
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was employed due to the data distribution of the selected classification and regression

problems in this research. The datasets are skewed and do not adequately satisfy the

assumption of a normal or Gaussian distribution. The IQR method has been shown

to efficiently handle outliers in non-Gaussian data distribution (Tukey, 1977; Mandić-

Rajčević and Colosio, 2019). The IQR range in a dataset is given as

IQR = Q3 − Q1 (7.4)

where Q1 is the first quartile of the data, i.e. 25% of the data lies between minimum value

in the data and Q1. The Q3 is the third quartile of the data, i.e. 75% of the data lies

between minimum value in the data and Q3, while the IQR is the middle i.e 50% of the

data.

Therefore, the IQR method detects outliers as feature values less than the lower bound or

more than the upper bound, as follows:

LowerBound = (Q1 − 1.5 ∗ IQR) (7.5)

UpperBound = (Q3 + 1.5 ∗ IQR) (7.6)

The number of outliers study considers the implementation of the isolation forest method

proposed by Liu et al. (2008). An isolation forest separates outliers through a recursive

generation of partitions on datasets and a random selection of a feature from a given set of

features. This is followed by the random selection of a split value between the maximum

and minimum values of the selected feature is performed. The random partitioning

generates shorter paths for outliers. Thus, when a forest of random trees collectively

generates shorter path lengths for a given sample, outliers are detected (Liu et al., 2008).

The isolation forest method provides a “contamination” argument that defines the

percentage proportion of outliers in a dataset, which accepts a range of floating values

[0.1-0.5]. The values are used to implement the magnitude of outliers in the modelling

study of the number of outliers in the research.

For the severity of outlier study, the inter-quartile range (IQR) method was also used.

Tukey (1977) stated that the default value of 1.5 in equations (7.5) and (7.6) defines the
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standard deviation from the mean that controls the sensitivity of the outlier range and the

decision rule for outliers in a dataset. In this research, the 1.5 value was increased from

2.0, 2.5, 3.0, 3.5 to 4 standard deviations from the mean for the severity of outliers study.

7.4.3 Handling Class Imbalance

The class imbalance problem occurs in a dataset when the number of samples is not

evenly distributed among the classes in the dataset (Vluymans et al., 2016). This problem

drastically affects the performance of ML algorithms that are sensitive to skewed class

distributions, because the prediction of an algorithm is usually biased towards the

majority classes (Krawczyk et al., 2016). For instance, SVM, NN, DT, and kNN algorithms

intrinsically showed sensitivity to skewed class distributions in a dataset.

In this research, the class imbalance for the clean data study was resolved using

the synthetic minority oversampling technique (SMOTE) and bagging termed as

“SMOTEBagging”. SMOTE increases the size of minority class samples by duplicating the

samples or creating artificial samples (Chawla et al., 2002; Vluymans et al., 2016). While

SMOTE oversampling has been reported to be susceptible to overfitting (Vluymans et al.,

2016), the bagging approach implemented in the study serves as complement to SMOTE

by providing a benefit to overcome the problem of overfitting. As discussed in Section

3.3.1, the bagging approach randomly samples datasets with replacement to generate new

subsets. Each subset is then balanced by SMOTE before modeling. The two parameters

required for the implementation of the SMOTE include k-nearest neighbors and the total

number of over-sampling from minority class. The “SMOTE” method is available in the

“imbalanced-learn” library in Python.

Furthermore, the introduction of skewed class distributions in the clean data was

performed using a random undersampling approach. The approach has also been

reported to balance training datasets by stochastically removing samples of the majority

class without any influence on the minority samples (Vluymans et al., 2016). However,

the approach was specifically used in this research to undersample one of the classes in

the clean training dataset of any binary or multi-class problem to conduct the skewed

class distribution study. The “Random Undersampler” can be assessed in the “imbalanced-

learn” library in Python, and has a “sampling strategy” argument which accepts floating
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values that defined the percentage of skeweness in the classes of the training dataset.

The floating values are included in the ratios of 10-90%, 15-85%, 20-80%, ... ,45-55%, and

50-50% as discussed in Section 7.2.

7.4.4 Bagged and Feature Subsets Sampling

To conduct the modelling studies of the bagged and feature subsets, the “sample” function

in the pandas dataframe library in Python was employed. For the bagged subsets

study, the “sample” function was used to randomly resample the training dataset with

replacement to create bagged subsets from 10 to 100%. On the other hand, the features

in the training dataset were also randomly resampled with replacement to create feature

subsets from 10 to 100%. The “sample” function has a “frac” argument that accepts floating

values (in this case 0.1 to 1.0 for the bagged and feature subset studies) to represent the

percentage of the samples or features to sample out from the clean training dataset.

7.4.5 Algorithm Specific Preprocessing

Table 7.5 summarizes the techniques relevant to the individual algorithms with respect

to the selected classification and regression problems. For regression problems, the actual

target feature was used.

Table 7.5: Algorithm Specific Preprocessing

Algorithm Numeric Feature Binary Class Labels Multi-class Labels

DT Scaling None None

NN Scaling 0, 1 n output values

kNN Normalization None None

SVM Normalization 0, 1 n output values

NB Normalization None None

Decision Trees

DTs are known to handle data appropriately because DTs work well on categorical and

numeric features. Additionally, DTs are robust to the presence of outliers in data. Hence,

while normalization of the input features has been reported to be unnecessary for DT

algorithms, scaling was performed for the input features in classification and regression
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problems in this research. No preprocessing was carried out on the target features in

binary and multi-class classification problems. Therefore, pre-processing is not necessary

for the application of DTs.

Neural Networks

NNs require that both input and target features be reformatted as shown in Table 7.5. For

numeric features, input feature values are linearly scaled to a range of -1 and 1 using min-

max normalization for classification and regression problems. The scaling of numeric

feature values supports the optimization of the gradient descent algorithm to converge

much faster than when the feature values are unscaled. When the feature values are not

scaled, the gradient descent algorithm will take more numbers of iterations to converge,

which increases the training time of NNs.

The target features were reformatted as (0, 1) for binary classification problems and n

output values for multi-class classification problems, where n indicates the number of

classes in the multi-class classification problems.

k-Nearest Neighbour

During the computation of distance, kNN algorithm requires the normalization of

feature values to ensure large feature values do not dominate small feature values.

Therefore, numeric features were standardized using z-normalization for classification

and regression problems. No pre-processing of the target feature was performed for

binary and multi-class classification problems.

Support Vector Machines

The data processing performed for SVM and kNN are similar except in the preprocessing

of target features. The specific output values of (0, 1) were used to represent the target

features of binary classification problems. The SVM model represented the negative class

as 0 for values below the separating hyperplane, while a positive class is represented as

1 for values above the separating hyperplane. For multi-class classification problems, the

target features were encoded as n different output values.
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Naïve Bayes

The pre-processing required for a NB classifier is the discretization of numeric feature

values. However, the discretization of numeric feature values is unnecessary due to the

different probabilistic distributions made by the NB algorithm in Python (i.e. Gaussian,

Bernoulli, and multinomial distribution). Numeric feature values were normalized,

and no pre-processing of the target feature was performed for binary and multi-class

classification problems.

7.5 Performance Measures

This section discusses the performance measures used to compare the developed HTEs

and homogeneous ensembles across the selected classification and regression problems.

Section 7.5.1 describes the performance measures used to compare the ensembles on

classification problems, while Section 7.5.2 discusses the performance measures for

regression problems. Quantification of overfitting of the individual ensembles is

discussed in Section 7.5.3.

7.5.1 Performance Measures for Classification Problems

The measures used to evaluate the performance of ensembles on classification problems

are as follows:

• Ensemble Accuracy: The accuracy of an ensemble was measured by calculating the

percentage of correct predictions made by the ensemble. An ensemble produced the

best generalization performance with an accuracy of 1.0 or 100%. The accuracy of

an ensemble is calculated as

ENSACC =
TP + TN

TP + TN + FP + FN
(7.7)

where TP, TN, FP, and FN are computed from the confusion matrix (Igual and

Seguí, 2017) and defined as follows:

– True positives (TP): The ensemble predicts a sample as positive, and the actual

sample label is positive.
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– False positives (FP): The ensemble predicts a sample as positive, but it is

negative.

– True negatives (TN): The ensemble predicts a sample as negative, and the

actual label is negative.

– False negatives (FN): The ensemble predicts a sample as negative, but the true

label is positive.

Accuracy has been reported to be an inefficient performance measure, especially

when the dataset is imbalanced (Veropoulos et al., 1999; Wu, 2003). For instance, in

the diagnosis of a medical disease, where the goal is to obtain low false negatives

(i.e. high prediction for unhealthy patients) than false positives (i.e. low prediction for

healthy patients), accuracy may provide a misleading result. This is attributed to the

fact that accuracy simply assigns the majority of the samples to the negative class

while ignoring the positive samples (Wu, 2003). Also, in spam detection, where

obtaining low false positives (i.e. high prediction for relevant mails) is more important

than false negatives (i.e. low prediction for irrelevant mails), accuracy may not be a

suitable measure. Thus, other performance measures such as precision, recall, F1-

Score, or ROC-AUC score, computed from the confusion matrix, are required.

• Precision: Precision measures the exactness in the predictions of an ensemble.

Precision means that what proportion of positive predictions made by the ensemble

was actually correct? That is, when the ensemble predicted a class label as positive,

how often was this prediction correct?. The precision value of an ensemble lies in

the range of [0, 1]. Thus, an ensemble with a precision value close to 1 indicates

better performance, while a precision value close to 0 shows that the performance

of the ensemble is not reliable. The precision of an ensemble is calculated as

Precision =
TP

TP + FP
(7.8)

• Recall: Recall, also referred to as true positive rate (TPR) or sensitivity, measures the

completeness in the predictions of an ensemble; that is, the proportion of positive

samples that are correctly identified as positives (Sumathi and Poorna, 2017). The

recall value of an ensemble lies in the range of [0, 1]. An ensemble with a recall value
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close to 1 illustrates better performance, while a recall value close to 0 indicates poor

performance by the ensemble. The recall of an ensemble is calculated as

Recall =
TP

TP + FN
(7.9)

• F1-Score: F1-score, also known as the F-measure, computes the harmonic mean of

the precision and recall performance of an ensemble. While an ensemble may not

generate high precision and recall values concurrently, there is a cost associated with

tweaking the two measures. The trend of this cost is captured by the F1-score in a

single value. The F1-score of an ensemble lies in the range of [0, 1]. F1-score close to

1 means that the ensemble produces a reliable performance, while F1-score close to

0 indicate unreliable performance. The F1-Score is calculated as

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(7.10)

7.5.2 Performance Measures for Regression Problems

This section discusses the measures used to evaluate the performance of ensembles on

regression problems, which are as follows:

• Mean Squared Error: The mean squared error (MSE) determines the quality of an

ensemble on a dataset by computing the average of the squares of errors produced

by the ensemble during prediction. The error is obtained as the difference between

the actual values in a dataset and predicted values by the ensemble. A low MSE

indicates that the ensemble prediction is closer to the actual value and vice versa.

Thus, an ensemble with a low MSE shows a better fit of the regression line than

another ensemble with a high MSE. The MSE is calculated as

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (7.11)

where N represents the total number of test samples, yi is the true value, and ŷi is

the predicted value over the N samples.

For easy interpretation of the final ensemble prediction, the root mean square error
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(RMSE) is considered to evaluate the performance of the ensembles on regression

problems. The RMSE is preferred to the MSE because the RMSE is measured in the same

units as the target feature, while the MSE is measured in units that are square of the target

feature, and penalizes larger errors more severely (Dua et al., 2017). The RMSE computes

the square root of the MSE as

RMSE =
√

MSE (7.12)

where MSE is defined in equation (7.11).

7.5.3 Measurement of Overfitting

An essential aspect of an ensemble is to effectively learn the mapping between the input

and target space in the training dataset, while still providing good generalization to the

test dataset. The essence is to ensure the ensemble minimizes overfitting of the training

datasets. Overfitting was measured using a generalization factor (GF) proposed by Röbel

(1994). The GF is calculated for every classification and regression problem.

For regression problems, the GF of an ensemble, ρ, is given as

ρ =
MSE_testerr

MSE_trainerr
(7.13)

where MSE_testerr is the MSE of test dataset and MSE_trainerr is the MSE of training

dataset. As MSE was used to measure accuracy for regression problems, the expectation

is to minimize the GF such that ρ ≤ 1. When ρ ≤ 1, the ensemble generated a smaller test

error than the training error, which is desirable. However, as ρ becomes larger, i.e. ρ > 1,

the difference between the test and training error increases. The difference illustrates an

increase in test error and a decrease in training error, which indicates overfitting.

For classification problems, the classification error is used as a measure of incorrect

predictions made by an ensemble. Similarly, the expectation is to minimize the GF, i.e

ρ < 1 of the ensemble. The generalization factor of an ensemble, ρ, for classification

problems is given as

ρ =
testerr

trainerr
(7.14)
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where testerr is the classification error on testing dataset and trainerr is the classification

error on training dataset. The classification error on testing dataset testerr for an ensemble

is calculated as

testerr = 1 − test accuracy (7.15)

The classification error on training dataset trainerr for an ensemble is calculated as

trainerr = 1 − training accuracy (7.16)

Therefore, the GFs, ρ, for the classification and regression problems are interpreted in the

same way, i.e the possibility for overfitting is indicated when ρ > 1.

7.6 k-Fold Cross Validation

k-Fold cross-validation is not a performance measure, but used to validate the

generalization performance of an ensemble. k-Fold cross-validation reports the mean

accuracy and associated standard deviation of the predictive accuracies of an ensemble

over a number of independent runs. The selected number of independent runs is 10.

k-Fold cross-validation splits the entire dataset into k equally sized subsets. Then, an

ensemble is trained on k − 1 of the subsets and tested on the kth subset. The ensemble

is trained and tested k times, each time with a different test subset and a different

combination of the k − 1 subsets for training. The obtained results are presented in

the form of x̄ ± σx, where x̄ represents mean prediction of the ensemble and σx denotes

standard deviation of the prediction from the mean.

The number of folds, k, and the number of runs used in cross-validation are listed in Table

7.1. For k-fold validation, the scoring parameters used for the ensembles validated on

classification and regressions problems are classification accuracy and MSE respectively.

Then, for each problem type, the mean, x̄, and standard deviation, σx, of the classification

accuracies and MSEs of the ensembles over a number of independent runs were obtained

as

x̄ =
1
k

k

∑
i=1

xi (7.17)
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and

σx =

√
∑k

i=1 (xi − x̄)2

k(k − 1)
(7.18)

7.7 Hyperparameter Optimization of Base Algorithms

This section provides the control parameter values and processes used to develop the

HTEs and homogeneous ensembles in this research. The control parameters stipulated

for each base algorithm are set to be the same for all training processes. The goal of

this research is to compare the ensembles over a range of classification and regression

problems. Therefore, the control parameters were tuned to find values that work well

for the individual base learners on each problem. The obtained values were set for the

multiple instances of the base ML algorithms in the HTEs and homogeneous ensembles in

the research. Section 7.7.1 discusses random search optimization used to obtained suitable

control parameter values for the base learners in HTEs and homogeneous ensemble.

7.7.1 Random Search Optimization

As discussed in Section 2.3.4, the selection of appropriate control parameter

configurations for the base algorithms is significant to balancing the bias-variance

tradeoff. Therefore, the goal is to obtain optimal control parameter values that will

provide a good tradeoff to minimize underfitting and overfitting in the prediction

performance of an ensemble. It is important to note that the choice of the degree and

range of values for the control parameters is dependent on the control parameter of a

specific algorithm to be tuned.

For this reason, given the large numbers of control parameters available for individual

ML algorithms used to develop the ensembles in this research, the random search

optimization algorithm (discussed in Section 3.3.5) was used to search for suitable control

parameters for each ML algorithm. The random search algorithm samples random

combinations of control parameter values. The control parameter configuration that is

best for base learners within the ensembles were selected. Hence, the control parameter

search space was reduced to the control parameters that only contribute to the final

Stellenbosch University https://scholar.sun.ac.za



Chapter 7. Empirical Process 132

ensemble results.

The random search function evaluates each base learner for a given control parameter

using cross-validation. The function requires four arguments during hyperparameter

tuning. The first is an instance of the base learner required to be optimized. The

second is the hyperparameter search space which accepts the control parameters of a

base learner and a distribution of values to sample for each control parameter. The

third argument is the scoring parameter, which includes classification accuracy and MSE

for classification and regression problems respectively. The last argument is the cross

validation cv argument which allows the specification of an integer number of folds, i.e.

k-folds.

Prior to random search optimization, the stipulated range of control parameter values is

provided in Table 7.6.

Table 7.6: Algorithm Control Parameters

Base Algorithms Control Parameters Parameter values

NB Laplace Smoothing 0.001 - 1.0
kNN k Values 1,3,5,7,9

Distance Metric 1,2,5
DT Split Criterion (Class/Regress) Gini or Entropy / MSE or MAE

Max. Depth 1 - 25
Split Strategy Best or Random

SVM Kernel RBF or poly
Penalty Cost, C 0.01 - 1.0

degree 3 - 9
Kernel Width σ 0.001-1.0

Multi-class decision function one-vs-rest
MLP Hidden Layers 2

Hidden Nodes (25,25,25), (50,50,50)
Solver adam or sgd

Maximum Number of Iteration 500 - 1000
Learning Rate 0.0001 - 1.0

Activation function ReLu or tanh

The Laplace smoothing values selected for the NB algorithm ranges between 0.1 and 1.0.

Odd number of k neighbours (k = 1, 3, 5, 7, 9) was considered for the kNN algorithm to
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avoid ties for binary and non-binary classifications. Then a choice among the Manhattan

(p = 1), Euclidean (p = 2) or Minkowski (any p larger than 2) distance was made as the

distance metric.

For DTs, the Gini impurity and entropy for information gain were used as splitting criteria

for classification problems. The mean squared error and mean absolute error were used

for regression problems. A depth range of 1 to 25 was used as the maximum depth of

the tree, while the strategy to choose the split at each node is a choice between the best or

a random strategy. The minimum number of samples required to split an internal node

was set at 2, and the minimum number of samples needed to be at a leaf node was set to

1. The RF models were developed using default parameter values available in the sklearn

library in Python, but with 10 base DTs.

For SVMs, the radial basis function (RBF) and polynomial kernels were selected as the

kernel functions. A range of 0.01 to 1.0 was set for the cost of misclassification, C, degree

of polynomials was set to a range of 3 to 9, while the the kernel width, σ, was set to a

range of 0.001 to 1.0. In the case of multi-class classification problems, the one-versus-rest

method was selected to define the shape of the decision function.

For MLPs, two hidden layers of different numbers of hidden nodes were set for each

network due to the different complexities and sizes of the datasets. Activation functions

used include relu or tanh. Then adam, a stochastic gradient-based optimizer, and

the stochastic gradient descent sgd optimization algorithm were selected for weight

optimization, because the algorithms work well on small and large datasets. The

maximum number of iterations, i.e. number of epochs was set between 500 to 1000 to

ensure appropriate convergence of the networks. The learning rate value was set to a

range of 0.0001 to 1.0 to ensure effective adaptation of each model to individual problems

at different epochs. Also, the range was set to provide a suitable learning rate for the

minimization of the long training time of the network and to ensure optimal convergence

of the models for a given problem. The default value for momentum was used.

The random search optimization was implemented a number of times to obtain different

best control parameter configurations from the control parameter values in Table 7.6 in

order to construct the different types of ensembles identified in this research. To develop

each ensemble for classification and regression problems, the random search optimization
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algorithm was first implemented to obtain the control parameters configured for the

multiple instances of the base algorithms in an ensemble.

For the first ensemble type, i.e. ensembles consisting of multiple instances of the same ML

algorithm with the same configuration, the random search optimization was run once

on each dataset from different initial conditions. The best control parameter where an

algorithm produced the highest classification accuracy or lowest MSE score was selected

and configured for all the 10 component members in each ensemble. Hence all the 10 base

learners in each ensemble consist of the same configuration.

For the second ensemble type, i.e. ensembles consisting of multiple instances of the same

ML algorithm with different configurations, the random search optimization was run 10

times on each dataset from different initial conditions. For each run of the optimization

algorithm on a dataset, an algorithm induced a control parameter which illustrates a

specific assumption made by the algorithm on the dataset for the run. Thus, 10 different

best control parameters for each run were derived and configured for the 10 individual

component members in each ensemble.

Furthermore, for the third ensemble type, i.e. ensembles consisting of multiple

instances of the different ML algorithms with the same configuration, the random search

optimization was run once for each algorithm from different initial conditions. The best

control parameter obtained from each algorithm was set for the two instances of each ML

algorithm in each ensemble. Thus, two instances of each ML algorithm in every ensemble

consist of the same control parameter.

For the fourth ensemble type, i.e. ensembles consisting of multiple instances of the

different ML algorithms with different configurations, the random search optimization

was run twice for each algorithm from different initial conditions. The two runs of the

optimization produced different control parameters that were set for the two instances of

each ML algorithm in an ensemble. As a result, the two instances of each ML algorithm

in every ensemble consist of different control parameters.

While the tuning process of the control parameter was rigorous and demanded careful

attention, the process was necessary to avoid manual setting of the control parameters of

each instance of the algorithm, and to avoid bias. Also, the tuning process was done to

ensure that the base learners in a particular ensemble induce different experts based on
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the control parameters configured for the component learners. Additionally, these control

parameters result in different base experts making different assumptions after learning

the trends and patterns in the datasets.

7.8 Statistical Tests

This section presents the statistical tests used to compare the performance of the

ensembles to determine if differences in performance are statistically significant or not.

The comparison is achieved by selection of statistical tests that are appropriate for a

dataset. While parametric tests are often performed for datasets that assume a Gaussian

distribution, non-parametric tests are performed on datasets with unknown distribution.

In recent ML literature, non-parametric tests have usually been employed to compare the

performance of ML algorithms on multiple datasets due to the unknown data distribution

(Demsar, 2006; García et al., 2009; Singh et al., 2016). This research considers the selection

of non-parametric tests to statistically compare the developed ensembles. Section 7.8.1

discusses Friedman test, while Section 7.8.2 describes Bonferroni-Dunn test which is a

posthoc test for Friedman test.

7.8.1 Friedman Test

For the purpose of this research, the Friedman test (Friedman, 1940), a non-parametric

statistical test, was performed for each modelling study to determine whether there exists

a statistically significant difference between the performance of the ensembles or not, i.e.

whether the results of the ensembles happened by chance or not. If there exists a statistical

significant difference between ensembles, then a posthoc test, i.e. the Bonferroni-

Dunn test (Dunn, 1961) was performed to verify which ensembles significantly differ in

performance. These statistical tests are used to compare the performance of the developed

HTEs and homogeneous ensembles on multiple datasets and are described next.

In the implementation of the Friedman test, all ensembles were ranked in terms of

generalization performance, i.e. testing accuracy for classification problems and testing

RMSE for regression problems. Then the average ranks of the ensembles were computed

and compared. The null hypothesis of the Friedman statistic illustrates the assumption

that all ensembles perform equally on all datasets and, therefore, the ranks of the
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ensembles should be equal. Formally, the null hypothesis of the Friedman test is defined

as

H0 : j1 = j2 = j3 = ... = jk (7.19)

The rejection of the null hypothesis results in the acceptance of the alternative hypothesis,

i.e. there is a significant difference in the generalization performance of the ensembles,

defined as

H1 : Not all ji are equal; i = 1, 2, 3, ..., k; i is a list o f ensembles (7.20)

The Friedman statistic is calculated as

χ2
F =

12N
j(j + 1)

[
∑
k

R2
k −

j(j + 1)2

4

]
(7.21)

where N is the number of datasets, j is the number of ensemble compared, while R

is the rank of the ensemble k. The value calculated in equation (7.21) is distributed

according to χ2
F with k − 1 degrees of freedom. However, due to the undesirability in

the conservativeness of the Friedman statistic, the Iman-Davenport statistic (Iman and

Davenport, 1980) was employed as an extension to test the null hypothesis, given as

FF =
(N − 1)χ2

F
N(j − 1)− χ2

F
(7.22)

The value of the Iman-Davenport FF statistic in equation (7.22) is distributed according

to the F-distribution with j − 1 and (j − 1)(N − 1) degrees of freedom obtained from a

statistical handbook. The value of FF is then compared to the critical value associated

with these degrees of freedom. When the value FF is greater than the critical value, the

null hypothesis is rejected. The rejection of the null hypothesis leads to the acceptance of

the alternative hypothesis, which is followed by conducting a posthoc test to determine

which ensembles are significantly different.
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7.8.2 Bonferroni-Dunn Test

For the Bonferroni-Dunn test, the HTEdf is designated as the control ensemble and is

compared with other HTEs and homogeneous ensembles. The differences between the

average rank of the HTEdf and other ensembles were compared with a critical difference

(CD) value (Demsar, 2006) calculated using

CD = qα

√
j(j + 1)

6N
(7.23)

where qα is a critical value associated with the number of ensembles and significance level

α = 0.05 for a two-tailed Bonferroni-Dunn test. A significant difference in performance is

detected between the HTEdf and any ensemble if the difference in average rank between

the HTEdf and the ensemble is higher than the CD. The results of the Bonferroni-Dunn

tests are presented using the critical difference plot proposed in Demsar (2006).

7.9 Chapter Summary

This chapter discussed the empirical process used to compare the developed ensembles.

The processes were performed to provide answers to the research question identified

in this research. Section 7.2 discussed the modelling studies on which the different

types of ensembles developed were evaluated, while Section 7.3 discussed the selected

classification and regression problems problems for the research. Section 7.4 described the

data pre-processing methods focusing on general preprocessing methods, methods used

to preprocess outliers, skewed class distributions, bagged subsets and feature subsets

as well as algorithm-specific preprocessing methods. The performance measures used

to compare the developed ensembles were presented in Section 7.5. Sections 7.6 and

7.7 described the k-fold cross-validation and algorithm control parameter values set for

the base learners in an ensemble, while Section 7.8 described the statistical tests used to

determine whether a statistically significant difference exists between ensembles.
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Empirical Analysis of Results for

Classification Problems

8.1 Introduction

This chapter provides an empirical analysis of ensemble models for classification

problems. The comparative analysis of the developed ensembles implemented on the

six modelling studies presented in Section 7.2 is discussed in this chapter.

The analysis of the results of these ensembles considers the inductive biases of the base

ML algorithms in each ensemble model, bias-variance tradeoff and the characteristics and

problem complexities of the classification datasets described in Section 7.3. The ensemble

models were run on high performance computing (HPC) environment. All reference to

the results of training and testing accuracy, GF, and F1-score are mean averages of these

performance measures for the classification datasets in the modelling studies.

Sections 8.2 and 8.3 discuss the results of the ensembles for clean data and skewed

class distributions studies respectively. The results of the ensembles for the number

and severity of outliers studies are described in Sections 8.4 and 8.5. Sections 8.6

and 8.7 discuss the results of the ensembles for bagged subsets and feature subsets

138
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studies respectively. The formal statistical tests performed for each modelling study are

also described. Following this, an overall discussion of the outcome of the ensemble

performance for all modelling studies is presented in Section 8.8. Section 8.9 concludes

the chapter with a summary of the findings.

8.2 Clean Data Study

This section discusses the results of the HTEs and homogeneous ensembles developed in

this research on clean classification datasets. Each clean dataset consists of full sample

and features where the skewed classes were balanced and outliers removed. The results

of the ensembles for each dataset are described separately.

Clean Sonar Dataset

The problem is to classify if a sonar sample is labelled as a mine metal cylinder (M) or

a rock (R) sonar signal. Plots of the testing and training accuracies of the ensembles for

this dataset are provided in Figures 8.1 and 8.2. The results of the testing and training

accuracy, GF and F1-score of the ensembles for the clean Sonar dataset are summarized

in Table 8.1.

Figure 8.1: Training Accuracy of Ensembles for Clean Sonar Dataset

Illustrated in Figure 8.1, the SVME produced the highest training accuracy of 85.6%,

followed by the HTEsm (85.3%) and the HTEdf (85.2%). The DTE offered the worst

training performance with a training accuracy of 76.5%, followed by the NBE with an

accuracy of 77.1%.

In Figure 8.2, the HTEdf offers the best generalization performance with a testing accuracy
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of 81.6% and is ranked as the most accurate ensemble.

Figure 8.2: Testing Accuracy of Ensembles for Clean Sonar Dataset

The HTEsm (80.5) and kNNhte (79.6%) are ranked as the second and third most accurate

ensembles. The DTE (62.4%) is the least accurate ensemble, followed by the SVME

(65.6%) and DThte (65.9) ensembles. Also, as observed in Table 8.1, all HTEs (i.e. NBhte,

kNNhte, DThte, SVMhte, NNhte, HTEsm, HTEdf) outperformed the pure homogeneous

ensembles (i.e. NBE, kNNE, DTE, and SVME) and the RF algorithm in terms of

generalization performance.

The generalization performance of the DTE and DThte showed that both ensembles,

compared to other ensembles, struggled with the characteristics of the Sonar dataset

consisting of small samples, large number of continuous-valued features, and binary

classes. The DThte provided better generalization performance than the DTE, which

illustrates the advantage of the mixtures of heterogeneous experts over homogeneous

mixtures. Also, the choice of the same control parameter configuration for the SVME

did result in worst generalization performance, while the SVMhte benefitted from the

different configurations used by the base members.

Illustrated by the GF of the ensembles, the SVME showed more overfitting of the training

dataset than other ensembles. The NBhte and NNhte ensembles provided GFs just

slightly above the expected GF value of 1.0 as proposed by Röbel (1994). For the F1-score

performance, the HTEdf and HTEsm are the best performing ensembles. The HTEdf

and HTEsm are more precise in providing 87% accuracy of the mine or rock samples,

while being robust to identifying 87% of all rock samples. This means that the HTEdf

and HTEsm produced the lowest misclassification rate of 13%, i.e. only a small number

of rock samples were misclassified as mine samples in the Sonar dataset. It is important
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to note that the interpretation of the F1-score for the Sonar dataset indicates a similar

interpretation for other datasets in the clean data study and other modelling studies in

this chapter. The generalization performance of the HTEdf and HTEsm indicates that

a combination of different ML algorithms produced a better mixture of heterogeneous

experts than using the same ML algorithm to predict the binary labels of mine and rock

samples in the Sonar dataset.

Table 8.1: Ensemble Results for Clean Sonar Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score
NBE 0.74700 ± 0.22168 0.77134 ± 0.11643 1.10595 0.76

kNNE 0.75100 ± 0.22880 0.81048 ± 0.09474 1.31382 0.86
DTE 0.62400 ± 0.23027 0.76590 ± 0.11238 1.60618 0.70
RF 0.73900 ± 0.17980 0.78752 ± 0.10503 1.22837 0.81

SVME 0.65600 ± 0.12870 0.85600 ± 0.08587 2.38889 0.72
NNE 0.75300 ± 0.19011 0.81476 ± 0.10311 1.33342 0.86

NBhte 0.75700 ± 0.21000 0.77276 ± 0.11429 1.06936 0.74
kNNhte 0.79600 ± 0.19871 0.83543 ± 0.10458 1.23958 0.81
DThte 0.65900 ± 0.21810 0.79419 ± 0.10165 1.65687 0.74

SVMhte 0.77500 ± 0.16651 0.82095 ± 0.10773 1.25665 0.79
NNhte 0.78200 ± 0.17139 0.79305 ± 0.09446 1.05338 0.81
HTEsm 0.80500 ± 0.18310 0.85314 ± 0.09884 1.32782 0.87
HTEdf 0.81600 ± 0.19299 0.85210 ± 0.09816 1.24404 0.87

Clean Breast Cancer Dataset

The problem is to predict whether breast cancer in a patient is recurrent or not. Figures

8.3 and 8.4 illustrate the testing and training accuracy of the ensembles. The results of the

testing and training accuracy, GF and F1-score of the ensembles are further provided in

Table 8.2.

Figure 8.3: Training Accuracy of Ensembles for Clean Breast Cancer Dataset
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Figure 8.4: Testing Accuracy of Ensembles for Clean Breast Cancer Dataset

As shown in Figure 8.3, the SVMhte generated 84.9% training accuracy, which is followed

by the SVME (84%), NNE (82.1%), HTEdf (81.4%), and HTEsm (81.3%). The NBE and

NBhte provided the worst training accuracy compared to other ensembles.

Illustrated by the testing accuracy in Figure 8.4, the kNNE is ranked as the most

accurate ensemble (66.7%), while the kNNhte offered the highest F1-score of 61%. The

RF algorithm is the second most accurate ensemble (64.6%), outperforming the HTEdf

(64%) with a slight difference of 0.6%. The HTEdf is ranked as the third most accurate

ensemble. The low standard deviations of the HTEdf and HTEsm provide evidence that

the ensembles achieved a good level of stability.

The generalization performance of the kNNE indicates the suitability of the ensemble

to a small number of features in the Breast Cancer dataset, because kNN algorithms

do not perform well on a large input dimension due to the cost associated with the

distance computation among features. For the SVME (63.3%) and SVMhte (63.3%), the

generalization performance of these ensembles showed the ability of SVM algorithms

to perform well on small datasets. The NBE and NBhte are ranked as the least

performing ensembles based on training and testing accuracies. Illustrated by the GFs

of the ensembles, the NBE and NBhte slightly overfit the training dataset, but resulted

in low generalization performance compared to other ensembles. The generalization

performance of the NBE and NBhte was expected to be efficient because NB algorithms

perform well on categorical features compared to numeric features where an assumption

of data distribution is intrinsically made.

Also, the DTE, DThte, NNE and NNhte underperformed other ensembles in terms of

testing accuracy, while the GFs of these ensembles indicate that the ensembles showed
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more overfitting to the training dataset than other ensembles. The generalization

performance of the NNE and NNhte showed that the ensembles also struggled with the

characteristics of the breast cancer dataset. Thus, the generalization performance of the

homogeneous ensembles is competitive with the HTEs for the complexity of the Breast

Cancer dataset.

Table 8.2: Ensemble Results for Clean Breast Cancer Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.51733 ± 0.16279 0.63556 ± 0.06301 1.32439 0.53
kNNE 0.66600 ± 0.12338 0.78593 ± 0.08225 1.56021 0.53
DTE 0.56267 ± 0.19660 0.79852 ± 0.06422 2.17059 0.56
RF 0.64600 ± 0.16054 0.81250 ± 0.05661 1.88893 0.57

SVME 0.63333 ± 0.05578 0.84000 ± 0.06602 2.29167 0.52
NNE 0.56333 ± 0.19175 0.82148 ± 0.07093 2.44606 0.56

NBhte 0.51800 ± 0.16441 0.66000 ± 0.06004 1.41765 0.54
kNNhte 0.63533 ± 0.14320 0.80963 ± 0.07371 1.91556 0.61
DThte 0.57533 ± 0.21497 0.80000 ± 0.07220 2.12333 0.57

SVMhte 0.63333 ± 0.05578 0.84889 ± 0.07799 2.42647 0.57
NNhte 0.56800 ± 0.18475 0.80593 ± 0.08624 2.22595 0.53
HTEsm 0.60600 ± 0.16901 0.81259 ± 0.06559 2.10237 0.55
HTEdf 0.64000 ± 0.16069 0.81407 ± 0.06968 1.93625 0.58

Clean Indian Liver Dataset

The task is to predict the presence or absence of liver disease in a patient. Figures 8.5 and

8.6 illustrate the testing and training accuracy of the ensembles, while Table 8.3 provides

the results of the testing and training accuracy, GF and F1-score of the ensembles for the

clean Indian Liver dataset.

Figure 8.5: Training Accuracy of Ensembles for Clean Indian Liver Dataset
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As depicted in Figure 8.5, the RF algorithm achieved the best training performance with

an accuracy of 75.2%. The DThte (72.8%) and HTEdf (72.7%) are ranked as the second

and third most accurate ensembles in terms of training accuracy. The SVMhte (65.6%)

provided the worst training accuracy compared to other ensembles.

Figure 8.6: Testing Accuracy of Ensembles for Clean Indian Liver Dataset

From Figure 8.6, the HTEdf outperformed all other ensembles achieving a testing

accuracy of 76.4%. The standard deviations of the HTEdf (σ=0.07788) and HTEsm

(σ=0.09717) also illustrate that the HTEdf and HTEsm achieved the third and fourth best

stability of predictions across independent runs. The SVME is the second most accurate

(76.2%) ensemble, while the HTEsm is ranked third with an accuracy of 75.9%. The

generalization performance of the HTEdf and HTEsm illustrates the benefit of combining

different ML algorithms to obtain effective diverse experts in the heterogeneous mixture

model compared to using the same ML algorithms for other ensembles. Also, the

generalization performance of the SVME indicates the suitability of SVM algorithms to

datasets of small sample sizes.

The NBE is ranked as the least accurate ensemble (66.5%), followed by the NBhte

ensemble (67.2%) in testing and training accuracy. The generalization performance of the

NBE and NBhte ensembles highlights the possibility that both ensembles struggled with

the multivariate input features in the Indian Liver dataset compared to other ensembles.

From Table 8.3, the GF of the RF algorithm indicates that the RF algorithm slightly

overfitted the training data. The GFs of other ensembles indicate that no overfitting issue

was experienced by the ensembles. It can be observed that the ensembles did not show

drastic degradation in the training and testing performance.

In terms of F1-score, the NNhte and HTEdf are ranked as the best performing ensembles
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offering a 72% F1-score, while the NBE and NBhte are ranked as the worst performing

ensembles with a 58% F1-score respectively. It can be concluded that the HTEs and

homogeneous ensembles performed well for the characteristics of the Indian Liver dataset

consisting of a binary classification problem with an unbalanced class distribution, a

small-moderate number of samples, a small number of features, and multiple input

features types.

Table 8.3: Ensemble Results for Clean Indian Liver Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.66470 ± 0.11353 0.66115 ± 0.05071 0.98954 0.58
kNNE 0.75379 ± 0.12294 0.66009 ± 0.06401 0.72435 0.61
DTE 0.73636 ± 0.09747 0.68330 ± 0.05850 0.83244 0.70
RF 0.71470 ± 0.10223 0.75194 ± 0.05827 1.15015 0.71

SVME 0.76212 ± 0.06557 0.66297 ± 0.06023 0.70581 0.69
NNE 0.73545 ± 0.12536 0.70314 ± 0.05180 0.89114 0.71

NBhte 0.67152 ± 0.11184 0.66115 ± 0.05008 0.96942 0.58
kNNhte 0.72864 ± 0.13072 0.71670 ± 0.05210 0.95788 0.69
DThte 0.75333 ± 0.10135 0.72807 ± 0.05900 0.90710 0.70

SVMhte 0.74485 ± 0.01635 0.65662 ± 0.06616 0.74306 0.70
NNhte 0.75379 ± 0.11330 0.68855 ± 0.06705 0.79053 0.72
HTEsm 0.75970 ± 0.09717 0.70854 ± 0.05910 0.82448 0.71
HTEdf 0.76379 ± 0.07788 0.72702 ± 0.0481 0.86530 0.72

Clean Credit Approval Dataset

The classification problem is concerned with approved or declined requests for credit

cards. Plots of the testing and training accuracy of the ensembles for the Credit Approval

dataset are given in Figures 8.7 and 8.8. Table 8.4 provides the results of the testing and

training accuracy, GF and F1-score of the ensembles for the clean Credit Approval dataset.

Illustrated by the training performance in Figure 8.7, the training accuracies of the

ensembles showed that all ensembles are well trained except the NBE. The benefit of

combining the advantage of different ML algorithms with different control parameter

configurations is illustrated in the training performance of the HTEdf, achieving the

highest training accuracy with 90.2%. The RF algorithm (89.2%) and HTEsm (89.1%)

are respectively ranked as the second and third best-trained ensembles, while the NBE
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performed poorly in training with an accuracy of 63.4%.

Figure 8.7: Training Accuracy of Ensembles for Clean Credit Approval Dataset

Figure 8.8: Testing Accuracy of Ensembles for Clean Credit Approval Dataset

In Figure 8.8, the SVMhte outperformed all ensembles highlighting the suitability of

SVM algorithms to small datasets. The HTEdf is ranked as the second most accurate

ensemble (81%), followed by the kNNE (80.7%), kNNhte (78.7%), and HTEsm (77.8%).

The NBE is the least accurate ensemble, revealing the possibility that the NBE struggled

with the multivariate input features in the Credit Approval dataset compared to other

ensembles. The NBhte performed better than the NBE due to the benefit of the mixtures

of heterogeneous experts obtained using different configurations for base NB learners in

the NBhte.

While the SVMhte achieved the best testing accuracy of 82.2%, the training and

generalization performance of the HTEdf illustrates the benefits of the combination of

different algorithms and different configurations to learn characteristics of the credit

approval dataset. On the other hand, despite being configured with base learners having

the same control parameter values, the generalization performance of the kNNE indicates

that the experts induced by the base learners were effective for the ensembles.
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A further observation of the GFs of the ensembles showed that the NBE and NBhte

slightly overfitted the training dataset compare to other ensembles, but resulted in poor

generalization performance for the NBE. While a number of other ensembles showed

more overfitting of the training dataset, the generalization performance of SVMhte,

HTEdf and kNNE indicates that the ensembles are not adversely influenced by the

problem of overfitting.

For the F1-score performance, the kNNhte achieved an 85% F1-score to be ranked as

best performing ensemble, while the SVMhte (84%) is ranked second. The HTEdf and

RF algorithm offer an equal F1-score of 83% to be ranked as the third-best performing

ensembles. Thus, it can be concluded that it is beneficial to construct ensembles using

a mixture of heterogeneous experts in comparison to homogeneous mixtures for this

dataset.

Table 8.4: Ensemble Results for Clean Credit Approval Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.53484 ± 0.10246 0.63429 ± 0.05836 1.27194 0.45
kNNE 0.80780 ± 0.10413 0.86635 ± 0.03621 1.43806 0.80
DTE 0.76264 ± 0.12552 0.87714 ± 0.04161 1.93202 0.78
RF 0.77407 ± 0.12151 0.89238 ± 0.03994 2.09939 0.83

SVME 0.77670 ± 0.10249 0.88508 ± 0.03368 1.94305 0.82
NNE 0.67824 ± 0.11514 0.85619 ± 0.04505 2.23739 0.74

NBhte 0.65110 ± 0.12060 0.72000 ± 0.05860 1.24608 0.63
kNNhte 0.78758 ± 0.10416 0.87429 ± 0.03847 1.68969 0.85
DThte 0.77407 ± 0.11470 0.88254 ± 0.03927 1.92349 0.79

SVMhte 0.82209 ± 0.10439 0.87556 ± 0.04058 1.42965 0.84
NNhte 0.77231 ± 0.13059 0.88730 ± 0.03623 2.02037 0.80
HTEsm 0.77846 ± 0.11360 0.89143 ± 0.03410 2.04049 0.81
HTEdf 0.81000 ± 0.12202 0.90222 ± 0.03454 1.94318 0.83

Clean Red Wine Dataset

The goal is to predict the quality of red wines. The testing and training accuracies of the

ensembles for this dataset are illustrated in Figures 8.9 and 8.10. Table 8.5 summarizes

the results of the testing and training accuracy, GF and F1-score of the ensembles for the

clean Red Wine dataset.
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From Figure 8.9, the RF algorithm achieved the highest training performance with an

accuracy of 86.2%, followed by the DThte (86%) and NNE (85.6%). The HTEdf is ranked

as the fifth-best performing ensemble with a training accuracy of 83.7%. The training

performance of the NBE (50.6%), NBhte (50.6%) and SVMhte (59.7%) showed that the

ensembles did not train well on the dataset.

Figure 8.9: Training Accuracy of Ensembles for Red Wine Dataset

Figure 8.10: Testing Accuracy of Ensembles for Red Wine Dataset

As shown in Figure 8.10, the NNE is the most accurate ensemble (56.5%) in terms of

testing accuracy, followed by the HTEdf (54.7%), SVME (54.6%), NNhte (54.5%), and

HTEsm (54.1%). The NBE (47.1%) and NBhte (48.8%) are the least accurate ensembles.

The generalization performance of the NNE indicates the suitability of NN algorithms to

perform well on the characteristics of the Red Wine datasets with moderate sample and

feature sizes, multiple classes, and continuous input features.

The NNhte also achieved a good level of testing accuracy due to the benefit of the

mixtures of heterogeneous experts. The NBE is the least accurate ensemble (47.1%),

followed by the DTE (48%).
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Table 8.5: Ensemble Results for Clean Red Wine Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.47125 ± 0.09455 0.50660 ± 0.02228 1.07164 0.45
kNNE 0.50062 ± 0.06265 0.78197 ± 0.02046 2.29042 0.48
DTE 0.48063 ± 0.08122 0.77193 ± 0.01948 2.27727 0.51
RF 0.53938 ± 0.07650 0.86273 ± 0.01838 3.35569 0.60

SVME 0.54625 ± 0.06994 0.68082 ± 0.02155 1.42162 0.47
NNE 0.56500 ± 0.06756 0.85650 ± 0.01898 3.03139 0.58

NBhte 0.48875 ± 0.08472 0.50605 ± 0.02229 1.03503 0.47
kNNhte 0.51500 ± 0.06966 0.79789 ± 0.01889 2.39964 0.50
DThte 0.52750 ± 0.07847 0.86049 ± 0.01874 3.38684 0.61

SVMhte 0.53000 ± 0.06643 0.59751 ± 0.02526 1.16774 0.52
NNhte 0.54500 ± 0.07556 0.84488 ± 0.02198 2.93330 0.63
HTEsm 0.54187 ± 0.07970 0.82692 ± 0.01939 2.64691 0.59
HTEdf 0.54750 ± 0.07635 0.83763 ± 0.01805 2.78676 0.62

Illustrated by the GFs of the ensembles, the NBE, NBhte, SVME, and SVMhte slightly

overfitted the training dataset, but resulted in low generalization performance for the

NBE. On the other hand, all other ensembles showed more overfitting of the training

dataset, but the effect of overfitting did not severely limit the generalization performance

of the ensembles except for the DTE that achieved low generalization performance. For

the F1-score performance, the NNhte outperformed other ensembles by achieving the

highest F1-score of 63%. However, the difference between the F1-scores of the NNhte and

HTEdf (62%) is just 1%.

Hence, it can be concluded that the homogeneous ensembles provided competitive

performance with the HTEs across all performance measures to predict multi-class labels

of the red wine quality samples in the Red Wine dataset.

Clean Car Evaluation Dataset

The problem is to predict one of the four classes representing the condition of a car in the

dataset. Plots of the testing and training accuracies of the ensembles for this dataset are

illustrated in Figures 8.11 and 8.12. Table 8.6 summarizes the results of the testing and

training accuracy, GF and F1-score of the ensembles for the clean Car Evaluation dataset.
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Figure 8.11: Training Accuracy of Ensembles for Car Evaluation Dataset

Illustrated in Figure 8.11, the NNE achieved the best training performance with an

accuracy of 98.9%, followed by the NNhte (98.8%), SVME (98.5%), HTEdf (98.3%), and

HTEsm (98.2%). The NBE and NBhte are ranked as the least trained ensemble offering

85% training accuracies respectively. Although, the training accuracies and the low

standard deviations for the training dataset achieved by all ensembles provide evidence

that the ensembles are well trained on the Car Evaluation dataset.

Figure 8.12: Testing Accuracy of Ensembles for Car Evaluation Dataset

In Figure 8.12, the HTEdf is the most accurate ensemble (95.8%), achieving the best

stability over the independent runs as illustrated by the standard deviation of 0.02778

obtained. The NNE (95.2%) and HTEsm (94.9%) are the second and third most accurate

ensembles. Also, the NBE and NBhte underperformed other ensembles with a testing

accuracy of 80.8% respectively. The generalization performance of the HTEdf indicates

the advantage of combining multiple instances of different ML algorithms with different

configurations compared to other ensembles for the characteristics of the Car Evaluation

dataset.

The GFs of the NBE, DTE, and NBhte illustrates that the ensembles slightly overfit the
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training dataset, but the testing accuracies of the NBE and NBhte are adversely influenced

by the problem of overfitting. Also, while other ensembles, except SVME, showed more

overfitting of the training dataset, the SVME produced severe overfitting of the training

dataset more than the ensembles.

Table 8.6: Ensemble Results for Clean Car Evaluation Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.80866 ± 0.06045 0.85000 ± 0.01682 1.27563 0.82
kNNE 0.84563 ± 0.04543 0.94308 ± 0.01090 2.71190 0.83
DTE 0.92245 ± 0.04730 0.95267 ± 0.01008 1.63830 0.96
RF 0.87734 ± 0.03900 0.97415 ± 0.00820 4.74560 0.95

SVME 0.86980 ± 0.05016 0.98503 ± 0.00627 8.69498 0.92
NNE 0.95200 ± 0.03110 0.98938 ± 0.00484 4.52174 0.98

NBhte 0.80866 ± 0.06045 0.85000 ± 0.01682 1.27563 0.82
kNNhte 0.85195 ± 0.04899 0.94703 ± 0.01073 2.79476 0.83
DThte 0.93182 ± 0.04916 0.97759 ± 0.00699 3.04257 0.95

SVMhte 0.90108 ± 0.03619 0.97518 ± 0.00761 3.98559 0.97
NNhte 0.94793 ± 0.03066 0.98862 ± 0.00526 4.57347 0.99
HTEsm 0.94906 ± 0.03683 0.98221 ± 0.00586 2.86269 0.98
HTEdf 0.95894 ± 0.02778 0.98390 ± 0.00571 2.54983 0.99

The generalization performance of the HTEdf and HTEsm indicates that the combination

of multiple ML algorithms with the same and different control parameter configurations

generated diverse experts that effectively learned and generalized well for the

characteristics of the Car Evaluation dataset. Also, the generalization performance of the

NNE and NNhte highlights that the ensembles produced a smooth interpolation among

the training samples to achieve high generalization performances.

For the F1-score, the HTEdf and NNhte outperformed other ensembles by achieving a

99% F1-score, respectively. Although, other ensembles also performed well in terms of

F1-score. Thus, the characteristics and complexity of the Car Evaluation dataset illustrate

the suitability of the HTEs and homogeneous ensembles to the dataset. However, for all

performance measures, it can be concluded that the HTEs generalizes well for the Car

Evaluation dataset than the pure homogeneous ensembles.
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Clean White Wine Dataset

The goal is to predict the quality of white wine. The prediction of wine quality labels for

the White Wine dataset is the same as the Red wine dataset, except that the White Wine

dataset contains an additional class label. Plots of the testing and training accuracies of

the ensembles for this dataset are provided in Figures 8.13 and 8.14. Table 8.7 further

summarizes the results of the testing and training accuracy, GF and F1-score of the

ensembles for the clean White Wine dataset.

Figure 8.13: Training Accuracy of Ensembles for White Wine Dataset

Figure 8.14: Testing Accuracy of Ensembles for White Wine Dataset

As shown in Figure 8.13 and 8.14, it can be observed that all ensembles reacted almost

equivalently in training and prediction to the red wine dataset. However, while the

ensembles performed better during training for the White Wine dataset, all the ensembles

generated reduced testing accuracies compared to the Red Wine dataset. The training and

testing performance of the ensembles are attributed to characteristics of the White Wine

dataset consisting of more observations, an extra label value and a different distribution

of the labels.
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From Figure 8.13, the RF algorithm achieved the best training performance with an

accuracy of (87.9%), followed by the DThte (87.4%), kNNhte (87.1%), NNE (86.3%),

NNhte (85.27%), and HTEdf (85.22%). The NBE (51.7%) and NBhte (51.7%) struggled

to effectively capture the trend in the dataset, and the SVMhte (56.7%) also provided the

lowest training accuracy compared to other ensembles.

Table 8.7: Ensemble Results for Clean White Wine Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.42673 ± 0.04126 0.51754 ± 0.01431 1.18821 0.31
kNNE 0.48408 ± 0.04425 0.82999 ± 0.00850 3.03457 0.47
DTE 0.47286 ± 0.04888 0.76103 ± 0.01441 2.20592 0.45
RF 0.51102 ± 0.04675 0.87963 ± 0.00963 4.06236 0.58

SVME 0.51816 ± 0.04891 0.68273 ± 0.01040 1.51868 0.45
NNE 0.50939 ± 0.05036 0.86367 ± 0.00895 3.59862 0.55

NBhte 0.45082 ± 0.04767 0.51729 ± 0.01429 1.13771 0.32
kNNhte 0.51694 ± 0.03810 0.87178 ± 0.00747 3.76750 0.55
DThte 0.51510 ± 0.05408 0.87406 ± 0.00899 3.85031 0.60

SVMhte 0.49714 ± 0.04751 0.56777 ± 0.01323 1.16340 0.40
NNhte 0.52694 ± 0.04539 0.85270 ± 0.01117 3.21165 0.56
HTEsm 0.52224 ± 0.04621 0.84319 ± 0.00929 3.04677 0.57
HTEdf 0.53204 ± 0.04716 0.85228 ± 0.00782 3.16790 0.59

In Figure 8.14, the HTEdf outperformed other ensembles with a testing accuracy of 53.2%.

The NNhte (52.6%) is the second most accurate ensemble, while the HTEsm (52.2%)

is ranked as the third most accurate ensemble. The generalization performance of the

HTEdf and HTEsm provides evidence that it is beneficial to combine heterogeneous

experts induced from different ML algorithms consisting of the same and different

control parameter configurations for this dataset. The NBE also performed poorly in

prediction with testing accuracies of 42.6%, in which case the NBhte outperformed

the NBE due to advantage of the mixtures of heterogeneous experts derived from the

different configurations set for the base learners within the NBhte.

Illustrated by the GFs of the ensembles, the NBE and NBhte as well as the SVME and

SVMhte slightly overfitted the training dataset, but resulted in a low generalization

performance for the NBE and NBhte compared to other ensembles. On the other hand,

the GFs of other ensembles indicates that the ensembles showed more overfitting of
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the training dataset. The DThte (60%) slightly outperformed the HTEdf (59%) with a

difference of 1% in terms of F1-score to be ranked as the best performing ensemble. The

NBE and NBhte performed poorly in terms of F1-score. Therefore, it can be concluded

that the HTEs trained and generalized better than the pure homogeneous ensembles

(except for SVME and SVMhte) for the characteristics of the White Wine dataset consisting

of a moderate number of samples, a small number of features, multi-class labels, and

input features of the continuous type.

Clean Nursery Dataset

The goal is to predict one of five levels of recommendation for a nursery school admission

application. The testing and training accuracy of the ensembles are illustrated in Figures

8.15 and 8.16. Table 8.8 summarizes the results of the testing and training accuracy, GF

and F1-score of the ensembles for the clean Nursery dataset.

Figure 8.15: Training Accuracy of Ensembles for Nursery Dataset

Figure 8.16: Testing Accuracy of Ensembles for Nursery Dataset

In Figure 8.15, the HTEdf is ranked as the best trained ensemble with a training accuracy

of 95.7%. The NNhte (95.3%) and HTEsm (95.1%) are ranked as the second and third
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best ensembles based on training accuracy. Although, other ensembles achieved efficient

training performance and stability which is illustrated in the training accuracies and low

standard deviation recorded by the ensembles in Table 8.8.

Table 8.8: Ensemble Results for Clean Nursery Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.89293 ± 0.05739 0.90703 ± 0.02403 1.15155 0.90
kNNE 0.75214 ± 0.08192 0.85092 ± 0.03237 1.66263 0.80
DTE 0.83928 ± 0.05480 0.91977 ± 0.02014 2.00338 0.93
RF 0.86736 ± 0.05732 0.92157 ± 0.02242 1.69132 0.93

SVME 0.79043 ± 0.08935 0.90826 ± 0.02662 2.28432 0.86
NNE 0.90601 ± 0.03924 0.97267 ± 0.01342 3.43858 0.97

NBhte 0.89127 ± 0.05543 0.91261 ± 0.02336 1.24416 0.90
kNNhte 0.79446 ± 0.07131 0.86872 ± 0.03097 1.56570 0.81
DThte 0.87420 ± 0.05927 0.93183 ± 0.02211 1.84532 0.94

SVMhte 0.89641 ± 0.04346 0.94479 ± 0.02200 1.87621 0.94
NNhte 0.90181 ± 0.04278 0.95375 ± 0.02378 2.12292 0.96
HTEsm 0.91112 ± 0.03505 0.95108 ± 0.01609 1.81682 0.97
HTEdf 0.90938 ± 0.03607 0.95719 ± 0.01814 2.11676 0.98

As shown in Figure 8.16, the HTEsm is ranked as the most accurate ensemble with a

testing accuracy of 91.1%, achieving the best stability as illustrated by the lowest standard

deviation of 0.03505. The HTEdf (90.9%) is the second most accurate ensemble, achieving

the second-best stability with a standard deviation of 0.03607, and the NNE (90.6%) is

the third most accurate ensembles. The kNNE (75.2%) provides the least testing accuracy,

followed by the SVME (79.0%) and kNNhte (79.4%).

The generalization performance of the HTEdf and HTEsm shows that the combination of

multiple instances of different ML algorithms generated different experts that effectively

generalized well on the characteristics of the Nursery dataset. The generalization

performance of the kNNE illustrates the possibility that the ensemble struggled with

the characteristics of the Nursery dataset because kNN algorithms intrinsically give a

preference to numeric features over categorical features. The kNNhte outperformed the

kNNE due to the different configurations of the base kNN learners within the kNNhte

resulting in a better generalization performance. On the other hand, the generalization

performance of the SVME is explained by the inability of the base learners within the
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SVME to handle a large number of samples in the Nursery dataset due to the complexity

of the optimization equation to be solved by the base learners.

As illustrated by the GFs of the ensembles, the NNE produced more overfitting of

the training dataset than other ensembles. Other ensembles slightly overfitted the

training dataset. The F1-scores of the ensembles are competitive to show preciseness and

robustness in prediction. The HTEdf achieved the highest F1-score of 98%, while the

HTEsm and NNE offer 97% F1-score to be jointly ranked as the second-best performing

ensembles. The characteristics of the Nursery dataset illustrate the suitability of the

dataset for the HTEs and homogeneous ensembles based on the results of all performance

measures.

Clean Bank Marketing Dataset

The problem describes the characteristics of a bank client to determine if the client makes

a bank term deposit or not. Figures 8.17 and 8.18 illustrate the testing and training

accuracies of the ensembles for the Bank Marketing dataset. The results of the testing

and training accuracy, GF, and F1-score of the ensembles are summarized in Table 8.9.

Figure 8.17: Training Accuracy of Ensembles for Clean Bank Marketing Dataset

Figure 8.18: Testing Accuracy of Ensembles for Clean Bank Marketing Dataset
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Table 8.9: Ensemble Results for Clean Bank Marketing Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.55560 ± 0.11109 0.58522 ± 0.04776 1.07140 0.66
kNNE 0.89806 ± 0.01133 0.81651 ± 0.01266 0.55557 0.69
DTE 0.88576 ± 0.02663 0.94405 ± 0.01005 2.04195 0.87
RF 0.89918 ± 0.01528 0.96151 ± 0.00882 2.61938 0.86

SVME 0.89369 ± 0.00314 0.97823 ± 0.00626 4.88388 0.84
NNE 0.89111 ± 0.01941 0.98082 ± 0.00660 5.67720 0.87

NBhte 0.83103 ± 0.03655 0.83022 ± 0.01691 0.99519 0.75
kNNhte 0.89693 ± 0.00907 0.82431 ± 0.01379 0.58666 0.70
DThte 0.89498 ± 0.02121 0.96121 ± 0.00841 2.70728 0.89

SVMhte 0.90274 ± 0.01235 0.95961 ± 0.00859 2.40810 0.88
NNhte 0.89806 ± 0.01577 0.97319 ± 0.00714 3.80239 0.88
HTEsm 0.89985 ± 0.01564 0.96134 ± 0.00814 2.59040 0.89
HTEdf 0.90065 ± 0.01490 0.97099 ± 0.00879 3.42483 0.90

Illustrated in Figure 8.17, the training accuracies of the ensembles provide evidence that

all ensembles except the NBE trained well on the dataset. The NNE achieved the best

training performance with an accuracy of 98%, followed by the SVME (97.8%), NNhte

(97.3%), and HTEdf (97%). The NBE performed poorly in training with an accuracy of

58.2%.

In Figure 8.18, the SVMhte achieved a testing accuracy of 90.2% to be ranked as the

most accurate ensemble. The HTEdf (90%) is the second most accurate ensemble, slightly

underperforming the SVMhte with a difference of 0.2%. The HTEsm (89.98%) is ranked

as the third most accurate ensemble. Also, the NBE significantly underperformed other

ensembles with a testing accuracy of 55.5%.

The SVMhte outperformed the SVME due to the different configurations of the base

learners in the SVMhte. The low generalization performance of the NBE is attributed to

the possibility that the ensemble struggled with the characteristics of the Bank Marketing

dataset compared to other ensembles.

Illustrated by the GFs of the ensembles, the NBE slightly overfitted the training dataset

leading to poor training and generalization performance compared to othe ensembles.

On the other hand, the kNNE, NBhte and kNNhte did not experience the problem of
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overfitting, while other ensembles showed more overfitting of the training dataset.

In terms of F1-score, the HTEdf offers the highest F1-score of 90% to be rank as the best

performing ensemble. Although, a number of HTEs, including HTEsm (89%), DThte

(89%), SVMhte (88%), and NNhte (88%) achieved competitive F1-scores when compared

to the HTEdf. Thus, considering the results of all performance measures, it can be

concluded that the HTEs performed better than the pure homogeneous ensembles to train

and make predictions for the characteristics of the Bank Marketing dataset.

Clean Censor Income Dataset

The task is to predict whether an adult earns more or less than $50,000 a year. Plots of the

testing and training accuracies of the ensembles for the Censor Income dataset are given

in Figures 8.19 and 8.20. Table 8.10 further summarizes the results of testing and training

accuracy, testing and training error, and the GFs of the ensembles for the dataset.

Figure 8.19: Training Accuracy of Ensembles for Clean Censor Income Dataset

Figure 8.20: Testing Accuracy of Ensembles for Clean Censor Income Dataset

As shown in Figure 8.19, the NNE achieved the best training performance with an

accuracy of 86.5%, followed by the NNhte (86.1%), DThte (84.67%), and HTEsm (84.62).
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The NBE (73%) provided the worst training accuracy compared to other ensembles.

The reliable training accuracies and low standard deviations of all ensembles provide

evidence that the ensembles trained well to capture the characteristics of the Censor

Income dataset.

Table 8.10: Ensemble Results for Clean Censor Income Dataset

Ensembles Testing Accuracy Training Accuracy GF F1-score

NBE 0.55642 ± 0.04335 0.73009 ± 0.01852 1.64346 0.74
kNNE 0.81527 ± 0.03381 0.80474 ± 0.01736 0.94609 0.76
DTE 0.79971 ± 0.03626 0.82957 ± 0.01693 1.17520 0.80
RF 0.81608 ± 0.03038 0.84451 ± 0.01785 1.18283 0.81

SVME 0.80941 ± 0.02628 0.83387 ± 0.01441 1.14723 0.78
NNE 0.80682 ± 0.03260 0.86555 ± 0.01622 1.43679 0.80

NBhte 0.71642 ± 0.03826 0.78633 ± 0.01563 1.32721 0.76
kNNhte 0.81378 ± 0.03332 0.83352 ± 0.01446 1.11861 0.78
DThte 0.81050 ± 0.03483 0.84675 ± 0.01584 1.23653 0.81

SVMhte 0.82484 ± 0.02776 0.79806 ± 0.01429 0.86741 0.79
NNhte 0.81501 ± 0.03201 0.86133 ± 0.01485 1.33401 0.80
HTEsm 0.81568 ± 0.03488 0.84622 ± 0.01480 1.19857 0.82
HTEdf 0.82183 ± 0.03272 0.83919 ± 0.01447 1.10796 0.83

From Figure 8.20, the SVMhte (82.4%) is ranked as the most accurate ensemble. The

SVMhte outperforming the SVME highlights the benefit of the mixtures of heterogeneous

experts achieved from the different configurations of the base learners within the SVMhte.

In comparison to other ensembles, another possibility is related to the fact that the

SVMhte performed well on the characteristics of the Censor Income dataset than other

ensembles. The HTEdf (82.1%) is ranked as the second most accurate ensemble, while

the RF algorithm (81.6%) and HTEsm (81.56%) are the third and fourth most accurate

ensembles respectively. The advantage of the different ML algorithms within the HTEdf

and HTEsm benefitted the predictability of the ensembles, while the generalization

performance of the developed RF algorithm is due to the benefit of the intrinsic ensemble

approaches (i.e. bagging and RFSM) implemented by RF algorithms.

The NBE offers the worst testing accuracy of 55.6%, illustrating the possibility that the

ensemble struggled with the multivariate features in the Censor Income dataset because

NB algorithms perform better on categorical features, while making assumptions for the
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data distribution in numeric features.

Based on the GFs of the ensembles, the kNNE and SVMhte did not experience the

problem of overfitting of the training dataset, while other ensembles slightly overfit the

training dataset. Specifically, the problem of the slight overfitting adversely affect the

generalization performance of the NBE.

In terms of F1-score, the HTEdf achieved the best F1-score of 84%, followed by the HTEsm

(82%). The DThte and RF algorithm offer equal F1-score (81%) to be jointly ranked as

the third-best performing ensembles. Thus, the HTEs performed better than the pure

homogeneous ensembles for the characteristics of the Censor Income dataset to predict

the binary labels of the adult income samples.

Statistical Analysis of Results

This section compares the generalization performance of the HTEs and homogeneous

ensembles. The comparison is carried out to ascertain whether there exists a statistically

significant difference in the performance of the ensembles. If a statistical difference

exists, the ensembles that significantly differ are tested to verify the differences in the

performance of the ensembles. The statistical tests used in this research were discussed

in Section 7.8, including the Iman and Davenport extension of the Friedman test and

Bonferroni-Dunn post hoc test. These statistical tests are used for all modelling studies.

Friedman Test

The Friedman test is used to compare the generalization performance of the 13 ensembles

over the 10 datasets at a significance level α = 0.05, which corresponds to a confidence

level of 99.50%. As formally defined in Section 7.8.1, the null hypothesis of the Friedman

test is that there is no significant difference between the generalization performance of the

ensembles. Otherwise, the alternative hypothesis is selected.

The first step of the Friedman test is a ranking of the ensembles based on generalization

performance for each dataset given in Table 8.11. The results in Table 8.11 (consisting

of the testing accuracy and ranks of the ensembles for each dataset) provide the average

rankings (AvR) of the ensembles, which shows an initial comparison of the ensembles in

this modelling study and other modelling studies. Also, according to the Friedman test,
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the ensemble presenting the lowest average rank across all datasets is the best performing

ensemble.

The HTEdf is the best performing ensemble achieving the best average ranking of 1.70,

followed by HTEsm (3.60), SVMhte (4.85), and NNhte (5.20). The average ranks of the

HTEdf and HTEsm indicate the advantage of combining different ML algorithms to

develop a mixture of heterogeneous experts. Another interesting outcome is that all HTEs

were ranked better than the pure homogeneous ensembles, which illustrates that the

different configurations used induced efficient base experts combined in heterogeneous

mixtures compared to homogeneous mixtures.

Table 8.11: Ranking the Generalization Performance of Ensembles over Classification
Datasets in the Clean Data Study

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AvR

NBE 74.7(9) 51.7(13) 66.4(13) 53.4(13) 47.1(13) 80.8(12.5) 42.6(13) 89.2(6) 55.5(13) 55.6(13) 11.85

kNNE 75.1(8) 66.6(1) 75.4(4.5) 80.7(3) 50.0(10) 84.5(11) 48.4(10) 75.2(13) 89.8(5.5) 81.52(5) 7.10

DTE 62.4(13) 56.2(11) 73.6(8) 76.2(10) 48.0(12) 92.2(6) 47.2(11) 83.9(10) 88.5(11) 79.9(11) 10.30

RF 73.9(10) 64.6(2) 71.4(11) 77.4(7.5) 53.9(6) 87.7(8) 51.1(7) 86.7(9) 89.91(4) 81.6(3) 6.75

SVME 65.6(12) 63.3(5.5) 76.2(2) 77.6(6) 54.6(3) 86.9(9) 51.8(4) 79.0(12) 89.3(9) 80.9(9) 7.15

NNE 75.3(7) 56.3(10) 73.5(9) 67.8(11) 56.5(1) 95.2(2) 50.9(8) 90.6(3) 89.1(10) 80.6(10) 7.10

NBhte 75.7(6) 51.8(12) 67.1(12) 65.1(12) 48.8(11) 80.8(12.5) 45.0(12) 89.1(7) 83.1(12) 71.6(12) 10.85

kNNhte 79.6(3) 63.5(4) 72.8(10) 78.7(4) 51.5(9) 85.1(10) 51.6(5) 79.4(11) 89.6(7) 81.3(7) 7.00

DThte 65.9(11) 57.5(8) 75.3(6) 77.4(7.5) 52.7(8) 93.1(5) 51.5(6) 87.4(8) 89.4(8) 81.0(8) 7.55

SVMhte 77.5(5) 63.3(5.5) 74.4(7) 82.2(1) 53.0(7) 90.1(7) 49.7(9) 89.6(5) 90.2(1) 82.4(1) 4.85

NNhte 78.2(4) 56.8(9) 75.4(4.5) 77.2(9) 54.5(4) 94.7(4) 52.6(2) 90.1(4) 89.8(5.5) 81.50(6) 5.20

HTEsm 80.5(2) 60.6(7) 75.9(3) 77.8(5) 54.1(5) 94.9(3) 52.2(3) 91.1(1) 89.98(3) 81.56(4) 3.60

HTEdf 81.6(1) 64.0(3) 76.3(1) 81.0(2) 54.7(2) 95.8(1) 53.2(1) 90.9(2) 90.0(2) 82.1(2) 1.70

Based on the average rankings of the ensembles in Table 8.11, the calculated Friedman

test statistic χ2
F is 64.058, which is followed by the computation of the Iman-Davenport

extension of the Friedman test FF, which equals 10.305. FF is distributed according to

the F distribution of critical values with degrees of freedom equal to (j − 1) = 12 and

(N − 1)× (j − 1) = 108. The critical value of F(12, 108) for α = 0.05 is 1.87. It is important

to note that the computed degrees of freedom and critical value are used later in other

modelling studies. Hence, because the value of FF is greater than the obtained critical

value, the null hypothesis that all ensembles are equal is rejected. The rejection of the null

hypothesis indicates that, there is a statistically significant difference in the generalization

performance of the ensembles.
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Bonferroni-Dunn Test

The rejection of the null hypothesis resulted in performing a post hoc test using the

Bonferroni-Dunn test. For the purpose of this research, which focuses on the development

of mixtures of heterogeneous experts specifically from the combination of different ML

algorithms, the HTEdf is selected as the control ensemble for the Bonferroni-Dunn test

across all modelling studies. The HTEdf was selected as the control ensemble because

the HTEdf maximizes behavioural diversity to obtain two benefits from the mixtures of

heterogeneous experts. The first benefit is achieved by capitalizing on the inductive biases

of different ML algorithms intrinsically. The second benefit takes advantage of using

different control parameter configurations for the multiple instances of the different ML

algorithms combined within the HTEdf. The rank of the HTEdf is compared with the

rank achieved by other ensembles. The critical value, qα, associated with the two-tailed

Bonferroni-Dunn test at the significance level of α = 0.05 with 13 ensembles is 2.87, and

the computed critical difference (CD) is 4.998. The computed critical value of 2.87 and the

CD value of 4.998 are also used later in other modelling studies.

For the Bonferroni-Dunn test, a significant difference is detected between the HTEdf and

any ensemble if the difference between the average rank of the HTEdf and the ensemble

is greater than the computed CD of 4.998. Figure 8.21 presents the critical difference plot

of the significant difference in generalization performance between the HTEdf and any

ensemble. The ranks outside the black marked interval indicate a significant difference;

otherwise, no significant difference is considered. It is important to note that this decision

rule to detect a significant difference in the Bonferroni-Dunn test and the critical difference

plot is used later in other modelling studies.

Figure 8.21: Critical Difference Plot of Ensembles for Clean Data Study in Classification
Problems

As illustrated in Figure 8.21, the outcome of the Bonferroni-Dunn test showed that the

HTEdf is significantly more accurate than the pure homogeneous ensembles (i.e. NBE,
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kNNE, DTE, SVME, NNE), RF, NBhte, kNNhte, and DThte. On the other hand, the

10 experimental datasets did not provide sufficient evidence to show that a significant

difference in generalization performance exists between the HTEdf and HTEsm, SVMhte,

and NNhte.

Furthermore, it can be observed that the difference in average ranks between the HTEdf

and RF is just a little above the CD = 4.998, (i.e. 6.75-1.70 = 5.05) but close to it. This

is attributed to the possibility that the developed RF capitalizes on the benefit of the

intrinsic ensemble approaches (i.e. bagging and RFSM) used in RF algorithms (Breiman,

2001; Bernard et al., 2009). Also, the HTEdf is significantly not different from the

HTEsm because both ensembles were developed using multiple instances of different

ML algorithms. In addition, the Bonferroni-Dunn test showed that there is a significant

difference in generalization performance between homogeneous and heterogeneous

mixtures of experts.

8.3 Skewed Class Distributions Study

This section discusses the performance of the ensembles on skewed class distributions

considered from 10-90%, 15-85%, 20-80%,..., 45-55% to 50-50% in the training datasets.

The summative results (over all skewness ratios) of the testing and training accuracy, GF

and F1-score for each ensemble over all classification datasets are shown in Table 8.12.

The best generalization performance and F1-score for each dataset are bolded, while the

second-best performance for these performance measures is underlined for this modelling

study and other modelling studies except the clean data study. The confusion matrices

of the ensembles are provided in Appendix A to show the ensembles that achieved the

highest generalization performance for the prediction of the minority class(es) in each

dataset.

By observing the results in Table 8.12, the advantage of the mixtures of heterogeneous

experts is evident in the overall generalization performance and F1-score of the HTEs over

the homogeneous mixtures of the pure homogeneous ensembles. The HTEdf achieved

the highest overall generalization performance on seven out of the 10 datasets with

respect to the overall imbalanced ratios. Based on the complexity of the seven datasets to

predict binary and multi-class labels, the HTEdf achieved the best overall generalization
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performance for three of the six binary problems (Sonar, Indian and Credit datasets) and

all multi-class classification problems (i.e. Red Wine, Car Evaluation, White Wine, and

Nursery datasets). The kNNE offered the highest testing accuracy of 66.6% for the Breast

Table 8.12: Ensemble Results over all Classification Datasets in Skewed Class Distribution
Study

Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBE

Testing accuracy 0.747 0.517 0.665 0.535 0.471 0.809 0.427 0.846 0.556 0.533

Training accuracy 0.755 0.782 0.822 0.537 0.513 0.863 0.513 0.927 0.798 0.851

GF 1.606 3.371 2.112 1.010 1.104 1.420 1.181 2.263 2.638 3.557

F1-Score 0.626 0.428 0.428 0.493 0.242 0.820 0.252 0.854 0.460 0.662

kNNE

Testing accuracy 0.586 0.666 0.743 0.788 0.501 0.846 0.469 0.806 0.897 0.809

Training accuracy 0.672 0.732 0.787 0.829 0.608 0.870 0.622 0.850 0.819 0.865

GF 1.587 1.497 1.440 1.290 1.292 1.195 1.431 1.336 0.633 1.513

F1-Score 0.622 0.467 0.467 0.832 0.352 0.773 0.373 0.878 0.540 0.694

DTE

Testing accuracy 0.630 0.566 0.739 0.759 0.486 0.923 0.475 0.897 0.886 0.784

Training accuracy 0.684 0.809 0.753 0.855 0.604 0.936 0.633 0.918 0.953 0.884

GF 1.240 4.457 1.154 2.073 1.327 1.200 1.472 1.284 2.761 2.374

F1-Score 0.664 0.510 0.510 0.718 0.399 0.888 0.364 0.881 0.784 0.671

RF

Testing accuracy 0.709 0.625 0.736 0.792 0.537 0.883 0.523 0.895 0.899 0.801

Training accuracy 0.744 0.811 0.788 0.865 0.652 0.941 0.672 0.923 0.969 0.901

GF 1.306 3.541 1.440 1.865 1.348 2.018 1.486 1.381 3.443 2.836

F1-Score 0.659 0.461 0.461 0.637 0.422 0.848 0.394 0.868 0.841 0.694

SVME

Testing accuracy 0.728 0.630 0.764 0.776 0.531 0.871 0.506 0.856 0.894 0.803

Training accuracy 0.744 0.709 0.823 0.814 0.568 0.959 0.633 0.939 0.973 0.874

GF 1.268 1.533 1.529 1.491 1.122 3.254 1.401 2.430 4.231 1.687

F1-Score 0.590 0.420 0.418 0.686 0.392 0.924 0.362 0.922 0.839 0.731

NNE

Testing accuracy 0.765 0.554 0.731 0.674 0.555 0.952 0.516 0.940 0.891 0.801

Training accuracy 0.730 0.745 0.803 0.791 0.680 0.972 0.692 0.967 0.974 0.881

GF 0.898 1.963 1.591 1.718 1.406 1.988 1.603 1.921 4.627 2.112

F1-Score 0.657 0.469 0.469 0.720 0.443 0.959 0.414 0.943 0.841 0.730
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Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBhte

Testing accuracy 0.762 0.518 0.672 0.651 0.489 0.809 0.450 0.851 0.831 0.703

Training accuracy 0.761 0.793 0.826 0.615 0.517 0.865 0.528 0.932 0.878 0.897

GF 1.554 3.835 2.124 0.916 1.079 1.457 1.177 2.406 2.241 3.505

F1-Score 0.592 0.442 0.442 0.554 0.236 0.824 0.234 0.856 0.533 0.703

kNNhte

Testing accuracy 0.655 0.635 0.739 0.808 0.515 0.852 0.491 0.831 0.897 0.808

Training accuracy 0.656 0.735 0.783 0.820 0.604 0.882 0.629 0.868 0.803 0.866

GF 1.173 1.714 1.450 1.086 1.243 1.265 1.395 1.336 0.581 1.554

F1-Score 0.681 0.480 0.480 0.833 0.380 0.769 0.389 0.891 0.480 0.689

DThte

Testing accuracy 0.671 0.591 0.756 0.762 0.530 0.935 0.521 0.912 0.895 0.805

Training accuracy 0.744 0.808 0.793 0.868 0.651 0.950 0.671 0.936 0.966 0.895

GF 1.489 4.278 1.347 2.307 1.372 1.323 1.485 1.419 3.613 2.414

F1-Score 0.649 0.527 0.527 0.723 0.437 0.907 0.393 0.909 0.801 0.682

SVMhte

Testing accuracy 0.698 0.632 0.748 0.818 0.549 0.903 0.507 0.922 0.903 0.825

Training accuracy 0.738 0.713 0.817 0.840 0.614 0.930 0.563 0.972 0.937 0.879

GF 1.392 1.596 1.589 1.218 1.204 1.438 1.150 2.930 1.948 1.585

F1-Score 0.540 0.391 0.391 0.786 0.334 0.889 0.272 0.946 0.853 0.716

NNhte

Testing accuracy 0.760 0.579 0.761 0.766 0.554 0.948 0.529 0.944 0.899 0.811

Training accuracy 0.735 0.746 0.826 0.838 0.665 0.970 0.665 0.974 0.965 0.882

GF 1.132 1.982 1.547 1.594 1.343 1.977 1.418 2.278 3.019 1.885

F1-Score 0.796 0.531 0.531 0.673 0.471 0.961 0.429 0.948 0.860 0.726

HTEsm

Testing accuracy 0.769 0.644 0.750 0.811 0.548 0.952 0.519 0.957 0.897 0.802

Training accuracy 0.728 0.769 0.822 0.849 0.652 0.959 0.670 0.977 0.960 0.890

GF 1.012 2.194 1.609 1.412 1.320 1.220 1.483 1.953 2.808 2.042

F1-Score 0.761 0.549 0.539 0.802 0.449 0.946 0.477 0.952 0.812 0.724

HTEdf

Testing accuracy 0.775 0.645 0.767 0.814 0.557 0.955 0.531 0.964 0.901 0.813

Training accuracy 0.738 0.773 0.821 0.867 0.640 0.963 0.664 0.983 0.966 0.897

GF 1.000 2.177 1.489 1.709 1.254 1.287 1.416 2.159 3.148 2.090

F1-Score 0.768 0.572 0.562 0.822 0.457 0.959 0.482 0.963 0.844 0.733
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Cancer dataset, which is one of the remaining three binary classification datasets.

The SVMhte outperformed other ensembles for the Bank Marketing and Censor Income

datasets. It can be observed that the HTEdf is ranked as the second most accurate

ensemble for the remaining three binary classification datasets (i.e. Breast Cancer, Bank

Marketing, and Censor Income datasets). The HTEsm, NNhte, SVMhte, and NNE also

achieved the second-best testing performance in a number of datasets.

The NBE and NBhte are ranked as the least performing ensembles based on

generalization performance for eight of the 10 datasets, followed by the kNNE and

kNNhte. Also, in terms of generalization performance, it can be observed that the NBhte

outperformed the NBE, and kNNhte performed better than kNNE over the eight datasets.

This is attributed to the different control parameter configurations within the NBhte and

kNNhte. This trend in performance is also observed for the other ensembles, i.e. DTE and

DThte, SVME and SVMhte, as well as NNE and NNhte for most of the datasets.

Also, from the results in Appendix A, the ensembles showed different prediction

behaviour based on different skewed class distributions in the training datasets over all

datasets. The skewed classes are classified into extreme class distributions (10-90%, 15-

85%, 20-80%), mild class distributions (25-75%, 30-70%, 35-65%), small class distributions

(40-60%, 45-55%), and balanced class distribution (50-50%). The results showed that

HTEdf is the most accurate ensemble over all the class distributions for five of the 10

datasets (i.e. Sonar, Indian Liver, Car Evaluation, White Wine, and Nursery dataset).

While the NNE performed best for extreme class distribution, the HTEdf offered the

best generalization performance from the mild to balanced class distributions for the Red

Wine dataset. For all categories of the class distributions, the kNNE outperformed other

ensembles for the Breast Cancer dataset, while the SVMhte is the most accurate ensemble

for the Credit Approval, Bank Marketing, and Censor Income datasets.

Based on training performance, it is observed that all ensembles achieved competitive

overall training accuracy to capture the relationship between the input features and

target labels over all datasets. However, the GF of the NBE on the Credit Approval

dataset illustrates that the ensemble did not experience the problem of overfitting, but

still produced worst generalization performance. The GFs of other ensembles highlight

that the ensembles slightly overfitted the training dataset across the classification datasets,
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except the kNNE, kNNhte, NNE, and HTEdf. The kNNE and kNNhte showed no

indication of overfitting the training dataset on the Bank Marketing dataset, while the

NNE and HTEdf produced no evidence of overfitting for the Sonar dataset.

Further, the HTEdf expresses the effectiveness of classification by achieving the highest

F1-score over five datasets, illustrating that the HTEdf correctly classified the minority

and majority samples in the experimental data compared to other ensembles. The NNhte

offered the best F1-score on four datasets, and the kNNhte performed best on the last

dataset, i.e. the Credit Approval dataset. An interesting observation is that, while the

NNhte achieved improved F1-score performance, the NNhte tends to sacrifice an overall

generalization performance. However, this is not the case with the HTEdf, because the

HTEdf performed excellently for both performance measures. The HTEsm also produced

a reasonable level of performance in terms of F1-score.

Therefore, based on the results of all performance measures, the HTEdf and HTEsm

illustrate the benefit of combining different ML algorithms to develop a mixture of

heterogeneous experts. Specifically, by capitalizing on different control parameter

configurations for the multiple instances of the different ML algorithms, the HTEdf

performed excellently on multi-class classification problems and competed well against

other ensembles for binary classification problems in the skewed class distribution study.

Generalization Performance of Ensembles on the Minority Class

Research has shown that using classification accuracy to evaluate the overall performance

of ensembles does not adequately reveal the true prediction performance of the ensembles

for imbalanced datasets considering the majority (negative) and minority (positive)

classes (Veropoulos et al., 1999; Wu, 2003; Akbani et al., 2004). For instance, with a skewed

class distribution of 10-90%, an ensemble that classifies all samples negative will be 90%

accurate, but does not generalize accurately on the test dataset because the minority class

(i.e. positive class) is significantly misclassified or ignored.

The F1-score discussed earlier has shown how the ensembles performed fairly on the

minority class. The confusion matrices of the ensembles provided in Appendix A and the

results in Tables 8.13 to 8.22 also showed the generalization performance of the ensembles

on the minority class. For binary classification problems, the generalization performance
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of the ensembles on the minority class across all class distributions is provided and the

average rank of the ensembles are computed. This is shown in Tables 8.13, 8.14, 8.15, 8.16,

8.21, and 8.22.

Table 8.13: Ranking the Generalization Performance of the Ensembles on Minority Class
for Sonar Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 100(6.5) 100(5) 100(4.5) 100(5) 94(9) 80(13) 94(5.5) 88(6) 88(6) 6.72
kNNE 94(13) 94(11) 94(10.5) 88(12.5) 88(12.5) 81(12) 69(12.5) 69(12) 62(11.5) 11.94
DTE 100(6.5) 94(11) 81(13) 94(11) 94(9) 100(3.5) 69(12.5) 75(11) 56(13) 10.06
RF 100(6.5) 84(13) 94(10.5) 100(5) 94(9) 94(7.5) 94(5.5) 81(8.5) 69(9.5) 8.33

SVME 100(6.5) 100(5) 100(4.5) 100(5) 100(3.5) 100(3.5) 94(5.5) 94(4.5) 94(3.5) 4.61
NNE 100(6.5) 100(5) 100(4.5) 98(10) 100(3.5) 88(9.5) 88(8.5) 81(8.5) 88(6) 6.89

NBhte 100(6.5) 100(5) 100(4.5) 100(5) 94(9) 88(9.5) 94(5.5) 94(4.5) 88(6) 6.17
kNNhte 100(6.5) 100(5) 94(10.5) 88(12.5) 88(12.5) 82(11) 81(10.5) 62(13) 69(9.5) 10.11
DThte 100(6.5) 94(11) 94(10.5) 100(5) 94(9) 100(3.5) 81(10.5) 81(8.5) 62(11.5) 8.44

SVMhte 100(6.5) 100(5) 100(4.5) 100(5) 100(3.5) 100(3.5) 100(2) 100(2) 81(8) 4.44
NNhte 100(6.5) 100(5) 100(4.5) 100(5) 100(3.5) 94(7.5) 88(8.5) 81(8.5) 94(3.5) 5.83
HTEsm 100(6.5) 100(5) 100(4.5) 100(5) 100(3.5) 100(3.5) 100(2) 100(2) 96(1.5) 3.72
HTEdf 100(6.5) 100(5) 100(4.5) 100(5) 100(3.5) 100(3.5) 100(2) 100(2) 96(1.5) 3.72

Table 8.14: Ranking the Generalization Performance of the Ensembles on Minority Class
for Breast Cancer Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 95(8.5) 86(10.5) 95(4.5) 86(6) 95(1.5) 86(2.5) 95(1.5) 86(1) 95(1.5) 4.17

kNNE 95(8.5) 95(7) 62(11) 76(8.5) 52(10) 52(9.5) 38(11.5) 52(7) 29(10) 9.22

DTE 95(8.5) 90(9) 76(10) 71(10) 57(9) 62(7) 48(8) 52(7) 48(7) 8.39

RF 95(8.5) 100(3) 95(4.5) 76(8.5) 71(7) 57(8) 43(9.5) 52(7) 52(5) 6.78

SVME 100(3) 95(7) 90(8) 95(2) 89(3) 86(2.5) 62(6) 38(10.5) 14(12) 6.00

NNE 76(13) 43(13) 45(13) 38(12) 33(13) 24(13) 29(8.5) 29(12) 24(11) 12.06

NBhte 95(8.5) 86(10.5) 95(4.5) 86(6) 81(4) 76(6) 86(3) 81(2) 95(1.5) 5.11

kNNhte 86(12) 76(12) 57(12) 52(11) 48(11) 48(11) 43(9.5) 38(10.5) 33(8.5) 10.83

DThte 95(8.5) 95(7) 95(4.5) 86(6) 67(8) 52(9.5) 52(7) 48(9) 57(3) 6.94

SVMhte 100(3) 100(3) 100(1) 100(1) 95(1.5) 95(1) 95(1.5) 57(4) 10(13) 3.22

NNhte 100(3) 100(3) 81(9) 33(13) 43(12) 29(12) 38(11.5) 24(13) 33(8.5) 9.44

HTEsm 100(3) 100(3) 95(4.5) 88(4) 75(6) 78(5) 65(5) 55(5) 50(6) 4.61

HTEdf 100(3) 100(3) 95(4.5) 89(3) 78(5) 80(4) 67(4) 60(3) 55(4) 3.72
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Table 8.15: Ranking the Generalization Performance of the Ensembles on Minority Class
for Indian Liver Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 100(5.5) 100(5) 100(4) 100(4.5) 100(2) 100(2) 97(4) 100(1.5) 97(2) 3.39

kNNE 100(5.5) 100(5) 97(8.5) 100(4.5) 97(5.5) 97(5) 90(9.5) 83(9.5) 77(8.5) 6.83

DTE 97(12) 93(10) 77(13) 83(13) 93(10) 70(13) 80(13) 70(12) 57(12) 12.00

RF 97(12) 90(12) 90(12) 90(11.5) 90(13) 87(11) 90(9.5) 67(13) 57(12) 11.78

SVME 100(5.5) 100(5) 100(4) 100(4.5) 93(10) 93(8) 93(6.5) 93(6) 93(5) 6.06

NNE 97(12) 90(12) 93(11) 90(11.5) 93(10) 90(10) 87(12) 80(11) 70(10) 11.06

NBhte 100(5.5) 100(5) 100(4.5) 100(4.5) 100(2) 100(2) 100(1) 100(1.5) 97(2) 3.11

kNNhte 100(5.5) 100(5) 94(10) 100(4.5) 97(5.5) 93(8) 90(9.5) 83(9.5) 77(8.5) 7.33

DThte 100(5.5) 90(12) 97(8.5) 93(10) 93(10) 83(12) 97(4) 87(8) 57(12) 9.11

SVMhte 100(5.5) 100(5) 100(4) 100(4.5) 100(2) 100(2) 93(6.5) 93(6) 83(7) 4.72

NNhte 100(5.5) 100(5) 100(4) 97(9) 93(10) 93(8) 90(9.5) 93(6) 90(6) 7.00

HTEsm 100(5.5) 100(5) 100(4) 100(4.5) 97(5.5) 97(5) 97(4) 95(4) 95(4) 4.61

HTEdf 100(5.5) 100(5) 100(4) 100(4.5) 97(5.5) 97(5) 98(2) 97(3) 97(2) 4.06

Table 8.16: Ranking the Generalization Performance of the Ensembles on Minority Class
for Credit Approval Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 56(4) 56(5.5) 60(5.5) 59(8) 59(7) 60(12) 59(12.5) 57(12) 63(11) 8.61

kNNE 74(1) 79(1) 80(1) 80(1) 80(1) 80(3) 85(2) 84(3) 81(6) 2.11

DTE 31(10) 39(10) 41(10.5) 53(10) 50(10.5) 66(8) 73(7) 67(10) 76(8.5) 9.39

RF 3(13) 7(13) 19(13) 40(13) 41(13) 67(6.5) 67(8) 81(6) 76(8.5) 10.44

SVME 13(12) 21(12) 36(12) 41(12) 44(12) 61(10.5) 66(9) 71(8) 81(6) 10.39

NNE 49(7) 56(5.5) 57(7.5) 61(6.5) 57(8.5) 61(10.5) 63(10.5) 63(11) 60(12.5) 8.83

NBhte 50(6) 54(7) 56(9) 57(9) 57(8.5) 59(13) 59(12.5) 54(13) 60(12.5) 10.06

kNNhte 63(2) 71(2) 74(2) 79(2) 79(2) 83(2) 83(3) 83(4) 85(4) 2.56

DThte 33(9) 36(11) 41(10.5) 47(11) 50(10.5) 63(9) 74(6) 80(7) 81(6) 8.89

SVMhte 19(11) 51(9) 66(3) 74(3) 78(3) 84(1) 87(1) 87(1) 87(2) 3.78

NNhte 44(8) 53(8) 60(5.5) 63(5) 61(6) 70(5) 63(10.5) 69(9) 74(10) 7.44

HTEsm 53(5) 57(4) 57(7.5) 61(6.5) 63(5) 67(6.5) 75(5) 82(5) 86(3) 5.28

HTEdf 57(3) 59(3) 62(4) 65(4) 67(4) 75(4) 77(4) 85(2) 89(1) 3.22
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Table 8.17: Ranking the Generalization Performance of the Ensembles on Minority Class
for Red Wine Dataset

Label Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-65 40-60 45-55 50-50 AvR M.AvR

NBE

3 100(1.5) 100(2) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 1.56

6.154 0(13) 0(12) 0(13) 0(12.5) 0(12.5) 0(12.5) 0(12) 0(12.5) 0(12.5) 12.5

8 60(2.5) 60(3.5) 60(4.5) 60(3.5) 60(4.5) 60(5) 60(4.5) 60(6.5) 60(5) 4.39

kNNE

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

7.934 50(6) 60(4) 50(3.5) 40(8) 50(7.5) 50(5.5) 40(7) 50(7.5) 50(7) 6.22

8 40(8) 40(9.5) 40(9) 40(7.5) 40(8) 40(9.5) 40(9) 60(6.5) 40(9.5) 8.50

DTE

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

9.764 20(10.5) 30(9.5) 20(11.5) 30(10.5) 20(11) 20(10.5) 0(12) 50(7.5) 60(3.5) 9.61

8 40(8) 40(9.5) 40(9) 0(12.5) 20(11.5) 20(12) 40(9) 20(12.5) 20(11.5) 10.61

RF

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

9.354 50(6) 40(8) 30(9) 40(8) 60(4) 30(8.5) 20(9) 60(3) 40(9.5) 7.22

8 20(12) 0(13) 40(9) 0(12.5) 20(11.5) 20(12) 20(12) 40(11) 0(13) 11.78

SVME

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

5.064 50(6) 50(6.5) 30(9) 60(1.5) 60(4) 70(1.5) 60(2) 60(3) 60(3.5) 4.11

8 60(2.5) 60(3.5) 80(1.5) 80(1) 80(1.5) 80(1) 80(1) 80(1) 60(5) 2.00

NNE

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

7.854 70(1) 70(1.5) 70(1) 50(4.5) 80(1) 70(1.5) 50(5) 50(7.5) 60(3.5) 2.94

8 20(12) 40(9.5) 20(12.5) 20(10.5) 20(11.5) 20(12) 20(12) 20(12.5) 20(11.5) 11.56

NBhte

3 100(1.5) 100(2) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 100(1.5) 1.56

6.224 0(13) 0(12) 40(6.5) 0(12.5) 0(12.5) 0(12.5) 0(12) 0(12.5) 0(12.5) 11.78

8 60(2.5) 60(3.5) 40(9) 40(7.5) 60(4.5) 60(5) 60(4.5) 60(6.5) 60(5) 5.33

kNNhte

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

7.094 50(6) 60(4) 50(3.5) 50(4.5) 60(4) 50(5.5) 50(5) 50(7.5) 50(7) 5.22

8 40(8) 40(9.5) 40(9) 40(7.5) 40(8) 60(5) 60(4.5) 60(6.5) 60(5) 7.00

DThte

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

9.744 40(9) 30(9.5) 20(11.5) 40(8) 40(9) 20(10.5) 10(10) 20(11) 40(9.5) 9.78

8 20(12) 40(9.5) 20(12.5) 20(10.5) 20(11.5) 40(9.5) 20(12) 60(6.5) 40(9.5) 10.39
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Label Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-65 40-60 45-55 50-50 M.Av AvR

SVMhte

3 0(9) 100(2) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 8.22

7.414 20(10.5) 0(12) 30(9) 30(10.5) 30(10) 30(8.5) 30(8) 50(7.5) 30(11) 9.67

8 40(8) 60(3.5) 80(1.5) 60(3.5) 80(1.5) 60(5) 60(4.5) 60(6.5) 60(5) 4.33

NNhte

3 0(9) 0(9.5) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 0(9) 9.06

7.154 60(2) 70(1.5) 40(6.5) 50(4.5) 50(7.5) 40(7) 50(5) 50(7.5) 50(7) 5.39

8 40(8) 40(9.5) 60(4.5) 40(7.5) 40(8) 60(5) 40(9) 60(6.5) 60(5) 7.00

HTEsm

3 10(3.5) 10(4.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 3.61

4.114 50(6) 50(6.5) 50(3.5) 50(4.5) 60(4) 60(3.5) 60(2) 60(3) 60(3.5) 4.06

8 50(5) 60(3.5) 60(4.5) 60(3.5) 60(4.5) 60(5) 60(4.5) 60(6.5) 60(5) 4.67

HTEdf

3 10(3.5) 10(4.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 10(3.5) 3.61

3.334 50(6) 60(4) 50(3.5) 60(1.5) 60(4) 60(3.5) 60(2) 64(1) 65(1) 2.94

8 60(2.5) 60(3.5) 60(4.5) 60(3.5) 60(4.5) 60(5) 60(4.5) 62(2) 62(1) 3.44

Table 8.18: Ranking the Generalization Performance of the Ensembles on Minority Class
for Car Evaluation Dataset

Label Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-65 40-60 45-55 50-50 AvR M.AvR

NBE

1 82(11) 82(11) 82(10.5) 82(10.5) 82(10.5) 82(8.5) 82(11) 82(9) 82(8.5) 10.06
7.11

3 100(4) 100(4) 100(4.5) 100(3) 100(5) 100(4.5) 100(5) 100(4) 100(3.5) 4.17

kNNE

1 82(11) 82(11) 82(10.5) 82(10.5) 82(10.5) 73(12.5) 91(5.5) 73(12) 64(13) 10.72
11.67

3 76(13) 82(13) 76(11.5) 82(11.5) 71(13) 65(13) 65(12.5) 76(13) 53(13) 12.61

DTE

1 91(5.5) 91(5.5) 91(5) 91(5) 91(5) 91(4) 91(5.5) 91(4) 91(4) 4.83
6.19

3 82(11.5) 100(4) 100(4.5) 82(11.5) 100(5) 100(4.5) 100(5) 82(11) 82(11) 7.56

RF

1 91(5.5) 91(5.5) 82(10.5) 82(10.5) 82(10.5) 82(8.5) 91(5.5) 91(4) 82(8.5) 7.67
7.56

3 100(4) 88(10.5) 94(9) 94(7.5) 82(10) 94(9.5) 100(5) 94(8) 100(3.5) 7.44
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Label Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-65 40-60 45-55 50-50 M.Av AvR

SVME

1 82(11) 82(11) 82(10.5) 82(10.5) 82(10.5) 82(8.5) 82(11) 82(9) 73(11.5) 10.39
10.53

3 88(9.5) 88(10.5) 76(11.5) 76(13) 76(11.5) 82(11) 88(10) 88(9) 88(10) 10.67

NNE

1 91(5.5) 91(5.5) 91(5) 91(5) 91(5) 91(4) 91(5.5) 91(4) 91(4) 4.83
4.50

3 100(4) 100(4) 100(4.5) 100(3) 100(5) 100(4.5) 100(5) 100(4) 100(3.5) 4.17

NBhte

1 82(11) 82(11) 82(10.5) 82(10.5) 82(10.5) 82(8.5) 82(11) 82(9) 82(8.5) 10.06

7.113 100(4) 100(4) 100(4.5) 100(3) 100(5) 100(4.5) 100(5) 100(4) 100(3.5) 4.17

kNNhte

1 82(11) 82(11) 82(10.5) 82(10.5) 82(10.5) 73(12.5) 82(11) 64(13) 73(11.5) 11.28
11.42

3 82(11.5) 88(10.5) 71(13) 88(10) 76(11.5) 71(12) 65(12.5) 82(11) 65(12) 11.56

DThte

1 91(5.5) 91(5.5) 91(5) 91(5) 91(5) 82(8.5) 91(5.5) 82(9) 91(4) 5.89
7.36

3 88(9.5) 94(8) 88(10) 94(7.5) 100(5) 94(9.5) 82(11) 82(11) 94(8) 8.83

SVMhte

1 91(5.5) 91(5.5) 91(5) 91(5) 91(5) 82(8.5) 82(11) 82(9) 82(8.5) 7.00
5.58

3 100(4) 100(4) 100(4.5) 100(3) 100(5) 100(4.5) 100(5) 100(4) 100(3.5) 4.17

NNhte

1 91(5.5) 91(5.5) 91(5) 91(5) 91(5) 91(4) 91(5.5) 91(4) 91(4) 4.83
5.58

3 94(8) 88(10.5) 100(4.5) 94(7.5) 100(5) 100(4.5) 100(5) 100(4) 94(8) 6.33

HTEsm

1 92(2) 92(2) 92(2) 92(2) 92(2) 92(2) 92(2) 91(4) 91(4) 2.44
3.81

3 100(4) 100(4) 100(4.5) 94(7.5) 100(5) 100(4.5) 100(5) 100(4) 94(8) 5.17

HTEdf

1 94(1) 94(1) 94(1) 94(1) 95(1) 95(1) 95(1) 92(1) 92(1) 1.00
2.58

3 100(4) 100(4) 100(4.5) 100(3) 100(5) 100(4.5) 100(5) 100(4) 100(3.5) 4.17
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Table 8.19: Ranking the Generalization Performance of the Ensembles on Minority Class
for White Wine Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 40(3) 40(4.5) 40(3.5) 40(4) 43(3.5) 40(5.5) 40(5) 40(5) 40(5) 4.33

kNNE 20(8.5) 20(11) 20(9.5) 20(10.5) 20(10.5) 20(10.5) 20(11) 20(10.5) 20(9.5) 10.17

DTE 0(12.5) 20(11) 20(9.5) 20(10.5) 20(10.5) 20(10.5) 20(11) 20(10.5) 0(12.5) 10.94

RF 0(12.5) 20(11) 0(13) 20(10.5) 20(10.5) 20(10.5) 20(11) 20(10.5) 20(9.5) 11.00

SVME 40(3) 40(4.5) 40(3.5) 40(4) 40(6) 20(10.5) 40(9) 20(10.5) 20(9.5) 6.72

NNE 20(8.5) 40(4.5) 20(9.5) 20(10.5) 20(10.5) 40(5.5) 40(5) 40(5) 40(5) 7.11

NBhte 40(3) 40(4.5) 40(3.5) 40(4) 40(6) 40(5.5) 40(5) 40(5) 40(5) 4.61

kNNhte 20(8.5) 20(11) 20(9.5) 20(10.5) 20(10.5) 20(10.5) 20(11) 20(10.5) 20(9.5) 10.17

DThte 20(8.5) 20(11) 20(9.5) 20(10.5) 20(10.5) 20(10.5) 20(11) 20(10.5) 0(12.5) 10.50

SVMhte 20(8.5) 40(4.5) 40(3.5) 40(4) 45(1.5) 45(1.5) 40(5) 45(1.5) 45(1.5) 3.50

NNhte 20(8.5) 40(4.5) 20(9.5) 40(4) 40(6) 40(5.5) 40(5) 40(5) 40(5) 5.89

HTEsm 40(3) 40(4.5) 40(3.5) 40(4) 43(3.5) 43(3) 40(5) 40(5) 40(5) 4.06

HTEdf 40(3) 40(4.5) 40(3.5) 40(4) 45(1.5) 45(1.5) 45(1) 45(1.5) 45(1.5) 2.45

Table 8.20: Ranking the Generalization Performance of the Ensembles on Minority Class
for Nursery Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 94(6.5) 100(3) 94(5.5) 100(5.5) 94(7.5) 100(4.5) 94(5.5) 100(3.5) 94(8) 5.50

kNNE 82(10.5) 86(12) 88(11.5) 86(12) 94(7.5) 86(12) 94(5.5) 86(12) 88(11.5) 10.50

DTE 94(6.5) 95(8) 94(5.5) 100(5.5) 94(7.5) 100(4.5) 94(5.5) 95(9) 94(8) 6.67

RF 88(9) 100(11) 94(5.5) 100(5.5) 94(7.5) 100(4.5) 94(5.5) 100(3.5) 94(8) 6.67

SVME 47(13) 68(13) 41(13) 68(13) 41(13) 68(13) 35(13) 68(13) 53(13) 13.00

NNE 100(2.5) 95(8) 94(5.5) 100(5.5) 100(2.5) 95(9.5) 94(5.5) 95(9) 100(3) 5.67

NBhte 94(6.5) 100(3) 94(5.5) 100(5.5) 94(7.5) 100(4.5) 94(5.5) 100(3.5) 94(8) 5.50

kNNhte 82(10.5) 91(11) 94(5.5) 91(11) 94(7.5) 91(11) 94(5.5) 95(9) 94(8) 8.78

DThte 94(6.5) 95(8) 94(5.5) 100(5.5) 88(11.5) 100(4.5) 94(5.5) 100(3.5) 100(3) 5.94

SVMhte 76(12) 95(8) 88(11.5) 100(5.5) 88(11.5) 100(4.5) 82(12) 95(9) 88(11.5) 9.50

NNhte 100(2.5) 95(8) 94(5.5) 100(5.5) 100(2.5) 95(9.5) 88(11) 95(9) 100(3) 6.28

HTEsm 100(2.5) 100(3) 94(5.5) 100(5.5) 100(2.5) 100(4.5) 94(5.5) 100(3.5) 100(3) 3.94

HTEdf 100(2.5) 100(3) 94(5.5) 100(5.5) 100(2.5) 100(4.5) 94(5.5) 100(3.5) 100(3) 3.94
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Table 8.21: Ranking the Generalization Performance of the Ensembles on Minority Class
for Bank Marketing Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 79(11) 84(7) 78(7) 82(5) 76(5) 73(5) 73(4) 72(3) 66(3.5) 5.61

kNNE 89(8) 82(8) 84(5) 77(6.5) 75(6) 76(4) 70(5) 69(5) 64(5) 5.83

DTE 82(10) 67(11) 72(9) 63(10) 57(10) 52(9) 63(7) 53(10) 34(11) 9.67

RF 92(6) 76(9) 69(10.5) 53(12) 44(12) 28(12) 17(12) 21(12) 11(12) 10.83

SVME 3(13) 4(13) 3(13) 4(13) 3(13) 4(13) 2(13) 3(13) 4(13) 13.00

NNE 89(8) 85(5.5) 69(10.5) 58(11) 52(11) 49(10.5) 45(10) 54(9) 50(8) 9.28

NBhte 89(8) 85(5.5) 77(8) 77(6.5) 69(7.5) 67(6) 61(9) 75(2) 60(7) 6.61

kNNhte 97(1.5) 92(3) 88(2.5) 88(2) 80(3) 82(2) 74(3) 68(6.5) 66(3.5) 3.00

DThte 95(3.5) 74(10) 80(6) 73(8) 69(7.5) 54(8) 63(7) 63(8) 40(9.5) 7.50

SVMhte 73(12) 63(12) 67(12) 65(9) 59(9) 49(10.5) 43(11) 45(11) 40(9.5) 10.67

NNhte 94(5) 92(3) 86(4) 84(4) 80(3) 65(7) 63(7) 68(6.5) 63(6) 5.06

HTEsm 95(3.5) 92(3) 88(2.5) 86(3) 80(3) 80(3) 75(2) 70(4) 68(2) 2.89

HTEdf 97(1.5) 94(1) 90(1) 89(1) 84(1) 83(1) 78(1) 76(1) 71(1) 1.06

Table 8.22: Ranking the Generalization Performance of the Ensembles on Minority Class
for Censor Income Dataset

Ensemble
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50 AvR

NBE 89(13) 88(12.5) 89(11.5) 88(10.5) 88(9.5) 84(9) 87(7) 85(6) 85(4.5) 9.27

kNNE 96(10) 92(7.5) 92(8.5) 90(5) 89(8) 87(4.5) 88(4) 86(5) 84(6) 6.50

DTE 98(5) 94(3) 95(4.5) 88(10.5) 91(2.5) 87(4.5) 82(11) 84(7) 64(8) 6.22

RF 99(3) 93(5) 95(4.5) 90(5) 87(11) 78(10.5) 80(12) 74(11.5) 42(13) 8.39

SVME 97(7.5) 88(12.5) 88(13) 76(13) 79(13) 72(13) 73(13) 69(13) 57(10.5) 12.06

NNE 96(10) 89(10.5) 91(10) 83(12) 88(9.5) 78(10.5) 85(8.5) 74(11.5) 47(12) 10.50

NBhte 90(12) 89(10.5) 89(11.5) 89(8) 90(5.5) 86(6.5) 88(4) 87(3) 86(2.5) 7.06

kNNhte 97(7.5) 93(5) 94(6.5) 91(3) 90(5.5) 89(2) 88(4) 87(3) 85(4.5) 4.56

DThte 98(5) 93(5) 96(2.5) 90(5) 90(5.5) 85(8) 85(8.5) 82(9) 57(10.5) 6.56

SVMhte 98(5) 92(7.5) 94(6.5) 89(8) 85(12) 86(6.5) 83(10) 83(8) 82(7) 7.83

NNhte 96(10) 90(9) 92(8.5) 89(8) 90(5.5) 77(12) 88(4) 75(10) 59(9) 8.44

HTEsm 100(1.5) 95(2) 96(2.5) 92(2) 91(2.5) 88(3) 88(4) 87(3) 86(2.5) 2.56

HTEdf 100(1.5) 96(1) 97(1) 95(1) 93(1) 90(1) 90(1) 88(1) 87(1) 1.06
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On the other hand, the ranking of the generalization performance of the ensembles to

predict the minority classes in multi-class classification problems is computed differently.

For each ensemble, the rankings of the generalization performance for each minority class

is provided across all class distributions. Then the average ranking for each minority class

is calculated. This is followed by the mean computation of the average rankings of all

minority classes as shown in Tables 8.17 and 8.18.

The White Wine dataset contains seven classes with two minority classes, i.e. “3” and “9”

white wine quality labels. However, as shown in the confusion matrix of the White Wine

dataset, no ensemble predicted the label “9”. Hence, the generalization performance of

the ensembles to predict the minority label “9” was not reported, while the minority label

“3” was reported. On the other hand, the Nursery dataset contains four classes to be

predicted, but has one minority class of label “2“.

From the confusion matrices in Appendix A, the DTE, RF, and DThte significantly

underperformed other ensembles for the prediction of the minority class. This is observed

in the high average ranks of the DTE, RF, and DThte in Tables 8.13 to 8.22 compared

to the HTEdf, illustrating that the predictions of the DTE, RF, and DThte are mostly

biased towards the majority class. Also, the performance of the DTE, RF, and DThte is

further explained by the skewed sensitivity of the information gain and Gini measure

used during the tree induction in the ensembles. The findings of Dietterich et al. (1996),

Flach (2003), and Liu et al. (2010) have shown that tree learning models are sensitive to

imbalanced datasets when the information gain or Gini measure are used as splitting

criterion. While the results of the DTE and DThte corroborates the findings of these

studies, the benefits of the mixtures of heterogeneous experts are still observed in the

generalization performance of the DThte over the homogeneous mixtures in the DTE. The

DThte obtained lower average ranks compared to the DTE in all classification datasets

except for the Car Evaluation and Censor Income datasets.

Further, the kNNE and kNNhte produced high average ranks extremely far from the

average rank of the HTEdf on all datasets except for the Credit Approval dataset. Based

on the inductive bias of kNN algorithms to classify a test sample to the class of the closest

training samples, the probability that the predictions of the kNNE and kNNE are skewed

towards to majority class is very high. This is attributed to the fact that kNN algorithms

Stellenbosch University https://scholar.sun.ac.za



Chapter 8. Empirical Analysis of Results for Classification Problems 176

are highly sensitive to skewed classes with large values of k because more majority

samples are learned than the minority samples during training. Hence, predictions

are biased toward the majority class (Archana and Elangovan, 2014). However, the

kNNhte promotes the benefits of the mixtures of heterogeneous experts over the kNNE

for seven of the 10 classification datasets. The kNNhte performed better than the kNNE

mostly on multi-class classification problems, while the kNNE performed better for the

Breast Cancer, Indian Liver, and Credit Approval datasets. Furthermore, the HTEdf is

significantly different from the SVME, but not the SVMhte in terms of generalization

performance to predict the minority class(es). The significant difference in performance

between the HTEdf and the SVME highlights the advantage of a mixture of heterogeneous

experts over a homogeneous mixture of experts based on different ML algorithms and

different configurations for the base learners within the HTEdf.

The average rank of the SVME across all datasets illustrates that the predictions of the

SVME are highly skewed towards the majority class. This indicates that using the

same control parameter configuration for the SVME, for instance, using the same cost

of misclassification C to induce base experts within the SVME, did not provide sufficient

complexity to obtain hyperplanes that generated suitable margins to separate the classes

effectively across all datasets. Thus, the SVME is explained to induce weak soft margins,

which influence the predictions of the base experts within the SVME to bias towards the

majority class. The behaviour of the SVME corroborates the findings of Wu (2003) that the

SVME was unable to effectively learn positive support vectors with increasing skewed

classes in the training datasets across the experimental data.

Wu (2003) explained that, as training datasets become more skewed, the ratio between

the positive and negative support vectors becomes more imbalanced. As a result of

the imbalance, the neighbourhood of a test sample close to the decision boundary is

more likely to be dominated by negative support vectors. Therefore, the possibility of

the decision function biasing towards the majority class becomes very high (Wu, 2003).

On the contrary, the average rank of the SVMhte over all classification datasets showed

that the different control parameter configurations of the base members in the SVMhte

resulted in different suitable experts that generalized better than the SVME.

Also, the average ranks of the NBE and NBhte in Tables 8.13 to 8.22 across the 10
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classification datasets showed that the NBE and NBhte are insensitive to the skewed

class distributions across the datasets. The insensitivity of the NBE and NBhte to skewed

class distributions is attributed to the fact that NB algorithms are considered as stable

algorithms, because stable algorithms are insensitive to small changes in the sample space

of the training data (Breiman, 1996a; El-Hindi et al., 2018).

Also, Hoens and Chawla (2013) empirically showed that NB algorithms are trivially

skewed-insensitive because NB algorithms make predictions for the posterior probability

p(y|xi) by first computing the likelihood p(xi|y) and the prior probability p(y) from the

training data. Therefore, due to the inductive bias of feature independence made by

the NB algorithms, Hoens and Chawla (2013) concluded that the insensitivity of the NB

algorithms to skewed data is attributed to the fact that the predictions are calibrated by

prior probability of y or p(y).

Statistical Analysis of Results

This section compares the generalization performance of the HTEs and homogeneous

ensembles on the minority class(es) over all classification datasets. The comparison is

achieved using statistical tests to determine whether there exists a statistically significant

difference in the generalization performance of the ensembles to predict the minority

class(es).

Friedman Test

The Friedman test used to compare the generalization performance of the 13 ensembles

to predict the minority class(es) over the 10 datasets followed the discussion provided in

Section 8.2.

Due to the skewed class distributions in each dataset, the first step is to rank the ensembles

based on the generalization performance to predict the minority class(es) in each skewed

class distribution for each dataset. The rankings of the ensembles have been provided in

Tables 8.13 to 8.22. The last step is to rank the average ranks of the ensembles across all

datasets by gathering the average ranks of the ensembles from Tables 8.13 to 8.22.

From Table 8.23, the HTEdf is ranked as the best performing ensemble achieving

the lowest average ranking of 1.60, followed by the HTEsm (2.70), NBE (5.40), and
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SVMhte (5.75). The average rankings of the HTEdf and HTEsm illustrate the advantage

of combining different ML algorithms to develop mixtures of heterogeneous experts

compared to the combination of the same ML algorithms.

Table 8.23: Ranking the Generalization Performance of Ensembles on Minority Class(es)
over all Classification Datasets

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AvR

NBE 6.72(7) 4.17(3) 3.39(2) 8.61(7) 6.15(4) 7.11(7.5) 4.33(4) 5.50(3.5) 5.61(5) 9.27(11) 5.40

kNNE 11.94(13) 9.22(10) 6.83(7) 2.11(1) 7.93(10) 11.67(13) 10.17(9.5) 10.50(12) 5.83(6) 6.50(5) 8.65

DTE 10.06(11) 8.39(9) 12.00(13) 9.39(10) 9.76(13) 6.19(6) 10.94(12) 6.67(8.5) 9.67(10) 6.22(4) 9.65

RF 8.33(9) 6.78(7) 11.78(12) 10.44(13) 9.35(11) 7.56(10) 11.00(13) 6.67(8.5) 10.83(12) 8.39(9) 10.45

SVME 4.61(4) 6.00(6) 6.06(6) 10.39(12) 5.06(3) 10.53(11) 6.72(7) 13.00(13) 13.00(13) 12.06(13) 8.88

NNE 6.89(8) 12.06(13) 11.06(11) 8.83(8) 7.85(9) 4.50(3) 7.11(8) 5.67(5) 9.28(9) 10.50(12) 8.60

NBhte 6.17(6) 5.11(5) 3.11(1) 10.06(11) 6.22(5) 7.11(7.5) 4.61(5) 5.50(3.5) 6.61(7) 7.06(7) 5.80

kNNhte 10.11(12) 10.83(12) 7.33(9) 2.56(2) 7.09(6) 11.42(12) 10.17(9.5) 8.78(10) 3.00(3) 4.56(3) 7.85

DThte 8.44(10) 6.94(8) 9.11(10) 8.89(9) 9.74(12) 7.36(9) 10.50(11) 5.94(6) 7.50(8) 6.56(6) 8.90

SVMhte 4.44(3) 3.22(1) 4.72(5) 3.78(4) 7.41(8) 5.58(4.5) 3.50(2) 9.50(11) 10.67(11) 7.83(8) 5.75

NNhte 5.83(5) 9.44(11) 7.00(8) 7.44(6) 7.15(7) 5.58(4.5) 5.89(6) 6.28(7) 5.06(4) 8.44(10) 6.85

HTEsm 3.72(1.5) 4.61(4) 4.61(4) 5.28(5) 4.11(2) 3.81(2) 4.06(3) 3.94(1.5) 2.89(2) 2.56(2) 2.70

HTEdf 3.72(1.5) 3.72(2) 4.06(3) 3.22(3) 3.33(1) 2.58(1) 2.45(1) 3.94(1.5) 1.06(1) 1.06(1) 1.60

Also, with an exception to the NBE and NBhte, it can be observed that all HTEs

provide lower average rankings compared to the pure homogeneous ensembles

counterparts, highlighting the benefit of mixtures of heterogeneous experts in comparison

to homogeneous mixtures.

Given the average rankings of the ensembles in Table 8.23, the calculated Friedman test

statistic is χ2
F = 56.986, while the computed Iman-Davenport extension of the Friedman

test FF gives 8.139. Because the value of FF is greater than the obtained critical value,

the null hypothesis that all ensembles are equal is rejected. The rejection of the null

hypothesis shows that, there is a statistically significant difference in the generalization

performance of the ensembles to predict the minority class(es) in the datasets.

Bonferroni-Dunn Test

The Bonferroni-Dunn test is performed after rejecting the null hypothesis to find out

the ensembles that significantly differ from each other in the skewed class distributions

study. The critical value is 2.87, and the computed critical difference (CD) equals
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4.998. Figure 8.22 shows the critical difference plot indicating the significant difference

in generalization performance on the minority class between the HTEdf and any other

ensemble.

Figure 8.22: Critical Difference Plot of Ensembles for Skewed Class Distribution Study

The outcome of the Bonferroni-Dunn test in Figure 8.22 showed that the HTEdf is

significantly more accurate than the kNNE, DTE, RF, SVME, NNE, kNNhte, DThte, and

NNhte for the prediction of the minority classes over all datasets. The outcome illustrates

that these ensembles showed sensitivity to the different skewed class distributions

leading to unstable prediction performance across the 10 datasets. On the other

hand, the HTEdf capitalized on the advantage of combining different ML algorithms

offering different favourable assumptions in each skewed class distribution across the

datasets. Also, the HTEdf maximizes the differing views obtained from the different

configurations of the multiple instances of the ML algorithms combined to generate the

final HTEdf prediction. Further, the outcome of the Bonferroni-Dunn test indicates that

10 experimental datasets did not provide sufficient evidence to show that a significant

difference in generalization performance on the minority class exists between the HTEdf

and the HTEsm, NBE, SVMhte, and NBhte.

8.4 Number of Outliers Study

This section discusses the ensemble performance across the number of outliers perturbed

from 1% to 5% in the training datasets of the classification datasets. The summative results

(over all outlier ratios) of the testing and training accuracy, GF and F1-score for each

ensemble over all classification datasets are provided in Table 8.24.

The results presented in Table 8.24 showed that the ensembles produced mixed results in

all the performance measures illustrating that the ensembles responded differently to the

number of outliers across all the classification datasets.

Stellenbosch University https://scholar.sun.ac.za



Chapter 8. Empirical Analysis of Results for Classification Problems 180

Table 8.24: Ensemble Results over all Classification Datasets in Number of Outliers Study

Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBE

Testing Accuracy 0.747 0.517 0.665 0.535 0.471 0.809 0.427 0.835 0.556 0.505

Training Accuracy 0.721 0.649 0.683 0.617 0.548 0.837 0.432 0.873 0.798 0.807

GF 0.911 1.385 1.055 1.215 1.172 1.171 1.010 1.293 2.203 2.567

F1-score 0.788 0.544 0.572 0.476 0.384 0.820 0.316 0.846 0.790 0.750

kNNE

Testing Accuracy 0.586 0.666 0.730 0.785 0.501 0.830 0.473 0.822 0.897 0.805

Training Accuracy 0.758 0.800 0.663 0.865 0.784 0.929 0.703 0.909 0.828 0.862

GF 1.712 1.670 0.801 1.591 2.312 2.398 1.777 1.962 0.598 1.409

F1-score 0.850 0.574 0.570 0.804 0.466 0.770 0.438 0.886 0.730 0.800

DTE

Testing Accuracy 0.624 0.570 0.746 0.760 0.484 0.922 0.477 0.899 0.886 0.803

Training Accuracy 0.730 0.739 0.718 0.868 0.762 0.949 0.709 0.959 0.937 0.873

GF 1.396 1.653 0.901 1.814 2.173 1.518 1.796 2.437 1.809 1.552

F1-score 0.774 0.640 0.666 0.798 0.516 0.960 0.428 0.946 0.888 0.820

RF

Testing Accuracy 0.706 0.625 0.730 0.791 0.537 0.883 0.521 0.897 0.898 0.807

Training Accuracy 0.787 0.786 0.770 0.889 0.855 0.969 0.790 0.963 0.951 0.871

GF 1.385 1.754 1.172 1.880 3.196 3.742 2.284 2.815 2.091 1.497

F1-score 0.796 0.628 0.736 0.826 0.618 0.928 0.520 0.948 0.888 0.802

SVME

Testing Accuracy 0.723 0.623 0.747 0.777 0.531 0.871 0.500 0.879 0.894 0.805

Training Accuracy 0.843 0.800 0.690 0.882 0.569 0.981 0.470 0.969 0.973 0.869

GF 1.767 1.885 0.815 1.893 1.090 6.745 0.944 3.857 3.956 1.491

F1-score 0.854 0.510 0.668 0.856 0.460 0.898 0.352 0.944 0.840 0.808

NNE

Testing Accuracy 0.764 0.556 0.730 0.670 0.545 0.949 0.515 0.933 0.891 0.803

Training Accuracy 0.840 0.793 0.722 0.857 0.830 0.975 0.781 0.983 0.971 0.871

GF 1.480 2.151 0.969 2.312 2.675 2.075 2.210 4.103 3.768 1.521

F1-score 0.898 0.610 0.662 0.744 0.570 0.976 0.506 0.978 0.890 0.812
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Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBhte

Testing Accuracy 0.762 0.518 0.668 0.651 0.489 0.809 0.449 0.844 0.831 0.726

Training Accuracy 0.721 0.685 0.685 0.710 0.547 0.837 0.445 0.889 0.826 0.838

GF 0.857 1.535 1.055 1.205 1.128 1.171 0.993 1.408 0.973 1.689

F1-score 0.794 0.598 0.566 0.624 0.382 0.820 0.316 0.862 0.840 0.780

kNNhte

Testing Accuracy 0.655 0.635 0.727 0.788 0.531 0.844 0.503 0.844 0.893 0.811

Training Accuracy 0.787 0.815 0.708 0.876 0.838 0.919 0.764 0.917 0.859 0.856

GF 1.633 1.974 0.936 1.716 2.895 1.918 2.110 1.871 0.759 1.310

F1-score 0.888 0.696 0.630 0.852 0.566 0.786 0.498 0.890 0.778 0.800

DThte

Testing Accuracy 0.659 0.587 0.741 0.760 0.526 0.934 0.518 0.905 0.895 0.806

Training Accuracy 0.785 0.752 0.734 0.879 0.850 0.976 0.790 0.975 0.952 0.837

GF 1.589 1.666 0.974 1.991 3.151 2.762 2.289 3.812 2.205 1.192

F1-score 0.802 0.676 0.658 0.812 0.546 0.960 0.516 0.968 0.892 0.790

SVMhte

Testing Accuracy 0.701 0.627 0.743 0.816 0.537 0.903 0.505 0.915 0.903 0.828

Training Accuracy 0.769 0.800 0.669 0.878 0.826 0.962 0.553 0.977 0.930 0.861

GF 1.296 1.873 0.774 1.504 2.662 2.519 1.108 3.633 1.408 1.237

F1-score 0.796 0.630 0.648 0.828 0.512 0.962 0.398 0.968 0.886 0.820

NNhte

Testing Accuracy 0.762 0.571 0.757 0.767 0.563 0.948 0.533 0.936 0.898 0.806

Training Accuracy 0.816 0.795 0.761 0.887 0.849 0.982 0.775 0.989 0.966 0.874

GF 1.294 2.096 1.014 2.069 2.888 2.910 2.080 5.915 3.046 1.543

F1-score 0.856 0.616 0.696 0.786 0.580 0.990 0.506 0.986 0.894 0.828

HTEsm

Testing Accuracy 0.780 0.630 0.761 0.773 0.549 0.951 0.521 0.951 0.898 0.812

Training Accuracy 0.845 0.810 0.715 0.890 0.679 0.975 0.755 0.996 0.962 0.874

GF 1.421 1.949 0.838 2.060 1.407 1.946 1.958 14.720 2.699 1.487

F1-score 0.906 0.688 0.660 0.806 0.570 0.974 0.470 1.000 0.890 0.832

HTEdf

Testing Accuracy 0.791 0.634 0.765 0.799 0.555 0.954 0.534 0.955 0.900 0.814

Training Accuracy 0.845 0.785 0.749 0.901 0.842 0.985 0.770 0.997 0.955 0.862

GF 1.345 1.704 0.936 2.044 2.813 3.013 2.027 22.490 2.218 1.348

F1-score 0.930 0.726 0.700 0.830 0.624 0.996 0.494 1.000 0.900 0.832
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The HTEdf outperformed the other ensembles for five of the 10 datasets based on

generalization performance. The SVMhte is the most accurate ensemble for the Credit

Approval, Bank Marketing, and Censor Income datasets. The kNNE and NNhte

performed best for the Breast Cancer and Red Wine datasets, respectively. It is observed

that the HTEdf and HTEsm remarkably ranked as the second most accurate ensemble

for most of the datasets, illustrating the advantage of the mixtures of the heterogeneous

experts obtained from the combination of different ML algorithms.

The NBE and NBhte provided the worst generalization performance on all datasets except

for the Sonar dataset, where the kNNE performed worst in prediction. The generalization

performance of the NBE and NBhte indicates that the ensembles struggled to capture

the characteristics and complexity of experimental data compared to other ensembles in

this modelling study. However, the NBhte still expressed the benefit of the mixtures of

heterogeneous experts obtained from different control parameter configurations for the

base NB learners within the NBhte. Other ensembles generated the same trend on most of

the datasets as observed by the kNNE and kNNhte, DTE and DThte, SVME and SVMhte,

as well as NNE and NNhte.

Illustrated by the high average ranks in Table 8.25, all pure homogeneous ensembles and

a number of HTEs (i.e. NBhte, kNNhte, and DThte) demonstrated prediction behaviours

that are adversely influenced by the outlier ratios over all datasets. While the DT

algorithms have been shown to be robust to outliers (Breiman et al., 1993; John, 1995;

Rokach and Maimon, 2014; Song and Lu, 2015; Nyitrai and Virag, 2019), the DTE and

DThte developed in this modelling study exhibit inherent sensitivity to the different

outlier ratios. The DTE and DThte did not generalize well on numeric features as shown

in the Sonar, Red Wine and White Wine datasets, but performed well on categorical and

multi-variate features observed in other datasets. This shows that the DTE and DThte

prioritized categorical features over numeric features, which explains why the ensembles

struggled against the different number of outliers in the study. Also, the prediction

behaviour of the DTE and DThte corroborates the findings in the studies of Sebban

et al. (2000) and Zeng and Cheng (2021) that the outliers in ratios adversely influence

the predictive performance of DT ensembles.

Sebban et al. (2000) and Zeng and Cheng (2021) reported that there is a high possibility
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that the induction algorithms producing the experts within a DT ensemble increase the

depth of the base trees, which results in severe overfitting of the training dataset, leading

to poor generalization performance. Also, Ch’ng and Mahat (2020) explained that outliers

could influence the splitting point and affect the potential variable to be selected during

tree induction. The outcome is an adverse effect on classification accuracy and the

structure of the tree, which could lead to low generalization performance of the DTE for

the Sonar, Red Wine, and White Wine datasets. However, the DThte achieved improved

generalization performance compared to the DTE, which is due to the benefits of the

mixtures of heterogeneous experts from different configurations of the base DT learners.

Given the inductive bias of kNN algorithms to classify a test sample to the class of the

closest training samples from stored training data, Beckmann et al. (2015) explained

that a large number of misclassified samples by base kNN learners could change the

class boundaries during the distance computation. The adverse effect of the change

in class boundaries due to high misclassification results in low overall generalization

performance. The kNNE and kNNhte tend to show similar behaviour for most datasets,

often ranked among the least performing ensembles.

Additionally, while the GFs of the kNNE and kNNhte illustrates that the ensembles

showed severe overfitting of the training dataset in all datasets except for the Indian

Liver dataset. Although, the kNNhte is better than the kNNE in terms of generalization

performance due to the combination of different assumptions obtained from different

control parameter configurations of the base kNN learners.

The average ranks of the NNE and SVME showed that using the same control parameter

configuration for the base learners to induce base experts within these ensembles did

not yield a significant improvement in generalization performance. The NNE risks

overfitting the training dataset by learning from the different number of outliers in the

training dataset, which impair the overall prediction performance across all datasets

except for the Indian Liver dataset. On the other hand, the performance of the SVME

illustrates the possibility that the predictions of the base experts were derived using soft

margins. SVMs with soft margin approaches have been reported to show sensitivity

to outliers (Bandaragoda et al., 2018; Wang et al., 2019a). However, the NNhte and

SVMhte illustrated the benefit of using different control parameter configurations to
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induce suitable experts that produced improved generalization performance compared

to the SVME and NNE.

From the results presented in Appendix B, most of the ensembles, especially the pure

homogeneous ensembles, offered unstable testing accuracy from different categories of

the outlier ratios starting from low (1% and 2%), mild (3%) and extreme (4% and 5%)

outlier ratios. However, the HTEdf achieved stable prediction performance by ranking as

the best ensemble in terms of generalization performance for the low, mild, and extreme

categories over five datasets (i.e. Sonar, Indian Liver, Car Evaluation, White Wine, and

Nursery datasets). The SVMhte outperformed other ensembles over all the outlier ratio

categories for three datasets (i.e. Credit Approval, Bank Marketing, and Censor Income

datasets). The NNhte and kNNE are the most accurate ensembles for the Red Wine and

Breast Cancer datasets. The HTEdf and HTEsm achieved the second-best performance

for most datasets when the outlier ratios categories were examined.

For training performance in Table 8.24, the HTEdf and HTEsm achieved the highest

training accuracy across most of the datasets, rivalled by the SVMhte, NNhte, and NNE

in a number of datasets. The testing and training accuracies of the NBE and NBhte on the

Red Wine and White datasets indicate that the ensembles experience slight overfitting of

the training dataset, while the NBhte did not overfit for the White Wine dataset. Also, the

GFs of all ensembles indicated slight overfitting of the training dataset on most datasets

except for the HTEsm and HTEdf that produced severe overfitting on the Nursery dataset.

On the other hand, the NBE, kNNE, DTE, SVME, and NNE showed no indication of

overfitting for the Sonar, Indian Liver, and Bank Marketing datasets. The NBhte, kNNhte,

DThte, SVMhte, and HTEdf also experienced no indication of overfitting the training

dataset on the same datasets.

Further, despite the mixed results recorded by the ensembles in this modelling study, the

advantage of the mixtures of heterogeneous experts over pure homogeneous mixtures is

still evident in the F1-score performance in Table 8.24. The HTEdf achieved the highest

F1-score over seven of the 10 datasets, rivalled by the HTEsm on the Nursery and Censor

Income datasets. The RF algorithm capitalized on the intrinsic ensemble approaches to

outperform other ensembles on the Indian Liver and White Wine datasets by offering F1-

scores of 73.6% and 52.0% respectively. The SVME performed best on the Credit Approval
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dataset.

Thus, the results of all performance measures provide evidence to conclude that it is

beneficial to construct mixtures of heterogeneous experts to learn and generalize on

datasets with outliers present in the training dataset. Specifically, the combination of

different ML algorithms to construct the mixtures of heterogeneous experts in the HTEdf

and HTEsm demonstrated a superior advantage over other ensembles.

Statistical Tests

This section discusses the statistical comparison of the generalization performance of the

ensembles across the outlier ratios over the classification datasets.

Friedman Test

The discussion of the Friedman test is provided in Section 8.2, and is used to compare the

generalization performance of the 13 ensembles across all the number of outliers over the

10 datasets in this modelling study.

Based on the number of outliers considered in each dataset, the mean average of

the generalization performance of each ensemble across the number of outliers is first

computed. Then the computed mean average is ranked according to the Friedman test as

shown in Table 8.25.

Table 8.25: Ranking the Generalization Performance of Ensembles over all Classification
Datasets in the Number of Outliers Study

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AvR

NBE 74.7(6) 51.7(13) 66.5(13) 53.5(13) 47.1(13) 80.9(12.5) 42.7(13) 83.5(12) 55.6(13) 50.5(13) 12.15

kNNE 58.6(13) 66.6(1) 73.0(9) 78.5(5) 50.1(10) 83.0(11) 47.3(11) 82.2(13) 89.7(6) 80.5(8.5) 8.75

DTE 62.4(12) 57.0(10) 74.6(5) 76.0(9.5) 48.4(12) 92.2(6) 47.4(10) 89.9(7) 88.6(11) 80.1(11) 9.35

RF 70.6(8) 62.5(6) 73.0(9) 79.1(3) 53.7(5.5) 88.3(8) 52.0(4) 89.7(8) 89.8(5) 80.7(5) 6.15

SVME 72.3(7) 62.2(7) 74.7(4) 77.7(6) 53.1(7.5) 87.1(9) 50.0(9) 87.9(9) 89.4(8) 80.5(8.5) 7.50

NNE 76.4(3) 55.6(11) 73.0(9) 66.9(11) 54.5(4) 94.9(3) 51.5(6) 93.3(4) 89.1(10) 80.3(10) 7.10

NBhte 76.2(4.5) 51.8(12) 68.8(12) 65.1(12) 48.9(11) 80.9(12.5) 44.9(12) 84.4(10.5) 83.1(12) 72.6(12) 11.05

kNNhte 65.5(11) 63.5(2) 72.7(11) 78.8(4) 53.1(7.5) 84.4(10) 50.3(8) 84.4(10.5) 89.3(9) 81.1(4) 7.70

DThte 65.9(10) 58.7(8) 74.1(7) 76.0(9.5) 52.6(9) 93.4(5) 51.8(5) 90.5(6) 89.5(7) 80.6(6.5) 7.30

SVMhte 70.1(9) 62.7(5) 74.3(6) 80.6(1) 53.7(5.5) 90.3(7) 50.5(7) 91.5(5) 90.1(1) 82.8(1) 4.75

NNhte 76.2(4.5) 57.1(9) 75.7(3) 76.7(8) 56.3(1) 94.8(4) 53.3(2) 93.6(3) 89.8(4) 80.6(6.5) 4.50

HTEsm 78.0(2) 63.0(4) 76.1(2) 77.3(7) 54.9(3) 95.1(2) 52.1(3) 95.1(2) 89.8(4) 81.2(3) 3.20

HTEdf 79.1(1) 63.4(3) 76.5(1) 79.9(2) 55.5(2) 95.4(1) 53.4(1) 95.5(1) 90.0(2) 81.4(2) 1.60
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Illustrated by the average ranks of the ensembles in Table 8.25, the HTEdf is the best

performing ensemble achieving the lowest average ranking of 1.60, followed by the

HTEsm (3.20) and NNhte (4.50). The average rankings of the HTEdf and HTEsm illustrate

the benefit of the combination of different ML algorithms to develop a heterogeneous

mixtures of experts for the study. Another outcome is that all HTEs provide lower

average rankings than the pure homogeneous ensembles counterparts, which showed the

advantage of mixtures of heterogeneous experts compared to homogeneous mixtures.

From the average rankings of the ensembles in Table 8.25, the calculated Friedman test

statistic χ2
F is 72.122, and the Iman-Davenport extension of the Friedman test is computed

as FF = 13.557. Hence, because the value of FF is greater than the obtained critical value,

the null hypothesis that all ensembles are equal is rejected. The rejection of the null

hypothesis indicates that, there is a statistically significant difference in the generalization

performance of the ensembles across the number of outliers for all datasets.

Bonferroni-Dunn Test

After the rejection of the null hypothesis, the Bonferroni Dunn post hoc test is performed

to determine the ensembles that significantly differ from each other in the number of

outlier study for classification problems. The critical value is 2.87, and the computed

critical difference (CD) = 4.998. The significant difference in generalization performance

between the HTEdf and any other ensemble is shown in the critical difference plot in

Figure 8.23.

Figure 8.23: Critical Difference Plot of Ensembles for Number of Outliers Study in
Classification Problems

The outcome of the Bonferroni-Dunn test showed that the HTEdf is significantly more

accurate than all pure homogeneous ensembles (i.e. NBE, kNNE, DTE, SVME, NNE),

NBhte, kNNhte and DThte. The HTEsm is also significantly more accurate than all these

ensembles. The outcome confirms that the construction of mixtures of heterogeneous
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experts using different ML algorithms as observed in HTEdf and HTEsm, provides

better generalization performance than other ensembles constructed using the same ML

algorithms. On the contrary, the outcome showed that the experimental datasets did

not provide sufficient evidence to conclude that a significant difference in generalization

performance exists between the HTEdf and the HTEsm, NNhte, SVMhte and RF

algorithm.

8.5 Severity of Outliers Study

This section discusses the ensemble performance across the severity of outliers from 2 to 4

standard deviations from the estimated mean in the training datasets of the classification

datasets. The summative results (over all outlier severities) of the testing and training

accuracy, GF and F1-score for each ensemble over all classification datasets are provided

in Table 8.26.

Illustrated in Table 8.26, the ensembles demonstrated different prediction performances

over all the classification datasets. Generally, the results highlighted that the ensembles

responded to the different standard deviations at which the data deviated from the

estimated mean in each dataset. Unlike the number of outliers study where the HTEdf

was ranked as the most accurate ensemble on five of the 10 datasets, the HTEdf

outperformed other ensembles on four datasets in this modelling study.

The prediction outcome of the HTEdf on four datasets illustrates that a number of base

ML algorithms combined in the HTEdf showed more sensitivity to the outlier severities

as shown in the average rank of 2.25 achieved by the HTEdf, which is higher than 1.60

obtained in the number of outliers study.

The SVMhte is the most accurate ensemble for three datasets, while the NNhte offered

the best generalization performance for the Red Wine and Nursery datasets. While the

HTEsm rivalled the HTEdf for the Sonar dataset, both ensembles achieved the second-

best generalization performance for four datasets altogether.

On the other hand, the NBE and NBhte offered the least testing accuracy for eight datasets

except for the Sonar and Nursery datasets. This indicates that the NBE and NBhte

struggled to generalized well on the characteristics and complexity of these datasets
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compared to other ensembles, and given the outlier severities considered.

Table 8.26: Ensemble Results over all Classification Datasets in Severity of Outliers Study

Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBE

Testing Accuracy 0.747 0.517 0.665 0.535 0.471 0.809 0.427 0.854 0.556 0.591

Training Accuracy 0.732 0.655 0.661 0.628 0.546 0.945 0.432 0.877 0.798 0.774

GF 0.948 1.405 0.989 1.251 1.166 3.473 1.010 1.183 2.200 1.809

F1-score 0.826 0.562 0.662 0.478 0.378 0.820 0.314 0.840 0.788 0.680

kNNE

Testing Accuracy 0.586 0.666 0.727 0.788 0.501 0.844 0.473 0.810 0.893 0.813

Training Accuracy 0.773 0.797 0.680 0.873 0.784 0.964 0.703 0.904 0.859 0.860

GF 1.832 1.644 0.854 1.675 2.313 4.333 1.777 1.976 0.758 1.336

F1-score 0.808 0.564 0.588 0.802 0.466 0.786 0.438 0.896 0.730 0.802

DTE

Testing Accuracy 0.624 0.560 0.737 0.759 0.479 0.924 0.477 0.901 0.887 0.811

Training Accuracy 0.765 0.739 0.696 0.864 0.763 0.973 0.709 0.955 0.938 0.848

GF 1.609 1.692 0.866 1.778 2.198 2.815 1.796 2.178 1.818 1.244

F1-score 0.742 0.640 0.644 0.790 0.520 0.960 0.424 0.940 0.884 0.790

RF

Testing Accuracy 0.723 0.640 0.727 0.797 0.540 0.882 0.521 0.896 0.899 0.813

Training Accuracy 0.795 0.783 0.734 0.888 0.853 0.972 0.790 0.964 0.951 0.876

GF 1.356 1.658 1.029 1.816 3.129 4.163 2.284 2.862 2.074 1.509

F1-score 0.806 0.626 0.716 0.812 0.592 0.928 0.506 0.950 0.890 0.810

SVME

Testing Accuracy 0.692 0.628 0.746 0.778 0.531 0.872 0.500 0.869 0.894 0.808

Training Accuracy 0.768 0.800 0.659 0.879 0.569 0.972 0.470 0.971 0.973 0.870

GF 1.331 1.864 0.746 1.828 1.089 4.578 0.944 4.563 3.986 1.477

F1-score 0.722 0.510 0.616 0.846 0.444 0.898 0.348 0.954 0.840 0.810

NNE

Testing Accuracy 0.766 0.558 0.729 0.674 0.539 0.948 0.515 0.953 0.890 0.815

Training Accuracy 0.854 0.786 0.673 0.855 0.824 0.967 0.781 0.997 0.971 0.877

GF 1.618 2.073 0.829 2.261 2.628 1.598 2.210 15.667 3.819 1.499

F1-score 0.900 0.632 0.670 0.734 0.542 0.990 0.498 1.000 0.890 0.814
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Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBhte

Testing Accuracy 0.762 0.518 0.668 0.651 0.489 0.809 0.449 0.859 0.831 0.733

Training Accuracy 0.733 0.686 0.671 0.710 0.545 0.945 0.445 0.891 0.826 0.830

GF 0.894 1.536 1.010 1.205 1.123 3.473 0.993 1.289 0.970 1.567

F1-score 0.818 0.584 0.654 0.630 0.378 0.820 0.316 0.858 0.840 0.758

kNNhte

Testing Accuracy 0.655 0.635 0.730 0.808 0.531 0.830 0.503 0.821 0.897 0.823

Training Accuracy 0.802 0.812 0.645 0.864 0.838 0.969 0.764 0.908 0.826 0.855

GF 1.751 1.941 0.760 1.412 2.895 5.484 2.110 1.946 0.593 1.221

F1-score 0.878 0.702 0.494 0.852 0.566 0.770 0.494 0.884 0.780 0.804

DThte

Testing Accuracy 0.677 0.588 0.743 0.761 0.526 0.934 0.518 0.914 0.894 0.824

Training Accuracy 0.798 0.749 0.689 0.878 0.850 0.974 0.790 0.974 0.952 0.870

GF 1.616 1.646 0.826 1.956 3.169 2.546 2.289 3.380 2.202 1.361

F1-score 0.790 0.680 0.658 0.808 0.624 0.960 0.516 0.970 0.890 0.816

SVMhte

Testing Accuracy 0.726 0.627 0.747 0.818 0.550 0.903 0.505 0.915 0.903 0.829

Training Accuracy 0.845 0.799 0.664 0.878 0.679 0.964 0.553 0.976 0.927 0.862

GF 1.779 1.856 0.754 1.485 1.401 2.683 1.108 3.592 1.340 1.236

F1-score 0.822 0.630 0.576 0.828 0.504 0.962 0.390 0.970 0.880 0.810

NNhte

Testing Accuracy 0.764 0.571 0.759 0.768 0.551 0.955 0.532 0.958 0.898 0.818

Training Accuracy 0.831 0.790 0.676 0.885 0.832 0.971 0.774 0.998 0.963 0.879

GF 1.406 2.048 0.744 2.024 2.677 1.575 2.073 20.900 2.785 1.502

F1-score 0.872 0.652 0.592 0.782 0.550 0.996 0.502 1.000 0.890 0.826

HTEsm

Testing Accuracy 0.786 0.632 0.761 0.771 0.555 0.949 0.521 0.940 0.898 0.824

Training Accuracy 0.849 0.813 0.727 0.888 0.845 0.973 0.755 0.979 0.956 0.876

GF 1.437 1.973 0.877 2.036 2.884 1.870 1.958 2.854 2.299 1.418

F1-score 0.922 0.690 0.654 0.850 0.566 0.990 0.506 0.980 0.890 0.826

HTEdf

Testing Accuracy 0.786 0.634 0.764 0.800 0.556 0.950 0.534 0.941 0.898 0.827

Training Accuracy 0.850 0.787 0.716 0.902 0.843 0.973 0.771 0.985 0.967 0.876

GF 1.443 1.720 0.833 2.051 2.828 1.870 2.039 3.963 3.061 1.380

F1-score 0.930 0.706 0.672 0.866 0.606 0.991 0.504 0.990 0.890 0.830
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The generalization performance of the kNNE and kNNhte are also unreliable following

the NBE and NBhte. However, the NBhte and kNNhte are more accurate than the NBE

and kNNE due to the benefit of the mixtures of heterogeneous experts from different

control parameter configurations.

The high average ranks of the NBE, kNNE, DTE, SVME, and NBhte compared to the

HTEdf in Table 8.27 indicate that these ensembles were affected the most by the outlier

severities across the datasets. The DT algorithms have been shown to be robust to

outliers (Breiman et al., 1993; Song and Lu, 2015; Nyitrai and Virag, 2019). However, the

generalization performance of the DTE overall datasets revealed that the DTE showed

sensitivity to the outlier severities in the study due to the issues stated previously in the

number of outliers study in relation to the findings of Sebban et al. (2000), Ch’ng and

Mahat (2020), and Zeng and Cheng (2021).

The average ranks of the NBE and NBhte indicate the possibility that the outlier

severities influence the shape of the Gaussian distribution assumed by the base experts

within the NBE and NBhte. Because Gaussian NB algorithms obtain the mean

vectors from maximum likelihood (Ahmed et al., 2017), the base experts within these

ensembles showed the possibility that the computed mean vectors are affected by

the outlier severities resulting in low generalization performance compared to other

ensembles. Also, the average ranks of the kNNhte and kNNE indicate that the kNNhte

demonstrated slight sensitivity to outlier severities compare to the kNNE, due to

the benefit of the mixtures of heterogeneous experts obtained from different control

parameter configurations of the base learners in the kNNhte.

Also, the kNNE showed more overfitting of the training dataset than the kNNhte, and

is ranked among the least accurate ensembles for most datasets, including Sonar, Indian

Liver, Red Wine, White Wine, Nursery, and Bank Marketing datasets. In addition, the

performance of the kNNE and SVME is attributed to the fact that these ensembles were

constructed using the same configuration for the base learners. Thus, the kNNE and

SVME struggled to capture the relationship between the input features and target labels

due to the outlier severities.

The generalization performance of the ensembles on low (2.0 and 2.5), mild (3.0), and

extreme (3.5 and 4.0) levels of outlier severities is summarized in Appendix C. The
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HTEdf and HTEsm jointly outperformed other ensembles across the levels (low, mild,

and extreme) of outlier severities on four datasets, i.e. Sonar, Indian Liver, Red Wine,

and White Wine datasets. Also, while the HTEdf performed best on low outlier severity

for the Censor Income dataset, the SVMhte is the best for extreme outlier severity. Both

ensembles achieved equal generalization performance for mild outlier severity.

Further, the SVMhte and kNNhte are the most accurate ensembles for the Breast Cancer

and Credit Approval datasets across the levels of the outlier severities. The NNhte

outperformed other ensembles for the Car Evaluation and Nursery datasets across the

outlier severity levels. However, the HTEdf offered the same generalization performance

as the NNhte when the outlier severity was low for the Car Evaluation dataset.

Observing the training accuracy in Table 8.26, all ensembles achieved competitive training

performance, illustrating mixed results across the datasets. However, the NBE, NBhte,

SVME, and SVMhte seemed to struggle with respect to training accuracy for multi-class

classification problems with more labels in the Red Wine and White datasets. The training

accuracies of the NBE and NBhte on the Red Wine and White Wine datasets indicate that

the ensembles experienced a problem of overfitting of the training dataset, resulting in

poor generalization performance. The SVME and SVMhte also showed similar behaviour

as the NBE and NBhte on both datasets, leading to low generalization performance.

The GFs of the ensembles showed that all ensembles achieved slight overfitting of the

training dataset for most datasets except for the kNNE, RF, and SVME which showed

severe overfitting of the training dataset on the Car Evaluation dataset. The NNE and

NNhte also experienced severe overfitting on the Nursery dataset. On the contrary, there

were datasets where all ensembles developed from the mixtures of heterogeneous experts,

i.e. NBhte, kNNhte, DThte, SVMhte, NNhte, HTEsm, and HTEdf, showed no indication

of overfitting. This is reflected in the Sonar, Indian Liver, and Bank Marketing datasets.

Also, four ensembles of the homogeneous mixtures, i.e. NBE, kNNE, DTE, and SVME

showed no indication of overfitting on the same datasets.

For the F1-score, The HTEdf demonstrated superiority over other ensembles by achieving

the highest F1-score for five datasets, while the RF, DThte, NNhte, and HTEsm offered

the best F1-score for other datasets. Although it can be observed that a number of

ensembles achieved equal F1-scores with the HTEdf for the Bank Marketing dataset, the
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HTEdf and HTEsm are ranked as the second best-performing ensembles for five and three

datasets, respectively. Hence, the F1-score performance of these ensembles indicates that

the ensembles developed as a mixture of heterogeneous experts are more accurate to

classify the majority and minority samples in the experimental datasets than the pure

homogeneous mixtures.

The outcome of all performance measures provides evidence to conclude that the

mixtures of heterogeneous experts obtained a superior advantage over homogeneous

mixtures to learn and generalize on datasets with different severities of outliers in the

training dataset.

Statistical Tests

This section compares the generalization performance of the HTEs and homogeneous

ensembles across the severities of outliers over the 10 classification datasets.

Friedman Test

The Friedman test used to compare the generalization performance of the 13 ensembles

for the outlier severities over the 10 datasets is discussed in Section 8.2. Based on the

severities of outliers considered in each dataset, i.e. 2σ to 4σ, the mean average of the

generalization performance of each ensemble across outlier severities is computed. The

computed mean average is then ranked according to the Friedman test as shown in Table

8.27.

The HTEdf is the best performing ensemble achieving the lowest average ranking of

2.25, followed by the HTEsm (3.65), NNhte (4.10) and SVMhte (4.40). The average

ranks of the HTEdf and HTEsm further highlight the advantage of the mixtures of

heterogeneous experts obtained from the combination of different ML algorithms over

other ensembles. Also, all HTEs are observed to provide lower average rankings than the

pure homogeneous ensembles counterparts, which illustrate the advantage of mixtures

of heterogeneous experts in comparison to homogeneous mixtures.

From the average rankings of the ensembles in Table 8.27, the calculated Friedman

test statistic is χ2
F = 69.214, and the Iman-Davenport extension of the Friedman test is

computed as FF = 12.266. The null hypothesis that all ensembles are equal is rejected
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because the value of FF is greater than the obtained critical value.

Table 8.27: Ranking the Generalization Performance of Ensembles over all Classification
Datasets in the Severity of Outliers Study

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AVR

NBE 74.7(6) 51.7(13) 66.5(13) 53.5(13) 47.1(13) 80.9(12.5) 42.7(13) 85.4(11) 55.6(13) 59.1(13) 12.05

kNNE 58.6(13) 66.6(1) 72.7(10.5) 78.8(5) 50.1(10) 84.4(10) 47.3(11) 81.0(13) 89.3(9) 81.3(8.5) 9.10

DTE 62.4(12) 56.0(10) 73.7(7) 75.9(10) 47.9(12) 92.4(6) 47.7(10) 90.1(7) 88.7(11) 81.1(10) 9.50

RF 72.3(8) 64.0(2) 72.7(10.5) 79.7(4) 54.0(5) 88.2(8) 52.1(3.5) 89.6(8) 89.9(2) 81.3(8.5) 5.95

SVME 69.2(9) 62.8(6) 74.6(5) 77.8(6) 53.1(7.5) 87.2(9) 50.0(9) 86.9(9) 89.4(7.5) 80.8(11) 7.90

NNE 76.6(3) 55.8(11) 72.9(9) 67.4(11) 53.9(6) 94.8(4) 51.5(6) 95.3(2) 89.0(10) 81.5(7) 6.90

NBhte 76.2(5) 51.8(12) 66.8(12) 65.1(12) 48.9(11) 80.9(12.5) 44.9(12) 85.9(10) 83.1(12) 73.3(12) 11.05

kNNhte 65.5(11) 63.5(3) 73.0(8) 80.8(2) 53.1(7.5) 83.0(11) 50.3(8) 82.1(12) 89.7(6) 82.3(5) 7.35

DThte 67.7(10) 58.8(8) 74.3(6) 76.1(9) 52.6(9) 93.4(5) 51.8(5) 91.4(6) 89.4(7.5) 82.4(3.5) 6.90

SVMhte 72.6(7) 62.7(7) 74.7(4) 81.8(1) 55.0(4) 90.3(7) 50.5(7) 91.5(5) 90.3(1) 82.9(1) 4.40

NNhte 76.4(4) 57.1(9) 75.9(3) 76.8(8) 55.1(3) 95.5(1) 53.2(2) 95.8(1) 89.8(4) 81.8(6) 4.10

HTEsm 78.6(1.5) 63.2(5) 76.1(2) 77.1(7) 55.5(2) 94.9(3) 52.1(3.5) 94.0(4) 89.8(4) 82.4(3.5) 3.65

HTEdf 78.6(1.5) 63.4(4) 76.4(1) 80.0(3) 55.6(1) 95.0(2) 53.4(1) 94.1(3) 89.8(4) 82.7(2) 2.25

Therefore, the rejection of the null hypothesis indicates that there is a statistically

significant difference in the generalization performance of the ensembles across the

severities of outliers for all datasets.

Bonferroni-Dunn Test

The Bonferroni Dunn post hoc test is performed after rejecting the null hypothesis results

in order to determine the ensembles that significantly differ from each other in the severity

of outliers study for classification problems. The critical value is 2.87, and the computed

critical difference (CD) = 4.998. The differences in performance between the HTEdf and

any other ensemble is shown in the critical difference plot in Figure 8.24.

Figure 8.24: Critical Difference Plot of Ensembles for Severities of Outliers Study in
Classification Problems

From Figure 8.24, the outcome of the Bonferroni-Dunn test showed that the HTEdf is

significantly more accurate than the NBE, kNNE, DTE, SVME, NBhte, and kNNhte. The
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difference in the average ranks of the HTEdf and kNNte is close to 4.998, illustrating

that the kNNhte showed slight sensitivity to the outlier severities over all classification

datasets compared to the NBE, kNNE, DTE, SVME, and NBhte. Also, it can be explained

that the different configurations of the base kNN learners induced base experts that

generalized to a reasonable level during prediction.

On the contrary, it was observed that the 10 experimental datasets did not provide

sufficient evidence to conclude that a significant difference in generalization performance

exists between the HTEdf and the HTEsm, NNhte, SVMhte, RF, DThte, and NNE.

With the exception of the NNE, the non-significant difference between the HTEdf

and HTEsm, NNhte, SVMhte, RF and DThte is attributed to the fact the ensembles

performed well on the outlier severities by capitalizing on the benefits of the mixtures

of heterogeneous experts. The mixtures of heterogeneous experts were induced using

multiple instances of the same or different ML algorithms where the instances in each

ensemble consist of different control parameter configurations.

8.6 Bagged Subsets Study

This section discusses the performance of the ensembles on the different bagged subsets

of the classification datasets. The bagged subsets are achieved by resampling the training

samples from 10%, 20%, 30%, ... to 80%, 90%, and 100% with replacement. The discussion

considers the performance of the ensembles on different input regions of the sample space

in the training dataset, i.e. small (10-30%), medium (40-60%) and large (70-100%) bagged

subsets. Also, the ensemble performance with respect to the bias-variance tradeoff is

discussed. Table 8.28 provides the summative results (over all bagged subsets) of the

testing and training accuracy, GF and F1-score of the ensembles over all classification

datasets.

The results of the ensembles in Table 8.28 clearly illustrate that the mixtures of

heterogeneous experts achieved better generalization performance than homogeneous

mixtures. The results showed that when the ensembles were trained on different subsets

of the training dataset, the HTEdf outperformed other ensembles on five of the 10

datasets, while being ranked as the second most accurate ensemble on four datasets
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except for the Credit Approval dataset.

Table 8.28: Ensemble Results over all Classification Datasets in Bagged Subsets Study

Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBE

Testing accuracy 0.747 0.517 0.665 0.535 0.468 0.819 0.448 0.842 0.556 0.627

Training accuracy 0.749 0.605 0.677 0.530 0.549 0.845 0.438 0.884 0.746 0.544

GF 1.069 1.235 1.052 1.011 1.192 1.170 0.983 1.372 1.798 0.826

F1-Score 0.714 0.467 0.541 0.500 0.509 0.830 0.407 0.859 0.798 0.798

kNNE

Testing accuracy 0.586 0.666 0.730 0.788 0.551 0.834 0.503 0.816 0.893 0.805

Training accuracy 0.737 0.752 0.680 0.876 0.698 0.922 0.516 0.851 0.910 0.813

GF 1.669 1.404 0.856 1.741 1.537 2.510 1.028 1.360 1.236 1.048

F1-Score 0.723 0.576 0.614 0.822 0.542 0.740 0.511 0.791 0.861 0.867

DTE

Testing accuracy 0.629 0.563 0.743 0.759 0.494 0.926 0.509 0.896 0.885 0.812

Training accuracy 0.848 0.782 0.787 0.842 0.701 0.942 0.499 0.948 0.932 0.828

GF 2.771 2.199 1.282 1.586 1.766 1.381 0.986 2.407 1.752 1.110

F1-Score 0.709 0.626 0.678 0.799 0.523 0.919 0.513 0.931 0.884 0.883

RF

Testing accuracy 0.712 0.635 0.735 0.793 0.574 0.879 0.566 0.902 0.898 0.809

Training accuracy 0.830 0.822 0.823 0.868 0.736 0.960 0.566 0.953 0.930 0.864

GF 1.954 2.280 1.705 1.578 1.810 3.832 1.011 2.991 1.556 1.470

F1-Score 0.729 0.608 0.722 0.817 0.568 0.902 0.574 0.923 0.886 0.885

SVME

Testing accuracy 0.727 0.630 0.744 0.775 0.540 0.888 0.528 0.868 0.894 0.798

Training accuracy 0.858 0.821 0.671 0.818 0.600 0.964 0.526 0.948 0.922 0.824

GF 2.206 2.677 0.809 1.378 1.158 4.302 0.996 4.302 1.415 1.152

F1-Score 0.740 0.511 0.649 0.792 0.512 0.874 0.485 0.904 0.840 0.840

NNE

Testing accuracy 0.766 0.551 0.728 0.675 0.566 0.942 0.556 0.943 0.891 0.808

Training accuracy 0.883 0.814 0.755 0.802 0.666 0.968 0.560 0.968 0.928 0.846

GF 2.231 2.808 1.126 1.665 1.344 2.220 1.014 2.824 1.686 1.269

F1-Score 0.798 0.616 0.671 0.744 0.558 0.936 0.564 0.960 0.884 0.884
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Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBhte

Testing accuracy 0.762 0.518 0.668 0.651 0.503 0.819 0.470 0.847 0.831 0.745

Training accuracy 0.753 0.648 0.677 0.638 0.570 0.845 0.468 0.888 0.834 0.708

GF 1.017 1.383 1.043 1.012 1.166 1.170 0.998 1.377 1.025 0.885

F1-Score 0.715 0.577 0.546 0.623 0.512 0.830 0.454 0.864 0.848 0.848

kNNhte

Testing accuracy 0.655 0.635 0.727 0.808 0.552 0.852 0.520 0.820 0.897 0.809

Training accuracy 0.818 0.816 0.763 0.873 0.608 0.875 0.547 0.888 0.895 0.842

GF 2.020 2.123 1.216 1.544 1.152 1.365 1.066 1.921 0.997 1.226

F1-Score 0.769 0.592 0.617 0.826 0.519 0.775 0.556 0.812 0.867 0.861

DThte

Testing accuracy 0.681 0.588 0.756 0.761 0.556 0.927 0.572 0.912 0.895 0.817

Training accuracy 0.863 0.802 0.818 0.859 0.754 0.965 0.566 0.962 0.940 0.842

GF 2.658 2.390 1.491 1.738 1.999 2.814 0.999 3.542 1.889 1.174

F1-Score 0.739 0.629 0.697 0.819 0.552 0.923 0.580 0.943 0.890 0.887

SVMhte

Testing accuracy 0.703 0.632 0.745 0.818 0.574 0.908 0.531 0.925 0.903 0.824

Training accuracy 0.784 0.787 0.631 0.879 0.627 0.934 0.536 0.964 0.904 0.819

GF 1.447 1.902 0.723 1.515 1.146 1.599 1.012 2.858 1.031 0.982

F1-Score 0.723 0.545 0.636 0.828 0.530 0.911 0.500 0.937 0.870 0.871

NNhte

Testing accuracy 0.763 0.577 0.761 0.767 0.571 0.960 0.559 0.944 0.898 0.814

Training accuracy 0.874 0.814 0.728 0.842 0.654 0.978 0.557 0.972 0.931 0.848

GF 2.067 2.622 0.889 1.498 1.288 2.368 1.002 3.528 1.626 1.239

F1-Score 0.801 0.618 0.669 0.785 0.549 0.969 0.548 0.963 0.886 0.886

HTEsm

Testing accuracy 0.797 0.645 0.745 0.771 0.562 0.942 0.567 0.952 0.898 0.819

Training accuracy 0.878 0.736 0.771 0.853 0.705 0.969 0.565 0.982 0.934 0.843

GF 1.932 1.366 1.129 1.585 1.503 2.309 1.002 5.954 1.644 1.162

F1-Score 0.800 0.653 0.668 0.818 0.561 0.951 0.560 0.978 0.892 0.888

HTEdf

Testing accuracy 0.804 0.654 0.768 0.801 0.582 0.949 0.569 0.962 0.899 0.825

Training accuracy 0.877 0.724 0.796 0.874 0.712 0.977 0.562 0.985 0.936 0.857

GF 1.807 1.270 1.178 1.616 1.474 2.831 0.989 6.655 1.681 1.280

F1-Score 0.824 0.665 0.687 0.838 0.565 0.966 0.566 0.982 0.893 0.888
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The SVMhte is the most accurate ensemble on two datasets (i.e. Credit Approval

and Bank Marketing datasets), while the kNNE, NNNhte, and DThte offered the

highest testing accuracy for the Breast Cancer, Car Evaluation, and White Wine dataset

respectively.

An interesting outcome in Table 8.28 is that, unlike SVMhte, kNNE, NNhte, and DThte,

the generalization performance of the HTEdf across the five datasets covered different

characteristics and complexities ranging from datasets with small, medium, and large

sample sizes to datasets with binary and multi-class labels. This outcome further

illustrates that the mixtures of heterogeneous experts from different ML algorithms,

where each instance of the algorithm consists of different configurations, produced

different views and assumptions in the sample space that effectively generalized better

than other ensembles on the test dataset.

The testing accuracies of the NBE and NBhte are similar to other modelling studies

previously discussed. The NBE and NBhte achieved the worst generalization

performance on eight of the 10 datasets, illustrating the possibility that the assumption of

the feature independence made by the base NB learners in both ensembles is not true for

the complexity of most datasets in this modelling study.

The kNNE and kNNhte also showed a similar trend in performance except for the Breast

Cancer dataset, where the kNNE offered the highest testing accuracy of 66.6%. Another

explanation for the stable generalization performance of the NBE and NBhte as well as

kNNE and kNNhte being similar to other modelling studies is attributed to stability of

NB and kNN algorithms. As reported in the empirical study of Breiman (1996a) and El-

Hindi et al. (2018), when stable algorithms such as the NB and kNN algorithms are used

as base learners in an ensemble to learn in the sample space of a training dataset, less

improvement in the final ensemble prediction is often achieved. Breiman (1996a) and El-

Hindi et al. (2018) explained that stable algorithms provide a small change in performance

even when there is a random perturbation of sample space in the training data.

From the results in Appendix D, the HTEdf demonstrated the best generalization

performance on different input space regions of the training dataset consisting of small

(10-30%), medium (40-60%), and large (70-100%) subsets for five datasets (i.e. Sonar,

Indian Liver, Red Wine, Nursery, and Censor Income datasets). Although, it can
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be observed that the HTEsm, DThte, RF, and SVMhte achieved equal generalization

performance in a number of sample space regions. While the DThte is the best ensemble

for the White Wine dataset, the HTEdf competed with the DThte for small and large

sample space regions. The kNNE and NNhte are the most accurate ensembles for all the

sample space regions in the training dataset for the Breast Cancer and Car Evaluation

datasets, while the SVMhte outperformed other ensembles for the Credit Approval and

Bank Marketing datasets over all sample space regions.

Further, a general observation of the ensemble performance over all classification datasets

revealed that the HTEdf is ranked as the most accurate and second most accurate

ensemble on datasets with small sample sizes, i.e. Sonar, Breast Cancer, and Indian Liver

datasets. Also, unlike other ensembles, the HTEdf is consistently ranked as the most

accurate or second-most accurate ensembles on datasets with medium and large sample

sizes. This is shown from the Red Wine to Censor Income dataset. The SVMhte is the only

ensemble that showed competitive generalization performance with the HTEdf on large

datasets as seen for the Bank Marketing and Censor Income datasets.

Illustrated by the training performance, all ensembles except the NBE achieved

competitive training accuracy over all classification datasets. The NBE offered poor

training accuracies of 53% and 54.4% for the Credit Approval and Censor Income datasets.

The GF of the NBE indicates that the ensemble slightly overfitted the training dataset for

the Credit Approval dataset, but showed no overfitting for the Censor Income dataset.

However, the overfitting problem results in poor generalization performance for the

Credit Approval dataset and low testing accuracy for the Censor Income dataset. All

other ensembles slightly overfitted the training dataset over the classification datasets

except for the Nursery dataset. The GFs of SVME, DThte, NNhte, HTEsm, and HTEdf for

the Nursery dataset indicate more overfitting of the training dataset.

From the graphical results of the ensembles in Appendix D, the analysis of the ensemble

performance with respect to the bias-variance tradeoff showed that the HTEs developed

from the mixtures of heterogeneous experts (i.e. NBhte, DThte, kNNhte, DThte, SVMhte,

NNhte, HTEsm, and HTEdf) generated better balance of the bias-variance tradeoff (i.e.

low bias and variance errors) compared to the ensembles developed from homogeneous

mixtures (i.e. NBE, kNNE, DTE, SVME, and NNE). The RF algorithm which is essentially
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a HTE is observed to achieve competitive performance with the HTEs.

For small bagged subsets (10-30%), the HTEdf and HTEsm outperformed other ensembles

to balance the bias-variance tradeoff when all classification datasets are considered. The

HTEdf and HTEsm showed less overfitting on small bagged subsets compared to other

ensembles, as illustrated in the graphical results in Appendix D. Also, with increasing

bagged subsets (40-100%) across all datasets, the HTEdf and HTEsm still produced less

overfitting of the training dataset, translating to lower bias and variance errors. This

indicates that the HTEdf and HTEsm better balanced the bias-variance tradeoff than other

ensembles.

A further observation of the graphical results in Appendix D reveals that the NBhte,

SVMhte, and NNhte produced competitive bias-variance tradeoff performance with the

HTEdf and HTEsm by generating less overfitting for small (10-30%) subsets for nine

datasets, except for the Breast Cancer dataset. However, while the NBhte, SVMhte, and

NNhte still produced less overfitting for medium bagged subsets (40-60%) for a number

of datasets, the NBhte, SVMhte, NNhte and other ensembles showed much overfitting for

large bagged subsets (70-100%) across all datasets compared to the HTEdf and HTEsm.

As a result, the generalization performance of the HTEdf and HTEsm on the bias-variance

tradeoff further substantiates the advantage of the mixtures of heterogeneous experts

from the combination of different ML algorithms.

For the prediction of the minority and majority samples across the bagged subsets over

the 10 datasets, the HTEdf achieved the highest F1-scores for six of the 10 datasets

consisting of different characteristics and complexities from small, medium, and large

sample sizes to binary and multi-class labels. The RF algorithm is the best performing

ensemble for two datasets, i.e. Indian Liver and Red Wine datasets. The DThte and

NNhte offered the highest F1-scores for the Car Evaluation and White Wine datasets.

Moreso, it can be observed that the HTEdf and HTEsm are further ranked as the second-

best performing ensembles for two and three datasets in terms of the F1-score.

Therefore, the outcome of all performance measures provides evidence to conclude that

the mixtures of heterogeneous experts performed better than the pure homogeneous

mixtures to learn and generalize on datasets with different bagged subsets of the training

dataset. Specifically, the outcome provides the realization that it is beneficial to exploit the
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combination of different ML algorithms to construct a mixture of heterogeneous experts.

Statistical Tests

This section discusses the statistical comparison of the generalization performance of the

developed ensembles across the bagged subsets over all classification datasets.

Friedman Test

The Friedman test used to compare the generalization performance of the 13 ensembles

for the bagged subsets over the 10 classification datasets is discussed in Section 8.2. For

each dataset, the mean average of the generalization performance of each ensemble for

all bagged subsets is calculated. Then the computed mean average of the ensembles are

ranked according to the Friedman test as provided in Table 8.29.

Table 8.29: Ranking the Generalization Performance of Ensembles over all Classification
Datasets in the Bagged Subsets Study

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AVR

NBE 74.7(6) 51.7(13) 66.5(13) 53.5(13) 46.8(13) 81.9(12.5) 44.8(13) 84.2(11) 55.6(13) 62.7(13) 12.05

kNNE 58.6(13) 66.6(1) 73.0(9) 78.8(5) 55.1(8) 83.4(11) 50.3(11) 81.6(13) 89.3(9) 80.5(10) 9.00

DTE 62.9(12) 56.3(10) 74.3(7) 75.9(10) 49.4(12) 92.6(6) 50.9(10) 89.6(8) 88.5(11) 81.2(6) 9.20

RF 71.2(8) 63.5(4.5) 73.5(8) 79.3(4) 57.4(2.5) 87.9(9) 56.6(4) 90.2(7) 89.8(4) 80.9(7.5) 5.85

SVME 72.7(7) 63.0(7) 74.4(6) 77.5(6) 54.0(9) 88.8(8) 52.8(8) 86.8(9) 89.4(8) 79.8(11) 7.90

NNE 76.6(3) 55.1(11) 72.8(10) 67.5(11) 56.6(4) 94.2(3.5) 55.6(6) 94.3(4) 89.1(10) 80.8(9) 7.15

NBhte 76.2(5) 51.8(12) 66.8(12) 65.1(12) 50.3(11) 81.9(12.5) 47.0(12) 84.7(10) 83.1(12) 74.5(12) 11.05

kNNhte 65.5(11) 63.5(4.5) 72.7(11) 80.8(2) 55.2(7) 85.2(10) 52.0(9) 82.0(12) 89.7(6) 80.9(7.5) 8.00

DThte 68.1(10) 58.8(8) 75.6(3) 76.1(9) 55.6(6) 92.7(5) 57.2(1) 91.2(6) 89.5(7) 81.7(4) 5.90

SVMhte 70.3(9) 63.2(6) 74.5(4.5) 81.8(1) 57.4(2.5) 90.8(7) 53.1(7) 92.5(5) 90.3(1) 82.4(1.5) 4.45

NNhte 76.3(4) 57.7(9) 76.1(2) 76.7(8) 51.4(10) 96.0(1) 55.9(5) 94.4(3) 89.8(4) 81.5(5) 5.10

HTEsm 79.7(2) 64.5(3) 74.5(4.5) 77.1(7) 56.2(5) 94.2(3.5) 56.7(3) 95.2(2) 89.8(4) 81.9(3) 3.70

HTEdf 80.4(1) 65.4(2) 76.8(1) 80.1(3) 58.2(1) 94.9(2) 56.9(2) 96.2(1) 89.9(2) 82.4(1.5) 1.65

The HTEdf is the best performing ensemble in terms of generalization performance

achieving the lowest average ranking of 1.65 across all datasets. The HTEsm (3.70) and

SVMhte (4.45) are the second and third best performing ensembles over all datasets.

The average rankings of all HTEs showed that it is preferable to develop mixtures of

heterogeneous experts compare to homogeneous mixtures for the bagged subsets study,

especially when the mixtures of heterogeneous experts is obtained using different ML

algorithms to construct HTEdf and HTEsm.
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From Table 8.29, the calculated Friedman test statistic χ2
F from the average rankings of

the ensembles is 69.056, while the Iman-Davenport extension of the Friedman test is

computed as FF = 12.199. The value of FF is greater than the obtained critical value, and

thus, the null hypothesis that all ensembles are equal is rejected. The rejection of the null

hypothesis shows that, there is a statistically significant difference in the generalization

performance of the ensembles across the bagged subsets for all datasets.

Bonferroni-Dunn Test

The Bonferroni-Dunn post hoc test is performed after rejecting the null hypothesis in the

Friedman test. The Bonferroni-Dunn test determined the ensembles that significantly

differ from each other in the bagged subsets study for classification problems. The critical

value is 2.87, and the computed critical difference (CD) is 4.998. Figure 8.25 illustrates

the critical difference plot for the differences in performance between the HTEdf and any

other ensemble.

Figure 8.25: Critical Difference Plot of Ensembles for Bagged Subsets Study in
Classification Problems

The outcome of the Bonferroni-Dunn test as illustrated in Figure 8.25 is that the HTEdf is

significantly more accurate than all pure homogeneous ensembles, i.e. NBE, kNNE, DTE,

SVME, and NNE, validating the advantage of the mixtures of heterogeneous experts over

the pure homogeneous mixtures to learn different input regions in the sample space of

each dataset. The HTEdf is also more accurate than NBhte and kNNhte.

On the other hand, it is observed that there is no significant difference in generalization

performance between the HTEdf and the HTEsm, SVMhte, NNhte, DThte, and RF

algorithm. The non-significant statistical difference between the HTEdf and HTEsm,

SVMhte, NNhte, DThte, and RF algorithm showed that the ensembles induced efficient

mixtures of heterogeneous experts that generalized well across all datasets.
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8.7 Feature Subsets Study

This section discusses the performance of the ensembles on the different feature subsets

of the classification datasets. The feature subsets are obtained by resampling the features

of the training dataset from 10%, 20%, 30%, ... to 80%, 90%, and 100% with replacement.

The discussion considers the performance of the ensembles on different input feature

regions in the training dataset, i.e. small (10-30%), medium (40-60%), and large (70-100%)

feature subsets. Also, the ensemble performance with respect to the bias-variance tradeoff

is discussed. Table 8.30 provides the summative results (over all feature subsets) of the

testing and training accuracy, GF and F1-score of the ensembles over all classification

datasets.

The comparison of the ensembles presented in Table 8.30 illustrates that the ensembles

showed different behaviours for the different feature subsets across the datasets. When

the ensembles were trained on different features subsets in each dataset, the mixtures

of heterogeneous experts further revealed superiority over the homogeneous mixtures

of experts. The HTEdf largely dominated other ensembles based on generalization

performance by achieving the highest testing accuracy for seven of the 10 datasets.

Although, the HTEsm offered equal testing accuracy of 77.8% as the HTEdf for the Sonar

dataset. While for the remaining datasets (i.e. Indian Liver, Car Evaluation, and Bank

Marketing datasets), where the HTEdf did not achieve the highest testing accuracy, the

HTEdf remarkably compensated with the second-best generalization performance on the

Bank Marketing dataset and the highest F1-scores for the three datasets. Out of the three

datasets, the NNhte is the most accurate ensemble for the Indian Liver and Car Evaluation

datasets, while the SVMhte performed best for the Bank Marketing dataset.

A remarkable outcome of the HTEdf is that, unlike the NNhte and HTEsm, the

generalization performance of the HTEdf across the seven datasets covered different

characteristics and complexities. The characteristics and complexities range from datasets

with small, medium and large sample sizes to datasets with small, medium and large

feature sizes. This outcome further indicates that the mixtures of heterogeneous experts

from different ML algorithms, where each instance of the algorithm consists of different

configurations, produced different views and assumptions in the feature space that
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effectively generalized better than other ensembles on the test dataset.

Table 8.30: Ensemble Results over all Classification Datasets in Feature Subsets Study

Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBE

Testing accuracy 0.710 0.490 0.632 0.513 0.466 0.595 0.436 0.719 0.671 0.454

Training accuracy 0.674 0.573 0.654 0.524 0.547 0.548 0.479 0.752 0.731 0.678

GF 0.894 1.203 1.070 1.033 1.184 0.904 1.083 1.140 1.245 1.772

F1-Score 0.740 0.492 0.484 0.432 0.479 0.641 0.407 0.695 0.753 0.562

kNNE

Testing accuracy 0.641 0.611 0.727 0.711 0.483 0.747 0.446 0.719 0.892 0.773

Training accuracy 0.756 0.692 0.676 0.796 0.587 0.766 0.512 0.726 0.849 0.755

GF 1.489 1.327 0.846 1.501 1.266 1.172 1.140 1.238 0.726 1.040

F1-Score 0.827 0.594 0.636 0.740 0.505 0.729 0.511 0.742 0.811 0.745

DTE

Testing accuracy 0.620 0.578 0.700 0.691 0.469 0.775 0.461 0.806 0.883 0.777

Training accuracy 0.719 0.689 0.716 0.774 0.561 0.791 0.526 0.816 0.889 0.781

GF 1.370 1.408 1.062 1.430 1.218 1.171 1.141 1.262 1.207 1.063

F1-Score 0.744 0.587 0.671 0.724 0.519 0.734 0.513 0.780 0.862 0.739

RF

Testing accuracy 0.699 0.626 0.717 0.713 0.499 0.767 0.484 0.795 0.889 0.784

Training accuracy 0.739 0.719 0.751 0.772 0.615 0.785 0.595 0.818 0.921 0.799

GF 1.171 1.397 1.146 1.357 1.318 1.211 1.289 1.486 1.588 1.156

F1-Score 0.814 0.591 0.692 0.743 0.555 0.717 0.577 0.773 0.875 0.750

SVME

Testing accuracy 0.689 0.631 0.735 0.708 0.496 0.772 0.487 0.788 0.892 0.787

Training accuracy 0.701 0.724 0.657 0.785 0.560 0.806 0.518 0.824 0.904 0.794

GF 1.090 1.475 0.778 1.438 1.150 1.524 1.068 1.873 1.959 1.109

F1-Score 0.700 0.564 0.633 0.753 0.491 0.719 0.500 0.778 0.836 0.751

NNE

Testing accuracy 0.765 0.589 0.716 0.659 0.507 0.789 0.484 0.814 0.883 0.786

Training accuracy 0.814 0.723 0.689 0.748 0.595 0.806 0.561 0.829 0.915 0.797

GF 1.307 1.572 0.922 1.393 1.239 3.063 1.191 1.601 2.058 1.130

F1-Score 0.799 0.604 0.635 0.682 0.539 0.740 0.564 0.788 0.857 0.758
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Measure Sonar Breast Indian Credit Red Car White Nursery Bank Censor

NBhte

Testing accuracy 0.725 0.497 0.651 0.554 0.479 0.600 0.451 0.731 0.853 0.626

Training accuracy 0.678 0.606 0.656 0.626 0.553 0.564 0.487 0.760 0.756 0.745

GF 0.858 1.291 1.024 1.197 1.170 0.921 1.072 1.147 0.651 1.541

F1-Score 0.736 0.531 0.489 0.545 0.481 0.646 0.454 0.709 0.809 0.673

kNNhte

Testing accuracy 0.690 0.623 0.724 0.694 0.487 0.740 0.465 0.725 0.890 0.778

Training accuracy 0.783 0.707 0.689 0.771 0.549 0.762 0.558 0.726 0.878 0.753

GF 1.467 1.396 0.890 1.404 1.145 1.181 1.226 1.188 0.948 1.024

F1-Score 0.877 0.573 0.639 0.747 0.553 0.707 0.556 0.752 0.829 0.752

DThte

Testing accuracy 0.661 0.589 0.723 0.696 0.497 0.782 0.493 0.809 0.887 0.785

Training accuracy 0.761 0.704 0.750 0.785 0.621 0.799 0.604 0.824 0.918 0.794

GF 1.458 1.442 1.118 1.500 1.345 1.238 1.296 1.448 1.569 1.105

F1-Score 0.772 0.608 0.691 0.743 0.560 0.730 0.580 0.785 0.876 0.747

SVMhte

Testing accuracy 0.728 0.632 0.741 0.722 0.509 0.783 0.473 0.807 0.898 0.790

Training accuracy 0.796 0.703 0.629 0.796 0.600 0.811 0.506 0.823 0.836 0.793

GF 1.378 1.308 0.710 1.380 1.243 1.251 1.069 1.538 0.815 1.080

F1-Score 0.834 0.614 0.613 0.747 0.487 0.727 0.485 0.786 0.856 0.756

NNhte

Testing accuracy 0.761 0.601 0.751 0.691 0.519 0.793 0.499 0.815 0.891 0.786

Training accuracy 0.793 0.717 0.686 0.772 0.596 0.810 0.557 0.828 0.908 0.793

GF 1.175 1.508 0.798 1.401 1.215 1.958 1.144 1.462 1.698 1.105

F1-Score 0.858 0.610 0.644 0.725 0.530 0.742 0.543 0.793 0.865 0.758

HTEsm

Testing accuracy 0.778 0.630 0.715 0.727 0.513 0.786 0.496 0.828 0.893 0.793

Training accuracy 0.802 0.696 0.717 0.784 0.610 0.802 0.562 0.834 0.912 0.797

GF 1.157 1.263 1.012 1.347 1.263 1.254 1.158 1.682 1.586 1.097

F1-Score 0.888 0.643 0.685 0.749 0.533 0.762 0.549 0.805 0.872 0.760

HTEdf

Testing accuracy 0.778 0.639 0.737 0.732 0.524 0.788 0.501 0.828 0.895 0.794

Training accuracy 0.804 0.688 0.732 0.780 0.569 0.804 0.574 0.834 0.904 0.785

GF 1.158 1.193 0.979 1.296 1.113 1.298 1.179 1.638 1.352 1.018

F1-Score 0.896 0.659 0.703 0.776 0.547 0.768 0.561 0.800 0.878 0.771
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On the contrary, the NBE and NBhte are the least accurate ensembles across

the classification datasets, illustrating that the NBE and NBhte struggled with the

characteristics of most datasets across the different feature subsets when compared to

other ensembles. However, the prediction behaviour of the NBE and NBhte in this

modelling study is surprising compared to other modelling studies. The NBE and

NBhte produced different testing accuracies across the datasets rather than equal testing

accuracies for all datasets in other modelling studies. While a clearer explanation as

to why the NBE and NBhte showed this prediction behaviour requires more in-depth

investigation, it is evident that both ensembles learned differently from different input

regions of the feature spaces in all datasets producing diverse base experts.

The testing accuracies of the kNNE and kNNhte are also unreliable for most datasets

which are illustrated by the high average ranks of the ensembles in Table 8.31. The

inadequacies in the generalization performance of kNNE and kNNhte for most datasets

are possibly due to the multicollinearity in the feature space of the test dataset during

prediction. This outcome leads to overfitting and poor generalization observed for most

of the datasets.

Appendix E presents the generalization performance of the ensemble on different input

regions of the feature space, i.e. small (10-30%), medium (40-60%), and large (70-100%)

subsets in the training dataset across all datasets. It can be observed that the HTEdf

and HTEsm did not win outrightly on small feature subsets, because the datasets where

the HTEdf and HTEsm produced reliable performance include Credit Approval, Car

Evaluation, White Wine, and Censor Income datasets. Most ensembles, especially the

NNE, DThte, SVMhte, and NNhte, achieved competitive generalization performance as

the HTEdf and HTEsm in the small feature subsets.

Additionally, there were a number of datasets where the SVMhte and NNhte

outperformed the HTEdf and HTEsm as shown for the Sonar, Breast Cancer, Indian

Liver, Nursery, and Bank Marketing datasets. For medium and large feature subsets,

the HTEdf and HTEsm showed significant improvement offering the best performance

on most datasets, including Sonar, Credit Approval, Red Wine, White Wine, Nursery

and Censor Income datasets. Although, the SVMhte and NNhte still rivalled the HTEdf

and HTEsm for most datasets, such as the Credit Approval, Car Evaluation, and Bank
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Marketing datasets.

The generalization performance of the SVME and SVMhte validates the suitability of

the base SVM algorithms to different feature dimensionalities of the experimental data

in this modelling study. The SVME and SVMhte illustrate the possibility that the

configurations of the members of the ensembles effectively mapped the input space to a

higher dimensional space in the training dataset given the feature subsets. This outcome

leads to a good level of generalization performance. The SVMhte specifically achieved

competitive prediction performance with the HTEdf for six of the 10 datasets (i.e. Breast

Cancer, Indian Liver, Credit Approval, Car Evaluation, Bank Marketing, and Censor

Income datasets).

For the NNhte, the combination of different control parameter configurations for the

multiple instances of the base NN learners in the NNhte resulted in efficient base experts

that generalize well across the experimental datasets. Also, the configuration of the

NNE delivered reasonable diverse assumptions during prediction that offered reliable

generalization performance for a number of datasets. The configurations of the NNhte

and NNE highlights the possibility that both ensembles learned and converged effectively

to a suitable solution for most datasets.

The generalization performance of the DTE and DThte indicates that both ensembles

learned the inherent noise in the training dataset resulting in severe overfitting for seven

of the 10 datasets. This is shown for the Sonar, Indian Liver, Credit Approval, Red Wine,

Car Evaluation, Nursery, and Bank Marketing datasets. However, the DThte is more

accurate than the DTE due to the advantage of the mixtures of heterogeneous experts

obtained using different configurations for the base learners within the DThte. The

combination of the information gain and Gini index for feature selection benefited the

DThte to learn and generalize well on the mixture of categorical and numerical features

for most of the datasets, which is desirable. It is observed that the use of one feature

selection criterion for the DTE did not yield significant benefit to the DTE.

Illustrated by the training performance, all ensembles achieved competitive training

accuracy across all datasets. The GFs of the ensembles further showed that all ensembles

slightly overfitted for most of the datasets. Specifically, five ensembles developed from

the mixtures of heterogeneous experts, i.e. NBhte, kNNhte, SVMhte, NNhte, and HTEdf,
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showed no indication of overfitting the training dataset as shown for the Sonar, Indian

Liver, Car Evaluation, and Bank Marketing datasets. On the other hand, three ensembles

obtained from the mixtures of homogeneous experts, i.e. NBE, kNNE, and NNE, showed

no indication of overfitting the training dataset for the same datasets. Hence, the mixtures

of heterogeneous experts performed better than the homogeneous mixtures of experts for

the datasets in terms of the GFs.

The graphical results of the ensembles on the 10 datasets in Appendix E showed the

ensemble performance with respect to the bias-variance tradeoff. The HTEdf consistently

showed less overfitting of the training dataset for small feature subsets (10-30%) over

the 10 datasets compared to other ensembles. The HTEsm is the second-best performing

ensemble, achieving less overfitting of the training dataset for small feature subsets on

nine of 10 datasets (except for the Red Wine dataset). It can be observed that a number

of ensembles, including SVMhte, NNhte, NBhte, kNNhte, and RF algorithm, offered

competitive performance as the HTEdf on small feature subsets.

Also, with an increase from medium (40-60%) to large (70-100%) feature subsets,

the HTEdf and HTEsm showed superiority by providing less overfitting than other

ensembles over all datasets. Moreso, a further observation revealed that a number of

ensembles competed with the HTEdf over these input regions of the feature space across

the datasets. However, another outcome is the downside to the performance of the

NBE for the Bank Marketing dataset. The NBE produced inconsistent generalization

performance across most datasets. Hence, the HTEdf and HTEsm are the best ensembles

that showed a better balance of the bias-variance tradeoff over all datasets compared to

other ensembles. This outcome validates the advantage of the mixtures of heterogeneous

experts from different ML algorithms to other mixtures of the same ML algorithm with

similar or different control parameter configurations.

Furthermore, the HTEdf achieved excellent performance based on the highest F1-scores

to outperform other ensembles for seven of the 10 datasets, illustrating the dominance of

the HTEdf over other ensembles. The seven datasets where the HTEdf is ranked as the

best performing ensemble consists of different characteristics and complexities from the

small, medium, and large sample size, to small, medium, and large feature size, as well

as binary and multi-class labels. The DThte offered the highest F1-scores of 56% and 58%
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for the Red Wine and White Wine datasets, while the HTEsm achieved the best F1-score

of 80.5% for the Nursery datasets.

Thus, the outcome of all performance measures provides evidence to conclude that the

HTEdf and HTEsm learned and generalize well on the different feature subsets of the

training dataset over all classification datasets compare to other mixtures of experts.

Statistical Tests

This section compares the generalization performance of the developed ensembles across

all feature subsets over all classification datasets.

Friedman Test

The discussion of the Friedman test is provided in Section 8.2, and the test is used to

compare the generalization performance of the 13 ensembles for the feature subsets over

the 10 datasets in this modelling study.

The mean average of the generalization performance for all feature subsets for each

ensemble is calculated for each dataset. Then the computed mean averages of the

ensembles are ranked according to the Friedman test as provided in Table 8.31.

Table 8.31: Ranking the Generalization Performance of the Ensembles over all
Classification Datasets in the Feature Subsets Study

Ensemble Sonar Breast Indian Credit Red Car White Nursery Bank Censor AVR

NBE 71.0(7) 49.0(13) 63.2(13) 51.3(13) 46.6(13) 59.5(13) 43.6(13) 71.9(12.5) 67.1(13) 45.4(13) 12.35

kNNE 64.1(12) 61.1(7) 72.7(5) 71.1(5) 48.3(10) 74.7(10) 44.6(12) 71.9(12.5) 89.2(4.5) 77.3(11) 8.90

DTE 62.1(13) 57.8(11) 70.0(11) 69.1(9.5) 46.9(12) 77.5(7) 46.1(10) 80.6(7) 88.3(10.5) 77.7(10) 10.10

RF 69.9(8) 62.7(5) 71.7(8) 71.3(4) 49.9(6) 76.7(9) 48.4(6.5) 79.5(8) 88.9(8) 78.4(8) 7.05

SVME 68.9(10) 63.1(3) 73.5(4) 70.8(6) 49.6(8) 77.2(8) 48.7(5) 78.8(9) 89.2(4.5) 78.7(4) 6.15

NNE 76.5(3) 58.9(9.5) 71.6(9) 65.9(11) 50.7(5) 78.9(2) 48.4(6.5) 81.4(4) 88.3(10.5) 78.6(5.5) 6.60

NBhte 72.5(6) 49.7(12) 65.1(12) 55.4(12) 47.9(11) 60.0(12) 45.1(11) 73.1(10) 85.3(12) 62.6(12) 11.00

kNNhte 69.0(9) 62.3(6) 72.4(6) 69.4(8) 48.7(9) 74.0(11) 46.5(9) 72.5(11) 89.0(7) 77.8(9) 8.50

DThte 66.1(11) 58.9(9.5) 72.3(7) 69.5(7) 49.7(7) 78.2(6) 49.3(4) 80.9(5) 88.7(9) 78.5(7) 7.25

SVMhte 72.8(5) 63.2(2) 74.1(2) 72.2(3) 50.9(4) 78.3(5) 47.3(8) 80.7(6) 89.8(1) 79.0(3) 3.90

NNhte 76.1(4) 60.1(8) 75.1(1) 69.1(9.5) 51.9(2) 79.3(1) 49.9(2) 81.5(3) 89.1(6) 78.6(5.5) 4.20

HTEsm 77.8(1.5) 63.0(4) 71.5(10) 72.7(2) 51.3(3) 78.6(4) 49.6(3) 82.8(1.5) 89.3(3) 79.3(2) 3.40

HTEdf 77.8(1.5) 63.9(1) 73.7(3) 73.2(1) 52.4(1) 78.8(3) 50.1(1) 82.8(1.5) 89.5(2) 79.4(1) 1.60

The HTEdf is ranked as the most accurate ensemble across all datasets by achieving the

lowest average ranking of 1.60. The HTEsm (3.40) and SVMhte (3.90) are ranked as the
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second and third most accurate ensembles over all datasets. The average rankings of

the ensembles shows that the mixtures of heterogeneous experts are more accurate than

the pure homogeneous mixtures, especially the HTEdf and HTEsm constructed from the

combination of different ML algorithms compared to other ensembles developed from

the same ML algorithms.

From Table 8.31, the calculated Friedman test statistic χ2
F from the average rankings of the

ensembles = 79.523, and the Iman-Davenport extension of the Friedman test is computed

as FF = 17.682. The null hypothesis that all ensembles are equal is rejected because

the value of FF is greater than the computed critical value. The rejection of the null

hypothesis indicates that, there is a statistically significant difference in the generalization

performance of the ensembles across the feature subsets for all datasets.

Bonferroni-Dunn Test

The Bonferroni-Dunn post hoc test is performed after rejecting the null hypothesis in the

Friedman test. The Bonferroni-Dunn test determined the ensembles that significantly

differ from each other in the feature subsets study for classification problems. The

critical value is 2.87, and the computed critical difference (CD) is 4.998. Figure

8.26 illustrates the critical difference plot illustrating the significant differences in

generalization performance between the HTEdf and any other ensemble.

Figure 8.26: Critical Difference Plot of Ensembles for Feature Subsets Study in
Classification Problems

The result of the Bonferroni-Dunn test in Figure 8.26 indicates that the HTEdf is

significantly more accurate than the NBE, kNNE, DTE, NBhte, kNNhte, DThte, and RF

algorithm. The difference in generalization performance between the HTEdf and these

ensembles showed the advantage of the mixture of heterogeneous experts developed

from the combination of different ML algorithms to learn different input regions in the

feature space of each dataset compared to ensembles developed using the same ML
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algorithm with the same configuration.

This trend in statistical difference in generalization performance also applies to the

HTEsm and these ensembles because the HTEsm is significantly more accurate than these

ensembles. It is observed that the experimental data did not provide sufficient evidence

to conclude that a significant difference in generalization performance exists between the

HTEdf and HTEsm, SVMhte, NNhte, SVME, and NNE.

8.8 Discussion of Results

This section presents an overall discussion of the results of the ensembles across the

six modelling studies from Section 8.2 to Section 8.7. The results showed that the

effect of the No-Free-Launch Theorem proposed by Wolpert (1996) is reflected in each

modelling study, where no one ensemble performed best on all classification datasets.

The difference in the performance of the ensembles over all datasets is attributed to

the inductive biases of the ML algorithms, the base experts induced from the control

parameter configurations obtained to construct the ensembles, and the characteristics of

the datasets being examined. Also, the performance of the ensembles on all performance

measures further confirm that expert-specific inductive bias leads to different experts

generalizing better on individual datasets than others.

The GF values of the ensembles indicate that, for various datasets, ensembles overfittted

the training data, which often lead to low testing accuracy for a number of ensembles.

However, there were cases where a number of ensembles, for instance, the NBE and

NBhte, overfitted the training dataset and resulted in poor generalization performance.

While the NBhte performed better than NBE, both ensembles are the worst-performing

ensembles across the six modelling studies. The performance of the NBE and NBhte is

attributed to the fact that the NB algorithm is a stable algorithm (Breiman, 1996a; El-Hindi

et al., 2018), and struggled with the characteristics and complexity of most datasets across

the modelling studies when compared to other ensembles.

The performance of the ensembles on the clean data study in Section 8.2 illustrate

the potential predictive power of the HTEdf and HTEsm to create effective mixtures

of heterogeneous experts. The HTEdf achieved the best average ranking over the
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10 datasets, followed by the HTEsm. The performance of the HTEdf and HTEsm

corroborates the findings of Kilimci et al. (2017), Xu and Zhang (2019), and Zefrehi and

Hakan (2020).

Across all datasets, the HTEdf was the most accurate ensemble on four of the 10 datasets,

while achieving the second-best testing accuracy on five datasets. Statistically, the HTEdf

was shown to be significantly more accurate than nine ensembles, consisting of all the

pure homogeneous mixtures of experts (i.e. NBE, kNNE, DTE, RF, SVME, and NNE) and

three mixtures of heterogeneous experts (i.e. NBhte, kNNhte, and DThte). The HTEdf

was not significantly different to the HTEsm, SVMhte, and NNhte.

For the skewed class distribution study discussed in Section 8.3, the HTEdf expresses

effectiveness based on the overall generalization performance to be ranked as the

most accurate ensemble on five datasets for the extreme, mild and small skewed class

distributions. When one of the classes in the training dataset was undersampled to allow

skewness in the class distributions, the HTEdf and HTEsm further showed superiority in

predicting the minority and minority samples than other ensembles. This is illustrated by

the F1-score performance of the HTEdf over all datasets.

On the contrary, the overall generalization performance is not sufficient to justify the

superiority of the HTEdf and HTEsm over other ensembles. Hence, the generalization

performance of all ensembles to predict the minority class in each skewed class

distribution still showed that HTEdf and HTEsm are more accurate than other ensembles.

The HTEdf achieved the best average ranking over the 10 datasets and was the most

accurate ensemble for five datasets.

Another outcome of the skewed class distribution study is observed in the generalization

performance of the NBE and NBhte to predict the minority class as illustrated by the

average ranks. While NB algorithms could be seen as weak probabilistic learners, the

structure and assumptions of the NBE and NBhte supported the predictability of both

ensembles on the minority classes in the study.

The average rank of the SVMhte illustrates the benefit of the mixtures of experts from

different configurations compared to the SVME to perform well on the skewed class

distributions across the datasets. The SVME tends to deal with the weakness of the

soft margin optimization problems and imbalanced support vector ratio. An increase in
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skewed class distributions tends to increase the imbalance of the ratio between positive

and negative support vectors. As a result, samples at the boundary of the hyperplane are

more likely to be classified as negative.

The results in the number of outliers study discussed in Section 8.4 indicate that all

homogeneous mixtures of experts (i.e. NBE, kNNE, DTE, SVME, and NNE) and two

heterogeneous mixture models (i.e. kNNhte and DThte) showed sensitivity to the

different number of outliers in the study. This is illustrated by the average ranks of the

ensembles. This outcome is also observed in the severity of outliers study, except for the

NNE and DThte. The average ranks of the NNE and DThte illustrate that both ensembles

were not sensitive to the different standard deviations from the estimated mean across

all datasets. Also, the RF algorithm capitalized on the intrinsic ensemble approaches (i.e.

bagging and RFSM) to perform well in both modelling studies.

A further investigation of the outcomes of the number and severity of outlier studies

illustrate the capability of the HTEdf and HTEsm to generate consistent testing accuracy

and GF on most classification datasets. This outcome indicates the possibility that the

HTEdf and HTEsm efficiently learned the decision boundaries during training to achieve

reliable prediction accuracy. Whereas most homogeneous ensembles struggled to learn

the input features properly, which leads to poor decision boundaries. The effect is

inconsistent testing accuracy and higher GFs for the ensembles compared to the HTEdf

and HTEsm.

The results in the bagged and feature subset studies in Sections 8.6 and 8.7 provide

important insights into the performance of ensembles on different sample and feature

sizes. The average ranks of the HTEdf and HTEsm indicate that both ensembles

performed better than other ensembles over all datasets. This outcome highlights the

excellent capability of the HTEdf and HTEsm to learn different input regions of the

sample and feature spaces across the datasets. Although, the SVMhte and NNhte also

achieved competitive performance in both studies.

Observing the performance of the ensembles over the different input regions, the HTEdf

achieved the best performance for small, medium and large subsets of the sample

and feature spaces. An interesting analysis in the modelling studies of bagged and

feature subsets is to consider the ensemble performance on small bagged and feature
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subsets. This is imperative to investigate the ensembles generated and trained faster,

and examine the ensemble that requires less data storage for a quick computational

process. Another reason is to identify the ensemble that expresses the best diversity of

base learners, which maximizes classification accuracy, and the likelihood that the errors

made by the induced base experts are uncorrelated. Then, due to the uncorrelated errors,

incorrect classifications can be compensated by pooling the decisions of the base experts

in the ensemble. Therefore, based on these premises, a critical analysis of the ensemble

performance on smaller bagged and feature subsets confirmed the dominance of the

HTEdf over other ensembles.

Further, the significance of the results in the six modelling studies relates to the potential

benefits of the implementations of HTEdf and HTEsm respectively. From Section 6.2,

the first two types of ensembles produced the construction of 11 ensemble types (i.e.

NBE, kNNE, DTE, RF, SVME, NNE, NBhte, kNNhte, DThte, SVMhte, and NNhte). This

process is inefficient and results in long periods of computing time when the ensembles

are trained and tested. The results described across all modelling studies indicate that

instead of the inefficient implementation of training the 11 ensembles developed using

the same ML algorithms, a single HTEdf or HTEsm can be implemented. This single

implementation is possible due to the consistent and accurate performance of the HTEdf

and HTEsm.

Additionally, the combination of different ML algorithms to develop the HTEdf and

HTEsm favours the HTEdf and HTEsm to better balance the bias-variance tradeoff than

other ensembles. It can be observed that the ensembles developed using the same

ML algorithms achieved inconsistent training and testing errors across the bagged and

feature subsets, which leads to overfitting on most datasets. However, the HTEdf and

HTEsm demonstrated an advantage over other ensembles by generating lower testing

and training errors across the bagged and feature subsets due to the effect of the different

ML algorithms combined.

Another significant outcome is that not only is the HTEdf and HTEsm more accurate on

average, but there are datasets for which the HTEdf and HTEsm are the most accurate

across the modelling studies. The outcomes of the HTEdf and HTEsm on the datasets

confirm that through a mixture of heterogeneous experts developed using different ML
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algorithms, an ensemble can be constructed that is more accurate than any ensemble

developed using the same ML algorithm. The outcome also showed that by developing

the ensembles of diverse mixtures of heterogeneous experts rather than homogeneous

mixtures of experts, it is possible to obtain the advantages related to the inductive biases

of experts while limiting the disadvantages.

Another outcome is related to the classification problem type. It is observed that the

HTEdf and HTEsm performed better on binary and multi-class problems across all six

modelling studies than other ensembles. The HTEdf and HTEsm were either ranked as

the most accurate ensembles or rivalled the most accurate ensemble in each modelling

study. The remarkable performance of HTEdf and HTEsm for binary and multi-class

classification problems is attributed to the fact that the different base experts within the

HTEdf and HTEsm learned and generalized efficiently for the binary and multi-class

labels compared to other ensembles. The efficient generalization results in significant

probability of accurate predictions produced by the base experts that formed the HTEdf

and HTEsm. This outcome is in line with the findings of Guo et al. (2018).

Lastly, to verify the effectiveness of the research, the findings of this research were

compared to previous works in literature. The findings showed that the HTEdf and

HTEsm achieved higher generalization performance than the HTEs proposed by Tuarob

et al. (2014), Sagayaraj and Santhoshkumar (2020), Tewari and Dwivedi (2020), Zain et al.

(2020), and Alshdaifat et al. (2021).

For most large classification datasets, the developed HTEdf and HTEsm also

outperformed the HTE proposed in the work of Nguyen et al. (2019b). While an

improvement of the work in Nguyen et al. (2019b) was achieved in Nguyen et al. (2020),

the work in Nguyen et al. (2020) still recorded a higher classification error rate, translating

to lower classification accuracy than the HTEdf and HTEsm in this research. Through

effective analysis of the inductive biases of base algorithms, the developed HTEdf and

HTEsm achieved better generalization performance than the findings in these studies.

The improvement is also attributed to the efficiency in the application of the random

search optimization algorithm, which reliably reduced the hyperparameter search space

to select only the control parameters that contributed significantly to the generalization

performance of the developed HTEs.
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Also, the HTEdf and HTEsm obtained better accuracy and F1-scores than the best

performing HTE proposed by Zhao et al. (2020) on imbalanced classification problems. In

addition, the findings of this research further provide higher generalization performances

than the best performing HTE in the work of Feng et al. (2021). The developed HTEdf

and HTEsm performed well across all six modelling studies. The modelling studies

for skewed class distribution, number of outliers, severity of outliers are aspects not

considered in the work of Feng et al. (2021).

8.9 Chapter Summary

This section presented a summary of the work done in this chapter. The results of the

developed ensembles were discussed across six modelling studies, i.e. clean data, skewed

class distribution, number of outliers, severity of outliers, bagged subsets, and feature

subsets. The discussion considered the four performance measures, i.e. training and

testing accuracy, GF and F1-score, used in this research. The ensemble performance was

also discussed with respect to the bias-variance tradeoff.

A series of statistical tests were also performed to determine if the generalization

performance of the ensembles were statistically significantly different. This chapter

described that the mixtures of heterogeneous experts were better than homogeneous

mixtures of experts. Specifically, the HTEdf and HTEsm developed through the

combination of different ML algorithms were the most accurate of the ensembles in

terms of average ranking of the testing accuracy. The Friedman test suggested that there

is a significant difference between the performance of the ensembles. This significant

difference was confirmed through the outcome of the Bonferroni-Dunn post hoc test.

For the Bonferroni-Dunn test, the HTEdf was selected as the control ensemble across the

six modelling studies because the HTEdf maximizes behavioural diversity to obtain two

benefits from the mixtures of heterogeneous experts. The first benefit is achieved by

capitalizing on the inductive biases of different ML algorithms intrinsically, while the

second benefit takes advantage of using different control parameter configurations for

the multiple instances of the different ML algorithms combined within the HTEdf.

The Bonferroni-Dunn post hoc test confirmed that the HTEdf and HTEsm were
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significantly more accurate than pure homogeneous ensembles and a number of

heterogeneous mixtures of experts across the six modelling studies. Also, the Bonferroni-

Dunn test suggested that there is no significant difference in the performance of the

HTEdf and the HTEsm, SVMhte and NNhte over the six modelling studies. Lastly, the

results of the ensembles and the significance of the results were discussed.
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Chapter 9

Empirical Analysis of Results for

Regression Problems

9.1 Introduction

This chapter provides an empirical analysis of ensemble models for regression problems.

The chapter compares the performance of the developed ensembles in the five modelling

studies described in Section 7.2. All reference to the results of testing RMSE, training

RMSE and GFs are mean averages of the performance measures for the regression

datasets in the modelling studies.

Section 9.2 discusses the results of the ensembles for the clean data study. The results of

the ensembles for the number and severity of outliers studies are described in Sections

9.3 and 9.4 respectively. Sections 9.5 and 9.6 discuss the results of the ensembles for the

bagged subsets and feature subsets studies. The formal statistical tests to compare the

ensembles in each modelling study are also described, which is followed by an overall

discussion of the outcome of the ensemble performance in all modelling studies discussed

in Section 9.7. Lastly, Section 9.8 concludes the chapter with a summary of the findings.

217
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9.2 Clean Data Study

This section presents the results of the developed ensembles for clean regression datasets.

As discussed in Section 6.2, the ensembles of NB algorithms, i.e., NBE and NBhte, were

excluded for regression problems. The testing and training RMSE of each ensemble for

each dataset are presented using grouped barplots. The height of the each bar illustrates

the performance of the ensembles. For instance, an ensemble with the shortest barplot

for the testing dataset denotes that the ensemble generated the lowest testing RMSE,

indicating the best generalization performance. Otherwise, the ensemble produced the

highest testing RMSE, illustrating the worst generalization performance. The results of

the ensembles for each dataset are described separately.

Yacht Hydrodynamics Dataset

The problem is to predict the residuary resistance of sailing yachts at initial design stage.

The testing and training RMSE of the ensembles are illustrated in Figure 9.1. Table 9.1

summarizes the results of the testing RMSE, training RMSE and GFs of the ensembles for

the clean Yacht Hyrodynamics dataset.

Figure 9.1: Ensemble RMSE for Clean Yacht Hydrodynamics Dataset

The results in Figure 9.1 and Table 9.1 illustrate that the complexity of the Yacht

Hydrodynamics consisting of one-type input feature favours the ensembles of tree-

like models DTE, RF algorithm, and DThte compared to other ensembles. The DThte

outperformed other ensembles by achieving the smallest testing error of 0.55030, followed
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by the DTE (0.61237) and RF algorithm (0.66274).

The HTEdf and HTEsm are ranked as the fourth and fifth most accurate ensembles in

terms of testing errors. On the other hand, the generalization performance of the SVRE

and SVRhte illustrates that the ensembles struggled with the complexity of the dataset.

While SVR algorithms are known to perform well on small datasets (Wilson, 2008), the

SVRE and SVRhte performed poorly in comparison to other ensembles.

Table 9.1: Ensemble Results for Clean Yacht Hydrodynamics Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 8.80830 8.19628 1.15492

DTE 0.61237 0.43789 1.95569

RF 0.66274 0.45526 2.11915

SVRE 6.83425 9.25483 0.54531

NNE 3.34246 3.60836 0.85805

kNNhte 7.54723 6.81886 1.22504

DThte 0.55030 0.49693 1.22633

SVRhte 7.90555 11.07749 0.50931

NNhte 2.88624 2.99306 0.92989

HTEsm 0.86653 0.78556 1.21677

HTEdf 0.81571 0.73621 1.22764

The DTE achieved the lowest training error for the training performance, followed by

the RF algorithm, and DThte. It is observed that the HTEdf and HTEsm also offered a

good level of training performance relative to the DTE, RF, and DThte. Illustrated by

the GFs of all ensembles, the GFs of the NNE, NNhte, SVRE, and SVRhte indicate that

these ensembles did not experience the overfitting of the training dataset. While the DTE

and RF algorithm showed more overfitting based on the GFs, other ensembles slightly

overfitted the training dataset.

Further, the generalization performance all ensembles also confirms the advantage of the

mixtures of heterogeneous experts over the pure homogeneous experts as seen between

the kNNE and kNNhte, DTE and DThte, as well as NNE and NNhte. The only exception

is the SVRE and SVRhte. In addition, the heterogeneous mixtures of experts achieved less

overfitting compared to the homogeneous mixtures.
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Therefore, the results of all performance measures provide evidence to conclude that

the mixtures of heterogeneous experts performed better than the homogeneous mixture

models for the Yacht Hydrodynamics problem.

Residential Building Dataset

The goal is to estimate the sales price of residential apartments. Plots of the testing RMSE

and training RMSE of the ensembles are depicted in Figure 9.2. Table 9.2 summarizes the

results of the testing RMSE, training RMSE, and GFs of the ensembles.

Figure 9.2: Ensemble RMSE for Clean Residential Building Dataset

Table 9.2: Ensemble Results for Clean Residential Building Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 806.10137 635.21043 1.61044

DTE 383.69436 265.11730 2.09457

RF 321.95347 216.56617 2.21006

SVRE 751.67902 611.68702 1.51010

NNE 184.91719 102.18275 3.27491

kNNhte 752.14817 535.44444 1.97323

DThte 311.66365 217.89727 2.04583

SVRhte 743.07273 605.88325 1.50413

NNhte 182.63824 97.55967 3.50463

HTEsm 298.84205 180.14668 2.71589

HTEdf 264.43479 173.59736 2.32034
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The results illustrated in Figure 9.2 and Table 9.2 show that NNhte is the most accurate

ensemble achieving the smallest testing error, while the NNE is ranked as the second

most accurate ensemble. The generalization performance of the NNhte indicates that

the mixtures of heterogeneous experts within the NNhte resulted in better ensemble

prediction than the homogeneous mixtures in the NNE. The HTEdf and HTEsm also

achieved reasonable generalization performance as the third and fourth most accurate

ensembles, while the kNNE is the least accurate ensemble.

The results also showed that the kNNE and kNNhte generalized poorly on the complexity

of the residential building dataset. The SVRE and SVRhte were slightly better than the

kNNE and kNNhte. In literature, SVR algorithms have been reported to scale efficiently

on datasets with small sample sizes and large features (Wilson, 2008; Nah and Lee,

2016). Thus, this characteristic presents in the residential building dataset provides the

possibility that supported the prediction performance of the SVRE and SVRhte over the

kNNE and kNNhte.

Furthermore, it can be observed that the training performance of all ensembles is similar

to the trend in the testing behaviour of the ensembles. A number of ensembles achieved

low competitive training errors, except for the kNNE, kNNhte, SVRE, and SVRhte, which

performed poorly. The four ensembles produced very high training errors. While NNhte

and NNE achieved the best and second-best generalization performance, both ensembles

showed more overfitting of the training dataset compared to other ensembles.

Thus, the results in Table 9.2 still revealed that it is better to construct mixtures of

heterogeneous experts for this problem.

Student Performance Dataset

The task is to predict the performance of students in a high school mathematics subject.

The plots of the testing RMSE and training RMSE of the ensembles are given in Figure 9.3.

Table 9.3 further summarizes the results of the testing RMSE, training RMSE, and GFs of

the ensembles.

As shown in Figure 9.3 and Table 9.3, the RF algorithm obtained the smallest testing error

of 2.00123 to be ranked as the most accurate ensemble. The DThte is the second most

accurate ensemble slightly underperforming the RF algorithm with a difference of 2.83%
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in testing error.

Figure 9.3: Ensemble RMSE for Student Performance Dataset

Table 9.3: Ensemble Results for Clean Student Performance Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 3.73956 3.23039 1.34008

DTE 2.34348 0.14074 277.26012

RF 2.00123 0.64978 9.48553

SVRE 3.15994 1.90374 2.75513

NNE 2.50564 0.54899 20.83122

kNNhte 3.72353 2.76686 1.81107

DThte 2.02953 0.50684 16.03431

SVRhte 3.10482 2.06678 2.25675

NNhte 2.60945 0.45928 32.28120

HTEsm 2.35533 1.16191 4.10922

HTEdf 2.31086 1.10234 4.39460

While the generalization performance of the DThte is competitive against the RF

algorithm, the RF algorithm largely outperformed the DTE, ranked as the fourth-best

performing ensemble. This observation is expected and agrees with the literature because

RF combines multiple DTs trained using bagging and RFSM to achieve better predictive

performance than the component DTs within the RF (Breiman, 2001; Bernard et al., 2009;

Paul et al., 2018). The DTE did not capitalize on the benefit of both bagging and RFSM to

induce predictive experts.
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The HTEdf is the third most accurate ensemble, while the kNNE is the worst performing

ensemble. For training performance, the DTE produced the lowest training error while

the kNNE still performed badly in training, obtaining the highest training error. It can

be observed that kNNhte also struggled with the complexity of the student performance

dataset both in the training and testing phases. Illustrated by the GFs of the ensembles, all

ensembles overfitted the training dataset. However, while measures were implemented

to prevent high-level overfitting of ensembles in this research, the DTE, RF, NNE, DThte,

and NNhte significantly experienced more overfitting than other ensembles.

With the exception of the NNE and NNhte, the ensembles developed from the mixture of

heterogeneous experts performed better than the homogeneous mixture models.

Real Estate Dataset

The problem is to estimate the monetary valuation of a real estate. The testing RMSE and

training RMSE of the ensembles are illustrated in Figure 9.4. The results of the testing

RMSE, training RMSE and GF of the ensembles are provided in Table 9.4.

Figure 9.4: Ensemble RMSE for Real Estate Dataset

Illustrated in Figure 9.4, the most accurate ensemble is the HTEdf producing the smallest

generalization error of 6.47052. The HTEsm (6.60934) is ranked as the second most

accurate ensemble, followed by the DThte (6.61295). The generalization performance

of the HTEdf and HTEsm showed that the ensembles generalized better than other

ensembles for the characteristics of the real estate datasets. The SVRE and SVRhte

underperformed by achieving high testing errors compared to other ensembles. While
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the SVRE and SVRhte were expected to perform well on the real estate dataset because

the SVR algorithms perform well on datasets consisting of small sample size, the SVRE

and SVRhte struggled with the dataset.

Table 9.4: Ensemble Results for Clean Real Estate Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 8.57811 7.48849 1.31219

DTE 6.75240 3.74868 3.24458

RF 6.80173 4.29827 2.50410

SVRE 9.17407 9.94265 0.85137

NNE 8.17073 8.25797 0.97898

kNNhte 7.71519 6.28083 1.50889

DThte 6.61295 3.61572 3.34503

SVRhte 10.23970 11.07697 0.85454

NNhte 8.29605 8.34366 0.98862

HTEsm 6.60934 6.55871 1.01550

HTEdf 6.47052 6.54610 0.97704

For training performance, the DThte offered the lowest training error of 3.61572, followed

by the DTE (3.74868). It can be observed that the other ensembles achieved a good level

of training performance. However, as illustrated by the GF of all ensembles, the GFs of

DTE and DThte indicate that the ensembles overfitted the training dataset. On the other

hand, the GFs of the HTEdf, NNhte, SVRhte, NNE, SVRE, and HTEsm highlight that the

ensembles did not exhibit an overfitting problem.

Also, the results in Table 9.4 reveal the advantage of the mixtures of heterogeneous

experts over homogeneous mixtures of experts in terms of generalization performance

achieved by the ensembles except for the SVRE which slightly outperformed the SVRhte.

Although, the homogeneous mixtures of experts rivalled the heterogeneous mixtures

based on overfitting.

Therefore, considering the outcome of all performance measures, it can be concluded that

the HTEdf and HTEsm generalized better than other ensembles for the complexity of the

real estate dataset.
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Energy Efficiency Dataset

The energy efficiency of the shapes of building constructions is estimated in this dataset.

Plots of the testing RMSE and training RMSE are illustrated in Figure 9.5. Table 9.5

provides the results of the testing RMSE, training RMSE, and GF of the ensembles.

Figure 9.5: Ensemble RMSE for Energy Efficiency Dataset

Table 9.5: Ensemble Results for Clean Energy Efficiency Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 1.11056 0.94322 1.38629

DTE 1.51077 0.45076 11.23349

RF 1.16034 0.60680 3.65661

SVRE 3.30104 3.09299 1.13905

NNE 2.01520 1.91617 1.10604

kNNhte 1.09623 1.07436 1.04112

DThte 1.28247 0.58154 4.86330

SVRhte 2.33390 2.15913 1.16844

NNhte 2.00893 1.90534 1.11169

HTEsm 1.20575 1.12569 1.14730

HTEdf 1.10375 1.11558 0.97890

From Figure 9.5, the kNNhte is the most accurate ensemble for the energy efficiency

dataset by generating the lowest testing error of 1.09623. The HTEdf (1.10375) provided

competitive testing performance to the kNNhte, and is ranked as the second most accurate
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ensemble. The HTEdf slightly underperformed in comparison to the kNNhte with a

difference of 0.75% in terms of testing error, illustrating the effect of the combination of

multiple instances of different ML algorithms, where the instances consist of different

configurations.

It can be observed that the generalization errors of a number of ensembles, such as the

kNNE, RF algorithm, HTEsm, and DThte are quite close to the kNNhte. On the other

hand, the SVRE offered the highest testing error to be ranked as the worst performing

ensemble. The poor generalization performance of the SVRE indicates the possibility that

the configuration of the base SVR learners was inefficient for this problem. In contrast,

the SVRhte benefitted from the different configurations of the base learners.

In terms of training performance, all ensembles except the SVRE achieved competitive

training error, highlighting that the ensembles trained well to capture the relationship

between the input and target features of this dataset. While the GFs of the DTE and

DThte illustrate that both ensembles overfitted the training dataset, the DTE exhibit

severe overfitting of the training dataset compared to the DThte. This means that the

different configurations of the base learners in the DThte induced efficient experts that

generalized on the dataset better than the base learners of the DTE.

The GF of the HTEdf indicates that the ensemble did not experience an overfitting

problem. Further, another significant outcome from Table 9.5 is that the ensembles

obtained from the mixtures of heterogeneous experts generalized better than the pure

homogeneous mixtures of experts for this dataset.

Concrete Dataset

The regression problem is to estimate concrete compressive strengths. The testing RMSE

and training RMSE are plotted in Figure 9.6. The results of the testing RMSE, training

RMSE, and GF of the ensembles are provided in Table 9.6.

Illustrated in Figure 9.6 and Table 9.6, the RF algorithm is the most accurate ensemble

achieving the smallest testing error of 5.93388. The generalization performance of the

RF algorithms indicate that the base experts in the RF made good predictions on the test

dataset compared to other ensembles. The HTEdf and DThte are ranked as the second

and third most accurate ensembles. The effect of the mixtures of heterogeneous experts
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is evident in the generalization performance of the HTEdf because the ensemble showed

the possibility of generalizing well on the characteristics of the concrete dataset.

Figure 9.6: Ensemble RMSE for Concrete Dataset

Table 9.6: Ensemble Results for Clean Concrete Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 9.91529 7.33538 1.82711

DTE 6.70081 2.32002 8.34204

RF 5.93388 2.49493 5.65669

SVRE 12.20193 12.13227 1.01152

NNE 9.29890 8.14884 1.30218

kNNhte 9.21987 6.27842 2.15650

DThte 6.09707 2.77331 4.83333

SVRhte 10.34598 9.81562 1.11098

NNhte 7.16101 6.46362 1.22743

HTEsm 6.60890 4.75496 1.93181

HTEdf 6.05646 5.26402 1.32374

On the other hand, the SVRE underperformed in comparison to other ensembles,

followed by the SVRhte. However, due to different configurations of base learners in

SVRhte which induced better experts than that of the SVRE, the SVRhte was able to

validate the advantage of the mixtures of heterogeneous experts over the homogeneous

mixtures in the SVRE.
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For training performance, the DTE delivered the smallest training error of 2.32002 to be

ranked as the best performing ensemble, followed by the RF algorithm (2.49493), and

DThte (2.77331). The SVRE performed poorly in training compared to other ensembles.

While the GFs of all ensembles indicate that the ensembles overfitted the training dataset,

the DTE and RF exhibitted more overfitting.

Hence, the results in Table 9.6 revealed that the HTEs outperformed the pure

homogeneous mixtures models for the complexity of the concrete dataset.

Parkinsons Disease Dataset

The task is to detect early-stage symptoms of Parkinsons disease in clinical patients from

the biomedical voice signal recordings of the patients. Plots of the testing RMSE and

training RMSE are shown in Figure 9.7. Table 9.7 provides the results of the testing RMSE,

training RMSE, and GF of the ensembles.

Figure 9.7: Ensemble RMSE for Parkinsons Disease Dataset

The results in Figure 9.7 and Table 9.7 show that the ensembles produced competitive

training and generalization performance to predict Parkinsons Disease samples in the

dataset. The HTEdf is the most accurate ensemble offering the lowest testing error of

0.53588, while the HTEsm (0.58585) is ranked as the second most accurate ensemble,

followed by the RF algorithm (0.68962). The generalization performance of the HTEdf and

HTEm indicate that the combination of different ML algorithms to construct a mixture of

heterogeneous experts potentially lead to small prediction error and therefore provided

better predictive power.
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The SVRE achieved the highest training error of 3.52834, and is also ranked as the

worst performing ensemble with the highest testing error of 3.39742, followed by the

SVRhte for both training and testing errors. However, it can be observed that the SVRhte

outperformed the SVRE due to the benefits of the mixtures of heterogeneous experts from

different configurations.

Table 9.7: Ensemble Results for Clean Parkinsons Disease Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 0.92826 0.68687 1.82640

DTE 0.97891 0.93708 1.09126

RF 0.68962 0.50496 1.86512

SVRE 3.39742 3.52834 0.92717

NNE 2.40036 2.15894 1.23615

kNNhte 0.87349 0.80136 1.18814

DThte 0.91867 0.80720 1.29527

SVRhte 2.53995 2.58300 0.96695

NNhte 1.98650 1.78027 1.24510

HTEsm 0.58585 0.52013 1.26867

HTEdf 0.53588 0.51865 1.06755

The RF algorithm offered the best training performance, outperforming the second best-

trained ensemble (i.e. HTEdf) with a slight difference of 1.37% for the training error.

The HTEsm is ranked as the third best-trained ensemble with a training error of 0.52013.

Illustrated by the GFs of all ensembles, the SVRE and SVRhte did not exhibit issues with

overfitting, while the HTEdf and DTE showed slight overfitting of the training dataset.

All other ensembles overfitted the training dataset.

The results in Table 9.7 show that the mixtures of heterogeneous experts performed better

than the mixtures of homogeneous experts.
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Air Quality Dataset

The problem is to predict the net hourly concentrations of Nitrogen Dioxide (NO2) of a

chemical multi-sensor device. The testing RMSE and training RMSE are plotted in Figures

9.8. Table 9.8 summarizes the result of the testing RMSE, training RMSE, and GF of the

ensembles.

Figure 9.8: Ensemble RMSE for Air Quality Dataset

Table 9.8: Ensemble Results for Clean Air Quality Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 19.44275 13.47907 2.08063

DTE 20.05642 11.42491 3.08178

RF 16.67881 6.69179 6.21220

SVRE 27.99679 26.48880 1.11710

NNE 17.87338 16.82740 1.12818

kNNhte 18.71812 11.44955 2.67269

DThte 17.68167 9.38395 3.55038

SVRhte 22.78626 21.40771 1.13294

NNhte 17.48336 16.52372 1.11953

HTEsm 16.22257 10.97968 2.18303

HTEdf 16.04872 11.80934 1.84684

Illustrated in Figure 9.8 and Table 9.8, the HTEdf outperformed other ensembles
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by achieving the smallest testing error of 16.04872, while the HTEsm is the second

most accurate ensemble. The generalization performance of the HTEdf and HTEsm

indicate that the ensembles developed from the combination of different ML algorithms

generalized better on multivariate features in the dataset than other ensembles.

The RF algorithm produced competitive generalization performance close to the HTEdf,

while the SVRE struggled with the characteristic of the dataset, because SVR algorithms

do not perform well on datasets consisting of large samples and multivariate features.

This characteristics illustrate a possible adverse influence on the SVRE achieving the

highest testing error, when also compared to the SVRhte that benefited from different

configurations of the base learners.

The training errors of the ensembles showed that the RF algorithm is the best trained

ensemble on the training dataset achieving the lowest training error of 6.69179. The DThte

and HTEsm also offered a reasonable level of training performance. However, the GF of

the RF algorithm indicates that the ensemble experienced more overfitting of the training

dataset than other ensembles.

Thus, the results in Table 9.8 provide evidence to conclude that the ensembles obtained

from the mixtures of heterogeneous experts performed better than the pure homogeneous

ensembles for the complexity of the air quality dataset.

Bike Sharing Dataset

The dataset specifies the prediction of the hourly count of bike rentals based on

environmental and seasonal features. Figure 9.9 shows the plots of the testing RMSE

and training RMSE. The results of the testing RMSE, training RMSE, and GF are provided

in Table 9.9.

Illustrated in Figure 9.9 and Table 9.9, the advantage of the combination of the

different ML algorithms is evident in the generalization performance of the HTEdf and

HTEsm, because the ensembles outperformed other ensembles in terms of generalization

performance. The HTEdf offered the lowest testing error of 17.63184 to be ranked as the

most accurate ensemble, outperforming the HTEsm (17.68110) with a slight difference

of 4.9%. The RF algorithm is the third most accurate ensemble with a testing error of

18.49675, followed by the NNhte (18.65942).
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Figure 9.9: Ensemble RMSE for Bike Sharing Dataset

Table 9.9: Ensemble Results for Clean Bike Sharing Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 45.69239 34.60772 1.74318

DTE 22.50941 16.23861 1.92146

RF 18.49675 7.72522 5.73283

SVRE 86.34280 88.49999 0.95184

NNE 19.40410 18.84087 1.06068

kNNhte 42.31269 28.50156 2.20396

DThte 21.80844 14.45607 2.27588

SVRhte 51.88897 52.30812 0.98404

NNhte 18.65942 18.08017 1.06510

HTEsm 17.68110 13.25947 1.77814

HTEdf 17.63184 14.68068 1.44246

On the other hand, the SVRE drastically underperformed in comparison to other

ensembles by achieving a very high training error of 86.34280, which illustrates poor

predictive power. The poor performance of the SVRE is explained by the possibility of

the ensemble being unable to handle the large number of samples in the bike sharing

dataset. While the testing error of the SVRhte was unreliable being ranked as the

second-worst performing ensemble, the SVRhte still outperformed the SVRE counterpart.

The superiority of the SVRhte over SVRE still validates the benefit of the mixtures of
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heterogeneous experts in comparison to pure homogeneous mixtures.

The RF algorithm outperformed other ensembles in training by offering the best training

error of 7.72522, which is followed by the HTEsm (13.25947), DThte (14.45607), and HTEdf

(14.68068).

Illustrated by the GFs of all ensembles, the GFs of the SVRE, NNE, SVRhte, and NNhte

indicate that the ensembles did not overfit the training dataset. However, while the RF

achieved the lowest training error, the GF of the RF algorithm highlights that the RF

algorithm experienced more overfitting than other ensembles.

The results in Table 9.9 also reveal that the HTEs outperformed the pure homogeneous

ensembles.

Gas Turbine Dataset

The problem is to predict the turbine energy yield of a gas plant. The plots of testing

RMSE and training RMSE are illustrated in Figure 9.10, while Table 9.10 summarizes the

results of the testing RMSE, training RMSE and GF of the ensembles.

Figure 9.10: Ensemble RMSE for Gas Turbine Dataset

Figure 9.10 and Table 9.10 show that the HTEdf achieved the best generalization error

of 4.66532 to be ranked as the most accurate ensemble. The NNhte is the second most

accurate ensemble with a testing error of 4.67896, and slightly underperformed the HTEdf

with a difference of 1.4%. The generalization performance of the NNhte illustrates that

the different configurations of the base NNs resulted in efficient convergence of the base
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experts within the NNhte to make good predictions.

The HTEsm, achieving a testing error of 4.72611, underperformed in comparison to the

HTEdf with a slight difference of 6% to be ranked as the third most accurate ensemble.

The performance of the HTEdf highlights that the ensemble constructed through the

combination of different ML algorithms and different configurations for the base learners,

has the potential to provide more accurate predictions than the ensembles developed

using the same ML algorithms.

Table 9.10: Ensemble Results for Clean Gas Turbine Dataset

Ensemble Testing RMSE Training RMSE GF

kNNE 5.29138 3.26653 2.62401

DTE 6.24540 4.06918 2.35563

RF 5.10826 1.71217 8.90130

SVRE 7.58885 6.13666 1.52929

NNE 5.47396 4.72415 1.34263

kNNhte 5.10072 2.74814 3.44498

DThte 5.62627 3.35000 2.82067

SVRhte 6.65163 5.66147 1.38038

NNhte 4.67896 4.04909 1.33531

HTEsm 4.72611 4.38701 1.16057

HTEdf 4.66532 4.42919 1.10946

The SVRE produced the worst testing error of 7.58885, highlighting the least predictive

performing ensemble compared to other ensembles. The developed RF algorithm showed

the possibility of the benefits of the intrinsic ensemble approaches (i.e. bagging and

RFSM) implemented by RF algorithms to achieve the best training performance of 1.71217

in comparison to other ensembles. However, the GF of the RF algorithm illustrates that

the ensemble showed more overfitting than other ensembles.

Additionally, while the GFs of all ensembles showed that the ensembles overfitted the

training dataset, the SVRE is significantly influenced by the problem of overfitting, which

results in low generalization performance compared to other ensembles.
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Thus, the results in Table 9.10 provide evidence to conclude that the mixtures of

heterogeneous experts performed better than homogeneous mixtures of experts for the

complexity of the Gas Turbine dataset.

Statistical Analysis of Results

This section compares the performance of the developed ensembles to ascertain whether

there exists a statistically significant difference in the generalization performance of the

ensembles for the clean data study of regression problems. The statistical tests used

include the Iman and Davenport extension of the Friedman test and Bonferroni-Dunn

post hoc test.

Friedman Test

The Friedman test was discussed in Section 8.2, and is used to compare the generalization

performance of the 11 ensembles developed in this chapter. The 11 ensembles are

compared over the 10 regression datasets for the clean data study in this section.

The average rankings of the ensembles based on generalization performance for each

dataset are provided in Table 9.11.

Table 9.11: Ranking the Generalization Performance of Ensembles over Regression
Datasets in the Clean Data Study

Ensemble Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas AvR

kNNE 8.81(11) 806.10(11) 3.74(11) 8.57(9) 1.11(3) 9.92(9) 0.93(6) 19.44(8) 45.69(9) 5.29(6) 8.30

DTE 0.61(2) 383.69(7) 2.34(4) 6.75(4) 1.51(7) 6.70(5) 0.98(7) 20.06(9) 22.51(7) 6.25(9) 6.10

RF 0.66(3) 321.95(6) 2.00(1) 6.80(5) 1.16(4) 5.93(1) 0.69(3) 16.68(3) 18.50(3) 5.11(5) 3.40

SVRE 6.83(8) 751.68(9) 3.16(9) 9.17(10) 3.30(11) 12.20(11) 3.40(11) 27.99(11) 86.34(11) 7.59(11) 10.20

NNE 3.34(7) 184.92(2) 2.51(6) 8.17(7) 2.02(9) 9.30(8) 2.40(9) 17.87(6) 19.40(5) 5.47(7) 6.60

kNNhte 7.55(9) 752.15(10) 3.72(10) 7.72(6) 1.09(1) 9.22(7) 0.87(4) 18.72(7) 42.31(8) 5.10(4) 6.60

DThte 0.55(1) 311.66(5) 2.03(2) 6.61(3) 1.28(6) 6.10(3) 0.92(5) 17.68(5) 21.81(6) 5.63(8) 4.40

SVRhte 7.91(10) 743.07(8) 3.11(8) 10.24(11) 2.33(10) 10.35(10) 2.54(10) 22.79(10) 51.89(10) 6.65(10) 9.70

NNhte 2.89(6) 182.64(1) 2.61(7) 8.30(8) 2.01(8) 7.16(6) 1.99(8) 17.48(4) 18.66(4) 4.68(2) 5.40

HTEsm 0.87(5) 298.84(4) 2.36(5) 6.60(2) 1.21(5) 6.61(4) 0.59(2) 16.22(2) 17.68(2) 4.73(3) 3.40

HTEdf 0.81(4) 264.44(3) 2.31(3) 6.47(1) 1.10(2) 6.06(2) 0.54(1) 16.05(1) 17.63(1) 4.67(1) 1.90

The HTEdf outperformed the other ensembles by achieving the best average rank of 1.90

over the 10 regression datasets. The HTEsm and RF algorithm are jointly ranked second
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with an average rank of 3.40, followed by the DThte, ranked as the third best performing

ensemble with 4.40.

While the HTEdf and HTEsm capitalize on the advantage of combining different ML

algorithms to develop a mixture of heterogeneous experts, the RF provided competitive

performance with the HTEsm by showing the potential benefits of the intrinsic ensembles

approaches.

Another significant outcome in Table 9.11 is that the ensembles obtained from the

mixtures of heterogeneous experts achieved better average rankings than the ensembles

constructed from the mixtures of homogeneous experts. This is attributed to the fact

that the different configurations of the base learners in heterogeneous mixtures induced

efficient base experts that provided differing views on the regression datasets better than

the homogeneous mixtures.

Further, based on the average rankings of the ensembles in Table 8.11, the calculated

Friedman test statistic is χ2
F = 64.182, and the Iman-Davenport extension of the Friedman

test is computed as FF = 16.127. FF is distributed according to the F distribution of critical

values with degrees of freedom equal to (j − 1) = 10 and (N − 1) × (j − 1) = 90. The

critical value of F(10, 90) for α = 0.05 is 1.94.

Thus, the null hypothesis that all ensembles are equal is rejected, because the computed

FF value is greater than the critical value. The rejection of the null hypothesis indicates

that there is a statistically significant difference in the generalization performance of the

ensembles. It is important to note that the values of the degrees of freedom i.e., F(10, 90),

and the critical value of 1.94 are used later in other modelling studies of this chapter.

Bonferroni-Dunn Test

The rejection of the null hypothesis resulted in performing a post hoc test using the

Bonferroni-Dunn test. The HTEdf is selected as the control ensemble for all modelling

studies in this chapter, and the justification for the selection of the HTEdf as control

ensemble is provided in Section 8.2.

The critical value, qα, associated with the two-tailed Bonferroni-Dunn test at the

significance level of α = 0.05 with 11 ensembles classifiers is 2.81, and the computed critical

difference (CD) is 4.168. Further, the critical value of 2.81 and the CD of 4.168 are used

Stellenbosch University https://scholar.sun.ac.za



Chapter 9. Empirical Analysis of Results for Regression Problems 237

later in other modelling studies of this chapter.

A significant difference is detected between the HTEdf and any other ensemble if the

difference between the average rank of the HTEdf and the ensemble is greater than the

computed CD of 4.168. This is illustrated in Figure 9.11.

Figure 9.11: Critical Difference Plot of Ensembles for Clean Data Study in Regression
Problems

From Figure 9.11, the outcome of the Bonferroni-Dunn test showed that the HTEdf is

significantly more accurate than the SVRE, SVRhte, kNNE, kNNhte, NNE, and DTE. On

the contrary, the 10 experimental datasets did not provide sufficient evidence to show

that a significant difference in generalization performance exists between the HTEdf and

HTEsm, RF algorithm, DThte, and NNhte.

Also, it can be observed that the difference in average ranks between the HTEdf and DTE

is just a little above the CD = 4.168 (i.e. 6.10-1.90 = 4.20). Another significant outcome

of the Bonferroni-Dunn test is that the HTEdf is significantly more accurate than all pure

homogeneous ensembles (i.e SVRE, kNNE, DTE, and NNE), illustrating the advantage of

the mixtures of heterogeneous experts over homogeneous mixtures of experts.

9.3 Number of Outliers Study

This section discusses the ensemble performance across the number of outliers perturbed

from 1% to 5% in the training datasets of the regression datasets. The summative results

(over all outlier ratios) of the testing RMSE, training RMSE, and GF for each ensemble

over all regression datasets are provided in Table 9.12.

The results presented in Table 9.12 show that the ensembles produced different predictive

performances influenced by the complexity of the datasets for the number of outliers

considered. It can be observed that the HTEdf is most beneficial, capitalizing on the

different ML algorithms and different base learners configurations to produce efficient
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Table 9.12: Ensemble Results over all Regression Datasets in Number of Outliers Study

Measure Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas

kNNE

Testing RMSE 9.014 809.366 3.742 8.696 1.425 9.811 0.949 18.417 44.610 4.627

Training RMSE 7.757 629.304 3.255 7.535 1.276 7.376 0.733 13.929 34.777 3.367

GF 1.356 1.655 1.322 1.332 1.262 1.769 1.685 1.750 1.650 1.896

DTE

Testing RMSE 0.673 393.140 2.338 7.115 1.620 7.172 0.894 19.075 21.515 5.900

Training RMSE 0.042 4.305 0.042 3.804 0.448 2.117 0.872 11.546 15.206 4.252

GF 265.581 11153.320 3163.039 3.502 13.095 12.345 1.051 2.731 2.003 1.931

RF

Testing RMSE 0.502 285.211 1.959 7.210 1.312 5.875 0.887 15.939 18.030 4.375

Training RMSE 0.474 98.341 0.622 4.383 0.579 2.502 0.813 6.689 7.841 1.740

GF 1.140 8.745 10.019 2.725 5.174 5.518 1.197 5.688 5.291 6.351

SVRE

Testing RMSE 8.095 746.131 3.161 10.354 3.296 12.244 3.368 27.762 85.922 6.896

Training RMSE 10.603 592.797 1.929 11.174 3.097 12.101 3.476 27.389 89.789 6.447

GF 0.585 1.585 2.686 0.859 1.133 1.024 0.939 1.028 0.916 1.148

NNE

Testing RMSE 3.663 373.120 2.638 8.332 2.126 7.166 2.028 17.476 18.348 4.975

Training RMSE 3.710 264.910 0.523 8.369 2.023 6.708 1.933 17.088 17.950 4.664

GF 0.978 1.986 26.222 0.991 1.110 1.142 1.101 1.046 1.045 1.138

kNNhte

Testing RMSE 7.692 754.201 3.726 7.888 1.349 9.130 0.845 17.628 40.594 4.365

Training RMSE 6.521 527.528 2.795 6.315 1.215 6.250 0.577 13.061 28.568 2.827

GF 1.399 2.046 1.777 1.561 1.246 2.134 2.152 1.956 2.024 2.397

DThte

Testing RMSE 0.634 286.191 1.958 6.873 1.305 6.208 0.865 16.861 21.454 5.079

Training RMSE 0.484 53.338 0.526 3.654 0.597 2.716 0.817 9.527 15.375 3.496

GF 1.808 29.666 14.166 3.547 4.792 5.231 1.122 3.136 1.958 2.119

SVRhte

Testing RMSE 7.115 739.261 3.106 9.208 2.328 10.326 2.510 22.452 50.366 6.094

Training RMSE 8.926 587.597 2.092 10.035 2.163 9.793 2.556 21.974 52.225 5.836

GF 0.637 1.584 2.205 0.842 1.158 1.112 0.965 1.044 0.930 1.092

NNhte

Testing RMSE 3.032 345.687 2.579 8.317 2.178 6.928 1.574 17.085 16.969 4.490

Training RMSE 3.019 227.321 0.489 8.427 2.064 6.444 1.509 16.731 16.504 4.168

GF 1.009 2.316 28.183 0.974 1.118 1.156 1.091 1.043 1.057 1.161

HTEsm

Testing RMSE 0.922 184.721 2.405 7.401 1.217 6.900 0.550 15.603 17.386 4.363

Training RMSE 0.827 105.601 1.161 6.102 0.926 5.943 0.418 11.832 13.033 3.433

GF 1.239 3.174 4.294 1.472 1.733 1.349 1.735 1.779 1.797 1.618

HTEdf

Testing RMSE 0.830 176.982 2.330 7.170 1.193 6.560 0.396 15.432 16.808 4.319

Training RMSE 0.783 99.378 1.118 6.641 1.060 5.486 0.364 12.756 13.946 3.592

GF 1.147 3.181 4.378 1.166 1.271 1.432 1.185 1.491 1.462 1.452
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predictions. The HTEdf generated the lowest testing errors to outperform other

ensembles for six out of the 10 datasets. The six datasets cover different characteristics

and complexities ranging from small, medium, to large datasets. The generalization

performance of the HTEdf also showed that the base regressors within the HTEdf give

different opinions for the same input, illustrating that better fusion performance is

achieved with more widely differing performance levels by the HTEdf.

The DThte achieved the best testing performance on the Student Performance and

Real Estate datasets, while the RF offered the lowest prediction errors on Yacht

Hydrodynamics and Concrete datasets.

The DThte capitalized on the benefit of the mixtures of heterogeneous experts from

different configurations. Also, the intrinsic bagging and RFSM approaches implemented

by RF algorithms illustrate a potential support for the developed RF algorithm in this

modelling study. However, it can be observed that the best predictive performances of

the DThte and RF algorithm did not cover all data characteristics and complexities, i.e.

only covers small to medium datasets.

The HTEsm also offered promising testing performance by achieving the second-best

ensemble on five datasets. On the other hand, the generalization performance of the

kNNE, SVRE, and SVRhte are unreliable because these ensembles performed poorly

on most datasets, illustrating that the ensembles struggled with the complexity of the

datasets. The SVRE is the worst performing ensemble producing high prediction errors

on seven datasets. The kNNE generated the highest testing error for three datasets

(i.e. Yacht Hydrodynamics, Residential Building, and Student Performance datasets) in

comparison to other ensembles.

Furthermore, the high average ranks of the pure homogeneous ensembles (i.e. kNNE,

DTE, SVRE, and NNE) in Table 9.13 demonstrate that the ensembles showed more

sensitivity to the number of outliers than the counterpart heterogeneous mixtures of

experts (i.e kNNhte, DThte, SVRhte, and NNhte). This outcome confirms the benefit of

the mixtures of heterogeneous experts over homogeneous mixtures.

Archana and Elangovan (2014) reported that kNN algorithms are sensitive to small values

of k, which adversely influence the prediction performance of the algorithm. The kNNE

showed similar prediction behaviour on the number of outliers with the possibility

Stellenbosch University https://scholar.sun.ac.za



Chapter 9. Empirical Analysis of Results for Regression Problems 240

that configuration of the base learners within the kNNE performed poorly in terms of

testing error. However, the kNNhte performed well because the different base learner

configurations induced different base experts that produced efficient predictions better

than the kNNE.

Empirically, Sandbhor and Chaphalkar (2019) have shown that NNs are sensitive

to outliers and require outlier-free data to produce reliable training and prediction

performance. The average ranks of the NNE and NNhte illustrate that the NNE showed

more sensitivity to the number of outliers than the NNhte. This outcome further justifies

the advantage of the mixtures of heterogeneous experts over homogeneous mixtures.

Additionally, SVR algorithms have been reported to be sensitive to outliers when the

soft margin method is used to construct the separating hyperplane (Fitzgerald, 2014;

Kanamori et al., 2014). Thus, the average ranks of the SVRE over the datasets indicate

that the base configuration produced base experts that induced soft margins during

prediction. The SVRhte provided improved prediction performance than the SVRE due

to the combination of different configurations for the base learners.

From Appendix F, the number of outliers is categorized into three levels, i.e. low (1%

and 2%), mild (3%), and extreme (4% and 5%), and the sensitivity of the ensembles to

these levels are examined. The HTEdf is consistently the most accurate ensemble in terms

of generalization performance across the three outlier levels for the Energy Efficiency,

Parkinsons Disease, and Air Quality datasets.

Also, the HTEdf performed best for low and extreme levels of outlier ratios for the

Residential Building and Bike Sharing datasets. At the same time, the HTEsm and

NNhte achieved the best generalization performance for mild level outlier ratio on the

datasets. The HTEdf demonstrated superiority for the Gas Turbine dataset for low, mild

and extreme levels of outlier ratio, except for the kNNhte that performed better for the

2% outlier ratio in the low level.

The Real Estate dataset is specifically suitable for the DThte across the low, mild and

extreme levels of the outlier ratios, while performing better for the Student Performance

dataset. The RF algorithm performed better for the Concrete and Yacht Hydrodynamics

datasets, rivalled by the DTE and DThte for the low level of the outlier ratios.
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Illustrated by the training performance of all ensembles in Table 9.12, the DTE produced

the smallest training error on five datasets, i.e. Yacht Hydrodynamics, Residential

Building, Student Performance, Energy Efficiency, and Concrete datasets. However, the

GF of the DTE indicates that the ensemble overfitted the training dataset across the five

datasets. The DTE specifically suffered from the small size of the Yacht Hydrodynamics,

Residential Building and Student Performance datasets, where the ensemble experienced

more overfitting.

The overfitting problem of the DTE on the Energy Efficiency and Concrete datasets

is explained by the possibility that the DTE struggled with the complexity and

characteristics of the datasets. Also, using the same configuration for base trees to

construct the DTE did not yield sufficient benefit for the ensemble to generalize well on

the two datasets.

Further, the RF algorithm outperformed other ensembles by generating the lowest

training error on the Air Quality, Bike Sharing, and Gas Turbine datasets. While the GF

of the RF algorithm indicates overfitting of the training dataset on these datasets, the

overfitting problem was not critical compared to other ensembles.

The HTEdf and DThte offered the lowest training errors to be ranked as the best-trained

ensembles on the Real Estate and Parkinsons Disease datasets. While the GFs of the

HTEdf and DThte indicate that both ensembles slightly overfitted the training dataset, the

HTEdf and DThte capitalized on the benefit of the mixtures of heterogeneous experts to

perform well on characteristics and complexity of the Real Estate and Parkinsons Disease

datasets.

Therefore, the results of all performance measures provide evidence to conclude that the

mixtures of heterogeneous experts achieve better generalization performance than the

homogeneous mixtures when different numbers of outliers were investigated across the

regression datasets.

Statistical Analysis of Results

This section compares the generalization performance of the developed ensembles across

the outlier ratios over the regression datasets.
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Friedman Test

The Friedman test used to compare the generalization performance of the 11 ensembles

over the 10 regression datasets followed the discussion provided in Section 8.2. Given

the number of outliers considered in each dataset, the mean average of the generalization

performance of each ensemble across the number of outliers is first calculated. Then the

computed mean average is ranked according to the Friedman test in Table 9.13.

The HTEdf outperformed other ensembles by achieving the best average ranking of 1.90,

while the RF algorithm achieved an average rank of 3.10 to be ranked as the second-best

performing ensemble.

Table 9.13: Ranking the Generalization Performance of Ensembles over Regression
Datasets in the Number of Outliers Study

Ensemble Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas AvR

kNNE 9.01(11) 809.37(11) 3.74(11) 8.69(9) 1.42(6) 9.81(9) 0.94(7) 18.41(8) 44.61(9) 4.62(6) 8.70

DTE 0.67(3) 393.14(7) 2.34(4) 7.11(2) 1.62(7) 7.17(7) 0.89(6) 19.07(9) 21.51(7) 5.90(9) 6.10

RF 0.50(1) 285.21(3) 1.959(2) 7.21(4) 1.31(4) 5.87(1) 0.88(5) 15.93(3) 18.03(4) 4.37(4) 3.10

SVRE 8.09(10) 746.13(9) 3.16(9) 10.35(11) 3.29(11) 12.24(11) 3.36(11) 27.76(11) 85.92(11) 6.89(11) 10.50

NNE 3.66(7) 373.12(6) 2.64(7) 8.33(8) 2.12(8) 7.16(6) 2.02(9) 17.47(6) 18.34(5) 4.97(7) 6.90

kNNhte 7.69(9) 754.20(10) 3.73(10) 7.88(6) 1.34(5) 9.13(8) 0.84(3) 17.62(7) 40.59(8) 4.365(3) 6.90

DThte 0.63(2) 286.19(4) 1.958(1) 6.87(1) 1.30(3) 6.20(2) 0.86(4) 16.86(4) 21.45(6) 5.07(8) 3.50

SVRhte 7.12(8) 739.26(8) 3.11(8) 9.20(10) 2.32(10) 10.32(10) 2.51(10) 22.45(10) 50.36(10) 6.09(10) 9.40

NNhte 3.03(6) 345.69(5) 2.58(6) 8.31(7) 2.17(9) 6.92(5) 1.57(8) 17.08(5) 16.96(2) 4.49(5) 5.80

HTEsm 0.92(5) 184.72(2) 2.41(5) 7.40(5) 1.21(2) 6.90(4) 0.55(2) 15.60(2) 17.38(3) 4.363(2) 3.20

HTEdf 0.83(4) 176.98(1) 2.33(3) 7.17(3) 1.19(1) 6.56(3) 0.39(1) 15.43(1) 16.80(1) 4.31(1) 1.90

The average ranks of the HTEsm (3.20) and DThte (3.50) illustrate that the ensembles

competed with the RF in terms of generalization performance over all datasets. However,

the average ranking of the HTEdf indicates that the HTEdf demonstrated superiority

over other ensembles due to the combination of different ML algorithms and different

configurations of the base learners to develop a mixture of heterogeneous experts when

experimented on different numbers of outliers.

Another outcome is that all HTEs achieved lower average rankings than the pure

homogeneous mixtures. This outcome demonstrates that the different configurations of

the base learners in the heterogeneous mixtures induced base experts that make better

predictions in comparison to the homogeneous mixtures.
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From the average rankings of the ensembles in Table 9.13, the calculated Friedman

test statistic is χ2
F = 72.800, while the Iman-Davenport extension of the Friedman test

is computed as FF = 24.088. Because the value of FF is greater than the obtained

critical value, the null hypothesis that all ensembles are equal is rejected, illustrating

that a statistically significant difference exists in the generalization performance of the

ensembles.

Bonferroni-Dunn Test

After rejecting the null hypothesis, the Bonferroni-Dunn post-hoc test is performed to

verify the ensembles that significantly differ from each other in the number of outliers

study for regression problems. The critical value is 2.81, and the computed critical

difference (CD) = 4.168.

Figure 9.12 presents the critical difference plot of the significant difference in

generalization performance between the HTEdf and any other ensemble.

Figure 9.12: Critical Difference Plot of Ensembles for Number of Outliers Study in
Regression Problems

The Bonferroni-Dunn test in this modelling study surprisingly produced the same

outcome as the clean data study, as illustrated in Figures 9.11 and 9.12. While the

HTEdf and DTE achieved similar average ranks in both studies, other ensembles reacted

differently, producing high and low average ranks. The outcome of the Bonferroni-Dunn

test reveals that the HTEdf is significantly more accurate than the SVRE, SVRhte, kNNE,

kNNhte, NNE, and DTE. On the other hand, no significant difference in generalization

performance exists between the HTEdf and HTEsm, RF algorithm, DThte, and NNhte.

Also, it can be observed that the difference in the average ranks between the HTEdf and

DTE is just a little above the CD = 4.168 (i.e. 6.10-1.90 = 4.20), illustrating that the DTE

is close to HTEdf in terms of generalization performance. Another notable outcome of

the Bonferroni-Dunn test is that the HTEdf is significantly more accurate than all pure
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homogeneous ensembles (i.e. SVRE, kNNE, DTE, NNE).

9.4 Severity of Outliers Study

This section discusses the ensemble performance across the severity of outliers for

regression datasets. The severity of outliers is considered from 2 to 4 standard deviations

from the estimated mean in the training datasets of each dataset. The summative results

(over all outlier severities) of the testing RMSE, training RMSE, and GF for each ensemble

over all regression datasets are provided in Table 9.14.

The results in Table 9.14 showed that ensembles of tree models (i.e. DTE, RF, and DThte)

rivalled the HTEdf by generating low testing errors across the datasets. However, the

HTEdf still leverages the benefit of different ML algorithms and different base learner

configurations to achieve the best performance on five datasets, including the Student

Performance, Energy Efficiency, Air Quality, Bike Sharing, and Gas Turbine datasets. The

HTEsm achieved reliable testing performance to be ranked as the second-best performing

ensemble on four datasets.

The RF algorithm performed best for the Concrete and Parkinsons Disease datasets,

and ranked as the second most accurate ensemble for Yacht Hydrodynamics and Real

Estate datasets. The DThte outperformed other ensembles specifically on the Yacht

Hydrodynamics and Real Estate datasets.

Also, it can be observed that the RF and DThte competed with the HTEdf by producing

the lowest testing errors on datasets consisting of mostly small and medium samples and

features. In contrast, the HTEdf still demonstrated superiority over the RF and DThte by

generalizing on datasets covering different complexities, i.e. small, medium, and large

samples and features.

The DTE performed best for the Residential Building dataset offering the lowest

prediction error, while the DThte offered the lowest prediction error for two datasets

and achieved the second-best performing ensemble for three datasets (i.e. Residential

Building, Concrete, and Parkinsons Disease datasets). This prediction behaviour is also

observed in the generalization performance of other heterogeneous and homogeneous

ensembles, for instance, SVRE and SVRhte. Further, the generalization performance of
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Table 9.14: Ensemble Results over all Regression Datasets in Severity of Outliers Study

Measure Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas

kNNE

Testing RMSE 7.496 1063.465 3.806 6.755 1.408 9.828 0.991 18.918 45.544 5.086

Training RMSE 7.198 474.084 2.591 6.347 1.226 7.474 0.703 13.534 34.563 3.288

GF 1.225 5.094 2.181 1.148 1.337 1.730 1.991 1.974 1.748 2.448

DTE

Testing RMSE 1.732 428.822 2.784 6.990 1.515 7.138 0.978 19.940 23.364 6.145

Training RMSE 0.016 9.505 0.023 3.311 0.451 2.063 0.940 11.251 14.033 4.130

GF 21431.483 2032.394 23983.627 4.459 11.316 12.123 1.085 3.227 2.897 2.271

RF

Testing RMSE 1.725 479.355 2.410 6.112 1.246 5.829 0.410 16.958 20.139 4.745

Training RMSE 0.398 57.559 0.955 3.992 0.603 2.495 0.197 6.453 7.766 1.693

GF 44.432 80.516 6.389 2.370 4.291 5.491 4.357 7.010 6.867 8.034

SVRE

Testing RMSE 9.018 731.161 3.278 10.036 3.301 12.146 3.364 28.515 86.364 7.164

Training RMSE 10.080 373.390 1.839 10.297 3.093 12.045 3.504 27.087 87.341 6.184

GF 0.895 3.995 3.208 0.956 1.139 1.017 0.922 1.112 0.982 1.363

NNE

Testing RMSE 8.475 856.267 2.539 7.038 2.038 11.368 2.224 19.149 17.961 5.523

Training RMSE 0.538 424.181 0.272 7.813 1.945 7.357 1.925 16.733 11.973 4.581

GF 246.735 4.156 87.707 0.816 1.098 2.494 1.346 1.317 2.262 1.461

kNNhte

Testing RMSE 6.712 995.075 3.730 6.425 1.351 9.202 0.893 18.181 42.546 4.841

Training RMSE 6.108 384.227 2.966 5.577 1.222 6.320 0.551 11.521 28.421 2.765

GF 1.359 6.828 1.596 1.342 1.224 2.120 2.626 2.521 2.263 3.146

DThte

Testing RMSE 1.695 451.888 2.383 6.090 1.248 6.342 0.538 17.643 23.235 5.395

Training RMSE 0.349 34.205 0.409 3.409 0.591 2.722 0.430 8.821 14.567 3.438

GF 75.018 250.203 36.061 3.196 4.460 5.428 1.573 4.117 2.592 2.513

SVRhte

Testing RMSE 8.019 726.751 3.251 8.320 2.334 10.484 2.542 22.910 51.162 6.292

Training RMSE 8.761 388.893 1.589 9.262 2.159 9.597 2.572 21.728 51.577 5.652

GF 0.949 3.594 4.247 0.812 1.168 1.194 0.977 1.115 0.985 1.254

NNhte

Testing RMSE 8.771 650.474 2.447 6.957 2.037 10.186 1.756 18.659 18.219 5.262

Training RMSE 0.551 333.237 0.338 7.660 1.937 6.714 1.520 16.251 10.636 4.254

GF 253.185 3.962 69.194 0.829 1.105 2.371 1.334 1.325 2.925 1.533

HTEsm

Testing RMSE 3.391 604.212 2.330 6.232 1.111 6.869 0.964 16.336 18.796 4.611

Training RMSE 3.478 232.287 1.066 5.443 0.943 4.763 0.874 10.811 18.004 3.301

GF 1.196 6.874 4.823 1.323 1.386 2.079 1.221 2.314 1.090 1.985

HTEdf

Testing RMSE 3.049 600.341 2.295 6.139 1.096 6.537 0.913 15.899 17.436 4.570

Training RMSE 2.853 207.214 1.004 5.083 1.074 4.308 0.837 9.124 16.564 3.000

GF 1.431 8.511 5.229 1.479 1.041 2.301 1.199 3.070 1.109 2.369
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the SVRE, SVRhte, kNNE, and NNE on most datasets showed that these ensembles

produced poor prediction performance in most cases. The testing performance of the

SVRE, kNNE, and NNE illustrate that using the same configuration for the members of

the ensembles did not induce efficient base experts with sufficient model complexity to fit

the characteristics and complexity of the datasets given the outlier severities considered.

Also, the SVRhte struggled with the characteristics and complexity of most datasets

despite configuring the base learner differently. Thus, the generalization performance

of the kNNE, SVRE and NNE corroborates the findings of the following studies: Archana

and Elangovan (2014), Yang et al. (2021), Bhattacharya et al. (2017), Fitzgerald (2014),

Kanamori et al. (2014), and Sandbhor and Chaphalkar (2019).

Archana and Elangovan (2014), Yang et al. (2021), and Bhattacharya et al. (2017) showed

that kNN algorithms are sensitive to outliers with a small value of k, which illustrate

the possibility of adversely influencing the generalization performance of the kNNE.

In contrast, Fitzgerald (2014) and Kanamori et al. (2014) reported that SVRs using a

soft margin approach are vulnerable to outliers, indicating that the base learners within

the SVRE showed potential induction behaviour for soft margins. Additionally, NNs

require outliers to be removed from datasets in order to perform well during training

and prediction (Beliakov et al., 2011; Sandbhor and Chaphalkar, 2019). The testing

performance follows the possibility that the base learners in the NNE are affected by the

outlier severities introduced in the training dataset.

From Table 9.15, the average ranks of the HTEdf and HTEsm confirmed that the

ensembles are much better than most ensembles across the 10 regression datasets except

the RF algorithm. However, there is still much room for improvement for the HTEdf and

HTEsm considering the difference in average ranks with the RF algorithm and the testing

RMSE of the ensembles on a number of datasets such as the Residential Building, Air

Quality, and Bike Sharing datasets.

The sensitivity of the SVRE, kNNE, and NNE to the outlier severities also explains how

the predictive power of the HTEdf and HTEsm on the datasets are slightly influenced

by the base SVR, kNN and NN, which are parts of the algorithms combined within the

HTEdf and HTEsm. However, the generalization performance HTEdf and HTEsm is

still satisfactory across all datasets, which is attributed to the different configurations set
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for the multiple instances of the SVR, kNN and NN algorithms that induced efficient

base experts, and the promising testing performance of the multiple instances of the DT

algorithm configured differently.

From Appendix G, the analysis of the ensembles on low (2.0 and 2.5), mild (3.0), and

extreme (3.5 and 4.0) levels of outlier severities showed that the HTEdf consistently

outperformed other ensembles across all levels of outlier severities on the Energy

Efficiency, Air Quality, and Bike Sharing datasets. The HTEdf also showed dominance on

low and extreme outlier severities for the Student Performance and Gas Turbine datasets,

while the HTEsm performed better for mild severity in both datasets.

Further, the RF algorithm achieved the best generalization performance (i.e. lowest

testing error) on the Concrete and Parkinsons datasets, while the DTE performed best

for the Residential Building dataset across all levels of outlier severities. The RF and

DTE offered the lowest testing errors for low level of outlier severities in the Yacht

Hydrodynamics dataset, while the DThte is the best ensemble on mild level severity,

competing with the RF for extreme level of outlier severity. Also, the DThte and RF

generalized better than other ensembles for low and mild levels of outlier severities in the

Real Estate dataset, while the HTEdf performed best by achieving the lowest prediction

errors for extreme level severity.

From Table 9.14, the training errors of the ensemble of base tree models, i.e. DTE, RF,

and DThte, illustrate that the ensembles achieved better training performance compared

to other ensembles across all datasets. The DTE offered the best training error on

six datasets, while the DThte achieved the lowest training error for the Concrete and

Parkinsons datasets. Also, the RF algorithm is the best-trained ensemble on the Air

Quality, Bike Sharing, and Gas Turbine datasets.

However, the GFs of the DTE, RF, and DThte indicate that the ensembles overfitted the

training dataset on most of the datasets. This outcome corroborates the findings in the

literature that DT models usually suffer from overfitting when the models learn a training

dataset to the point of high granularity, which impairs the prediction performance of the

DT models (Fawagreh et al., 2014; Schonlau and Zou, 2020). Although, RF did not overfit

as much as a single DT (Breiman, 2001). Hence, this training and prediction behaviour

is mostly reflected by the DTE overfitting across all datasets. Further, the high GF of
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the DTE specifically illustrates the severe overfitting problem of the ensemble on the

Yacht Hydrodynamics, Residential Building, and Student Performance datasets. Also,

the generalization performance of the DTE on six datasets showed the possibility that

the DTE intrinsically prefer datasets with categorical features to numeric features, while

struggling with datasets consisting of multivariate features in this modelling study. The

GFs of the DThte and RF highlight that the ensembles also experienced overfitting across

all datasets, but not as the DTE. On the hand, the HTEdf and HTEsm achieved lower GFs

in comparison to other ensembles across the datasets.

Therefore, the performance of the ensembles illustrates that all HTEs did not perform

best on all problems when compared to the pure homogeneous ensembles. However, the

HTEdf and HTEsm still achieved the most consistent performance across all datasets in

the severity of outliers study.

Statistical Analysis of Results

This section compares the generalization performance of the developed ensembles across

the outlier severities over the 10 regression datasets.

Friedman Test

The mean average of the generalization performance of each ensemble across the outlier

severities is first computed, and the mean averages are ranked according to the Friedman

test. This is provided in Table 9.15.

Table 9.15: Ranking the Generalization Performance of Ensembles over Regression
Datasets in the Severity of Outliers Study

Ensemble Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas AvR

kNNE 7.49(7) 1063.46(11) 3.80(11) 6.75(6) 1.40(6) 9.82(7) 0.99(7) 18.91(7) 45.54(9) 5.08(5) 7.60

DTE 1.73(3) 428.82(1) 2.78(7) 6.99(8) 1.51(7) 7.13(5) 0.97(6) 19.94(9) 23.36(7) 6.14(9) 6.20

RF 1.72(2) 479.35(3) 2.41(4) 6.11(2) 1.248(4) 5.82(1) 0.41(1) 16.95(3) 20.13(5) 4.74(3) 2.80

SVRE 9.01(11) 731.16(8) 3.27(9) 10.03(11) 3.30(11) 12.14(11) 3.36(11) 28.51(11) 86.36(11) 7.16(11) 10.50

NNE 8.47(9) 856.26(9) 2.53(6) 7.03(9) 2.038(9) 11.36(10) 2.22(9) 19.14(8) 17.96(2) 5.52(8) 7.90

kNNhte 6.71(6) 995.07(10) 3.73(10) 6.42(5) 1.35(5) 9.20(6) 0.89(3) 18.18(5) 42.54(8) 4.84(4) 6.20

DThte 1.69(1) 451.88(2) 2.38(3) 6.09(1) 1.246(3) 6.34(2) 0.53(2) 17.64(4) 23.23(6) 5.39(7) 3.10

SVRhte 8.01(8) 726.75(7) 3.25(8) 8.32(10) 2.33(10) 10.48(9) 2.54(10) 22.91(10) 51.16(10) 6.29(10) 9.20

NNhte 8.77(10) 650.47(6) 2.44(5) 6.95(7) 2.037(8) 10.18(8) 1.75(8) 18.65(6) 18.21(3) 5.26(6) 6.70

HTEsm 3.39(5) 604.21(5) 2.33(2) 6.23(4) 1.11(2) 6.86(4) 0.96(5) 16.33(2) 18.79(4) 4.61(2) 3.50

HTEdf 3.04(4) 600.34(4) 2.29(1) 6.13(3) 1.09(1) 6.53(3) 0.91(4) 15.89(1) 17.43(1) 4.57(1) 2.30
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The HTEdf is the best performing ensemble achieving the lowest average rank of 2.30,

followed by the RF algorithm (2.80), DThte (3.10), and HTEm (3.50). The HTEdf delivered

the benefits of the mixtures of heterogeneous experts through the combination of different

algorithms and different configurations. However, it can be observed that the RF

algorithm offered a close average ranking to that of the HTEdf. This outcome illustrates

that the RF produced competitive generalization performance as the HTEdf over the 10

regression datasets. This outcome is also illustrated in Table 9.14 where the RF achieved

low testing errors across the datasets.

The average ranking of the HTEsm showed that the ensemble is ranked as the fourth-

best ensemble across all datasets. The average ranking of the HTEsm is explained by the

fact that a number of the base learners from the different algorithms showed inherent

sensitivity to the outlier severities during training. This impairs the generalization

performance of the HTEsm on most datasets, as illustrated in Table 9.14. However, with

respect to other ensembles, the average rankings of the DThte and HTEsm further showed

that the DThte capitalizes on the advantage of the different base learner configurations,

while the combination of different ML sustained the HTEsm.

The outcome of the Friedman test revealed that all HTEs achieved lower average rankings

than the pure homogeneous ensembles. This indicates that different configurations of the

base learners within the HTEs induced efficient base experts that generalized better than

using the same configuration for the base learners in pure homogeneous ensembles.

Given the average rankings of the ensembles in Table 9.15, the calculated Friedman

test statistic is χ2
F = 68.927, while the Iman-Davenport extension of the Friedman test

is computed as FF = 19.964. The value of FF is greater than the obtained critical value,

illustrating the rejection of the null hypothesis that all ensembles are equal. Thus, there is

a statistically significant difference in the generalization performance of the ensembles.

Bonferroni-Dunn Test

The rejection of the null hypothesis results in performing the Bonferroni-Dunn posthoc

test to verfity the ensemble that is significantly different from the other in the severity

of outliers study for regression problems. The critical value is 2.87, while the computed

critical difference (CD) = 4.168.
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Figure 9.13 presents the critical difference plot of the significant difference in

generalization performance between the HTEdf and any other ensemble.

Figure 9.13: Critical Difference Plot of Ensembles for Severity of Outliers Study in
Regression Problems

As illustrated in Figure 9.13, the outcome of the Bonferroni-Dunn test indicates that the

HTEdf is significantly more accurate than the kNNE, SVRE, SVRhte, NNE, and NNhte.

On the contrary, there is no significant difference in generalization performance between

the HTEdf and HTEsm, RF, DThte, DTE, and kNNhte.

The Bonferroni-Dunn test showed that the ensembles of base tree models (i.e. DTE,

RF, and DThte) achieved remarkable performance over the 10 regression datasets in the

severity of outliers study. The HTEdf is significantly not different from the HTEsm

because both ensembles were developed using multiple instances of different ML

algorithms. Also, the different base learner configurations of the kNNhte resulted in base

experts that delivered efficient predictions across the regression datasets.

9.5 Bagged Subsets Study

This section discusses the performance of the ensembles on different bagged subsets

resampled in the training samples of the regression datasets from 10%, 20%, 30%, ... to

80%, 90%, and 100% with replacement. Table 9.16 provides the summative results (over

all bagged subsets) of the testing RMSE, training RMSE, and GF of the ensembles over all

regression datasets.

The results in Table 9.16 showed that when the ensembles were trained on different

subsets of a training dataset, the HTEdf again outperformed other ensembles by

generating the lowest testing error on five datasets. The DThte achieved the best

generalization performance for three datasets, i.e. Yacht Hydrodynamics, Residential

Building, and Student Performance datasets, while the RF algorithm performed best for
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Table 9.16: Ensemble Results over all Regression Datasets in Bagged Subsets Study

Measure Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas

kNNE

Testing RMSE 9.576 886.685 4.163 8.925 2.318 11.509 1.405 21.003 52.938 5.743

Training RMSE 7.542 670.063 3.131 7.435 1.258 8.124 1.011 14.978 41.766 3.743

GF 1.834 1.788 1.818 1.508 3.537 2.135 1.918 1.972 1.612 2.370

DTE

Testing RMSE 1.315 434.368 2.610 9.002 2.159 9.481 1.264 22.282 24.884 6.695

Training RMSE 0.549 58.608 0.093 2.244 0.209 1.208 0.419 8.930 12.085 3.744

GF 13.413 148.861 983.987 109.760 2178.726 171.927 13.883 9.137 6.940 3.262

RF

Testing RMSE 1.346 399.347 2.341 8.095 1.812 7.501 0.986 17.924 20.488 5.261

Training RMSE 0.679 143.463 0.590 4.201 0.539 2.636 0.422 7.111 8.683 1.871

GF 5.140 8.485 19.432 4.065 12.247 9.107 5.582 6.374 5.565 7.932

SVRE

Testing RMSE 8.799 783.432 3.227 9.734 2.589 13.240 4.023 30.707 95.661 7.870

Training RMSE 11.656 610.620 1.839 10.050 2.215 13.157 4.094 28.864 100.430 6.396

GF 0.602 1.702 3.157 0.982 1.360 1.020 0.962 1.134 0.907 1.515

NNE

Testing RMSE 1.674 583.124 2.756 8.774 2.252 11.119 2.545 18.876 20.668 5.907

Training RMSE 0.520 363.753 0.235 8.449 1.817 6.524 2.242 17.790 19.635 5.140

GF 13.354 66.731 859.037 1.239 1.563 3.980 1.313 1.128 1.107 1.321

kNNhte

Testing RMSE 9.257 840.244 4.010 8.362 2.137 10.988 1.268 20.341 49.707 5.532

Training RMSE 6.496 569.442 2.574 6.344 1.089 6.690 0.814 12.592 34.875 3.153

GF 2.298 2.242 2.492 1.847 4.005 2.844 2.505 2.616 2.045 3.101

DThte

Testing RMSE 1.152 362.076 2.325 8.026 1.796 7.636 1.224 18.803 22.715 5.752

Training RMSE 0.493 48.711 0.317 2.831 0.453 2.291 0.883 8.098 13.953 3.117

GF 12.830 72.363 78.628 18.533 17.973 12.826 2.078 5.691 2.738 3.495

SVRhte

Testing RMSE 8.041 768.498 3.223 10.879 3.909 11.879 2.814 25.074 69.598 6.967

Training RMSE 10.325 604.154 2.170 11.298 3.482 11.228 2.765 23.523 72.494 5.829

GF 0.647 1.671 2.259 0.957 1.251 1.142 1.034 1.140 0.923 1.429

NNhte

Testing RMSE 1.606 468.519 2.752 8.475 2.219 10.376 2.350 18.310 20.093 5.580

Training RMSE 0.534 260.612 0.204 7.829 1.881 6.061 2.086 17.163 18.995 4.900

GF 10.899 71.966 1406.385 1.478 1.473 3.854 1.300 1.141 1.119 1.296

HTEsm

Testing RMSE 4.128 455.664 2.541 7.768 1.906 8.109 1.320 17.473 20.019 5.257

Training RMSE 3.721 281.234 1.085 5.589 1.154 5.041 1.115 10.855 12.213 3.555

GF 1.340 2.775 5.560 2.239 2.769 2.616 1.372 2.601 2.757 2.189

HTEdf

Testing RMSE 3.777 458.836 2.466 7.716 1.768 7.971 1.260 17.210 19.319 5.115

Training RMSE 3.223 270.190 0.946 5.313 0.997 4.594 1.024 9.464 10.656 3.234

GF 1.531 3.018 6.906 2.382 3.292 3.038 1.481 3.310 3.335 2.500
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two datasets i.e. Concrete and Parkinsons datasets.

Table 9.16 further illustrates that when multiple base regressors are trained on different

subsets of the same dataset, the base regressors are more likely to have different views on

the prediction of test dataset. Thus, the generalization performance of the HTEdf being

better than other ensembles on half of the datasets (i.e. five out 10 datasets) confirmed

this deduction that the HTEdf delivers more suitable and highly diverse regressors from

the combination of different ML algorithms where the base regressors of each algorithm

were configured differently.

Also, the predictive power of the HTEsm is observed on four datasets (i.e. Real Estate, Air

Quality, Bike Sharing, and Gas Turbine datasets) and the HTEsm is ranked as the second

most accurate ensemble. The DThte and RF algorithm also offered reliable performance

on a number of datasets to be ranked as the second-best performing ensemble.

With reference to generalization performance, the DThte performed well on datasets

with smaller sample sizes, i.e. Yacht Hydrodynamics, Residential Building, and Student

Performance datasets, while the best generalization performance of the RF algorithm was

obtained on datasets consisting of medium sample sizes, i.e. Concrete and Parkinsons

Disease datasets. However, the HTEdf further demonstrated superiority over other

ensembles by achieving better testing performances that covered datasets consisting of

small, medium, and large datasets.

The generalization performance of the SVRE and SVRhte in this study is similar to other

modelling studies where the ensembles ranked as the worst performing ensembles across

the datasets. This is illustrated in the average ranks of the SVRE and SVRhte in Table

9.17. The performance of the SVRE and SVRhte demonstrate that the configurations of the

base learners within each ensemble did not induce efficient experts that could generalize

well on the characteristics and complexity of the datasets given the bagged subsets.

Specifically, the SVRE and SVRhte were expected to perform well on the Residential

Building and Student Performance datasets, because SVR algorithms perform well on

datasets consisting of small samples and large features. However, the generalization

performance both ensembles across all datasets still provided evidence that the mixtures

of heterogeneous experts in SVRhte is better than pure homogeneous mixtures of experts

in SVRE.
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The trend in generalization performance between the SVRE and SVRhte is also observed

among other ensembles, for instance, DTE and DThte, NNE and NNhte, as well as

the kNNE and kNNhte. The kNNE and kNNhte achieved unreliable testing errors

across the bagged subsets for all datasets. The outcome of the kNNE and kNNhte is

explained by the intrinsic property of a kNN algorithm being a lazy and stable learner.

Empirically, Breiman (1996a) and El-Hindi et al. (2018) have shown that stable learners do

not provide reliable prediction when used to construct an ensemble, because the learners

often provide little changes even when the sample space of a training dataset is randomly

perturbed.

The results provided in appendix H illustrate the generalization performance of the

ensembles on different input regions of the sample space, i.e. small (10-30%), medium

(40-60%), and large (70-100%) subsets of the training datasets. The results indicate the

differences in generalization performance among the ensemble across the three input

regions.

The HTEdf and HTEsm performed best for the Air Quality, Bike Sharing, and Gas

Turbine datasets across the input regions of the sample space, although rivalled by the RF

algorithm and NNhte in a few cases. The RF algorithm performed best on the Parkinsons

dataset across the input regions, except for the small subset region where the HTEdf

offered the lowest testing error on 10% bagged size.

The NNhte and RF algorithm were the best ensembles for the Concrete dataset on

small and large subsets regions of the sample space, while the DThte and RF achieved

the lowest prediction errors on medium subsets. Also, the DThte and RF performed

best on small subsets of the sample space in the Energy Efficiency dataset, while the

HTEdf and HTEsm performed better in the medium subset region. The HTEdf averagely

outperformed the DThte and RF algorithm in the large subset region.

For the Real Estate dataset, DThte and RF also performed best in the small and large

subset regions of the sample space, while the HTEdf and HTEsm were better in the

medium subset region. The high generalization performance of the DThte and RF

across the input region of the sample space is also observed in the Student Performance

dataset. The DThte also performed excellently across all input regions in the Yacht

Hydrodynamics and Residential Building datasets. The only exception is on the large
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subset region for the Residential Building dataset, where the NNhte and NNE performed

better than the DThte.

Illustrated by the training performance of the ensembles, the ensembles of base tree

models, i.e. DTE, RF algorithm, and DThte, outperformed other ensembles by producing

the lowest training errors across all datasets. The DThte offered the best training

performance on the Yacht Hydrodynamics and Residential datasets, while the DTE

performed best on five datasets. The RF algorithm produced the smallest training error

on the Air Quality, Bike Sharing, and Gas Turbine datasets. The results in Table 9.16 also

revealed that the HTEdf and HTEsm achieved competitive training performance to the

DTE, RF, and DThte on most datasets.

The GF of the DTE indicates that the ensemble experienced more overfitting of

the training dataset than other ensembles across all datasets. Specifically, the DTE

severely overfitted the training subsets for six out of the 10 datasets as shown in the

Yacht Hydrodynamics, Residential Building, Student Performance, Real Estate, Energy

Efficiency, and Concrete datasets.

Although the DThte also overfitted the training subsets across most datasets, the

DThte still demonstrated the advantage of the mixtures of heterogeneous experts over

homogeneous mixtures of experts in DTE by achieving less overfitting. This trend in

GF is observed between the SVRE and SVRhte. The GFs of the NNE and NNhte also

indicate how the generalization performance of the ensembles is unfavourably affected

by the problem of overfitting on datasets consisting of small sample sizes, i.e. Yacht

Hydrodynamics, Residential Building, and Student Performance datasets. The HTEdf

and HTEsm provide slight overfitting of the training subsets across all the datasets.

From Appendix H, the performance of the ensembles on the bias-variance tradeoff

showed that the ensembles developed from the mixtures of heterogeneous experts

demonstrated superiority over the pure homogeneous mixtures of experts to balance the

bias-variance tradeoff.

The performance of the HTEdf and HTEsm specifically illustrates low bias and variance

errors across the bagged subsets over all datasets compared to other ensembles. The only

exception to this outcome is for the Yacht Hydrodynamics dataset, where the DTE, RF,

NNE, DThte, and NNhte outperformed the HTEdf and HTEsm across all bagged subsets

Stellenbosch University https://scholar.sun.ac.za



Chapter 9. Empirical Analysis of Results for Regression Problems 255

regions from small bagged subsets (10-30%), medium (40-60%) to large subset subsets

(70-100%).

For the remaining nine datasets, the HTEdf and HTEsm produced smaller testing and

training errors on small bagged subsets, achieving less overfitting than other ensembles,

except for the Bike Sharing dataset, where the NNE and NNhte performed better. This

outcome indicates that with a small dataset, it is beneficial to construct an ensemble

that combines multiple decisions of different ML algorithms to achieve less overfitting

compared to other ensemble types that are likely to experience more overfitting.

Despite achieving good average testing performance across all datasets, the DTE, RF and

DThte overfitted on the small bagged subsets as seen for most datasets in Table 9.16. Also,

the analysis of the ensemble performance with increasing bagged sizes from medium

bagged subsets (40-60%) to large (70-100%) showed that the HTEdf and HTEsm further

achieved a better balance of the bias-variance tradeoff than other ensembles. Although,

with increasing bagged subsets, the NNE and NNhte offered reliable performances to

balance the tradeoff for the Energy Efficiency, Air Quality, and Bike Sharing datasets.

Therefore, the results of the ensembles for all performance measures provide evidence

to conclude that the mixtures of heterogeneous experts performed better than pure

homogeneous mixtures. The outcome also deliver sufficient credence to conclude that

it is beneficial to construct a mixture of heterogeneous experts from the combination of

different ML algorithms to generalized better on bagged subsets of a training dataset.

Statistical Tests

This section compares the generalization performance of the developed ensembles across

the bagged subsets over all regression datasets.

Friedman Test

For each dataset, the mean average of the generalization performance of each ensemble

for all bagged subsets is calculated. Then the computed mean averages of the ensembles

are ranked according to the Friedman test as provided in Table 9.17.

The HTEdf outperformed the other ensembles by achieving the lowest average ranking

of 2.50 over the 10 regression datasets. Also, the average rank of the RF algorithm (2.60)
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showed that RF achieved competitive generalization performance with the HTEdf to be

ranked as the second best performing ensemble.

Table 9.17: Ranking the Generalization Performance of Ensembles over Regression
Datasets in the Bagged Subsets Study

Ensemble Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas AvR

kNNE 9.57(11) 886.68(11) 4.16(11) 8.92(8) 2.31(9) 11.50(9) 1.40(7) 21.00(8) 52.93(9) 5.74(6) 8.90

DTE 1.31(2) 434.36(3) 2.61(5) 9.00(9) 2.15(6) 9.48(5) 1.264(4) 22.28(9) 24.88(7) 6.69(9) 5.90

RF 1.34(3) 399.34(2) 2.34(2) 8.09(4) 1.81(3) 7.50(1) 0.98(1) 17.92(3) 20.48(4) 5.26(3) 2.60

SVRE 8.79(9) 783.43(9) 3.227(9) 9.73(10) 2.58(10) 13.24(11) 4.02(11) 30.70(11) 95.66(11) 7.87(11) 10.20

NNE 1.67(5) 583.12(7) 2.756(7) 8.77(7) 2.25(8) 11.11(8) 2.54(9) 18.87(6) 20.66(5) 5.90(8) 7.00

kNNhte 9.25(10) 840.24(10) 4.01(10) 8.36(5) 2.13(5) 10.98(7) 1.268(5) 20.34(7) 49.70(8) 5.53(4) 7.10

DThte 1.15(1) 362.07(1) 2.32(1) 8.02(3) 1.79(2) 7.63(2) 1.22(2) 18.80(4) 22.71(6) 5.75(7) 2.90

SVRhte 8.04(8) 768.49(8) 3.223(8) 10.87(11) 3.90(11) 11.87(10) 2.81(10) 25.07(10) 69.59(10) 6.96(10) 9.60

NNhte 1.60(4) 468.51(6) 2.752(6) 8.47(6) 2.21(7) 10.37(6) 2.35(8) 18.31(5) 20.09(3) 5.58(5) 5.60

HTEsm 4.12(7) 455.66(4) 2.54(4) 7.76(2) 1.90(4) 8.10(4) 1.32(6) 17.47(2) 20.01(2) 5.25(2) 3.70

HTEdf 3.77(6) 458.83(5) 2.46(3) 7.71(1) 1.76(1) 7.97(3) 1.260(3) 17.21(1) 19.31(1) 5.11(1) 2.50

The DThte (2.90) and HTEsm (3.70) are the third and fourth-best performing ensembles

over all datasets. The average ranks of all ensembles showed that all HTEs achieved lower

average ranks in comparison to the pure homogeneous ensembles. Also, the HTEdf is

specifically the best mixture of heterogeneous experts among all HTEs.

Based on the average rankings in Table 9.17, the calculated Friedman test statistic is χ2
F

= 65.982, while the Iman-Davenport extension of the Friedman test is computed as FF =

17.456. The null hypothesis that all ensembles are equal is rejected on the premises that the

computed FF is greater than the critical value. Thus, a statistically significant difference

in the generalization performance of the ensembles is observed.

Bonferroni-Dunn Test

After the rejection of the null hypothesis results, the Bonferroni-Dunn posthoc test is

performed to determine the ensemble that statistically differs from the other in the bagged

subsets study of regression problems. The critical value is 2.87, while the computed

critical difference (CD) = 4.168.

Figure 9.14 illustrates the critical difference plot of the significant difference in

generalization performance between the HTEdf and any other ensemble in this modelling

study.
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Figure 9.14: Critical Difference Plot of Ensembles for Bagged Subsets Study in Regression
Problems

From Figure 9.14, the outcome of the Bonferroni-Dunn test showed that the HTEdf is

significantly more accurate than all pure homogeneous ensembles (i.e. SVRE, kNNE,

NNE), except the DTE. Also, the HTEdf is also significantly more accurate than the

SVRhte and kNNhte, confirming that the combination of different ML algorithms to

construct an ensemble is beneficial.

On the other hand, it is observed that the experimental datasets did not provide sufficient

evidence to detect a significant difference in generalization performance between the

HTEdf and RF algorithm, DThte, HTEsm, NNhte, and DTE.

In Table 9.17, the closeness in the average ranks of the HTEdf and RF algorithm showed

that the RF algorithm performed excellently in terms of generalization performance over

all datasets.

9.6 Feature Subsets Study

This section discusses the performance of the ensembles on the different feature subsets

of the regression datasets. The feature subsets are resampled in the training dataset from

10%, 20%, 30%, ... to 80%, 90%, and 100% with replacement. Table 9.18 provides the

summative results (over all feature subsets) of the testing RMSE, training RMSE, and GF

of the ensembles over all regression datasets.

The results in Table 9.18 revealed that the ensembles achieved different performances

during training and prediction, illustrating diverse behaviours on the feature subsets.

It can be observed that the mixtures of heterogeneous experts generalized better than

the pure homogeneous experts when the ensembles were trained on different feature

subsets of the training dataset for regression problems. The HTEdf is the best performing

ensemble, significantly outperforming other ensembles (i.e. achieving the lowest testing
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Table 9.18: Ensemble Results over all Regression Datasets in Feature Subsets Study

Measure Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas

kNNE

Testing RMSE 5.552 806.002 4.034 9.679 2.223 11.478 3.150 22.810 83.532 7.404

Training RMSE 5.779 654.532 3.488 8.849 2.137 9.543 2.459 17.246 74.018 5.591

GF 0.863 1.522 1.348 1.212 1.089 1.474 1.858 1.866 1.673 1.983

DTE

Testing RMSE 2.141 507.418 3.425 9.824 2.323 10.839 3.075 23.862 69.166 8.218

Training RMSE 2.113 115.301 0.991 4.026 2.172 6.804 2.599 15.436 64.721 6.339

GF 282.657 735.493 537.691 14.713 1.253 4.323 1.281 2.719 1.576 1.864

RF

Testing RMSE 2.079 435.976 2.865 9.021 2.090 10.194 2.588 21.261 67.635 7.238

Training RMSE 2.370 224.929 1.510 5.296 1.771 6.692 1.063 10.416 50.274 3.371

GF 1.186 5.817 5.783 3.519 2.190 3.623 6.427 5.732 4.101 6.517

SVRE

Testing RMSE 8.738 924.636 3.451 11.687 4.480 13.876 5.720 33.687 104.809 9.645

Training RMSE 12.208 751.112 2.572 12.029 4.263 14.556 5.944 31.949 109.691 8.821

GF 0.512 1.512 2.163 0.944 1.109 0.908 0.927 1.113 0.936 1.248

NNE

Testing RMSE 3.480 529.322 3.198 9.075 3.346 12.932 5.269 23.286 67.220 7.815

Training RMSE 4.347 368.396 1.539 9.609 3.268 10.893 4.131 21.877 68.578 7.240

GF 0.620 2.145 10.640 0.893 1.053 1.556 1.588 1.144 1.017 1.222

kNNhte

Testing RMSE 4.905 780.008 3.961 9.436 2.209 10.967 3.007 22.271 81.031 7.236

Training RMSE 5.208 570.446 3.021 7.824 2.066 8.835 2.067 15.271 68.140 4.933

GF 0.831 1.889 1.768 1.510 1.231 1.605 2.349 2.365 2.080 2.547

DThte

Testing RMSE 2.000 439.367 2.902 8.675 2.365 10.062 3.012 21.586 68.874 7.394

Training RMSE 2.365 158.165 1.258 4.382 2.168 6.861 2.452 13.028 60.620 5.341

GF 1.477 22.095 11.111 6.319 1.362 3.087 1.343 3.339 1.736 2.145

SVRhte

Testing RMSE 7.244 911.096 3.526 10.414 3.503 12.444 5.054 27.990 127.613 8.989

Training RMSE 9.976 738.754 2.767 11.072 3.383 13.057 5.189 26.556 132.632 8.409

GF 0.528 1.517 1.829 0.881 1.077 0.912 0.956 1.118 0.937 1.186

NNhte

Testing RMSE 3.105 504.956 3.229 9.034 3.127 12.116 4.565 22.997 67.215 7.432

Training RMSE 3.895 336.642 1.566 9.573 3.068 10.641 3.883 21.573 68.651 7.010

GF 0.634 2.412 11.350 0.892 1.048 1.386 1.444 1.148 1.032 1.172

HTEsm

Testing RMSE 2.095 381.779 3.049 8.681 2.177 10.168 2.826 20.441 65.287 7.012

Training RMSE 2.639 274.442 1.828 7.228 1.700 8.656 1.979 15.171 60.338 5.735

GF 0.688 1.935 3.419 1.504 4.580 1.460 2.039 1.977 1.170 1.644

HTEdf

Testing RMSE 2.094 380.881 2.972 8.633 2.130 10.004 2.768 20.274 65.065 6.959

Training RMSE 2.661 277.936 1.763 6.809 1.787 8.138 2.048 13.682 57.227 5.334

GF 0.686 1.878 3.583 1.706 2.372 1.642 1.827 2.508 1.102 1.898
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error) on six out of the 10 datasets. Also, the HTEdf is ranked as the second most accurate

ensemble for the Energy Efficiency and Parkinsons datasets. The HTEsm showed reliable

generalization performance on four datasets by achieving the second-lowest prediction

error.

The generalization performance of the HTEdf and HTEsm in this study illustrates

the benefits of constructing an ensemble with multiple instances of different ML

algorithms. By configuring the base learners differently, the HTEdf demonstrated

superior generalization performance over other ensembles.

The RF algorithm offered the lowest testing error on three datasets, while achieving

the second lowest prediction error on Yacht Hydrodynamics dataset. For the Yacht

Hydrodynamics dataset, the DThte is more accurate than other ensembles and is ranked

as the second most accurate ensemble for the Student Performance, Real Estate, and

Concrete datasets. The competitive generalization performance of the RF algorithm

illustrate the possibility that the ensemble leveraged on the intrinsic ensemble approaches

(i.e. bagging and RFSM), while the DThte is favoured by the different configurations of

the base tree learners which resulted in efficient base experts that produced low testing

error.

The generalization performance of the HTEdf was best for a small dataset (i.e. Residential

Building dataset), medium-sized datasets (i.e. Real Estate and Concrete datasets)

and large-sized datasets (i.e. Air Quality, Bike Sharing, and Gas Turbine datasets).

This outcome illustrates that the induced base experts from the differently configured

multiple instances of the different ML algorithms in the HTEdf generalized better on

the characteristics and complexities of datasets compared to other ensembles. The RF

algorithm performed best in terms of generalization performance on small and medium-

sized datasets, but struggled with large datasets. Also, the DThte offered the lowest

prediction error only on one small dataset, i.e. Yacht Hydrodynamics dataset.

On the contrary, the SVRE and SVRhte are the worst performing ensembles across all

datasets. The poor generalization performance of the SVRE and SVRhte over all datasets

indicates that the ensembles struggled with the characteristics and complexities of most

datasets. However, the SVRhte is still better than the SVRE due to effect of the differently

configured base learners within the SVRhte.
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Further, the results in Appendix I present the generalization performance of the

ensembles on different input regions of the feature space, i.e. small (10-30%), medium (40-

60%) and large (70-100%) feature subsets in the training dataset across all datasets. The

HTEdf and HTEsm achieved superior generalization performance over other ensembles

by offering the lowest testing errors across all feature space regions for four datasets,

i.e. Residential Building, Air Quality, Bike Sharing, and Gas Turbine datasets. The

RF algorithm performed best in the medium and large feature subset regions for the

Parkinsons Disease dataset, while being rivalled by the HTEsm and SVRE in the low

feature subset region.

The SVRhte and SVRE offered the lowest testing errors in the low feature subset

region for the Student Performance dataset, and the RF performed best for the medium

feature subset region. The DThte and RF algorithm jointly achieved the best predictive

performance for large input regions of the feature space of the Student Performance

dataset. Also, the DThte and RF offered the lowest generalization error in the medium

region of the feature subsets for the Yacht Hydrodynamics dataset, while being rivalled

by the kNNhte and HTEdf in the low feature subset egion as well as the HTEsm and DTE

in the large feature subset region.

For the Real Estate dataset, the NNhte, NNE, and RF performed best in the low feature

subset region, while the HTEdf, HTEsm and RF are better for the medium feature subset

region. As the feature subset increases from 70% to 100%, i.e. large input feature region,

the DThte and RF jointly offered the smallest testing errors. For the Energy Efficiency

dataset, the HTEdf and HTEsm showed the best prediction performance in the low and

medium input regions of the feature space, while the kNNE performed best on large

feature subset region.

For the Concrete dataset, the HTEdf, HTEsm, and kNNhte produced the lowest testing

errors in the low input region of the feature space, while the DThte, HTEsm, and NNE

are better for the medium feature subset region. With increasing feature subset from 70%

to 100%, The RF algorithm consistently achieved the smallest prediction error in the large

input feature region.

With reference to training performance, the DTE offered the lowest training error on

four datasets, i.e. Yacht Hydrodynamics, Residential Building, Student Performance, and
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Real Estate datasets. The HTEsm is the best-trained ensemble for the Energy Efficiency

dataset, while the RF algorithm produced the best training performance on five datasets.

The training performance of the HTEdf and HTEsm illustrate the competitiveness of the

ensembles with the DTE and RF algorithm due to the effect of combining different ML

algorithms to learn the relationship between the input and target features of each feature

subsets across the datasets.

The ensembles of base tree models, i.e. DTE, DThte, and RF showed more overfitting of

the training dataset on small datasets compared to other ensembles. The high GF of the

DTE illustrates the susceptibility of the ensemble to overfitting, as observed in the Yacht

Hydrodynamics, Residential, Student Performance, and Real Estate datasets. The DThte

capitalized on the benefit of the different base learner configurations to produce less

overfitting on the datasets compared to the DTE. The less overfitting of the RF algorithm,

when compared to the DTE, corroborates the findings in literature that RFs do not overfit

as much as DTs because of inductive property of RF to implement both bagging and RFSM

during tree induction (Breiman, 2001).

The results of the ensembles in Appendix I highlight that the HTEs outperformed the

pure homogeneous ensembles with respect to the bias-variance tradeoff. The HTEdf and

HTEsm specifically achieved a better balance of the tradeoff across the datasets than other

ensembles. Although, there were datasets where a number of ensembles, such as the

SVRE, SVRhte, NNE, and NNhte, provided competitive performance to the HTEdf and

HTEsm to achieve a better tradeoff of underfitting and overfitting the training data. This

is shown in the Gas Turbine, Air Quality, Concrete, and Real Estate datasets. In contrast,

the DTE, DThte, and RF offered worst generalization performances to balance the tradeoff

on most datasets in comparison to other ensembles. This outcome is further illustrated by

the high GFs of the ensembles on most datasets, which indicate severe overfitting of the

training dataset.

Furthermore, with reference to achieving a better bias-variance tradeoff, the performance

of all ensembles across all feature subsets regions, i.e. from small feature subsets (10-

30%), medium feature subsets (40-60%), to large feature subset (70-100%) is analyzed.

The analysis showed that the HTEdf and HTEsm still offered better performance than

other ensembles across all feature subsets regions on eight out of the 10 datasets. The
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exceptions are for the Student Performance and Air Quality dataset, where the HTEdf

and HTEsm achieved high testing and training errors from 30% to 100% feature subsets

regions compared to other ensembles.

Thus, the results of all performance measures provide evidence to conclude that the HTEs

performed better than pure homogeneous ensembles to learn and generalize well on

different feature subsets of all experimental datasets.

Statistical Tests

This section compares the performance of the developed ensembles across the feature

subsets over all regression datasets.

Friedman Test

For each dataset, the mean average of the generalization performance of each ensemble

across all feature subsets is calculated. Then the computed mean averages of the

ensembles are ranked according to the Friedman test as provided in Table 9.19.

Table 9.19: Ranking the Generalization Performance of Ensembles over Regression
Datasets in the Feature Subsets Study

Ensemble Yacht Residential Student R.Estate Energy Concrete Parkinsons Air Bike Gas AvR

kNNE 5.55(9) 806.00(9) 4.03(11) 9.67(8) 2.22(5) 11.47(7) 3.15(7) 22.81(6) 83.53(9) 7.40(6) 7.70

DTE 2.14(5) 507.41(6) 3.42(7) 9.82(9) 2.32(6) 10.83(5) 3.07(6) 23.86(9) 69.16(7) 8.21(9) 6.90

RF 2.07(2) 435.97(3) 2.86(1) 9.02(4) 2.09(1) 10.19(4) 2.58(1) 21.26(3) 67.63(5) 7.238(4) 2.80

SVRE 8.73(11) 924.63(11) 3.45(8) 11.68(11) 4.48(11) 13.87(11) 5.72(11) 33.68(11) 104.80(10) 9.64(11) 10.60

NNE 3.48(7) 529.32(7) 3.19(5) 9.07(6) 3.34(9) 12.93(10) 5.26(10) 23.28(8) 67.22(4) 7.81(8) 7.40

kNNhte 4.90(8) 780.00(8) 3.96(10) 9.43(7) 2.20(4) 10.96(6) 3.00(4) 22.27(5) 81.03(8) 7.236(3) 6.30

DThte 2.00(1) 439.36(4) 2.90(2) 8.67(2) 2.36(7) 10.06(2) 3.01(5) 21.58(4) 68.87(6) 7.39(5) 3.80

SVRhte 7.24(10) 911.09(10) 3.52(9) 10.41(10) 3.50(10) 12.44(9) 5.05(9) 27.99(10) 127.61(11) 8.98(10) 9.80

NNhte 3.10(6) 504.95(5) 3.22(6) 9.03(5) 3.12(8) 12.11(8) 4.56(8) 22.99(7) 67.21(3) 7.43(7) 6.30

HTEsm 2.095(4) 381.77(2) 3.04(4) 8.68(3) 2.17(3) 10.16(3) 2.82(3) 20.44(2) 65.28(2) 7.01(2) 2.80

HTEdf 2.094(3) 380.88(1) 2.97(3) 8.63(1) 2.13(2) 10.00(1) 2.76(2) 20.27(1) 65.06(1) 6.95(1) 1.60

The HTEdf achieved the lowest average rank of 1.60 to be ranked as the best performing

ensemble over all datasets. The HTEsm and RF algorithm are jointly ranked as the

second-best performing ensemble offering an equal average rank of 2.80. The average

ranks of the HTEdf and HTEsm illustrate that maximizing the potential from the

combination of different ML algorithms to construct ensembles is most beneficial.
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Also, the outcome of the Friedman test reveals that all HTEs achieved lower average

rankings compared to the pure homogeneous ensembles, indicating the superiority of the

mixtures of heterogeneous experts over homogeneous mixtures.

Further, based on the average rankings of the ensembles in Table 9.19, the calculated

Friedman test statistic is χ2
F is 78.291, and the Iman-Davenport extension of the Friedman

test is computed as FF = 32.457. Thus, the value of FF is greater than the obtained

critical value, which results in the rejection of the null hypothesis that all ensembles are

equal. This illustrates that there is a statistically significant difference in the generalization

performance of the ensembles across the feature subsets for all regression datasets.

Bonferroni-Dunn Test

After rejecting the null hypothesis, the Bonferroni-Dunn test is performed to determine

the ensemble that statistically differs from the other in feature subsets study of regression

problem. The critical value is 2.87, and the computed critical difference (CD) = 4.168.

Figure 9.15 illustrates the critical difference plot of the significant difference in

generalization performance between the HTEdf and any other ensemble in this modelling

study.

Figure 9.15: Critical Difference Plot of Ensembles for Feature Subsets Study in Regression
Problems

The outcome of the Bonferroni-Dunn test in Figure 9.15 showed that the HTEdf is

significantly more accurate than all pure homogeneous ensembles (i.e. SVRE, kNNE,

NNE, and DTE), SVRhte, kNNhte, and NNhte, confirming the superiority of the HTEdf

in this modelling study.

On the other hand, the outcome the Bonferroni-Dunn test indicates that the experimental

datasets did not provide enough evidence to confirm that a significant difference in

generalization performance exist between the HTEdf and HTEsm, RF algorithm, and

DThte.
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9.7 Discussion of Results

This section presents an overall discussion of the ensemble results across the five

modelling studies from Section 9.2 to Section 9.6. The results highlight the reflection

of the No-Free-Launch Theorem proposed by Wolpert (1996) as observed for classification

problems in the previous chapter.

The GF values of the ensembles indicate that ensembles overfitted the training data on

most dataets, which often leads to low testing accuracy for a number of ensembles. This is

reflected in the performance of the DTE, RF, and DThte. Although, there were datasets for

which the RF and DThte offered reliable generalization performance across the modelling

studies.

Also, the poor outcomes of the SVRE and SVRhte in the five modelling studies highlight

how the SVRE and SVRhte struggled with the characteristics and complexity of the

regression datasets of this chapter. The SVRE and SVRhte were consistently ranked as the

worst performing ensembles across the modelling studies. However, the average ranks of

both ensembles in all the modelling studies showed that SVRhte outperformed the SVRE

due to the benefits of configuring the base learner within the SVRhte differently.

In Section 9.2, the ensemble results in the clean data study illustrate the excellent

prediction performance of the HTEdf over other ensembles. This is shown by the

average rank of the HTEdf in Table 9.11. Across all datasets, the HTEdf offered the

best generalization performance on five datasets, highlighting the benefits of using

different ML algorithms where the multiple instances of the algorithms were configured

differently. The equal average ranks of the HTEsm and RF algorithm demonstrate the

reliability in the generalization performance of both ensembles because the average ranks

of the ensembles were not extremely far from the average rank of the HTEdf. While the

HTEsm also maximized the benefits of combining different ML algorithms to construct

an ensemble, the RF illustrates the possibility to capitalize on the intrinsic ensemble

approaches of bagging and RFSM implemented by RF algorithms.

For the number of outliers study in Section 9.3, the average rank of the HTEdf still

indicates the superiority of the ensemble for six of the 10 datasets in comparison to other

ensembles. A critical observation of the average ranks of all ensembles in the number
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of outliers study with respect to the clean data study, showed how the introduction of

the different outlier ratios to the training dataset mostly affected the pure homogeneous

ensembles (i.e. kNNE, SVRE, and NNE) compared to other ensembles, except for the

kNNhte and NNhte. The kNNhte and NNhte recorded higher average ranks in the

number of outliers study compared to that of the clean dataset, illustrating that the

ensembles showed sensitivity to the number of outliers in the training datasets. Again,

the average ranks of the RF and HTEsm indicate that the generalization performances of

the ensembles are promising across all datasets. This outcome reveals the ability of both

ensembles to provide stable and consistent prediction performance across the number of

outliers in each dataset.

For the severity of outliers study in Section 9.4, the performance of the ensembles reveals

the sensitivity of all ensembles (except for the RF algorithm) to the severities of outliers

introduced in the training dataset of each dataset. The effect of the outlier severities is

reflected in the average ranks of the HTEdf and HTEsm compared to the ranks achieved

for the clean data study. The prediction behaviour of the HTEdf and HTEsm corroborates

the findings of Grandvalet (2004) that when the majority of the base experts in a mixture

model make wrong predictions for a test observation, the overall average prediction of

the mixture model is likely to be low. However, while the HTEdf recorded a high average

rank of 2.30, the HTEdf still performed well on five datasets. The RF algorithm achieved

competitive performance to the HTEdf, as shown in the average rank of the RF algorithm.

Also, the average rank of the HTEsm provides clear evidence that the ensemble was

influenced by the outlier severities, indicating that the base learners consisting of the same

configurations within the HTEsm struggled to learn and generalize well on the training

datasets given the outlier severities. However, the HTEdf was favoured by the different

configurations of the base learners in the ensembles.

Furthermore, in Section 9.5, the results of the ensemble also reveal that when ensembles

were trained on different bagged subsets of the training dataset, the HTEdf is the

most accurate ensemble. The average rank of the HTEdf showed that the ensemble

outperformed other ensembles on five datasets. The average rank of the RF algorithm

indicates the competitiveness of the ensemble in terms of generalization performance to

the HTEdf. The competitive performance of the RF algorithm to the HTEdf is attributed

to the fact that a number of base experts obtained from the multiple instances of the kNN,
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SVR, and NN algorithms configured differently within the HTEdf showed possibility of

overfitting the training dataset more often. As suggested by Grandvalet (2004), a mixture

model may consist of base models that are accurate in most of the input regions of the

sample space, but still unnecessarily confuse the whole committee in a number of regions.

The RF algorithm achieved a convincing average rank that makes the RF algorithm a

candidate that could be selected as one of the best performing ensembles in the bagged

subset study. The HTEsm also offered a reliable average rank across all datasets.

For the feature subsets study in Section 9.6, the HTEdf dominated other ensembles by

achieving the best generalization performance for six of the 10 regression datasets. Also,

the low average rank of the HTEdf (1.60) across all datasets illustrates that the HTEdf

offered more consistent prediction performance than other ensembles across the input

regions of the feature space in each dataset. Similarly, the average ranks of the HTEsm

and RF algorithm also confirm that both ensembles offer a good level of prediction

performance to compete with the HTEdf over all datasets.

Analysis of the ensemble performance over different input regions of the sample and

feature space, showed that no ensemble was consistently the best over all datasets in

the small bagged and feature subsets regions. However, as the sample and feature

size increases from medium to large subsets, the HTEdf offered better generalization

performance on more datasets than other ensembles. Although, there were cases

where the RF algorithm and DThte outperformed the HTEdf in the medium subsets.

Additionally, the HTEsm also showed promising predictive performance across the

medium and large bagged and feature subsets over all datasets. Thus, the outcome of the

ensembles on the different input regions of the sample and feature space of the training

dataset demonstrate the capability of the HTEdf to generate lower prediction errors that

will result in better generalization performance across all datasets than other ensembles.

The results of the five modelling studies provides evidence of the inefficiency of

developing pure homogeneous ensembles (i.e. kNNE, DTE, SVRE, and NNE) and a

number of ensembles of the same ML algorithm with different base learner configurations

(i.e. kNNhte, SVRhte, and NNhte). The HTEdf and HTEsm are often more accurate than

these ensembles across the modelling studies except for the RF algorithm and DThte. The

average ranks of all ensembles in the five modelling studies showed that it is beneficial
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to consider a single implementation of the HTEdf, HTEsm, and RF algorithm for the 10

regression problems identified in this research.

Furthermore, for the bagged and feature studies, the combination of different ML

algorithms to construct an ensemble favours the HTEdf and HTEsm to better balance the

bias-variance tradeoff in comparison to other ensembles. This is an interesting outcome

where the HTEdf and HTEsm offered both training and prediction advantage over the

RF algorithm, because the RF experienced the problem of overfitting on most datasets.

The HTEdf and HTEsm achieved stable predictive performance due to lower testing and

training errors across the bagged and feature subsets compared to other ensembles. Also,

while the DTE, DThte, and NNhte offered promising generalization performance on a

number of datasets, the ensembles suffered more overfitting than the HTEdf and HTEm

in the modelling studies.

Conclusively, the performance of the HTEs developed in this research is compared with

previous studies. The HTEdf and HTEsm achieved better generalization performance

than the HTEs proposed by Elish et al. (2013). The homogeneous ensembles in the work

of Elish et al. (2013) outperformed the HTEs when evaluated on a number of datasets.

However, the findings of this research showed that the pure homogeneous ensembles

developed did not outperform the developed HTEs. The HTEs delivered better and

consistent predictive performance in comparison to the pure homogeneous ensembles

across all datasets in each modelling study.

Further, Dudek (2017) empirically showed that there is no significant difference between

the HTEs developed using simple averaging and weighted averaging fusion approaches.

As a result of this, Dudek (2017) suggested that an efficient tuning of the control

parameters of base learners in the HTEs is an essential aspect to consider in order

to obtain improved performance. While this research achieved better performance in

terms of low prediction errors compared to the outcome of Dudek (2017), the research

further considered different ensemble approaches, including bagging, RFSM, and control

parameter configuration, to improve the generalization performance of the HTEs.

Additionally, the generalization performance of the HTEs developed in this research

outperform the performance of the HTEs proposed by Palaninathan et al. (2017).

Palaninathan et al. (2017) developed the HTEs using two base learners and evaluated
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the HTEs on a short term load forecasting dataset consisting of a small sample size.

Palaninathan et al. (2017) suggested the consideration of more than two base learners

to develop a HTE for better performance. The authors also pointed out the need to

evaluate the HTEs on more datasets consisting of large sample sizes. The limitations

of Palaninathan et al. (2017) were solved in this research through the development

of HTEs using 10 instances of the base learning algorithms, and evaluated the HTEs

on 10 regression datasets of different characteristics and complexities. The developed

HTEs further generated low prediction errors, better than the outcome of the HTEs in

Palaninathan et al. (2017).

Lastly, the work done in Hosni et al. (2018) highlights the inconsistency in the

generalization performance of the HTEs proposed in their work, where a number

of homogeneous ensembles significantly outperformed the proposed HTEs across all

datasets. Hence, in contrast to the HTEs in Hosni et al. (2018), the HTEs developed in this

research, especially the HTEdf and HTEsm, provided better and consistent generalization

performance by offering low generalization errors than the pure homogeneous ensembles

across all datasets.

9.8 Chapter Summary

This chapter discussed a summary of the work done. The results of the developed

ensembles were discussed across five modelling studies, i.e. clean data, number of

outliers, severity of outliers, bagged subsets, and feature subsets. The discussion

considered the three performance measures, which include training RMSE, testing RMSE,

and GF of the ensembles. The ensemble performance was also discussed with respect to

the bias-variance tradeoff.

A series of statistical tests were performed to determine if the generalization performance

of the ensembles were statistically significantly different. This chapter found that the

mixtures of heterogeneous experts performed better than homogeneous mixtures of

experts. Specifically, the HTEdf and HTEsm were the most accurate of the ensembles

in terms of the average ranking of the generalization performance of the ensembles.

The RF algorithm also offered competitive generalization performance to the HTEdf and

HTEsm. The Friedman test illustrated that there is a significant difference between the
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performance of the ensembles, confirmed through the Bonferroni-Dunn post hoc test.

For the Bonferroni-Dunn test, the HTEdf was selected as the control ensemble in the five

modelling studies as performed for classification problems in Chapter 8. The outcome

of the Bonferroni-Dunn test was that the HTEdf and HTEsm were significantly more

accurate than pure homogeneous ensembles, and a number of ensembles developed as

heterogeneous mixtures of experts across the five modelling studies. The outcome further

suggested that there is no significant difference in the generalization performance of the

HTEdf and the HTEsm, RF, and DThte. Lastly, the results of the ensembles and the

significance of the results were discussed.
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Chapter 10

Conclusions and Future Work

10.1 Introduction

This chapter provides the conclusions to this research. Section 10.2 discusses a summary

of the research, while Section 10.3 describes the contributions of the research. Possible

future works identified in this research are presented in Section 10.4, and Section 10.5

discusses the skills and knowledge acquired by the author during the research.

The goal of this research was to capitalize on the inductive biases of ML algorithms

to develop heterogeneous mixtures of expert models that consistently produce better

accuracy and generalization performance on classification and regression problems. To

achieve this goal, a detailed and systematic review of the current state-of-art for the

construction of heterogeneous and homogeneous ensembles was carried out. Following

the review, the conceptual background of ML, bias-variance dilemma, inductive bias of

ML algorithms, and ML ensemble approaches was established. Then, 13 ensemble models

were developed for classification problems, while 11 ensemble models were developed

for regression problems. The development of the ensembles considers four ensemble

types in order to truly capitalize on the inductive biases of the ML algorithms used to

construct the ensembles.

270
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The first ensemble type involves the development of pure homogeneous ensembles

using multiple instances of the same ML algorithm, where the instances consist of

the same configurations. The second ensemble type considers the development of

ensembles using multiple instances of the same ML algorithm, where the instances were

configured differently. The third ensemble type delivers a single ensemble developed

using multiple instances of different ML algorithms, where the instances consist of the

same configurations. The last ensemble type provides another single ensemble developed

using multiple instances of different ML algorithms, where the instances were configured

differently.

All of the developed ensembles were evaluated on different modelling studies including

clean data, skewed class distributions, number of outliers, severity of outliers, bagged

subsets, and feature subsets. For each modelling study, the 13 classification ensemble

models were evaluated on 10 classification datasets. The 11 regression ensemble models

were evaluated on 10 regression datasets. All of the datasets were selected by considering

different characteristics and complexities.

The performance of the ensembles was measured using classification accuracy and F1-

score for classification problems, while RMSE was used for regression problems. For both

problem types, a generalization factor was used to show an indication of overfitting in the

performance of the ensembles. A detailed empirical analysis of the performance of the

ensembles was carried for both classification and regression problems. This was followed

with formal statistical tests using the Friedman test and Bonferroni-Dunn post-hoc test to

statistically compare the generalization performance of the ensembles.

Thus, upon the work done in this research, the research provided the following

conclusions, that in different modelling studies:

• tuning the control parameters of multiple instances of the base ML algorithms

to obtain different control parameter configurations resulted in mixtures of

heterogeneous experts that provided diverse ensemble predictions better than

homogeneous mixtures of experts induced using the same control parameters;

• combinations of different ML algorithms resulted in a better ensemble approach

that capitalized on the advantage of the inductive biases of the ML algorithms

intrinsically to achieve better ensemble predictions;

Stellenbosch University https://scholar.sun.ac.za



Chapter 10. Conclusions and Future Work 272

• the combination of the different ML algorithms where the multiple instances of

the algorithms are configured differently delivered two diversity benefits. The

first is the diversity obtained from the benefit of the combination of different ML

algorithms, while the second benefit was related to that diversity attributed to the

advantage of capitalizing on different base learner configurations to induce efficient

base experts that achieved better generalizability; and

• the ensemble developed using different ML algorithms, where the base learners

were configured differently, achieved consistent and reliable generalization

performance in comparison to ensembles developed using the same ML algorithm

and the ensemble developed using different ML algorithms, where the base learners

consist of the same configuration.

Therefore, heterogeneous mixtures of experts of different machine learning algorithms

were consistently the most or one of the most accurate ensembles across all classification

and regression problems. This is attributed to the advantage of capitalizing on

the inductive biases of the different machine learning algorithms and the different

configurations of the base members in the ensembles. The research suggests that it is

beneficial to consider the implementation of a mixture of heterogeneous experts from

different ML algorithms for various ML tasks. The research also recommends the

need to ignore the computationally expensive process of finding the best performing

homogeneous ensemble, which is often inefficient and results in long periods of

computing time when the homogeneous ensembles are trained and tested. A

heterogeneous ensemble provides a single implementation of different ML algorithms

with lesser computational cost and better accuracy and generalization performance.

10.2 Thesis Summary

Chapter 1 presented the background of the research. This chapter provided the

problem statement, research rationale, and research questions. This was followed by

the presentation of the goal and objectives of the research. The research methodology,

expected contributions and thesis organization were also described. This chapter

described the rationale behind the development of mixtures of heterogeneous experts

by capitalizing on the inductive biases of the ML algorithm forming the expert mixtures.
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Chapter 2 discussed the conceptual background of ML and the bias-variance dilemma.

The chapter introduced categories of learning methods, the bias-variance tradeoff, and

the factors that influence an effective balance of the bias-variance tradeoff in ML. The

selected ML algorithms and the inductive biases of the algorithms were discussed with

respect to the bias-variance tradeoff. The selected ML algorithms in the research included

NN, SVM, kNN, DT, RF, and NB algorithms. The first objective of the research stated in

Section 1.5 of this thesis was achieved in this chapter.

Chapter 3 described ML ensembles and the different approaches towards developing

ensembles. The chapter discussed six ensemble approaches, including bagging, boosting,

stacked generalization, random feature subspace method, hyperparameter optimization,

and class label manipulation. Fusion methods used to combine the individual predictions

of base experts to obtain a final ensemble prediction were also presented. This chapter

accomplished the second and third objectives of this research.

Chapter 4 presented a critical review of homogeneous ensembles to identify the gaps

in the literature that motivated the development of homogeneous ensembles. The

limitations of the developed homogeneous ensembles further motivated the investigation

of the development of heterogeneous ensembles. The review of homogeneous ensembles

was carried out for RF algorithm, SVM, NN, kNN, and NB ensembles. The fourth

objective of this research was partly achieved in this chapter.

Chapter 5 provided a critical review of heterogeneous ensembles to investigate

the performance of existing heterogeneous ensembles with respect to efficient

implementation of diversity. The identified gaps in the studies were considered by the

introduction and analysis of the inductive biases of ML algorithms and discussing a

number of ensemble components to develop heterogeneous ensembles, and to efficiently

balance the bias-variance tradeoff. The fourth objective of this research was partly

achieved in this chapter.

Chapter 6 discussed the approaches to develop the mixtures of heterogeneous and

homogeneous experts in this research. The ensemble types developed in this research

and the practical implementations of bagging, RFSM, majority voting and averaging

were described. The practical implementations of the selected ML algorithms were

further explained with specific reference to the training of experts in Python. The chapter
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accomplished the fifth objective of this research. Additional implementation information

was provided in Chapter 7.

Chapter 7 discussed the empirical process to evaluate the developed ensembles in this

research. This chapter presented the modelling studies, selected benchmark problems,

data pre-processing methods, and the measures used to compare the performance of the

ensembles on classification and regression problems. The k-fold cross-validation process

was described with reference to the necessity of this method to ensure statistical validity.

This was followed by a discussion of the hyperparameter optimization method used to

obtain the algorithm-specific control parameters and associated parameter values. Lastly,

the statistical tests used to determine a statistically significant difference between the

performance of the ensembles were discussed. The sixth objective of the research was

accomplished in this chapter.

Chapter 8 presented the empirical analysis of results for the classification problems.

The chapter accomplished the seventh objective of the research to empirically compare

the generalization performance of developed ensembles on six modelling studies for

classification problems. The modelling studies included clean data, skewed class

distributions, number of outliers, severity of outliers, bagged subsets, and feature subsets

studies. The chapter concluded that the mixtures of heterogeneous experts were more

accurate than homogeneous mixtures over most of the datasets across the modelling

studies. Specifically, the HTEdf and HTEsm, which are mixtures of heterogeneous experts

obtained from the combination of different ML algorithms in this research, were the most

accurate ensembles for the datasets across the modelling studies. The overall discussion

and significance of the ensemble results for the six modelling studies were also discussed.

The identified research question with respect to the seventh objective for classification

problems was answered in this chapter.

Chapter 9 described the empirical analysis of results for the regression problems. The

chapter answered the identified research question based on the eighth objective of

this research for regression problems. The eighth research objective was identified to

empirically compare the generalization performance of developed ensembles on five

modelling studies for regression problems. The modelling studies included clean data,

number of outliers, severity of outliers, bagged subsets, and feature subsets studies. The
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chapter concluded that the mixtures of heterogeneous experts were more accurate than

homogeneous mixtures over most of the datasets across the modelling studies. Also, the

HTEdf and HTEsm were ranked as the most or one of the most accurate ensembles for

the datasets across the modelling studies. In addition, the chapter concluded that the

RF algorithm is a good candidate to be selected for the regression problems, because the

ensemble offered generalization performance competitive to the HTEdf and HTEsm. The

overall discussion and significance of the ensemble results for the five modelling studies

were also discussed.

10.3 Contributions to Knowledge

The primary contribution of this research project was the developed heterogeneous

mixtures of expert models. The secondary contribution was the performance analysis

of the mixtures of heterogeneous experts on a large range of problems, under different

data quality conditions. While not all heterogeneous ensembles were able to outperform

all homogeneous ensembles across all classification and regression problems, the

identification of the limitations associated with the heterogeneous combination of experts

is considered.

Furthermore, the heterogeneous ensembles, on average, outperformed the homogeneous

ensembles in terms of accuracy, RMSE, GF, and other reported metrics. The performance

of the heterogeneous ensembles is attributed to the introduction of diversity (due to

inductive bias) into the ensembles leading to ensembles that generalized better than the

homogeneous ensembles.

Specifically, the performance of the HTEdf and HTEsm showed that the diversity

among heterogeneous base learners from different ML algorithms was higher than that

among the heterogeneous base learners from the same ML algorithms and homogeneous

base learners. The influence of the diversity among the HTEdf and HTEsm further

indicates a better reduction in the deviations of base algorithms, which is attributed

to the combination of the inductive biases of the algorithms. Therefore, the diverse

heterogeneous base learners in the HTEdf and HTEsm are considered to generate a better

integration effect than the heterogeneous base learners from the same ML algorithms and

homogeneous base learners.
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A significant contribution of this research is the investigation of the inductive biases and

the statistical bias-variance dilemma. This research has provided a detailed analysis of

the inductive biases of the selected ML algorithms. These inductive biases define the

assumptions made by the selected ML algorithms to reach different conclusions on the

identified modelling studies for the classification and regression problems. In addition,

the research further provided an analysis of the relationship between the inductive biases

of ML algorithms and the bias-variance dilemma.

Another contribution of this research involves the use of three ensemble approaches

to achieve the objective of diversity within the ensembles. Bagging, RFSM, and

hyperparameter optimization approaches were employed in this research. The random

search optimization algorithm was used to obtain the configurations of the multiple

instances of the base algorithms with respect to the inductive biases of each algorithm.

Bagging and RFSM were used to create bagged and feature subsets for classification

and regression problems on which the developed ensembles were also evaluated in the

bagged and feature subsets studies. The mixtures of heterogeneous experts were shown

to be more effective than the homogeneous mixtures of experts in predictive performance

and efficiency.

10.4 Future Work

Upon accomplishing the stated research objectives in Section 1.5, potential areas of future

work identified are discussed in this section. These areas of future work were not pursued

in this research due to scope limitations.

The first area of potential work relates to hyperparameter optimization. The random

search optimization algorithm produced suitable control parameters for the base learners

during training. A possible future focus is to investigate the performance of advanced

evolutionary algorithms to determine optimal control parameters quickly and efficiently.

Another area is to apply these optimization algorithms to introduce diversity in different

ensembles and to investigate the overall generalization performance of the ensembles.

The second area of future work involves using other ensemble approaches. Bagging,

RSFM and hyperparameter optimization approaches were used in this research to
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obtain the desired results that answered the research questions. Boosting and stacked

generalization methods can be explored to construct ensembles by investigating the

inductive biases of the selected base algorithms and other algorithms in the scope of this

research.

The third potential future work is to experiment with the heterogeneous and

homogeneous ensembles on more and larger (i.e. in terms of the number of samples

and features) classification and regression problems, taking into account the inductive

behaviours of the ensembles and the bias-variance dilemma.

Another future work is to investigate how the inductive biases of the base ML algorithms

could influence the performance of the ensembles on unstructured datasets, including

textual datasets used in natural language processing and sequence datasets used in

bioinformatics and geo-spatial problems.

For the ensemble size, this research considered 10 base learners to develop ensembles.

Another significant future work is to investigate how different ensemble sizes influence

the inductive biases of the base learning algorithms and the performance of the induced

base experts on the bias-variance dilemma. In addition, various pruning or voting

approaches may be examined to efficiently exclude poor performing base learners in

order to achieve better predictive performance on the classification and regression

problems.

Further, this research considered sampling the samples and features of the training

dataset with replacement in the bagged and feature subsets studies. A future work may

be carried out to explore sampling with and without replacement to investigate how the

ensemble will perform given the inductive biases of the base learning algorithms. Also,

using sampling with replacement in the bagged and feature subsets studies demonstrated

the potential to select samples and features more than once. This increases the likelihood

that other samples and features may not be selected. The selected samples and features

are known as “In-the-bag set”, while the samples and features not selected are referred to

as “Out-of-bag estimates”. Another future work may investigate the performance of the

developed ensembles on out-of-bag estimates for each bagged and feature subsets.

Another future work to consider is active learning based bagging. While the samples

in the bagged subsets study were selected randomly with replacement, sample selection
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can be focused on the most informative samples in a training dataset as is done in active

learning.

An interesting area to explore is to map dataset characteristics to the performance of the

developed ensembles. This will help to understand what dataset characteristics result in

better or worst performance of the different ensembles.

Lastly, another significant future work is to capitalize on the benefits of deep learning

and ensemble learning methodologies. Specifically, the analysis of inductive biases,

statistical bias-variance dilemma and diversity methods can be extended to the domain

of deep learning. The inductive biases of deep learning algorithms such as convolutional

neural networks, deep recurrent neural networks, long short-term memory networks,

deep neural networks, and beep belief networks can be studied with respect to the bias-

variance dilemma and evaluated on different classification and regression problems.

10.5 Skills and Knowledge Acquired

The extensive study of the practical implementations and theoretical background of the

research provided significant contributions to the skills and knowledge of the author.

The theoretical background of the research broadened the understanding of the author to

deeply explore and learn an interdisciplinary field of study like data science. The author

has developed relevant research skills such as obtaining information, informative writing,

critical literature review, model development, and critical analysis of results. Significantly,

a deep understanding of how machine learning algorithms work and their inductive

biases, statistical bias-variance tradeoff, and ensemble learning was achieved.

Technically, the author became proficient in Python programming for scientific

programming, statistical analysis and ML model development. The technical skills also

cover other aspects of data science, including data extraction, data pre-processing, data

cleaning, data manipulation, data transformation, data analysis, model implementation,

statistical hypothesis testing for ML, and empirical analysis of results. All of these aspects

resulted in the development of the technical ability of the author in practical problem-

solving and coding skills in data science.

The practical implementations required training a large number of ML algorithms for
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classification and regression problems, and obtaining massive sets of results. The

magnitude of the implementations required constant attentiveness to ensure the correct

results were obtained. The processes leading up to the implementation taught the author

the importance of consistency, because throughout the practical implementation, the

consistency of the pre-processing methods, training and testing, sample and feature

sets, and control parameters for the base experts was essential to ensure that the results

provided a fair comparison of both the homogeneous and heterogeneous ensembles.

Another important skill developed is the use of HPC resources. The author was involved

in a three-week self-development program to use HPC resources for the execution of

the developed ensemble models. The use of HPC resources is essential, because of the

complexity and size of the datasets and the complexity of the different models combined

within the ensembles. The outcome of the self-development programme contributed to

the technical skills of the author to learn and utilize different python platforms and virtual

computing environments on HPC.

A significant experience of this research is the relationship of the author with the

supervisor. Timely communication with the supervisor provided constructive feedback

and comments that extensively aided the author in the research.

The last skill developed during this research was the importance of time management.

The scope of the project required continually setting goals and deadlines and ensuring

that they were met. The meeting of deadlines and setting realistic goals were complicated

with the outbreak of the COVID-19 pandemic, leading to many rescheduled research

activities and aligning the work plan of the author with the new normal of working

remotely. However, following the research plan provided at the beginning of this

research, the consistency and dedication to the daily research goals and the timely

feedback of the supervisor aided the author to complete this research in record time.
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Appendix A

Ensemble Performance on Skewed Class

Distributions for Classification Problems

The results of the ensembles over the different datasets in the skewed class distribution

study for classification problems are provided in this appendix. The results consist of the

training and testing accuracy, GF, F1-score, and confusion matrices of the ensembles over

the classification datasets.
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Sonar Dataset

Table A.1: Confusion Matrices of Ensembles on Skewed Class Distributions for Sonar
Dataset

10-90%

NBE

0 1

0 0.04 0.96

1 0 1.00

kNNE

0 1

0.15 0.85

0.06 0.94

DTE

0 1

0.23 0.77

0 1.00

RF

0 1

0.12 0.88

0 1.00

SVME

0 1

0.27 0.73

0 1.00

NNE

0 1

0.58 0.42

0 1.00

NBhte

0 1

0 1.00

0 1.00

kNNhte

0 1

0 0.35 0.65

1 0 1.00

DThte

0 1

0.12 0.88

0 1.00

SVMhte

0 1

0 1.00

0 1.00

NNhte

0 1

0 1.00

0 1.00

HTEsm

0 1

0.42 0.58

0 1.00

HTEdf

0 1

0.42 0.58

0 1.00

15-85%

NBE

0 1

0 0.23 0.77

1 0 1.00

kNNE

0 1

0.35 0.65

0.06 0.94

DTE

0 1

0.57 0.43

0.06 0.94

RF

0 1

0.42 0.58

0.06 0.84

SVME

0 1

0.27 0.73

0 1.00

NNE

0 1

0.69 0.31

0 1.00

NBhte

0 1

0.15 0.85

0 1.00

kNNhte

0 1

0 0.38 0.62

1 0 1.00

DThte

0 1

0.50 0.50

0.06 0.94

SVMhte

0 1

0.12 0.88

0 1.00

NNhte

0 1

0.46 0.54

0 1.00

HTEsm

0 1

0.42 0.58

0 1.00

HTEdf

0 1

0.27 0.73

0 1.00

20-80%

NBE
0 1

0 0.23 0.77
1 0 1.00

kNNE
0 1

0.38 0.62
0.06 0.94

DTE
0 1

0.54 0.46
0.19 0.81

RF
0 1

0.35 0.65
0.06 0.94

SVME
0 1

0.31 0.69
0 1.00

NNE
0 1

0.65 0.35
0 1.00

NBhte
0 1

0.23 0.77
0 1.00

kNNhte
0 1

0 0.46 0.54
1 0.06 0.94

DThte
0 1

0.39 0.61
0.06 0.94

SVMhte
0 1

0.38 0.62
0 1.00

NNhte
0 1

0.54 0.46
0 1.00

HTEsm
0 1

0.58 0.42
0 1.00

HTEdf
0 1

0.58 0.42
0 1.00
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25-75%

NBE

0 1

0 0.50 0.50

1 0 1.00

kNNE

0 1

0.50 0.50

0.12 0.88

DTE

0 1

0.42 0.58

0.06 0.94

RF

0 1

0.65 0.35

0 1.00

SVME

0 1

0.39 0.61

0 1.00

NNE

0 1

0.77 0.23

0.12 0.98

NBhte

0 1

0.42 0.58

0 1.00

kNNhte

0 1

0 0.46 0.54

1 0.12 0.88

DThte

0 1

0.50 0.50

0 1.00

SVMhte

0 1

0.31 0.69

0 1.00

NNhte

0 1

0.27 0.73

0 1.00

HTEsm

0 1

0.50 0.50

0 1.00

HTEdf

0 1

0.42 0.58

0 1.00

30-70%

NBE

0 1

0 0.58 0.42

1 0.06 0.94

kNNE

0 1

0.62 0.38

0.12 0.88

DTE

0 1

0.62 0.38

0.06 0.94

RF

0 1

0.58 0.42

0.06 0.94

SVME

0 1

0.38 0.61

0 1.00

NNE

0 1

0.62 0.38

0 1.00

NBhte

0 1

0.5 0.50

0.06 0.94

kNNhte

0 1

0 0.62 0.38

1 0.12 0.88

DThte

0 1

0.58 0.42

0.06 0.94

SVMhte

0 1

0.38 0.62

0 1.00

NNhte

0 1

0.50 0.50

0 1.00

HTEsm

0 1

0.62 0.38

0 1.00

HTEdf

0 1

0.62 0.38

0 1.00

35-65%

NBE

0 1

0 0.73 0.27

1 0.12 0.80

kNNE

0 1

0.62 0.38

0.19 0.81

DTE

0 1

0.70 0.30

0 1.00

RF

0 1

0.46 0.54

0.06 0.94

SVME

0 1

0.19 0.81

0 1.00

NNE

0 1

0.73 0.27

0.12 0.88

NBhte

0 1

0.73 0.27

0.12 0.88

kNNhte

0 1

0 0.77 0.23

1 0.18 0.82

DThte

0 1

0.70 0.30

0 1.00

SVMhte

0 1

0.42 0.58

0 1.00

NNhte

0 1

0.58 0.42

0.06 0.94

HTEsm

0 1

0.70 0.30

0 1.00

HTEdf

0 1

0.62 0.38

0 1.00
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40-60%

NBE

0 1

0 0.54 0.46

1 0.06 0.94

kNNE

0 1

0.62 0.38

0.31 0.69

DTE

0 1

0.58 0.42

0.31 0.69

RF

0 1

0.65 0.35

0.06 0.94

SVME

0 1

0.54 0.46

0.06 0.94

NNE

0 1

0.73 0.27

0.12 0.88

NBhte

0 1

0.46 0.54

0.06 0.94

kNNhte

0 1

0 0.69 0.31

1 0.19 0.81

DThte

0 1

0.62 0.38

0.19 0.81

SVMhte

0 1

0.42 0.58

0 1.00

NNhte

0 1

0.81 0.19

0.12 0.88

HTEsm

0 1

0.88 0.12

0 1.00

HTEdf

0 1

0.77 0.23

0 1.00

45-55%

NBE

0 1

0 0.70 0.30

1 0.12 0.88

kNNE

0 1

0.73 0.27

0.31 0.69

DTE

0 1

0.73 0.27

0.25 0.75

RF

0 1

0.73 0.27

0.19 0.81

SVME

0 1

0.58 0.42

0.06 0.94

NNE

0 1

0.85 0.15

0.19 0.81

NBhte

0 1

0.65 0.35

0.06 0.94

kNNhte

0 1

0 0.77 0.23

1 0.38 0.62

DThte

0 1

0.69 0.31

0.19 0.81

SVMhte

0 1

0.46 0.57

0 1.00

NNhte

0 1

0.81 0.19

0.19 0.81

HTEsm

0 1

0.77 0.23

0 1.00

HTEdf

0 1

0.85 0.15

0 1.00

50-50%

NBE

0 1

0 0.73 0.27

1 0.12 0.88

kNNE

0 1

0.69 0.31

0.38 0.62

DTE

0 1

0.69 0.31

0.44 0.56

RF

0 1

0.81 0.19

0.31 0.69

SVME

0 1

0.62 0.38

0.06 0.94

NNE

0 1

0.81 0.19

0.12 0.88

NBhte

0 1

0.73 0.27

0.12 0.88

kNNhte

0 1

0 0.81 0.19

1 0.31 0.69

DThte

0 1

0.62 0.38

0.38 0.62

SVMhte

0 1

0.54 0.46

0.19 0.81

NNhte

0 1

0.69 0.31

0.06 0.94

HTEsm

0 1

0.88 0.12

0.04 0.96

HTEdf

0 1

0.85 0.15

0.04 0.96
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Table A.2: Ensemble Performance on Skewed Class Distributions for Sonar Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.747

Training accuracy 0.957 0.873 0.854 0.749 0.713 0.672 0.669 0.672 0.640

GF 5.884 1.992 1.732 1.007 0.882 0.764 0.717 0.771 0.702

F1-Score 0.26 0.47 0.47 0.68 0.71 0.79 0.69 0.77 0.79

kNNE Testing accuracy 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586

Training accuracy 0.898 0.827 0.734 0.667 0.647 0.587 0.590 0.576 0.526

GF 4.059 2.393 1.556 1.243 1.173 1.002 1.009 0.978 0.873

F1-Score 0.38 0.55 0.58 0.64 0.72 0.69 0.65 0.72 0.67

DTE Testing accuracy 0.615 0.627 0.634 0.644 0.639 0.619 0.628 0.624 0.636

Training accuracy 0.779 0.773 0.741 0.748 0.668 0.642 0.613 0.597 0.599

GF 1.742 1.643 1.413 1.412 1.087 1.064 0.961 0.933 0.907

F1-Score 0.47 0.71 0.64 0.61 0.74 0.81 0.62 0.74 0.64

RF Testing accuracy 0.698 0.701 0.731 0.721 0.735 0.688 0.697 0.677 0.730

Training accuracy 0.895 0.817 0.801 0.775 0.719 0.708 0.673 0.653 0.655

GF 2.876 1.633 1.352 1.240 0.943 1.068 0.926 0.931 0.783

F1-Score 0.35 0.61 0.55 0.79 0.71 0.63 0.76 0.77 0.76

SVME Testing accuracy 0.714 0.724 0.710 0.724 0.744 0.724 0.726 0.749 0.739

Training accuracy 0.902 0.850 0.809 0.779 0.708 0.685 0.649 0.668 0.642

GF 2.918 1.840 1.393 1.248 0.876 0.876 0.780 0.756 0.729

F1-Score 0.50 0.50 0.54 0.60 0.60 0.43 0.69 0.71 0.74

NNE Testing accuracy 0.759 0.768 0.763 0.769 0.758 0.767 0.768 0.768 0.768

Training accuracy 0.839 0.769 0.787 0.718 0.705 0.7695 0.690 0.661 0.634

GF 1.497 1.004 1.112 0.819 0.820 0.764 0.748 0.684 0.634

F1-Score 0.74 0.81 0.79 0.81 0.76 0.79 0.79 0.83 0.84
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Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762

Training accuracy 0.957 0.863 0.885 0.736 0.708 0.692 0.674 0.683 0.647

GF 5.534 1.737 2.069 0.901 0.815 0.773 0.730 0.750 0.674

F1-Score 0.21 0.39 0.47 0.63 0.66 0.79 0.63 0.76 0.79

kNNhte Testing accuracy 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655

Training accuracy 0.857 0.808 0.705 0.718 0.596 0.574 0.570 0.542 0.530

GF 2.413 1.796 1.169 1.223 0.854 0.809 0.802 0.753 0.734

F1-Score 0.57 0.60 0.63 0.61 0.72 0.79 0.74 0.71 0.76

DThte Testing accuracy 0.667 0.692 0.692 0.637 0.687 0.647 0.666 0.671 0.678

Training accuracy 0.899 0.807 0.818 0.777 0.710 0.709 0.657 0.681 0.637

GF 3.297 1.595 1.692 1.627 1.079 1.213 1.035 0.973 0.889

F1-Score 0.35 0.66 0.58 0.68 0.71 0.81 0.69 0.74 0.62

SVMhte Testing accuracy 0.714 0.710 0.710 0.699 0.678 0.709 0.687 0.676 0.695

Training accuracy 0.902 0.850 0.837 0.773 0.722 0.676 0.643 0.607 0.628

GF 2.918 1.933 1.779 1.326 1.158 0.898 0.876 0.824 0.819

F1-Score 0.21 0.35 0.60 0.54 0.60 0.63 0.63 0.66 0.64

NNhte Testing accuracy 0.755 0.771 0.764 0.759 0.754 0.764 0.760 0.763 0.753

Training accuracy 0.905 0.839 0.792 0.763 0.681 0.704 0.652 0.652 0.626

GF 2.578 1.857 1.134 1.017 0.771 0.797 0.691 0.681 0.660

F1-Score 0.21 0.66 0.71 0.50 0.68 0.71 0.84 0.81 0.79

HTEsm Testing accuracy 0.794 0.753 0.794 0.749 0.763 0.769 0.762 0.745 0.792

Training accuracy 0.889 0.859 0.794 0.790 0.685 0.645 0.646 0.593 0.654

GF 1.855 1.752 1.00 1.195 0.752 0.651 0.672 0.626 0.601

F1-Score 0.63 0.63 0.74 0.68 0.76 0.77 0.90 0.81 0.93

HTEdf Testing accuracy 0.815 0.745 0.777 0.743 0.765 0.793 0.786 0.787 0.763

Training accuracy 0.882 0.861 0.787 0.806 0.697 0.675 0.660 0.661 0.611

GF 1.567 1.835 1.046 1.324 0.776 0.636 0.629 0.628 0.611

F1-Score 0.64 0.65 0.74 0.63 0.77 0.76 0.91 0.88 0.93
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Breast Dataset

Table A.3: Ensemble Performance on Skewed Class Distributions in Breast Cancer Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.517 0.517 0.517 0.517 0.517 0.517 0.517 0.517 0.517

Training accuracy 0.952 0.904 0.880 0.833 0.793 0.747 0.684 0.643 0.601

GF 10.062 5.031 4.025 2.887 2.333 1.909 1.528 1.352 1.210

F1-Score 0.43 0.45 0.48 0.40 0.43 0.40 0.43 0.40 0.43

kNNE Testing accuracy 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666

Training accuracy 0.905 0.834 0.795 0.748 0.720 0.687 0.644 0.623 0.631

GF 3.516 2.012 1.629 1.325 1.193 1.067 0.938 0.886 0.905

F1-Score 0.35 0.43 0.34 0.57 0.51 0.47 0.46 0.56 0.51

DTE Testing accuracy 0.587 0.549 0.580 0.579 0.569 0.559 0.565 0.543 0.565

Training accuracy 0.976 0.927 0.921 0.837 0.846 0.773 0.721 0.681 0.597

GF 17.208 6.178 5.337 2.582 2.798 1.942 1.559 1.432 1.079

F1-Score 0.40 0.47 0.45 0.46 0.51 0.54 0.56 0.66 0.54

RF Testing accuracy 0.631 0.636 0.625 0.595 0.627 0.640 0.627 0.638 0.605

Training accuracy 0.971 0.934 0.898 0.854 0.800 0.797 0.708 0.683 0.650

GF 12.724 5.515 3.676 2.774 1.865 1.773 1.277 1.141 1.128

F1-Score 0.19 0.41 0.48 0.36 0.50 0.45 0.48 0.67 0.61

SVME Testing accuracy 0.633 0.630 0.630 0.630 0.627 0.630 0.633 0.630 0.630

Training accuracy 0.894 0.843 0.775 0.721 0.648 0.627 0.603 0.606 0.661

GF 3.462 2.357 1.644 1.326 1.059 0.992 0.924 0.939 1.091

F1-Score 0.26 0.32 0.31 0.29 0.42 0.43 0.58 0.61 0.56

NNE Testing accuracy 0.560 0.560 0.543 0.554 0.542 0.561 0.543 0.555 0.565

Training accuracy 0.874 0.833 0.808 0.764 0.764 0.687 0.676 0.649 0.653

GF 3.492 2.635 2.380 1.889 1.941 1.402 1.410 1.267 1.253

F1-Score 0.49 0.54 0.53 0.55 0.50 0.54 0.55 0.58 0.50
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Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518

Training accuracy 0.959 0.924 0.891 0.854 0.809 0.759 0.691 0.649 0.604

GF 11.756 6.342 4.422 3.324 2.523 2.000 1.559 1.373 1.217

F1-Score 0.43 0.43 0.48 0.40 0.48 0.38 0.48 0.42 0.48

kNNhte Testing accuracy 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635

Training accuracy 0.916 0.847 0.786 0.760 0.723 0.703 0.637 0.630 0.609

GF 4.345 2.385 1.705 1.521 1.317 1.228 1.008 0.986 0.933

F1-Score 0.35 0.45 0.39 0.49 0.44 0.54 0.52 0.58 0.56

DThte Testing accuracy 0.589 0.599 0.590 0.597 0.596 0.593 0.595 0.581 0.582

Training accuracy 0.977 0.923 0.917 0.835 0.817 0.787 0.721 0.683 0.611

GF 17.869 5.207 5.00 2.457 2.207 1.911 1.451 1.321 1.075

F1-Score 0.40 0.43 0.53 0.48 0.48 0.61 0.58 0.64 0.59

SVMhte Testing accuracy 0.633 0.630 0.637 0.633 0.627 0.633 0.633 0.630 0.630

Training accuracy 0.905 0.843 0.795 0.743 0.683 0.659 0.572 0.614 0.599

GF 3.823 2.356 1.770 1.428 1.175 1.076 0.857 0.958 0.922

F1-Score 0.26 0.36 0.33 0.30 0.35 0.45 0.38 0.56 0.53

NNhte Testing accuracy 0.570 0.578 0.585 0.575 0.598 0.577 0.555 0.599 0.575

Training accuracy 0.908 0.844 0.795 0.764 0.747 0.691 0.655 0.644 0.664

GF 4.674 2.705 2.023 1.801 1.589 1.368 1.289 1.126 1.264

F1-Score 0.19 0.19 0.55 0.52 0.57 0.50 0.61 0.56 0.53

HTEsm Testing accuracy 0.643 0.645 0.646 0.647 0.646 0.645 0.643 0.643 0.641

Training accuracy 0.936 0.887 0.834 0.811 0.763 0.749 0.648 0.659 0.630

GF 5.578 3.106 3.142 2.145 1.494 1.414 1.014 0.881 0.970

F1-Score 0.41 0.53 0.53 0.54 0.51 0.61 0.60 0.63 0.58

HTEdf Testing accuracy 0.645 0.645 0.647 0.647 0.647 0.646 0.645 0.644 0.642

Training accuracy 0.941 0.903 0.829 0.809 0.765 0.753 0.662 0.663 0.630

GF 6.017 3.659 2.064 1.848 1.502 1.433 1.050 1.050 0.968

F1-Score 0.50 0.57 0.55 0.59 0.50 0.61 0.60 0.64 0.59
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Table A.4: Confusion Matrices of Ensembles on Skewed Class Distributions for Breast
Cancer Dataset

10-90%

NBE

0 1

0 0.22 0.78

1 0.05 0.95

kNNE

0 1

0.14 0.86

0.05 0.95

DTE

0 1

0.19 0.81

0.05 0.95

RF

0 1

0 1.00

0.05 0.95

SVME

0 1

0.05 0.95

0 1.00

NNE

0 1

0.65 0.65

0.24 0.76

NBhte

0 1

0.22 0.78

0.05 0.95

kNNhte

0 1

0 0.16 0.84

1 0.14 0.86

DThte

0 1

0.19 0.81

0.05 0.95

SVMhte

0 1

0.05 0.95

0 1.00

NNhte

0 1

0 1.00

0 1.00

HTEsm

0 1

0.19 0.81

0 1.00

HTEdf

0 1

0.22 0.78

0 1.00

15-85%

NBE

0 1

0 0.27 0.73

1 0.14 0.86

kNNE

0 1

0.22 0.78

0.05 0.95

DTE

0 1

0.27 0.73

0.10 0.90

RF

0 1

0.19 0.81

0 1.00

SVME

0 1

0.11 0.89

0.05 0.95

NNE

0 1

0.59 0.41

0.57 0.43

NBhte

0 1

0.24 0.76

0.14 0.86

kNNhte

0 1

0 0.30 0.70

1 0.24 0.76

DThte

0 1

0.22 0.78

0.05 0.95

SVMhte

0 1

0.14 0.86

0 1.00

NNhte

0 1

0 1.00

0 1.00

HTEsm

0 1

0.38 0.62

0 1.00

HTEdf

0 1

0.38 0.62

0 1.00

20-80%

NBE
0 1

0 0.27 0.73
1 0.05 0.95

kNNE
0 1

0.22 0.78
0.38 0.62

DTE
0 1

0.30 0.70
0.27 0.76

RF
0 1

0.27 0.73
0.05 0.95

SVME
0 1

0.11 0.89
0.10 0.90

NNE
0 1

0.54 0.46
0.52 0.48

NBhte
0 1

0.27 0.73
0.05 0.95

kNNhte
0 1

0 0.30 0.70
1 0.43 0.57

DThte
0 1

0.32 0.68
0.05 0.95

SVMhte
0 1

0.11 0.89
0 1.00

NNhte
0 1

0.40 0.60
0.19 0.81

HTEsm
0 1

0.35 0.65
0.05 0.95

HTEdf
0 1

0.30 0.70
0.05 0.95
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25-75%

NBE

0 1

0 0.22 0.78

1 0.14 0.86

kNNE

0 1

0.46 0.54

0.24 0.76

DTE

0 1

0.32 0.68

0.29 0.71

RF

0 1

0.19 0.81

0.24 0.76

SVME

0 1

0.08 0.92

0.05 0.95

NNE

0 1

0.65 0.35

0.62 0.38

NBhte

0 1

0.22 0.78

0.14 0.86

kNNhte

0 1

0 0.46 0.54

1 0.48 0.52

DThte

0 1

0.30 0.70

0.14 0.86

SVMhte

0 1

0.08 0.92

0 1.00

NNhte

0 1

0.62 0.38

0.67 0.33

HTEsm

0 1

0.49 0.51

0.12 0.88

HTEdf

0 1

0.49 0.51

0.11 0.89

30-70%

NBE

0 1

0 0.22 0.78

1 0.05 0.95

kNNE

0 1

0.43 0.57

0.38 0.62

DTE

0 1

0.46 0.54

0.43 0.57

RF

0 1

0.38 0.62

0.29 0.71

SVME

0 1

0.24 0.76

0.19 0.89

NNE

0 1

0.59 0.41

0.67 0.33

NBhte

0 1

0.32 0.68

0.19 0.81

kNNhte

0 1

0 0.41 0.59

1 0.52 0.48

DThte

0 1

0.38 0.62

0.33 0.67

SVMhte

0 1

0.65 0.86

0.05 0.95

NNhte

0 1

0.65 0.35

0.57 0.43

HTEsm

0 1

0.49 0.51

0.25 0.75

HTEdf

0 1

0.46 0.54

0.22 0.78

35-65%

NBE

0 1

0 0.22 0.78

1 0.14 0.86

kNNE

0 1

0.43 0.57

0.48 0.52

DTE

0 1

0.49 0.51

0.38 0.62

RF

0 1

0.38 0.62

0.43 0.57

SVME

0 1

0.24 0.76

0.14 0.86

NNE

0 1

0.76 0.24

0.76 0.24

NBhte

0 1

0.22 0.78

0.24 0.76

kNNhte

0 1

0 0.57 0.43

1 0.52 0.48

DThte

0 1

0.65 0.35

0.48 0.52

SVMhte

0 1

0.24 0.76

0.05 0.95

NNhte

0 1

0.62 0.38

0.71 0.29

HTEsm

0 1

0.59 0.41

0.22 0.78

HTEdf

0 1

0.57 0.43

0.20 0.80
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40-60%

NBE

0 1

0 0.22 0.78

1 0.05 0.95

kNNE

0 1

0.49 0.51

0.62 0.38

DTE

0 1

0.59 0.41

0.52 0.48

RF

0 1

0.49 0.51

0.57 0.43

SVME

0 1

0.54 0.45

0.38 0.62

NNE

0 1

0.73 0.27

0.71 0.29

NBhte

0 1

0.30 0.70

0.14 0.86

kNNhte

0 1

0 0.57 0.43

1 0.57 0.43

DThte

0 1

0.60 0.40

0.48 0.52

SVMhte

0 1

0.16 0.84

0.05 0.95

NNhte

0 1

0.76 0.24

0.62 0.38

HTEsm

0 1

0.68 0.32

0.35 0.65

HTEdf

0 1

0.68 0.32

0.33 0.67

45-55%

NBE

0 1

0 0.22 0.78

1 0.14 0.86

kNNE

0 1

0.57 0.43

0.48 0.52

DTE

0 1

0.73 0.27

0.48 0.52

RF

0 1

0.76 0.24

0.48 0.52

SVME

0 1

0.76 0.24

0.62 0.38

NNE

0 1

0.78 0.22

0.71 0.29

NBhte

0 1

0.24 0.76

0.19 0.81

kNNhte

0 1

0 0.70 0.30

1 0.62 0.38

DThte

0 1

0.73 0.27

0.52 0.48

SVMhte

0 1

0.54 0.46

0.43 0.57

NNhte

0 1

0.78 0.22

0.76 0.24

HTEsm

0 1

0.62 0.38

0.45 0.55

HTEdf

0 1

0.62 0.38

0.40 0.60

50-50%

NBE

0 1

0 0.22 0.78

1 0.05 0.95

kNNE

0 1

0.65 0.35

0.71 0.29

DTE

0 1

0.57 0.43

0.52 0.48

RF

0 1

0.65 0.35

0.48 0.52

SVME

0 1

0.89 0.11

0.86 0.14

NNE

0 1

0.68 0.32

0.76 0.24

NBhte

0 1

0.27 0.73

0.05 0.95

kNNhte

0 1

0 0.70 0.30

1 0.67 0.33

DThte

0 1

0.60 0.40

0.43 0.57

SVMhte

0 1

0.89 0.11

0.90 0.10

NNhte

0 1

0.65 0.35

0.67 0.33

HTEsm

0 1

0.68 0.32

0.50 0.50

HTEdf

0 1

0.60 0.40

0.45 0.55
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Indian Liver Dataset

Table A.5: Ensemble Performance on Skewed Class Distributions for Indian Liver Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665

Training accuracy 0.908 0.883 0.867 0.847 0.827 0.811 0.788 0.742 0.723

GF 3.641 2.863 2.518 2.189 1.936 1.772 1.580 1.298 1.209

F1-Score 0.43 0.45 0.48 0.40 0.43 0.40 0.43 0.40 0.43

kNNE Testing accuracy 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743

Training accuracy 0.915 0.871 0.850 0.818 0.795 0.752 0.718 0.690 0.675

GF 3.023 1.992 1.713 1.412 1.254 1.036 0.911 0.829 0.791

F1-Score 0.35 0.43 0.34 0.57 0.51 0.47 0.46 0.56 0.51

DTE Testing accuracy 0.740 0.740 0.740 0.738 0.740 0.735 0.742 0.740 0.738

Training accuracy 0.874 0.808 0.807 0.771 0.764 0.723 0.705 0.665 0.657

GF 2.063 1.354 1.347 1.144 1.102 0.9576 0.875 0.776 0.764

F1-Score 0.40 0.47 0.45 0.46 0.51 0.54 0.56 0.66 0.54

RF Testing accuracy 0.737 0.735 0.726 0.746 0.736 0.747 0.726 0.724 0.751

Training accuracy 0.912 0.852 0.843 0.811 0.800 0.759 0.727 0.699 0.688

GF 2.988 1.791 1.745 1.344 1.320 1.049 1.004 0.917 0.798

F1-Score 0.19 0.41 0.48 0.36 0.50 0.45 0.48 0.67 0.61

SVME Testing accuracy 0.755 0.761 0.771 0.764 0.765 0.771 0.762 0.767 0.764

Training accuracy 0.918 0.878 0.877 0.839 0.834 0.803 0.786 0.743 0.731

GF 3.000 1.959 1.862 1.465 1.416 1.162 1.112 0.907 0.877

F1-Score 0.26 0.32 0.31 0.29 0.42 0.43 0.58 0.61 0.54

NNE Testing accuracy 0.730 0.722 0.730 0.724 0.739 0.734 0.749 0.727 0.725

Training accuracy 0.913 0.871 0.863 0.832 0.816 0.774 0.756 0.702 0.697

GF 3.103 2.155 1.971 1.643 1.418 1.177 1.028 0.916 0.907

F1-Score 0.49 0.54 0.53 0.55 0.50 0.54 0.55 0.58 0.50
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Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672

Training accuracy 0.912 0.886 0.874 0.845 0.833 0.813 0.791 0.746 0.730

GF 3.727 2.877 2.603 2.116 1.964 1.754 1.569 1.291 1.215

F1-Score 0.43 0.43 0.48 0.40 0.48 0.38 0.48 0.42 0.48

kNNhte Testing accuracy 0.717 0.717 0.767 0.717 0.767 0.767 0.717 0.767 0.717

Training accuracy 0.909 0.857 0.868 0.799 0.821 0.772 0.707 0.695 0.617

GF 3.109 1.979 1.765 1.407 1.302 1.022 0.966 0.764 0.739

F1-Score 0.35 0.45 0.39 0.49 0.44 0.54 0.52 0.58 0.56

DThte Testing accuracy 0.763 0.750 0.767 0.749 0.748 0.760 0.752 0.756 0.756

Training accuracy 0.912 0.854 0.843 0.807 0.802 0.763 0.750 0.708 0.702

GF 2.693 1.712 1.484 1.300 1.272 1.013 0.992 0.836 0.819

F1-Score 0.40 0.43 0.53 0.48 0.48 0.61 0.58 0.64 0.59

SVMhte Testing accuracy 0.755 0.747 0.745 0.745 0.747 0.750 0.750 0.748 0.748

Training accuracy 0.919 0.877 0.863 0.826 0.825 0.799 0.797 0.739 0.711

GF 3.148 2.056 1.861 1.465 1.457 1.244 1.232 0.966 0.872

F1-Score 0.26 0.36 0.33 0.30 0.35 0.45 0.38 0.56 0.53

NNhte Testing accuracy 0.764 0.766 0.763 0.755 0.762 0.756 0.762 0.759 0.759

Training accuracy 0.915 0.880 0.871 0.849 0.841 0.804 0.792 0.742 0.738

GF 2.776 1.950 1.837 1.623 1.496 1.245 1.144 0.934 0.919

F1-Score 0.19 0.19 0.55 0.52 0.57 0.50 0.61 0.56 0.53

HTEsm Testing accuracy 0.751 0.737 0.766 0.744 0.750 0.747 0.744 0.758 0.751

Training accuracy 0.917 0.875 0.878 0.839 0.836 0.803 0.792 0.732 0.723

GF 3.000 2.104 1.918 1.590 1.552 1.284 1.231 0.903 0.898

F1-Score 0.41 0.53 0.53 0.54 0.51 0.62 0.59 0.57 0.55

HTEdf Testing accuracy 0.764 0.764 0.769 0.758 0.771 0.771 0.771 0.769 0.763

Training accuracy 0.915 0.877 0.873 0.839 0.839 0.804 0.786 0.733 0.725

GF 2.776 1.919 1.819 1.503 1.422 1.168 1.070 0.865 0.862

F1-Score 0.50 0.57 0.56 0.59 0.51 0.58 0.59 0.59 0.57
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Table A.6: Confusion Matrices of Ensembles on Skewed Class Distributions for Indian
Liver Dataset

10-90%

NBE

0 1

0 0.41 0.59

1 0 1.00

kNNE

0 1

0.13 0.87

0 1.00

DTE

0 1

0.26 0.74

0.03 0.97

RF

0 1

0.33 0.67

0.03 0.97

SVME

0 1

0.22 0.78

0 1.00

NNE

0 1

0.33 0.57

0.03 0.97

NBhte

0 1

0.39 0.61

0 1.00

kNNhte

0 1

0 0.16 0.84

1 0 1.00

DThte

0 1

0.25 0.75

0 1.00

SVMhte

0 1

0.20 0.80

0 1.00

NNhte

0 1

0.15 0.85

0 1.00

HTEsm

0 1

0.33 0.67

0 1.00

HTEdf

0 1

0.22 0.78

0 1.00

15-85%

NBE

0 1

0 0.40 0.60

1 0 1.00

kNNE

0 1

0.20 0.80

0 1.00

DTE

0 1

0.37 0.63

0.07 0.93

RF

0 1

0.38 0.62

0.10 0.90

SVME

0 1

0.20 0.80

0 1.00

NNE

0 1

0.41 0.57

0.10 0.90

NBhte

0 1

0.37 0.63

0 1.00

kNNhte

0 1

0 0.20 0.20

1 0 1.00

DThte

0 1

0.36 0.64

0.10 0.90

SVMhte

0 1

0.22 0.78

0 1.00

NNhte

0 1

0.31 0.69

0 1.00

HTEsm

0 1

0.36 0.64

0 1.00

HTEdf

0 1

0.26 0.74

0 1.00

20-80%

NBE
0 1

0 0.41 0.59
1 0 1.00

kNNE
0 1

0.20 0.80
0.03 0.97

DTE
0 1

0.36 0.64
0.23 0.77

RF
0 1

0.39 0.61
0.10 0.90

SVME
0 1

0.31 0.69
0 1.00

NNE
0 1

0.47 0.53
0.07 0.93

NBhte
0 1

0.39 0.61
0 1.00

kNNhte
0 1

0 0.22 0.78
1 0 1.00

DThte
0 1

0.38 0.62
0.03 0.97

SVMhte
0 1

0.29 0.71
0 1.00

NNhte
0 1

0.33 0.67
0 1.00

HTEsm
0 1

0.33 0.67
0 1.00

HTEdf
0 1

0.32 0.68
0 1.00
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25-75%

NBE

0 1

0 0.39 0.61

1 0 1.00

kNNE

0 1

0.24 0.76

0 1.00

DTE

0 1

0.39 0.61

0.17 0.83

RF

0 1

0.40 0.60

0.10 0.90

SVME

0 1

0.29 0.71

0 1.00

NNE

0 1

0.46 0.54

0.10 0.90

NBhte

0 1

0.37 0.63

0 1.00

kNNhte

0 1

0 0.22 0.78

1 0 1.00

DThte

0 1

0.44 0.56

0.07 0.93

SVMhte

0 1

0.25 0.75

0 1.00

NNhte

0 1

0.41 0.59

0.03 0.97

HTEsm

0 1

0.40 0.60

0 1.00

HTEdf

0 1

0.35 0.65

0 1.00

30-70%

NBE

0 1

0 0.41 0.59

1 0 1.00

kNNE

0 1

0.30 0.70

0.03 0.97

DTE

0 1

0.43 0.57

0.07 0.93

RF

0 1

0.48 0.52

0.10 0.90

SVME

0 1

0.43 0.57

0.07 0.93

NNE

0 1

0.49 0.51

0.07 0.93

NBhte

0 1

0.40 0.60

0 1.00

kNNhte

0 1

0 0.34 0.66

1 0.03 0.97

DThte

0 1

0.47 0.53

0.07 0.93

SVMhte

0 1

0.43 0.57

0 1.00

NNhte

0 1

0.48 0.52

0.07 0.93

HTEsm

0 1

0.45 0.55

0.03 0.97

HTEdf

0 1

0.43 0.57

0.03 0.97

35-65%

NBE

0 1

0 0.40 0.60

1 0 1.00

kNNE

0 1

0.32 0.68

0.03 0.97

DTE

0 1

0.48 0.52

0.30 0.70

RF

0 1

0.56 0.44

0.13 0.87

SVME

0 1

0.44 0.56

0.07 0.93

NNE

0 1

0.49 0.51

0.10 0.90

NBhte

0 1

0.40 0.60

0 1.00

kNNhte

0 1

0 0.31 0.69

1 0.07 0.93

DThte

0 1

0.49 0.51

0.17 0.83

SVMhte

0 1

0.39 0.61

0 1.00

NNhte

0 1

0.46 0.54

0.07 0.93

HTEsm

0 1

0.44 0.56

0.03 0.97

HTEdf

0 1

0.46 0.54

0.03 0.97
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40-60%

NBE

0 1

0 0.41 0.59

1 0.03 0.97

kNNE

0 1

0.40 0.60

0.10 0.90

DTE

0 1

0.56 0.44

0.20 0.80

RF

0 1

0.52 0.48

0.10 0.90

SVME

0 1

0.52 0.48

0.06 0.93

NNE

0 1

0.52 0.48

0.13 0.87

NBhte

0 1

0.40 0.60

0 1.00

kNNhte

0 1

0 0.43 0.57

1 0.10 0.90

DThte

0 1

0.54 0.46

0.03 0.97

SVMhte

0 1

0.48 0.52

0.06 0.93

NNhte

0 1

0.48 0.52

0.10 0.90

HTEsm

0 1

0.45 0.55

0.03 0.97

HTEdf

0 1

0.45 0.55

0.02 0.98

45-55%

NBE

0 1

0 0.40 0.60

1 0 1.00

kNNE

0 1

0.41 0.59

0.17 0.83

DTE

0 1

0.60 0.40

0.30 0.70

RF

0 1

0.62 0.38

0.33 0.67

SVME

0 1

0.54 0.46

0.06 0.93

NNE

0 1

0.60 0.40

0.20 0.80

NBhte

0 1

0.40 0.60

0 1.00

kNNhte

0 1

0 0.40 0.60

1 0.17 0.83

DThte

0 1

0.57 0.43

0.13 0.87

SVMhte

0 1

0.48 0.52

0.07 0.93

NNhte

0 1

0.52 0.48

0.06 0.93

HTEsm

0 1

0.46 0.54

0.05 0.95

HTEdf

0 1

0.44 0.56

0.03 0.97

50-50%

NBE

0 1

0 0.41 0.59

1 0.03 0.97

kNNE

0 1

0.46 0.54

0.23 0.77

DTE

0 1

0.67 0.33

0.43 0.57

RF

0 1

0.75 0.25

0.43 0.57

SVME

0 1

0.59 0.41

0.06 0.93

NNE

0 1

0.71 0.29

0.30 0.70

NBhte

0 1

0.40 0.60

0.03 0.97

kNNhte

0 1

0.56 0.44

0.23 0.77

DThte

0 1

0.67 0.33

0.43 0.57

SVMhte

0 1

0.65 0.35

0.17 0.83

NNhte

0 1

0.53 0.47

0.10 0.90

HTEsm

0 1

0.54 0.46

0.05 0.95

HTEdf

0 1

0.54 0.46

0.03 0.97
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 339

Credit Approval Dataset

Table A.7: Ensemble Performance on Skewed Class Distributions for Credit Approval
Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535

Training accuracy 0.559 0.494 0.507 0.505 0.508 0.530 0.549 0.572 0.606

GF 1.054 0.919 0.943 0.939 0.945 0.989 1.031 1.086 1.180

F1-Score 0.54 0.50 0.56 0.48 0.48 0.49 0.46 0.47 0.46

kNNE Testing accuracy 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788

Training accuracy 0.894 0.863 0.833 0.827 0.824 0.805 0.808 0.804 0.805

GF 2.000 1.547 1.269 1.225 1.205 1.087 1.104 1.082 1.087

F1-Score 0.81 0.85 0.83 0.83 0.82 0.84 0.85 0.84 0.83

DTE Testing accuracy 0.765 0.757 0.755 0.755 0.758 0.761 0.763 0.761 0.754

Training accuracy 0.948 0.917 0.914 0.870 0.859 0.815 0.793 0.783 0.799

GF 4.519 2.928 2.849 1.885 1.716 1.292 1.145 1.101 1.224

F1-Score 0.59 0.63 0.67 0.71 0.69 0.79 0.78 0.78 0.82

RF Testing accuracy 0.783 0.802 0.784 0.780 0.807 0.786 0.795 0.788 0.799

Training accuracy 0.945 0.928 0.902 0.889 0.857 0.822 0.831 0.799 0.815

GF 3.945 2.750 2.204 1.982 1.350 1.202 1.213 1.055 1.086

F1-Score 0.36 0.40 0.50 0.63 0.66 0.77 0.77 0.83 0.81

SVME Testing accuracy 0.780 0.774 0.778 0.774 0.781 0.775 0.777 0.774 0.772

Training accuracy 0.934 0.895 0.865 0.831 0.796 0.766 0.754 0.745 0.742

GF 3.333 2.152 1.6444 1.337 1.074 0.962 0.906 1.124 0.884

F1-Score 0.45 0.52 0.62 0.66 0.67 0.77 0.80 0.82 0.86

NNE Testing accuracy 0.670 0.675 0.681 0.671 0.675 0.675 0.669 0.674 0.674

Training accuracy 0.901 0.834 0.830 0.816 0.765 0.765 0.732 0.740 0.739

GF 3.333 1.957 1.876 1.788 1.383 1.383 1.235 1.254 1.249

F1-Score 0.67 0.70 0.69 0.69 0.67 0.68 0.67 0.67 0.62
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 340

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.651 0.651 0.651 0.651 0.651 0.651 0.651 0.651 0.651

Training accuracy 0.643 0.574 0.571 0.568 0.591 0.598 0.641 0.672 0.673

GF 0.978 0.819 0.814 0.808 0.853 0.868 0.972 1.064 1.067

F1-Score 0.55 0.53 0.54 0.53 0.51 0.54 0.55 0.61 0.63

kNNhte Testing accuracy 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808

Training accuracy 0.867 0.842 0.836 0.824 0.808 0.799 0.804 0.799 0.801

GF 1.444 1.215 1.170 1.091 1.000 0.955 0.979 0.955 0.964

F1-Score 0.78 0.81 0.82 0.83 0.83 0.86 0.86 0.84 0.86

DThte Testing accuracy 0.767 0.765 0.758 0.759 0.759 0.764 0.765 0.763 0.759

Training accuracy 0.954 0.941 0.916 0.876 0.862 0.833 0.814 0.804 0.808

GF 5.065 3.983 2.881 1.944 1.746 1.413 1.263 1.209 1.255

F1-Score 0.60 0.62 0.67 0.68 0.70 0.77 0.81 0.83 0.83

SVMhte Testing accuracy 0.822 0.818 0.818 0.815 0.815 0.818 0.821 0.819 0.818

Training accuracy 0.912 0.881 0.864 0.850 0.831 0.797 0.810 0.804 0.815

GF 2.023 1.529 1.338 1.233 1.095 0.897 0.942 0.923 0.984

F1-Score 0.50 0.73 0.81 0.84 0.86 0.84 0.83 0.83 0.83

NNhte Testing accuracy 0.765 0.755 0.770 0.769 0.769 0.769 0.768 0.760 0.766

Training accuracy 0.920 0.879 0.876 0.849 0.831 0.813 0.788 0.795 0.793

GF 2.938 2.024 1.855 1.529 1.367 1.235 1.094 1.170 1.130

F1-Score 0.66 0.71 0.73 0.72 0.71 0.75 0.73 0.73 0.74

HTEsm Testing accuracy 0.810 0.809 0.811 0.809 0.811 0.814 0.812 0.810 0.812

Training accuracy 0.933 0.899 0.874 0.850 0.841 0.829 0.799 0.807 0.812

GF 2.836 1.891 1.500 1.273 1.201 1.088 0.935 0.984 1.000

F1-Score 0.75 0.78 0.78 0.78 0.80 0.80 0.83 0.85 0.85

HTEdf Testing accuracy 0.817 0.815 0.813 0.810 0.813 0.816 0.818 0.815 0.812

Training accuracy 0.957 0.920 0.895 0.866 0.857 0.834 0.818 0.829 0.831

GF 4.256 2.313 1.781 1.418 1.308 1.108 1.000 1.082 1.112

F1-Score 0.77 0.79 0.79 0.80 0.82 0.84 0.86 0.86 0.87
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 341

Table A.8: Confusion Matrices of Ensembles on Skewed Class Distributions for Credit
Approval Dataset

10-90%

NBE

0 1

0 0.56 0.44

1 0.49 0.51

kNNE

0 1

0.74 0.26

0.12 0.88

DTE

0 1

0.31 0.69

0.04 0.96

RF

0 1

0.03 0.97

0 1.00

SVME

0 1

0.13 0.87

0.01 0.99

NNE

0 1

0.49 0.51

0.12 0.88

NBhte

0 1

0.50 0.50

0.40 0.60

kNNhte

0 1

0 0.63 0.37

1 0.06 0.94

DThte

0 1

0.33 0.67

0.04 0.96

SVMhte

0 1

0.19 0.81

0.01 0.99

NNhte

0 1

0.44 0.56

0.09 0.91

HTEsm

0 1

0.53 0.47

0.07 0.93

HTEdf

0 1

0.57 0.43

0.06 0.94

15-85%

NBE

0 1

0 0.56 0.44

1 0.56 0.44

kNNE

0 1

0.79 0.21

0.09 0.91

DTE

0 1

0.39 0.61

0.06 0.94

RF

0 1

0.07 0.93

0 1.00

SVME

0 1

0.21 0.79

0.01 0.99

NNE

0 1

0.56 0.44

0.15 0.85

NBhte

0 1

0.54 0.46

0.49 0.51

kNNhte

0 1

0 0.71 0.29

1 0.09 0.91

DThte

0 1

0.36 0.64

0.04 0.96

SVMhte

0 1

0.51 0.49

0.01 0.99

NNhte

0 1

0.53 0.47

0.09 0.91

HTEsm

0 1

0.57 0.43

0.12 0.88

HTEdf

0 1

0.59 0.41

0.06 0.94

20-80%

NBE
0 1

0 0.60 0.40
1 0.49 0.51

kNNE
0 1

0.80 0.20
0.13 0.87

DTE
0 1

0.41 0.59
0.01 0.99

RF
0 1

0.19 0.81
0.03 0.97

SVME
0 1

0.36 0.64
0.03 0.97

NNE
0 1

0.57 0.43
0.18 0.82

NBhte
0 1

0.56 0.44
0.47 0.53

kNNhte
0 1

0 0.74 0.26
1 0.10 0.90

DThte
0 1

0.41 0.59
0.01 0.99

SVMhte
0 1

0.66 0.34
0.03 0.97

NNhte
0 1

0.60 0.40
0.12 0.88

HTEsm
0 1

0.57 0.43
0.03 0.97

HTEdf
0 1

0.62 0.38
0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 342

25-75%

NBE

0 1

0 0.59 0.41

1 0.62 0.38

kNNE

0 1

0.80 0.20

0.13 0.87

DTE

0 1

0.53 0.47

0.07 0.97

RF

0 1

0.40 0.60

0.07 0.93

SVME

0 1

0.41 0.59

0.03 0.97

NNE

0 1

0.61 0.39

0.22 0.78

NBhte

0 1

0.57 0.43

0.51 0.49

kNNhte

0 1

0 0.79 0.21

1 0.12 0.88

DThte

0 1

0.47 0.53

0.07 0.93

SVMhte

0 1

0.74 0.26

0.06 0.94

NNhte

0 1

0.63 0.37

0.18 0.82

HTEsm

0 1

0.61 0.39

0.05 0.95

HTEdf

0 1

0.65 0.35

0.03 0.97

30-70%

NBE

0 1

0 0.59 0.41

1 0.62 0.38

kNNE

0 1

0.80 0.20

0.16 0.84

DTE

0 1

0.50 0.50

0.10 0.90

RF

0 1

0.41 0.59

0.04 0.96

SVME

0 1

0.44 0.56

0.04 0.96

NNE

0 1

0.57 0.43

0.22 0.78

NBhte

0 1

0.57 0.43

0.54 0.46

kNNhte

0 1

0 0.79 0.21

1 0.12 0.88

DThte

0 1

0.50 0.50

0.07 0.93

SVMhte

0 1

0.78 0.21

0.06 0.94

NNhte

0 1

0.61 0.39

0.20 0.80

HTEsm

0 1

0.63 0.37

0.10 0.90

HTEdf

0 1

0.67 0.33

0.05 0.95

35-65%

NBE

0 1

0 0.60 0.40

1 0.62 0.38

kNNE

0 1

0.80 0.20

0.12 0.88

DTE

0 1

0.66 0.34

0.07 0.93

RF

0 1

0.67 0.33

0.12 0.88

SVME

0 1

0.61 0.39

0.06 0.94

NNE

0 1

0.61 0.39

0.25 0.75

NBhte

0 1

0.59 0.41

0.50 0.50

kNNhte

0 1

0 0.83 0.17

1 0.10 0.90

DThte

0 1

0.63 0.37

0.07 0.93

SVMhte

0 1

0.84 0.16

0.16 0.84

NNhte

0 1

0.70 0.30

0.19 0.81

HTEsm

0 1

0.67 0.33

0.12 0.88

HTEdf

0 1

0.75 0.25

0.05 0.95
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 343

40-60%

NBE

0 1

0 0.59 0.41

1 0.66 0.34

kNNE

0 1

0.85 0.15

0.15 0.85

DTE

0 1

0.73 0.27

0.16 0.84

RF

0 1

0.67 0.33

0.12 0.88

SVME

0 1

0.66 0.31

0.07 0.93

NNE

0 1

0.63 0.37

0.29 0.71

NBhte

0 1

0.59 0.41

0.49 0.51

kNNhte

0 1

0 0.83 0.17

1 0.13 0.87

DThte

0 1

0.74 0.26

0.12 0.88

SVMhte

0 1

0.87 0.13

0.20 0.80

NNhte

0 1

0.63 0.37

0.16 0.84

HTEsm

0 1

0.75 0.25

0.12 0.88

HTEdf

0 1

0.77 0.23

0.10 0.90

45-55%

NBE

0 1

0 0.57 0.43

1 0.63 0.37

kNNE

0 1

0.84 0.16

0.13 0.87

DTE

0 1

0.67 0.33

0.10 0.90

RF

0 1

0.81 0.19

0.16 0.84

SVME

0 1

0.71 0.29

0.07 0.93

NNE

0 1

0.63 0.37

0.29 0.71

NBhte

0 1

0.54 0.46

0.32 0.68

kNNhte

0 1

0 0.83 0.17

1 0.15 0.85

DThte

0 1

0.80 0.20

0.13 0.87

SVMhte

0 1

0.87 0.13

0.21 0.79

NNhte

0 1

0.69 0.31

0.22 0.78

HTEsm

0 1

0.82 0.18

0.15 0.85

HTEdf

0 1

0.85 0.15

0.10 0.90

50-50%

NBE

0 1

0 0.63 0.37

1 0.69 0.31

kNNE

0 1

0.81 0.19

0.15 0.85

DTE

0 1

0.76 0.24

0.12 0.88

RF

0 1

0.76 0.24

0.13 0.87

SVME

0 1

0.81 0.19

0.10 0.90

NNE

0 1

0.60 0.40

0.35 0.65

NBhte

0 1

0.60 0.40

0.34 0.66

kNNhte

0 1

0 0.85 0.15

1 0.13 0.87

DThte

0 1

0.81 0.19

0.16 0.84

SVMhte

0 1

0.87 0.13

0.22 0.78

NNhte

0 1

0.74 0.26

0.26 0.74

HTEsm

0 1

0.86 0.14

0.17 0.83

HTEdf

0 1

0.89 0.11

0.12 0.88
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 344

Red Wine Dataset

Table A.9: Ensemble Performance on Skewed Class Distributions for Red Wine Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471

Training accuracy 0.430 0.443 0.457 0.490 0.515 0.535 0.555 0.586 0.610

GF 0.928 0.949 0.974 1.037 1.091 1.138 1.188 1.277 1.356

F1-Score 0.26 0.25 0.25 0.23 0.24 0.25 0.25 0.22 0.23

kNNE Testing accuracy 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501

Training accuracy 0.548 0.546 0.574 0.567 0.610 0.629 0.636 0.672 0.686

GF 1.104 1.099 1.171 1.152 1.279 1.345 1.371 1.521 1.589

F1-Score 0.33 0.38 0.38 0.38 0.36 0.33 0.31 0.36 0.34

DTE Testing accuracy 0.473 0.493 0.483 0.482 0.488 0.486 0.493 0.485 0.488

Training accuracy 0.533 0.537 0.567 0.556 0.591 0.626 0.653 0.687 0.685

GF 1.128 1.095 1.194 1.167 1.252 1.374 1.461 1.645 1.625

F1-Score 0.46 0.41 0.41 0.41 0.38 0.38 0.38 0.38 0.38

RF Testing accuracy 0.534 0.546 0.529 0.537 0.524 0.521 0.545 0.559 0.541

Training accuracy 0.601 0.590 0.615 0.636 0.655 0.661 0.687 0.702 0.719

GF 1.168 1.107 1.223 1.272 1.379 1.413 1.454 1.479 1.633

F1-Score 0.44 0.43 0.43 0.45 0.41 0.39 0.46 0.39 0.40

SVME Testing accuracy 0.531 0.525 0.530 0.531 0.528 0.536 0.535 0.534 0.528

Training accuracy 0.475 0.475 0.511 0.523 0.553 0.593 0.610 0.675 0.693

GF 0.893 0.905 0.961 0.983 1.055 1.140 1.192 1.434 1.537

F1-Score 0.40 0.41 0.41 0.40 0.38 0.40 0.37 0.37 0.39

NNE Testing accuracy 0.557 0.558 0.557 0.556 0.553 0.548 0.555 0.558 0.556

Training accuracy 0.627 0.647 0.650 0.664 0.680 0.689 0.709 0.722 0.733

GF 1.188 1.252 1.265 1.321 1.396 1.453 1.529 1.589 1.663

F1-Score 0.49 0.51 0.51 0.48 0.45 0.45 0.45 0.45 0.45

Stellenbosch University https://scholar.sun.ac.za



Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 345

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489

Training accuracy 0.432 0.443 0.456 0.487 0.516 0.532 0.564 0.600 0.625

GF 0.899 0.917 0.939 0.996 1.056 1.092 1.172 1.278 1.363

F1-Score 0.26 0.25 0.25 0.22 0.24 0.24 0.23 0.22 0.21

kNNhte Testing accuracy 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515

Training accuracy 0.547 0.553 0.560 0.567 0.607 0.620 0.637 0.662 0.683

GF 1.071 1.085 1.102 1.120 1.234 1.276 1.336 1.435 1.529

F1-Score 0.37 0.36 0.36 0.38 0.39 0.38 0.39 0.38 0.41

DThte Testing accuracy 0.541 0.526 0.519 0.524 0.537 0.533 0.536 0.531 0.526

Training accuracy 0.580 0.589 0.621 0.640 0.644 0.661 0.687 0.715 0.722

GF 1.093 1.153 1.269 1.322 1.301 1.377 1.482 1.646 1.705

F1-Score 0.49 0.46 0.46 0.46 0.41 0.42 0.41 0.42 0.40

SVMhte Testing accuracy 0.551 0.549 0.549 0.548 0.548 0.551 0.549 0.549 0.549

Training accuracy 0.512 0.544 0.569 0.594 0.622 0.642 0.644 0.692 0.708

GF 0.920 0.989 1.046 1.113 1.195 1.254 1.307 1.464 1.544

F1-Score 0.37 0.39 0.39 0.30 0.35 0.30 0.30 0.28 0.33

NNhte Testing accuracy 0.556 0.556 0.550 0.556 0.561 0.548 0.551 0.554 0.553

Training accuracy 0.614 0.635 0.629 0.657 0.659 0.672 0.697 0.701 0.717

GF 1.150 1.216 1.213 1.294 1.287 1.378 1.482 1.492 1.579

F1-Score 0.51 0.46 0.46 0.45 0.39 0.41 0.43 0.46 0.42

HTEsm Testing accuracy 0.549 0.549 0.549 0.546 0.548 0.547 0.544 0.548 0.548

Training accuracy 0.603 0.606 0.629 0.625 0.648 0.657 0.681 0.706 0.717

GF 1.136 1.145 1.216 1.211 1.284 1.321 1.429 1.537 1.597

F1-Score 0.47 0.44 0.44 0.44 0.45 0.45 0.45 0.45 0.45

HTEdf Testing accuracy 0.556 0.556 0.555 0.557 0.556 0.555 0.557 0.559 0.559

Training accuracy 0.583 0.596 0.601 0.626 0.626 0.646 0.676 0.701 0.704

GF 1.065 1.126 1.099 1.185 1.219 1.257 1.367 1.474 1.490

F1-Score 0.44 0.46 0.46 0.45 0.46 0.46 0.46 0.46 0.46
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 346

Table A.10: Confusion Matrices of Ensembles on Skewed Class Distributions for Red Wine
Dataset

10-90%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.80 0 0.10 0 0 0.10
5 0.18 0.30 0.25 0.15 0.07 0.05
6 0.20 0.19 0.08 0.11 0.17 0.25
7 0 0.10 0.05 0.05 0.28 0.52
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.50 0.20 0.10 0 0
0.05 0.32 0.40 0.14 0.05 0.04
0.02 0.21 0.27 0.17 0.17 0.16

0 0.07 0.03 0.21 0.26 0.43
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 0 0 1.00 0 0
4 0.10 0.20 0.60 0.10 0 0
5 0.06 0.22 0.45 0.22 0.05 0
6 0.05 0.16 0.21 0.36 0.16 0.06
7 0 0.02 0.10 0.26 0.52 0.10
8 0 0.20 0 0 0.40 0.40

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0.10 0 0 0
0.03 0.30 0.49 0.15 0.03 0
0.02 0.22 0.18 0.32 0.20 0.06

0 0.10 0.07 0.36 0.31 0.16
0 0 0 0.20 0.60 0.20

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.40 0.50 0 0.10 0 0
5 0.03 0.31 0.46 0.15 0.04 0.01
6 0.04 0.25 0.18 0.21 0.20 0.12
7 0 0.07 0.02 0.15 0.38 0.38
8 0 0 0 0 0.40 0.60

NNE
3 4 5 6 7 8
0 0 1.00 0 0 0

0.10 0.70 0.20 0 0 0
0.02 0.24 0.48 0.21 0.05 0
0.02 0.14 0.15 0.36 0.28 0.05

0 0.02 0 0.12 0.67 0.19
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.80 0 0.10 0 0 0.10
5 0.18 0.31 0.24 0.15 0.07 0.05
6 0.20 0.18 0.08 0.11 0.16 0.27
7 0 0.10 0.05 0.04 0.29 0.52
8 0 0 0 0 0.40 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.50 0.20 0.10 0 0
0.03 0.22 0.44 0.21 0.07 0.03
0.01 0.18 0.26 0.21 0.17 0.17

0 0.07 0 0.14 0.34 0.45
0 0 0 0 0.60 0.40

DThte
3 4 5 6 7 8

3 0 0 0 1.00 0 0
4 0.10 0.40 0.50 0 0 0.0
5 0.04 0.25 0.45 0.21 0.05 0
6 0.02 0.22 0.14 0.40 0.16 0.06
7 0 0.05 0.02 0.19 0.55 0.19
8 0 0 0 0 0.80 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.70 0.20 0.10 0 0 0
0.06 0.36 0.47 0.05 0.05 0.01
0.04 0.35 0.18 0.14 0.14 0.15

0 0.10 0.05 0.07 0.31 0.47
0 0 0 0 0.60 0.40

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.10 0.60 0 0.30 0 0
5 0.02 0.23 0.47 0.26 0.02 0
6 0.02 0.14 0.16 0.48 0.12 0.08
7 0 0.05 0.02 0.36 0.40 0.17
8 0 0 0 0.40 0.20 0.40

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.10 0.50 0.20 0.20 0 0
0.01 0.15 0.53 0.27 0.03 0.01
0.01 0.10 0.15 0.50 0.17 0.07

0 0.05 0 0.14 0.67 0.14
0 0 0 0 0.50 0.50

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.30 0.50 0.20 0 0 0
5 0.05 0.22 0.47 0.19 0.05 0.02
6 0.02 0.17 0.18 0.30 0.23 0.10
7 0 0.07 0.02 0.12 0.45 0.34
8 0 0 0 0 0.40 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 347

15-85%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.80 0 0.10 0 0 0.10
5 0.21 0.29 0.24 0.10 0.12 0.04
6 0.22 0.15 0.10 0.08 0.15 0.30
7 0 0.10 0.02 0.05 0.31 0.52
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.60 0.10 0.10 0 0
0.07 0.34 0.42 0.10 0.04 0.03
0.03 0.24 0.27 0.18 0.13 0.15

0 0.07 0 0.24 0.29 0.40
0 0 0 0.20 0.60 0.40

DTE
3 4 5 6 7 8

3 0 0 1.00 0 0 0
4 0.10 0.30 0.40 0.10 0 0.10
5 0.06 0.28 0.34 0.23 0.05 0.04
6 0.05 0.21 0.18 0.27 0.21 0.08
7 0 0.07 0 0.26 0.50 0.17
8 0 0 0 0.20 0.40 0.40

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.40 0.10 0.10 0 0
0.05 0.30 0.49 0.13 0.02 0.01
0.03 0.21 0.24 0.27 0.20 0.05

0 0.10 0 0.29 0.40 0.21
0 0 0 0 1.00 0

SVME
3 4 5 6 7 8

3 0 1 0 0 0 0
4 0.40 0.50 0 0.10 0 0
5 0.04 0.36 0.39 0.17 0.04 0
6 0.04 0.29 0.14 0.23 0.19 0.11
7 0 0.05 0 0.14 0.33 0.48
8 0 0 0 0 0.40 0.60

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0
0 0.70 0.20 0.10 0 0

0.02 0.23 0.51 0.21 0.03 0
0.02 0.14 0.23 0.33 0.24 0.04

0 0.02 0 0.19 0.64 0.15
0 0 0 0 0.60 0.40

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.24 0.27 0.24 0.10 0.12 0.03
6 0.25 0.14 0.08 0.08 0.16 0.29
7 0 0.10 0.02 0.05 0.31 0.52
8 0 0 0 0 0.40 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.60 0 0.20 0 0
0.05 0.29 0.42 0.14 0.05 0.05
0.03 0.18 0.26 0.18 0.17 0.18

0 0.07 0 0.19 0.31 0.43
0 0 0 0 0.60 0.40

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.30 0.20 0.10 0 0.10
5 0.03 0.25 0.43 0.25 0.02 0.02
6 0.01 0.22 0.22 0.29 0.19 0.07
7 0 0.05 0 0.21 0.55 0.19
8 0 0 0 0 0.60 0.40

SVMhte
3 4 5 6 7 8

1.00 0 0 0 0 0
0.90 0 0 0.10 0 0
0.12 0.38 0.35 0.12 0.02 0.01
0.06 0.36 0.14 0.16 0.14 0.14

0 0.10 0 0.14 0.31 0.45
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.10 0.70 0.10 0 0 0.10
5 0.02 0.33 0.49 0.12 0.02 0.02
6 0.02 0.24 0.17 0.32 0.17 0.08
7 0 0.05 0 0.24 0.54 0.17
8 0 0 0 0.20 0.40 0.40

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.20 0.50 0.30 0 0 0
0.07 0.26 0.43 0.20 0.02 0.02
0.03 0.22 0.17 0.24 0.23 0.11

0 0.05 0 0.17 0.48 0.30
0 0 0 0 0.40 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.10 0.60 0.20 0.10 0 0
5 0.05 0.30 0.43 0.16 0.04 0.02
6 0.03 0.23 0.20 0.15 0.28 0.11
7 0 0.07 0 0.12 0.45 0.36
8 0 0 0 0 0.40 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 348

20-80%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.80 0 0.10 0 0 0.10
5 0.27 0.22 0.26 0.10 0.10 0.05
6 0.28 0.11 0.08 0.08 0.18 0.27
7 0.02 0.07 0.03 0.05 0.31 0.52
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.50 0.10 0.10 0 0
0.08 0.32 0.38 0.15 0.05 0.02
0.03 0.21 0.25 0.27 0.10 0.14

0 0.05 0 0.29 0.31 0.35
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 0 1.00 0 0 0
4 0.10 0.20 0.50 0.10 0.10 0
5 0.05 0.30 0.38 0.22 0.05 0
6 0.04 0.17 0.21 0.31 0.20 0.07
7 0 0.07 0.02 0.22 0.48 0.21
8 0 0 0 0 0.60 0.40

RF
3 4 5 6 7 8
0 0 0 1.00 0 0

0.30 0.30 0.20 0.20 0 0
0.06 0.25 0.42 0.23 0.02 0.02
0.04 0.17 0.20 0.34 0.20 0.05

0 0.05 0.02 0.33 0.43 0.17
0 0 0 0 0.60 0.40

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.60 0.30 0 0.10 0 0
5 0.05 0.30 0.44 0.15 0.05 0.01
6 0.03 0.25 0.17 0.23 0.20 0.12
7 0 0.05 0.02 0.10 0.43 0.40
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.10 0.70 0.20 0 0 0
0.02 0.20 0.55 0.21 0.02 0
0.02 0.13 0.23 0.38 0.20 0.04

0 0.02 0.02 0.19 0.60 0.17
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.40 0.40 0.10 0 0 0.10
5 0.08 0.27 0.37 0.18 0.05 0.05
6 0.11 0.21 0.10 0.20 0.19 0.19
7 0 0.07 0.02 0.10 0.29 0.52
8 0 0 0 0 0.60 0.40

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.50 0.20 0.10 0 0
0.07 0.24 0.39 0.18 0.07 0.05
0.03 0.17 0.24 0.22 0.17 0.16

0 0.05 0 0.24 0.33 0.38
0 0 0 0 0.60 0.40

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.20 0.40 0.10 0.10 0
5 0.03 0.23 0.48 0.24 0.02 0
6 0.03 0.19 0.16 0.34 0.23 0.05
7 0 0.07 0.02 0.21 0.48 0.22
8 0 0 0 0 0.80 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0.10 0 0
0.12 0.31 0.39 0.12 0.04 0.02
0.06 0.32 0.11 0.20 0.14 0.17

0 0.10 0 0.10 0.38 0.42
0 0 0 0 0.20 0.80

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.40 0.30 0.10 0 0
5 0.05 0.16 0.66 0.08 0.05 0
6 0.04 0.06 0.43 0.20 0.19 0.08
7 0 0.02 0.05 0.05 0.71 0.17
8 0 0 0 0.20 0.20 0.60

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.20 0.50 0.30 0 0 0
0.05 0.25 0.50 0.15 0.05 0
0.03 0.14 0.25 0.26 0.22 0.10

0 0.05 0.02 0.07 0.50 0.36
0 0 0 0 0.40 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.40 0.50 0 0.10 0 0
5 0.06 0.24 0.45 0.19 0.05 0.01
6 0.05 0.17 0.14 0.31 0.23 0.10
7 0 0.07 0.02 0.05 0.48 0.38
8 0 0 0 0 0.40 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 349

25-75%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0.10 0 0 0.10
5 0.34 0.21 0.23 0.07 0.10 0.05
6 0.30 0.10 0.10 0.06 0.15 0.29
7 0.02 0.07 0.02 0.08 0.29 0.52
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.40 0.20 0.10 0 0
0.08 0.28 0.42 0.17 0.03 0.02
0.03 0.21 0.25 0.23 0.14 0.14

0 0.07 0.05 0.17 0.38 0.33
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.30 0.20 0.20 0 0
5 0.05 0.25 0.48 0.17 0.03 0.02
6 0.04 0.20 0.25 0.26 0.19 0.06
7 0.02 0.07 0.05 0.29 0.36 0.21
8 0 0 0 0.20 0.80 0

RF
3 4 5 6 7 8
0 0 0 1.00 0 0

0.40 0.40 0.20 0 0 0
0.07 0.27 0.48 0.15 0.03 0
0.07 0.17 0.24 0.28 0.19 0.05

0 0.07 0.05 0.14 0.60 0.14
0 0 0 0.20 0.80 0

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.60 0.10 0 0 0
5 0.04 0.33 0.46 0.12 0.04 0.01
6 0.05 0.28 0.18 0.18 0.17 0.14
7 0 0.07 0.05 0.02 0.43 0.43
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 0 1.00 0 0 0
0 0.50 0.40 0.10 0 0

0.02 0.19 0.53 0.20 0.06 0
0.03 0.11 0.20 0.33 0.28 0.05

0 0 0 0.14 0.60 0.26
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.36 0.19 0.23 0.07 0.10 0.05
6 0.34 0.08 0.09 0.06 0.14 0.19
7 0.05 0.07 0.02 0.05 0.29 0.52
8 0 0 0 0 0.60 0.40

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.50 0.30 0.30 0 0
0.06 0.23 0.46 0.17 0.05 0.03
0.03 0.16 0.20 0.21 0.20 0.20

0 0.05 0.02 0.22 0.26 0.45
0 0 0 0 0.60 0.40

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.40 0.20 0.10 0 0.0
5 0.06 0.20 0.55 0.18 0.01 0
6 0.04 0.17 0.23 0.27 0.23 0.06
7 0 0.05 0 0.24 0.57 0.14
8 0 0 0 0.20 0.60 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0.10 0
0.10 0.42 0.35 0.07 0.04 0.02
0.06 0.36 0.16 0.10 0.18 0.14

0 0.10 0.04 0 0.36 0.50
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.50 0.20 0 0 0.10
5 0.08 0.22 0.53 0.12 0.03 0.02
6 0.05 0.11 0.25 0.24 0.25 0.10
7 0 0.05 0.02 0.05 0.64 0.24
8 0 0 0 0.20 0.40 0.40

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.30 0.50 0.10 0.10 0 0
0.04 0.25 0.49 0.16 0.04 0.02
0.04 0.20 0.16 0.25 0.24 0.11

0 0.05 0.02 0.07 0.40 0.46
0 0 0 0 0.40 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.20 0.60 0.20 0 0 0
5 0.06 0.31 0.44 0.13 0.05 0.01
6 0.05 0.20 0.23 0.25 0.17 0.10
7 0 0.05 0 0.07 0.48 0.40
8 0 0 0 0 0.40 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 350

30-70%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.31 0.16 0.25 0.15 0.10 0.03
6 0.32 0.07 0.10 0.08 0.16 0.27
7 0.02 0.07 0.05 0.07 0.26 0.53
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0 0.10 0 0
0.08 0.28 0.42 0.12 0.05 0.05
0.03 0.20 0.25 0.23 0.14 0.15

0 0.07 0.07 0.31 0.21 0.34
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.10 0.20 0.50 0.10 0.10 0
5 0.04 0.29 0.38 0.22 0.07 0
6 0.02 0.23 0.22 0.30 0.17 0.06
7 0 0.05 0.12 0.29 0.38 0.16
8 0 0 0 0.20 0.60 0.20

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.60 0.20 0 0 0
0.05 0.28 0.44 0.21 0.01 0.01
0.07 0.16 0.25 0.26 0.23 0.03

0 0.07 0.07 0.26 0.55 0.05
0 0 0 0.40 0.40 0.20

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.60 0.10 0.10 0 0
5 0.03 0.34 0.44 0.15 0.03 0.01
6 0.04 0.28 0.20 0.19 0.14 0.15
7 0 0.07 0.04 0.10 0.36 0.43
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 0 1.00 0 0 0

0.10 0.80 0.10 0 0 0
0.02 0.32 0.45 0.14 0.07 0
0.04 0.20 0.12 0.27 0.32 0.05

0 0.02 0.03 0.05 0.67 0.23
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.39 0.14 0.25 0.10 0.10 0.02
6 0.37 0.06 0.08 0.08 0.14 0.27
7 0.05 0.07 0.05 0.05 0.26 0.52
8 0 0 0 0 0.40 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.60 0 0.10 0 0
0.05 0.26 0.46 0.12 0.06 0.05
0.04 0.14 0.27 0.23 0.12 0.20

0 0.07 0.02 0.26 0.29 0.36
0 0 0 0.2 0.60 0.40

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.40 0.20 0.10 0 0.0
5 0.05 0.28 0.39 0.20 0.08 0
6 0.02 0.17 0.22 0.28 0.24 0.07
7 0 0.05 0.07 0.10 0.64 0.14
8 0 0 0 0 0.80 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0 0.10
0.10 0.33 0.37 0.13 0.05 0.02
0.06 0.29 0.14 0.17 0.17 0.17

0 0.10 0.05 0.02 0.33 0.50
0 0 0 0 0.20 0.80

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.40 0.50 0.10 0 0 0
5 0.10 0.34 0.35 0.13 0.07 0.01
6 0.06 0.22 0.12 0.22 0.33 0.05
7 0 0.02 0.07 0.02 0.72 0.17
8 0 0 0 0 0.60 0.40

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.10 0.60 0.30 0 0 0
0.04 0.29 0.46 0.15 0.05 0.01
0.02 0.18 0.26 0.17 0.27 0.10

0 0.07 0.02 0.17 0.45 0.29
0 0 0 0.20 0.20 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.10 0.60 0.10 0.20 0 0
5 0.05 0.28 0.47 0.16 0.02 0.02
6 0.05 0.20 0.17 0.25 0.20 0.13
7 0 0.05 0.02 0.14 0.45 0.34
8 0 0 0 0 0.40 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 351

35-65%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.29 0.22 0.24 0.10 0.01 0.05
6 0.32 0.09 0.09 0.09 0.13 0.28
7 0.02 0.07 0.05 0.07 0.26 0.52
8 0 0 0 0.40 0 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0 0.10 0 0
0.08 0.29 0.41 0.14 0.03 0.05
0.05 0.20 0.30 0.17 0.14 0.15

0 0.07 0.02 0.22 0.26 0.43
0 0 0 0.20 0.40 0.40

DTE
3 4 5 6 7 8

3 0 0 0 1.00 0 0
4 0.20 0.20 0.30 0.20 0.10 0
5 0.06 0.30 0.31 0.29 0.03 0.01
6 0.06 0.17 0.20 0.32 0.21 0.04
7 0 0.05 0.02 0.26 0.55 0.12
8 0 0 0 0.20 0.60 0.20

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.30 0.20 0.10 0 0
0.07 0.32 0.44 0.14 0.02 0.01
0.07 0.21 0.21 0.21 0.24 0.06

0 0.10 0.05 0.16 0.50 0.19
0 0 0 0.20 0.60 0.20

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.70 0.10 0 0 0
5 0.03 0.32 0.47 0.12 0.04 0.02
6 0.04 0.27 0.20 0.18 0.15 0.16
7 0 0.07 0.05 0.05 0.38 0.45
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.10 0.70 0.20 0 0 0
0.02 0.27 0.51 0.15 0.05 0
0.03 0.20 0.16 0.30 0.24 0.07

0 0.05 0.05 0.02 0.64 0.24
0 0 0 0.40 0.40 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.42 0.15 0.26 0.05 0.08 0.04
6 0.39 0.06 0.08 0.07 0.13 0.27
7 0.07 0.07 0.05 0.05 0.24 0.52
8 0 0 0 0.40 0 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.3 0.50 0.10 0.10 0 0
0.08 0.21 0.45 0.16 0.04 0.06
0.04 0.16 0.25 0.23 0.15 0.17

0 0.07 0.02 0.19 0.24 0.48
0 0 0 0 0.40 0.60

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.20 0.30 0.20 0.10 0
5 0.08 0.32 0.41 0.16 0.03 0
6 0.07 0.16 0.20 0.29 0.25 0.03
7 0 0.05 0.02 0.26 0.53 0.14
8 0 0 0 0.20 0.40 0.40

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0.10 0
0.08 0.39 0.38 0.08 0.05 0.02
0.07 0.35 0.17 0.08 0.17 0.16

0 0.10 0.07 0.02 0.31 0.50
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.50 0.40 0 0.10 0 0
5 0.10 0.26 0.42 0.11 0.10 0.01
6 0.06 0.24 0.11 0.21 0.29 0.09
7 0 0.05 0 0.02 0.64 0.29
8 0 0 0 0 0.40 0.60

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.20 0.60 0.10 0.10 0 0
0.08 0.33 0.35 0.19 0.03 0.02
0.09 0.20 0.17 0.25 0.18 0.11

0 0.05 0 0.14 0.38 0.43
0 0 0 0.20 0.20 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.30 0.60 0 0.10 0 0
5 0.08 0.28 0.39 0.20 0.03 0.02
6 0.08 0.16 0.21 0.28 0.18 0.09
7 0 0.07 0 0.12 0.48 0.33
8 0 0 0 0 0.40 0.60

Stellenbosch University https://scholar.sun.ac.za



Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 352

40-60%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.34 0.21 0.25 0.07 0.08 0.05
6 0.33 0.09 0.09 0.09 0.13 0.27
7 0.02 0.07 0.05 0.07 0.26 0.53
8 0 0 0 0.40 0 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.40 0.30 0 0 0
0.09 0.25 0.43 0.19 0.02 0.02
0.05 0.18 0.33 0.11 0.17 0.16

0 0.05 0.05 0.21 0.29 0.40
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.10 0 0.60 0.20 0.10 0
5 0.08 0.27 0.46 0.18 0.01 0
6 0.03 0.23 0.29 0.20 0.18 0.07
7 0 0.10 0.09 0.19 0.50 0.12
8 0 0 0 0.20 0.40 0.40

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.20 0.20 0.10 0 0.10
0.08 0.30 0.43 0.16 0.02 0.01
0.05 0.18 0.20 0.36 0.17 0.04
0.02 0.07 0.05 0.19 0.55 0.12

0 0 0 0.40 0.40 0.20
SVME

3 4 5 6 7 8
3 0 1.00 0 0 0 0
4 0.30 0.60 0.10 0 0 0
5 0.03 0.31 0.49 0.11 0.04 0.02
6 0.04 0.27 0.24 0.12 0.18 0.15
7 0 0.07 0.05 0 0.45 0.43
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.10 0.50 0.40 0 0 0
0.02 0.27 0.52 0.15 0.04 0
0.03 0.15 0.23 0.28 0.24 0.07

0 0.02 0.05 0.07 0.55 0.31
0 0 0 0.20 0.60 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.44 0.15 0.25 0.05 0.06 0.05
6 0.43 0.06 0.08 0.06 0.10 0.27
7 0.07 0.07 0.05 0.05 0.24 0.52
8 0 0 0 0.40 0 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.20 0.50 0.30 0 0 0
0.07 0.19 0.50 0.14 0.06 0.04
0.04 0.13 0.27 0.22 0.14 0.20

0 0.05 0.05 0.16 0.24 0.50
0 0 0 0 0.40 0.60

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.10 0.40 0.10 0.10 0
5 0.07 0.26 0.45 0.20 0.01 0.01
6 0.04 0.23 0.23 0.27 0.18 0.05
7 0 0.07 0.05 0.26 0.41 0.21
8 0 0 0 0 0.80 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0.10 0
0.13 0.38 0.36 0.06 0.05 0.02
0.08 0.36 0.16 0.08 0.17 0.15

0 0.10 0.07 0 0.33 0.50
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.40 0.50 0.10 0 0 0
5 0.12 0.21 0.50 0.10 0.06 0.01
6 0.06 0.15 0.25 0.24 0.22 0.08
7 0.02 0.05 0.05 0.14 0.45 0.29
8 0 0 0 0.20 0.40 0.40

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.20 0.60 0.20 0 0 0
0.05 0.34 0.40 0.15 0.02 0.04
0.04 0.17 0.23 0.20 0.27 0.09

0 0.05 0.02 0.09 0.55 0.29
0 0 0 0 0.40 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.30 0.60 0.10 0 0 0
5 0.11 0.27 0.40 0.16 0.04 0.02
6 0.06 0.16 0.23 0.19 0.27 0.09
7 0 0.05 0.02 0.05 0.38 0.50
8 0 0 0 0.40 0 0.60
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 353

45-55%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.35 0.23 0.21 0.08 0.08 0.05
6 0.33 0.12 0.05 0.08 0.18 0.24
7 0.05 0.07 0.02 0.07 0.26 0.53
8 0 0 0 0.20 0.20 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0 0.10 0 0
0.09 0.33 0.35 0.17 0.03 0.03
0.05 0.20 0.24 0.26 0.10 0.15

0 0.07 0.05 0.24 0.26 0.38
0 0 0 0.20 0.20 0.60

DTE
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.50 0.20 0.10 0 0
5 0.11 0.29 0.38 0.19 0.02 0.01
6 0.06 0.17 0.26 0.26 0.19 0.06
7 0 0.05 0.02 0.29 0.45 0.19
8 0 0 0 0.20 0.60 0.20

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.60 0 0 0.10 0
0.08 0.32 0.45 0.09 0.04 0.02
0.05 0.25 0.20 0.21 0.20 0.09

0 0.07 0.02 0.29 0.36 0.26
0 0 0 0.20 0.40 0.40

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.60 0.10 0 0 0
5 0.04 0.39 0.42 0.09 0.04 0.02
6 0.04 0.30 0.17 0.16 0.19 0.14
7 0 0.07 0.05 0.05 0.38 0.45
8 0 0 0 0 0.20 0.80

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.50 0.20 0 0 0
0.05 0.26 0.50 0.14 0.04 0.01
0.04 0.19 0.16 0.29 0.24 0.08

0 0.05 0.02 0.10 0.57 0.26
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.47 0.18 0.21 0.04 0.06 0.04
6 0.44 0.08 0.05 0.07 0.13 0.23
7 0.10 0.07 0.02 0.05 0.24 0.52
8 0 0 0 0 0.40 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0 0.10 0 0
0.08 0.28 0.36 0.20 0.05 0.03
0.04 0.13 0.23 0.30 0.14 0.16

0 0.05 0 0.16 0.24 0.55
0 0 0 0 0.40 0.60

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.20 0.20 0.20 0.10 0
5 0.09 0.25 0.46 0.17 0.02 0.01
6 0.05 0.16 0.24 0.27 0.24 0.04
7 0 0.02 0.10 0.17 0.50 0.21
8 0 0 0 0.20 0.60 0.20

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0 0.10
0.09 0.50 0.31 0.05 0.03 0.02
0.07 0.38 0.14 0.10 0.17 0.14

0 0.09 0.07 0.05 0.29 0.50
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.50 0.20 0 0 0
5 0.07 0.23 0.52 0.13 0.05 0
6 0.04 0.13 0.28 0.29 0.19 0.07
7 0 0.02 0.12 0.14 0.50 0.22
8 0 0 0 0 0.40 0.60

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.30 0.60 0 0 0.10 0
0.11 0.29 0.36 0.17 0.05 0.02
0.07 0.15 0.22 0.19 0.26 0.11

0 0.07 0 0.17 0.40 0.36
0 0 0 0.20 0.20 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.26 0.64 0 0.10 0 0
5 0.15 0.26 0.36 0.16 0.05 0.02
6 0.09 0.14 0.18 0.26 0.22 0.11
7 0 0.05 0 0.12 0.45 0.38
8 0 0 0 0.20 0.18 0.62
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 354

50-50%

NBE
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.37 0.19 0.26 0.05 0.08 0.05
6 0.33 0.09 0.10 0.05 0.16 0.27
7 0.05 0.07 0.02 0.07 0.26 0.53
8 0 0 0 0 0.40 0.60

kNNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0.10 0 0 0
0.14 0.25 0.39 0.16 0.02 0.04
0.05 0.21 0.28 0.20 0.12 0.14

0 0.07 0 0.33 0.24 0.36
0 0 0 0 0.60 0.40

DTE
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.20 0.60 0 0.10 0.10 0
5 0.04 0.29 0.39 0.22 0.06 0
6 0.04 0.16 0.25 0.28 0.20 0.07
7 0 0.02 0.05 0.40 0.36 0.17
8 0 0 0.20 0.40 0.20 0.20

RF
3 4 5 6 7 8
0 1.00 0 0 0 0

0.50 0.40 0 0.10 0 0
0.08 0.28 0.43 0.13 0.07 0.01
0.04 0.24 0.24 0.25 0.17 0.06

0 0.10 0.02 0.26 0.43 0.19
0 0 0.20 0 0.80 0

SVME
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.30 0.60 0 0.10 0 0
5 0.03 0.34 0.43 0.13 0.05 0.02
6 0.04 0.32 0.14 0.18 0.17 0.15
7 0 0.07 0.02 0.05 0.38 0.48
8 0 0 0 0 0.40 0.60

NNE
3 4 5 6 7 8
0 1.00 0 0 0 0

0.30 0.60 0.10 0 0 0
0.02 0.27 0.57 0.09 0.05 0
0.04 0.19 0.23 0.23 0.24 0.07

0 0.05 0.02 0.05 0.64 0.24
0 0 0 0 0.80 0.20

NBhte
3 4 5 6 7 8

3 1.00 0 0 0 0 0
4 0.90 0 0 0 0 0.10
5 0.55 0.11 0.22 0.03 0.05 0.04
6 0.48 0.05 0.08 0.04 0.11 0.24
7 0.10 0.05 0.02 0.05 0.26 0.52
8 0 0 0 0 0.40 0.60

kNNhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.40 0.50 0.10 0 0 0
0.11 0.17 0.46 0.18 0.04 0.04
0.05 0.14 0.23 0.27 0.14 0.17

0 0.07 0 0.24 0.24 0.45
0 0 0 0 0.40 0.60

DThte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.40 0.40 0.10 0 0.10 0
5 0.07 0.26 0.43 0.18 0.05 0.01
6 0.05 0.16 0.24 0.26 0.21 0.08
7 0 0 0.05 0.28 0.48 0.19
8 0 0 0 0.20 0.40 0.40

SVMhte
3 4 5 6 7 8
0 1.00 0 0 0 0

0.60 0.30 0 0 0.10 0
0.1 0.26 0.48 0.09 0.04 0.03

0.08 0.26 0.26 0.08 0.15 0.17
0 0.09 0.05 0.05 0.31 0.50
0 0 0 0 0.40 0.60

NNhte
3 4 5 6 7 8

3 0 1.00 0 0 0 0
4 0.40 0.50 0 0.10 0 0
5 0.11 0.27 0.44 0.14 0.04 0
6 0.07 0.22 0.18 0.24 0.21 0.08
7 0.02 0.10 0.02 0.09 0.48 0.29
8 0 0 0 0.20 0.20 0.60

HTEsm
3 4 5 6 7 8

0.10 0.90 0 0 0 0
0.30 0.60 0 0 0.10 0
0.06 0.24 0.46 0.17 0.05 0.02
0.05 0.16 0.21 0.22 0.23 0.13

0 0.02 0.02 0.22 0.36 0.38
0 0 0 0 0.40 0.60

HTEdf
3 4 5 6 7 8

3 0.10 0.90 0 0 0 0
4 0.25 0.65 0.10 0 0 0
5 0.08 0.25 0.39 0.18 0.07 0.03
6 0.08 0.15 0.23 0.18 0.23 0.13
7 0 0.07 0 0.17 0.38 0.38
8 0 0 0 0 0.38 0.62
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 355

Car Evaluation Dataset

Table A.11: Ensemble Performance on Skewed Class Distributions for Car Evaluation
Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809

Training accuracy 0.887 0.885 0.870 0.867 0.875 0.859 0.853 0.834 0.840

GF 1.690 1.661 1.469 1.436 1.528 1.355 1.299 1.151 1.194

F1-Score 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

kNNE Testing accuracy 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846

Training accuracy 0.887 0.886 0.849 0.868 0.865 0.866 0.868 0.865 0.877

GF 1.363 1.351 1.020 1.167 1.141 1.149 1.167 1.141 1.252

F1-Score 0.81 0.78 0.80 0.79 0.77 0.75 0.75 0.75 0.76

DTE Testing accuracy 0.922 0.922 0.924 0.921 0.924 0.921 0.925 0.924 0.926

Training accuracy 0.936 0.936 0.925 0.941 0.937 0.931 0.936 0.935 0.944

GF 1.219 1.219 1.013 1.339 1.206 1.145 1.172 1.169 1.321

F1-Score 0.82 0.87 0.91 0.87 0.90 0.92 0.92 0.91 0.87

RF Testing accuracy 0.884 0.880 0.876 0.894 0.878 0.881 0.880 0.884 0.891

Training accuracy 0.953 0.945 0.938 0.941 0.948 0.942 0.938 0.931 0.936

GF 2.468 2.182 2.000 1.797 2.346 2.052 1.935 1.681 1.703

F1-Score 0.81 0.90 0.88 0.89 0.85 0.86 0.85 0.76 0.83

SVME Testing accuracy 0.872 0.873 0.871 0.872 0.872 0.870 0.871 0.871 0.870

Training accuracy 0.973 0.966 0.966 0.959 0.959 0.949 0.950 0.952 0.956

GF 4.741 3.735 3.794 3.122 3.122 2.549 2.580 2.687 2.955

F1-Score 0.90 0.91 0.93 0.93 0.93 0.92 0.93 0.94 0.93

NNE Testing accuracy 0.952 0.953 0.951 0.954 0.950 0.955 0.951 0.950 0.953

Training accuracy 0.987 0.982 0.978 0.978 0.976 0.969 0.967 0.956 0.958

GF 3.692 2.611 2.227 2.091 2.083 1.452 1.485 1.136 1.119

F1-Score 0.95 0.95 0.98 0.97 0.96 0.94 0.97 0.98 0.95
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 356

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809

Training accuracy 0.904 0.886 0.871 0.867 0.875 0.859 0.853 0.834 0.840

GF 1.990 1.675 1.481 1.436 1.528 1.355 1.299 1.151 1.194

F1-Score 0.86 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

kNNhte Testing accuracy 0.852 0.852 0.852 0.852 0.852 0.852 0.852 0.852 0.852

Training accuracy 0.899 0.887 0.858 0.871 0.878 0.874 0.891 0.888 0.891

GF 1.465 1.310 1.042 1.147 1.213 1.175 1.358 1.321 1.358

F1-Score 0.79 0.78 0.79 0.78 0.77 0.76 0.75 0.75 0.75

DThte Testing accuracy 0.938 0.932 0.933 0.935 0.936 0.935 0.935 0.935 0.934

Training accuracy 0.954 0.963 0.942 0.957 0.950 0.945 0.948 0.942 0.946

GF 1.348 1.838 1.155 1.512 1.280 1.182 1.250 1.121 1.222

F1-Score 0.84 0.91 0.91 0.93 0.92 0.92 0.93 0.92 0.88

SVMhte Testing accuracy 0.903 0.901 0.903 0.900 0.903 0.903 0.903 0.904 0.904

Training accuracy 0.955 0.939 0.916 0.921 0.928 0.922 0.925 0.925 0.939

GF 2.156 1.623 1.155 1.266 1.347 1.244 1.293 1.280 1.574

F1-Score 0.92 0.90 0.88 0.91 0.88 0.88 0.88 0.89 0.86

NNhte Testing accuracy 0.947 0.950 0.951 0.949 0.950 0.951 0.944 0.948 0.945

Training accuracy 0.985 0.981 0.974 0.977 0.976 0.965 0.966 0.952 0.958

GF 3.533 2.632 1.885 2.217 2.083 1.400 1.647 1.083 1.310

F1-Score 0.93 0.95 0.98 0.97 0.96 0.94 0.97 0.98 0.95

HTEsm Testing accuracy 0.952 0.949 0.953 0.953 0.953 0.951 0.951 0.951 0.951

Training accuracy 0.972 0.967 0.958 0.960 0.962 0.952 0.953 0.949 0.958

GF 1.714 1.545 1.119 1.175 1.237 1.021 1.043 0.961 1.167

F1-Score 0.94 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95

HTEdf Testing accuracy 0.954 0.955 0.955 0.956 0.957 0.956 0.953 0.952 0.956

Training accuracy 0.977 0.973 0.965 0.966 0.966 0.955 0.956 0.952 0.957

GF 2.000 1.667 1.286 1.294 1.265 0.978 1.068 1.000 1.023

F1-Score 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 357

Table A.12: Confusion Matrices of Ensembles on Skewed Class Distributions for Car
Evaluation Dataset

10-90%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.42 0.35 0.06 0.17

0 0.82 0 0.18

0.03 0.04 0.91 0.02

0 0.24 0 0.76

DTE

0 1 2 3

0.41 0.24 0.27 0.08

0 0.91 0 0.09

0.03 0.01 0.96 0

0 0.18 0 0.82

RF

0 1 2 3

0 0.31 0.31 0.23 0.15

1 0 0.91 0 0.09

2 0.01 0 0.99 0

3 0 0 0 1.00

SVME

0 1 2 3

0.64 0.05 0.31 0

0 0.82 0.09 0.09

0 0 1.00 0

0.06 0.06 0 0.88

NNE

0 1 2 3

0.79 0.11 0.1 0

0 0.91 0 0.09

0 0 1.0 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.71 0.21 0.01 0.07

1 0 0.82 0 0.18

2 0.11 0 0.89 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.29 0.41 0.07 0.23

0 0.82 0 0.18

0.01 0.02 0.95 0.02

0 0.18 0 0.82

DThte

0 1 2 3

0.46 0.24 0.19 0.11

0 0.91 0 0.09

0.03 0 0.97 0

0 0.12 0 0.88

SVMhte

0 1 2 3

0 0.78 0.15 0.02 0.05

1 0 0.91 0 0.09

2 0.04 0 0.96 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.72 0.10 0.17 0.01

0 0.91 0 0.09

0 0 1.00 0

0 0.06 0 0.94

HTEsm

0 1 2 3

0.74 0.16 0.08 0.02

0 0.92 0 0.08

0.01 0 0.99 0

0 0.06 0 1.00

HTEdf

0 1 2 3

0 0.75 0.17 0.06 0.02

1 0 0.94 0 0.06

2 0.02 0 0.98 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 358

15-85%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.43 0.35 0.05 0.17

0 0.82 0.09 0.09

0.08 0.04 0.86 0.02

0 0.18 0 0.82

DTE

0 1 2 3

0.7 0.18 0.08 0.04

0 0.91 0 0.09

0.09 0 0.91 0

0 0 0 1.00

RF

0 1 2 3

0 0.66 0.20 0.10 0.04

1 0 0.91 0 0.09

2 0.02 0.01 0.97 0

3 0 0.12 0 0.88

SVME

0 1 2 3

0.74 0.08 0.18 0

0 0.82 0.09 0.09

0.02 0 0.98 0

0.06 0.06 0 0.88

NNE

0 1 2 3

0.85 0.10 0.05 0

0 0.91 0 0.09

0.01 0 0.99 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.36 0.35 0.07 0.22

0 0.82 0.09 0.09

0.07 0.03 0.88 0.02

0 0.12 0 0.88

DThte

0 1 2 3

0.77 0.17 0.02 0.04

0 0.91 0 0.09

0.05 0 0.95 0

0 0.06 0 0.94

SVMhte

0 1 2 3

0 0.78 0.15 0.01 0.06

1 0 0.91 0 0.09

2 0.08 0 0.92 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.87 0.07 0.06 0

0 0.91 0 0.09

0.01 0 0.99 0

0.06 0.06 0 0.88

HTEsm

0 1 2 3

0.77 0.17 0.02 0.04

0 0.92 0 0.08

0.04 0 0.96 0

0 0 0 1.00

HTEdf

0 1 2 3

0 0.80 0.14 0.02 0.04

1 0 0.94 0 0.06

2 0.01 0 0.99 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 359

20-80%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.48 0.35 0.01 0.16

0 0.82 0 0.18

0.08 0.02 0.88 0.02

0 0.24 0 0.76

DTE

0 1 2 3

0.75 0.17 0.05 0.03

0 0.91 0 0.09

0.05 0 0.95 0

0 0 0 1.00

RF

0 1 2 3

0 0.71 0.19 0.01 0.09

1 0 0.82 0 0.18

2 0.08 0 0.92 0

3 0 0.06 0 0.94

SVME

0 1 2 3

0.84 0.06 0.10 0

0.09 0.82 0 0.09

0.03 0 0.97 0

0.12 0.12 0 0.76

NNE

0 1 2 3

0.94 0.04 0.02 0

0 0.91 0 0.09

0.01 0 0.99 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.43 0.34 0.01 0.22

0 0.82 0 0.18

0.09 0.02 0.88 0.01

0 0.29 0 0.71

DThte

0 1 2 3

0.77 0.17 0.04 0.02

0 0.91 0 0.09

0.04 0 0.96 0

0.06 0.06 0 0.88

SVMhte

0 1 2 3

0 0.80 0.14 0 0.06

1 0 0.91 0 0.09

2 0.11 0 0.89 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.94 0.04 0.02 0

0 0.91 0 0.09

0 0 1.00 0

0 0 0 1.00

HTEsm

0 1 2 3

0.78 0.18 0 0.04

0 0.92 0 0.08

0.03 0 0.97 0

0 0 0 1.00

HTEdf

0 1 2 3

0 0.84 0.12 0 0.04

1 0 0.94 0 0.06

2 0.02 0 0.98 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 360

25-75%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.48 0.34 0 0.18

0 0.82 0 0.18

0.09 0.04 0.85 0.02

0 0.18 0 0.82

DTE

0 1 2 3

0.84 0.11 0.03 0.02

0 0.91 0 0.09

0.08 0.02 0.87 0.03

0 0.18 0 0.82

RF

0 1 2 3

0 0.70 0.17 0.02 0.11

1 0.09 0.82 0 0.09

2 0.06 0 0.94 0

3 0 0.06 0 0.94

SVME

0 1 2 3

0.89 0.05 0.06 0

0.09 0.82 0 0.09

0.03 0 0.97 0

0.12 0.12 0 0.76

NNE

0 1 2 3

0.92 0.06 0.01 0.01

0 0.91 0 0.09

0.01 0 0.99 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.46 0.33 0.01 0.20

0 0.82 0 0.18

0.1 0.03 0.85 0.02

0 0.12 0 0.88

DThte

0 1 2 3

0.89 0.11 0 0

0 0.91 0 0.09

0.03 0.01 0.93 0.03

0 0.06 0 0.94

SVMhte

0 1 2 3

0 0.78 0.15 0 0.07

1 0 0.91 0 0.09

2 0.07 0 0.93 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.92 0.06 0.01 0.01

0 0.91 0 0.09

0 0 0.99 0.01

0 0.06 0 0.94

HTEsm

0 1 2 3

0.88 0.08 0 0.04

0 0.92 0 0.08

0.05 0 0.95 0

0 0.06 0 0.94

HTEdf

0 1 2 3

0 0.89 0.10 0 0.01

1 0 0.94 0 0.06

2 0.02 0 0.98 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 361

30-70%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.48 0.34 0.01 0.17

0 0.82 0 0.18

0.13 0.03 0.82 0.02

0 0.29 0 0.71

DTE

0 1 2 3

0.84 0.11 0.03 0.02

0 0.91 0 0.09

0.09 0 0.91 0

0 0 0 1.00

RF

0 1 2 3

0 0.80 0.14 0 0.06

1 0 0.82 0 0.18

2 0.13 0.01 0.86 0

3 0.06 0.12 0 0.82

SVME

0 1 2 3

0.89 0.05 0.06 0

0.09 0.82 0 0.09

0.04 0 0.96 0

0.12 0.12 0 0.76

NNE

0 1 2 3

0.91 0.07 0.01 0.01

0 0.91 0 0.09

0.03 0 0.97 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.47 0.31 0.01 0.21

0 0.82 0 0.18

0.12 0.02 0.83 0.03

0 0.24 0 0.76

DThte

0 1 2 3

0.88 0.11 0.01 0

0 0.91 0 0.09

0.07 0 0.93 0

0 0 0 1.00

SVMhte

0 1 2 3

0 0.78 0.15 0 0.07

1 0 0.91 0 0.09

2 0.10 0 0.9 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.93 0.05 0.02 0

0 0.91 0 0.09

0.02 0 0.97 0.01

0 0 0 1.00

HTEsm

0 1 2 3

0.88 0.08 0 0.04

0 0.92 0 0.08

0.11 0 0.89 0

0 0 0 1.00

HTEdf

0 1 2 3

0 0.89 0.10 0 0.01

1 0 0.95 0 0.05

2 0.06 0 0.94 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 362

35-65%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.53 0.33 0 0.14

0.09 0.73 0 0.18

0.17 0.03 0.78 0.02

0.06 0.29 0 0.65

DTE

0 1 2 3

0.87 0.11 0 0.02

0 0.91 0 0.09

0.08 0 0.92 0

0 0 0 1.00

RF

0 1 2 3

0 0.87 0.11 0 0.02

1 0 0.82 0 0.18

2 0.12 0.02 0.84 0.02

3 0 0.06 0 0.94

SVME

0 1 2 3

0.90 0.06 0.04 0

0.09 0.82 0 0.09

0.06 0 0.94 0

0.12 0.06 0 0.82

NNE

0 1 2 3

0.92 0.06 0.02 0

0 0.91 0 0.09

0.04 0.01 0.95 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.53 0.29 0.01 0.17

0 0.73 0 0.27

0.15 0.02 0.80 0.03

0 0.29 0 0.71

DThte

0 1 2 3

0.90 0.10 0 0

0.18 0.82 0 0

0.08 0 0.92 0

0.06 0 0 0.94

SVMhte

0 1 2 3

0 0.81 0.14 0 0.05

1 0 0.82 0 0.18

2 0.11 0 0.88 0.01

3 0 0 0 1.00

NNhte

0 1 2 3

0.89 0.07 0.04 0

0 0.91 0 0.09

0.03 0 0.96 0.01

0 0 0 1.00

HTEsm

0 1 2 3

0.9 0.09 0 0.01

0 0.92 0 0.08

0.09 0 0.91 0

0 0 0 1.00

HTEdf

0 1 2 3

0 0.92 0.08 0 0

1 0 0.95 0 0.05

2 0.07 0 0.93 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 363

40-60%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.64 0.28 0 0.08

0 0.91 0 0.09

0.22 0.02 0.74 0.02

0.12 0.23 0 0.65

DTE

0 1 2 3

0.88 0.07 0.03 0.02

0 0.91 0 0.09

0.07 0 0.93 0

0 0 0 1.00

RF

0 1 2 3

0 0.88 0.10 0.01 0.01

1 0 0.91 0 0.09

2 0.18 0.02 0.80 0

3 0 0 0 1.00

SVME

0 1 2 3

0.88 0.06 0.06 0

0.09 0.82 0 0.09

0.04 0 0.96 0

0.06 0.06 0 0.88

NNE

0 1 2 3

0.96 0.03 0.01 0

0 0.91 0 0.09

0.02 0 0.98 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.65 0.25 0 0.10

0 0.82 0 0.18

0.23 0.02 0.73 0.02

0.06 0.29 0 0.65

DThte

0 1 2 3

0.87 0.12 0.01 0

0.09 0.91 0 0

0.06 0 0.94 0

0.06 0.12 0 0.82

SVMhte

0 1 2 3

0 0.81 0.14 0 0.05

1 0 0.82 0 0.18

2 0.11 0 0.89 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.95 0.04 0.01 0

0 0.91 0 0.09

0.04 0 0.96 0

0 0 0 1.00

HTEsm

0 1 2 3

0.88 0.09 0.01 0.02

0 0.92 0 0.08

0.09 0 0.91 0

0 0 0 1.00

HTEdf

0 1 2 3

0 0.90 0.09 0 0.01

1 0 0.95 0 0.05

2 0.06 0 0.94 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 364

45-55%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.65 0.24 0 0.11

0.09 0.73 0 0.18

0.23 0.02 0.73 0.02

0 0.24 0 0.76

DTE

0 1 2 3

0.88 0.09 0.01 0.02

0 0.91 0 0.09

0.09 0 0.91 0

0.06 0.12 0 0.82

RF

0 1 2 3

0 0.89 0.11 0 0

1 0 0.91 0 0.09

2 0.29 0.01 0.68 0.02

3 0 0.06 0 0.94

SVME

0 1 2 3

0.94 0.06 0 0

0.09 0.82 0 0.09

0.05 0 0.95 0

0.06 0.06 0 0.88

NNE

0 1 2 3

0.94 0.06 0 0

0 0.91 0 0.09

0.01 0 0.99 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.67 0.22 0 0.11

0.18 0.64 0 0.18

0.23 0.03 0.72 0.02

0 0.18 0 0.82

DThte

0 1 2 3

0.90 0.09 0 0.01

0.09 0.82 0 0.09

0.06 0 0.94 0

0.06 0.12 0 0.82

SVMhte

0 1 2 3

0 0.83 0.15 0 0.02

1 0 0.82 0 0.18

2 0.11 0 0.89 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.93 0.07 0 0

0 0.91 0 0.09

0 0 1.0 0

0 0 0 1.00

HTEsm

0 1 2 3

0.9 0.09 0 0.01

0 0.91 0 0.09

0.08 0 0.92 0

0.06 0 0 1.00

HTEdf

0 1 2 3

0 0.90 0.09 0 0.01

1 0 0.92 0 0.08

2 0.08 0 0.92 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 365

50-50%

NBE

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNE

0 1 2 3

0.77 0.18 0 0.05

0.18 0.64 0 0.18

0.22 0.03 0.73 0.02

0.24 0.23 0 0.53

DTE

0 1 2 3

0.88 0.10 0 0.02

0 0.91 0 0.09

0.14 0 0.86 0

0.06 0.12 0 0.82

RF

0 1 2 3

0 0.92 0.06 0 0.02

1 0 0.82 0 0.18

2 0.21 0.01 0.77 0.01

3 0 0 0 1.00

SVME

0 1 2 3

0.93 0.06 0.01 0

0.18 0.73 0 0.09

0.07 0 0.93 0

0.06 0.06 0 0.88

NNE

0 1 2 3

0.98 0.02 0 0

0 0.91 0 0.09

0.05 0 0.95 0

0 0 0 1.00

NBhte

0 1 2 3

0 0.72 0.21 0 0.07

1 0 0.82 0 0.18

2 0.18 0 0.82 0

3 0 0 0 1.00

kNNhte

0 1 2 3

0.77 0.17 0 0.06

0.09 0.73 0 0.18

0.25 0.03 0.7 0.02

0.12 0.23 0 0.65

DThte

0 1 2 3

0.94 0.06 0 0

0 0.91 0 0.09

0.15 0 0.85 0

0.06 0 0 0.94

SVMhte

0 1 2 3

0 0.83 0.15 0 0.02

1 0 0.82 0 0.18

2 0.14 0.01 0.85 0

3 0 0 0 1.00

NNhte

0 1 2 3

0.95 0.03 0.02 0

0 0.91 0 0.09

0.05 0 0.94 0.01

0.06 0 0 0.94

HTEsm

0 1 2 3

0.87 0.11 0 0.02

0 0.91 0 0.09

0.12 0 0.88 0

0.06 0 0 0.94

HTEdf

0 1 2 3

0 0.90 0.09 0 0.01

1 0 0.92 0 0.08

2 0.13 0 0.87 0

3 0 0 0 1.00
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 366

White Wine Dataset

Table A.13: Ensemble Performance on Skewed Class Distributions for White Wine Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427

Training accuracy 0.479 0.478 0.485 0.490 0.498 0.517 0.539 0.568 0.560

GF 1.100 1.098 1.113 1.124 1.141 1.186 1.243 1.326 1.302

F1-Score 0.25 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.24

kNNE Testing accuracy 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469

Training accuracy 0.553 0.562 0.587 0.597 0.620 0.637 0.658 0.682 0.703

GF 1.188 1.212 1.286 1.318 1.397 1.463 1.553 1.670 1.788

F1-Score 0.37 0.37 0.40 0.37 0.38 0.37 0.38 0.37 0.35

DTE Testing accuracy 0.476 0.475 0.473 0.477 0.473 0.475 0.473 0.476 0.474

Training accuracy 0.529 0.569 0.578 0.616 0.636 0.658 0.679 0.707 0.722

GF 1.113 1.218 1.249 1.362 1.448 1.535 1.642 1.788 1.892

F1-Score 0.38 0.35 0.37 0.37 0.40 0.37 0.34 0.34 0.36

RF Testing accuracy 0.519 0.521 0.527 0.521 0.533 0.522 0.514 0.524 0.524

Training accuracy 0.604 0.615 0.636 0.653 0.668 0.688 0.713 0.730 0.742

GF 1.215 1.244 1.299 1.380 1.407 1.532 1.693 1.763 1.845

F1-Score 0.40 0.44 0.40 0.39 0.39 0.39 0.40 0.39 0.35

SVME Testing accuracy 0.506 0.504 0.504 0.506 0.506 0.507 0.507 0.507 0.506

Training accuracy 0.544 0.545 0.568 0.587 0.631 0.668 0.693 0.720 0.740

GF 1.083 1.090 1.148 1.196 1.339 1.485 1.606 1.761 1.900

F1-Score 0.37 0.37 0.37 0.37 0.36 0.34 0.35 0.36 0.37

NNE Testing accuracy 0.517 0.510 0.519 0.520 0.516 0.517 0.516 0.513 0.512

Training accuracy 0.635 0.641 0.656 0.679 0.693 0.707 0.726 0.737 0.756

GF 1.323 1.365 1.398 1.495 1.577 1.648 1.766 1.852 2.000

F1-Score 0.45 0.45 0.45 0.43 0.44 0.41 0.42 0.43 0.38
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 367

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450

Training accuracy 0.478 0.478 0.488 0.499 0.519 0.537 0.569 0.593 0.593

GF 1.054 1.054 1.074 1.098 1.143 1.188 1.276 1.351 1.351

F1-Score 0.24 0.26 0.25 0.26 0.25 0.23 0.22 0.21 0.19

kNNhte Testing accuracy 0.491 0.491 0.491 0.491 0.491 0.491 0.491 0.491 0.491

Training accuracy 0.564 0.571 0.593 0.606 0.629 0.643 0.669 0.686 0.701

GF 1.167 1.186 1.251 1.292 1.372 1.426 1.538 1.621 1.702

F1-Score 0.39 0.40 0.39 0.38 0.37 0.40 0.42 0.39 0.36

DThte Testing accuracy 0.528 0.520 0.522 0.525 0.510 0.521 0.522 0.522 0.515

Training accuracy 0.598 0.622 0.641 0.654 0.661 0.689 0.705 0.728 0.739

GF 1.174 1.270 1.331 1.373 1.445 1.540 1.620 1.757 1.858

F1-Score 0.44 0.39 0.42 0.42 0.41 0.38 0.37 0.35 0.36

SVMhte Testing accuracy 0.507 0.507 0.506 0.506 0.506 0.505 0.507 0.507 0.508

Training accuracy 0.500 0.502 0.489 0.520 0.569 0.595 0.613 0.633 0.646

GF 0.986 0.990 0.967 1.029 1.146 1.222 1.274 1.343 1.390

F1-Score 0.36 0.35 0.35 0.31 0.28 0.24 0.23 0.18 0.15

NNhte Testing accuracy 0.533 0.529 0.528 0.528 0.527 0.529 0.522 0.528 0.533

Training accuracy 0.606 0.626 0.635 0.654 0.669 0.684 0.691 0.700 0.716

GF 1.185 1.259 1.293 1.364 1.429 1.491 1.528 1.573 1.644

F1-Score 0.42 0.43 0.46 0.42 0.42 0.40 0.46 0.32 0.40

HTEsm Testing accuracy 0.514 0.522 0.520 0.516 0.520 0.523 0.520 0.520 0.519

Training accuracy 0.606 0.615 0.632 0.656 0.668 0.683 0.707 0.722 0.739

GF 1.234 1.242 1.304 1.407 1.446 1.505 1.638 1.727 1.843

F1-Score 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.48 0.48

HTEdf Testing accuracy 0.534 0.532 0.533 0.530 0.530 0.532 0.524 0.533 0.534

Training accuracy 0.605 0.615 0.631 0.645 0.662 0.679 0.697 0.712 0.728

GF 1.180 1.216 1.266 1.324 1.391 1.458 1.571 1.622 1.713

F1-Score 0.48 0.48 0.48 0.48 0.48 0.49 0.49 0.48 0.48

Stellenbosch University https://scholar.sun.ac.za



Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 368

Table A.14: Confusion Matrices of Ensembles on Skewed Class Distributions for White
Wine Dataset

10-90%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.04 0.44 0.24 0.04 0.16 0.08 0
5 0.05 0.19 0.47 0.08 0.15 0.06 0
6 0.02 0.08 0.27 0.07 0.32 0.23 0.01
7 0.02 0.03 0.12 0.06 0.24 0.50 0.03
8 0.03 0 0.06 0 0.34 0.49 0.08
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.60 0 0 0 0
0.08 0.68 0.12 0.12 0 0 0
0.07 0.20 0.45 0.19 0.05 0.04 0
0.04 0.13 0.28 0.22 0.20 0.12 0.01
0.02 0.06 0.07 0.19 0.42 0.23 0.01
0.03 0 0.06 0.09 0.31 0.43 0.08

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0 0 0.60 0.40 0 0 0
4 0 0.28 0.36 0.16 0.16 0.04 0
5 0.05 0.17 0.41 0.27 0.07 0.03 0
6 0.03 0.07 0.21 0.33 0.20 0.15 0.01
7 0.04 0.04 0.07 0.24 0.31 0.28 0.02
8 0 0.03 0.06 0.17 0.31 0.40 0.03
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9
0 0 0.60 0.20 0.20 0 0

0.12 0.52 0.20 0.16 0 0 0
0.03 0.19 0.50 0.17 0.08 0.03 0
0.01 0.09 0.28 0.26 0.21 0.14 0.01
0.02 0.04 0.07 0.18 0.44 0.25 0

0 0 0.08 0.20 0.23 0.46 0.03
0 0 0 0 0 0 0

SVME
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.12 0.60 0.16 0.08 0.04 0 0
5 0.04 0.15 0.55 0.14 0.08 0.03 0.01
6 0.01 0.05 0.32 0.23 0.17 0.21 0.01
7 0 0.03 0.11 0.15 0.27 0.42 0.02
8 0 0.03 0.06 0.06 0.26 0.51 0.08
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.20 0 0.40 0.40 0 0 0
0.12 0.48 0.28 0.08 0.04 0 0
0.03 0.16 0.55 0.16 0.07 0.03 0
0.02 0.07 0.25 0.31 0.22 0.12 0.01

0 0.02 0.06 0.16 0.47 0.29 0
0 0 0.03 0.06 0.37 0.51 0.03
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.04 0.44 0.24 0.04 0.16 0.08 0
5 0.04 0.20 0.48 0.07 0.15 0.06 0
6 0.02 0.08 0.27 0.07 0.32 0.23 0.01
7 0.01 0.03 0.12 0.06 0.25 0.50 0.03
8 0 0.03 0.06 0 0.34 0.49 0.08
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0.20 0.60 0 0 0 0
0.08 0.64 0.12 0.12 0 0.04 0
0.06 0.17 0.48 0.19 0.06 0.04 0
0.03 0.09 0.25 0.24 0.23 0.14 0.02
0.02 0.03 0.06 0.13 0.43 0.31 0.02
0.03 0 0.03 0.06 0.31 0.49 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0 0.40 0.20 0.20 0 0
4 0.08 0.44 0.32 0.08 0.04 0.04 0
5 0.02 0.16 0.48 0.21 0.09 0.04 0
6 0.01 0.07 0.22 0.31 0.22 0.16 0.01
7 0.01 0.03 0.04 0.14 0.50 0.28 0
8 0 0 0.03 0.03 0.28 0.63 0.03
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.04 0.60 0.20 0.08 0.08 0 0
0.06 0.16 0.57 0.10 0.07 0.03 0.01
0.02 0.06 0.33 0.22 0.15 0.20 0.02
0.02 0.03 0.13 0.14 0.22 0.41 0.05

0 0.03 0.06 0.11 0.20 0.49 0.11
0 0 0 0 0 0 0

NNhte
3 4 5 6 7 8 9

3 0.20 0.20 0.20 0.20 0.20 0 0
4 0.08 0.64 0.12 0.12 0.04 0 0
5 0.01 0.18 0.48 0.20 0.11 0.02 0
6 0.02 0.07 0.22 0.26 0.34 0.08 0.01
7 0.01 0.03 0.04 0.11 0.59 0.22 0
8 0 0 0 0.09 0.31 0.54 0.06
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.12 0.52 0.20 0.08 0.08 0 0
0.03 0.17 0.55 0.15 0.06 0.04 0
0.02 0.06 0.26 0.24 0.23 0.19 0
0.01 0.02 0.04 0.16 0.35 0.41 0.01

0 0 0.09 0 0.31 0.54 0.06
0 0 0 0 0 0 0

HTEdf
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.08 0.56 0.24 0 0.12 0 0
5 0.01 0.16 0.59 0.12 0.07 0.05 0
6 0.01 0.05 0.29 0.21 0.24 0.19 0.01
7 0.01 0.03 0.04 0.09 0.40 0.43 0
8 0 0 0.08 0.03 0.26 0.57 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 369

15-85%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.08 0.40 0.24 0.04 0.16 0.08 0
5 0.07 0.18 0.44 0.11 0.15 0.05 0
6 0.03 0.07 0.24 0.10 0.33 0.22 0.01
7 0.02 0.02 0.10 0.08 0.27 0.48 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0 0.60 0.20 0 0 0
0.08 0.64 0.08 0.12 0.04 0.04 0
0.07 0.25 0.46 0.13 0.07 0.02 0
0.05 0.13 0.29 0.22 0.19 0.11 0.01
0.03 0.04 0.09 0.18 0.43 0.21 0.02
0.06 0.03 0.03 0.11 0.26 0.43 0.08

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0 0 0.60 0.20 0 0
4 0.20 0.36 0.28 0.04 0.08 0.04 0
5 0.06 0.13 0.40 0.29 0.09 0.03 0
6 0.05 0.06 0.29 0.26 0.21 0.12 0.01
7 0.02 0.05 0.11 0.20 0.33 0.26 0.03
8 0.03 0.03 0.03 0.14 0.26 0.48 0.03
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0 0.40 0.40 0 0 0
0.08 0.60 0.20 0.08 0.04 0 0
0.03 0.18 0.52 0.19 0.06 0.02 0
0.03 0.08 0.26 0.31 0.19 0.13 0
0.01 0.06 0.09 0.17 0.46 0.21 0

0 0.03 0.06 0.05 0.20 0.63 0.03
0 0 0 0 0 0 0

SVME
3 4 5 6 7 8 9

3 0.40 0 0.20 0.40 0 0 0
4 0.20 0.48 0.20 0.08 0.04 0 0
5 0.06 0.15 0.56 0.11 0.09 0.02 0.01
6 0.04 0.04 0.30 0.22 0.18 0.21 0.01
7 0.02 0.02 0.12 0.13 0.29 0.41 0.01
8 0.03 0 0.06 0.08 0.20 0.57 0.06
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.40 0 0.20 0.20 0.20 0 0
0.08 0.64 0.12 0.12 0.04 0 0
0.03 0.18 0.48 0.19 0.09 0.03 0
0.02 0.06 0.22 0.32 0.29 0.09 0

0 0.03 0.05 0.11 0.57 0.24 0
0 0 0.03 0.03 0.46 0.43 0.05
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.08 0.40 0.24 0.04 0.16 0.08 0
5 0.07 0.18 0.44 0.11 0.15 0.05 0
6 0.03 0.07 0.24 0.10 0.33 0.22 0.01
7 0.02 0.02 0.10 0.08 0.27 0.48 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.60 0.20 0 0 0
0.08 0.56 0.20 0.08 0.04 0.04 0
0.07 0.18 0.50 0.13 0.08 0.04 0
0.04 0.08 0.28 0.23 0.20 0.15 0.02
0.02 0.02 0.07 0.14 0.47 0.26 0.02
0.06 0 0.03 0.06 0.31 0.46 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0 0.20 0.40 0.20 0 0
4 0.12 0.48 0.24 0.08 0.08 0 0
5 0.03 0.17 0.44 0.27 0.07 0.02 0
6 0.03 0.06 0.24 0.29 0.23 0.14 0.01
7 0 0.03 0.05 0.21 0.40 0.30 0.01
8 0 0 0.03 0.09 0.17 0.68 0.03
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.12 0.44 0.20 0.08 0.12 0.04 0
0.08 0.14 0.56 0.09 0.07 0.04 0.02
0.04 0.05 0.32 0.19 0.16 0.22 0.02
0.03 0.02 0.12 0.12 0.26 0.40 0.05
0.03 0 0.06 0.09 0.20 0.51 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.40 0 0.20 0.20 0.20 0 0
4 0.12 0.48 0.20 0.12 0.04 0.04 0
5 0.03 0.13 0.60 0.13 0.06 0.04 0.01
6 0.04 0.03 0.27 0.29 0.18 0.18 0.01
7 0.01 0.02 0.08 0.11 0.35 0.42 0.01
8 0.03 0 0.03 0.06 0.11 0.71 0.06
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.12 0.52 0.20 0.08 0.08 0 0
0.05 0.16 0.51 0.16 0.08 0.04 0
0.02 0.05 0.27 0.21 0.25 0.19 0.01
0.01 0.02 0.08 0.11 0.38 0.39 0.01

0 0 0.06 0.06 0.23 0.57 0.08
0 0 0 0 0 0 0

HTEdf
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.12 0.52 0.20 0.12 0 0.04 0
5 0.06 0.13 0.52 0.16 0.09 0.04 0
6 0.02 0.06 0.27 0.20 0.27 0.17 0.01
7 0 0.01 0.04 0.11 0.44 0.38 0.02
8 0 0 0.03 0.03 0.20 0.66 0.08
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 370

20-80%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.08 0.44 0.24 0.08 0.08 0.08 0
5 0.10 0.18 0.42 0.09 0.16 0.05 0
6 0.04 0.07 0.24 0.09 0.32 0.22 0.02
7 0.02 0.03 0.10 0.07 0.26 0.49 0.03
8 0.03 0 0.06 0 0.34 0.51 0.06
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.40 0 0.20 0 0
0.08 0.60 0.20 0.12 0 0 0
0.08 0.21 0.47 0.15 0.05 0.04 0
0.06 0.14 0.25 0.26 0.16 0.11 0.02
0.02 0.06 0.06 0.22 0.42 0.20 0.02
0.03 0 0.06 0.11 0.40 0.31 0.09

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0.20 0.20 0.40 0 0 0
4 0.16 0.44 0.16 0.12 0.08 0.04 0
5 0.06 0.18 0.41 0.20 0.11 0.04 0
6 0.03 0.12 0.22 0.28 0.21 0.13 0.01
7 0.02 0.06 0.07 0.24 0.34 0.26 0.01
8 0 0 0.03 0.26 0.17 0.54 0
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9
0 0.40 0.40 0.20 0 0 0

0.16 0.56 0.12 0.04 0.12 0 0
0.06 0.17 0.48 0.19 0.07 0.03 0
0.03 0.11 0.25 0.26 0.21 0.14 0
0.01 0.04 0.07 0.17 0.47 0.24 0

0 0 0.06 0.14 0.28 0.49 0.03
0 0 0 0 0 0 0

SVME
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.20 0.48 0.16 0.12 0.04 0 0
5 0.12 0.14 0.50 0.14 0.06 0.03 0.01
6 0.07 0.05 0.26 0.26 0.15 0.20 0.01
7 0.05 0.02 0.11 0.16 0.22 0.43 0.01
8 0.06 0 0.06 0.09 0.14 0.57 0.08
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.08 0.56 0.24 0.08 0.04 0 0
0.02 0.16 0.51 0.20 0.07 0.04 0
0.02 0.06 0.22 0.35 0.23 0.12 0
0.01 0.02 0.03 0.19 0.43 0.32 0

0 0 0.03 0.12 0.31 0.54 0
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.08 0.44 0.24 0.08 0.08 0.08 0
5 0.10 0.18 0.41 0.09 0.16 0.05 0.01
6 0.05 0.07 0.23 0.09 0.32 0.22 0.02
7 0.03 0.03 0.10 0.07 0.26 0.48 0.03
8 0.03 0 0.06 0 0.34 0.49 0.08
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.60 0.20 0 0 0
0.08 0.52 0.20 0.08 0.08 0.04 0
0.07 0.16 0.48 0.18 0.07 0.04 0
0.04 0.09 0.26 0.23 0.22 0.14 0.02
0.02 0.05 0.04 0.11 0.47 0.29 0.02
0.06 0 0.03 0.03 0.40 0.40 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0 0.40 0.40 0 0 0
4 0.08 0.56 0.16 0.12 0.04 0.04 0
5 0.04 0.18 0.45 0.21 0.09 0.03 0
6 0.02 0.10 0.20 0.32 0.21 0.14 0.01
7 0.01 0.04 0.03 0.18 0.39 0.34 0.01
8 0 0 0.06 0.08 0.20 0.63 0.03
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.16 0.44 0.20 0.08 0.12 0 0
0.17 0.12 0.50 0.10 0.06 0.04 0.01
0.12 0.04 0.28 0.21 0.14 0.20 0.01
0.04 0.03 0.11 0.16 0.21 0.40 0.05
0.03 0 0.06 0.11 0.20 0.49 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.20 0 0.20 0.60 0 0 0
4 0.12 0.56 0.12 0.20 0 0 0
5 0.03 0.12 0.40 0.41 0.01 0.03 0
6 0.02 0.05 0.16 0.49 0.15 0.12 0.01
7 0.01 0.02 0.03 0.28 0.36 0.30 0
8 0 0.03 0 0.17 0.23 0.51 0.06
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.12 0.48 0.28 0.12 0 0 0
0.05 0.16 0.55 0.12 0.09 0.02 0.01
0.03 0.06 0.26 0.24 0.25 0.15 0.01
0.01 0.02 0.04 0.15 0.41 0.35 0.02

0 0 0.03 0.11 0.20 0.57 0.09
0 0 0 0 0 0 0

HTEdf
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.12 0.52 0.28 0.04 0.04 0 0
5 0.05 0.13 0.57 0.12 0.09 0.03 0.01
6 0.02 0.05 0.26 0.25 0.26 0.15 0.01
7 0 0.02 0.06 0.11 0.41 0.38 0.02
8 0 0 0.09 0 0.28 0.57 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 371

25-75%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.08 0.44 0.24 0.04 0.12 0.08 0
5 0.10 0.19 0.38 0.11 0.14 0.08 0
6 0.05 0.06 0.20 0.12 0.31 0.24 0.02
7 0.03 0.03 0.07 0.09 0.25 0.50 0.03
8 0.03 0 0.06 0 0.34 0.49 0.08
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.40 0.20 0 0 0
0.08 0.64 0.12 0.08 0.04 0.04 0
0.08 0.21 0.45 0.16 0.06 0.04 0
0.05 0.12 0.28 0.22 0.19 0.12 0.02
0.03 0.05 0.07 0.17 0.45 0.21 0.02
0.06 0 0.06 0.11 0.34 0.34 0.09

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0 0.20 0.40 0.20 0 0
4 0.16 0.44 0.28 0.08 0.04 0 0
5 0.06 0.18 0.47 0.16 0.08 0.05 0
6 0.05 0.08 0.22 0.24 0.22 0.18 0.01
7 0.01 0.07 0.07 0.15 0.33 0.36 0.01
8 0.03 0 0.06 0.23 0.28 0.40 0
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0.20 0.40 0.20 0 0 0
0.16 0.40 0.24 0.12 0.04 0.04 0
0.05 0.21 0.41 0.24 0.06 0.03 0
0.05 0.09 0.22 0.28 0.23 0.13 0
0.02 0.04 0.08 0.15 0.44 0.27 0
0.03 0 0 0.11 0.26 0.54 0.06

0 0 0 0 0 0 0
SVME

3 4 5 6 7 8 9
3 0.40 0 0.40 0.20 0 0 0
4 0.20 0.48 0.20 0.08 0.04 0 0
5 0.16 0.12 0.48 0.13 0.08 0.02 0.01
6 0.11 0.04 0.22 0.26 0.14 0.22 0.01
7 0.05 0.02 0.09 0.16 0.22 0.44 0.02
8 0.03 0 0.06 0.11 0.17 0.54 0.09
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.20 0 0.20 0.60 0 0 0
0.12 0.52 0.20 0.08 0.08 0 0
0.04 0.10 0.59 0.16 0.09 0.02 0
0.02 0.04 0.26 0.26 0.31 0.10 0.01
0.01 0.02 0.04 0.13 0.54 0.26 0

0 0 0.03 0.05 0.46 0.43 0.03
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.16 0.36 0.24 0.04 0.12 0.08 0
5 0.15 0.16 0.36 0.11 0.14 0.08 0
6 0.10 0.05 0.19 0.11 0.30 0.23 0.02
7 0.03 0.02 0.07 0.10 0.25 0.50 0.03
8 0.03 0 0.06 0 0.34 0.49 0.08
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.40 0.40 0 0 0
0.08 0.60 0.12 0.16 0 0.04 0
0.07 0.17 0.47 0.17 0.07 0.05 0
0.04 0.07 0.28 0.21 0.21 0.17 0.02
0.04 0.05 0.03 0.10 0.50 0.26 0.02
0.06 0 0.06 0.06 0.31 0.43 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0.20 0.40 0 0.20 0 0
4 0.16 0.56 0.12 0.16 0 0 0
5 0.07 0.18 0.48 0.17 0.07 0.03 0
6 0.04 0.07 0.20 0.29 0.24 0.16 0
7 0.01 0.04 0.05 0.12 0.46 0.31 0.01
8 0.03 0 0.06 0.14 0.14 0.60 0.03
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.24 0.48 0.16 0.08 0.04 0 0
0.28 0.11 0.45 0.05 0.07 0.03 0.01
0.18 0.04 0.27 0.15 0.15 0.20 0.01
0.11 0.02 0.10 0.10 0.22 0.41 0.04
0.12 0 0.06 0.06 0.14 0.51 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.40 0 0.20 0 0.40 0 0
4 0.12 0.48 0.12 0.12 0.04 0.12 0
5 0.06 0.13 0.47 0.22 0.05 0.06 0.01
6 0.04 0.05 0.21 0.28 0.21 0.20 0.01
7 0.01 0.02 0.05 0.09 0.44 0.39 0
8 0 0 0.03 0.06 0.20 0.66 0.05
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.20 0.40 0 0 0
0.12 0.52 0.24 0.08 0.04 0 0
0.05 0.15 0.54 0.15 0.08 0.03 0
0.05 0.06 0.22 0.26 0.21 0.19 0.01
0.01 0.04 0.03 0.15 0.36 0.40 0.01

0 0 0.06 0.06 0.25 0.57 0.06
0 0 0 0 0 0 0

HTEdf
3 4 5 6 7 8 9

3 0.40 0 0.20 0.40 0 0 0
4 0.12 0.52 0.24 0.04 0.04 0.04 0
5 0.06 0.17 0.51 0.14 0.07 0.04 0.01
6 0.05 0.06 0.23 0.23 0.22 0.20 0.01
7 0.01 0.03 0.02 0.14 0.37 0.42 0.01
8 0.03 0 0.06 0.03 0.28 0.54 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 372

30-70%

NBE
3 4 5 6 7 8 9

3 0.43 0 0.57 0 0 0 0
4 0.16 0.36 0.24 0.04 0.12 0.08 0
5 0.12 0.16 0.40 0.10 0.15 0.07 0
6 0.08 0.04 0.23 0.10 0.31 0.23 0.01
7 0.03 0.02 0.08 0.09 0.25 0.50 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.20 0.20 0.20 0 0
0.08 0.60 0.16 0 0.12 0.04 0
0.09 0.20 0.47 0.15 0.06 0.03 0
0.05 0.11 0.29 0.22 0.21 0.10 0.02
0.03 0.04 0.06 0.19 0.46 0.21 0.01
0.06 0 0.06 0.11 0.34 0.34 0.09

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0.20 0.20 0.40 0 0 0
4 0.20 0.40 0.20 0.08 0.04 0.08 0
5 0.04 0.20 0.41 0.27 0.05 0.03 0
6 0.04 0.10 0.21 0.35 0.18 0.11 0.01
7 0.02 0.06 0.08 0.19 0.33 0.31 0.01
8 0.03 0 0.06 0.20 0.23 0.48 0
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0 0.60 0.20 0 0 0
0.16 0.52 0.16 0.16 0 0 0
0.06 0.20 0.43 0.19 0.09 0.03 0
0.03 0.11 0.24 0.27 0.18 0.16 0.01
0.01 0.04 0.06 0.18 0.43 0.27 0.01
0.03 0 0.03 0.11 0.23 0.57 0.03

0 0 0 0 0 0 0
SVME

3 4 5 6 7 8 9
3 0.40 0 0.20 0.40 0 0 0
4 0.16 0.56 0.16 0.08 0.04 0 0
5 0.18 0.12 0.48 0.11 0.07 0.03 0.01
6 0.12 0.04 0.26 0.21 0.16 0.20 0.01
7 0.06 0.02 0.10 0.12 0.28 0.41 0.01
8 0.06 0 0.03 0.11 0.17 0.54 0.09
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.20 0 0.20 0.60 0 0 0
0.12 0.52 0.24 0.04 0.08 0 0
0.04 0.15 0.55 0.16 0.08 0.02 0
0.02 0.06 0.25 0.29 0.28 0.10 0
0.02 0.02 0.07 0.13 0.52 0.24 0

0 0 0.03 0.03 0.46 0.45 0.03
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.16 0.40 0.20 0.04 0.12 0.08 0
5 0.19 0.14 0.37 0.10 0.14 0.06 0
6 0.13 0.03 0.21 0.10 0.29 0.22 0.02
7 0.06 0.02 0.07 0.09 0.23 0.50 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.08 0.56 0.20 0.04 0.08 0.04 0
0.08 0.14 0.49 0.18 0.07 0.04 0
0.04 0.06 0.28 0.21 0.25 0.14 0.02
0.02 0.03 0.06 0.13 0.46 0.29 0.01
0.06 0 0.06 0.06 0.37 0.37 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0 0.60 0.20 0 0 0
4 0.16 0.48 0.16 0.08 0.04 0.08 0
5 0.04 0.17 0.44 0.25 0.07 0.03 0
6 0.04 0.08 0.19 0.31 0.22 0.15 0.01
7 0 0.03 0.04 0.19 0.40 0.33 0.01
8 0.03 0 0.03 0.06 0.25 0.63 0
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.45 0 0.40 0.15 0 0 0
0.28 0.36 0.20 0.12 0.04 0 0
0.37 0.08 0.41 0.05 0.05 0.03 0.01
0.28 0.02 0.24 0.12 0.13 0.20 0.01
0.21 0 0.07 0.09 0.19 0.39 0.05
0.2 0 0.06 0.03 0.11 0.49 0.11
0 0 0 0 0 0 0

NNhte
3 4 5 6 7 8 9

3 0.40 0 0.20 0.40 0 0 0
4 0.12 0.60 0.16 0.08 0.04 0 0
5 0.11 0.13 0.52 0.15 0.06 0.03 0
6 0.08 0.05 0.26 0.28 0.17 0.14 0.02
7 0.05 0.02 0.04 0.15 0.41 0.32 0.01
8 0.03 0 0.06 0.09 0.17 0.54 0.11
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.43 0 0.37 0.20 0 0 0
0.16 0.60 0.16 0.04 0.04 0 0
0.07 0.15 0.55 0.13 0.07 0.03 0
0.05 0.04 0.27 0.23 0.23 0.17 0.01
0.02 0.03 0.05 0.09 0.38 0.42 0.01
0.03 0 0 0.03 0.37 0.51 0.06

0 0 0 0 0 0 0
HTEdf

3 4 5 6 7 8 9
3 0.45 0 0.55 0 0 0 0
4 0.16 0.56 0.16 0.04 0.08 0 0
5 0.08 0.15 0.57 0.11 0.04 0.05 0
6 0.05 0.05 0.27 0.21 0.20 0.21 0.01
7 0.03 0.01 0.06 0.08 0.38 0.43 0.01
8 0.06 0 0.03 0 0.28 0.57 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 373

35-65%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.16 0.36 0.24 0.04 0.12 0.08 0
5 0.14 0.15 0.39 0.10 0.15 0.07 0
6 0.10 0.05 0.21 0.10 0.32 0.21 0.01
7 0.04 0.02 0.08 0.09 0.25 0.49 0.03
8 0.03 0 0.06 0 0.28 0.54 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.08 0.72 0.08 0.08 0.04 0 0
0.1 0.19 0.44 0.17 0.06 0.03 0.01
0.07 0.10 0.28 0.23 0.20 0.10 0.02
0.04 0.07 0.07 0.18 0.40 0.22 0.02
0.06 0 0.06 0.09 0.34 0.37 0.08

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0.20 0.20 0.40 0 0 0
4 0.16 0.40 0.24 0.08 0.04 0.08 0
5 0.05 0.19 0.40 0.23 0.10 0.03 0
6 0.06 0.12 0.21 0.28 0.20 0.12 0.01
7 0.03 0.10 0.05 0.24 0.39 0.18 0.01
8 0.06 0.03 0.06 0.14 0.28 0.43 0
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0 0.40 0.40 0 0 0
0.20 0.52 0.20 0.04 0.04 0 0
0.07 0.19 0.46 0.20 0.06 0.02 0
0.05 0.12 0.25 0.26 0.20 0.11 0.01
0.02 0.06 0.05 0.18 0.42 0.27 0
0.03 0 0 0.20 0.23 0.51 0.03

0 0 0 0 0 0 0
SVME

3 4 5 6 7 8 9
3 0.20 0.20 0.20 0.40 0 0 0
4 0.12 0.52 0.16 0.12 0.08 0 0
5 0.18 0.13 0.47 0.12 0.07 0.02 0.01
6 0.11 0.04 0.26 0.20 0.19 0.19 0.01
7 0.05 0.03 0.10 0.15 0.24 0.42 0.01
8 0.06 0 0.06 0.11 0.14 0.54 0.09
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.40 0 0.20 0.20 0.20 0 0
0.12 0.52 0.24 0.04 0.08 0 0
0.05 0.13 0.48 0.24 0.07 0.03 0
0.03 0.06 0.25 0.30 0.23 0.13 0
0.03 0.02 0.05 0.15 0.38 0.37 0

0 0 0 0.11 0.26 0.63 0
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.16 0.36 0.24 0.04 0.12 0.08 0
5 0.27 0.13 0.31 0.10 0.13 0.06 0
6 0.18 0.04 0.17 0.09 0.30 0.21 0.01
7 0.09 0.01 0.07 0.08 0.23 0.49 0.03
8 0.03 0 0.06 0 0.28 0.54 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.08 0.60 0.16 0.08 0.08 0 0
0.09 0.14 0.50 0.16 0.06 0.05 0
0.06 0.07 0.24 0.23 0.22 0.16 0.02
0.03 0.02 0.05 0.15 0.44 0.29 0.02
0.06 0 0.03 0 0.34 0.49 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0.40 0.40 0 0 0 0
4 0.16 0.52 0.16 0.12 0.04 0 0
5 0.08 0.19 0.40 0.22 0.09 0.02 0
6 0.06 0.08 0.24 0.25 0.23 0.13 0.01
7 0.03 0.05 0.05 0.14 0.45 0.28 0
8 0.06 0 0.06 0.11 0.20 0.57 0
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.45 0 0.40 0.15 0 0 0
0.28 0.32 0.24 0.08 0.08 0 0
0.42 0.08 0.36 0.06 0.04 0.03 0.01
0.32 0.02 0.23 0.10 0.10 0.22 0.01
0.24 0.01 0.07 0.10 0.14 0.40 0.04
0.2 0 0.06 0.03 0.09 0.51 0.11
0 0 0 0 0 0 0

NNhte
3 4 5 6 7 8 9

3 0.40 0 0.20 0.20 0.20 0 0
4 0.12 0.60 0.16 0.04 0.04 0.04 0
5 0.13 0.16 0.49 0.14 0.04 0.04 0
6 0.09 0.05 0.22 0.25 0.21 0.18 0
7 0.05 0.03 0.07 0.10 0.33 0.42 0
8 0.09 0 0 0 0.20 0.71 0
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.43 0 0.37 0.20 0 0 0
0.16 0.52 0.20 0.08 0.04 0 0
0.08 0.19 0.50 0.12 0.08 0.03 0
0.06 0.06 0.25 0.21 0.24 0.17 0.01
0.01 0.04 0.04 0.15 0.39 0.35 0.02
0.03 0 0.06 0.06 0.28 0.51 0.06

0 0 0 0 0 0 0
HTEdf

3 4 5 6 7 8 9
3 0.45 0 0.55 0 0 0 0
4 0.16 0.52 0.16 0.08 0.04 0.04 0
5 0.10 0.16 0.47 0.15 0.08 0.04 0
6 0.07 0.05 0.25 0.20 0.26 0.16 0.01
7 0.03 0.02 0.03 0.12 0.35 0.44 0.01
8 0.03 0 0.06 0 0.37 0.48 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 374

40-60%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.16 0.36 0.24 0.04 0.08 0.12 0
5 0.17 0.13 0.36 0.11 0.16 0.07 0
6 0.12 0.04 0.19 0.10 0.31 0.23 0.01
7 0.06 0.01 0.08 0.08 0.24 0.50 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.20 0.20 0.20 0 0
0.08 0.68 0.12 0.08 0 0.04 0
0.12 0.22 0.44 0.12 0.07 0.03 0
0.05 0.12 0.27 0.25 0.20 0.09 0.02
0.04 0.05 0.07 0.17 0.43 0.22 0.02
0.06 0 0.06 0.14 0.26 0.37 0.11

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0 0.60 0.20 0 0 0
4 0.12 0.40 0.44 0 0.04 0 0
5 0.02 0.21 0.46 0.16 0.11 0.04 0
6 0.03 0.11 0.31 0.18 0.19 0.17 0.01
7 0.01 0.07 0.11 0.10 0.39 0.29 0.03
8 0 0 0.09 0.20 0.17 0.54 0
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0.20 0.60 0 0 0 0
0.12 0.56 0.08 0.04 0.20 0 0
0.06 0.22 0.43 0.18 0.07 0.04 0
0.06 0.13 0.20 0.27 0.17 0.16 0.01
0.01 0.08 0.04 0.16 0.40 0.31 0

0 0.06 0 0.17 0.23 0.54 0
0 0 0 0 0 0 0

SVME
3 4 5 6 7 8 9

3 0.40 0 0.20 0.40 0 0 0
4 0.16 0.52 0.16 0.08 0.08 0 0
5 0.18 0.13 0.46 0.14 0.05 0.03 0.01
6 0.11 0.04 0.24 0.21 0.17 0.22 0.01
7 0.06 0.02 0.10 0.11 0.26 0.43 0.02
8 0.06 0 0.06 0.11 0.14 0.54 0.09
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.40 0 0.20 0.20 0.20 0 0
0.12 0.60 0.16 0 0.12 0 0
0.05 0.15 0.46 0.22 0.08 0.04 0
0.03 0.06 0.21 0.32 0.25 0.13 0
0.01 0.02 0.04 0.16 0.41 0.35 0.01

0 0 0 0.06 0.37 0.51 0.06
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.20 0.36 0.24 0.04 0.08 0.08 0
5 0.36 0.11 0.27 0.10 0.10 0.06 0
6 0.25 0.02 0.15 0.08 0.26 0.22 0.02
7 0.11 0.01 0.07 0.06 0.22 0.50 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.12 0.48 0.24 0.04 0.04 0.08 0
0.1 0.15 0.48 0.16 0.07 0.04 0
0.05 0.08 0.21 0.26 0.22 0.15 0.03
0.04 0.03 0.04 0.11 0.54 0.23 0.01
0.06 0 0.06 0.08 0.20 0.49 0.11

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0.20 0.20 0.40 0 0 0
4 0.16 0.52 0.20 0.04 0.08 0 0
5 0.04 0.23 0.39 0.20 0.11 0.03 0
6 0.06 0.08 0.22 0.24 0.21 0.18 0.01
7 0.01 0.03 0.08 0.11 0.43 0.32 0.02
8 0 0.03 0.03 0.11 0.20 0.57 0.06
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.40 0 0.60 0 0 0 0
0.44 0.32 0.08 0.08 0.08 0 0
0.5 0.08 0.27 0.05 0.05 0.04 0.01
0.39 0.02 0.17 0.08 0.13 0.19 0.02
0.28 0 0.07 0.03 0.20 0.37 0.05
0.26 0 0.03 0 0.09 0.51 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.40 0 0.40 0 0.20 0 0
4 0.24 0.44 0.24 0.08 0 0 0
5 0.12 0.09 0.59 0.11 0.04 0.05 0
6 0.08 0.03 0.25 0.31 0.18 0.14 0.01
7 0.05 0.01 0.10 0.10 0.39 0.34 0.01
8 0.06 0 0.03 0.03 0.20 0.63 0.05
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.60 0 0 0 0
0.12 0.52 0.24 0 0.12 0 0
0.09 0.17 0.51 0.09 0.08 0.05 0.01
0.05 0.06 0.25 0.18 0.24 0.21 0.01
0.02 0.02 0.06 0.08 0.40 0.41 0.01
0.03 0 0.03 0.06 0.28 0.54 0.06

0 0 0 0 0 0 0
HTEdf

3 4 5 6 7 8 9
3 0.45 0 0.55 0 0 0 0
4 0.16 0.48 0.28 0 0.04 0.04 0
5 0.12 0.14 0.50 0.11 0.09 0.04 0
6 0.07 0.05 0.21 0.23 0.22 0.21 0.01
7 0.04 0.01 0.05 0.09 0.37 0.41 0.03
8 0.03 0 0.06 0.03 0.23 0.60 0.05
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 375

45-55%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.16 0.40 0.20 0.04 0.12 0.08 0
5 0.20 0.12 0.38 0.09 0.16 0.05 0
6 0.13 0.04 0.20 0.08 0.33 0.20 0.02
7 0.05 0.02 0.09 0.06 0.27 0.48 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.20 0.20 0.20 0.20 0 0
0.08 0.56 0.20 0.08 0.04 0.04 0
0.12 0.21 0.43 0.15 0.06 0.03 0
0.07 0.10 0.26 0.25 0.21 0.09 0.02
0.04 0.05 0.06 0.27 0.37 0.18 0.03
0.06 0.03 0.03 0.09 0.37 0.34 0.08

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0.20 0 0.40 0.20 0 0.20 0
4 0.16 0.44 0.28 0.08 0 0.04 0
5 0.06 0.16 0.42 0.20 0.12 0.04 0
6 0.04 0.13 0.23 0.23 0.21 0.15 0.01
7 0.04 0.08 0.08 0.18 0.29 0.32 0.01
8 0.03 0.03 0 0.20 0.28 0.43 0.03
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0.20 0.40 0.20 0 0 0
0.16 0.56 0.20 0.04 0.04 0 0
0.09 0.19 0.48 0.15 0.07 0.02 0
0.05 0.13 0.22 0.23 0.24 0.13 0
0.01 0.07 0.08 0.15 0.42 0.27 0
0.06 0 0.03 0.14 0.17 0.54 0.06

0 0 0 0 0 0 0
SVME

3 4 5 6 7 8 9
3 0.20 0.20 0.40 0.20 0 0 0
4 0.16 0.56 0.12 0.08 0.08 0 0
5 0.19 0.12 0.47 0.14 0.05 0.02 0.01
6 0.11 0.04 0.26 0.24 0.14 0.20 0.01
7 0.06 0.02 0.09 0.15 0.24 0.42 0.02
8 0.09 0 0.06 0.06 0.17 0.54 0.08
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.40 0 0.20 0.40 0 0 0
0.12 0.56 0.20 0.04 0.08 0 0
0.07 0.12 0.55 0.17 0.06 0.03 0
0.04 0.05 0.23 0.32 0.19 0.16 0.01
0.03 0.02 0.04 0.19 0.33 0.38 0.01

0 0 0.03 0.09 0.31 0.51 0.06
0 0 0 0 0 0 0

NBhte
3 4 5 6 7 8 9

3 0.40 0 0.60 0 0 0 0
4 0.28 0.36 0.16 0.04 0.08 0.08 0
5 0.43 0.10 0.26 0.08 0.09 0.04 0
6 0.30 0.02 0.14 0.07 0.26 0.19 0.02
7 0.16 0 0.07 0.05 0.23 0.46 0.03
8 0.06 0 0.06 0 0.28 0.51 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0 0.40 0.20 0.20 0 0
0.12 0.52 0.20 0.08 0.04 0.04 0
0.12 0.13 0.50 0.15 0.05 0.05 0
0.07 0.06 0.24 0.23 0.24 0.14 0.02
0.04 0.04 0.03 0.15 0.46 0.27 0.01
0.06 0 0.03 0.03 0.37 0.40 0.11

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0.20 0.20 0.40 0 0.20 0 0
4 0.12 0.40 0.24 0.20 0.04 0 0
5 0.10 0.15 0.42 0.16 0.12 0.05 0
6 0.08 0.09 0.20 0.21 0.24 0.17 0.01
7 0.03 0.06 0.07 0.13 0.34 0.36 0.01
8 0.03 0 0 0.06 0.23 0.60 0.08
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.45 0.40 0.15 0 0 0 0
0.52 0.28 0.04 0.08 0.08 0 0
0.64 0.06 0.19 0.03 0.05 0.02 0.01
0.48 0.01 0.14 0.07 0.10 0.18 0.02
0.33 0 0.06 0.06 0.13 0.37 0.05
0.31 0 0.03 0 0.09 0.46 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.40 0 0.40 0 0.20 0 0
4 0.28 0.44 0.12 0.16 0 0 0
5 0.50 0.08 0.30 0.08 0.03 0.01 0
6 0.40 0.03 0.11 0.18 0.18 0.09 0.01
7 0.32 0 0.03 0.09 0.28 0.27 0.01
8 0.23 0 0 0.06 0.17 0.46 0.08
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.40 0.20 0 0 0
0.16 0.64 0.12 0.04 0.04 0 0
0.1 0.16 0.50 0.11 0.09 0.04 0
0.07 0.05 0.26 0.18 0.24 0.19 0.01
0.03 0.03 0.04 0.10 0.36 0.43 0.01
0.06 0 0.06 0 0.23 0.57 0.08

0 0 0 0 0 0 0
HTEdf

3 4 5 6 7 8 9
3 0.45 0 0.55 0 0 0 0
4 0.16 0.52 0.24 0.04 0.04 0 0
5 0.15 0.13 0.48 0.13 0.07 0.04 0
6 0.09 0.03 0.24 0.18 0.26 0.19 0.01
7 0.02 0.01 0.05 0.11 0.41 0.39 0.01
8 0.06 0 0.03 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 376

50-50%

NBE
3 4 5 6 7 8 9

3 0.40 0 0.40 0.20 0 0 0
4 0.16 0.40 0.24 0 0.12 0.08 0
5 0.26 0.14 0.29 0.11 0.13 0.07 0
6 0.16 0.04 0.15 0.10 0.31 0.22 0.02
7 0.06 0.02 0.07 0.08 0.26 0.48 0.03
8 0.03 0 0.06 0 0.31 0.51 0.09
9 0 0 0 0 0 0 0

kNNE
3 4 5 6 7 8 9

0.20 0.40 0 0.20 0.20 0 0
0.08 0.68 0.16 0.04 0.04 0 0
0.12 0.19 0.45 0.14 0.06 0.04 0
0.07 0.12 0.25 0.21 0.24 0.09 0.02
0.05 0.06 0.09 0.23 0.32 0.22 0.03
0.06 0 0.03 0.11 0.37 0.34 0.09

0 0 0 0 0 0 0
DTE

3 4 5 6 7 8 9
3 0 0 0.20 0.40 0.20 0.20 0
4 0.20 0.40 0.24 0.12 0.04 0 0
5 0.12 0.17 0.33 0.25 0.09 0.04 0
6 0.07 0.09 0.17 0.32 0.18 0.16 0.01
7 0.02 0.06 0.05 0.30 0.29 0.28 0
8 0.08 0.03 0 0.23 0.26 0.37 0.03
9 0 0 0 0 0 0 0

RF
3 4 5 6 7 8 9

0.20 0.20 0.60 0 0 0 0
0.24 0.48 0.16 0.04 0.08 0 0
0.08 0.23 0.40 0.15 0.10 0.04 0
0.06 0.10 0.23 0.24 0.22 0.14 0.01
0.02 0.03 0.12 0.16 0.34 0.31 0.02
0.03 0 0 0.11 0.17 0.63 0.06

0 0 0 0 0 0 0
SVME

3 4 5 6 7 8 9
3 0.20 0.20 0.40 0.20 0 0 0
4 0.20 0.48 0.20 0.08 0.04 0 0
5 0.19 0.10 0.48 0.14 0.06 0.02 0.01
6 0.11 0.04 0.25 0.24 0.15 0.20 0.01
7 0.06 0.02 0.09 0.13 0.25 0.43 0.02
8 0.09 0 0.06 0.09 0.14 0.51 0.11
9 0 0 0 0 0 0 0

NNE
3 4 5 6 7 8 9

0.40 0 0.20 0.40 0 0 0
0.12 0.52 0.24 0.04 0.08 0 0
0.09 0.14 0.52 0.17 0.04 0.04 0
0.08 0.06 0.23 0.26 0.17 0.19 0.01
0.06 0.04 0.04 0.20 0.22 0.44 0
0.03 0 0.03 0.08 0.17 0.63 0.06

0 0 0 0 0 0 0
NBhte

3 4 5 6 7 8 9
3 0.40 0 0.40 0.20 0 0 0
4 0.32 0.28 0.24 0 0.08 0.08 0
5 0.53 0.09 0.17 0.10 0.06 0.05 0
6 0.41 0.02 0.10 0.08 0.17 0.20 0.02
7 0.23 0.01 0.05 0.05 0.18 0.45 0.03
8 0.17 0 0.06 0 0.17 0.51 0.09
9 0 0 0 0 0 0 0

kNNhte
3 4 5 6 7 8 9

0.20 0.20 0.20 0.20 0.20 0 0
0.12 0.52 0.20 0.04 0.08 0.04 0
0.1 0.13 0.48 0.17 0.07 0.05 0
0.07 0.08 0.24 0.18 0.25 0.15 0.03
0.05 0.04 0.06 0.10 0.44 0.28 0.03
0.06 0 0.03 0.06 0.37 0.40 0.08

0 0 0 0 0 0 0
DThte

3 4 5 6 7 8 9
3 0 0 0.20 0.60 0.20 0 0
4 0.20 0.40 0.24 0.08 0.04 0.04 0
5 0.10 0.17 0.38 0.24 0.07 0.04 0
6 0.08 0.07 0.19 0.26 0.23 0.16 0.01
7 0.01 0.05 0.07 0.17 0.33 0.36 0.01
8 0.03 0 0.03 0.08 0.17 0.63 0.06
9 0 0 0 0 0 0 0

SVMhte
3 4 5 6 7 8 9

0.45 0.35 0.20 0 0 0 0
0.56 0.24 0.04 0.08 0.08 0 0
0.73 0.05 0.11 0.03 0.05 0.02 0.01
0.55 0.01 0.08 0.05 0.13 0.16 0.02
0.37 0 0.02 0.02 0.18 0.35 0.06
0.31 0 0.03 0 0.09 0.46 0.11

0 0 0 0 0 0 0
NNhte

3 4 5 6 7 8 9
3 0.40 0 0.20 0.20 0.20 0 0
4 0.20 0.48 0.16 0.12 0.04 0 0
5 0.20 0.20 0.37 0.15 0.04 0.04 0
6 0.16 0.05 0.17 0.29 0.16 0.15 0.02
7 0.09 0.03 0.04 0.13 0.36 0.34 0.01
8 0.06 0 0.03 0.06 0.14 0.63 0.08
9 0 0 0 0 0 0 0

HTEsm
3 4 5 6 7 8 9

0.40 0 0.20 0.40 0 0 0
0.16 0.48 0.20 0.08 0.08 0 0
0.13 0.16 0.44 0.15 0.08 0.04 0
0.09 0.07 0.18 0.20 0.26 0.19 0.01
0.03 0.03 0.04 0.13 0.33 0.43 0.01
0.03 0.03 0.03 0 0.26 0.57 0.08

0 0 0 0 0 0 0
HTEdf

3 4 5 6 7 8 9
3 0.45 0.20 0 0.20 0.15 0 0
4 0.20 0.52 0.20 0.04 0.04 0 0
5 0.14 0.16 0.45 0.12 0.10 0.03 0
6 0.09 0.04 0.20 0.18 0.32 0.16 0.01
7 0.03 0.04 0.04 0.11 0.35 0.43 0
8 0.08 0 0 0 0.23 0.63 0.06
9 0 0 0 0 0 0 0
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 377

Nursery Dataset

Table A.15: Ensemble Performance on Skewed Class Distributions for Nursery Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.834 0.861 0.834 0.861 0.834 0.861 0.834 0.861 0.834

Training accuracy 0.899 0.902 0.925 0.919 0.926 0.934 0.938 0.942 0.958

GF 1.644 1.418 2.213 1.716 2.243 2.106 2.677 2.397 3.952

F1-Score 0.86 0.86 0.85 0.86 0.85 0.86 0.85 0.85 0.85

kNNE Testing accuracy 0.793 0.822 0.793 0.822 0.793 0.822 0.793 0.822 0.793

Training accuracy 0.820 0.816 0.828 0.840 0.850 0.850 0.877 0.877 0.891

GF 1.150 0.967 1.203 1.112 1.380 1.187 1.683 1.447 1.899

F1-Score 0.88 0.89 0.89 0.88 0.87 0.90 0.86 0.88 0.85

DTE Testing accuracy 0.894 0.900 0.896 0.900 0.893 0.903 0.895 0.902 0.892

Training accuracy 0.897 0.893 0.912 0.911 0.921 0.931 0.931 0.927 0.935

GF 1.029 0.935 1.182 1.124 1.354 1.406 1.522 1.342 1.662

F1-Score 0.90 0.88 0.90 0.90 0.91 0.85 0.87 0.88 0.84

RF Testing accuracy 0.903 0.893 0.899 0.889 0.894 0.893 0.894 0.894 0.896

Training accuracy 0.904 0.914 0.913 0.923 0.921 0.929 0.931 0.930 0.938

GF 1.010 1.244 1.161 1.442 1.342 1.507 1.536 1.514 1.677

F1-Score 0.90 0.89 0.89 0.89 0.88 0.84 0.85 0.85 0.82

SVME Testing accuracy 0.848 0.867 0.849 0.865 0.849 0.866 0.849 0.866 0.848

Training accuracy 0.922 0.925 0.928 0.940 0.942 0.937 0.950 0.945 0.958

GF 1.949 1.773 2.097 2.250 2.603 2.127 3.020 2.436 3.619

F1-Score 0.80 0.93 0.94 0.94 0.93 0.94 0.93 0.95 0.94

NNE Testing accuracy 0.936 0.945 0.934 0.945 0.935 0.944 0.939 0.946 0.935

Training accuracy 0.955 0.953 0.963 0.966 0.969 0.972 0.973 0.968 0.980

GF 1.422 1.170 1.784 1.618 2.097 2.000 2.259 1.688 3.250

F1-Score 0.96 0.96 0.95 0.96 0.95 0.95 0.93 0.95 0.92
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 378

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.839 0.865 0.839 0.865 0.839 0.865 0.839 0.865 0.839

Training accuracy 0.909 0.905 0.935 0.916 0.935 0.934 0.948 0.941 0.964

GF 1.769 1.421 2.477 1.607 2.477 2.045 3.096 2.288 4.472

F1-Score 0.87 0.85 0.86 0.86 0.85 0.86 0.85 0.86 0.84

kNNhte Testing accuracy 0.822 0.842 0.822 0.842 0.822 0.842 0.822 0.842 0.822

Training accuracy 0.827 0.835 0.845 0.865 0.868 0.874 0.896 0.889 0.910

GF 1.029 0.958 1.148 1.170 1.348 1.254 1.712 1.423 1.978

F1-Score 0.89 0.90 0.89 0.89 0.88 0.91 0.88 0.90 0.88

DThte Testing accuracy 0.910 0.916 0.910 0.915 0.91 0.915 0.908 0.914 0.910

Training accuracy 0.920 0.917 0.928 0.930 0.94 0.944 0.949 0.943 0.951

GF 1.125 1.012 1.250 1.214 1.50 1.518 1.804 1.509 1.837

F1-Score 0.94 0.92 0.92 0.90 0.93 0.88 0.90 0.89 0.90

SVMhte Testing accuracy 0.921 0.923 0.921 0.923 0.920 0.925 0.920 0.927 0.92

Training accuracy 0.962 0.968 0.968 0.977 0.970 0.974 0.977 0.976 0.98

GF 2.079 2.406 2.469 3.348 2.667 2.885 3.478 3.042 4.00

F1-Score 0.95 0.96 0.94 0.96 0.93 0.95 0.93 0.95 0.94

NNhte Testing accuracy 0.942 0.948 0.942 0.945 0.942 0.949 0.941 0.949 0.940

Training accuracy 0.964 0.963 0.969 0.975 0.973 0.978 0.981 0.978 0.983

GF 1.611 1.405 1.871 2.200 2.148 2.318 3.105 2.318 3.529

F1-Score 0.95 0.96 0.95 0.95 0.94 0.95 0.92 0.95 0.92

HTEsm Testing accuracy 0.958 0.957 0.954 0.955 0.956 0.956 0.957 0.958 0.958

Training accuracy 0.970 0.973 0.975 0.977 0.973 0.980 0.982 0.980 0.983

GF 1.400 1.593 1.840 1.957 1.630 2.200 2.389 2.100 2.471

F1-Score 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.95 0.94

HTEdf Testing accuracy 0.965 0.962 0.964 0.964 0.966 0.963 0.967 0.963 0.966

Training accuracy 0.978 0.980 0.980 0.984 0.979 0.985 0.987 0.983 0.989

GF 1.591 1.900 1.800 2.250 1.619 2.467 2.538 2.176 3.091

F1-Score 0.97 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.96
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 379

Table A.16: Confusion Matrices of Ensembles on Skewed Class Distributions for Nursery
Dataset

10-90%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.69 0.10 0.21

2 0 0.06 0.94 0

3 0 0.13 0 0.87

kNNE

0 1 2 3

0.94 0.01 0.03 0.02

0 0.78 0.14 0.08

0 0.18 0.82 0

0 0.10 0.01 0.89

DTE

0 1 2 3

1.00 0 0 0

0 0.83 0.07 0.10

0 0 0.94 0.06

0 0.13 0 0.87

RF

0 1 2 3

0 0.96 0.03 0 0.01

1 0 0.83 0.08 0.09

2 0 0.12 0.88 0

3 0 0.09 0 0.91

SVME

0 1 2 3

0.58 0.22 0 0.20

0 0.91 0.01 0.08

0 0.53 0.47 0

0 0.06 0 0.94

NNE

0 1 2 3

0.98 0.01 0.01 0

0 0.93 0.04 0.03

0 0 1.00 0

0 0.02 0 0.98

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.73 0.10 0.17

2 0 0.06 0.94 0

3 0 0.13 0 0.87

kNNhte

0 1 2 3

0.94 0.01 0.03 0.02

0 0.76 0.17 0.07

0 0.18 0.82 0

0 0.07 0.01 0.92

DThte

0 1 2 3

1.00 0 0 0

0 0.85 0.06 0.09

0 0.06 0.94 0

0 0.06 0 0.94

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.89 0.05 0.06

2 0 0.24 0.76 0

3 0 0.04 0 0.96

NNhte

0 1 2 3

0.98 0 0.02 0

0 0.92 0.04 0.04

0 0 1.00 0

0 0.05 0 0.95

HTEsm

0 1 2 3

1.00 0 0 0

0 0.91 0.04 0.05

0 0 1.00 0

0 0.04 0 0.96

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.94 0.03 0.03

2 0 0 1.00 0

3 0 0.03 0 0.97
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 380

15-85%

NBE

0 1 2 3

0 1.0 0 0 0

1 0 0.66 0.19 0.15

2 0 0 1.00 0

3 0 0.14 0 0.86

kNNE

0 1 2 3

0.98 0 0.01 0.01

0 0.80 0.10 0.10

0 0.14 0.86 0

0 0.11 0.01 0.88

DTE

0 1 2 3

1.00 0 0 0

0 0.83 0.06 0.11

0 0.05 0.95 0

0 0.20 0 0.80

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.83 0.07 0.10

2 0 0 1.00 0

3 0 0.18 0 0.82

SVME

0 1 2 3

0.97 0.01 0 0.02

0 0.91 0 0.09

0 0.32 0.68 0

0 0.07 0 0.93

NNE

0 1 2 3

1.00 0 0 0

0 0.96 0.02 0.02

0 0.05 0.95 0

0 0.03 0 0.97

NBhte

0 1 2 3

0 1.0 0 0 0

1 0 0.67 0.19 0.14

2 0 0 1.00 0

3 0 0.16 0 0.84

kNNhte

0 1 2 3

0.97 0 0.02 0.01

0 0.79 0.13 0.08

0 0.09 0.91 0

0 0.08 0.01 0.91

DThte

0 1 2 3

1.00 0 0 0

0 0.85 0.06 0.09

0 0.05 0.95 0

0 0.11 0 0.89

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.91 0.01 0.08

2 0 0.05 0.95 0

3 0 0.03 0 0.97

NNhte

0 1 2 3

1.00 0 0 0

0 0.94 0.03 0.03

0 0.05 0.95 0

0 0.04 0 0.96

HTEsm

0 1 2 3

1.00 0 0 0

0 0.93 0.04 0.03

0 0 1.00 0

0 0.05 0 0.95

HTEdf

0 1 2 3

0 1.0 0 0 0

1 0 0.94 0.04 0.02

2 0 0 1.00 0

3 0 0.03 0 0.97
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 381

20-80%

NBE

0 1 2 3

0 1.0 0 0 0

1 0 0.66 0.10 0.24

2 0 0.06 0.94 0

3 0 0.12 0 0.88

kNNE

0 1 2 3

0.99 0 0.01 0

0 0.78 0.14 0.08

0 0.12 0.88 0

0 0.12 0.01 0.87

DTE

0 1 2 3

1.00 0 0 0

0 0.82 0.06 0.12

0 0.06 0.94 0

0 0.13 0 0.87

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.81 0.10 0.09

2 0 0.06 0.94 0

3 0 0.14 0 0.86

SVME

0 1 2 3

1.00 0 0 0

0 0.92 0.01 0.07

0 0.59 0.41 0

0 0.06 0 0.94

NNE

0 1 2 3

1.00 0 0 0

0 0.93 0.04 0.03

0 0.06 0.94 0

0 0.06 0 0.94

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.68 0.11 0.21

2 0 0.06 0.94 0

3 0 0.13 0 0.87

kNNhte

0 1 2 3

0.98 0 0.02 0

0 0.73 0.18 0.09

0 0.06 0.94 0

0 0.09 0 0.91

DThte

0 1 2 3

1.0 0 0 0

0 0.85 0.04 0.11

0 0.06 0.94 0

0 0.09 0 0.91

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.89 0.04 0.07

2 0 0.12 0.88 0

3 0 0.05 0 0.95

NNhte

0 1 2 3

1.00 0 0 0

0 0.92 0.03 0.05

0 0.06 0.94 0

0 0.07 0 0.93

HTEsm

0 1 2 3

1.00 0 0 0

0 0.88 0.04 0.08

0 0.06 0.94 0

0 0.04 0 0.96

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.90 0.04 0.06

2 0 0.06 0.94 0

3 0 0.04 0 0.96
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 382

25-75%

NBE

0 1 2 3

0 1.0 0 0 0

1 0 0.67 0.19 0.14

2 0 0 1.00 0

3 0 0.14 0 0.86

kNNE

0 1 2 3

0.98 0 0.01 0.01

0 0.81 0.10 0.09

0 0.14 0.86 0

0.01 0.15 0 0.84

DTE

0 1 2 3

1.00 0 0 0

0 0.82 0.1 0.08

0 0 1.00 0

0 0.15 0 0.85

RF

0 1 2 3

0 1.0 0 0 0

1 0 0.84 0.08 0.08

2 0 0 1.00 0

3 0 0.19 0 0.81

SVME

0 1 2 3

1.00 0 0 0

0 0.91 0 0.09

0 0.32 0.68 0

0 0.06 0 0.94

NNE

0 1 2 3

1.00 0 0 0

0 0.93 0.02 0.05

0 0 1.00 0

0 0.04 0 0.96

NBhte

0 1 2 3

0 1.0 0 0 0

1 0 0.68 0.19 0.13

2 0 0 1.00 0

3 0 0.15 0 0.85

kNNhte

0 1 2 3

0.99 0 0.01 0

0 0.76 0.14 0.1

0 0.09 0.91 0

0 0.09 0.01 0.9

DThte

0 1 2 3

1.00 0 0 0

0 0.81 0.1 0.09

0 0 1.00 0

0 0.13 0 0.87

SVMhte

0 1 2 3

0 1.0 0 0 0

1 0 0.92 0.03 0.05

2 0 0 1.00 0

3 0 0.06 0 0.94

NNhte

0 1 2 3

1.00 0 0 0

0 0.89 0.04 0.07

0 0 1.00 0

0 0.06 0 0.94

HTEsm

0 1 2 3

1.00 0 0 0

0 0.91 0.06 0.03

0 0 1.00 0

0 0.05 0 0.95

HTEdf

0 1 2 3

0 1.0 0 0 0

1 0 0.91 0.06 0.03

2 0 0 1.00 0

3 0 0.03 0 0.97
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 383

30-70%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.68 0.10 0.22

2 0 0.06 0.94 0

3 0 0.13 0 0.87

kNNE

0 1 2 3

0.99 0 0.01 0

0 0.77 0.16 0.07

0 0.06 0.94 0

0.01 0.18 0.01 0.80

DTE

0 1 2 3

1.00 0 0 0

0 0.83 0.05 0.12

0 0.06 0.94 0

0 0.11 0 0.89

RF

0 1 2 3

0 1.0 0 0 0

1 0 0.80 0.09 0.11

2 0 0.06 0.94 0

3 0 0.16 0 0.84

SVME

0 1 2 3

1.00 0 0 0

0 0.90 0.01 0.09

0 0.59 0.41 0

0 0.08 0 0.92

NNE

0 1 2 3

1.0 0 0 0

0 0.92 0.04 0.04

0 0 1.00 0

0 0.07 0 0.93

NBhte

0 1 2 3

0 1.0 0 0 0

1 0 0.68 0.11 0.21

2 0 0.06 0.94 0

3 0 0.12 0 0.88

kNNhte

0 1 2 3

0.98 0 0.02 0

0 0.71 0.19 0.10

0 0.06 0.94 0

0 0.08 0.02 0.90

DThte

0 1 2 3

1.00 0 0 0

0 0.86 0.04 0.10

0 0.12 0.88 0

0 0.08 0 0.92

SVMhte

0 1 2 3

0 1.0 0 0 0

1 0 0.89 0.06 0.05

2 0 0.12 0.88 0

3 0 0.09 0 0.91

NNhte

0 1 2 3

1.00 0 0 0

0 0.92 0.04 0.04

0 0 1.00 0

0 0.09 0 0.91

HTEsm

0 1 2 3

1.00 0 0 0

0 0.89 0.05 0.06

0 0 1.00 0

0 0.05 0 0.95

HTEdf

0 1 2 3

0 1.0 0 0 0

1 0 0.91 0.04 0.05

2 0 0 1.00 0

3 0 0.05 0 0.95
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 384

35-65%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.69 0.19 0.12

2 0 0 1.00 0

3 0 0.16 0 0.84

kNNE

0 1 2 3

1.00 0 0 0

0.01 0.83 0.09 0.07

0 0.14 0.86 0

0.01 0.13 0.01 0.85

DTE

0 1 2 3

1.00 0 0 0

0 0.73 0.12 0.15

0 0 1.00 0

0 0.22 0 0.78

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.71 0.15 0.14

2 0 0 1.00 0

3 0 0.24 0 0.76

SVME

0 1 2 3

1.00 0 0 0

0 0.91 0.01 0.08

0 0.32 0.68 0

0 0.08 0 0.92

NNE

0 1 2 3

1.00 0 0 0

0 0.92 0.04 0.04

0 0.05 0.95 0

0 0.05 0 0.95

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.70 0.19 0.11

2 0 0 1.00 0

3 0 0.16 0 0.84

kNNhte

0 1 2 3

1.00 0 0 0

0 0.79 0.12 0.09

0 0.09 0.91 0

0 0.09 0.01 0.90

DThte

0 1 2 3

1.00 0 0 0

0 0.77 0.12 0.11

0 0 1.00 0

0 0.15 0 0.85

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.90 0.03 0.07

2 0 0 1.00 0

3 0 0.06 0 0.94

NNhte

0 1 2 3

1.00 0 0 0

0 0.89 0.04 0.07

0 0.05 0.95 0

0 0.06 0 0.94

HTEsm

0 1 2 3

1.00 0 0 0

0 0.89 0.08 0.03

0 0 1.00 0

0 0.06 0 0.94

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.87 0.08 0.05

2 0 0 1.00 0

3 0 0.04 0 0.96
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 385

40-60%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.66 0.10 0.24

2 0 0.06 0.94 0

3 0 0.12 0 0.88

kNNE

0 1 2 3

1.00 0 0 0

0.01 0.76 0.16 0.07

0 0.06 0.94 0

0.03 0.15 0.02 0.80

DTE

0 1 2 3

1.00 0 0 0

0 0.76 0.09 0.15

0 0.06 0.94 0

0 0.16 0 0.84

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.66 0.14 0.20

2 0 0.06 0.94 0

3 0 0.13 0.02 0.85

SVME

0 1 2 3

1.00 0 0 0

0 0.91 0.01 0.08

0 0.65 0.35 0

0 0.07 0 0.93

NNE

0 1 2 3

1.00 0 0 0

0 0.89 0.04 0.07

0 0.06 0.94 0

0 0.09 0 0.91

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.66 0.12 0.22

2 0 0.06 0.94 0

3 0 0.12 0 0.88

kNNhte

0 1 2 3

1.00 0 0 0

0 0.71 0.19 0.10

0 0.06 0.94 0

0 0.09 0.02 0.89

DThte

0 1 2 3

1.00 0 0 0

0 0.80 0.09 0.11

0 0.06 0.94 0

0 0.12 0 0.88

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.87 0.06 0.07

2 0 0.18 0.82 0

3 0 0.07 0 0.93

NNhte

0 1 2 3

1.00 0 0 0

0 0.88 0.05 0.07

0 0.12 0.88 0

0 0.11 0 0.89

HTEsm

0 1 2 3

1.00 0 0 0

0 0.85 0.06 0.09

0 0.06 0.94 0

0 0.06 0 0.94

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.89 0.04 0.07

2 0 0.06 0.94 0

3 0 0.06 0 0.94
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 386

45-55%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.68 0.19 0.13

2 0 0 1.00 0

3 0 0.18 0 0.82

kNNE

0 1 2 3

1.00 0 0 0

0.03 0.82 0.08 0.07

0 0.14 0.86 0

0.04 0.12 0.01 0.83

DTE

0 1 2 3

1.00 0 0 0

0 0.84 0.05 0.11

0 0.05 0.95 0

0 0.20 0 0.80

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.72 0.17 0.11

2 0 0 1.00 0

3 0 0.20 0.01 0.79

SVME

0 1 2 3

1.00 0 0 0

0 0.92 0 0.08

0 0.32 0.68 0

0 0.05 0 0.95

NNE

0 1 2 3

1.00 0 0 0

0 0.92 0.04 0.04

0 0.05 0.95 0

0 0.05 0 0.95

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.68 0.19 0.13

2 0 0 1.00 0

3 0 0.16 0 0.84

kNNhte

0 1 2 3

1.00 0 0 0

0.03 0.76 0.12 0.09

0 0.05 0.95 0

0.01 0.07 0.02 0.90

DThte

0 1 2 3

1.00 0 0 0

0 0.80 0.09 0.11

0 0 1.00 0

0 0.14 0 0.86

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.89 0.03 0.08

2 0 0.05 0.95 0

3 0 0.06 0 0.94

NNhte

0 1 2 3

1.00 0 0 0

0 0.89 0.05 0.06

0 0.05 0.95 0

0 0.06 0 0.94

HTEsm

0 1 2 3

1.00 0 0 0

0 0.88 0.06 0.06

0 0 1.00 0

0 0.04 0 0.96

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.90 0.05 0.05

2 0 0 1.00 0

3 0 0.04 0 0.96
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 387

50-50%

NBE

0 1 2 3

0 1.00 0 0 0

1 0 0.67 0.10 0.23

2 0 0.06 0.94 0

3 0 0.13 0 0.87

kNNE

0 1 2 3

1.00 0 0 0

0.03 0.75 0.15 0.07

0 0.12 0.88 0

0.04 0.16 0.02 0.78

DTE

0 1 2 3

1.00 0 0 0

0 0.72 0.07 0.21

0 0 0.94 0.06

0 0.22 0 0.78

RF

0 1 2 3

0 1.00 0 0 0

1 0 0.67 0.24 0.09

2 0 0.06 0.94 0

3 0 0.23 0.03 0.74

SVME

0 1 2 3

1.00 0 0 0

0 0.92 0.01 0.07

0 0.47 0.53 0

0 0.06 0 0.94

NNE

0 1 2 3

1.00 0 0 0

0 0.87 0.07 0.06

0 0 1.00 0

0 0.08 0 0.92

NBhte

0 1 2 3

0 1.00 0 0 0

1 0 0.65 0.15 0.20

2 0 0.06 0.94 0

3 0 0.14 0 0.86

kNNhte

0 1 2 3

1.00 0 0 0

0.01 0.72 0.18 0.09

0 0.06 0.94 0

0.02 0.10 0.01 0.87

DThte

0 1 2 3

1.00 0 0 0

0 0.77 0.09 0.14

0 0 1.00 0

0 0.09 0 0.91

SVMhte

0 1 2 3

0 1.00 0 0 0

1 0 0.87 0.07 0.06

2 0 0.12 0.88 0

3 0 0.06 0 0.94

NNhte

0 1 2 3

1.00 0 0 0

0 0.86 0.08 0.06

0 0 1.00 0

0 0.11 0 0.89

HTEsm

0 1 2 3

1.00 0 0 0

0 0.81 0.07 0.12

0 0 1.00 0

0 0.06 0 0.94

HTEdf

0 1 2 3

0 1.00 0 0 0

1 0 0.84 0.05 0.11

2 0 0 1.00 0

3 0 0.03 0 0.97
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 388

Bank Marketing Dataset

Table A.17: Ensemble Performance on Skewed Class Distributions for Bank Marketing
Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556

Training accuracy 0.924 0.892 0.838 0.801 0.730 0.729 0.729 0.760 0.783

GF 5.842 4.111 2.741 2.231 1.644 1.638 1.638 1.850 2.046

F1-Score 0.42 0.47 0.39 0.48 0.21 0.41 0.24 0.66 0.86

kNNE Testing accuracy 0.897 0.898 0.897 0.898 0.897 0.898 0.898 0.897 0.897

Training accuracy 0.916 0.881 0.855 0.821 0.803 0.783 0.783 0.768 0.761

GF 1.226 0.857 0.710 0.570 0.523 0.470 0.470 0.444 0.431

F1-Score 0.36 0.44 0.50 0.51 0.55 0.58 0.61 0.64 0.67

DTE Testing accuracy 0.886 0.884 0.886 0.886 0.885 0.886 0.886 0.887 0.886

Training accuracy 0.981 0.967 0.961 0.956 0.946 0.941 0.941 0.938 0.943

GF 6.000 3.515 2.923 2.591 2.130 1.932 1.932 1.823 2.000

F1-Score 0.42 0.76 0.76 0.83 0.85 0.86 0.86 0.86 0.86

RF Testing accuracy 0.899 0.898 0.900 0.897 0.899 0.899 0.899 0.899 0.897

Training accuracy 0.983 0.974 0.970 0.967 0.964 0.963 0.963 0.966 0.970

GF 5.941 3.923 3.333 3.121 2.806 2.730 2.730 2.971 3.433

F1-Score 0.75 0.78 0.84 0.87 0.87 0.87 0.86 0.87 0.86

SVME Testing accuracy 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894

Training accuracy 0.972 0.978 0.978 0.982 0.976 0.976 0.976 0.963 0.960

GF 3.786 4.818 4.818 5.889 4.417 4.417 4.417 2.865 2.650

F1-Score 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.84 0.84

NNE Testing accuracy 0.892 0.893 0.892 0.890 0.891 0.892 0.892 0.891 0.889

Training accuracy 0.988 0.980 0.978 0.976 0.973 0.972 0.972 0.966 0.961

GF 9.000 5.350 4.909 4.583 4.037 3.857 3.857 3.206 2.846

F1-Score 0.74 0.82 0.86 0.88 0.89 0.89 0.89 0.88 0.89
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 389

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831

Training accuracy 0.978 0.959 0.902 0.873 0.836 0.815 0.815 0.851 0.872

GF 7.682 4.122 1.724 1.331 1.030 0.914 0.914 1.134 1.320

F1-Score 0.05 0.21 0.49 0.55 0.55 0.64 0.66 0.78 0.87

kNNhte Testing accuracy 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897

Training accuracy 0.908 0.869 0.838 0.803 0.784 0.763 0.763 0.749 0.746

GF 1.120 0.786 0.636 0.523 0.477 0.435 0.435 0.410 0.406

F1-Score 0.20 0.32 0.39 0.45 0.50 0.55 0.59 0.65 0.67

DThte Testing accuracy 0.895 0.894 0.895 0.896 0.895 0.896 0.896 0.897 0.894

Training accuracy 0.988 0.976 0.972 0.967 0.959 0.958 0.958 0.955 0.960

GF 8.750 4.417 3.750 3.152 2.561 2.476 2.476 2.289 2.650

F1-Score 0.44 0.77 0.82 0.84 0.86 0.87 0.87 0.87 0.87

SVMhte Testing accuracy 0.903 0.902 0.903 0.902 0.903 0.902 0.902 0.903 0.903

Training accuracy 0.980 0.968 0.953 0.930 0.924 0.910 0.910 0.920 0.935

GF 4.850 3.062 2.064 1.400 1.276 1.089 1.089 1.213 1.492

F1-Score 0.84 0.84 0.84 0.84 0.85 0.85 0.86 0.88 0.88

NNhte Testing accuracy 0.899 0.896 0.900 0.899 0.900 0.899 0.899 0.899 0.898

Training accuracy 0.979 0.968 0.968 0.964 0.963 0.962 0.962 0.963 0.958

GF 4.810 3.250 3.125 2.806 2.703 2.658 2.658 2.730 2.429

F1-Score 0.73 0.76 0.83 0.85 0.86 0.88 0.88 0.89 0.89

HTEsm Testing accuracy 0.896 0.899 0.898 0.897 0.897 0.896 0.896 0.897 0.896

Training accuracy 0.980 0.969 0.963 0.960 0.947 0.951 0.951 0.954 0.966

GF 5.200 3.258 2.757 2.575 1.943 2.122 2.122 2.239 3.059

F1-Score 0.60 0.76 0.81 0.84 0.84 0.85 0.85 0.88 0.88

HTEdf Testing accuracy 0.902 0.902 0.900 0.902 0.900 0.901 0.901 0.899 0.901

Training accuracy 0.983 0.974 0.967 0.964 0.957 0.959 0.959 0.961 0.970

GF 5.765 3.769 3.030 2.722 2.326 2.415 2.415 2.590 3.300

F1-Score 0.70 0.81 0.83 0.86 0.86 0.88 0.88 0.89 0.89
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Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 390

Table A.18: Confusion Matrices of Ensembles on Skewed Class Distributions for Bank
Marketing Dataset

10-90%

NBE

0 1

0 0.30 0.70

1 0.21 0.79

kNNE

0 1

0.24 0.76

0.11 0.89

DTE

0 1

0.30 0.70

0.18 0.82

RF

0 1

0.67 0.33

0.08 0.92

SVME

0 1

0.97 0.03

0.97 0.03

NNE

0 1

0.66 0.34

0.11 0.89

NBhte

0 1

0.02 0.98

0.11 0.89

kNNhte

0 1

0 0.11 0.89

1 0.03 0.97

DThte

0 1

0.30 0.70

0.05 0.95

SVMhte

0 1

0.82 0.18

0.27 0.73

NNhte

0 1

0.63 0.37

0.06 0.94

HTEsm

0 1

0.47 0.53

0.05 0.95

HTEdf

0 1

0.53 0.47

0.03 0.97

15-85%

NBE

0 1

0 0.34 0.66

1 0.16 0.84

kNNE

0 1

0.31 0.69

0.18 0.82

DTE

0 1

0.71 0.29

0.33 0.67

RF

0 1

0.73 0.27

0.24 0.76

SVME

0 1

0.97 0.03

0.96 0.04

NNE

0 1

0.77 0.23

0.15 0.85

NBhte

0 1

0.12 0.88

0.15 0.85

kNNhte

0 1

0 .20 0.80

1 0.08 0.92

DThte

0 1

0.71 0.29

0.26 0.74

SVMhte

0 1

0.83 0.17

0.37 0.63

NNhte

0 1

0.68 0.32

0.08 0.92

HTEsm

0 1

0.70 0.30

0.08 0.92

HTEdf

0 1

0.69 0.31

0.06 0.94

20-80%

NBE
0 1

0 0.27 0.73
1 0.22 0.78

kNNE
0 1

0.36 0.64
0.16 0.84

DTE
0 1

0.70 0.30
0.28 0.72

RF
0 1

0.82 0.18
0.31 0.69

SVME
0 1

0.97 0.03
0.97 0.03

NNE
0 1

0.86 0.14
0.31 0.69

NBhte
0 1

0.37 0.63
0.23 0.77

kNNhte
0 1

0 0.27 0.73
1 0.12 0.88

DThte
0 1

0.79 0.21
0.20 0.80

SVMhte
0 1

0.85 0.15
0.33 0.67

NNhte
0 1

0.78 0.22
0.14 0.86

HTEsm
0 1

0.77 0.23
0.12 0.88

HTEdf
0 1

0.76 0.24
0.10 90
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25-75%

NBE

0 1

0 0.35 0.65

1 0.18 0.82

kNNE

0 1

0.38 0.62

0.23 0.77

DTE

0 1

0.83 0.17

0.37 0.63

RF

0 1

0.89 0.11

0.47 0.53

SVME

0 1

0.97 0.03

0.96 0.04

NNE

0 1

0.91 0.09

0.42 0.58

NBhte

0 1

0.42 0.58

0.23 0.77

kNNhte

0 1

0 0.32 0.68

1 0.12 0.88

DThte

0 1

0.83 0.17

0.27 0.73

SVMhte

0 1

0.84 0.16

0.35 0.65

NNhte

0 1

0.81 0.19

0.16 0.84

HTEsm

0 1

0.85 0.15

0.14 0.86

HTEdf

0 1

0.81 0.19

0.11 0.89

30-70%

NBE

0 1

0 0.12 0.88

1 0.24 0.76

kNNE

0 1

0.43 0.57

0.25 0.75

DTE

0 1

0.86 0.14

0.43 0.57

RF

0 1

0.92 0.08

0.56 0.44

SVME

0 1

0.97 0.03

0.97 0.03

NNE

0 1

0.93 0.07

0.48 0.52

NBhte

0 1

0.44 0.56

0.31 0.69

kNNhte

0 1

0 0.37 0.63

1 0.20 0.80

DThte

0 1

0.86 0.14

0.31 0.69

SVMhte

0 1

0.86 0.14

0.41 0.59

NNhte

0 1

0.84 0.16

0.20 0.80

HTEsm

0 1

0.85 0.15

0.20 0.80

HTEdf

0 1

0.86 0.14

0.16 0.84

35-65%

NBE

0 1

0 0.29 0.71

1 0.27 0.73

kNNE

0 1

0.46 0.54

0.24 0.76

DTE

0 1

0.89 0.11

0.48 0.52

RF

0 1

0.95 0.05

0.72 0.28

SVME

0 1

0.97 0.03

0.96 0.04

NNE

0 1

0.93 0.07

0.51 0.49

NBhte

0 1

0.55 0.45

0.33 0.67

kNNhte

0 1

0 0.43 0.57

1 0.18 0.82

DThte

0 1

0.89 0.11

0.46 0.54

SVMhte

0 1

0.88 0.12

0.51 0.49

NNhte

0 1

0.89 0.11

0.35 0.65

HTEsm

0 1

0.89 0.11

0.20 0.80

HTEdf

0 1

0.89 0.11

0.17 0.83
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40-60%

NBE

0 1

0 0.14 0.86

1 0.27 0.73

kNNE

0 1

0.50 0.50

0.30 0.70

DTE

0 1

0.87 0.13

0.37 0.63

RF

0 1

0.97 0.03

0.83 0.17

SVME

0 1

0.97 0.03

0.98 0.02

NNE

0 1

0.94 0.06

0.55 0.45

NBhte

0 1

0.58 0.42

0.39 0.61

kNNhte

0 1

0 0.47 0.53

1 0.26 0.74

DThte

0 1

0.89 0.11

0.37 0.63

SVMhte

0 1

0.90 0.10

0.57 0.43

NNhte

0 1

0.90 0.10

0.37 0.63

HTEsm

0 1

0.88 0.12

0.25 0.75

HTEdf

0 1

0.91 0.09

0.22 0.78

45-55%

NBE

0 1

0 0.55 0.45

1 0.28 0.72

kNNE

0 1

0.54 0.46

0.31 0.69

DTE

0 1

0.88 0.12

0.47 0.53

RF

0 1

0.97 0.03

0.79 0.21

SVME

0 1

0.97 0.03

0.97 0.03

NNE

0 1

0.92 0.08

0.46 0.54

NBhte

0 1

0.72 0.28

0.25 0.75

kNNhte

0 1

0 0.55 0.45

1 0.32 0.68

DThte

0 1

0.89 0.11

0.37 0.63

SVMhte

0 1

0.93 0.07

0.55 0.45

NNhte

0 1

0.91 0.09

0.32 0.68

HTEsm

0 1

0.91 0.09

0.30 0.70

HTEdf

0 1

0.91 0.09

0.24 0.76

50-50%

NBE

0 1

0 0.86 0.14

1 0.34 0.66

kNNE

0 1

0.59 0.41

0.36 0.64

DTE

0 1

0.91 0.09

0.66 0.34

RF

0 1

0.98 0.02

0.89 0.11

SVME

0 1

0.97 0.03

0.96 0.04

NNE

0 1

0.94 0.06

0.50 0.50

NBhte

0 1

0.89 0.11

0.40 0.60

kNNhte

0 1

0 0.59 0.41

1 0.34 0.66

DThte

0 1

0.93 0.07

0.60 0.40

SVMhte

0 1

0.94 0.06

0.60 0.40

NNhte

0 1

0.92 0.08

0.37 0.63

HTEsm

0 1

0.94 0.06

0.32 0.68

HTEdf

0 1

0.93 0.07

0.29 0.71
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Censor Income Dataset

Table A.19: Ensemble Performance on Skewed Class Distributions in Censor Income
Dataset

Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBE Testing accuracy 0.546 0.521 0.546 0.521 0.530 0.602 0.530 0.602 0.397

Training accuracy 0.915 0.911 0.887 0.889 0.857 0.859 0.815 0.823 0.707

GF 5.341 5.382 4.018 4.315 3.287 2.823 2.541 2.249 2.058

F1-Score 0.68 0.70 0.68 0.69 0.65 0.69 0.63 0.69 0.55

kNNE Testing accuracy 0.825 0.809 0.825 0.809 0.804 0.805 0.804 0.805 0.792

Training accuracy 0.921 0.912 0.879 0.880 0.855 0.855 0.838 0.836 0.811

GF 2.215 2.170 1.446 1.592 1.352 1.345 1.210 1.189 1.101

F1-Score 0.60 0.67 0.69 0.70 0.72 0.72 0.72 0.72 0.71

DTE Testing accuracy 0.794 0.797 0.795 0.796 0.781 0.784 0.780 0.784 0.743

Training accuracy 0.967 0.940 0.906 0.901 0.865 0.865 0.828 0.836 0.847

GF 6.242 3.383 2.181 2.061 1.622 1.600 1.279 1.317 1.680

F1-Score 0.47 0.60 0.60 0.69 0.70 0.74 0.72 0.76 0.76

RF Testing accuracy 0.806 0.802 0.810 0.805 0.804 0.799 0.795 0.801 0.790

Training accuracy 0.978 0.952 0.925 0.915 0.885 0.879 0.852 0.854 0.872

GF 8.818 4.125 2.533 2.294 1.704 1.661 1.385 1.363 1.641

F1-Score 0.47 0.62 0.67 0.73 0.73 0.75 0.76 0.76 0.76

SVME Testing accuracy 0.808 0.811 0.809 0.811 0.809 0.789 0.809 0.789 0.789

Training accuracy 0.933 0.916 0.887 0.882 0.859 0.862 0.840 0.848 0.839

GF 2.866 2.250 1.690 1.602 1.355 1.529 1.194 1.388 1.311

F1-Score 0.53 0.71 0.76 0.75 0.76 0.77 0.77 0.77 0.76

NNE Testing accuracy 0.814 0.801 0.815 0.801 0.797 0.799 0.796 0.799 0.783

Training accuracy 0.965 0.937 0.905 0.894 0.869 0.863 0.838 0.842 0.814

GF 5.314 3.159 1.947 1.877 1.550 1.467 1.259 1.272 1.167

F1-Score 0.61 0.69 0.72 0.74 0.75 0.75 0.76 0.76 0.75
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Ensemble Measure
Skewed Classes %

10-90 15-85 20-80 25-75 30-70 35-75 40-60 45-55 50-50

NBhte Testing accuracy 0.707 0.694 0.707 0.694 0.703 0.737 0.703 0.737 0.647

Training accuracy 0.953 0.950 0.922 0.925 0.902 0.894 0.865 0.860 0.800

GF 6.234 6.120 3.756 4.080 3.031 2.481 2.200 1.879 1.765

F1-Score 0.66 0.69 0.71 0.72 0.70 0.73 0.70 0.73 0.69

kNNhte Testing accuracy 0.819 0.808 0.819 0.808 0.806 0.805 0.806 0.805 0.795

Training accuracy 0.926 0.915 0.880 0.883 0.858 0.856 0.839 0.839 0.794

GF 2.446 2.259 1.508 1.641 1.366 1.354 1.205 1.211 0.995

F1-Score 0.60 0.67 0.68 0.70 0.71 0.71 0.72 0.72 0.69

DThte Testing accuracy 0.810 0.812 0.810 0.813 0.800 0.808 0.803 0.804 0.784

Training accuracy 0.970 0.949 0.919 0.909 0.875 0.873 0.845 0.851 0.866

GF 6.333 3.686 2.346 2.055 1.600 1.512 1.271 1.315 1.612

F1-Score 0.43 0.64 0.65 0.71 0.71 0.74 0.74 0.76 0.76

SVMhte Testing accuracy 0.834 0.827 0.833 0.827 0.825 0.820 0.825 0.819 0.811

Training accuracy 0.936 0.925 0.894 0.896 0.871 0.865 0.848 0.852 0.822

GF 2.594 2.307 1.575 1.663 1.357 1.333 1.151 1.223 1.062

F1-Score 0.58 0.70 0.71 0.73 0.73 0.74 0.74 0.75 0.76

NNhte Testing accuracy 0.826 0.810 0.825 0.812 0.807 0.807 0.808 0.807 0.800

Training accuracy 0.957 0.935 0.900 0.883 0.873 0.868 0.849 0.845 0.824

GF 4.047 2.923 1.750 1.607 1.520 1.462 1.272 1.245 1.136

F1-Score 0.61 0.70 0.74 0.75 0.73 0.76 0.76 0.76 0.76

HTEsm Testing accuracy 0.818 0.803 0.818 0.802 0.794 0.803 0.794 0.801 0.787

Training accuracy 0.953 0.936 0.905 0.904 0.880 0.876 0.857 0.856 0.839

GF 3.872 3.078 1.916 2.062 1.717 1.589 1.441 1.382 1.323

F1-Score 0.59 0.69 0.72 0.75 0.74 0.75 0.75 0.76 0.77

HTEdf Testing accuracy 0.827 0.813 0.828 0.814 0.808 0.808 0.808 0.808 0.801

Training accuracy 0.958 0.941 0.912 0.909 0.886 0.885 0.866 0.865 0.849

GF 4.119 3.169 1.955 2.044 1.684 1.669 1.433 1.422 1.318

F1-Score 0.57 0.71 0.74 0.75 0.75 0.77 0.77 0.77 0.77
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Table A.20: Confusion Matrices of Ensembles on Skewed Class Distributions for Censor
Income Dataset

10-90%

NBE

0 1

0 0.58 0.42

1 0.11 0.89

kNNE

0 1

0.46 0.54

0.04 0.96

DTE

0 1

0.31 0.69

0.02 0.98

RF

0 1

0.31 0.69

0.01 0.99

SVME

0 1

0.38 0.62

0.03 0.97

NNE

0 1

0.48 0.52

0.04 0.96

NBhte

0 1

0.55 0.45

0.10 0.90

NBhte

0 1

0 0.55 0.45

1 0.10 0.90

kNNhte

0 1

0.46 0.54

0.03 0.97

DThte

0 1

0.27 0.73

0.02 0.98

SVMhte

0 1

0.43 0.57

0.02 0.98

NNhte

0 1

0.48 0.52

0.04 0.96

HTEsm

0 1

0.44 0.56

0 1.00

HTEdf

0 1

0.42 0.58

0 1.00

15-85%

NBE

0 1

0 0.61 0.39

1 0.12 0.88

kNNE

0 1

0.56 0.44

0.08 0.92

DTE

0 1

0.47 0.53

0.06 0.94

RF

0 1

0.49 0.51

0.07 0.93

SVME

0 1

0.62 0.38

0.12 0.88

NNE

0 1

0.59 0.41

0.11 0.89

NBhte

0 1

0.60 0.40

0.11 0.89

kNNhte

0 1

0 0.55 0.45

1 0.07 0.93

DThte

0 1

0.52 0.48

0.07 0.93

SVMhte

0 1

0.60 0.40

0.08 0.92

NNhte

0 1

0.61 0.39

0.10 0.90

HTEsm

0 1

0.58 0.42

0.05 0.95

HTEdf

0 1

0.59 0.41

0.04 0.96

20-80%

NBE
0 1

0 0.58 0.42
1 0.11 0.89

kNNE
0 1

0.58 0.42
0.08 0.92

DTE
0 1

0.47 0.53
0.05 0.95

RF
0 1

0.56 0.44
0.05 0.95

SVME
0 1

0.70 0.30
0.12 0.88

NNE
0 1

0.63 0.37
0.09 0.91

NBhte
0 1

0.63 0.37
0.11 0.89

NBhte
0 1

0 0.63 0.37
1 0.11 0.89

kNNhte
0 1

0.56 0.44
0.06 0.94

DThte
0 1

0.52 0.48
0.04 0.96

SVMhte
0 1

0.61 0.39
0.06 0.94

NNhte
0 1

0.65 0.35
0.08 0.92

HTEsm
0 1

0.62 0.38
0.04 0.96

HTEdf
0 1

0.60 0.40
0.03 0.97
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25-75%

NBE

0 1

0 0.60 0.40

1 0.12 0.88

kNNE

0 1

0.61 0.39

0.10 0.90

DTE

0 1

0.60 0.40

0.12 0.88

RF

0 1

0.64 0.36

0.10 0.90

SVME

0 1

0.72 0.28

0.24 0.76

NNE

0 1

0.68 0.32

0.17 0.83

NBhte

0 1

0.64 0.36

0.11 0.89

kNNhte

0 1

0 0.60 0.40

1 0.09 0.91

DThte

0 1

0.62 0.38

0.10 0.90

SVMhte

0 1

0.65 0.35

0.11 0.89

NNhte

0 1

0.68 0.32

0.11 0.89

HTEsm

0 1

0.68 0.32

0.08 0.92

HTEdf

0 1

0.67 0.33

0.05 0.95

30-70%

NBE

0 1

0 0.53 0.47

1 0.12 0.88

kNNE

0 1

0.63 0.37

0.11 0.89

DTE

0 1

0.60 0.40

0.09 0.91

RF

0 1

0.66 0.34

0.13 0.87

SVME

0 1

0.73 0.27

0.21 0.79

NNE

0 1

0.69 0.31

0.12 0.88

NBhte

0 1

0.62 0.38

0.10 0.90

kNNhte

0 1

0 0.62 0.38

1 0.10 0.90

DThte

0 1

0.62 0.38

0.10 0.90

SVMhte

0 1

0.67 0.33

0.15 0.85

NNhte

0 1

0.65 0.35

0.10 0.90

HTEsm

0 1

0.66 0.34

0.09 0.91

HTEdf

0 1

0.68 0.32

0.07 0.93

35-65%

NBE

0 1

0 0.60 0.40

1 0.16 0.84

kNNE

0 1

0.64 0.36

0.13 0.87

DTE

0 1

0.67 0.33

0.13 0.87

RF

0 1

0.72 0.28

0.22 0.78

SVME

0 1

0.76 0.24

0.28 0.72

NNE

0 1

0.71 0.29

0.22 0.78

NBhte

0 1

0.67 0.33

0.14 0.86

kNNhte

0 1

0 0.62 0.38

1 0.11 0.89

DThte

0 1

0.68 0.32

0.15 0.85

SVMhte

0 1

0.68 0.32

0.14 0.86

NNhte

0 1

0.74 0.26

0.23 0.77

HTEsm

0 1

0.71 0.29

0.12 0.88

HTEdf

0 1

0.72 0.28

0.10 0.90

Stellenbosch University https://scholar.sun.ac.za



Appendix A. Ensemble Performance on Skewed Class Distributions for Classification
Problems 397

40-60%

NBE

0 1

0 0.50 0.50

1 0.13 0.87

kNNE

0 1

0.64 0.36

0.12 0.88

DTE

0 1

0.66 0.34

0.18 0.82

RF

0 1

0.73 0.27

0.20 0.80

SVME

0 1

0.76 0.24

0.27 0.73

NNE

0 1

0.71 0.29

0.15 0.85

NBhte

0 1

0.64 0.36

0.12 0.88

kNNhte

0 1

0 0.64 0.36

1 0.12 0.88

DThte

0 1

0.68 0.32

0.15 0.85

SVMhte

0 1

0.69 0.31

0.17 0.83

NNhte

0 1

0.70 0.30

0.12 0.88

HTEsm

0 1

0.69 0.31

0.12 0.88

HTEdf

0 1

0.70 0.30

0.10 0.90

45-55%

NBE

0 1

0 0.60 0.40

1 0.15 0.85

kNNE

0 1

0.65 0.35

0.14 0.86

DTE

0 1

0.71 0.29

0.16 0.84

RF

0 1

0.76 0.24

0.26 0.74

SVME

0 1

0.78 0.22

0.31 0.69

NNE

0 1

0.77 0.23

0.26 0.74

NBhte

0 1

0.66 0.34

0.13 0.87

kNNhte

0 1

0 0.65 0.35

1 0.13 0.87

DThte

0 1

0.72 0.28

0.18 0.82

SVMhte

0 1

0.71 0.29

0.17 0.83

NNhte

0 1

0.77 0.23

0.25 0.75

HTEsm

0 1

0.72 0.28

0.13 0.87

HTEdf

0 1

0.74 0.26

0.12 0.88

50-50%

NBE

0 1

0 0.40 0.60

1 0.15 0.85

kNNE

0 1

0.64 0.36

0.16 0.84

DTE

0 1

0.80 0.20

0.36 0.64

RF

0 1

0.89 0.11

0.58 0.42

SVME

0 1

0.82 0.18

0.43 0.57

NNE

0 1

0.84 0.16

0.53 0.47

NBhte

0 1

0.60 0.40

0.14 0.86

kNNhte

0 1

0 0.61 0.39

1 0.15 0.85

DThte

0 1

0.83 0.17

0.43 0.57

SVMhte

0 1

0.72 0.28

0.18 0.82

NNhte

0 1

0.80 0.20

0.41 0.59

HTEsm

0 1

0.75 0.25

0.14 0.86

HTEdf

0 1

0.73 0.27

0.13 0.87
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Appendix B

Ensemble Performance on Outlier Ratios

for Classification Problems

The results of the ensembles over the different datasets in the number of outliers study

for classification problems are provided in this appendix. The results consist of training

and testing accuracy, GF, and F1-score of the ensembles over the classification datasets.

398
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Sonar Dataset

Table B.1: Ensemble Performance on the Number of Outliers for Sonar Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.747 0.747 0.747 0.747 0.747

Training Accuracy 0.719 0.712 0.712 0.706 0.756

GF 0.900 0.878 0.878 0.861 1.037

F1-score 0.760 0.790 0.760 0.840 0.790

kNNE Testing Accuracy 0.586 0.586 0.586 0.586 0.586

Training Accuracy 0.774 0.766 0.751 0.743 0.754

GF 1.832 1.769 1.663 1.611 1.683

F1-score 0.860 0.860 0.860 0.860 0.810

DTE Testing Accuracy 0.635 0.614 0.616 0.615 0.639

Training Accuracy 0.731 0.738 0.708 0.737 0.737

GF 1.357 1.473 1.315 1.464 1.373

F1-score 0.810 0.720 0.810 0.790 0.740

RF Testing Accuracy 0.720 0.690 0.695 0.702 0.722

Training Accuracy 0.798 0.779 0.797 0.779 0.784

GF 1.386 1.403 1.502 1.348 1.287

F1-score 0.810 0.740 0.830 0.880 0.720

SVME Testing Accuracy 0.729 0.719 0.724 0.725 0.719

Training Accuracy 0.856 0.846 0.833 0.843 0.837

GF 1.882 1.825 1.653 1.752 1.724

F1-score 0.860 0.880 0.880 0.840 0.810

NNE Testing Accuracy 0.764 0.764 0.769 0.759 0.764

Training Accuracy 0.855 0.848 0.829 0.836 0.831

GF 1.628 1.553 1.351 1.470 1.396

F1-score 0.900 0.910 0.910 0.860 0.910
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.762 0.762 0.762 0.762 0.762

Training Accuracy 0.724 0.710 0.711 0.707 0.754

GF 0.862 0.821 0.824 0.812 0.967

F1-score 0.760 0.790 0.790 0.840 0.790

kNNhte Testing Accuracy 0.655 0.655 0.655 0.655 0.655

Training Accuracy 0.806 0.808 0.770 0.771 0.782

GF 1.778 1.797 1.500 1.507 1.583

F1-score 0.900 0.900 0.900 0.900 0.840

DThte Testing Accuracy 0.653 0.672 0.633 0.702 0.637

Training Accuracy 0.786 0.801 0.799 0.773 0.764

GF 1.621 1.648 1.826 1.313 1.538

F1-score 0.840 0.810 0.840 0.760 0.760

SVMhte Testing Accuracy 0.705 0.700 0.716 0.686 0.697

Training Accuracy 0.772 0.775 0.760 0.763 0.775

GF 1.294 1.333 1.183 1.325 1.347

F1-score 0.810 0.810 0.810 0.790 0.760

NNhte Testing Accuracy 0.768 0.764 0.754 0.759 0.763

Training Accuracy 0.825 0.821 0.810 0.806 0.816

GF 1.326 1.318 1.295 1.242 1.288

F1-score 0.830 0.880 0.880 0.880 0.810

HTEsm Testing Accuracy 0.776 0.776 0.783 0.788 0.778

Training Accuracy 0.857 0.846 0.835 0.833 0.852

GF 1.566 1.455 1.315 1.269 1.500

F1-score 0.950 0.910 0.920 0.880 0.870

HTEdf Testing Accuracy 0.796 0.810 0.783 0.782 0.786

Training Accuracy 0.852 0.853 0.832 0.842 0.845

GF 1.378 1.293 1.292 1.380 1.381

F1-score 0.950 0.930 0.930 0.930 0.910
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Breast Cancer Dataset

Table B.2: Ensemble Performance on the Number of Outliers for Breast Cancer Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.517 0.517 0.517 0.517 0.517

Training Accuracy 0.611 0.687 0.675 0.651 0.619

GF 1.242 1.543 1.486 1.384 1.268

F1-score 0.510 0.630 0.560 0.530 0.490

kNNE Testing Accuracy 0.666 0.666 0.666 0.666 0.666

Training Accuracy 0.798 0.797 0.802 0.797 0.806

GF 1.653 1.645 1.687 1.645 1.722

F1-score 0.590 0.560 0.580 0.550 0.590

DTE Testing Accuracy 0.573 0.557 0.572 0.566 0.584

Training Accuracy 0.718 0.748 0.739 0.734 0.758

GF 1.514 1.758 1.640 1.632 1.719

F1-score 0.640 0.620 0.660 0.670 0.610

RF Testing Accuracy 0.619 0.609 0.627 0.611 0.658

Training Accuracy 0.779 0.789 0.782 0.791 0.789

GF 1.724 1.853 1.711 1.861 1.621

F1-score 0.650 0.670 0.620 0.580 0.620

SVME Testing Accuracy 0.617 0.627 0.627 0.637 0.606

Training Accuracy 0.791 0.799 0.794 0.804 0.810

GF 1.833 1.856 1.811 1.852 2.074

F1-score 0.510 0.510 0.510 0.510 0.510

NNE Testing Accuracy 0.556 0.555 0.560 0.555 0.554

Training Accuracy 0.790 0.787 0.794 0.792 0.804

GF 2.114 2.089 2.136 2.139 2.276

F1-score 0.600 0.630 0.630 0.590 0.600

Stellenbosch University https://scholar.sun.ac.za



Appendix B. Ensemble Performance on Outlier Ratios for Classification Problems 402

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.518 0.518 0.518 0.518 0.518

Training Accuracy 0.656 0.709 0.691 0.686 0.683

GF 1.401 1.656 1.560 1.535 1.521

F1-score 0.590 0.650 0.590 0.580 0.580

kNNhte Testing Accuracy 0.635 0.635 0.635 0.635 0.635

Training Accuracy 0.806 0.818 0.820 0.816 0.815

GF 1.881 2.005 2.028 1.984 1.973

F1-score 0.720 0.690 0.690 0.690 0.690

DThte Testing Accuracy 0.569 0.598 0.574 0.589 0.605

Training Accuracy 0.743 0.748 0.743 0.750 0.775

GF 1.677 1.595 1.658 1.644 1.756

F1-score 0.690 0.660 0.660 0.710 0.660

SVMhte Testing Accuracy 0.621 0.634 0.628 0.623 0.627

Training Accuracy 0.795 0.795 0.797 0.805 0.810

GF 1.849 1.785 1.833 1.933 1.963

F1-score 0.620 0.630 0.650 0.620 0.630

NNhte Testing Accuracy 0.567 0.571 0.584 0.567 0.568

Training Accuracy 0.780 0.799 0.795 0.798 0.804

GF 1.968 2.134 2.029 2.144 2.204

F1-score 0.660 0.630 0.600 0.620 0.570

HTEsm Testing Accuracy 0.627 0.630 0.630 0.630 0.633

Training Accuracy 0.814 0.809 0.801 0.811 0.815

GF 2.005 1.937 1.859 1.958 1.984

F1-score 0.700 0.680 0.700 0.630 0.730

HTEdf Testing Accuracy 0.633 0.633 0.637 0.633 0.633

Training Accuracy 0.780 0.781 0.784 0.788 0.792

GF 1.668 1.676 1.681 1.731 1.764

F1-score 0.720 0.740 0.720 0.720 0.730
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Indian Liver Dataset

Table B.3: Ensemble Performance on the Number of Outliers for Indian Liver Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.665 0.665 0.665 0.665 0.665

Training Accuracy 0.683 0.683 0.682 0.682 0.683

GF 1.057 1.057 1.053 1.053 1.057

F1-score 0.560 0.570 0.570 0.580 0.580

kNNE Testing Accuracy 0.730 0.730 0.730 0.730 0.730

Training Accuracy 0.669 0.666 0.658 0.662 0.660

GF 0.816 0.808 0.789 0.799 0.794

F1-score 0.570 0.570 0.570 0.570 0.570

DTE Testing Accuracy 0.750 0.748 0.738 0.750 0.745

Training Accuracy 0.727 0.720 0.707 0.716 0.721

GF 0.916 0.900 0.894 0.880 0.914

F1-score 0.660 0.680 0.690 0.650 0.650

RF Testing Accuracy 0.733 0.734 0.736 0.730 0.719

Training Accuracy 0.773 0.771 0.769 0.767 0.770

GF 1.176 1.162 1.143 1.159 1.222

F1-score 0.700 0.790 0.750 0.720 0.720

SVME Testing Accuracy 0.744 0.746 0.746 0.753 0.748

Training Accuracy 0.698 0.695 0.688 0.682 0.686

GF 0.848 0.833 0.814 0.777 0.803

F1-score 0.680 0.680 0.660 0.660 0.660

NNE Testing Accuracy 0.730 0.733 0.725 0.727 0.737

Training Accuracy 0.727 0.724 0.723 0.719 0.715

GF 0.989 0.967 0.993 0.972 0.923

F1-score 0.640 0.640 0.660 0.680 0.690

Stellenbosch University https://scholar.sun.ac.za



Appendix B. Ensemble Performance on Outlier Ratios for Classification Problems 404

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.668 0.668 0.668 0.668 0.668

Training Accuracy 0.685 0.688 0.686 0.683 0.684

GF 1.054 1.064 1.057 1.047 1.051

F1-score 0.560 0.560 0.570 0.570 0.570

kNNhte Testing Accuracy 0.727 0.727 0.727 0.727 0.727

Training Accuracy 0.719 0.709 0.704 0.703 0.706

GF 0.972 0.938 0.922 0.919 0.929

F1-score 0.630 0.630 0.630 0.630 0.630

DThte Testing Accuracy 0.747 0.746 0.728 0.744 0.740

Training Accuracy 0.738 0.740 0.732 0.734 0.727

GF 0.966 0.977 1.015 0.962 0.952

F1-score 0.670 0.660 0.640 0.640 0.680

SVMhte Testing Accuracy 0.743 0.743 0.741 0.747 0.743

Training Accuracy 0.675 0.671 0.667 0.668 0.662

GF 0.791 0.781 0.778 0.762 0.760

F1-score 0.690 0.670 0.640 0.620 0.620

NNhte Testing Accuracy 0.762 0.762 0.752 0.747 0.764

Training Accuracy 0.766 0.764 0.753 0.759 0.762

GF 1.017 1.008 1.004 1.050 0.992

F1-score 0.690 0.680 0.740 0.700 0.670

HTEsm Testing Accuracy 0.766 0.761 0.755 0.759 0.766

Training Accuracy 0.719 0.714 0.721 0.711 0.711

GF 0.833 0.836 0.878 0.834 0.810

F1-score 0.670 0.670 0.660 0.670 0.630

HTEdf Testing Accuracy 0.768 0.764 0.761 0.765 0.769

Training Accuracy 0.756 0.754 0.749 0.746 0.742

GF 0.951 0.959 0.952 0.925 0.895

F1-score 0.730 0.700 0.700 0.700 0.670
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Credit Approval Dataset

Table B.4: Ensemble Performance on the Number of Outliers for Credit Approval Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.535 0.535 0.535 0.535 0.535

Training Accuracy 0.612 0.614 0.623 0.622 0.616

GF 1.198 1.205 1.233 1.230 1.211

F1-score 0.470 0.470 0.470 0.480 0.490

kNNE Testing Accuracy 0.785 0.785 0.785 0.785 0.785

Training Accuracy 0.863 0.868 0.864 0.869 0.860

GF 1.569 1.629 1.581 1.641 1.536

F1-score 0.800 0.800 0.810 0.810 0.800

DTE Testing Accuracy 0.763 0.751 0.763 0.757 0.766

Training Accuracy 0.864 0.864 0.873 0.869 0.868

GF 1.743 1.831 1.866 1.855 1.773

F1-score 0.790 0.800 0.800 0.800 0.800

RF Testing Accuracy 0.795 0.778 0.794 0.794 0.794

Training Accuracy 0.887 0.892 0.881 0.891 0.892

GF 1.814 2.056 1.731 1.890 1.907

F1-score 0.820 0.830 0.830 0.830 0.820

SVME Testing Accuracy 0.775 0.778 0.777 0.777 0.778

Training Accuracy 0.881 0.885 0.881 0.883 0.881

GF 1.891 1.930 1.874 1.906 1.866

F1-score 0.850 0.860 0.860 0.860 0.850

NNE Testing Accuracy 0.668 0.677 0.666 0.672 0.665

Training Accuracy 0.860 0.863 0.858 0.853 0.851

GF 2.371 2.358 2.352 2.231 2.248

F1-score 0.740 0.740 0.760 0.780 0.700
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.651 0.651 0.651 0.651 0.651

Training Accuracy 0.709 0.710 0.710 0.704 0.719

GF 1.199 1.203 1.203 1.179 1.242

F1-score 0.620 0.620 0.630 0.620 0.630

kNNhte Testing Accuracy 0.788 0.788 0.788 0.788 0.788

Training Accuracy 0.875 0.878 0.874 0.879 0.876

GF 1.696 1.738 1.683 1.752 1.710

F1-score 0.850 0.850 0.860 0.860 0.840

DThte Testing Accuracy 0.759 0.761 0.764 0.758 0.758

Training Accuracy 0.880 0.879 0.881 0.882 0.875

GF 2.008 1.975 1.983 2.051 1.936

F1-score 0.800 0.800 0.820 0.830 0.810

SVMhte Testing Accuracy 0.821 0.807 0.812 0.819 0.822

Training Accuracy 0.878 0.877 0.875 0.880 0.879

GF 1.467 1.569 1.504 1.508 1.471

F1-score 0.830 0.820 0.830 0.830 0.830

NNhte Testing Accuracy 0.761 0.769 0.772 0.766 0.766

Training Accuracy 0.891 0.891 0.886 0.885 0.883

GF 2.193 2.119 2.000 2.035 2.000

F1-score 0.780 0.780 0.800 0.800 0.770

HTEsm Testing Accuracy 0.771 0.774 0.773 0.771 0.774

Training Accuracy 0.889 0.892 0.890 0.888 0.889

GF 2.063 2.093 2.064 2.045 2.036

F1-score 0.800 0.800 0.830 0.800 0.800

HTEdf Testing Accuracy 0.796 0.797 0.796 0.803 0.801

Training Accuracy 0.904 0.901 0.902 0.899 0.901

GF 2.125 2.051 2.082 1.950 2.010

F1-score 0.830 0.820 0.830 0.830 0.840
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Red Wine Dataset

Table B.5: Ensemble Performance on the Number of Outliers for Red Wine Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.471 0.471 0.471 0.471 0.471

Training Accuracy 0.532 0.537 0.549 0.557 0.567

GF 1.130 1.143 1.173 1.194 1.222

F1-score 0.370 0.390 0.380 0.390 0.390

kNNE Testing Accuracy 0.501 0.501 0.501 0.501 0.501

Training Accuracy 0.784 0.784 0.785 0.783 0.785

GF 2.310 2.310 2.321 2.300 2.321

F1-score 0.470 0.470 0.460 0.460 0.470

DTE Testing Accuracy 0.484 0.485 0.486 0.481 0.483

Training Accuracy 0.764 0.765 0.765 0.761 0.757

GF 2.186 2.191 2.187 2.172 2.128

F1-score 0.480 0.550 0.520 0.540 0.490

RF Testing Accuracy 0.534 0.548 0.536 0.522 0.544

Training Accuracy 0.858 0.853 0.855 0.856 0.853

GF 3.282 3.075 3.200 3.319 3.102

F1-score 0.610 0.610 0.630 0.620 0.620

SVME Testing Accuracy 0.531 0.538 0.526 0.528 0.532

Training Accuracy 0.585 0.583 0.567 0.555 0.557

GF 1.130 1.108 1.095 1.061 1.056

F1-score 0.470 0.470 0.460 0.460 0.440

NNE Testing Accuracy 0.540 0.554 0.549 0.542 0.541

Training Accuracy 0.829 0.833 0.829 0.829 0.830

GF 2.690 2.671 2.637 2.678 2.700

F1-score 0.580 0.590 0.530 0.570 0.580
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.489 0.489 0.489 0.489 0.489

Training Accuracy 0.529 0.536 0.547 0.555 0.566

GF 1.085 1.101 1.128 1.148 1.177

F1-score 0.370 0.380 0.390 0.390 0.380

kNNhte Testing Accuracy 0.531 0.531 0.531 0.531 0.531

Training Accuracy 0.835 0.837 0.840 0.838 0.840

GF 2.842 2.877 2.931 2.895 2.931

F1-score 0.570 0.570 0.560 0.560 0.570

DThte Testing Accuracy 0.531 0.532 0.524 0.524 0.520

Training Accuracy 0.848 0.849 0.850 0.849 0.852

GF 3.086 3.099 3.173 3.152 3.243

F1-score 0.530 0.570 0.540 0.540 0.550

SVMhte Testing Accuracy 0.541 0.538 0.538 0.531 0.536

Training Accuracy 0.828 0.828 0.826 0.825 0.823

GF 2.669 2.686 2.655 2.680 2.621

F1-score 0.500 0.500 0.520 0.510 0.530

NNhte Testing Accuracy 0.564 0.564 0.564 0.564 0.558

Training Accuracy 0.848 0.852 0.850 0.847 0.846

GF 2.868 2.946 2.907 2.850 2.870

F1-score 0.590 0.560 0.550 0.580 0.620

HTEsm Testing Accuracy 0.549 0.549 0.548 0.549 0.549

Training Accuracy 0.676 0.679 0.681 0.680 0.681

GF 1.392 1.405 1.417 1.409 1.414

F1-score 0.580 0.580 0.540 0.580 0.570

HTEdf Testing Accuracy 0.552 0.559 0.556 0.556 0.552

Training Accuracy 0.845 0.844 0.841 0.842 0.837

GF 2.890 2.827 2.792 2.810 2.748

F1-score 0.620 0.610 0.630 0.630 0.630
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Car Evaluation Dataset

Table B.6: Ensemble Performance on the Number of Outliers for Car Evaluation Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.809 0.809 0.809 0.809 0.809

Training Accuracy 0.839 0.838 0.836 0.835 0.836

GF 1.186 1.179 1.165 1.158 1.165

F1-score 0.820 0.820 0.820 0.820 0.820

kNNE Testing Accuracy 0.830 0.830 0.830 0.830 0.830

Training Accuracy 0.932 0.931 0.930 0.927 0.925

GF 2.500 2.464 2.429 2.329 2.267

F1-score 0.770 0.770 0.780 0.770 0.760

DTE Testing Accuracy 0.919 0.924 0.924 0.921 0.922

Training Accuracy 0.949 0.949 0.948 0.949 0.948

GF 1.588 1.490 1.462 1.549 1.500

F1-score 0.960 0.960 0.960 0.960 0.960

RF Testing Accuracy 0.886 0.880 0.884 0.882 0.881

Training Accuracy 0.970 0.969 0.969 0.967 0.968

GF 3.800 3.871 3.742 3.576 3.719

F1-score 0.920 0.940 0.940 0.930 0.910

SVME Testing Accuracy 0.869 0.871 0.872 0.871 0.872

Training Accuracy 0.982 0.982 0.981 0.980 0.979

GF 7.278 7.167 6.737 6.450 6.095

F1-score 0.900 0.900 0.900 0.900 0.890

NNE Testing Accuracy 0.946 0.948 0.952 0.948 0.951

Training Accuracy 0.976 0.976 0.975 0.975 0.975

GF 2.250 2.167 1.920 2.080 1.960

F1-score 0.980 0.970 0.980 0.970 0.980
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Appendix B. Ensemble Performance on Outlier Ratios for Classification Problems 410

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.809 0.809 0.809 0.809 0.809

Training Accuracy 0.839 0.838 0.836 0.835 0.836

GF 1.186 1.179 1.165 1.158 1.165

F1-score 0.820 0.820 0.820 0.820 0.820

kNNhte Testing Accuracy 0.844 0.844 0.844 0.844 0.844

Training Accuracy 0.921 0.921 0.918 0.917 0.916

GF 1.975 1.975 1.902 1.880 1.857

F1-score 0.790 0.780 0.790 0.790 0.780

DThte Testing Accuracy 0.934 0.935 0.933 0.934 0.933

Training Accuracy 0.977 0.977 0.976 0.975 0.975

GF 2.870 2.826 2.792 2.640 2.680

F1-score 0.960 0.960 0.960 0.960 0.960

SVMhte Testing Accuracy 0.903 0.903 0.901 0.906 0.904

Training Accuracy 0.963 0.962 0.962 0.962 0.959

GF 2.622 2.553 2.605 2.474 2.341

F1-score 0.970 0.960 0.960 0.960 0.960

NNhte Testing Accuracy 0.947 0.947 0.948 0.949 0.951

Training Accuracy 0.984 0.982 0.981 0.982 0.982

GF 3.312 2.944 2.737 2.833 2.722

F1-score 0.990 0.990 0.990 0.990 0.990

HTEsm Testing Accuracy 0.951 0.952 0.949 0.951 0.950

Training Accuracy 0.976 0.975 0.974 0.974 0.974

GF 2.042 1.920 1.962 1.885 1.923

F1-score 0.970 0.970 0.980 0.980 0.970

HTEdf Testing Accuracy 0.951 0.956 0.954 0.953 0.958

Training Accuracy 0.986 0.985 0.985 0.984 0.984

GF 3.500 2.933 3.067 2.938 2.625

F1-score 1.000 0.990 0.990 1.000 1.000
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White Wine Dataset

Table B.7: Ensemble Performance on the Number of Outliers for White Wine Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.427 0.427 0.427 0.427 0.427

Training Accuracy 0.448 0.436 0.427 0.427 0.424

GF 1.038 1.016 1.000 1.000 0.995

F1-score 0.330 0.310 0.310 0.310 0.320

kNNE Testing Accuracy 0.473 0.473 0.473 0.473 0.473

Training Accuracy 0.709 0.705 0.705 0.703 0.695

GF 1.811 1.786 1.786 1.774 1.728

F1-score 0.440 0.440 0.440 0.440 0.430

DTE Testing Accuracy 0.477 0.478 0.477 0.476 0.477

Training Accuracy 0.710 0.710 0.713 0.706 0.705

GF 1.803 1.800 1.822 1.782 1.773

F1-score 0.410 0.410 0.440 0.420 0.460

RF Testing Accuracy 0.527 0.526 0.519 0.512 0.522

Training Accuracy 0.793 0.789 0.791 0.791 0.788

GF 2.285 2.246 2.301 2.335 2.255

F1-score 0.520 0.510 0.550 0.500 0.520

SVME Testing Accuracy 0.499 0.502 0.499 0.500 0.501

Training Accuracy 0.506 0.455 0.467 0.462 0.458

GF 1.014 0.914 0.940 0.929 0.921

F1-score 0.370 0.340 0.360 0.350 0.340

NNE Testing Accuracy 0.515 0.518 0.514 0.512 0.517

Training Accuracy 0.786 0.781 0.781 0.778 0.777

GF 2.266 2.201 2.219 2.198 2.166

F1-score 0.460 0.530 0.500 0.520 0.520
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.449 0.449 0.449 0.449 0.449

Training Accuracy 0.458 0.448 0.441 0.439 0.439

GF 1.017 0.998 0.986 0.982 0.982

F1-score 0.330 0.320 0.310 0.300 0.320

kNNhte Testing Accuracy 0.503 0.503 0.503 0.503 0.503

Training Accuracy 0.767 0.764 0.764 0.766 0.761

GF 2.133 2.106 2.106 2.124 2.079

F1-score 0.500 0.500 0.500 0.500 0.490

DThte Testing Accuracy 0.519 0.518 0.517 0.517 0.521

Training Accuracy 0.792 0.791 0.791 0.787 0.787

GF 2.313 2.306 2.311 2.268 2.249

F1-score 0.540 0.500 0.520 0.510 0.510

SVMhte Testing Accuracy 0.505 0.504 0.504 0.504 0.506

Training Accuracy 0.558 0.555 0.552 0.553 0.546

GF 1.120 1.115 1.107 1.110 1.088

F1-score 0.400 0.400 0.400 0.390 0.400

NNhte Testing Accuracy 0.532 0.533 0.532 0.531 0.535

Training Accuracy 0.782 0.776 0.776 0.774 0.768

GF 2.147 2.085 2.089 2.075 2.004

F1-score 0.500 0.500 0.570 0.480 0.480

HTEsm Testing Accuracy 0.518 0.522 0.520 0.518 0.526

Training Accuracy 0.763 0.757 0.755 0.753 0.748

GF 2.034 1.967 1.959 1.951 1.881

F1-score 0.490 0.470 0.460 0.450 0.480

HTEdf Testing Accuracy 0.532 0.535 0.534 0.532 0.536

Training Accuracy 0.775 0.771 0.771 0.768 0.765

GF 2.080 2.031 2.035 2.017 1.974

F1-score 0.510 0.500 0.500 0.480 0.480
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Nursery Dataset

Table B.8: Ensemble Performance on the Number of Outliers for Nursery Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.856 0.856 0.814 0.814 0.836

Training Accuracy 0.873 0.872 0.870 0.871 0.877

GF 1.134 1.125 1.431 1.442 1.333

F1-score 0.860 0.860 0.830 0.830 0.850

kNNE Testing Accuracy 0.822 0.822 0.824 0.824 0.818

Training Accuracy 0.913 0.911 0.910 0.908 0.904

GF 2.046 2.000 1.956 1.913 1.896

F1-score 0.890 0.900 0.870 0.890 0.880

DTE Testing Accuracy 0.890 0.888 0.897 0.899 0.921

Training Accuracy 0.958 0.959 0.959 0.957 0.960

GF 2.619 2.732 2.512 2.349 1.975

F1-score 0.950 0.950 0.940 0.940 0.950

RF Testing Accuracy 0.893 0.893 0.890 0.896 0.914

Training Accuracy 0.963 0.963 0.964 0.965 0.962

GF 2.892 2.892 3.056 2.971 2.263

F1-score 0.950 0.950 0.940 0.940 0.960

SVME Testing Accuracy 0.890 0.891 0.870 0.872 0.871

Training Accuracy 0.970 0.969 0.967 0.968 0.969

GF 3.667 3.516 3.939 4.000 4.161

F1-score 0.940 0.940 0.940 0.940 0.960

NNE Testing Accuracy 0.931 0.931 0.930 0.927 0.944

Training Accuracy 0.984 0.985 0.984 0.984 0.979

GF 4.312 4.600 4.375 4.562 2.667

F1-score 0.970 0.980 0.980 0.980 0.980
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.857 0.857 0.829 0.829 0.846

Training Accuracy 0.887 0.886 0.888 0.889 0.894

GF 1.265 1.254 1.527 1.541 1.453

F1-score 0.870 0.860 0.850 0.860 0.870

kNNhte Testing Accuracy 0.846 0.846 0.840 0.840 0.850

Training Accuracy 0.920 0.917 0.917 0.914 0.916

GF 1.925 1.855 1.928 1.860 1.786

F1-score 0.900 0.900 0.870 0.880 0.900

DThte Testing Accuracy 0.900 0.899 0.902 0.904 0.919

Training Accuracy 0.977 0.976 0.975 0.974 0.972

GF 4.348 4.208 3.920 3.692 2.893

F1-score 0.970 0.970 0.970 0.960 0.970

SVMhte Testing Accuracy 0.916 0.916 0.910 0.909 0.925

Training Accuracy 0.979 0.977 0.976 0.975 0.976

GF 4.000 3.652 3.750 3.640 3.125

F1-score 0.980 0.970 0.960 0.960 0.970

NNhte Testing Accuracy 0.934 0.933 0.934 0.933 0.948

Training Accuracy 0.991 0.991 0.988 0.988 0.986

GF 7.333 7.444 5.500 5.583 3.714

F1-score 0.980 0.980 0.990 0.990 0.990

HTEsm Testing Accuracy 0.953 0.955 0.948 0.947 0.950

Training Accuracy 0.998 0.998 0.994 0.995 0.994

GF 23.500 22.500 8.667 10.600 8.333

F1-score 1.000 1.000 1.000 1.000 1.000

HTEdf Testing Accuracy 0.961 0.961 0.949 0.947 0.956

Training Accuracy 0.999 0.999 0.995 0.996 0.996

GF 39.000 39.000 10.200 13.250 11.000

F1-score 1.000 1.000 1.000 1.000 1.000
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Bank Marketing Dataset

Table B.9: Ensemble Performance on the Number of Outliers for Bank Marketing Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.556 0.556 0.556 0.556 0.556

Training Accuracy 0.800 0.798 0.800 0.799 0.795

GF 2.220 2.198 2.220 2.209 2.166

F1-score 0.790 0.790 0.790 0.790 0.790

kNNE Testing Accuracy 0.897 0.897 0.897 0.897 0.897

Training Accuracy 0.825 0.830 0.828 0.828 0.827

GF 0.589 0.606 0.599 0.599 0.595

F1-score 0.730 0.730 0.730 0.730 0.730

DTE Testing Accuracy 0.887 0.886 0.885 0.885 0.886

Training Accuracy 0.936 0.935 0.941 0.936 0.936

GF 1.766 1.754 1.949 1.797 1.781

F1-score 0.890 0.890 0.880 0.890 0.890

RF Testing Accuracy 0.901 0.894 0.899 0.900 0.896

Training Accuracy 0.950 0.951 0.951 0.953 0.951

GF 1.980 2.163 2.061 2.128 2.122

F1-score 0.890 0.890 0.880 0.890 0.890

SVME Testing Accuracy 0.894 0.894 0.894 0.894 0.894

Training Accuracy 0.974 0.973 0.973 0.973 0.973

GF 4.077 3.926 3.926 3.926 3.926

F1-score 0.840 0.840 0.840 0.840 0.840

NNE Testing Accuracy 0.890 0.891 0.890 0.892 0.891

Training Accuracy 0.972 0.971 0.971 0.970 0.971

GF 3.929 3.759 3.793 3.600 3.759

F1-score 0.890 0.890 0.890 0.890 0.890
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.831 0.831 0.831 0.831 0.831

Training Accuracy 0.828 0.827 0.828 0.825 0.823

GF 0.983 0.977 0.983 0.966 0.955

F1-score 0.840 0.840 0.840 0.840 0.840

kNNhte Testing Accuracy 0.893 0.893 0.893 0.893 0.893

Training Accuracy 0.858 0.859 0.860 0.858 0.860

GF 0.754 0.759 0.764 0.754 0.764

F1-score 0.780 0.780 0.780 0.780 0.770

DThte Testing Accuracy 0.895 0.894 0.895 0.896 0.893

Training Accuracy 0.952 0.952 0.953 0.953 0.951

GF 2.187 2.208 2.234 2.213 2.184

F1-score 0.900 0.890 0.890 0.890 0.890

SVMhte Testing Accuracy 0.902 0.903 0.903 0.903 0.903

Training Accuracy 0.938 0.940 0.933 0.918 0.920

GF 1.581 1.617 1.448 1.183 1.213

F1-score 0.890 0.890 0.890 0.880 0.880

NNhte Testing Accuracy 0.895 0.900 0.898 0.898 0.898

Training Accuracy 0.968 0.965 0.966 0.967 0.966

GF 3.281 2.857 3.000 3.091 3.000

F1-score 0.900 0.900 0.890 0.890 0.890

HTEsm Testing Accuracy 0.898 0.899 0.897 0.898 0.898

Training Accuracy 0.961 0.963 0.963 0.962 0.962

GF 2.615 2.730 2.784 2.684 2.684

F1-score 0.890 0.890 0.890 0.890 0.890

HTEdf Testing Accuracy 0.901 0.900 0.898 0.901 0.899

Training Accuracy 0.954 0.954 0.956 0.954 0.956

GF 2.152 2.174 2.318 2.152 2.295

F1-score 0.900 0.900 0.900 0.900 0.900
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Censor Income Dataset

Table B.10: Ensemble Performance on the Number of Outliers for Censor Income Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBE Testing Accuracy 0.505 0.505 0.505 0.505 0.505

Training Accuracy 0.808 0.808 0.807 0.805 0.808

GF 2.578 2.578 2.565 2.538 2.578

F1-score 0.750 0.750 0.750 0.750 0.750

kNNE Testing Accuracy 0.805 0.805 0.805 0.805 0.805

Training Accuracy 0.860 0.862 0.862 0.862 0.862

GF 1.393 1.413 1.413 1.413 1.413

F1-score 0.800 0.800 0.800 0.800 0.800

DTE Testing Accuracy 0.805 0.802 0.804 0.800 0.802

Training Accuracy 0.873 0.874 0.872 0.872 0.873

GF 1.535 1.571 1.531 1.562 1.559

F1-score 0.820 0.820 0.820 0.820 0.820

RF Testing Accuracy 0.806 0.806 0.810 0.804 0.807

Training Accuracy 0.872 0.872 0.869 0.871 0.870

GF 1.516 1.516 1.450 1.519 1.485

F1-score 0.800 0.800 0.800 0.810 0.800

SVME Testing Accuracy 0.805 0.805 0.805 0.805 0.805

Training Accuracy 0.869 0.870 0.870 0.870 0.867

GF 1.489 1.500 1.500 1.500 1.466

F1-score 0.810 0.810 0.810 0.800 0.810

NNE Testing Accuracy 0.802 0.804 0.803 0.805 0.802

Training Accuracy 0.871 0.871 0.870 0.871 0.870

GF 1.535 1.519 1.515 1.512 1.523

F1-score 0.810 0.820 0.810 0.810 0.810
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

NBhte Testing Accuracy 0.726 0.726 0.726 0.726 0.726

Training Accuracy 0.838 0.838 0.837 0.836 0.840

GF 1.691 1.691 1.681 1.671 1.712

F1-score 0.780 0.780 0.780 0.780 0.780

kNNhte Testing Accuracy 0.811 0.811 0.811 0.811 0.811

Training Accuracy 0.855 0.856 0.855 0.856 0.857

GF 1.303 1.312 1.303 1.312 1.322

F1-score 0.800 0.800 0.800 0.800 0.800

DThte Testing Accuracy 0.807 0.806 0.807 0.804 0.806

Training Accuracy 0.840 0.837 0.838 0.835 0.836

GF 1.206 1.190 1.191 1.188 1.183

F1-score 0.790 0.790 0.780 0.800 0.790

SVMhte Testing Accuracy 0.829 0.829 0.828 0.828 0.828

Training Accuracy 0.869 0.859 0.857 0.860 0.861

GF 1.305 1.213 1.203 1.229 1.237

F1-score 0.820 0.820 0.820 0.820 0.820

NNhte Testing Accuracy 0.805 0.806 0.807 0.804 0.806

Training Accuracy 0.873 0.874 0.876 0.873 0.874

GF 1.535 1.540 1.556 1.543 1.540

F1-score 0.830 0.820 0.830 0.830 0.830

HTEsm Testing Accuracy 0.815 0.812 0.810 0.812 0.813

Training Accuracy 0.878 0.874 0.868 0.874 0.875

GF 1.516 1.492 1.439 1.492 1.496

F1-score 0.840 0.830 0.830 0.830 0.830

HTEdf Testing Accuracy 0.813 0.814 0.815 0.813 0.815

Training Accuracy 0.861 0.861 0.861 0.862 0.865

GF 1.345 1.338 1.331 1.355 1.370

F1-score 0.840 0.830 0.830 0.830 0.830
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Appendix C

Ensemble Performance on Outlier

Severities for Classification Problems

The results of the ensembles over the different datasets in the severity of outliers study for

classification problems are provided in this appendix. The results consist of the training

and testing accuracy, GF, and F1-score of the ensembles over the classification datasets.

419
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Appendix C. Ensemble Performance on Outlier Severities for Classification Problems420

Sonar Dataset

Table C.1: Ensemble Performance on the Severity of Outliers for Sonar Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.747 0.747 0.747 0.747 0.747

Training Accuracy 0.746 0.752 0.735 0.708 0.720

GF 0.996 1.020 0.955 0.866 0.904

F1-score 0.860 0.840 0.860 0.810 0.760

kNNE Testing Accuracy 0.586 0.586 0.586 0.586 0.586

Training Accuracy 0.759 0.788 0.761 0.782 0.777

GF 1.718 1.953 1.732 1.899 1.857

F1-score 0.790 0.790 0.790 0.810 0.860

DTE Testing Accuracy 0.618 0.618 0.619 0.625 0.638

Training Accuracy 0.785 0.773 0.760 0.762 0.745

GF 1.777 1.683 1.588 1.576 1.420

F1-score 0.790 0.770 0.690 0.770 0.690

RF Testing Accuracy 0.727 0.718 0.712 0.719 0.741

Training Accuracy 0.811 0.809 0.778 0.794 0.784

GF 1.444 1.476 1.297 1.364 1.199

F1-score 0.770 0.770 0.840 0.770 0.880

SVME Testing Accuracy 0.690 0.681 0.695 0.686 0.710

Training Accuracy 0.758 0.785 0.768 0.763 0.768

GF 1.281 1.484 1.315 1.325 1.250

F1-score 0.690 0.710 0.710 0.740 0.760

NNE Testing Accuracy 0.764 0.758 0.760 0.773 0.773

Training Accuracy 0.859 0.856 0.831 0.863 0.863

GF 1.674 1.681 1.420 1.657 1.657

F1-score 0.840 0.860 0.920 0.880 0.860
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.762 0.762 0.762 0.762 0.762

Training Accuracy 0.748 0.753 0.736 0.710 0.717

GF 0.944 0.964 0.902 0.821 0.841

F1-score 0.860 0.840 0.840 0.790 0.760

kNNhte Testing Accuracy 0.655 0.655 0.655 0.655 0.655

Training Accuracy 0.799 0.802 0.777 0.818 0.814

GF 1.716 1.742 1.547 1.896 1.855

F1-score 0.880 0.860 0.860 0.880 0.910

DThte Testing Accuracy 0.648 0.686 0.678 0.696 0.676

Training Accuracy 0.825 0.803 0.785 0.799 0.779

GF 2.011 1.594 1.498 1.512 1.466

F1-score 0.810 0.840 0.740 0.790 0.770

SVMhte Testing Accuracy 0.728 0.725 0.730 0.725 0.724

Training Accuracy 0.854 0.851 0.812 0.852 0.854

GF 1.863 1.846 1.436 1.858 1.890

F1-score 0.810 0.810 0.790 0.840 0.860

NNhte Testing Accuracy 0.768 0.755 0.768 0.774 0.755

Training Accuracy 0.851 0.840 0.812 0.819 0.832

GF 1.557 1.531 1.234 1.249 1.458

F1-score 0.880 0.880 0.910 0.930 0.900

HTEsm Testing Accuracy 0.795 0.811 0.778 0.769 0.779

Training Accuracy 0.865 0.842 0.820 0.852 0.868

GF 1.519 1.196 1.233 1.561 1.674

F1-score 0.910 0.910 0.910 0.950 0.930

HTEdf Testing Accuracy 0.798 0.791 0.794 0.776 0.771

Training Accuracy 0.874 0.851 0.824 0.853 0.849

GF 1.603 1.403 1.170 1.524 1.517

F1-score 0.920 0.930 0.930 0.930 0.940
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Breast Cancer Dataset

Table C.2: Ensemble Performance on the Severity of Outliers for Breast Cancer Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.517 0.517 0.517 0.517 0.517

Training Accuracy 0.635 0.671 0.683 0.663 0.622

GF 1.323 1.468 1.524 1.433 1.278

F1-score 0.560 0.580 0.590 0.560 0.520

kNNE Testing Accuracy 0.666 0.666 0.666 0.666 0.666

Training Accuracy 0.798 0.801 0.794 0.794 0.797

GF 1.653 1.678 1.621 1.621 1.645

F1-score 0.550 0.560 0.550 0.580 0.580

DTE Testing Accuracy 0.552 0.542 0.563 0.578 0.565

Training Accuracy 0.740 0.748 0.723 0.733 0.753

GF 1.723 1.817 1.578 1.581 1.761

F1-score 0.640 0.570 0.660 0.690 0.640

RF Testing Accuracy 0.645 0.627 0.623 0.654 0.652

Training Accuracy 0.775 0.784 0.774 0.782 0.799

GF 1.578 1.727 1.668 1.587 1.731

F1-score 0.670 0.590 0.690 0.590 0.590

SVME Testing Accuracy 0.628 0.638 0.623 0.627 0.625

Training Accuracy 0.801 0.803 0.790 0.802 0.806

GF 1.869 1.838 1.795 1.884 1.933

F1-score 0.510 0.510 0.510 0.510 0.510

NNE Testing Accuracy 0.564 0.543 0.561 0.561 0.560

Training Accuracy 0.781 0.795 0.769 0.794 0.792

GF 1.991 2.229 1.900 2.131 2.115

F1-score 0.620 0.650 0.680 0.590 0.720
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.518 0.518 0.518 0.518 0.518

Training Accuracy 0.673 0.692 0.697 0.691 0.677

GF 1.474 1.565 1.591 1.560 1.492

F1-score 0.560 0.600 0.590 0.580 0.590

kNNhte Testing Accuracy 0.635 0.635 0.635 0.635 0.635

Training Accuracy 0.808 0.817 0.804 0.818 0.812

GF 1.901 1.995 1.862 2.005 1.941

F1-score 0.690 0.690 0.690 0.720 0.720

DThte Testing Accuracy 0.592 0.575 0.581 0.595 0.596

Training Accuracy 0.746 0.754 0.742 0.744 0.761

GF 1.606 1.728 1.624 1.582 1.690

F1-score 0.660 0.660 0.680 0.690 0.710

SVMhte Testing Accuracy 0.633 0.621 0.630 0.630 0.621

Training Accuracy 0.787 0.809 0.793 0.798 0.806

GF 1.723 1.984 1.787 1.832 1.954

F1-score 0.630 0.620 0.650 0.630 0.620

NNhte Testing Accuracy 0.575 0.567 0.578 0.569 0.566

Training Accuracy 0.782 0.792 0.781 0.801 0.795

GF 1.950 2.082 1.927 2.166 2.117

F1-score 0.620 0.650 0.660 0.580 0.650

HTEsm Testing Accuracy 0.637 0.627 0.630 0.637 0.630

Training Accuracy 0.813 0.816 0.797 0.818 0.822

GF 1.941 2.027 1.823 1.995 2.079

F1-score 0.680 0.680 0.680 0.690 0.720

HTEdf Testing Accuracy 0.633 0.633 0.633 0.633 0.637

Training Accuracy 0.780 0.787 0.786 0.785 0.797

GF 1.668 1.723 1.715 1.707 1.788

F1-score 0.700 0.700 0.700 0.710 0.720
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Indian Liver Dataset

Table C.3: Ensemble Performance on the Severity of Outliers for Indian Liver Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.665 0.665 0.665 0.665 0.665

Training Accuracy 0.652 0.659 0.665 0.657 0.672

GF 0.963 0.982 1.000 0.977 1.021

F1-score 0.680 0.690 0.670 0.640 0.630

kNNE Testing Accuracy 0.727 0.727 0.727 0.727 0.727

Training Accuracy 0.680 0.681 0.676 0.679 0.685

GF 0.853 0.856 0.843 0.850 0.867

F1-score 0.580 0.570 0.590 0.590 0.610

DTE Testing Accuracy 0.733 0.742 0.738 0.738 0.733

Training Accuracy 0.690 0.706 0.693 0.695 0.696

GF 0.861 0.878 0.853 0.859 0.878

F1-score 0.670 0.630 0.670 0.610 0.640

RF Testing Accuracy 0.721 0.732 0.721 0.734 0.726

Training Accuracy 0.726 0.742 0.737 0.735 0.732

GF 1.018 1.039 1.061 1.004 1.022

F1-score 0.730 0.710 0.660 0.750 0.730

SVME Testing Accuracy 0.746 0.750 0.743 0.745 0.745

Training Accuracy 0.652 0.648 0.662 0.666 0.667

GF 0.730 0.710 0.760 0.763 0.766

F1-score 0.590 0.590 0.640 0.630 0.630

NNE Testing Accuracy 0.732 0.720 0.730 0.738 0.727

Training Accuracy 0.662 0.674 0.670 0.678 0.683

GF 0.793 0.859 0.818 0.814 0.861

F1-score 0.600 0.590 0.570 0.590 0.610
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.668 0.668 0.668 0.668 0.668

Training Accuracy 0.667 0.671 0.672 0.668 0.678

GF 0.997 1.009 1.012 1.000 1.031

F1-score 0.680 0.690 0.650 0.630 0.620

kNNhte Testing Accuracy 0.730 0.730 0.730 0.730 0.730

Training Accuracy 0.646 0.642 0.647 0.639 0.650

GF 0.763 0.754 0.765 0.748 0.771

F1-score 0.480 0.480 0.510 0.490 0.510

DThte Testing Accuracy 0.731 0.748 0.745 0.740 0.753

Training Accuracy 0.682 0.693 0.672 0.690 0.709

GF 0.846 0.821 0.777 0.839 0.849

F1-score 0.660 0.670 0.690 0.620 0.650

SVMhte Testing Accuracy 0.747 0.747 0.745 0.749 0.746

Training Accuracy 0.661 0.664 0.667 0.662 0.667

GF 0.746 0.753 0.766 0.743 0.763

F1-score 0.510 0.590 0.610 0.580 0.590

NNhte Testing Accuracy 0.759 0.753 0.764 0.752 0.767

Training Accuracy 0.668 0.672 0.679 0.681 0.681

GF 0.726 0.753 0.735 0.777 0.730

F1-score 0.660 0.660 0.680 0.680 0.670

HTEsm Testing Accuracy 0.760 0.771 0.756 0.760 0.758

Training Accuracy 0.722 0.728 0.716 0.724 0.745

GF 0.863 0.842 0.859 0.870 0.949

F1-score 0.660 0.620 0.660 0.670 0.660

HTEdf Testing Accuracy 0.771 0.757 0.770 0.757 0.764

Training Accuracy 0.707 0.716 0.714 0.722 0.722

GF 0.782 0.856 0.804 0.874 0.849

F1-score 0.670 0.670 0.680 0.670 0.670
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Credit Approval Dataset

Table C.4: Ensemble Performance on the Severity of Outliers for Credit Approval Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.535 0.535 0.535 0.535 0.535

Training Accuracy 0.609 0.629 0.638 0.632 0.632

GF 1.189 1.253 1.285 1.264 1.264

F1-score 0.470 0.480 0.500 0.470 0.470

kNNE Testing Accuracy 0.788 0.788 0.788 0.788 0.788

Training Accuracy 0.876 0.875 0.870 0.874 0.872

GF 1.710 1.696 1.631 1.683 1.656

F1-score 0.810 0.800 0.800 0.800 0.800

DTE Testing Accuracy 0.760 0.758 0.755 0.757 0.766

Training Accuracy 0.866 0.873 0.860 0.859 0.864

GF 1.791 1.906 1.750 1.723 1.721

F1-score 0.790 0.790 0.790 0.790 0.790

RF Testing Accuracy 0.803 0.800 0.797 0.798 0.788

Training Accuracy 0.890 0.889 0.881 0.892 0.889

GF 1.791 1.802 1.706 1.870 1.910

F1-score 0.800 0.810 0.820 0.800 0.830

SVME Testing Accuracy 0.778 0.775 0.783 0.778 0.777

Training Accuracy 0.877 0.875 0.878 0.879 0.884

GF 1.805 1.800 1.779 1.835 1.922

F1-score 0.840 0.850 0.850 0.840 0.850

NNE Testing Accuracy 0.670 0.667 0.677 0.681 0.675

Training Accuracy 0.859 0.866 0.846 0.858 0.848

GF 2.340 2.485 2.097 2.246 2.138

F1-score 0.780 0.780 0.780 0.800 0.770
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.651 0.651 0.651 0.651 0.651

Training Accuracy 0.707 0.717 0.706 0.716 0.706

GF 1.191 1.233 1.187 1.229 1.187

F1-score 0.620 0.620 0.640 0.640 0.630

kNNhte Testing Accuracy 0.808 0.808 0.808 0.808 0.808

Training Accuracy 0.866 0.865 0.863 0.865 0.861

GF 1.433 1.422 1.401 1.422 1.381

F1-score 0.850 0.850 0.850 0.860 0.850

DThte Testing Accuracy 0.762 0.765 0.751 0.765 0.764

Training Accuracy 0.881 0.879 0.874 0.878 0.878

GF 2.000 1.942 1.976 1.926 1.934

F1-score 0.810 0.810 0.810 0.810 0.800

SVMhte Testing Accuracy 0.818 0.819 0.815 0.819 0.821

Training Accuracy 0.877 0.882 0.879 0.874 0.876

GF 1.480 1.534 1.529 1.437 1.444

F1-score 0.820 0.830 0.830 0.830 0.830

NNhte Testing Accuracy 0.775 0.766 0.767 0.775 0.756

Training Accuracy 0.891 0.893 0.876 0.883 0.882

GF 2.064 2.187 1.879 1.923 2.068

F1-score 0.740 0.750 0.730 0.730 0.720

HTEsm Testing Accuracy 0.777 0.771 0.767 0.774 0.768

Training Accuracy 0.888 0.895 0.884 0.886 0.885

GF 1.991 2.181 2.009 1.982 2.017

F1-score 0.850 0.850 0.850 0.850 0.850

HTEdf Testing Accuracy 0.793 0.796 0.806 0.801 0.803

Training Accuracy 0.905 0.907 0.898 0.900 0.901

GF 2.179 2.194 1.902 1.990 1.990

F1-score 0.870 0.870 0.870 0.860 0.860
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Red Wine Dataset

Table C.5: Ensemble Performance on the Severity of Outliers for Red Wine Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.471 0.471 0.471 0.471 0.471

Training Accuracy 0.529 0.536 0.553 0.553 0.560

GF 1.123 1.140 1.183 1.183 1.202

F1-score 0.380 0.360 0.380 0.390 0.380

kNNE Testing Accuracy 0.501 0.501 0.501 0.501 0.501

Training Accuracy 0.784 0.785 0.786 0.783 0.783

GF 2.310 2.321 2.332 2.300 2.300

F1-score 0.470 0.470 0.460 0.460 0.470

DTE Testing Accuracy 0.480 0.473 0.481 0.489 0.472

Training Accuracy 0.762 0.759 0.767 0.767 0.760

GF 2.185 2.187 2.227 2.193 2.200

F1-score 0.490 0.520 0.530 0.540 0.520

RF Testing Accuracy 0.556 0.526 0.534 0.546 0.536

Training Accuracy 0.854 0.857 0.850 0.852 0.851

GF 3.041 3.315 3.107 3.068 3.114

F1-score 0.580 0.620 0.590 0.600 0.570

SVME Testing Accuracy 0.532 0.531 0.526 0.532 0.535

Training Accuracy 0.583 0.579 0.569 0.560 0.555

GF 1.122 1.114 1.100 1.064 1.045

F1-score 0.430 0.450 0.490 0.410 0.440

NNE Testing Accuracy 0.534 0.540 0.536 0.544 0.539

Training Accuracy 0.826 0.824 0.827 0.824 0.821

GF 2.678 2.614 2.682 2.591 2.575

F1-score 0.550 0.540 0.560 0.540 0.560
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.489 0.489 0.489 0.489 0.489

Training Accuracy 0.527 0.537 0.550 0.551 0.559

GF 1.080 1.104 1.136 1.138 1.159

F1-score 0.380 0.360 0.380 0.390 0.380

kNNhte Testing Accuracy 0.531 0.531 0.531 0.531 0.531

Training Accuracy 0.838 0.837 0.839 0.840 0.836

GF 2.895 2.877 2.913 2.931 2.860

F1-score 0.570 0.570 0.560 0.560 0.570

DThte Testing Accuracy 0.515 0.539 0.521 0.523 0.532

Training Accuracy 0.848 0.850 0.849 0.853 0.852

GF 3.191 3.073 3.172 3.245 3.162

F1-score 0.640 0.620 0.610 0.640 0.610

SVMhte Testing Accuracy 0.549 0.552 0.551 0.550 0.548

Training Accuracy 0.677 0.678 0.680 0.680 0.679

GF 1.396 1.391 1.403 1.406 1.408

F1-score 0.490 0.500 0.510 0.510 0.510

NNhte Testing Accuracy 0.558 0.546 0.548 0.550 0.552

Training Accuracy 0.826 0.830 0.832 0.830 0.842

GF 2.540 2.671 2.690 2.647 2.835

F1-score 0.540 0.540 0.530 0.560 0.540

HTEsm Testing Accuracy 0.549 0.558 0.554 0.556 0.556

Training Accuracy 0.852 0.848 0.848 0.848 0.830

GF 3.047 2.908 2.934 2.921 2.612

F1-score 0.590 0.580 0.540 0.560 0.560

HTEdf Testing Accuracy 0.552 0.551 0.559 0.556 0.562

Training Accuracy 0.842 0.842 0.843 0.845 0.843

GF 2.835 2.842 2.809 2.865 2.790

F1-score 0.620 0.610 0.600 0.600 0.600
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Car Evaluation Dataset

Table C.6: Ensemble Performance on the Severity of Outliers for Car Evaluation Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.809 0.809 0.809 0.809 0.809

Training Accuracy 0.945 0.945 0.945 0.945 0.945

GF 3.473 3.473 3.473 3.473 3.473

F1-score 0.820 0.820 0.820 0.820 0.820

kNNE Testing Accuracy 0.844 0.844 0.844 0.844 0.844

Training Accuracy 0.964 0.964 0.964 0.964 0.964

GF 4.333 4.333 4.333 4.333 4.333

F1-score 0.790 0.780 0.790 0.790 0.780

DTE Testing Accuracy 0.925 0.923 0.924 0.924 0.924

Training Accuracy 0.973 0.973 0.973 0.973 0.973

GF 2.778 2.852 2.815 2.815 2.815

F1-score 0.960 0.960 0.960 0.960 0.960

RF Testing Accuracy 0.879 0.884 0.879 0.884 0.883

Training Accuracy 0.971 0.972 0.972 0.972 0.971

GF 4.172 4.143 4.321 4.143 4.034

F1-score 0.920 0.940 0.940 0.930 0.910

SVME Testing Accuracy 0.873 0.872 0.872 0.872 0.870

Training Accuracy 0.972 0.972 0.972 0.972 0.972

GF 4.536 4.571 4.571 4.571 4.643

F1-score 0.900 0.900 0.900 0.900 0.890

NNE Testing Accuracy 0.947 0.949 0.947 0.946 0.950

Training Accuracy 0.969 0.964 0.969 0.967 0.967

GF 1.710 1.417 1.710 1.636 1.515

F1-score 1.000 0.990 0.990 1.000 1.000
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.809 0.809 0.809 0.809 0.809

Training Accuracy 0.945 0.945 0.945 0.945 0.945

GF 3.473 3.473 3.473 3.473 3.473

F1-score 0.820 0.820 0.820 0.820 0.820

kNNhte Testing Accuracy 0.830 0.830 0.830 0.830 0.830

Training Accuracy 0.969 0.969 0.969 0.969 0.969

GF 5.484 5.484 5.484 5.484 5.484

F1-score 0.770 0.770 0.780 0.770 0.760

DThte Testing Accuracy 0.935 0.936 0.932 0.932 0.934

Training Accuracy 0.974 0.974 0.974 0.974 0.974

GF 2.500 2.462 2.615 2.615 2.538

F1-score 0.960 0.960 0.960 0.960 0.960

SVMhte Testing Accuracy 0.904 0.904 0.902 0.902 0.905

Training Accuracy 0.964 0.964 0.964 0.964 0.964

GF 2.667 2.667 2.722 2.722 2.639

F1-score 0.970 0.960 0.960 0.960 0.960

NNhte Testing Accuracy 0.954 0.955 0.955 0.955 0.955

Training Accuracy 0.973 0.970 0.969 0.971 0.973

GF 1.704 1.500 1.452 1.552 1.667

F1-score 0.990 0.990 0.990 0.990 0.990

HTEsm Testing Accuracy 0.948 0.949 0.949 0.948 0.951

Training Accuracy 0.972 0.969 0.974 0.974 0.974

GF 1.857 1.645 1.962 2.000 1.885

F1-score 0.990 0.990 0.990 0.990 0.990

HTEdf Testing Accuracy 0.948 0.949 0.949 0.948 0.951

Training Accuracy 0.972 0.969 0.974 0.974 0.974

GF 1.857 1.645 1.962 2.000 1.885

F1-score 0.990 0.990 0.990 0.990 0.992
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White Wine Dataset

Table C.7: Ensemble Performance on the Severity of Outliers for White Wine Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.427 0.427 0.427 0.427 0.427

Training Accuracy 0.448 0.436 0.427 0.427 0.424

GF 1.038 1.016 1.000 1.000 0.995

F1-score 0.330 0.310 0.310 0.310 0.310

kNNE Testing Accuracy 0.473 0.473 0.473 0.473 0.473

Training Accuracy 0.709 0.705 0.705 0.703 0.695

GF 1.811 1.786 1.786 1.774 1.728

F1-score 0.440 0.440 0.440 0.440 0.430

DTE Testing Accuracy 0.477 0.478 0.477 0.476 0.477

Training Accuracy 0.710 0.710 0.713 0.706 0.705

GF 1.803 1.800 1.822 1.782 1.773

F1-score 0.410 0.410 0.440 0.410 0.450

RF Testing Accuracy 0.527 0.526 0.519 0.512 0.522

Training Accuracy 0.793 0.789 0.791 0.791 0.788

GF 2.285 2.246 2.301 2.335 2.255

F1-score 0.520 0.510 0.520 0.480 0.500

SVME Testing Accuracy 0.499 0.502 0.499 0.500 0.501

Training Accuracy 0.506 0.455 0.467 0.462 0.458

GF 1.014 0.914 0.940 0.929 0.921

F1-score 0.370 0.340 0.360 0.340 0.330

NNE Testing Accuracy 0.515 0.518 0.514 0.512 0.517

Training Accuracy 0.786 0.781 0.781 0.778 0.777

GF 2.266 2.201 2.219 2.198 2.166

F1-score 0.500 0.530 0.530 0.480 0.470
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.449 0.449 0.449 0.449 0.449

Training Accuracy 0.458 0.448 0.441 0.439 0.439

GF 1.017 0.998 0.986 0.982 0.982

F1-score 0.330 0.320 0.310 0.300 0.320

kNNhte Testing Accuracy 0.503 0.503 0.503 0.503 0.503

Training Accuracy 0.767 0.764 0.764 0.766 0.761

GF 2.133 2.106 2.106 2.124 2.079

F1-score 0.500 0.500 0.500 0.490 0.480

DThte Testing Accuracy 0.519 0.518 0.517 0.517 0.521

Training Accuracy 0.792 0.791 0.791 0.787 0.787

GF 2.313 2.306 2.311 2.268 2.249

F1-score 0.540 0.500 0.520 0.510 0.510

SVMhte Testing Accuracy 0.505 0.504 0.504 0.504 0.506

Training Accuracy 0.558 0.555 0.552 0.553 0.546

GF 1.120 1.115 1.107 1.110 1.088

F1-score 0.400 0.400 0.400 0.370 0.380

NNhte Testing Accuracy 0.532 0.533 0.532 0.527 0.535

Training Accuracy 0.782 0.776 0.776 0.768 0.768

GF 2.147 2.085 2.089 2.039 2.004

F1-score 0.460 0.530 0.500 0.500 0.500

HTEsm Testing Accuracy 0.518 0.522 0.520 0.518 0.526

Training Accuracy 0.763 0.757 0.755 0.753 0.748

GF 2.034 1.967 1.959 1.951 1.881

F1-score 0.510 0.510 0.510 0.500 0.500

HTEdf Testing Accuracy 0.532 0.535 0.534 0.531 0.536

Training Accuracy 0.775 0.771 0.771 0.774 0.765

GF 2.080 2.031 2.035 2.075 1.974

F1-score 0.470 0.520 0.510 0.510 0.510
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Nursery Dataset

Table C.8: Ensemble Performance on the Severity of Outliers for Nursery Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.854 0.854 0.854 0.854 0.854

Training Accuracy 0.877 0.879 0.877 0.874 0.876

GF 1.187 1.207 1.187 1.159 1.177

F1-score 0.840 0.840 0.840 0.840 0.840

kNNE Testing Accuracy 0.810 0.810 0.810 0.810 0.810

Training Accuracy 0.907 0.905 0.904 0.901 0.902

GF 2.043 2.000 1.979 1.919 1.939

F1-score 0.900 0.900 0.900 0.890 0.890

DTE Testing Accuracy 0.900 0.902 0.902 0.901 0.901

Training Accuracy 0.955 0.956 0.956 0.954 0.952

GF 2.222 2.227 2.227 2.152 2.062

F1-score 0.940 0.940 0.940 0.940 0.940

RF Testing Accuracy 0.901 0.892 0.897 0.899 0.893

Training Accuracy 0.965 0.964 0.964 0.963 0.963

GF 2.829 3.000 2.861 2.730 2.892

F1-score 0.950 0.960 0.940 0.950 0.950

SVME Testing Accuracy 0.869 0.869 0.869 0.869 0.868

Training Accuracy 0.972 0.973 0.971 0.970 0.970

GF 4.679 4.852 4.517 4.367 4.400

F1-score 0.950 0.960 0.960 0.950 0.950

NNE Testing Accuracy 0.952 0.955 0.951 0.952 0.955

Training Accuracy 0.997 0.997 0.997 0.997 0.997

GF 16.000 15.000 16.333 16.000 15.000

F1-score 1.000 1.000 1.000 1.000 1.000
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.859 0.859 0.859 0.859 0.859

Training Accuracy 0.891 0.893 0.891 0.888 0.890

GF 1.294 1.318 1.294 1.259 1.282

F1-score 0.860 0.860 0.850 0.860 0.860

kNNhte Testing Accuracy 0.821 0.821 0.821 0.821 0.821

Training Accuracy 0.909 0.909 0.907 0.908 0.907

GF 1.967 1.967 1.925 1.946 1.925

F1-score 0.890 0.890 0.890 0.870 0.880

DThte Testing Accuracy 0.914 0.914 0.915 0.915 0.911

Training Accuracy 0.973 0.975 0.977 0.975 0.972

GF 3.185 3.440 3.696 3.400 3.179

F1-score 0.970 0.970 0.970 0.970 0.970

SVMhte Testing Accuracy 0.915 0.914 0.914 0.915 0.916

Training Accuracy 0.979 0.979 0.974 0.973 0.975

GF 4.048 4.095 3.308 3.148 3.360

F1-score 0.970 0.970 0.970 0.970 0.970

NNhte Testing Accuracy 0.958 0.957 0.958 0.960 0.958

Training Accuracy 0.998 0.998 0.998 0.998 0.998

GF 21.000 21.500 21.000 20.000 21.000

F1-score 1.000 1.000 1.000 1.000 1.000

HTEsm Testing Accuracy 0.939 0.939 0.939 0.940 0.941

Training Accuracy 0.979 0.979 0.980 0.978 0.978

GF 2.905 2.905 3.050 2.727 2.682

F1-score 0.980 0.980 0.980 0.980 0.980

HTEdf Testing Accuracy 0.943 0.940 0.941 0.941 0.942

Training Accuracy 0.985 0.985 0.986 0.985 0.985

GF 3.800 4.000 4.214 3.933 3.867

F1-score 0.990 0.990 0.990 0.990 0.990
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Bank Marketing Dataset

Table C.9: Ensemble Performance on the Severity of Outliers for Bank Marketing Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.556 0.556 0.556 0.556 0.556

Training Accuracy 0.798 0.798 0.799 0.799 0.797

GF 2.198 2.198 2.209 2.209 2.187

F1-score 0.780 0.790 0.790 0.790 0.790

kNNE Testing Accuracy 0.893 0.893 0.893 0.893 0.893

Training Accuracy 0.858 0.858 0.860 0.859 0.859

GF 0.754 0.754 0.764 0.759 0.759

F1-score 0.730 0.730 0.730 0.730 0.730

DTE Testing Accuracy 0.887 0.887 0.886 0.886 0.887

Training Accuracy 0.938 0.937 0.937 0.939 0.937

GF 1.823 1.794 1.810 1.869 1.794

F1-score 0.890 0.890 0.880 0.880 0.880

RF Testing Accuracy 0.900 0.897 0.902 0.896 0.899

Training Accuracy 0.951 0.950 0.951 0.952 0.952

GF 2.041 2.060 2.000 2.167 2.104

F1-score 0.890 0.890 0.890 0.890 0.890

SVME Testing Accuracy 0.894 0.894 0.894 0.894 0.894

Training Accuracy 0.974 0.974 0.973 0.973 0.973

GF 4.077 4.077 3.926 3.926 3.926

F1-score 0.840 0.840 0.840 0.840 0.840

NNE Testing Accuracy 0.891 0.890 0.891 0.888 0.891

Training Accuracy 0.969 0.972 0.972 0.972 0.971

GF 3.516 3.929 3.893 4.000 3.759

F1-score 0.890 0.890 0.890 0.890 0.890
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.831 0.831 0.831 0.831 0.831

Training Accuracy 0.828 0.826 0.824 0.828 0.823

GF 0.983 0.971 0.960 0.983 0.955

F1-score 0.840 0.840 0.840 0.840 0.840

kNNhte Testing Accuracy 0.897 0.897 0.897 0.897 0.897

Training Accuracy 0.827 0.827 0.826 0.825 0.827

GF 0.595 0.595 0.592 0.589 0.595

F1-score 0.780 0.780 0.780 0.780 0.780

DThte Testing Accuracy 0.893 0.896 0.895 0.895 0.893

Training Accuracy 0.952 0.952 0.950 0.954 0.952

GF 2.229 2.167 2.100 2.283 2.229

F1-score 0.890 0.890 0.890 0.890 0.890

SVMhte Testing Accuracy 0.903 0.903 0.903 0.903 0.903

Training Accuracy 0.938 0.933 0.924 0.920 0.919

GF 1.565 1.448 1.276 1.213 1.198

F1-score 0.880 0.880 0.880 0.880 0.880

NNhte Testing Accuracy 0.897 0.899 0.898 0.898 0.896

Training Accuracy 0.962 0.963 0.963 0.963 0.965

GF 2.711 2.730 2.757 2.757 2.971

F1-score 0.890 0.890 0.890 0.890 0.890

HTEsm Testing Accuracy 0.899 0.900 0.897 0.899 0.897

Training Accuracy 0.955 0.956 0.956 0.957 0.955

GF 2.244 2.273 2.341 2.349 2.289

F1-score 0.890 0.890 0.890 0.890 0.890

HTEdf Testing Accuracy 0.897 0.898 0.899 0.899 0.899

Training Accuracy 0.966 0.967 0.967 0.967 0.967

GF 3.029 3.091 3.061 3.061 3.061

F1-score 0.890 0.890 0.890 0.890 0.890
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Censor Income Dataset

Table C.10: Ensemble Performance on the Severity of Outliers for Censor Income Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

NBE Testing Accuracy 0.591 0.591 0.591 0.591 0.591

Training Accuracy 0.777 0.779 0.772 0.768 0.773

GF 1.834 1.851 1.794 1.763 1.802

F1-score 0.680 0.690 0.680 0.670 0.680

kNNE Testing Accuracy 0.813 0.813 0.813 0.813 0.813

Training Accuracy 0.862 0.860 0.860 0.859 0.859

GF 1.355 1.336 1.336 1.326 1.326

F1-score 0.810 0.800 0.800 0.800 0.800

DTE Testing Accuracy 0.811 0.811 0.810 0.812 0.811

Training Accuracy 0.851 0.849 0.852 0.845 0.843

GF 1.268 1.252 1.284 1.213 1.204

F1-score 0.790 0.790 0.790 0.790 0.790

RF Testing Accuracy 0.811 0.813 0.814 0.815 0.812

Training Accuracy 0.879 0.877 0.876 0.873 0.875

GF 1.562 1.520 1.500 1.457 1.504

F1-score 0.800 0.810 0.820 0.810 0.810

SVME Testing Accuracy 0.808 0.808 0.808 0.808 0.808

Training Accuracy 0.872 0.869 0.871 0.869 0.869

GF 1.500 1.466 1.488 1.466 1.466

F1-score 0.810 0.810 0.810 0.810 0.810

NNE Testing Accuracy 0.815 0.817 0.816 0.815 0.814

Training Accuracy 0.878 0.877 0.877 0.874 0.878

GF 1.516 1.488 1.496 1.468 1.525

F1-score 0.830 0.830 0.830 0.820 0.820
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Ensemble Measure
Severity of Outliers σ

2.0 2.5 3.0 3.5 4.0

NBhte Testing Accuracy 0.733 0.733 0.733 0.733 0.733

Training Accuracy 0.829 0.830 0.830 0.828 0.831

GF 1.561 1.571 1.571 1.552 1.580

F1-score 0.750 0.760 0.760 0.760 0.760

kNNhte Testing Accuracy 0.823 0.823 0.823 0.823 0.823

Training Accuracy 0.856 0.854 0.855 0.854 0.856

GF 1.229 1.212 1.221 1.212 1.229

F1-score 0.810 0.800 0.810 0.800 0.800

DThte Testing Accuracy 0.823 0.823 0.826 0.827 0.819

Training Accuracy 0.869 0.869 0.868 0.881 0.864

GF 1.351 1.351 1.318 1.454 1.331

F1-score 0.810 0.810 0.820 0.820 0.820

SVMhte Testing Accuracy 0.830 0.829 0.829 0.829 0.829

Training Accuracy 0.868 0.860 0.860 0.859 0.862

GF 1.288 1.221 1.221 1.213 1.239

F1-score 0.810 0.810 0.810 0.810 0.810

NNhte Testing Accuracy 0.817 0.818 0.816 0.819 0.819

Training Accuracy 0.882 0.880 0.872 0.878 0.881

GF 1.551 1.517 1.438 1.484 1.521

F1-score 0.810 0.820 0.810 0.820 0.810

HTEsm Testing Accuracy 0.824 0.824 0.825 0.827 0.821

Training Accuracy 0.878 0.876 0.876 0.874 0.876

GF 1.443 1.419 1.411 1.373 1.444

F1-score 0.830 0.830 0.830 0.820 0.820

HTEdf Testing Accuracy 0.831 0.830 0.829 0.828 0.827

Training Accuracy 0.864 0.879 0.878 0.877 0.881

GF 1.243 1.405 1.402 1.398 1.454

F1-score 0.830 0.830 0.830 0.830 0.830
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Ensemble Performance on Bagged

Subsets for Classification Problems

The results of the ensembles over the bagged subsets of the training dataset for

classification problems are provided in this appendix. Plots of the training and testing

accuracies for each classification dataset are first presented. Then the results of training

and testing accuracy, GF, and F1-score of the ensembles over the classification datasets are

provided.
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Figure D.1: Ensemble Performance on Bagged Subsets of the Sonar Dataset

Figure D.2: Ensemble Performance on Bagged Subsets of the Breast Cancer Dataset
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Figure D.3: Ensemble Performance on Bagged Subsets of the Indian Liver Dataset

Figure D.4: Ensemble Performance on Bagged Subsets of the Credit Approval Dataset
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Figure D.5: Ensemble Performance on Bagged Subsets of the Red Wine Dataset

Figure D.6: Ensemble Performance on Bagged Subsets of the Car Evaluation Dataset
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Figure D.7: Ensemble Performance on Bagged Subsets of the White Wine Dataset

Figure D.8: Ensemble Performance on Bagged Subsets of the Nursery Dataset
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Figure D.9: Ensemble Performance on Bagged Subsets of the Bank Marketing Dataset

Figure D.10: Ensemble Performance on Bagged Subsets of the Censor Income Dataset
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Sonar Dataset

Table D.1: Ensemble Performance on Bagged Subsets of the Sonar Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.747 0.747

Training accuracy 0.867 0.723 0.672 0.718 0.723 0.711 0.761 0.759 0.792 0.768

GF 1.902 0.913 0.771 0.897 0.913 0.875 1.059 1.050 1.216 1.091

F1-Score 0.43 0.69 0.76 0.74 0.72 0.79 0.79 0.67 0.74 0.81

kNNE Testing accuracy 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586

Training accuracy 0.683 0.590 0.641 0.767 0.784 0.748 0.773 0.781 0.811 0.791

GF 1.306 1.010 1.153 1.777 1.917 1.643 1.824 1.890 2.190 1.981

F1-Score 0.65 0.69 0.63 0.64 0.63 0.74 0.74 0.79 0.86 0.86

DTE Testing accuracy 0.620 0.619 0.648 0.628 0.649 0.629 0.621 0.621 0.632 0.623

Training accuracy 0.857 0.838 0.822 0.779 0.785 0.835 0.839 0.912 0.931 0.881

GF 2.657 2.352 1.978 1.683 1.633 2.248 2.354 4.307 5.333 3.168

F1-Score 0.60 0.69 0.72 0.74 0.86 0.62 0.69 0.69 0.81 0.67

RF Testing accuracy 0.675 0.719 0.748 0.700 0.713 0.723 0.711 0.692 0.717 0.726

Training accuracy 0.727 0.743 0.733 0.818 0.856 0.863 0.870 0.905 0.891 0.894

GF 1.190 1.093 0.944 1.648 1.993 2.022 2.223 3.242 2.596 2.585

F1-Score 0.55 0.69 0.83 0.81 0.78 0.67 0.74 0.72 0.76 0.74

SVME Testing accuracy 0.725 0.728 0.743 0.730 0.724 0.730 0.715 0.720 0.715 0.744

Training accuracy 0.827 0.765 0.785 0.821 0.868 0.887 0.908 0.919 0.911 0.892

GF 1.590 1.157 1.195 1.508 2.091 2.389 3.098 3.457 3.202 2.370

F1-Score 0.41 0.65 0.81 0.74 0.81 0.74 0.71 0.81 0.86 0.86

NNE Testing accuracy 0.764 0.768 0.764 0.764 0.764 0.764 0.764 0.777 0.763 0.764

Training accuracy 0.850 0.845 0.811 0.857 0.913 0.871 0.906 0.935 0.923 0.915

GF 1.573 1.497 1.249 1.650 2.713 1.829 2.511 3.431 3.078 2.776

F1-Score 0.45 0.77 0.88 0.81 0.86 0.88 0.81 0.79 0.86 0.87
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762

Training accuracy 0.867 0.733 0.671 0.718 0.725 0.720 0.759 0.762 0.798 0.772

GF 1.789 0.891 0.723 0.844 0.865 0.850 0.988 1.000 1.178 1.044

F1-Score 0.43 0.69 0.76 0.74 0.77 0.79 0.79 0.65 0.74 0.79

kNNhte Testing accuracy 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655

Training accuracy 0.770 0.778 0.769 0.782 0.820 0.846 0.812 0.851 0.859 0.896

GF 1.500 1.554 1.494 1.583 1.917 2.240 1.835 2.315 2.447 3.317

F1-Score 0.62 0.71 0.73 0.74 0.83 0.81 0.74 0.77 0.87 0.87

DThte Testing accuracy 0.678 0.667 0.676 0.704 0.707 0.674 0.670 0.677 0.685 0.672

Training accuracy 0.867 0.815 0.827 0.795 0.827 0.866 0.870 0.924 0.931 0.908

GF 2.421 1.800 1.873 1.444 1.694 2.433 2.538 4.250 4.565 3.565

F1-Score 0.59 0.67 0.77 0.83 0.81 0.67 0.72 0.76 0.81 0.76

SVMhte Testing accuracy 0.705 0.680 0.687 0.685 0.706 0.714 0.719 0.702 0.723 0.710

Training accuracy 0.823 0.693 0.681 0.756 0.788 0.764 0.831 0.823 0.850 0.829

GF 1.667 1.042 0.981 1.291 1.387 1.212 1.663 1.684 1.847 1.696

F1-Score 0.47 0.67 0.81 0.69 0.79 0.72 0.69 0.79 0.81 0.79

NNhte Testing accuracy 0.764 0.760 0.774 0.759 0.773 0.764 0.768 0.764 0.763 0.745

Training accuracy 0.850 0.853 0.813 0.842 0.883 0.848 0.900 0.927 0.914 0.913

GF 1.573 1.633 1.209 1.525 1.940 1.553 2.320 3.233 2.756 2.931

F1-Score 0.55 0.74 0.90 0.79 0.83 0.83 0.79 0.86 0.86 0.86

HTEsm Testing accuracy 0.805 0.786 0.796 0.807 0.800 0.785 0.814 0.777 0.796 0.799

Training accuracy 0.817 0.837 0.850 0.845 0.894 0.848 0.908 0.945 0.923 0.913

GF 1.066 1.313 1.360 1.245 1.887 1.414 2.022 4.055 2.649 2.310

F1-Score 0.50 0.74 0.88 0.84 0.88 0.81 0.77 0.86 0.86 0.86

HTEdf Testing accuracy 0.798 0.792 0.784 0.804 0.810 0.830 0.799 0.819 0.804 0.796

Training accuracy 0.827 0.817 0.847 0.842 0.906 0.855 0.901 0.938 0.926 0.912

GF 1.168 1.137 1.412 1.241 2.021 1.172 2.030 2.919 2.649 2.318

F1-Score 0.53 0.74 0.88 0.84 0.88 0.91 0.82 0.88 0.88 0.88
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Breast Cancer Dataset

Table D.2: Ensemble Performance on Bagged Subsets of the Breast Cancer Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.517 0.517 0.517 0.517 0.517 0.517 0.517 0.517 0.517 0.517

Training accuracy 0.573 0.570 0.579 0.610 0.590 0.650 0.663 0.545 0.637 0.635

GF 1.131 1.123 1.147 1.238 1.178 1.380 1.433 1.062 1.331 1.323

F1-Score 0.59 0.49 0.52 0.23 0.40 0.52 0.55 0.43 0.51 0.43

kNNE Testing accuracy 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666

Training accuracy 0.783 0.697 0.653 0.743 0.736 0.727 0.805 0.757 0.779 0.837

GF 1.539 1.102 0.963 1.300 1.265 1.223 1.713 1.374 1.511 2.049

F1-Score 0.62 0.50 0.59 0.64 0.52 0.57 0.61 0.56 0.58 0.57

DTE Testing accuracy 0.575 0.573 0.559 0.573 0.557 0.537 0.565 0.549 0.584 0.563

Training accuracy 0.580 0.759 0.766 0.783 0.832 0.780 0.803 0.829 0.817 0.875

GF 1.012 1.772 1.885 1.968 2.637 2.105 2.208 2.637 2.273 3.496

F1-Score 0.58 0.64 0.60 0.67 0.62 0.66 0.61 0.66 0.65 0.57

RF Testing accuracy 0.631 0.637 0.633 0.647 0.646 0.634 0.622 0.640 0.631 0.629

Training accuracy 0.678 0.781 0.778 0.813 0.865 0.806 0.870 0.855 0.884 0.890

GF 1.146 1.658 1.653 1.888 2.622 1.887 2.908 2.483 3.181 3.373

F1-Score 0.56 0.67 0.62 0.57 0.64 0.58 0.61 0.60 0.62 0.61

SVME Testing accuracy 0.637 0.633 0.630 0.630 0.630 0.627 0.630 0.630 0.630 0.627

Training accuracy 0.435 0.786 0.869 0.855 0.857 0.825 0.887 0.894 0.890 0.911

GF 0.642 1.715 2.824 2.552 2.587 2.131 3.274 3.491 3.364 4.191

F1-Score 0.50 0.47 0.50 0.52 0.50 0.53 0.50 0.53 0.53 0.53

NNE Testing accuracy 0.539 0.557 0.549 0.557 0.556 0.555 0.546 0.554 0.541 0.557

Training accuracy 0.617 0.750 0.783 0.816 0.836 0.819 0.866 0.852 0.893 0.907

GF 1.204 1.772 2.078 2.408 2.707 2.459 3.388 3.014 4.290 4.763

F1-Score 0.58 0.56 0.65 0.69 0.64 0.55 0.64 0.66 0.56 0.63
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518

Training accuracy 0.582 0.636 0.577 0.657 0.680 0.680 0.680 0.655 0.683 0.650

GF 1.153 1.324 1.139 1.405 1.506 1.506 1.506 1.397 1.521 1.377

F1-Score 0.59 0.49 0.52 0.36 0.51 0.65 0.65 0.68 0.66 0.66

kNNhte Testing accuracy 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.635

Training accuracy 0.742 0.754 0.772 0.831 0.830 0.783 0.863 0.837 0.855 0.890

GF 1.415 1.484 1.601 2.160 2.147 1.682 2.664 2.239 2.517 3.318

F1-Score 0.65 0.57 0.62 0.60 0.56 0.56 0.59 0.62 0.57 0.58

DThte Testing accuracy 0.592 0.593 0.585 0.588 0.579 0.589 0.583 0.585 0.590 0.591

Training accuracy 0.585 0.781 0.748 0.803 0.846 0.807 0.836 0.838 0.876 0.899

GF 0.983 1.858 1.647 2.091 2.734 2.130 2.543 2.562 3.306 4.050

F1-Score 0.61 0.67 0.60 0.65 0.62 0.66 0.62 0.58 0.67 0.61

SVMhte Testing accuracy 0.630 0.637 0.633 0.630 0.630 0.630 0.630 0.633 0.633 0.630

Training accuracy 0.558 0.808 0.751 0.811 0.831 0.783 0.860 0.815 0.794 0.855

GF 0.837 1.891 1.474 1.958 2.189 1.705 2.643 1.984 1.782 2.552

F1-Score 0.53 0.50 0.59 0.50 0.50 0.59 0.50 0.59 0.62 0.53

NNhte Testing accuracy 0.580 0.581 0.578 0.587 0.584 0.563 0.583 0.579 0.567 0.567

Training accuracy 0.625 0.756 0.791 0.808 0.839 0.818 0.854 0.855 0.893 0.902

GF 1.120 1.717 2.019 2.151 2.584 2.401 2.856 2.903 4.047 4.418

F1-Score 0.57 0.51 0.71 0.65 0.57 0.59 0.64 0.65 0.62 0.67

HTEsm Testing accuracy 0.641 0.647 0.641 0.647 0.643 0.645 0.641 0.649 0.647 0.648

Training accuracy 0.658 0.766 0.753 0.705 0.711 0.772 0.745 0.742 0.764 0.747

GF 1.050 1.509 1.453 1.197 1.235 1.557 1.408 1.360 1.496 1.391

F1-Score 0.60 0.61 0.67 0.65 0.69 0.67 0.65 0.69 0.65 0.65

HTEdf Testing accuracy 0.654 0.654 0.655 0.653 0.658 0.655 0.650 0.652 0.651 0.654

Training accuracy 0.647 0.702 0.750 0.705 0.704 0.760 0.742 0.746 0.759 0.720

GF 0.980 1.161 1.380 1.176 1.155 1.438 1.357 1.370 1.448 1.236

F1-Score 0.64 0.66 0.67 0.68 0.65 0.67 0.66 0.70 0.66 0.66
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 450

Indian Liver Dataset

Table D.3: Ensemble Performance on Bagged Subsets of the Indian Liver Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665

Training accuracy 0.693 0.734 0.654 0.679 0.592 0.675 0.713 0.649 0.710 0.674

GF 1.091 1.259 0.968 1.044 0.821 1.031 1.167 0.954 1.155 1.028

F1-Score 0.61 0.51 0.55 0.51 0.51 0.55 0.51 0.55 0.56 0.55

kNNE Testing accuracy 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730

Training accuracy 0.583 0.691 0.629 0.668 0.672 0.685 0.705 0.719 0.724 0.721

GF 0.647 0.874 0.728 0.813 0.823 0.857 0.915 0.961 0.978 0.968

F1-Score 0.52 0.63 0.63 0.61 0.65 0.61 0.61 0.65 0.60 0.63

DTE Testing accuracy 0.753 0.744 0.747 0.745 0.747 0.737 0.738 0.733 0.737 0.748

Training accuracy 0.645 0.796 0.742 0.770 0.770 0.811 0.828 0.811 0.846 0.847

GF 0.696 1.255 0.981 1.109 1.100 1.392 1.523 1.413 1.708 1.647

F1-Score 0.72 0.69 0.65 0.66 0.61 0.67 0.68 0.73 0.63 0.74

RF Testing accuracy 0.743 0.738 0.738 0.729 0.740 0.739 0.727 0.734 0.729 0.730

Training accuracy 0.686 0.801 0.764 0.819 0.789 0.848 0.860 0.854 0.907 0.899

GF 0.818 1.317 1.110 1.497 1.232 1.717 1.950 1.822 2.914 2.673

F1-Score 0.67 0.73 0.68 0.73 0.72 0.71 0.72 0.73 0.73 0.80

SVME Testing accuracy 0.750 0.743 0.741 0.746 0.744 0.746 0.740 0.744 0.743 0.741

Training accuracy 0.477 0.745 0.643 0.671 0.658 0.690 0.702 0.693 0.738 0.697

GF 0.478 1.008 0.725 0.772 0.749 0.819 0.872 0.834 0.981 0.855

F1-Score 0.43 0.65 0.65 0.65 0.66 0.66 0.71 0.65 0.70 0.73

NNE Testing accuracy 0.717 0.733 0.727 0.729 0.718 0.735 0.732 0.719 0.733 0.739

Training accuracy 0.678 0.769 0.748 0.721 0.765 0.778 0.740 0.753 0.807 0.786

GF 0.879 1.156 1.083 0.971 1.200 1.194 1.031 1.138 1.383 1.220

F1-Score 0.59 0.69 0.67 0.66 0.69 0.72 0.66 0.67 0.70 0.66
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 451

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668

Training accuracy 0.693 0.732 0.649 0.678 0.592 0.674 0.719 0.650 0.712 0.673

GF 1.081 1.239 0.946 1.031 0.814 1.018 1.181 0.949 1.153 1.015

F1-Score 0.63 0.54 0.55 0.51 0.51 0.55 0.51 0.55 0.56 0.55

kNNhte Testing accuracy 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727

Training accuracy 0.658 0.736 0.723 0.760 0.707 0.767 0.809 0.794 0.835 0.839

GF 0.798 1.034 0.986 1.138 0.932 1.172 1.429 1.325 1.655 1.696

F1-Score 0.54 0.60 0.65 0.59 0.60 0.60 0.69 0.65 0.62 0.63

DThte Testing accuracy 0.736 0.747 0.773 0.773 0.757 0.757 0.757 0.748 0.755 0.755

Training accuracy 0.682 0.813 0.761 0.795 0.805 0.839 0.854 0.851 0.896 0.889

GF 0.830 1.353 0.950 1.107 1.246 1.509 1.664 1.691 2.356 2.207

F1-Score 0.69 0.69 0.65 0.69 0.73 0.69 0.69 0.75 0.67 0.72

SVMhte Testing accuracy 0.748 0.745 0.747 0.745 0.743 0.745 0.745 0.745 0.743 0.745

Training accuracy 0.480 0.757 0.522 0.603 0.584 0.697 0.672 0.677 0.670 0.646

GF 0.485 1.049 0.529 0.642 0.618 0.842 0.777 0.789 0.779 0.720

F1-Score 0.63 0.65 0.40 0.71 0.66 0.61 0.68 0.67 0.67 0.68

NNhte Testing accuracy 0.766 0.753 0.764 0.755 0.764 0.759 0.767 0.764 0.760 0.754

Training accuracy 0.651 0.757 0.713 0.716 0.718 0.740 0.742 0.738 0.758 0.744

GF 0.670 1.016 0.822 0.863 0.837 0.927 0.903 0.901 0.992 0.961

F1-Score 0.51 0.65 0.74 0.64 0.75 0.74 0.67 0.69 0.65 0.65

HTEsm Testing accuracy 0.742 0.747 0.746 0.749 0.746 0.741 0.751 0.735 0.754 0.740

Training accuracy 0.703 0.787 0.752 0.759 0.768 0.782 0.772 0.786 0.797 0.807

GF 0.869 1.188 1.024 1.041 1.095 1.188 1.092 1.238 1.212 1.347

F1-Score 0.62 0.65 0.67 0.65 0.68 0.66 0.68 0.71 0.67 0.69

HTEdf Testing accuracy 0.776 0.755 0.758 0.767 0.781 0.774 0.770 0.764 0.763 0.771

Training accuracy 0.717 0.777 0.759 0.786 0.789 0.824 0.804 0.817 0.838 0.852

GF 0.792 1.099 1.004 1.089 1.038 1.284 1.173 1.290 1.463 1.547

F1-Score 0.63 0.65 0.68 0.67 0.70 0.68 0.68 0.73 0.72 0.73
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 452

Credit Approval Dataset

Table D.4: Ensemble Performance on Bagged Subsets of the Credit Approval Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535

Training accuracy 0.596 0.447 0.391 0.511 0.608 0.635 0.536 0.530 0.521 0.525

GF 1.151 0.841 0.764 0.951 1.186 1.274 1.002 0.989 0.971 0.979

F1-Score 0.53 0.57 0.48 0.42 0.55 0.62 0.47 0.44 0.45 0.47

kNNE Testing accuracy 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788

Training accuracy 0.914 0.851 0.876 0.878 0.882 0.883 0.874 0.869 0.863 0.869

GF 2.465 1.423 1.710 1.738 1.797 1.812 1.683 1.618 1.547 1.618

F1-Score 0.80 0.84 0.83 0.83 0.83 0.83 0.81 0.81 0.82 0.82

DTE Testing accuracy 0.758 0.763 0.761 0.757 0.761 0.757 0.757 0.763 0.760 0.757

Training accuracy 0.797 0.787 0.874 0.855 0.875 0.888 0.839 0.838 0.826 0.843

GF 1.192 1.113 1.897 1.676 1.912 2.170 1.509 1.463 1.379 1.548

F1-Score 0.78 0.84 0.75 0.80 0.80 0.83 0.81 0.79 0.79 0.80

RF Testing accuracy 0.795 0.782 0.789 0.799 0.787 0.802 0.797 0.812 0.793 0.777

Training accuracy 0.867 0.836 0.874 0.873 0.877 0.885 0.871 0.862 0.866 0.870

GF 1.541 1.329 1.675 1.583 1.732 1.722 1.574 1.362 1.545 1.715

F1-Score 0.75 0.80 0.81 0.84 0.82 0.83 0.84 0.83 0.82 0.83

SVME Testing accuracy 0.778 0.775 0.771 0.778 0.775 0.777 0.777 0.771 0.774 0.777

Training accuracy 0.625 0.720 0.843 0.854 0.856 0.863 0.856 0.854 0.852 0.858

GF 0.592 0.804 1.459 1.521 1.562 1.628 1.549 1.568 1.527 1.570

F1-Score 0.63 0.72 0.78 0.80 0.83 0.85 0.84 0.83 0.82 0.82

NNE Testing accuracy 0.672 0.675 0.670 0.671 0.677 0.684 0.675 0.671 0.674 0.680

Training accuracy 0.831 0.753 0.763 0.792 0.832 0.816 0.820 0.809 0.800 0.803

GF 1.941 1.316 1.392 1.582 1.923 1.717 1.806 1.723 1.630 1.624

F1-Score 0.72 0.72 0.76 0.78 0.78 0.73 0.77 0.71 0.74 0.73
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 453

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.651 0.651 0.651 0.651 0.651 0.651 0.651 0.651 0.651 0.651

Training accuracy 0.681 0.458 0.506 0.607 0.738 0.712 0.699 0.679 0.644 0.657

GF 1.094 0.644 0.706 0.888 1.332 1.212 1.159 1.087 0.980 1.017

F1-Score 0.62 0.58 0.61 0.55 0.68 0.64 0.66 0.63 0.62 0.64

kNNhte Testing accuracy 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808

Training accuracy 0.914 0.855 0.869 0.874 0.875 0.882 0.874 0.871 0.854 0.863

GF 2.233 1.324 1.466 1.524 1.536 1.627 1.524 1.488 1.315 1.401

F1-Score 0.80 0.84 0.83 0.83 0.84 0.84 0.82 0.82 0.82 0.82

DThte Testing accuracy 0.764 0.762 0.755 0.761 0.768 0.760 0.762 0.755 0.758 0.767

Training accuracy 0.856 0.804 0.884 0.863 0.877 0.888 0.854 0.859 0.853 0.857

GF 1.639 1.214 2.112 1.745 1.886 2.143 1.630 1.738 1.646 1.629

F1-Score 0.79 0.84 0.82 0.82 0.80 0.84 0.83 0.82 0.82 0.81

SVMhte Testing accuracy 0.822 0.813 0.821 0.813 0.818 0.818 0.816 0.821 0.825 0.816

Training accuracy 0.896 0.864 0.872 0.881 0.888 0.891 0.880 0.880 0.870 0.871

GF 1.712 1.375 1.398 1.571 1.625 1.670 1.533 1.492 1.346 1.426

F1-Score 0.78 0.84 0.82 0.83 0.82 0.83 0.85 0.84 0.83 0.84

NNhte Testing accuracy 0.761 0.771 0.768 0.764 0.765 0.772 0.764 0.771 0.772 0.762

Training accuracy 0.845 0.793 0.835 0.834 0.869 0.861 0.854 0.855 0.833 0.842

GF 1.542 1.106 1.406 1.422 1.794 1.640 1.616 1.579 1.365 1.506

F1-Score 0.74 0.80 0.82 0.78 0.80 0.75 0.82 0.79 0.75 0.80

HTEsm Testing accuracy 0.773 0.773 0.770 0.777 0.768 0.773 0.761 0.770 0.768 0.777

Training accuracy 0.837 0.815 0.835 0.852 0.888 0.878 0.863 0.856 0.850 0.852

GF 1.393 1.227 1.394 1.507 2.071 1.861 1.745 1.597 1.547 1.507

F1-Score 0.81 0.81 0.82 0.80 0.82 0.84 0.83 0.82 0.82 0.81

HTEdf Testing accuracy 0.800 0.804 0.801 0.800 0.803 0.800 0.801 0.796 0.800 0.803

Training accuracy 0.849 0.833 0.877 0.874 0.894 0.897 0.880 0.883 0.873 0.883

GF 1.325 1.174 1.618 1.587 1.858 1.942 1.658 1.744 1.575 1.684

F1-Score 0.81 0.85 0.84 0.84 0.82 0.86 0.85 0.84 0.83 0.84
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 454

Red Wine Dataset

Table D.5: Ensemble Performance on Bagged Subsets of the Red Wine Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.468 0.468 0.468 0.468 0.468 0.468 0.468 0.468 0.468 0.468

Training accuracy 0.585 0.548 0.431 0.602 0.501 0.569 0.556 0.559 0.592 0.551

GF 1.282 1.177 0.935 1.337 1.066 1.234 1.198 1.206 1.304 1.185

F1-Score 0.46 0.55 0.47 0.49 0.52 0.52 0.54 0.47 0.52 0.55

kNNE Testing accuracy 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551

Training accuracy 0.613 0.621 0.637 0.702 0.690 0.719 0.728 0.731 0.759 0.781

GF 1.160 1.185 1.237 1.507 1.448 1.598 1.651 1.669 1.863 2.050

F1-Score 0.48 0.54 0.54 0.52 0.52 0.58 0.56 0.54 0.56 0.58

DTE Testing accuracy 0.490 0.499 0.490 0.495 0.493 0.488 0.498 0.496 0.498 0.490

Training accuracy 0.628 0.602 0.633 0.686 0.684 0.729 0.739 0.769 0.768 0.775

GF 1.371 1.259 1.390 1.608 1.604 1.889 1.923 2.182 2.164 2.267

F1-Score 0.49 0.49 0.50 0.52 0.50 0.55 0.58 0.50 0.55 0.55

RF Testing accuracy 0.570 0.580 0.572 0.576 0.573 0.563 0.588 0.575 0.560 0.579

Training accuracy 0.526 0.640 0.677 0.718 0.728 0.787 0.800 0.810 0.826 0.847

GF 0.907 1.167 1.325 1.504 1.570 2.052 2.060 2.237 2.529 2.752

F1-Score 0.49 0.54 0.58 0.56 0.57 0.59 0.60 0.59 0.58 0.58

SVME Testing accuracy 0.536 0.546 0.540 0.537 0.545 0.531 0.540 0.540 0.541 0.540

Training accuracy 0.600 0.562 0.559 0.638 0.576 0.616 0.634 0.601 0.611 0.608

GF 1.160 1.037 1.043 1.279 1.073 1.221 1.257 1.153 1.180 1.173

F1-Score 0.50 0.44 0.49 0.52 0.54 0.52 0.53 0.51 0.51 0.56

NNE Testing accuracy 0.566 0.564 0.562 0.571 0.565 0.569 0.568 0.564 0.566 0.562

Training accuracy 0.665 0.569 0.671 0.647 0.710 0.618 0.749 0.629 0.768 0.631

GF 1.296 1.012 1.331 1.215 1.500 1.128 1.721 1.175 1.871 1.187

F1-Score 0.52 0.55 0.54 0.55 0.56 0.58 0.57 0.57 0.55 0.59
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 455

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503

Training accuracy 0.626 0.567 0.474 0.612 0.531 0.588 0.572 0.573 0.598 0.559

GF 1.329 1.148 0.945 1.281 1.060 1.206 1.161 1.164 1.236 1.127

F1-Score 0.47 0.55 0.50 0.49 0.53 0.50 0.53 0.49 0.51 0.55

kNNhte Testing accuracy 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552

Training accuracy 0.605 0.583 0.536 0.628 0.586 0.596 0.629 0.619 0.648 0.655

GF 1.134 1.074 0.966 1.204 1.082 1.109 1.208 1.176 1.273 1.299

F1-Score 0.50 0.52 0.54 0.51 0.52 0.51 0.54 0.52 0.51 0.52

DThte Testing accuracy 0.553 0.561 0.560 0.556 0.564 0.557 0.559 0.546 0.552 0.556

Training accuracy 0.619 0.643 0.685 0.733 0.746 0.796 0.808 0.822 0.836 0.855

GF 1.173 1.230 1.397 1.663 1.717 2.172 2.297 2.551 2.732 3.062

F1-Score 0.51 0.51 0.57 0.52 0.56 0.58 0.58 0.57 0.57 0.55

SVMhte Testing accuracy 0.575 0.572 0.575 0.574 0.576 0.575 0.573 0.574 0.574 0.575

Training accuracy 0.574 0.655 0.585 0.657 0.621 0.630 0.651 0.623 0.644 0.626

GF 0.998 1.241 1.024 1.242 1.119 1.149 1.223 1.130 1.197 1.136

F1-Score 0.50 0.53 0.56 0.51 0.52 0.53 0.55 0.52 0.51 0.57

NNhte Testing accuracy 0.575 0.576 0.566 0.578 0.565 0.570 0.575 0.566 0.570 0.573

Training accuracy 0.650 0.553 0.686 0.615 0.709 0.597 0.744 0.608 0.762 0.614

GF 1.214 0.949 1.382 1.096 1.495 1.067 1.660 1.107 1.807 1.106

F1-Score 0.53 0.54 0.55 0.54 0.54 0.55 0.56 0.60 0.52 0.56

HTEsm Testing accuracy 0.557 0.558 0.567 0.568 0.563 0.560 0.562 0.563 0.565 0.559

Training accuracy 0.673 0.664 0.670 0.689 0.706 0.682 0.743 0.724 0.760 0.739

GF 1.355 1.315 1.312 1.389 1.486 1.384 1.704 1.583 1.813 1.690

F1-Score 0.53 0.57 0.56 0.55 0.55 0.58 0.59 0.55 0.55 0.58

HTEdf Testing accuracy 0.585 0.586 0.587 0.581 0.585 0.582 0.579 0.581 0.579 0.575

Training accuracy 0.676 0.656 0.668 0.696 0.717 0.707 0.744 0.730 0.760 0.763

GF 1.281 1.203 1.244 1.378 1.466 1.427 1.645 1.552 1.754 1.793

F1-Score 0.53 0.56 0.57 0.55 0.56 0.58 0.58 0.56 0.56 0.60
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 456

Car Evaluation Dataset

Table D.6: Ensemble Performance on Bagged Subsets of the Car Evaluation Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819

Training accuracy 0.857 0.836 0.850 0.846 0.831 0.844 0.849 0.841 0.853 0.842

GF 1.266 1.104 1.207 1.175 1.071 1.160 1.199 1.138 1.231 1.146

F1-Score 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

kNNE Testing accuracy 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834

Training accuracy 0.850 0.875 0.895 0.914 0.933 0.946 0.947 0.950 0.955 0.952

GF 1.107 1.328 1.581 1.930 2.478 3.074 3.132 3.320 3.689 3.458

F1-Score 0.65 0.66 0.69 0.75 0.74 0.76 0.76 0.79 0.81 0.79

DTE Testing accuracy 0.926 0.925 0.924 0.926 0.926 0.926 0.924 0.927 0.926 0.925

Training accuracy 0.891 0.929 0.942 0.955 0.953 0.954 0.952 0.940 0.953 0.952

GF 0.679 1.056 1.310 1.644 1.574 1.609 1.583 1.217 1.574 1.562

F1-Score 0.90 0.86 0.93 0.93 0.92 0.93 0.95 0.91 0.93 0.93

RF Testing accuracy 0.875 0.891 0.881 0.874 0.871 0.883 0.891 0.883 0.878 0.865

Training accuracy 0.891 0.948 0.950 0.962 0.970 0.971 0.976 0.975 0.981 0.975

GF 1.147 2.096 2.380 3.316 4.300 4.034 4.542 4.680 6.421 5.400

F1-Score 0.84 0.88 0.90 0.92 0.90 0.93 0.94 0.91 0.90 0.90

SVME Testing accuracy 0.889 0.888 0.888 0.888 0.888 0.889 0.887 0.886 0.888 0.887

Training accuracy 0.892 0.944 0.955 0.968 0.979 0.977 0.982 0.978 0.984 0.979

GF 1.028 2.000 2.489 3.500 5.333 4.826 6.278 5.182 7.000 5.381

F1-Score 0.80 0.88 0.87 0.90 0.88 0.87 0.90 0.88 0.87 0.89

NNE Testing accuracy 0.945 0.942 0.940 0.941 0.941 0.940 0.943 0.942 0.941 0.944

Training accuracy 0.918 0.964 0.958 0.973 0.973 0.978 0.980 0.977 0.984 0.976

GF 0.671 1.611 1.429 2.185 2.185 2.727 2.850 2.522 3.688 2.333

F1-Score 0.90 0.94 0.93 0.93 0.94 0.94 0.95 0.93 0.95 0.95
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Appendix D. Ensemble Performance on Bagged Subsets for Classification Problems 457

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819

Training accuracy 0.857 0.836 0.850 0.846 0.831 0.844 0.849 0.841 0.853 0.842

GF 1.266 1.104 1.207 1.175 1.071 1.160 1.199 1.138 1.231 1.146

F1-Score 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

kNNhte Testing accuracy 0.852 0.852 0.852 0.852 0.852 0.852 0.852 0.852 0.852 0.852

Training accuracy 0.777 0.814 0.833 0.865 0.880 0.911 0.907 0.920 0.926 0.921

GF 0.664 0.796 0.886 1.096 1.233 1.663 1.591 1.850 2.000 1.873

F1-Score 0.69 0.74 0.75 0.77 0.79 0.80 0.80 0.80 0.81 0.80

DThte Testing accuracy 0.927 0.927 0.929 0.925 0.928 0.927 0.928 0.927 0.926 0.927

Training accuracy 0.900 0.955 0.957 0.973 0.973 0.975 0.979 0.977 0.987 0.979

GF 0.730 1.622 1.651 2.778 2.667 2.920 3.429 3.174 5.692 3.476

F1-Score 0.86 0.88 0.94 0.94 0.91 0.95 0.93 0.93 0.95 0.94

SVMhte Testing accuracy 0.908 0.909 0.911 0.908 0.908 0.907 0.908 0.908 0.906 0.906

Training accuracy 0.850 0.929 0.922 0.935 0.944 0.950 0.951 0.950 0.957 0.956

GF 0.613 1.282 1.141 1.415 1.643 1.860 1.878 1.840 2.186 2.136

F1-Score 0.82 0.90 0.89 0.90 0.92 0.93 0.93 0.94 0.93 0.95

NNhte Testing accuracy 0.960 0.960 0.961 0.960 0.960 0.961 0.960 0.961 0.958 0.958

Training accuracy 0.932 0.978 0.975 0.982 0.983 0.984 0.988 0.985 0.990 0.984

GF 0.588 1.818 1.560 2.167 2.353 2.438 3.333 2.600 4.200 2.625

F1-Score 0.93 0.95 0.98 0.97 0.97 0.98 0.98 0.97 0.98 0.98

HTEsm Testing accuracy 0.941 0.943 0.942 0.943 0.941 0.943 0.944 0.942 0.943 0.941

Training accuracy 0.921 0.964 0.959 0.974 0.973 0.978 0.979 0.979 0.987 0.977

GF 0.747 1.583 1.415 2.192 2.185 2.591 2.667 2.762 4.385 2.565

F1-Score 0.90 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

HTEdf Testing accuracy 0.947 0.951 0.946 0.947 0.949 0.947 0.951 0.950 0.951 0.948

Training accuracy 0.937 0.977 0.971 0.978 0.982 0.983 0.988 0.985 0.989 0.984

GF 0.841 2.130 1.862 2.409 2.833 3.118 4.083 3.333 4.455 3.250

F1-Score 0.92 0.95 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.97
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White Wine Dataset

Table D.7: Ensemble Performance on Bagged Subsets of the White Wine Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.448 0.448 0.448 0.448 0.448 0.448 0.448 0.448 0.448 0.448

Training accuracy 0.478 0.404 0.453 0.429 0.424 0.434 0.438 0.434 0.444 0.442

GF 1.057 0.926 1.009 0.967 0.958 0.975 0.982 0.975 0.993 0.989

F1-Score 0.44 0.38 0.41 0.39 0.40 0.41 0.42 0.40 0.41 0.41

kNNE Testing accuracy 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503

Training accuracy 0.498 0.483 0.515 0.495 0.519 0.534 0.522 0.524 0.529 0.540

GF 0.990 0.961 1.025 0.984 1.033 1.067 1.040 1.044 1.055 1.080

F1-Score 0.47 0.49 0.49 0.50 0.51 0.51 0.53 0.53 0.54 0.54

DTE Testing accuracy 0.510 0.510 0.507 0.508 0.510 0.510 0.508 0.510 0.511 0.507

Training accuracy 0.432 0.453 0.476 0.476 0.519 0.516 0.518 0.527 0.534 0.543

GF 0.863 0.896 0.941 0.939 1.019 1.012 1.021 1.036 1.049 1.079

F1-Score 0.45 0.47 0.48 0.51 0.50 0.54 0.54 0.55 0.55 0.54

RF Testing accuracy 0.560 0.561 0.569 0.564 0.570 0.563 0.564 0.569 0.568 0.569

Training accuracy 0.502 0.497 0.547 0.526 0.570 0.587 0.587 0.606 0.611 0.629

GF 0.884 0.873 0.951 0.920 1.00 1.058 1.056 1.094 1.111 1.162

F1-Score 0.49 0.51 0.54 0.57 0.57 0.59 0.61 0.62 0.62 0.62

SVME Testing accuracy 0.529 0.527 0.526 0.527 0.529 0.527 0.528 0.527 0.528 0.529

Training accuracy 0.532 0.508 0.518 0.522 0.532 0.526 0.531 0.528 0.532 0.529

GF 1.006 0.961 0.983 0.990 1.006 0.998 1.006 1.002 1.009 1.000

F1-Score 0.45 0.49 0.45 0.48 0.48 0.51 0.49 0.51 0.49 0.50

NNE Testing accuracy 0.557 0.557 0.558 0.554 0.559 0.558 0.558 0.554 0.556 0.554

Training accuracy 0.484 0.520 0.542 0.541 0.573 0.576 0.581 0.591 0.588 0.601

GF 0.859 0.923 0.965 0.972 1.033 1.042 1.055 1.090 1.078 1.118

F1-Score 0.51 0.51 0.54 0.56 0.57 0.58 0.59 0.59 0.59 0.60
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.470 0.470 0.470 0.470 0.470 0.470 0.470 0.470 0.470 0.47

Training accuracy 0.496 0.433 0.483 0.458 0.465 0.464 0.472 0.469 0.473 0.47

GF 1.052 0.935 1.025 0.978 0.991 0.989 1.004 0.998 1.006 1.00

F1-Score 0.47 0.44 0.45 0.44 0.46 0.46 0.46 0.45 0.45 0.46

kNNhte Testing accuracy 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520

Training accuracy 0.485 0.496 0.532 0.514 0.553 0.562 0.562 0.580 0.585 0.597

GF 0.932 0.952 1.026 0.988 1.074 1.096 1.096 1.143 1.157 1.191

F1-Score 0.48 0.51 0.53 0.54 0.55 0.57 0.58 0.6 0.60 0.60

DThte Testing accuracy 0.574 0.570 0.569 0.574 0.573 0.572 0.569 0.572 0.572 0.571

Training accuracy 0.487 0.498 0.530 0.532 0.578 0.579 0.592 0.611 0.620 0.632

GF 0.830 0.857 0.917 0.910 1.012 1.017 1.056 1.100 1.126 1.166

F1-Score 0.51 0.50 0.55 0.57 0.57 0.60 0.61 0.63 0.63 0.63

SVMhte Testing accuracy 0.530 0.531 0.531 0.531 0.530 0.530 0.531 0.531 0.531 0.530

Training accuracy 0.525 0.513 0.531 0.530 0.534 0.542 0.548 0.542 0.549 0.547

GF 0.989 0.963 1.000 0.998 1.009 1.026 1.038 1.024 1.040 1.038

F1-Score 0.46 0.50 0.49 0.50 0.49 0.51 0.51 0.52 0.51 0.51

NNhte Testing accuracy 0.560 0.556 0.561 0.557 0.561 0.562 0.557 0.556 0.555 0.560

Training accuracy 0.510 0.499 0.538 0.539 0.564 0.577 0.580 0.581 0.590 0.592

GF 0.898 0.886 0.950 0.961 1.007 1.035 1.055 1.060 1.085 1.078

F1-Score 0.51 0.51 0.53 0.54 0.55 0.57 0.57 0.57 0.56 0.57

HTEsm Testing accuracy 0.570 0.567 0.564 0.571 0.565 0.568 0.568 0.565 0.566 0.563

Training accuracy 0.512 0.514 0.544 0.544 0.575 0.580 0.592 0.587 0.596 0.608

GF 0.881 0.891 0.956 0.941 1.024 1.029 1.059 1.053 1.074 1.115

F1-Score 0.51 0.51 0.54 0.55 0.55 0.59 0.58 0.59 0.58 0.60

HTEdf Testing accuracy 0.566 0.569 0.569 0.567 0.570 0.573 0.569 0.572 0.565 0.567

Training accuracy 0.513 0.502 0.545 0.542 0.572 0.580 0.587 0.586 0.593 0.597

GF 0.891 0.865 0.947 0.945 1.005 1.017 1.044 1.034 1.069 1.074

F1-Score 0.52 0.52 0.55 0.55 0.56 0.59 0.59 0.60 0.59 0.59
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Nursery Dataset

Table D.8: Ensemble Performance on Bagged Subsets of the Nursery Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842

Training accuracy 0.863 0.885 0.887 0.887 0.890 0.891 0.879 0.890 0.875 0.895

GF 1.153 1.374 1.398 1.398 1.436 1.450 1.306 1.436 1.264 1.505

F1-Score 0.83 0.87 0.85 0.87 0.87 0.85 0.87 0.86 0.86 0.86

kNNE Testing accuracy 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816

Training accuracy 0.713 0.804 0.834 0.854 0.856 0.886 0.872 0.892 0.893 0.903

GF 0.641 0.939 1.108 1.260 1.278 1.614 1.438 1.704 1.720 1.897

F1-Score 0.76 0.74 0.74 0.79 0.82 0.80 0.81 0.80 0.82 0.83

DTE Testing accuracy 0.896 0.896 0.895 0.896 0.894 0.899 0.895 0.893 0.896 0.897

Training accuracy 0.881 0.947 0.923 0.956 0.948 0.969 0.961 0.962 0.967 0.971

GF 0.874 1.962 1.364 2.364 2.038 3.258 2.692 2.816 3.152 3.552

F1-Score 0.89 0.93 0.92 0.92 0.94 0.94 0.94 0.95 0.94 0.94

RF Testing accuracy 0.899 0.902 0.897 0.903 0.906 0.906 0.904 0.894 0.903 0.905

Training accuracy 0.872 0.929 0.934 0.957 0.961 0.974 0.967 0.977 0.981 0.982

GF 0.789 1.380 1.561 2.256 2.410 3.615 2.909 4.609 5.105 5.278

F1-Score 0.87 0.91 0.89 0.92 0.94 0.94 0.94 0.93 0.95 0.94

SVME Testing accuracy 0.869 0.868 0.868 0.869 0.868 0.868 0.869 0.868 0.869 0.868

Training accuracy 0.825 0.916 0.934 0.954 0.958 0.974 0.968 0.978 0.985 0.985

GF 0.749 1.571 2.000 2.848 3.143 5.077 4.094 6.000 8.733 8.800

F1-Score 0.83 0.85 0.88 0.91 0.92 0.92 0.92 0.93 0.94 0.94

NNE Testing accuracy 0.941 0.944 0.944 0.943 0.945 0.942 0.944 0.943 0.942 0.945

Training accuracy 0.905 0.963 0.949 0.972 0.970 0.982 0.978 0.986 0.990 0.990

GF 0.621 1.514 1.098 2.036 1.833 3.222 2.545 4.071 5.800 5.500

F1-Score 0.92 0.95 0.94 0.96 0.97 0.97 0.96 0.97 0.98 0.98
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847

Training accuracy 0.866 0.889 0.890 0.889 0.893 0.897 0.883 0.893 0.885 0.898

GF 1.142 1.378 1.391 1.378 1.430 1.485 1.308 1.430 1.330 1.500

F1-Score 0.84 0.87 0.86 0.87 0.87 0.86 0.87 0.87 0.87 0.86

kNNhte Testing accuracy 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820

Training accuracy 0.743 0.841 0.861 0.895 0.900 0.921 0.915 0.928 0.937 0.936

GF 0.700 1.132 1.295 1.714 1.800 2.278 2.118 2.500 2.857 2.813

F1-Score 0.79 0.80 0.78 0.80 0.83 0.82 0.82 0.82 0.84 0.82

DThte Testing accuracy 0.912 0.913 0.910 0.913 0.911 0.913 0.911 0.91 0.912 0.912

Training accuracy 0.895 0.953 0.931 0.966 0.966 0.977 0.977 0.98 0.988 0.987

GF 0.838 1.851 1.304 2.559 2.618 3.783 3.870 4.50 7.333 6.769

F1-Score 0.87 0.93 0.92 0.95 0.96 0.95 0.95 0.98 0.96 0.96

SVMhte Testing accuracy 0.926 0.926 0.924 0.925 0.926 0.925 0.925 0.927 0.925 0.924

Training accuracy 0.912 0.944 0.944 0.968 0.968 0.982 0.980 0.979 0.981 0.985

GF 0.841 1.321 1.357 2.344 2.312 4.167 3.750 3.476 3.947 5.067

F1-Score 0.86 0.93 0.90 0.94 0.95 0.95 0.96 0.96 0.96 0.96

NNhte Testing accuracy 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.947 0.943 0.947

Training accuracy 0.907 0.963 0.953 0.975 0.977 0.985 0.984 0.990 0.993 0.992

GF 0.602 1.514 1.191 2.240 2.435 3.733 3.500 5.300 8.143 6.625

F1-Score 0.92 0.95 0.94 0.97 0.97 0.97 0.97 0.98 0.98 0.98

HTEsm Testing accuracy 0.954 0.954 0.953 0.953 0.953 0.955 0.953 0.954 0.953 0.942

Training accuracy 0.935 0.968 0.976 0.982 0.988 0.992 0.994 0.995 0.996 0.996

GF 0.708 1.438 1.958 2.611 3.917 5.625 7.833 9.200 11.750 14.500

F1-Score 0.93 0.95 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00

HTEdf Testing accuracy 0.962 0.960 0.962 0.962 0.962 0.962 0.962 0.962 0.961 0.961

Training accuracy 0.937 0.975 0.980 0.986 0.990 0.994 0.995 0.996 0.997 0.998

GF 0.603 1.600 1.900 2.714 3.800 6.333 7.600 9.500 13.000 19.500

F1-Score 0.94 0.96 0.97 0.98 0.99 0.99 0.99 1.00 1.00 1.00
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Bank Marketing Dataset

Table D.9: Ensemble Performance on Bagged Subsets of the Bank Marketing Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556

Training accuracy 0.679 0.793 0.686 0.739 0.748 0.715 0.738 0.803 0.793 0.769

GF 1.383 2.145 1.414 1.701 1.762 1.558 1.695 2.254 2.145 1.922

F1-Score 0.79 0.87 0.76 0.78 0.79 0.79 0.78 0.81 0.80 0.81

kNNE Testing accuracy 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.893

Training accuracy 0.913 0.872 0.887 0.892 0.927 0.919 0.911 0.923 0.925 0.931

GF 1.230 0.836 0.947 0.991 1.466 1.321 1.202 1.390 1.427 1.551

F1-Score 0.87 0.85 0.87 0.86 0.85 0.87 0.86 0.86 0.86 0.86

DTE Testing accuracy 0.885 0.886 0.886 0.885 0.884 0.886 0.887 0.885 0.885 0.886

Training accuracy 0.933 0.912 0.904 0.917 0.934 0.944 0.936 0.936 0.949 0.951

GF 1.716 1.295 1.188 1.386 1.758 2.036 1.766 1.797 2.255 2.327

F1-Score 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.88 0.89 0.89

RF Testing accuracy 0.898 0.897 0.899 0.896 0.897 0.899 0.898 0.898 0.898 0.898

Training accuracy 0.926 0.898 0.902 0.919 0.930 0.939 0.939 0.945 0.946 0.956

GF 1.378 1.010 1.031 1.284 1.471 1.656 1.672 1.855 1.889 2.318

F1-Score 0.89 0.88 0.89 0.88 0.89 0.89 0.88 0.89 0.88 0.89

SVME Testing accuracy 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894

Training accuracy 0.912 0.892 0.904 0.902 0.928 0.932 0.931 0.937 0.935 0.944

GF 1.205 0.981 1.104 1.082 1.472 1.559 1.536 1.683 1.631 1.893

F1-Score 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

NNE Testing accuracy 0.891 0.891 0.892 0.892 0.892 0.889 0.890 0.890 0.890 0.891

Training accuracy 0.897 0.899 0.903 0.906 0.934 0.943 0.941 0.949 0.950 0.959

GF 1.058 1.079 1.113 1.149 1.636 1.947 1.864 2.157 2.200 2.659

F1-Score 0.88 0.88 0.88 0.89 0.88 0.89 0.88 0.89 0.89 0.88
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831

Training accuracy 0.842 0.824 0.816 0.816 0.827 0.838 0.823 0.847 0.856 0.851

GF 1.070 0.960 0.918 0.918 0.977 1.043 0.955 1.105 1.174 1.134

F1-Score 0.84 0.87 0.83 0.84 0.85 0.85 0.84 0.85 0.85 0.86

kNNhte Testing accuracy 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897

Training accuracy 0.897 0.878 0.876 0.874 0.913 0.908 0.891 0.897 0.909 0.906

GF 1.000 0.844 0.831 0.817 1.184 1.120 0.945 1.000 1.132 1.096

F1-Score 0.86 0.87 0.87 0.87 0.86 0.87 0.87 0.86 0.87 0.87

DThte Testing accuracy 0.895 0.898 0.894 0.893 0.895 0.896 0.891 0.896 0.895 0.895

Training accuracy 0.945 0.920 0.910 0.925 0.939 0.950 0.945 0.951 0.954 0.964

GF 1.909 1.275 1.178 1.427 1.721 2.080 1.982 2.122 2.283 2.917

F1-Score 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.90

SVMhte Testing accuracy 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.902 0.903

Training accuracy 0.907 0.883 0.887 0.896 0.920 0.915 0.904 0.909 0.914 0.910

GF 1.043 0.829 0.858 0.933 1.213 1.141 1.010 1.066 1.140 1.078

F1-Score 0.87 0.87 0.86 0.88 0.85 0.87 0.87 0.88 0.87 0.88

NNhte Testing accuracy 0.897 0.900 0.899 0.897 0.897 0.898 0.897 0.897 0.899 0.899

Training accuracy 0.901 0.907 0.907 0.914 0.937 0.946 0.939 0.950 0.951 0.960

GF 1.040 1.075 1.086 1.198 1.635 1.889 1.689 2.060 2.061 2.525

F1-Score 0.89 0.88 0.88 0.88 0.88 0.89 0.88 0.89 0.89 0.90

HTEsm Testing accuracy 0.898 0.897 0.900 0.897 0.899 0.897 0.901 0.897 0.896 0.896

Training accuracy 0.926 0.908 0.908 0.918 0.937 0.943 0.943 0.945 0.949 0.959

GF 1.378 1.120 1.087 1.256 1.603 1.807 1.737 1.873 2.039 2.537

F1-Score 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.90

HTEdf Testing accuracy 0.899 0.902 0.898 0.898 0.898 0.898 0.899 0.896 0.901 0.902

Training accuracy 0.917 0.916 0.909 0.924 0.938 0.943 0.943 0.952 0.955 0.959

GF 1.217 1.167 1.121 1.342 1.645 1.789 1.772 2.167 2.200 2.390

F1-Score 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.90 0.90
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Censor Income Dataset

Table D.10: Ensemble Performance on Bagged Subsets of the Censor Income Dataset

Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.627 0.627 0.627 0.627 0.627 0.627 0.627 0.627 0.627 0.627

Training accuracy 0.434 0.473 0.592 0.564 0.545 0.542 0.529 0.594 0.568 0.594

GF 0.659 0.708 0.914 0.856 0.820 0.814 0.792 0.919 0.863 0.919

F1-Score 0.79 0.87 0.76 0.78 0.79 0.79 0.78 0.81 0.80 0.81

kNNE Testing accuracy 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805

Training accuracy 0.805 0.818 0.822 0.782 0.821 0.803 0.810 0.815 0.817 0.836

GF 1.000 1.071 1.096 0.894 1.089 0.990 1.026 1.054 1.066 1.189

F1-Score 0.86 0.87 0.87 0.87 0.86 0.87 0.87 0.86 0.87 0.87

DTE Testing accuracy 0.813 0.813 0.811 0.811 0.811 0.813 0.812 0.811 0.812 0.812

Training accuracy 0.821 0.806 0.820 0.803 0.827 0.827 0.827 0.840 0.849 0.865

GF 1.045 0.964 1.050 0.959 1.092 1.081 1.087 1.181 1.245 1.393

F1-Score 0.87 0.87 0.88 0.88 0.89 0.89 0.89 0.88 0.89 0.89

RF Testing accuracy 0.808 0.806 0.812 0.811 0.810 0.808 0.809 0.806 0.810 0.811

Training accuracy 0.841 0.837 0.836 0.835 0.858 0.863 0.874 0.888 0.896 0.914

GF 1.208 1.190 1.146 1.145 1.338 1.401 1.516 1.732 1.827 2.198

F1-Score 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.89 0.88 0.89

SVME Testing accuracy 0.798 0.797 0.798 0.798 0.797 0.798 0.798 0.798 0.798 0.798

Training accuracy 0.811 0.823 0.815 0.817 0.815 0.819 0.822 0.820 0.846 0.848

GF 1.069 1.147 1.092 1.104 1.097 1.116 1.135 1.122 1.312 1.329

F1-Score 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

NNE Testing accuracy 0.809 0.806 0.810 0.809 0.810 0.806 0.810 0.808 0.808 0.809

Training accuracy 0.832 0.827 0.830 0.824 0.835 0.843 0.852 0.858 0.871 0.889

GF 1.137 1.121 1.118 1.085 1.152 1.236 1.284 1.352 1.488 1.721

F1-Score 0.88 0.88 0.88 0.89 0.88 0.89 0.88 0.89 0.89 0.88
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Ensemble Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.745 0.745 0.745 0.745 0.745 0.745 0.745 0.745 0.745 0.745

Training accuracy 0.712 0.652 0.762 0.645 0.705 0.723 0.712 0.723 0.715 0.733

GF 0.885 0.733 1.071 0.718 0.864 0.921 0.885 0.921 0.895 0.955

F1-Score 0.84 0.87 0.83 0.84 0.85 0.85 0.84 0.85 0.85 0.86

kNNhte Testing accuracy 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809

Training accuracy 0.832 0.826 0.830 0.811 0.831 0.839 0.845 0.858 0.871 0.874

GF 1.137 1.098 1.124 1.011 1.130 1.186 1.232 1.345 1.481 1.516

F1-Score 0.87 0.85 0.87 0.86 0.85 0.87 0.86 0.86 0.86 0.86

DThte Testing accuracy 0.818 0.817 0.817 0.817 0.816 0.815 0.815 0.819 0.819 0.814

Training accuracy 0.828 0.825 0.833 0.819 0.837 0.844 0.839 0.848 0.868 0.876

GF 1.058 1.046 1.096 1.011 1.129 1.186 1.149 1.191 1.371 1.500

F1-Score 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89

SVMhte Testing accuracy 0.823 0.824 0.824 0.824 0.823 0.824 0.824 0.823 0.824 0.823

Training accuracy 0.849 0.816 0.834 0.802 0.825 0.800 0.813 0.816 0.814 0.824

GF 1.172 0.957 1.060 0.889 1.011 0.880 0.941 0.962 0.946 1.006

F1-Score 0.87 0.88 0.86 0.88 0.85 0.87 0.87 0.88 0.87 0.88

NNhte Testing accuracy 0.817 0.812 0.816 0.815 0.813 0.812 0.815 0.814 0.817 0.814

Training accuracy 0.839 0.827 0.836 0.829 0.842 0.844 0.854 0.852 0.871 0.886

GF 1.137 1.087 1.122 1.082 1.184 1.205 1.267 1.257 1.419 1.632

F1-Score 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.89 0.89 0.89

HTEsm Testing accuracy 0.821 0.818 0.818 0.821 0.820 0.819 0.819 0.819 0.820 0.817

Training accuracy 0.846 0.823 0.833 0.820 0.837 0.840 0.841 0.851 0.866 0.871

GF 1.162 1.028 1.090 0.994 1.104 1.131 1.138 1.215 1.343 1.419

F1-Score 0.89 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89

HTEdf Testing accuracy 0.824 0.824 0.824 0.826 0.823 0.824 0.825 0.823 0.822 0.822

Training accuracy 0.829 0.834 0.835 0.832 0.856 0.854 0.863 0.880 0.889 0.902

GF 1.029 1.060 1.067 1.036 1.229 1.205 1.277 1.475 1.604 1.816

F1-Score 0.89 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89
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Appendix E

Ensemble Performance on Feature

Subsets for Classification Problems

The results of the ensembles over the feature subsets of the training dataset for

classification problems are provided in this appendix. Plots of the training and testing

accuracies for each classification dataset are first presented. Then the results of training

and testing accuracy, GF, and F1-score of the ensembles over the classification datasets are

provided.
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Figure E.1: Ensemble Performance on Feature Subsets of the Sonar Dataset

Figure E.2: Ensemble Performance on Feature Subsets of the Breast Cancer Dataset
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Figure E.3: Ensemble Performance on Feature Subsets of the Indian Liver Dataset

Figure E.4: Ensemble Performance on Feature Subsets of the Credit Approval Dataset
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Figure E.5: Ensemble Performance on Feature Subsets of the Red Wine Dataset

Figure E.6: Ensemble Performance on Feature Subsets of the Car Evaluation Dataset
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Figure E.7: Ensemble Performance on Feature Subsets of the White Wine Dataset

Figure E.8: Ensemble Performance on Feature Subsets of the Nursery Dataset
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Figure E.9: Ensemble Performance on Feature Subsets of the Bank Marketing Dataset

Figure E.10: Ensemble Performance on Feature Subsets of the Censor Income Dataset
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Sonar Dataset

Table E.1: Ensemble Performance on Feature Subsets of the Sonar Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.664 0.671 0.630 0.695 0.713 0.743 0.738 0.738 0.757 0.747

Training accuracy 0.607 0.685 0.695 0.659 0.661 0.672 0.680 0.676 0.702 0.704

GF 0.855 1.044 1.213 0.894 0.847 0.784 0.819 0.809 0.815 0.855

F1-Score 0.81 0.69 0.62 0.76 0.74 0.79 0.72 0.79 0.74 0.74

kNNE Testing accuracy 0.672 0.719 0.666 0.666 0.679 0.625 0.605 0.600 0.592 0.586

Training accuracy 0.706 0.749 0.760 0.807 0.761 0.741 0.749 0.770 0.752 0.768

GF 1.116 1.120 1.392 1.731 1.343 1.448 1.574 1.739 1.645 1.784

F1-Score 0.76 0.83 0.88 0.79 0.88 0.81 0.79 0.81 0.86 0.86

DTE Testing accuracy 0.580 0.542 0.645 0.642 0.607 0.679 0.665 0.604 0.616 0.625

Training accuracy 0.601 0.682 0.784 0.716 0.702 0.728 0.765 0.738 0.729 0.741

GF 1.053 1.440 1.644 1.261 1.319 1.180 1.426 1.511 1.417 1.448

F1-Score 0.74 0.74 0.67 0.79 0.81 0.69 0.79 0.79 0.77 0.65

RF Testing accuracy 0.667 0.678 0.650 0.707 0.697 0.678 0.730 0.732 0.732 0.714

Training accuracy 0.620 0.752 0.736 0.745 0.722 0.753 0.768 0.771 0.757 0.767

GF 0.876 1.298 1.326 1.149 1.090 1.304 1.164 1.170 1.103 1.227

F1-Score 0.78 0.83 0.83 0.79 0.86 0.81 0.69 0.84 0.88 0.83

SVME Testing accuracy 0.604 0.714 0.691 0.692 0.701 0.695 0.676 0.697 0.711 0.711

Training accuracy 0.494 0.671 0.614 0.729 0.696 0.741 0.739 0.778 0.772 0.773

GF 0.783 0.869 0.801 1.137 0.984 1.178 1.241 1.365 1.268 1.273

F1-Score 0.43 0.71 0.63 0.76 0.86 0.67 0.72 0.74 0.74 0.74

NNE Testing accuracy 0.730 0.797 0.752 0.791 0.748 0.755 0.760 0.787 0.759 0.768

Training accuracy 0.691 0.819 0.800 0.847 0.815 0.845 0.818 0.835 0.838 0.837

GF 0.874 1.122 1.240 1.366 1.362 1.581 1.319 1.291 1.488 1.423

F1-Score 0.45 0.77 0.88 0.81 0.86 0.88 0.81 0.79 0.86 0.88
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.697 0.676 0.680 0.714 0.719 0.742 0.742 0.757 0.758 0.762

Training accuracy 0.614 0.692 0.701 0.669 0.664 0.673 0.685 0.676 0.700 0.706

GF 0.785 1.052 1.070 0.864 0.836 0.789 0.819 0.750 0.807 0.810

F1-Score 0.79 0.69 0.62 0.76 0.74 0.77 0.72 0.79 0.74 0.74

kNNhte Testing accuracy 0.663 0.754 0.702 0.754 0.679 0.685 0.683 0.649 0.674 0.655

Training accuracy 0.658 0.764 0.802 0.837 0.812 0.785 0.783 0.794 0.800 0.792

GF 0.985 1.042 1.505 1.509 1.707 1.465 1.461 1.704 1.630 1.659

F1-Score 0.77 0.90 0.86 0.81 0.93 0.88 0.90 0.90 0.92 0.90

DThte Testing accuracy 0.629 0.549 0.671 0.673 0.679 0.708 0.693 0.695 0.670 0.645

Training accuracy 0.634 0.741 0.815 0.746 0.723 0.766 0.797 0.803 0.786 0.797

GF 1.014 1.741 1.778 1.287 1.159 1.248 1.512 1.548 1.542 1.749

F1-Score 0.72 0.81 0.71 0.84 0.86 0.72 0.81 0.74 0.77 0.74

SVMhte Testing accuracy 0.609 0.751 0.719 0.776 0.759 0.714 0.714 0.741 0.760 0.735

Training accuracy 0.672 0.773 0.771 0.823 0.759 0.843 0.811 0.828 0.843 0.837

GF 1.192 1.097 1.227 1.266 1.000 1.822 1.513 1.506 1.529 1.626

F1-Score 0.74 0.86 0.88 0.84 0.88 0.84 0.79 0.81 0.84 0.86

NNhte Testing accuracy 0.763 0.802 0.737 0.800 0.733 0.763 0.736 0.755 0.753 0.769

Training accuracy 0.689 0.800 0.801 0.825 0.786 0.821 0.798 0.789 0.804 0.812

GF 0.762 0.990 1.322 1.143 1.248 1.324 1.307 1.161 1.260 1.229

F1-Score 0.67 0.88 0.86 0.93 0.90 0.88 0.86 0.86 0.88 0.86

HTEsm Testing accuracy 0.701 0.755 0.760 0.803 0.825 0.778 0.781 0.786 0.807 0.781

Training accuracy 0.654 0.794 0.839 0.843 0.797 0.845 0.796 0.811 0.825 0.813

GF 0.864 1.189 1.491 1.255 0.862 1.432 1.074 1.132 1.103 1.171

F1-Score 0.77 0.86 0.96 0.88 0.91 0.95 0.88 0.86 0.88 0.93

HTEdf Testing accuracy 0.692 0.738 0.754 0.847 0.813 0.781 0.781 0.796 0.778 0.804

Training accuracy 0.647 0.813 0.837 0.851 0.804 0.826 0.803 0.816 0.816 0.827

GF 0.873 1.401 1.509 1.027 0.954 1.259 1.112 1.109 1.207 1.133

F1-Score 0.77 0.88 0.88 0.91 0.98 0.91 0.88 0.91 0.93 0.91
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Breast Cancer Dataset

Table E.2: Ensemble Performance on Feature Subsets of the Breast Cancer Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.576 0.497 0.391 0.466 0.500 0.513 0.483 0.441 0.517 0.517

Training accuracy 0.491 0.579 0.563 0.574 0.587 0.601 0.582 0.552 0.601 0.605

GF 0.833 1.195 1.394 1.254 1.211 1.221 1.237 1.248 1.211 1.223

F1-Score 0.57 0.53 0.59 0.45 0.44 0.52 0.45 0.36 0.50 0.51

kNNE Testing accuracy 0.415 0.626 0.533 0.629 0.686 0.614 0.643 0.639 0.655 0.666

Training accuracy 0.496 0.601 0.592 0.699 0.755 0.662 0.751 0.747 0.806 0.807

GF 1.161 0.937 1.145 1.233 1.282 1.142 1.434 1.427 1.778 1.731

F1-Score 0.56 0.62 0.60 0.62 0.65 0.59 0.56 0.59 0.55 0.60

DTE Testing accuracy 0.613 0.594 0.635 0.564 0.575 0.598 0.545 0.565 0.538 0.549

Training accuracy 0.527 0.651 0.692 0.709 0.720 0.696 0.741 0.701 0.712 0.743

GF 0.818 1.163 1.185 1.498 1.518 1.322 1.757 1.455 1.604 1.755

F1-Score 0.53 0.62 0.49 0.62 0.54 0.60 0.65 0.62 0.58 0.62

RF Testing accuracy 0.621 0.618 0.640 0.589 0.677 0.626 0.633 0.633 0.615 0.613

Training accuracy 0.528 0.660 0.692 0.734 0.754 0.730 0.767 0.758 0.779 0.785

GF 0.803 1.124 1.169 1.545 1.313 1.385 1.575 1.517 1.742 1.800

F1-Score 0.56 0.57 0.58 0.70 0.58 0.53 0.62 0.56 0.57 0.64

SVME Testing accuracy 0.627 0.631 0.629 0.627 0.655 0.629 0.615 0.633 0.633 0.627

Training accuracy 0.449 0.662 0.674 0.735 0.787 0.734 0.792 0.788 0.799 0.815

GF 0.677 1.092 1.138 1.408 1.620 1.395 1.851 1.731 1.826 2.016

F1-Score 0.49 0.63 0.61 0.62 0.63 0.51 0.61 0.53 0.50 0.51

NNE Testing accuracy 0.620 0.583 0.608 0.573 0.620 0.601 0.617 0.557 0.575 0.540

Training accuracy 0.540 0.664 0.705 0.742 0.743 0.725 0.774 0.762 0.790 0.787

GF 0.826 1.241 1.329 1.655 1.479 1.451 1.695 1.861 2.024 2.160

F1-Score 0.53 0.62 0.55 0.66 0.65 0.57 0.59 0.59 0.60 0.68
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.566 0.497 0.387 0.466 0.503 0.570 0.487 0.468 0.511 0.518

Training accuracy 0.503 0.642 0.630 0.585 0.602 0.612 0.597 0.608 0.632 0.649

GF 0.873 1.405 1.657 1.287 1.249 1.108 1.273 1.357 1.329 1.373

F1-Score 0.53 0.67 0.58 0.44 0.48 0.51 0.45 0.47 0.59 0.59

kNNhte Testing accuracy 0.521 0.664 0.535 0.588 0.685 0.645 0.633 0.641 0.681 0.635

Training accuracy 0.491 0.593 0.610 0.703 0.768 0.709 0.787 0.782 0.806 0.819

GF 0.941 0.826 1.192 1.387 1.358 1.220 1.723 1.647 1.644 2.017

F1-Score 0.29 0.53 0.50 0.70 0.64 0.60 0.62 0.65 0.58 0.62

DThte Testing accuracy 0.613 0.601 0.632 0.568 0.601 0.594 0.555 0.567 0.559 0.599

Training accuracy 0.530 0.660 0.701 0.717 0.726 0.730 0.758 0.723 0.743 0.747

GF 0.823 1.174 1.231 1.527 1.456 1.504 1.839 1.563 1.716 1.585

F1-Score 0.53 0.66 0.52 0.62 0.59 0.62 0.66 0.63 0.57 0.68

SVMhte Testing accuracy 0.637 0.637 0.629 0.636 0.629 0.637 0.626 0.633 0.630 0.630

Training accuracy 0.507 0.680 0.688 0.665 0.740 0.698 0.750 0.726 0.791 0.782

GF 0.736 1.134 1.189 1.087 1.427 1.202 1.496 1.339 1.770 1.697

F1-Score 0.49 0.63 0.63 0.58 0.62 0.65 0.62 0.62 0.65 0.65

NNhte Testing accuracy 0.599 0.631 0.637 0.580 0.620 0.633 0.582 0.581 0.574 0.577

Training accuracy 0.498 0.675 0.693 0.733 0.751 0.727 0.768 0.748 0.792 0.789

GF 0.799 1.135 1.182 1.573 1.526 1.344 1.802 1.663 2.048 2.005

F1-Score 0.53 0.66 0.58 0.69 0.62 0.56 0.60 0.61 0.61 0.64

HTEsm Testing accuracy 0.596 0.661 0.598 0.571 0.657 0.634 0.635 0.648 0.641 0.657

Training accuracy 0.472 0.677 0.678 0.712 0.745 0.716 0.741 0.735 0.742 0.739

GF 0.765 1.050 1.248 1.490 1.345 1.289 1.409 1.328 1.391 1.314

F1-Score 0.59 0.61 0.61 0.68 0.65 0.64 0.66 0.64 0.64 0.71

HTEdf Testing accuracy 0.596 0.661 0.618 0.584 0.668 0.647 0.647 0.655 0.654 0.661

Training accuracy 0.474 0.679 0.676 0.716 0.745 0.697 0.733 0.723 0.726 0.709

GF 0.768 1.056 1.179 1.465 1.302 1.165 1.322 1.245 1.263 1.165

F1-Score 0.62 0.62 0.62 0.69 0.67 0.66 0.67 0.66 0.66 0.72
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Indian Liver Dataset

Table E.3: Ensemble Performance on Feature Subsets of the Indian Liver Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.618 0.571 0.675 0.598 0.602 0.651 0.575 0.680 0.683 0.665

Training accuracy 0.587 0.641 0.655 0.596 0.658 0.686 0.682 0.681 0.678 0.681

GF 0.925 1.195 0.942 0.995 1.164 1.111 1.336 1.003 0.984 1.050

F1-Score 0.36 0.44 0.52 0.37 0.47 0.54 0.49 0.55 0.55 0.55

kNNE Testing accuracy 0.714 0.725 0.755 0.752 0.672 0.702 0.754 0.732 0.730 0.730

Training accuracy 0.656 0.681 0.737 0.680 0.661 0.671 0.677 0.650 0.667 0.682

GF 0.831 0.862 0.932 0.775 0.968 0.906 0.762 0.766 0.811 0.849

F1-Score 0.66 0.70 0.70 0.64 0.70 0.59 0.62 0.62 0.56 0.57

DTE Testing accuracy 0.682 0.663 0.725 0.694 0.680 0.726 0.667 0.681 0.742 0.740

Training accuracy 0.677 0.667 0.741 0.703 0.746 0.713 0.723 0.736 0.725 0.731

GF 0.985 1.012 1.062 1.030 1.260 0.955 1.202 1.208 0.938 0.967

F1-Score 0.64 0.66 0.71 0.71 0.68 0.61 0.69 0.71 0.65 0.65

RF Testing accuracy 0.645 0.675 0.748 0.748 0.715 0.733 0.695 0.725 0.746 0.738

Training accuracy 0.683 0.681 0.756 0.743 0.773 0.765 0.764 0.773 0.782 0.789

GF 1.120 1.019 1.033 0.981 1.256 1.136 1.292 1.211 1.165 1.242

F1-Score 0.64 0.63 0.74 0.65 0.69 0.68 0.76 0.74 0.71 0.68

SVME Testing accuracy 0.651 0.743 0.743 0.754 0.743 0.743 0.740 0.743 0.745 0.743

Training accuracy 0.608 0.616 0.604 0.639 0.659 0.673 0.687 0.681 0.694 0.707

GF 0.890 0.669 0.649 0.681 0.754 0.786 0.831 0.806 0.833 0.877

F1-Score 0.40 0.62 0.61 0.66 0.67 0.67 0.66 0.69 0.66 0.69

NNE Testing accuracy 0.726 0.747 0.728 0.689 0.687 0.708 0.695 0.720 0.730 0.728

Training accuracy 0.622 0.654 0.687 0.675 0.684 0.709 0.711 0.696 0.726 0.722

GF 0.725 0.731 0.869 0.957 0.991 1.003 1.055 0.921 0.985 0.978

F1-Score 0.49 0.53 0.67 0.72 0.68 0.62 0.64 0.63 0.71 0.66
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.613 0.602 0.666 0.745 0.610 0.648 0.594 0.680 0.682 0.668

Training accuracy 0.587 0.640 0.655 0.601 0.661 0.687 0.678 0.683 0.682 0.683

GF 0.937 1.106 0.968 0.639 1.150 1.125 1.261 1.009 1.000 1.047

F1-Score 0.36 0.45 0.52 0.40 0.47 0.55 0.49 0.55 0.55 0.55

kNNhte Testing accuracy 0.714 0.706 0.745 0.760 0.682 0.707 0.742 0.703 0.738 0.742

Training accuracy 0.666 0.690 0.744 0.687 0.673 0.696 0.692 0.678 0.674 0.690

GF 0.856 0.948 0.996 0.767 0.972 0.964 0.838 0.922 0.804 0.832

F1-Score 0.68 0.70 0.71 0.59 0.69 0.62 0.62 0.62 0.58 0.58

DThte Testing accuracy 0.703 0.660 0.743 0.753 0.714 0.746 0.688 0.711 0.754 0.756

Training accuracy 0.692 0.696 0.763 0.727 0.780 0.748 0.762 0.774 0.780 0.776

GF 0.964 1.118 1.084 0.905 1.300 1.008 1.311 1.279 1.118 1.089

F1-Score 0.62 0.67 0.79 0.70 0.67 0.63 0.73 0.71 0.72 0.67

SVMhte Testing accuracy 0.717 0.742 0.743 0.743 0.743 0.743 0.743 0.743 0.745 0.747

Training accuracy 0.509 0.596 0.582 0.618 0.623 0.663 0.675 0.662 0.674 0.690

GF 0.576 0.639 0.615 0.673 0.682 0.763 0.791 0.760 0.782 0.816

F1-Score 0.27 0.69 0.59 0.63 0.63 0.67 0.63 0.70 0.66 0.66

NNhte Testing accuracy 0.743 0.743 0.743 0.767 0.736 0.747 0.760 0.745 0.767 0.757

Training accuracy 0.623 0.654 0.689 0.670 0.680 0.701 0.694 0.702 0.722 0.723

GF 0.682 0.743 0.826 0.706 0.825 0.846 0.784 0.856 0.838 0.877

F1-Score 0.46 0.53 0.66 0.73 0.72 0.60 0.70 0.71 0.67 0.66

HTEsm Testing accuracy 0.689 0.694 0.728 0.734 0.704 0.725 0.686 0.689 0.745 0.755

Training accuracy 0.668 0.686 0.735 0.698 0.731 0.720 0.730 0.723 0.743 0.740

GF 0.937 0.975 1.026 0.881 1.100 0.982 1.163 1.123 0.992 0.942

F1-Score 0.61 0.68 0.69 0.67 0.68 0.68 0.73 0.70 0.72 0.69

HTEdf Testing accuracy 0.701 0.687 0.750 0.747 0.731 0.739 0.756 0.730 0.766 0.765

Training accuracy 0.692 0.707 0.747 0.710 0.732 0.731 0.750 0.734 0.757 0.757

GF 0.971 1.068 0.988 0.872 1.004 0.970 0.976 1.015 0.963 0.967

F1-Score 0.63 0.70 0.70 0.69 0.70 0.70 0.75 0.73 0.73 0.70
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Credit Approval Dataset

Table E.4: Ensemble Performance on Feature Subsets of the Credit Approval Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.500 0.479 0.466 0.506 0.507 0.497 0.558 0.523 0.558 0.535

Training accuracy 0.574 0.510 0.568 0.465 0.594 0.483 0.489 0.534 0.496 0.525

GF 1.174 1.063 1.236 0.923 1.214 0.973 0.865 1.024 0.877 0.979

F1-Score 0.35 0.45 0.40 0.45 0.48 0.41 0.44 0.41 0.46 0.47

kNNE Testing accuracy 0.477 0.636 0.789 0.565 0.668 0.788 0.805 0.793 0.794 0.797

Training accuracy 0.595 0.720 0.859 0.634 0.767 0.883 0.879 0.875 0.865 0.881

GF 1.291 1.300 1.496 1.189 1.425 1.812 1.612 1.656 1.526 1.706

F1-Score 0.53 0.68 0.80 0.59 0.72 0.81 0.82 0.85 0.78 0.82

DTE Testing accuracy 0.537 0.624 0.765 0.558 0.648 0.761 0.765 0.732 0.761 0.763

Training accuracy 0.600 0.703 0.830 0.631 0.747 0.861 0.842 0.843 0.839 0.843

GF 1.157 1.266 1.382 1.198 1.391 1.719 1.487 1.707 1.484 1.510

F1-Score 0.52 0.66 0.81 0.53 0.70 0.80 0.79 0.82 0.80 0.81

RF Testing accuracy 0.536 0.634 0.735 0.585 0.693 0.784 0.770 0.806 0.787 0.803

Training accuracy 0.546 0.644 0.815 0.632 0.766 0.854 0.860 0.870 0.856 0.873

GF 1.022 1.028 1.432 1.128 1.312 1.479 1.643 1.492 1.479 1.551

F1-Score 0.54 0.69 0.81 0.56 0.74 0.84 0.82 0.83 0.78 0.82

SVME Testing accuracy 0.461 0.692 0.792 0.587 0.695 0.768 0.783 0.794 0.730 0.774

Training accuracy 0.606 0.725 0.853 0.647 0.721 0.860 0.860 0.866 0.856 0.858

GF 1.368 1.120 1.415 1.170 1.093 1.657 1.550 1.537 1.875 1.592

F1-Score 0.55 0.70 0.81 0.59 0.69 0.85 0.84 0.83 0.82 0.85

NNE Testing accuracy 0.541 0.625 0.730 0.581 0.637 0.743 0.685 0.665 0.714 0.668

Training accuracy 0.629 0.688 0.819 0.634 0.722 0.812 0.787 0.797 0.790 0.803

GF 1.237 1.202 1.492 1.145 1.306 1.367 1.479 1.650 1.362 1.685

F1-Score 0.53 0.68 0.78 0.56 0.68 0.71 0.72 0.72 0.72 0.72

Stellenbosch University https://scholar.sun.ac.za



Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 479

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.497 0.479 0.475 0.498 0.522 0.503 0.703 0.554 0.655 0.651

Training accuracy 0.593 0.601 0.581 0.526 0.646 0.651 0.691 0.688 0.630 0.657

GF 1.236 1.306 1.253 1.059 1.350 1.424 0.961 1.429 0.932 1.017

F1-Score 0.39 0.45 0.44 0.48 0.51 0.67 0.66 0.60 0.61 0.64

kNNhte Testing accuracy 0.478 0.630 0.769 0.556 0.645 0.754 0.797 0.764 0.772 0.773

Training accuracy 0.584 0.697 0.829 0.602 0.740 0.850 0.855 0.866 0.834 0.854

GF 1.255 1.221 1.351 1.116 1.365 1.640 1.400 1.761 1.373 1.555

F1-Score 0.52 0.70 0.80 0.59 0.72 0.82 0.85 0.85 0.80 0.82

DThte Testing accuracy 0.537 0.645 0.759 0.551 0.666 0.767 0.745 0.751 0.773 0.761

Training accuracy 0.611 0.713 0.847 0.632 0.772 0.863 0.855 0.857 0.849 0.851

GF 1.190 1.237 1.575 1.220 1.465 1.701 1.759 1.741 1.503 1.604

F1-Score 0.55 0.68 0.79 0.57 0.73 0.82 0.81 0.83 0.83 0.82

SVMhte Testing accuracy 0.492 0.644 0.811 0.491 0.680 0.831 0.815 0.816 0.822 0.816

Training accuracy 0.603 0.735 0.862 0.636 0.752 0.873 0.877 0.870 0.877 0.871

GF 1.280 1.343 1.370 1.398 1.290 1.331 1.504 1.415 1.447 1.426

F1-Score 0.44 0.72 0.83 0.51 0.74 0.85 0.84 0.85 0.85 0.84

NNhte Testing accuracy 0.507 0.632 0.773 0.555 0.645 0.752 0.764 0.760 0.758 0.768

Training accuracy 0.605 0.705 0.844 0.638 0.729 0.849 0.832 0.846 0.825 0.849

GF 1.248 1.247 1.455 1.229 1.310 1.642 1.405 1.558 1.383 1.536

F1-Score 0.59 0.69 0.78 0.58 0.71 0.79 0.80 0.77 0.79 0.75

HTEsm Testing accuracy 0.513 0.684 0.831 0.594 0.715 0.753 0.806 0.812 0.773 0.788

Training accuracy 0.607 0.693 0.859 0.630 0.736 0.860 0.878 0.866 0.843 0.869

GF 1.239 1.029 1.199 1.097 1.080 1.764 1.590 1.403 1.446 1.618

F1-Score 0.50 0.68 0.83 0.60 0.74 0.85 0.82 0.80 0.84 0.83

HTEdf Testing accuracy 0.545 0.688 0.832 0.596 0.708 0.749 0.810 0.812 0.770 0.808

Training accuracy 0.602 0.689 0.857 0.628 0.734 0.855 0.878 0.866 0.831 0.863

GF 1.143 1.003 1.175 1.086 1.098 1.731 1.557 1.403 1.361 1.401

F1-Score 0.54 0.70 0.84 0.62 0.75 0.86 0.86 0.86 0.86 0.87
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Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 480

Red Wine Dataset

Table E.5: Ensemble Performance on Feature Subsets of the Red Wine Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.495 0.536 0.379 0.392 0.501 0.433 0.499 0.512 0.440 0.471

Training accuracy 0.455 0.579 0.506 0.507 0.579 0.542 0.582 0.562 0.588 0.567

GF 0.927 1.102 1.257 1.233 1.185 1.238 1.199 1.114 1.359 1.222

F1-Score 0.44 0.50 0.42 0.43 0.48 0.48 0.49 0.52 0.52 0.51

kNNE Testing accuracy 0.373 0.558 0.376 0.446 0.502 0.475 0.532 0.536 0.518 0.510

Training accuracy 0.410 0.558 0.544 0.575 0.617 0.627 0.620 0.641 0.633 0.645

GF 1.063 1.000 1.368 1.304 1.300 1.408 1.232 1.292 1.313 1.380

F1-Score 0.41 0.49 0.47 0.47 0.52 0.54 0.58 0.53 0.52 0.52

DTE Testing accuracy 0.394 0.493 0.426 0.464 0.488 0.469 0.485 0.487 0.492 0.488

Training accuracy 0.451 0.553 0.506 0.532 0.573 0.589 0.600 0.603 0.599 0.605

GF 1.104 1.134 1.162 1.145 1.199 1.292 1.287 1.292 1.267 1.296

F1-Score 0.43 0.52 0.50 0.49 0.54 0.55 0.56 0.57 0.50 0.53

RF Testing accuracy 0.362 0.543 0.448 0.460 0.531 0.496 0.529 0.545 0.546 0.532

Training accuracy 0.449 0.565 0.562 0.593 0.647 0.655 0.658 0.674 0.675 0.672

GF 1.158 1.051 1.260 1.327 1.329 1.461 1.377 1.396 1.397 1.427

F1-Score 0.43 0.48 0.54 0.54 0.56 0.59 0.60 0.59 0.59 0.63

SVME Testing accuracy 0.414 0.540 0.418 0.414 0.524 0.512 0.516 0.544 0.536 0.539

Training accuracy 0.442 0.592 0.525 0.523 0.582 0.538 0.595 0.600 0.598 0.610

GF 1.050 1.127 1.225 1.229 1.139 1.056 1.195 1.140 1.154 1.182

F1-Score 0.44 0.50 0.41 0.44 0.53 0.49 0.52 0.53 0.51 0.54

NNE Testing accuracy 0.491 0.574 0.451 0.482 0.493 0.448 0.513 0.538 0.535 0.544

Training accuracy 0.455 0.594 0.527 0.540 0.608 0.621 0.644 0.655 0.647 0.662

GF 0.934 1.049 1.161 1.126 1.293 1.456 1.368 1.339 1.317 1.349

F1-Score 0.44 0.50 0.48 0.48 0.54 0.57 0.59 0.58 0.58 0.63

Stellenbosch University https://scholar.sun.ac.za



Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 481

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.497 0.533 0.388 0.411 0.515 0.464 0.502 0.524 0.470 0.488

Training accuracy 0.453 0.581 0.509 0.509 0.579 0.540 0.591 0.583 0.592 0.590

GF 0.920 1.115 1.246 1.200 1.152 1.165 1.218 1.141 1.299 1.249

F1-Score 0.46 0.49 0.42 0.42 0.46 0.49 0.50 0.53 0.52 0.52

kNNhte Testing accuracy 0.421 0.534 0.433 0.455 0.489 0.445 0.491 0.520 0.548 0.529

Training accuracy 0.431 0.546 0.506 0.511 0.569 0.584 0.587 0.596 0.581 0.580

GF 1.018 1.026 1.148 1.115 1.186 1.334 1.232 1.188 1.079 1.121

F1-Score 0.40 0.51 0.52 0.53 0.57 0.59 0.62 0.59 0.58 0.62

DThte Testing accuracy 0.382 0.521 0.441 0.488 0.521 0.482 0.525 0.534 0.537 0.541

Training accuracy 0.459 0.572 0.571 0.604 0.649 0.654 0.664 0.678 0.676 0.682

GF 1.142 1.119 1.303 1.293 1.365 1.497 1.414 1.447 1.429 1.443

F1-Score 0.43 0.52 0.55 0.55 0.58 0.59 0.61 0.60 0.58 0.59

SVMhte Testing accuracy 0.448 0.551 0.452 0.489 0.526 0.487 0.521 0.536 0.543 0.537

Training accuracy 0.462 0.599 0.534 0.551 0.617 0.633 0.646 0.653 0.650 0.653

GF 1.026 1.120 1.176 1.138 1.238 1.398 1.353 1.337 1.306 1.334

F1-Score 0.42 0.50 0.42 0.44 0.52 0.47 0.52 0.53 0.52 0.53

NNhte Testing accuracy 0.488 0.559 0.470 0.486 0.512 0.492 0.534 0.545 0.554 0.552

Training accuracy 0.428 0.589 0.523 0.548 0.610 0.644 0.655 0.653 0.650 0.660

GF 0.895 1.073 1.111 1.137 1.251 1.427 1.351 1.311 1.274 1.318

F1-Score 0.43 0.49 0.42 0.46 0.53 0.58 0.57 0.61 0.61 0.60

HTEsm Testing accuracy 0.439 0.547 0.441 0.498 0.540 0.479 0.536 0.547 0.556 0.543

Training accuracy 0.456 0.606 0.552 0.582 0.627 0.648 0.650 0.660 0.654 0.660

GF 1.031 1.150 1.248 1.201 1.233 1.480 1.326 1.332 1.283 1.344

F1-Score 0.41 0.51 0.48 0.48 0.53 0.58 0.59 0.58 0.58 0.59

HTEdf Testing accuracy 0.513 0.539 0.469 0.484 0.538 0.501 0.537 0.554 0.549 0.557

Training accuracy 0.455 0.588 0.521 0.526 0.598 0.566 0.613 0.605 0.607 0.614

GF 0.894 1.119 1.109 1.089 1.149 1.150 1.196 1.129 1.148 1.148

F1-Score 0.42 0.54 0.51 0.50 0.56 0.60 0.57 0.59 0.59 0.59
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Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 482

Car Evaluation Dataset

Table E.6: Ensemble Performance on Feature Subsets of the Car Evaluation Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.541 0.284 0.456 0.519 0.754 0.431 0.552 0.797 0.809 0.809

Training accuracy 0.459 0.218 0.365 0.470 0.713 0.422 0.458 0.771 0.808 0.801

GF 0.848 0.916 0.857 0.908 0.857 0.984 0.827 0.886 0.995 0.960

F1-Score 0.62 0.34 0.54 0.57 0.79 0.50 0.60 0.81 0.82 0.82

kNNE Testing accuracy 0.725 0.655 0.686 0.694 0.780 0.626 0.744 0.864 0.852 0.844

Training accuracy 0.614 0.687 0.656 0.772 0.789 0.695 0.762 0.877 0.917 0.890

GF 0.712 1.102 0.913 1.342 1.043 1.226 1.076 1.106 1.783 1.418

F1-Score 0.70 0.61 0.64 0.67 0.77 0.59 0.72 0.83 0.91 0.85

DTE Testing accuracy 0.734 0.695 0.702 0.705 0.767 0.553 0.831 0.901 0.932 0.927

Training accuracy 0.699 0.723 0.683 0.794 0.800 0.584 0.807 0.906 0.959 0.952

GF 0.884 1.101 0.940 1.432 1.165 1.075 0.876 1.053 1.659 1.521

F1-Score 0.55 0.55 0.61 0.68 0.77 0.60 0.79 0.88 0.94 0.97

RF Testing accuracy 0.734 0.697 0.710 0.690 0.776 0.591 0.811 0.885 0.899 0.881

Training accuracy 0.699 0.723 0.679 0.789 0.789 0.606 0.807 0.880 0.950 0.930

GF 0.884 1.094 0.903 1.469 1.062 1.038 0.979 0.958 2.020 1.700

F1-Score 0.55 0.55 0.60 0.67 0.76 0.56 0.77 0.86 0.94 0.91

SVME Testing accuracy 0.734 0.698 0.709 0.698 0.777 0.673 0.790 0.892 0.875 0.871

Training accuracy 0.706 0.723 0.679 0.794 0.809 0.724 0.819 0.887 0.964 0.956

GF 0.905 1.090 0.907 1.466 1.168 1.185 1.160 0.956 3.472 2.932

F1-Score 0.55 0.55 0.55 0.70 0.75 0.55 0.78 0.86 0.96 0.94

NNE Testing accuracy 0.734 0.697 0.709 0.690 0.764 0.589 0.860 0.928 0.963 0.955

Training accuracy 0.699 0.723 0.680 0.790 0.807 0.648 0.823 0.895 0.995 0.997

GF 0.884 1.094 0.909 1.476 1.223 1.168 0.791 0.686 7.400 15.000

F1-Score 0.55 0.55 0.59 0.70 0.77 0.60 0.80 0.89 0.97 0.98
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Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 483

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.541 0.284 0.460 0.517 0.755 0.464 0.562 0.797 0.809 0.809

Training accuracy 0.459 0.218 0.460 0.470 0.713 0.463 0.480 0.771 0.808 0.801

GF 0.848 0.916 1.000 0.911 0.854 0.998 0.842 0.886 0.995 0.960

F1-Score 0.62 0.34 0.58 0.57 0.79 0.50 0.61 0.81 0.82 0.82

kNNhte Testing accuracy 0.709 0.646 0.680 0.704 0.776 0.610 0.736 0.864 0.843 0.830

Training accuracy 0.628 0.682 0.652 0.763 0.783 0.671 0.777 0.863 0.920 0.878

GF 0.782 1.113 0.920 1.249 1.032 1.185 1.184 0.993 1.963 1.393

F1-Score 0.56 0.63 0.60 0.67 0.74 0.58 0.72 0.83 0.91 0.83

DThte Testing accuracy 0.734 0.695 0.706 0.687 0.776 0.606 0.840 0.905 0.934 0.936

Training accuracy 0.699 0.723 0.676 0.795 0.808 0.652 0.809 0.892 0.968 0.966

GF 0.884 1.101 0.907 1.527 1.167 1.132 0.838 0.880 2.062 1.882

F1-Score 0.55 0.55 0.57 0.68 0.76 0.60 0.79 0.89 0.97 0.94

SVMhte Testing accuracy 0.734 0.684 0.667 0.722 0.794 0.683 0.846 0.891 0.909 0.902

Training accuracy 0.706 0.723 0.689 0.802 0.809 0.736 0.858 0.891 0.944 0.951

GF 0.905 1.141 1.071 1.404 1.079 1.201 1.085 1.000 1.625 2.000

F1-Score 0.55 0.55 0.55 0.70 0.75 0.63 0.80 0.87 0.93 0.94

NNhte Testing accuracy 0.725 0.694 0.709 0.713 0.783 0.628 0.856 0.921 0.954 0.950

Training accuracy 0.704 0.723 0.689 0.789 0.805 0.683 0.828 0.897 0.991 0.992

GF 0.929 1.105 0.936 1.360 1.113 1.174 0.837 0.767 5.111 6.250

F1-Score 0.55 0.55 0.55 0.71 0.77 0.59 0.83 0.90 0.98 0.99

HTEsm Testing accuracy 0.734 0.700 0.688 0.674 0.771 0.620 0.847 0.924 0.958 0.949

Training accuracy 0.701 0.723 0.675 0.791 0.791 0.658 0.829 0.894 0.975 0.980

GF 0.890 1.083 0.960 1.560 1.096 1.111 0.895 0.717 1.680 2.550

F1-Score 0.70 0.56 0.60 0.69 0.77 0.61 0.82 0.90 0.98 0.99

HTEdf Testing accuracy 0.734 0.701 0.694 0.689 0.775 0.633 0.839 0.922 0.951 0.944

Training accuracy 0.701 0.723 0.680 0.792 0.800 0.664 0.835 0.895 0.975 0.979

GF 0.890 1.079 0.956 1.495 1.125 1.092 0.976 0.743 1.960 2.667

F1-Score 0.70 0.57 0.60 0.71 0.78 0.62 0.83 0.90 0.98 0.99
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Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 484

White Wine Dataset

Table E.7: Ensemble Performance on Feature Subsets of the White Wine Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.439 0.468 0.436 0.444 0.468 0.428 0.384 0.443 0.426 0.427

Training accuracy 0.455 0.495 0.455 0.508 0.520 0.469 0.446 0.502 0.474 0.469

GF 1.029 1.053 1.035 1.130 1.108 1.077 1.112 1.118 1.091 1.079

F1-Score 0.44 0.38 0.41 0.39 0.40 0.41 0.42 0.40 0.41 0.41

kNNE Testing accuracy 0.384 0.460 0.402 0.458 0.467 0.433 0.439 0.473 0.467 0.481

Training accuracy 0.404 0.482 0.462 0.503 0.522 0.524 0.541 0.569 0.556 0.558

GF 1.034 1.042 1.112 1.091 1.115 1.191 1.222 1.223 1.200 1.174

F1-Score 0.47 0.49 0.49 0.50 0.51 0.51 0.53 0.53 0.54 0.54

DTE Testing accuracy 0.438 0.445 0.415 0.464 0.487 0.467 0.455 0.479 0.480 0.476

Training accuracy 0.453 0.498 0.480 0.538 0.564 0.528 0.537 0.556 0.550 0.556

GF 1.027 1.106 1.125 1.160 1.177 1.129 1.177 1.173 1.156 1.180

F1-Score 0.45 0.47 0.48 0.51 0.50 0.54 0.54 0.55 0.55 0.54

RF Testing accuracy 0.425 0.430 0.434 0.483 0.521 0.490 0.494 0.520 0.521 0.524

Training accuracy 0.458 0.492 0.563 0.606 0.645 0.620 0.624 0.649 0.642 0.648

GF 1.061 1.122 1.295 1.312 1.349 1.342 1.346 1.368 1.338 1.352

F1-Score 0.49 0.52 0.54 0.57 0.58 0.59 0.60 0.62 0.62 0.64

SVME Testing accuracy 0.441 0.480 0.431 0.485 0.512 0.477 0.498 0.512 0.514 0.517

Training accuracy 0.455 0.498 0.463 0.508 0.548 0.500 0.526 0.561 0.559 0.564

GF 1.026 1.036 1.060 1.047 1.080 1.046 1.059 1.112 1.102 1.108

F1-Score 0.46 0.50 0.49 0.50 0.49 0.51 0.51 0.52 0.51 0.51

NNE Testing accuracy 0.433 0.471 0.449 0.491 0.519 0.473 0.489 0.511 0.499 0.509

Training accuracy 0.455 0.501 0.471 0.535 0.595 0.574 0.597 0.622 0.631 0.631

GF 1.040 1.060 1.042 1.095 1.188 1.237 1.268 1.294 1.358 1.331

F1-Score 0.51 0.51 0.54 0.56 0.57 0.58 0.59 0.59 0.59 0.60

Stellenbosch University https://scholar.sun.ac.za



Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 485

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.441 0.452 0.433 0.462 0.467 0.451 0.431 0.468 0.458 0.451

Training accuracy 0.456 0.469 0.461 0.501 0.538 0.467 0.472 0.523 0.495 0.492

GF 1.028 1.032 1.052 1.078 1.154 1.030 1.078 1.115 1.073 1.081

F1-Score 0.47 0.44 0.45 0.44 0.46 0.46 0.46 0.45 0.45 0.46

kNNhte Testing accuracy 0.388 0.445 0.429 0.471 0.487 0.470 0.473 0.492 0.495 0.499

Training accuracy 0.393 0.484 0.526 0.565 0.583 0.588 0.590 0.627 0.612 0.611

GF 1.008 1.076 1.205 1.216 1.230 1.286 1.285 1.362 1.302 1.288

F1-Score 0.48 0.51 0.53 0.54 0.55 0.57 0.58 0.60 0.60 0.60

DThte Testing accuracy 0.440 0.443 0.441 0.497 0.530 0.507 0.508 0.521 0.521 0.522

Training accuracy 0.466 0.505 0.575 0.620 0.650 0.628 0.637 0.658 0.651 0.646

GF 1.049 1.125 1.315 1.324 1.343 1.325 1.355 1.401 1.372 1.350

F1-Score 0.51 0.50 0.55 0.57 0.57 0.60 0.60 0.64 0.63 0.63

SVMhte Testing accuracy 0.441 0.453 0.440 0.477 0.502 0.458 0.465 0.508 0.492 0.497

Training accuracy 0.455 0.500 0.458 0.498 0.545 0.465 0.506 0.548 0.542 0.545

GF 1.026 1.094 1.033 1.042 1.095 1.013 1.083 1.088 1.109 1.105

F1-Score 0.45 0.49 0.45 0.48 0.48 0.51 0.49 0.51 0.49 0.50

NNhte Testing accuracy 0.440 0.468 0.450 0.492 0.529 0.504 0.513 0.536 0.520 0.534

Training accuracy 0.455 0.489 0.467 0.528 0.598 0.586 0.591 0.618 0.616 0.622

GF 1.028 1.041 1.032 1.076 1.172 1.198 1.191 1.215 1.250 1.233

F1-Score 0.52 0.51 0.50 0.57 0.54 0.55 0.49 0.58 0.58 0.59

HTEsm Testing accuracy 0.449 0.487 0.440 0.499 0.531 0.492 0.488 0.528 0.523 0.524

Training accuracy 0.457 0.511 0.504 0.557 0.591 0.571 0.592 0.611 0.613 0.612

GF 1.015 1.049 1.129 1.131 1.147 1.184 1.255 1.213 1.233 1.227

F1-Score 0.51 0.52 0.53 0.54 0.55 0.57 0.57 0.57 0.56 0.57

HTEdf Testing accuracy 0.451 0.486 0.449 0.500 0.531 0.497 0.501 0.535 0.530 0.533

Training accuracy 0.459 0.513 0.527 0.572 0.603 0.590 0.607 0.624 0.621 0.621

GF 1.015 1.055 1.165 1.168 1.181 1.227 1.270 1.237 1.240 1.232

F1-Score 0.51 0.53 0.53 0.55 0.55 0.59 0.58 0.59 0.58 0.60
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Appendix E. Ensemble Performance on Feature Subsets for Classification Problems 486

Nursery Dataset

Table E.8: Ensemble Performance on Feature Subsets of the Nursery Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.512 0.374 0.592 0.692 0.777 0.852 0.816 0.865 0.837 0.876

Training accuracy 0.432 0.510 0.687 0.781 0.816 0.863 0.842 0.873 0.829 0.885

GF 0.859 1.278 1.304 1.406 1.212 1.080 1.165 1.063 0.953 1.078

F1-Score 0.38 0.42 0.61 0.73 0.76 0.81 0.79 0.82 0.80 0.83

kNNE Testing accuracy 0.427 0.465 0.784 0.784 0.791 0.835 0.822 0.705 0.736 0.843

Training accuracy 0.345 0.391 0.654 0.705 0.825 0.898 0.887 0.818 0.838 0.904

GF 0.875 0.878 0.624 0.732 1.194 1.618 1.575 1.621 1.630 1.635

F1-Score 0.42 0.52 0.76 0.80 0.79 0.84 0.83 0.75 0.82 0.89

DTE Testing accuracy 0.504 0.562 0.807 0.810 0.847 0.893 0.885 0.922 0.902 0.926

Training accuracy 0.431 0.544 0.780 0.851 0.874 0.924 0.920 0.950 0.924 0.957

GF 0.872 0.961 0.877 1.275 1.214 1.408 1.438 1.560 1.289 1.721

F1-Score 0.36 0.52 0.76 0.79 0.81 0.88 0.87 0.94 0.92 0.95

RF Testing accuracy 0.505 0.561 0.804 0.802 0.830 0.882 0.875 0.887 0.883 0.916

Training accuracy 0.433 0.545 0.779 0.851 0.883 0.926 0.925 0.946 0.927 0.965

GF 0.873 0.965 0.887 1.329 1.453 1.595 1.667 2.093 1.603 2.400

F1-Score 0.36 0.52 0.76 0.79 0.81 0.88 0.87 0.91 0.89 0.94

SVME Testing accuracy 0.503 0.564 0.804 0.818 0.846 0.888 0.873 0.849 0.837 0.899

Training accuracy 0.432 0.547 0.781 0.859 0.889 0.933 0.933 0.957 0.938 0.972

GF 0.875 0.962 0.895 1.291 1.387 1.672 1.896 3.512 2.629 3.607

F1-Score 0.36 0.53 0.75 0.80 0.82 0.89 0.87 0.92 0.90 0.94

NNE Testing accuracy 0.508 0.557 0.798 0.800 0.848 0.901 0.895 0.938 0.939 0.955

Training accuracy 0.419 0.549 0.777 0.857 0.888 0.936 0.934 0.971 0.970 0.986

GF 0.847 0.982 0.906 1.399 1.357 1.547 1.591 2.138 2.033 3.214

F1-Score 0.36 0.50 0.75 0.80 0.83 0.89 0.88 0.95 0.95 0.97
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.510 0.375 0.680 0.696 0.780 0.853 0.826 0.870 0.840 0.883

Training accuracy 0.437 0.515 0.689 0.802 0.821 0.871 0.845 0.877 0.855 0.893

GF 0.870 1.289 1.029 1.535 1.229 1.140 1.123 1.057 1.103 1.093

F1-Score 0.38 0.48 0.63 0.74 0.76 0.82 0.80 0.83 0.81 0.84

kNNhte Testing accuracy 0.455 0.497 0.780 0.788 0.785 0.828 0.827 0.708 0.749 0.836

Training accuracy 0.359 0.413 0.647 0.704 0.833 0.875 0.871 0.814 0.851 0.896

GF 0.850 0.857 0.623 0.716 1.287 1.376 1.341 1.570 1.685 1.577

F1-Score 0.44 0.54 0.78 0.81 0.80 0.86 0.84 0.77 0.79 0.89

DThte Testing accuracy 0.503 0.561 0.810 0.811 0.847 0.891 0.885 0.929 0.919 0.934

Training accuracy 0.431 0.545 0.779 0.851 0.887 0.932 0.926 0.962 0.952 0.973

GF 0.873 0.965 0.860 1.268 1.354 1.603 1.554 1.868 1.687 2.444

F1-Score 0.38 0.51 0.74 0.80 0.82 0.88 0.87 0.94 0.94 0.97

SVMhte Testing accuracy 0.512 0.574 0.809 0.809 0.836 0.886 0.880 0.913 0.917 0.939

Training accuracy 0.436 0.550 0.775 0.846 0.874 0.927 0.930 0.961 0.953 0.979

GF 0.865 0.947 0.849 1.240 1.302 1.562 1.714 2.231 1.766 2.905

F1-Score 0.38 0.52 0.76 0.79 0.82 0.89 0.89 0.93 0.93 0.95

NNhte Testing accuracy 0.506 0.559 0.803 0.806 0.849 0.899 0.898 0.938 0.940 0.954

Training accuracy 0.422 0.549 0.780 0.855 0.888 0.935 0.932 0.967 0.965 0.982

GF 0.855 0.978 0.895 1.338 1.348 1.554 1.500 1.879 1.714 2.556

F1-Score 0.39 0.50 0.75 0.80 0.84 0.89 0.88 0.95 0.95 0.98

HTEsm Testing accuracy 0.506 0.562 0.808 0.823 0.857 0.900 0.910 0.955 0.977 0.977

Training accuracy 0.432 0.547 0.777 0.856 0.892 0.938 0.938 0.981 0.985 0.995

GF 0.870 0.967 0.861 1.229 1.324 1.613 1.452 2.368 1.533 4.600

F1-Score 0.38 0.53 0.76 0.80 0.83 0.90 0.89 0.97 0.99 1.00

HTEdf Testing accuracy 0.503 0.562 0.804 0.810 0.852 0.902 0.908 0.966 0.985 0.985

Training accuracy 0.434 0.546 0.780 0.852 0.886 0.937 0.937 0.982 0.987 0.997

GF 0.878 0.965 0.891 1.284 1.298 1.556 1.460 1.889 1.154 5.000

F1-Score 0.38 0.50 0.75 0.80 0.82 0.90 0.89 0.97 0.99 1.00
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Bank Marketing Dataset

Table E.9: Ensemble Performance on Feature Subsets of the Bank Marketing Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.897 0.828 0.272 0.866 0.556 0.867 0.782 0.301 0.787 0.556

Training accuracy 0.702 0.698 0.705 0.729 0.729 0.691 0.767 0.704 0.787 0.799

GF 0.346 0.570 2.468 0.494 1.638 0.430 0.936 2.361 1.000 2.209

F1-Score 0.79 0.69 0.83 0.86 0.86 0.61 0.70 0.63 0.78 0.78

kNNE Testing accuracy 0.883 0.885 0.895 0.895 0.891 0.894 0.897 0.890 0.897 0.897

Training accuracy 0.798 0.841 0.843 0.882 0.859 0.848 0.883 0.836 0.869 0.827

GF 0.579 0.723 0.669 0.890 0.773 0.697 0.880 0.671 0.786 0.595

F1-Score 0.87 0.86 0.85 0.85 0.82 0.79 0.81 0.74 0.79 0.73

DTE Testing accuracy 0.884 0.881 0.884 0.881 0.890 0.878 0.885 0.880 0.885 0.885

Training accuracy 0.805 0.846 0.865 0.901 0.887 0.865 0.935 0.909 0.938 0.937

GF 0.595 0.773 0.859 1.202 0.973 0.904 1.769 1.319 1.855 1.825

F1-Score 0.86 0.79 0.87 0.87 0.86 0.85 0.88 0.87 0.88 0.89

RF Testing accuracy 0.881 0.881 0.879 0.886 0.885 0.881 0.903 0.891 0.901 0.900

Training accuracy 0.827 0.895 0.906 0.934 0.930 0.930 0.949 0.940 0.950 0.950

GF 0.688 1.133 1.287 1.727 1.643 1.700 1.902 1.817 1.980 2.000

F1-Score 0.86 0.86 0.86 0.87 0.87 0.87 0.90 0.86 0.90 0.90

SVME Testing accuracy 0.897 0.890 0.895 0.897 0.887 0.891 0.890 0.891 0.893 0.894

Training accuracy 0.722 0.839 0.862 0.891 0.911 0.938 0.960 0.968 0.970 0.974

GF 0.371 0.683 0.761 0.945 1.270 1.758 2.750 3.406 3.567 4.077

F1-Score 0.77 0.83 0.84 0.86 0.84 0.84 0.85 0.84 0.85 0.84

NNE Testing accuracy 0.895 0.884 0.877 0.879 0.873 0.869 0.892 0.877 0.894 0.891

Training accuracy 0.733 0.876 0.896 0.922 0.932 0.939 0.964 0.954 0.968 0.969

GF 0.393 0.935 1.183 1.551 1.868 2.148 3.000 2.674 3.312 3.516

F1-Score 0.79 0.86 0.84 0.86 0.85 0.84 0.89 0.86 0.89 0.89
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.897 0.870 0.816 0.878 0.854 0.877 0.835 0.830 0.842 0.831

Training accuracy 0.701 0.689 0.699 0.729 0.736 0.729 0.836 0.791 0.819 0.829

GF 0.344 0.418 0.611 0.450 0.553 0.454 1.006 0.813 0.873 0.988

F1-Score 0.79 0.68 0.84 0.86 0.86 0.75 0.83 0.80 0.84 0.84

kNNhte Testing accuracy 0.886 0.886 0.889 0.892 0.882 0.892 0.894 0.892 0.893 0.893

Training accuracy 0.814 0.861 0.871 0.909 0.899 0.892 0.916 0.865 0.896 0.856

GF 0.613 0.820 0.860 1.187 1.168 1.000 1.262 0.800 1.029 0.743

F1-Score 0.84 0.86 0.86 0.85 0.84 0.82 0.84 0.78 0.82 0.78

DThte Testing accuracy 0.886 0.882 0.885 0.883 0.890 0.879 0.896 0.887 0.893 0.893

Training accuracy 0.831 0.891 0.901 0.927 0.923 0.921 0.949 0.937 0.951 0.951

GF 0.675 1.083 1.162 1.603 1.429 1.532 2.039 1.794 2.184 2.184

F1-Score 0.86 0.86 0.88 0.87 0.87 0.87 0.89 0.88 0.89 0.89

SVMhte Testing accuracy 0.893 0.894 0.900 0.901 0.896 0.898 0.904 0.893 0.903 0.903

Training accuracy 0.717 0.759 0.766 0.785 0.810 0.837 0.921 0.887 0.934 0.941

GF 0.378 0.440 0.427 0.460 0.547 0.626 1.215 0.947 1.470 1.644

F1-Score 0.77 0.83 0.85 0.86 0.86 0.85 0.89 0.87 0.89 0.89

NNhte Testing accuracy 0.896 0.887 0.884 0.892 0.885 0.886 0.900 0.887 0.898 0.897

Training accuracy 0.721 0.869 0.889 0.917 0.924 0.920 0.960 0.946 0.964 0.966

GF 0.373 0.863 1.045 1.301 1.513 1.425 2.500 2.093 2.833 3.029

F1-Score 0.79 0.87 0.87 0.87 0.86 0.86 0.89 0.86 0.89 0.89

HTEsm Testing accuracy 0.900 0.885 0.886 0.896 0.886 0.896 0.899 0.884 0.899 0.900

Training accuracy 0.791 0.875 0.883 0.910 0.916 0.919 0.958 0.947 0.959 0.962

GF 0.478 0.920 0.974 1.156 1.357 1.284 2.405 2.189 2.463 2.632

F1-Score 0.86 0.85 0.87 0.87 0.86 0.86 0.89 0.88 0.89 0.89

HTEdf Testing accuracy 0.898 0.886 0.893 0.896 0.889 0.899 0.900 0.891 0.899 0.897

Training accuracy 0.791 0.872 0.876 0.904 0.904 0.911 0.950 0.930 0.952 0.954

GF 0.488 0.891 0.863 1.083 1.156 1.135 2.000 1.557 2.104 2.239

F1-Score 0.86 0.86 0.86 0.87 0.88 0.89 0.89 0.89 0.89 0.89
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Censor Income Dataset

Table E.10: Ensemble Performance on Feature Subsets of the Censor Income Dataset

Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBE Testing accuracy 0.578 0.312 0.510 0.478 0.380 0.514 0.423 0.443 0.446 0.453

Training accuracy 0.598 0.529 0.653 0.688 0.646 0.714 0.721 0.699 0.754 0.782

GF 1.050 1.461 1.412 1.673 1.751 1.699 2.068 1.850 2.252 2.509

F1-Score 0.42 0.26 0.56 0.57 0.52 0.62 0.64 0.62 0.68 0.73

kNNE Testing accuracy 0.717 0.746 0.767 0.774 0.785 0.779 0.801 0.786 0.782 0.791

Training accuracy 0.556 0.584 0.689 0.774 0.773 0.817 0.816 0.834 0.851 0.852

GF 0.637 0.611 0.749 1.000 0.947 1.208 1.082 1.289 1.463 1.412

F1-Score 0.61 0.75 0.71 0.75 0.75 0.76 0.76 0.78 0.79 0.79

DTE Testing accuracy 0.751 0.749 0.760 0.763 0.766 0.796 0.800 0.793 0.791 0.796

Training accuracy 0.647 0.743 0.708 0.806 0.792 0.818 0.805 0.823 0.839 0.825

GF 0.705 0.977 0.822 1.222 1.125 1.121 1.026 1.169 1.298 1.166

F1-Score 0.61 0.75 0.68 0.75 0.75 0.76 0.77 0.77 0.78 0.77

RF Testing accuracy 0.751 0.748 0.764 0.774 0.779 0.798 0.808 0.806 0.801 0.809

Training accuracy 0.647 0.743 0.716 0.821 0.808 0.839 0.838 0.848 0.866 0.866

GF 0.705 0.981 0.831 1.263 1.151 1.255 1.185 1.276 1.485 1.425

F1-Score 0.62 0.75 0.69 0.76 0.75 0.77 0.77 0.79 0.80 0.80

SVME Testing accuracy 0.751 0.745 0.776 0.789 0.790 0.803 0.805 0.804 0.804 0.799

Training accuracy 0.647 0.743 0.713 0.807 0.793 0.827 0.831 0.848 0.858 0.870

GF 0.705 0.992 0.780 1.093 1.014 1.139 1.154 1.289 1.380 1.546

F1-Score 0.62 0.75 0.70 0.76 0.75 0.78 0.77 0.80 0.79 0.79

NNE Testing accuracy 0.751 0.747 0.771 0.784 0.788 0.795 0.809 0.801 0.807 0.808

Training accuracy 0.647 0.743 0.713 0.819 0.801 0.833 0.836 0.847 0.859 0.871

GF 0.705 0.984 0.798 1.193 1.065 1.228 1.165 1.301 1.369 1.488

F1-Score 0.62 0.75 0.70 0.77 0.76 0.78 0.78 0.80 0.81 0.81
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Ensemble Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

NBhte Testing accuracy 0.586 0.584 0.538 0.597 0.616 0.72 0.626 0.62 0.684 0.691

Training accuracy 0.598 0.702 0.655 0.730 0.713 0.80 0.802 0.79 0.834 0.829

GF 1.030 1.396 1.339 1.493 1.338 1.40 1.889 1.81 1.904 1.807

F1-Score 0.45 0.60 0.57 0.64 0.64 0.76 0.75 0.75 0.78 0.79

kNNhte Testing accuracy 0.738 0.750 0.758 0.779 0.771 0.792 0.812 0.795 0.790 0.794

Training accuracy 0.538 0.554 0.688 0.799 0.791 0.819 0.815 0.833 0.850 0.847

GF 0.567 0.561 0.776 1.100 1.096 1.149 1.016 1.228 1.400 1.346

F1-Score 0.61 0.74 0.72 0.77 0.77 0.76 0.78 0.78 0.80 0.79

DThte Testing accuracy 0.751 0.749 0.760 0.771 0.781 0.803 0.811 0.807 0.804 0.816

Training accuracy 0.647 0.743 0.715 0.815 0.801 0.832 0.830 0.839 0.862 0.857

GF 0.705 0.977 0.842 1.238 1.101 1.173 1.112 1.199 1.420 1.287

F1-Score 0.61 0.75 0.68 0.75 0.76 0.78 0.77 0.77 0.81 0.79

SVMhte Testing accuracy 0.741 0.750 0.773 0.787 0.787 0.801 0.819 0.817 0.813 0.815

Training accuracy 0.633 0.735 0.714 0.813 0.798 0.831 0.830 0.845 0.862 0.866

GF 0.706 0.943 0.794 1.139 1.054 1.178 1.065 1.181 1.355 1.381

F1-Score 0.63 0.74 0.69 0.76 0.77 0.78 0.78 0.80 0.80 0.81

NNhte Testing accuracy 0.741 0.750 0.770 0.782 0.781 0.794 0.809 0.811 0.809 0.808

Training accuracy 0.640 0.733 0.709 0.815 0.802 0.832 0.829 0.845 0.858 0.864

GF 0.719 0.936 0.790 1.178 1.106 1.226 1.117 1.219 1.345 1.412

F1-Score 0.62 0.75 0.68 0.77 0.77 0.78 0.78 0.80 0.81 0.82

HTEsm Testing accuracy 0.751 0.752 0.776 0.790 0.795 0.808 0.817 0.812 0.816 0.814

Training accuracy 0.647 0.743 0.709 0.817 0.803 0.829 0.832 0.849 0.865 0.878

GF 0.705 0.965 0.770 1.148 1.041 1.123 1.089 1.245 1.363 1.525

F1-Score 0.60 0.75 0.73 0.76 0.77 0.78 0.78 0.80 0.81 0.82

HTEdf Testing accuracy 0.751 0.752 0.777 0.791 0.784 0.821 0.816 0.812 0.813 0.822

Training accuracy 0.647 0.738 0.699 0.801 0.772 0.811 0.822 0.846 0.852 0.866

GF 0.705 0.947 0.741 1.050 0.947 0.947 1.034 1.221 1.264 1.328

F1-Score 0.60 0.76 0.75 0.78 0.78 0.79 0.79 0.81 0.82 0.83
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Ensemble Performance on Outlier Ratios

for Regression Problems

The results of the ensembles over the different datasets in the number of outliers study

for regression problems are provided in this appendix. The results consist of testing and

training RMSE, and GF of the ensembles over the regression datasets.
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Stellenbosch University https://scholar.sun.ac.za



Appendix F. Ensemble Performance on Outlier Ratios for Regression Problems 493

Yacht Hydrodynamics Dataset

Table F.1: Ensemble Performance on the Number of Outliers for Yacht Hydrodynamics
Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 9.01409 8.94113 9.02351 9.08400 9.00838

Training RMSE 8.13776 7.96610 7.48927 7.79383 7.40027

GF 1.22697 1.25978 1.45168 1.35848 1.48183

DTE Testing RMSE 0.53723 0.52319 0.89180 0.70809 0.70481

Training RMSE 0.04188 0.04170 0.04223 0.04210 0.04233

GF 164.52740 157.37931 445.87201 282.85671 277.27188

RF Testing RMSE 0.53925 0.54388 0.45945 0.49779 0.47186

Training RMSE 0.46636 0.47561 0.41751 0.49743 0.51396

GF 1.33700 1.30769 1.21097 1.00144 0.84287

SVRE Testing RMSE 7.94635 8.01688 8.18180 8.15826 8.17077

Training RMSE 11.02098 10.67599 10.39554 10.61917 10.30177

GF 0.51987 0.56389 0.61945 0.59022 0.62908

NNE Testing RMSE 3.51475 3.52582 3.77698 3.63915 3.86070

Training RMSE 3.78378 3.69470 3.60550 3.69917 3.76867

GF 0.86285 0.91067 1.09738 0.96781 1.04943
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 7.52081 7.58630 7.89268 7.63206 7.82731

Training RMSE 6.80552 6.66952 6.33908 6.53327 6.25547

GF 1.22126 1.29381 1.55023 1.36465 1.56569

DThte Testing RMSE 0.63106 0.57262 0.69637 0.70525 0.56433

Training RMSE 0.42913 0.43574 0.65471 0.45238 0.44788

GF 2.16253 1.72690 1.13131 2.43041 1.58759

SVRhte Testing RMSE 6.91455 7.02424 7.21253 7.21008 7.21562

Training RMSE 9.23611 8.95115 8.75508 8.97002 8.71709

GF 0.56047 0.61580 0.67866 0.64609 0.68518

NNhte Testing RMSE 2.95474 2.90999 3.16792 3.1206 3.00638

Training RMSE 3.03224 2.96496 3.03656 3.0699 2.99082

GF 0.94954 0.96327 1.08839 1.03330 1.01043

HTEsm Testing RMSE 0.91143 0.82604 0.98462 1.08479 0.80258

Training RMSE 0.84678 0.78759 0.85949 0.90555 0.73603

GF 1.15853 1.10002 1.31235 1.43505 1.18901

HTEdf Testing RMSE 0.81582 0.77358 0.79181 0.91544 0.85483

Training RMSE 0.87596 0.73911 0.79346 0.79336 0.71066

GF 0.86740 1.09543 0.99586 1.33145 1.44687
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Residential Building Dataset

Table F.2: Ensemble Performance on the Number of Outliers for Residential Building
Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 805.90286 806.32629 807.51937 810.40833 816.67088

Training RMSE 638.13987 637.54068 630.95983 618.33322 621.54650

GF 1.59490 1.59958 1.63796 1.71776 1.72642

DTE Testing RMSE 435.69867 327.53881 294.22788 455.19911 453.03353

Training RMSE 7.93289 3.40179 3.42496 3.44828 3.31527

GF 3016.54570 9270.66579 7380.02143 17425.99008 18673.37537

RF Testing RMSE 265.69165 269.49343 236.92167 390.42718 263.52308

Training RMSE 85.73902 113.95746 94.20497 102.10363 95.70077

GF 9.60282 5.59256 6.32502 14.62170 7.58240

SVRE Testing RMSE 751.61102 750.12141 749.00883 740.42989 739.48209

Training RMSE 607.19904 599.65068 597.53082 578.71110 580.89459

GF 1.53223 1.56483 1.57128 1.63698 1.62054

NNE Testing RMSE 375.73858 381.98441 368.64363 369.27518 369.95761

Training RMSE 268.74985 262.12374 269.56925 264.67078 259.43792

GF 1.95468 2.12363 1.87013 1.94665 2.03347
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 754.09193 752.58073 752.01289 751.54431 760.77719

Training RMSE 539.82891 531.62523 528.72066 518.11217 519.35478

GF 1.95136 2.00399 2.02301 2.10408 2.14579

DThte Testing RMSE 342.59631 259.06064 251.74033 265.87418 311.68387

Training RMSE 60.31612 56.48676 49.26577 53.98279 46.63759

GF 32.26254 21.03341 26.11049 24.25725 44.66388

SVRhte Testing RMSE 743.32101 740.35744 740.36876 736.24081 736.01579

Training RMSE 601.55238 594.38418 591.53018 574.19508 576.32307

GF 1.52688 1.55149 1.56654 1.64407 1.63096

NNhte Testing RMSE 331.43936 360.33552 344.22434 340.83468 351.60316

Training RMSE 230.35095 225.83486 224.09040 225.09383 231.23452

GF 2.07028 2.54585 2.35959 2.29277 2.31207

HTEsm Testing RMSE 227.58750 192.42969 165.65231 175.72638 162.21155

Training RMSE 142.75832 117.42994 85.39754 96.58745 85.83037

GF 2.54152 2.68526 3.76274 3.31003 3.57175

HTEdf Testing RMSE 177.44122 183.89753 171.85951 174.21503 177.49872

Training RMSE 97.46849 106.77283 99.78769 93.73375 99.12949

GF 3.31421 2.96640 2.96615 3.45445 3.20616
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Student Performance Dataset

Table F.3: Ensemble Performance on the Number of Outliers for Student Performance
Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 3.73956 3.73956 3.75274 3.73482 3.74139

Training RMSE 3.24642 3.24451 3.25070 3.24366 3.28737

GF 1.32688 1.32844 1.33273 1.32577 1.29529

DTE Testing RMSE 2.40236 2.42569 2.01999 2.34206 2.46027

Training RMSE 0.03774 0.04894 0.04185 0.03868 0.04276

GF 4051.47797 2456.95935 2330.21867 3666.24172 3310.29639

RF Testing RMSE 1.99705 1.89703 1.89923 2.10075 1.89773

Training RMSE 0.60216 0.62442 0.64714 0.68035 0.55435

GF 10.99909 9.22982 8.61310 9.53432 11.71947

SVRE Testing RMSE 3.15151 3.16892 3.15195 3.16100 3.17373

Training RMSE 1.91669 1.92447 1.93118 1.94011 1.93267

GF 2.70355 2.71145 2.66386 2.65459 2.69663

NNE Testing RMSE 2.70033 2.66994 2.58334 2.65461 2.58026

Training RMSE 0.48970 0.47300 0.49297 0.54970 0.60721

GF 30.40708 31.86201 27.46148 23.32140 18.05730
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 3.72344 3.72291 3.73111 3.73258 3.72032

Training RMSE 2.78158 2.78226 2.79576 2.78340 2.83432

GF 1.79186 1.79049 1.78104 1.79832 1.72291

DThte Testing RMSE 2.13591 1.87891 1.90825 2.00497 1.86465

Training RMSE 0.49990 0.54955 0.47787 0.52404 0.58103

GF 18.25594 11.68936 15.94604 14.63797 10.29903

SVRhte Testing RMSE 3.10108 3.11413 3.09857 3.10506 3.11165

Training RMSE 2.07905 2.08653 2.09253 2.10222 2.09963

GF 2.22482 2.22753 2.19269 2.18164 2.19632

NNhte Testing RMSE 2.64135 2.64484 2.52247 2.51962 2.56548

Training RMSE 0.53671 0.46791 0.46707 0.51647 0.45509

GF 24.21976 31.94977 29.16674 23.80019 31.77881

HTEsm Testing RMSE 2.43722 2.36529 2.45291 2.36980 2.39773

Training RMSE 1.15005 1.13048 1.19046 1.15851 1.17406

GF 4.49111 4.37764 4.24554 4.18429 4.17085

HTEdf Testing RMSE 2.41203 2.36750 2.30534 2.33523 2.26899

Training RMSE 1.17370 1.15162 1.09300 1.07567 1.09714

GF 4.22331 4.22631 4.44869 4.71309 4.27705
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Real Estate Dataset

Table F.4: Ensemble Performance on the Number of Outliers for Real Estate Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 8.70595 8.69097 8.70534 8.66053 8.71904

Training RMSE 7.47411 7.47926 7.56809 7.56377 7.59067

GF 1.35679 1.35027 1.32312 1.31103 1.31940

DTE Testing RMSE 7.23313 7.27803 7.18501 6.92563 6.95505

Training RMSE 3.76827 3.78774 3.80797 3.82718 3.82850

GF 3.68441 3.69205 3.56013 3.27461 3.30022

RF Testing RMSE 7.19300 7.55870 7.04157 7.22355 7.03475

Training RMSE 4.28306 4.42575 4.44096 4.73722 4.02903

GF 2.82040 2.91689 2.51412 2.32517 3.04858

SVRE Testing RMSE 10.28262 10.34701 10.32291 10.37663 10.44023

Training RMSE 11.12286 11.17166 11.17949 11.20637 11.18800

GF 0.85462 0.85782 0.85263 0.85740 0.87079

NNE Testing RMSE 8.34432 8.37894 8.28893 8.33161 8.31620

Training RMSE 8.28841 8.29150 8.36664 8.42288 8.47788

GF 1.01354 1.02120 0.98151 0.97844 0.96222
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 7.88826 7.85996 7.90083 7.89927 7.89405

Training RMSE 6.24838 6.27150 6.34438 6.35626 6.35526

GF 1.59377 1.57072 1.55084 1.54444 1.54288

DThte Testing RMSE 7.11066 6.94781 6.97323 6.55932 6.77621

Training RMSE 3.60265 3.63771 3.60417 3.65857 3.76843

GF 3.89560 3.64787 3.74332 3.21437 3.23335

SVRhte Testing RMSE 9.18253 9.20184 9.20432 9.21503 9.23549

Training RMSE 9.95944 10.02045 10.01592 10.07056 10.11024

GF 0.85007 0.84329 0.84450 0.83731 0.83444

NNhte Testing RMSE 8.29028 8.35612 8.27151 8.38217 8.28637

Training RMSE 8.34197 8.34313 8.40912 8.53397 8.50924

GF 0.98765 1.00312 0.96754 0.96474 0.94830

HTEsm Testing RMSE 7.43576 7.45590 7.38289 7.34382 7.38525

Training RMSE 6.08535 6.02306 6.11492 6.18779 6.09705

GF 1.49307 1.53238 1.45771 1.40856 1.46720

HTEdf Testing RMSE 7.19234 7.19060 7.17154 7.15525 7.14242

Training RMSE 6.64597 6.58466 6.71230 6.59332 6.66884

GF 1.17118 1.19252 1.14152 1.17772 1.14707
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Energy Efficiency Dataset

Table F.5: Ensemble Performance on the Number of Outliers for Energy Efficiency Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 1.40676 1.44079 1.39951 1.40741 1.47270

Training RMSE 1.39885 1.30149 1.20307 1.26811 1.20731

GF 1.01133 1.22552 1.35323 1.23177 1.48797

DTE Testing RMSE 1.57038 1.60316 1.58128 1.58497 1.76119

Training RMSE 0.44623 0.44843 0.45072 0.45300 0.44367

GF 12.38464 12.78111 12.30841 12.24160 15.75756

RF Testing RMSE 1.31824 1.29803 1.20718 1.23768 1.49933

Training RMSE 0.60821 0.58800 0.56906 0.55717 0.57234

GF 4.69767 4.87316 4.50013 4.93448 6.86258

SVRE Testing RMSE 3.29608 3.28338 3.29188 3.29205 3.31875

Training RMSE 3.09388 3.09047 3.10536 3.10974 3.08429

GF 1.13498 1.12873 1.12374 1.12069 1.15781

NNE Testing RMSE 2.03066 2.53009 2.03453 2.03599 1.99806

Training RMSE 1.95067 2.49323 1.92684 1.88497 1.86062

GF 1.08369 1.02978 1.11490 1.16666 1.15319
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 1.37807 1.36874 1.30634 1.32461 1.36863

Training RMSE 1.32270 1.27510 1.18748 1.18709 1.10389

GF 1.08547 1.15228 1.21021 1.24511 1.53716

DThte Testing RMSE 1.36088 1.25528 1.26292 1.25958 1.38500

Training RMSE 0.60019 0.60892 0.60755 0.57080 0.59728

GF 5.14111 4.24975 4.32106 4.86948 5.37699

SVRhte Testing RMSE 2.33852 2.31122 2.32583 2.31314 2.35189

Training RMSE 2.17039 2.15771 2.17657 2.16161 2.15105

GF 1.16093 1.14736 1.14186 1.14511 1.19546

NNhte Testing RMSE 2.06712 2.72439 2.01293 2.05658 2.02768

Training RMSE 2.01857 2.62709 1.90672 1.90142 1.86707

GF 1.04867 1.07545 1.11450 1.16987 1.17945

HTEsm Testing RMSE 1.17525 1.21673 1.20842 1.20852 1.27638

Training RMSE 0.94851 0.94573 0.92769 0.90342 0.90569

GF 1.53527 1.65522 1.69680 1.78947 1.98610

HTEdf Testing RMSE 1.16163 1.19913 1.16201 1.20734 1.23452

Training RMSE 1.07520 1.07797 1.06808 1.05073 1.02710

GF 1.16723 1.23742 1.18362 1.32030 1.44469
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Concrete Dataset

Table F.6: Ensemble Performance on the Number of Outliers for Concrete Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 9.81052 9.79300 9.77888 9.78407 9.88952

Training RMSE 7.38628 7.38719 7.39063 7.35681 7.35962

GF 1.76414 1.75741 1.75072 1.76872 1.80568

DTE Testing RMSE 7.21109 6.81774 6.62457 7.53185 7.67483

Training RMSE 1.74918 2.51357 1.91055 1.86792 2.54515

GF 16.99552 7.35697 12.02257 16.25867 9.09304

RF Testing RMSE 5.77574 6.19244 5.92399 5.79660 5.68757

Training RMSE 2.41377 2.57589 2.52416 2.56357 2.43310

GF 5.72565 5.77920 5.50800 5.11277 5.46430

SVRE Testing RMSE 12.25705 12.23746 12.25949 12.25724 12.20848

Training RMSE 12.06887 12.10954 12.12635 12.12900 12.07327

GF 1.03143 1.02124 1.02208 1.02126 1.02252

NNE Testing RMSE 6.98294 7.34882 7.55187 7.06612 6.87920

Training RMSE 6.69152 6.90367 7.04948 6.50186 6.39132

GF 1.08900 1.13312 1.14761 1.18110 1.15850
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 9.12790 9.14093 9.13030 9.11538 9.13694

Training RMSE 6.23007 6.23296 6.24332 6.27789 6.26682

GF 2.14662 2.15076 2.13865 2.10825 2.12572

DThte Testing RMSE 6.12696 6.12195 6.03872 6.30868 6.44126

Training RMSE 2.79240 2.70002 2.64650 2.65793 2.78218

GF 4.81431 5.14098 5.20650 5.63364 5.36006

SVRhte Testing RMSE 10.32625 10.32674 10.34020 10.34315 10.29401

Training RMSE 9.74796 9.78046 9.82311 9.83315 9.78178

GF 1.12217 1.11483 1.10805 1.10642 1.10747

NNhte Testing RMSE 6.78315 6.58279 6.51311 7.25605 7.50726

Training RMSE 6.46397 6.08488 6.10702 6.69278 6.87000

GF 1.10120 1.17035 1.13741 1.17541 1.19412

HTEsm Testing RMSE 7.12790 6.7126 6.74383 7.15850 6.75569

Training RMSE 6.24023 5.8044 5.78678 6.19481 5.68687

GF 1.30474 1.33742 1.35812 1.33533 1.41122

HTEdf Testing RMSE 6.39390 6.49002 6.67672 6.65165 6.58799

Training RMSE 5.22514 5.32801 5.61804 5.66509 5.59447

GF 1.49739 1.48376 1.41240 1.37862 1.38672
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Parkinsons Disease Dataset

Table F.7: Ensemble Performance on the Number of Outliers for Parkinsons Disease
Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 0.94547 0.92335 0.95378 0.97415 0.95063

Training RMSE 0.76136 0.75225 0.72269 0.71362 0.71465

GF 1.54212 1.50665 1.74175 1.86343 1.76942

DTE Testing RMSE 0.91169 0.90699 0.88110 0.86819 0.90359

Training RMSE 0.88832 0.90397 0.85182 0.83796 0.88034

GF 1.05330 1.00668 1.06992 1.07346 1.05352

RF Testing RMSE 0.86407 0.95199 0.90170 0.79651 0.92038

Training RMSE 0.81440 0.91896 0.81968 0.70222 0.80977

GF 1.12569 1.07318 1.21014 1.28660 1.29186

SVRE Testing RMSE 3.35919 3.39282 3.33978 3.37904 3.36691

Training RMSE 3.45897 3.46840 3.47537 3.48200 3.49458

GF 0.94314 0.95690 0.92349 0.94174 0.92827

NNE Testing RMSE 1.77933 1.96899 1.77636 2.04187 2.57322

Training RMSE 1.84572 1.92000 1.64127 1.87935 2.37868

GF 0.92936 1.05168 1.17139 1.18043 1.17025

Stellenbosch University https://scholar.sun.ac.za



Appendix F. Ensemble Performance on Outlier Ratios for Regression Problems 506

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 0.83513 0.82095 0.83406 0.86599 0.86758

Training RMSE 0.59607 0.59001 0.57221 0.56307 0.56355

GF 1.96295 1.93605 2.12467 2.36540 2.36998

DThte Testing RMSE 0.90214 0.81379 0.80120 0.87875 0.92884

Training RMSE 0.81850 0.80439 0.77407 0.82736 0.85830

GF 1.21480 1.02352 1.07134 1.12809 1.17113

SVRhte Testing RMSE 2.50002 2.5230 2.50701 2.50319 2.51821

Training RMSE 2.54607 2.5534 2.55593 2.55696 2.56528

GF 0.96415 0.97633 0.96209 0.95839 0.96364

NNhte Testing RMSE 1.24966 1.81104 1.60300 1.67702 1.52858

Training RMSE 1.30035 1.73540 1.54437 1.62536 1.33989

GF 0.92356 1.08907 1.07736 1.06458 1.30147

HTEsm Testing RMSE 0.55102 0.53724 0.54275 0.52958 0.58950

Training RMSE 0.44315 0.41724 0.41285 0.40939 0.40984

GF 1.54608 1.65794 1.72830 1.67334 2.06891

HTEdf Testing RMSE 0.35981 0.38045 0.38687 0.37073 0.48160

Training RMSE 0.36697 0.36587 0.34896 0.33115 0.40705

GF 0.96136 1.08129 1.22908 1.25333 1.39984
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Air Quality Dataset

Table F.8: Ensemble Performance on the Number of Outliers for Air Quality Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 18.06296 18.16319 18.38286 18.58582 18.88897

Training RMSE 14.03762 14.04792 13.93309 13.85070 13.77814

GF 1.65573 1.67171 1.74073 1.80061 1.87947

DTE Testing RMSE 18.57556 19.01197 19.05183 19.33378 19.40403

Training RMSE 11.58164 11.28941 11.53460 11.68317 11.64203

GF 2.57243 2.83604 2.72815 2.73850 2.77797

RF Testing RMSE 15.89269 15.88560 15.53334 15.7780 16.60442

Training RMSE 6.55339 6.74674 6.79115 6.7495 6.60434

GF 5.88116 5.54395 5.23170 5.46463 6.32105

SVRE Testing RMSE 27.69508 27.70781 27.79172 27.80594 27.80893

Training RMSE 27.63729 27.49956 27.39049 27.26740 27.14806

GF 1.00419 1.01520 1.02951 1.03989 1.04928

NNE Testing RMSE 17.27135 17.29018 17.70050 17.40294 17.71513

Training RMSE 16.99002 17.05974 17.44328 16.92508 17.02025

GF 1.03339 1.02720 1.02971 1.05726 1.08332
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 17.25510 17.34611 17.56419 17.78504 18.18790

Training RMSE 11.95827 11.96683 11.86080 17.78504 11.73521

GF 2.08208 2.10110 2.19295 1.00000 2.40206

DThte Testing RMSE 16.60439 16.36922 16.78832 17.24003 17.30391

Training RMSE 9.50404 9.51389 9.29158 9.87528 9.44876

GF 3.05231 2.96033 3.26464 3.04773 3.35381

SVRhte Testing RMSE 22.30532 22.35318 22.48968 22.53309 22.57695

Training RMSE 22.13307 22.07445 21.95054 21.89441 21.81579

GF 1.01563 1.02541 1.04973 1.05919 1.07100

NNhte Testing RMSE 17.09980 16.77958 16.88041 17.37077 17.29359

Training RMSE 16.87624 16.61661 16.52482 16.89678 16.73836

GF 1.02667 1.01971 1.04350 1.05689 1.06744

HTEsm Testing RMSE 15.43440 15.45223 15.49168 15.74489 15.89219

Training RMSE 13.11023 12.96054 11.07643 11.02955 10.98338

GF 1.38599 1.42147 1.95613 2.03781 2.09361

HTEdf Testing RMSE 15.19142 15.40132 15.32276 15.36462 15.8800

Training RMSE 13.72678 13.70844 12.41689 12.53212 11.3971

GF 1.22478 1.26223 1.52282 1.50312 1.94139
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Bike Sharing Dataset

Table F.9: Ensemble Performance on the Number of Outliers for Bike Sharing Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 42.29985 43.26563 43.60170 44.75718 49.12784

Training RMSE 34.77901 34.88726 34.62255 34.79576 34.80163

GF 1.47926 1.53799 1.58595 1.65452 1.99277

DTE Testing RMSE 21.39002 21.47770 21.49377 21.30687 21.90507

Training RMSE 15.26968 15.27003 15.36396 15.14400 14.97995

GF 1.96229 1.97832 1.95713 1.97951 2.13830

RF Testing RMSE 17.96188 17.99491 17.91192 18.15218 18.13043

Training RMSE 7.95093 7.86037 7.60218 7.84663 7.94671

GF 5.10349 5.24099 5.55147 5.35170 5.20526

SVRE Testing RMSE 85.82061 85.92702 85.87803 85.97992 86.00327

Training RMSE 89.71965 89.95967 89.90234 89.51088 89.85034

GF 0.91497 0.91235 0.91248 0.92266 0.91620

NNE Testing RMSE 17.81502 18.23934 17.54441 19.47675 18.66296

Training RMSE 17.65071 17.97331 17.25440 19.08325 17.78623

GF 1.01871 1.02982 1.03390 1.04167 1.10102
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 38.63689 39.52328 39.94430 40.55688 44.30946

Training RMSE 28.60214 28.67230 28.44793 28.58426 28.53306

GF 1.82477 1.90012 1.97155 2.01315 2.41155

DThte Testing RMSE 20.75278 22.35038 21.40821 21.58477 21.17484

Training RMSE 14.17345 17.08053 15.22182 15.34748 15.05285

GF 2.14388 1.71225 1.97801 1.97798 1.97880

SVRhte Testing RMSE 49.92330 50.18151 50.40702 50.54404 50.77489

Training RMSE 52.21667 52.27553 52.33697 52.07664 52.21746

GF 0.91409 0.92149 0.92761 0.94201 0.94551

NNhte Testing RMSE 17.11003 17.47013 16.72466 16.20576 17.33352

Training RMSE 16.81573 17.13598 16.23076 15.88041 16.45601

GF 1.03531 1.03938 1.06178 1.04140 1.10949

HTEsm Testing RMSE 17.03517 17.52080 17.54401 16.86632 17.96501

Training RMSE 14.43215 12.77113 12.86548 12.19843 12.89642

GF 1.39326 1.88213 1.85954 1.91176 1.94051

HTEdf Testing RMSE 16.53471 17.08001 17.24946 16.58802 16.58749

Training RMSE 14.55931 14.93604 13.81964 13.40543 13.00954

GF 1.28977 1.30769 1.55796 1.53118 1.62569
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Gas Turbine Dataset

Table F.10: Ensemble Performance on the Number of Outliers for Gas Turbine Dataset

Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNE Testing RMSE 4.43113 4.51663 4.55696 4.71670 4.91183

Training RMSE 3.42834 3.40296 3.37829 3.32598 3.29765

GF 1.67056 1.76163 1.81951 2.01111 2.21859

DTE Testing RMSE 5.82068 5.87249 5.85959 5.91640 6.03200

Training RMSE 4.37408 4.30660 4.30374 4.15535 4.11893

GF 1.77081 1.85941 1.85372 2.02722 2.14464

RF Testing RMSE 4.19360 4.32043 4.37045 4.38629 4.60338

Training RMSE 1.79348 1.75618 1.76563 1.70153 1.68500

GF 5.46741 6.05227 6.12707 6.64532 7.46372

SVRE Testing RMSE 6.65383 6.78696 6.81647 7.01922 7.20270

Training RMSE 6.58753 6.51383 6.49126 6.37189 6.27259

GF 1.02023 1.08562 1.10271 1.21350 1.31855

NNE Testing RMSE 4.97674 4.65347 4.9777 5.04942 5.21828

Training RMSE 4.75880 4.43193 4.6895 4.61052 4.82738

GF 1.09369 1.10247 1.12669 1.19945 1.16850
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Ensemble Measure
Number of Outliers %

1 2 3 4 5

kNNhte Testing RMSE 4.13956 4.23420 4.27400 4.46163 4.71653

Training RMSE 2.87695 2.85627 2.83661 2.79370 2.77201

GF 2.07034 2.19759 2.27024 2.55052 2.89506

DThte Testing RMSE 4.91382 5.02787 5.01162 5.16773 5.27262

Training RMSE 3.57797 3.58005 3.50004 3.43606 3.38733

GF 1.88611 1.97238 2.05026 2.26192 2.42291

SVRhte Testing RMSE 5.98892 6.02567 6.03791 6.13684 6.28236

Training RMSE 5.91006 5.87306 5.85670 5.79005 5.74763

GF 1.02686 1.05265 1.06284 1.12338 1.19472

NNhte Testing RMSE 4.15273 4.64765 4.61532 4.44180 4.59362

Training RMSE 3.97677 4.37623 4.28399 4.03603 4.16658

GF 1.09045 1.12789 1.16066 1.21118 1.21548

HTEsm Testing RMSE 4.30211 4.29797 4.24537 4.37059 4.60041

Training RMSE 3.51543 3.43704 3.36862 3.30957 3.53303

GF 1.49764 1.56371 1.58828 1.74396 1.69550

HTEdf Testing RMSE 4.07862 4.29184 4.37267 4.29309 4.55657

Training RMSE 3.57127 3.75352 3.66512 3.44796 3.52297

GF 1.30431 1.30740 1.42337 1.55030 1.67285
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Ensemble Performance on Outlier

Severities for Regression Problems

The results of the ensembles over the different datasets in the severity of outliers study

for regression problems are provided in this appendix. The results consist of testing and

training RMSE, and GF of the ensembles over the regression datasets.
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Yacht Hydrodynamics Dataset

Table G.1: Ensemble Performance on the Severity of Outliers for Yacht Hydrodynamics
Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 8.38335 7.84940 7.14481 7.05095 7.05095

Training RMSE 5.67703 6.18965 7.71690 8.09175 8.31455

GF 2.18069 1.60821 0.85723 0.75929 0.71915

DTE Testing RMSE 3.98348 1.67341 1.02247 0.99244 0.98808

Training RMSE 0.01356 0.01690 0.01854 0.01849 0.01379

GF 86293.65543 9805.34604 3041.33470 2881.11440 5135.96312

RF Testing RMSE 3.92535 2.13064 0.95973 0.81977 0.79043

Training RMSE 0.29006 0.43621 0.35036 0.34152 0.57259

GF 183.13367 23.85772 7.50367 5.76174 1.90566

SVRE Testing RMSE 9.70830 9.40801 8.78232 8.62483 8.56555

Training RMSE 7.84219 8.72896 10.65002 11.30465 11.87340

GF 1.53254 1.16164 0.68001 0.58209 0.52043

NNE Testing RMSE 5.67079 7.18654 9.18971 9.72014 10.60796

Training RMSE 0.40075 0.47374 0.61477 0.61652 0.58280

GF 200.23395 230.12024 223.44635 248.57376 331.29997
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 7.70380 7.16195 6.40384 6.15962 6.13223

Training RMSE 4.94529 5.36059 6.38951 6.84024 7.00617

GF 2.42675 1.78499 1.00449 0.81090 0.76608

DThte Testing RMSE 3.99946 1.92181 0.92332 0.81499 0.81660

Training RMSE 0.22339 0.29866 0.41701 0.38287 0.42312

GF 320.52758 41.40602 4.90241 4.53116 3.72479

SVRhte Testing RMSE 8.88755 8.44558 7.69488 7.57385 7.49372

Training RMSE 6.86543 7.54310 9.18410 9.84572 10.36701

GF 1.67582 1.25360 0.70199 0.59175 0.52250

NNhte Testing RMSE 7.69662 7.01689 9.92877 9.91142 9.30048

Training RMSE 0.47164 0.48763 0.58140 0.64573 0.57099

GF 266.30375 207.06733 291.63868 235.59981 265.31401

HTEsm Testing RMSE 4.51439 3.64901 3.06519 2.92606 2.79791

Training RMSE 2.69123 3.04765 3.65660 3.93737 4.05557

GF 2.81381 1.43357 0.70269 0.55227 0.47595

HTEdf Testing RMSE 4.28117 3.35408 2.67178 2.41778 2.52151

Training RMSE 2.31203 2.54413 2.95658 3.15297 3.29687

GF 3.42876 1.73807 0.81662 0.58802 0.58495
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Residential Building Dataset

Table G.2: Ensemble Performance on the Severity of Outliers for Residential Building
Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 1077.68981 1041.26160 1105.31825 1065.11408 1027.94032

Training RMSE 456.28497 457.85952 447.34324 502.40804 506.52271

GF 5.57847 5.17196 6.10510 4.49448 4.11849

DTE Testing RMSE 487.05435 463.64101 465.73366 415.69096 311.99008

Training RMSE 10.46792 10.66343 9.88189 8.64423 7.86679

GF 2164.88060 1890.46999 2221.23947 2312.53656 1572.84502

RF Testing RMSE 675.72884 509.90993 506.22014 371.30316 333.61223

Training RMSE 63.99096 45.13511 49.95396 62.31295 66.40235

GF 111.50842 127.63150 102.69258 35.50592 25.24161

SVRE Testing RMSE 723.51064 730.33168 731.82325 741.75559 728.38187

Training RMSE 325.12630 342.84739 341.94765 417.12265 439.90829

GF 4.95206 4.53773 4.58029 3.16223 2.74154

NNE Testing RMSE 1178.30820 1162.47113 1177.43282 526.55005 236.57188

Training RMSE 544.63323 573.88356 562.90999 335.27026 104.20862

GF 4.68069 4.10314 4.37516 2.46655 5.15370
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 999.99768 978.06577 1060.15576 975.25422 961.90377

Training RMSE 367.04236 368.48139 360.92965 408.12965 416.55411

GF 7.42276 7.04539 8.62768 5.71004 5.33237

DThte Testing RMSE 529.40551 501.65640 492.94317 393.26589 342.17092

Training RMSE 23.68328 26.67429 30.41415 43.73979 46.51522

GF 499.68132 353.69331 262.68933 80.83868 54.11231

SVRhte Testing RMSE 717.34945 721.01191 716.54598 733.72611 745.12117

Training RMSE 345.24250 360.29950 357.94708 431.19074 449.78295

GF 4.31731 4.00459 4.00729 2.89554 2.74440

NNhte Testing RMSE 701.13442 802.60477 1048.05290 474.00173 226.57596

Training RMSE 336.98313 405.30802 505.12819 317.75254 101.01194

GF 4.32899 3.92133 4.30490 2.22527 5.03132

HTEsm Testing RMSE 663.24893 514.02336 802.26091 558.36946 483.15774

Training RMSE 232.54526 178.32836 291.28893 251.93833 207.33317

GF 8.13464 8.30854 7.58548 4.91196 5.43051

HTEdf Testing RMSE 678.44173 618.32571 743.22824 512.72211 448.98755

Training RMSE 196.72532 201.64930 249.30900 214.21396 174.17227

GF 11.89336 9.40245 8.88727 5.72886 6.64524
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Student Performance Dataset

Table G.3: Ensemble Performance on the Severity of Outliers for Student Performance
Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 3.96965 3.76755 3.76496 3.76496 3.76496

Training RMSE 2.36895 2.68449 2.63408 2.63408 2.63408

GF 2.80796 1.96967 2.04298 2.04298 2.04298

DTE Testing RMSE 2.68121 2.83917 2.71715 2.78672 2.89491

Training RMSE 0.03792 0.02679 0.02521 0.01371 0.01285

GF 4998.88484 11232.31494 11615.70952 41324.39606 50746.83058

RF Testing RMSE 2.28371 2.65137 2.31164 2.43693 2.36507

Training RMSE 0.87162 1.03532 0.88665 0.99756 0.98554

GF 6.86477 6.55826 6.79723 5.96768 5.75893

SVRE Testing RMSE 3.35787 3.22840 3.26745 3.26745 3.26745

Training RMSE 1.67272 1.90643 1.87145 1.87145 1.87145

GF 4.02979 2.86770 3.04831 3.04831 3.04831

NNE Testing RMSE 2.56025 2.63498 2.47121 2.49446 2.53195

Training RMSE 0.25456 0.29213 0.24894 0.28823 0.27862

GF 101.15730 81.35680 98.54441 74.89640 82.58016
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 3.89027 3.67737 3.69468 3.69468 3.69468

Training RMSE 2.74013 3.05756 3.01075 3.01075 3.01075

GF 2.01565 1.44652 1.50593 1.50593 1.50593

DThte Testing RMSE 2.34553 2.64840 2.54743 2.21758 2.15652

Training RMSE 0.33279 0.51679 0.42735 0.43709 0.32851

GF 49.67488 26.26268 35.53417 25.74116 43.09360

SVRhte Testing RMSE 3.3197 3.20072 3.24523 3.24523 3.24523

Training RMSE 1.4078 1.65904 1.62596 1.62596 1.62596

GF 5.56049 3.72206 3.98355 3.98355 3.98355

NNhte Testing RMSE 2.36791 2.44786 2.49339 2.42544 2.50207

Training RMSE 0.22332 0.46907 0.27142 0.25003 0.47450

GF 112.43018 27.23367 84.39420 94.10515 27.80553

HTEsm Testing RMSE 2.41145 2.31420 2.24694 2.30702 2.36999

Training RMSE 0.97796 1.07085 1.09856 1.07969 1.10331

GF 6.08016 4.67028 4.18349 4.56567 4.61423

HTEdf Testing RMSE 2.3887 2.30543 2.33345 2.19301 2.25575

Training RMSE 1.0328 0.96428 1.02158 0.99521 1.00810

GF 5.34922 5.71612 5.21743 4.85573 5.00692
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Real Estate Dataset

Table G.4: Ensemble Performance on the Severity of Outliers for Real Estate Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 6.96672 6.70983 6.62052 6.62052 6.85951

Training RMSE 6.15746 6.13021 6.07381 6.07381 7.29947

GF 1.28013 1.19804 1.18813 1.18813 0.88309

DTE Testing RMSE 6.79331 6.95888 6.97584 6.77552 7.44698

Training RMSE 3.27099 3.31511 3.29997 3.29997 3.36793

GF 4.31326 4.40640 4.46862 4.21566 4.88918

RF Testing RMSE 6.15513 5.99390 6.25258 6.02732 6.13248

Training RMSE 3.77895 3.88097 3.87046 3.95233 4.47813

GF 2.65297 2.38527 2.60972 2.32564 1.87533

SVRE Testing RMSE 10.50488 10.09245 9.88062 9.88062 9.82044

Training RMSE 10.02802 10.12929 10.13345 10.13345 11.06295

GF 1.09737 0.99274 0.95072 0.95072 0.78799

NNE Testing RMSE 6.97959 7.05250 7.02721 7.02655 7.10364

Training RMSE 7.70623 7.57983 7.67734 7.58555 8.51654

GF 0.82030 0.86570 0.83781 0.85804 0.69572

Stellenbosch University https://scholar.sun.ac.za



Appendix G. Ensemble Performance on Outlier Severities for Regression Problems 521

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 6.59924 6.39150 6.36863 6.36863 6.39730

Training RMSE 5.41720 5.41872 5.38442 5.38442 6.28196

GF 1.48401 1.39127 1.39899 1.39899 1.03706

DThte Testing RMSE 6.10397 6.17568 5.90464 6.17374 6.09071

Training RMSE 3.36437 3.37607 3.39883 3.38219 3.52141

GF 3.29168 3.34615 3.01806 3.33197 2.99159

SVRhte Testing RMSE 8.61685 8.36591 8.22050 8.22050 8.17426

Training RMSE 9.14632 9.08288 9.00604 9.00604 10.06677

GF 0.88757 0.84836 0.83316 0.83316 0.65935

NNhte Testing RMSE 6.93653 6.84324 6.90968 6.95990 7.13421

Training RMSE 7.54028 7.32671 7.48496 7.49562 8.45136

GF 0.84627 0.87238 0.85219 0.86217 0.71259

HTEsm Testing RMSE 6.25160 6.34350 6.18269 6.19147 6.19033

Training RMSE 5.33535 5.34082 5.24723 5.24629 6.04611

GF 1.37296 1.41073 1.38834 1.39278 1.04827

HTEdf Testing RMSE 6.58169 6.18454 5.95629 6.01075 5.9641

Training RMSE 4.96500 4.95284 4.90619 4.89413 5.6972

GF 1.75726 1.55922 1.47388 1.50836 1.09589
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Energy Efficiency Dataset

Table G.5: Ensemble Performance on the Severity of Outliers for Energy Efficiency Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 1.42806 1.39174 1.40529 1.40019 1.41312

Training RMSE 1.39864 1.10547 1.20641 1.20030 1.22116

GF 1.04252 1.58498 1.35687 1.36081 1.33910

DTE Testing RMSE 1.51933 1.54216 1.39794 1.55801 1.55800

Training RMSE 0.45076 0.45076 0.45076 0.45076 0.45076

GF 11.36116 11.70510 9.61822 11.94702 11.94688

RF Testing RMSE 1.19617 1.23209 1.28467 1.19526 1.32136

Training RMSE 0.61798 0.59986 0.60462 0.59856 0.59155

GF 3.74661 4.21878 4.51462 3.98757 4.98944

SVRE Testing RMSE 3.30104 3.30104 3.30104 3.30104 3.30104

Training RMSE 3.09299 3.09299 3.09299 3.09299 3.09299

GF 1.13905 1.13905 1.13905 1.13905 1.13905

NNE Testing RMSE 2.07685 2.0244 2.03182 2.04253 2.01597

Training RMSE 1.96971 1.9341 1.95816 1.93358 1.93122

GF 1.11175 1.09556 1.07665 1.11586 1.08970

Stellenbosch University https://scholar.sun.ac.za



Appendix G. Ensemble Performance on Outlier Severities for Regression Problems 523

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 1.37493 1.31353 1.33753 1.36113 1.36927

Training RMSE 1.21239 1.23801 1.23524 1.21486 1.21091

GF 1.28611 1.12572 1.17247 1.25531 1.27866

DThte Testing RMSE 1.21289 1.25551 1.22171 1.28827 1.26312

Training RMSE 0.59238 0.59489 0.59057 0.58150 0.59775

GF 4.19220 4.45420 4.27951 4.90817 4.46523

SVRhte Testing RMSE 2.33390 2.33390 2.33390 2.33390 2.33390

Training RMSE 2.15913 2.15913 2.15913 2.15913 2.15913

GF 1.16844 1.16844 1.16844 1.16844 1.16844

NNhte Testing RMSE 2.02445 2.03460 2.06360 2.04901 2.01255

Training RMSE 1.92884 1.94308 1.94725 1.95493 1.91298

GF 1.10160 1.09643 1.12307 1.09856 1.10681

HTEsm Testing RMSE 1.11056 1.11056 1.11056 1.11056 1.11056

Training RMSE 0.94322 0.94322 0.94322 0.94322 0.94322

GF 1.38629 1.38629 1.38629 1.38629 1.38629

HTEdf Testing RMSE 1.09623 1.09623 1.09623 1.09623 1.09623

Training RMSE 1.07436 1.07436 1.07436 1.07436 1.07436

GF 1.04112 1.04112 1.04112 1.04112 1.04112
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Concrete Dataset

Table G.6: Ensemble Performance on the Severity of Outliers for Concrete Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 9.85978 9.83378 9.81614 9.81614 9.81614

Training RMSE 7.53180 7.52012 7.43857 7.43857 7.43857

GF 1.71371 1.70998 1.74142 1.74142 1.74142

DTE Testing RMSE 7.07547 6.64179 7.31650 7.31996 7.33716

Training RMSE 1.81659 1.92754 2.18956 2.18956 2.18956

GF 15.17041 11.87304 11.16592 11.17650 11.22908

RF Testing RMSE 5.85573 5.57962 5.87157 5.79671 6.04203

Training RMSE 2.57057 2.60506 2.35973 2.44094 2.49860

GF 5.18923 4.58749 6.19133 5.63963 5.84751

SVRE Testing RMSE 12.16523 12.14793 12.13890 12.13890 12.13890

Training RMSE 12.09689 12.06737 12.02103 12.02103 12.02103

GF 1.01133 1.01340 1.01971 1.01971 1.01971

NNE Testing RMSE 13.90033 14.75200 9.79447 8.36763 10.02562

Training RMSE 7.24825 7.46071 7.48155 6.77458 7.81746

GF 3.67776 3.90969 1.71387 1.52560 1.64472
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 9.23160 9.25315 9.17459 9.17459 9.17459

Training RMSE 6.36845 6.36033 6.29068 6.29068 6.29068

GF 2.10129 2.11651 2.12705 2.12705 2.12705

DThte Testing RMSE 6.33105 6.37459 6.25706 6.32731 6.42195

Training RMSE 2.73782 2.74238 2.67389 2.68821 2.76975

GF 5.34739 5.40319 5.47587 5.54003 5.37592

SVRhte Testing RMSE 10.59549 10.60058 10.40736 10.40736 10.40736

Training RMSE 9.58043 9.54474 9.61985 9.61985 9.61985

GF 1.22313 1.23348 1.17043 1.17043 1.17043

NNhte Testing RMSE 14.03026 13.42044 7.92141 8.95515 6.60481

Training RMSE 7.12852 7.08505 6.49364 7.00754 5.85723

GF 3.87376 3.58796 1.48809 1.63310 1.27156

HTEsm Testing RMSE 7.24585 6.74992 6.84406 6.77846 6.72493

Training RMSE 4.92771 4.68290 4.77895 4.74755 4.67982

GF 2.16216 2.07763 2.05099 2.03856 2.06498

HTEdf Testing RMSE 6.90757 6.90291 6.21839 6.30245 6.35322

Training RMSE 4.46656 4.48469 4.11708 4.22471 4.24868

GF 2.39169 2.36919 2.28127 2.22549 2.23605
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Parkinsons Disease Dataset

Table G.7: Ensemble Performance on the Severity of Outliers for Parkinsons Disease
Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 1.00610 0.99359 0.96849 0.95202 1.03465

Training RMSE 0.68194 0.68721 0.70378 0.71309 0.72911

GF 2.17667 2.09042 1.89371 1.78240 2.01373

DTE Testing RMSE 1.08065 1.05848 0.95465 0.91256 0.88499

Training RMSE 1.02483 1.05757 0.90525 0.86944 0.84451

GF 1.11189 1.00172 1.11213 1.10166 1.09817

RF Testing RMSE 0.48932 0.39347 0.40680 0.38329 0.37826

Training RMSE 0.23235 0.19743 0.19745 0.17498 0.18164

GF 4.43523 3.97197 4.24491 4.79796 4.33642

SVRE Testing RMSE 3.37408 3.38413 3.35418 3.37125 3.33845

Training RMSE 3.52907 3.50957 3.49888 3.49154 3.49230

GF 0.91409 0.92979 0.91900 0.93229 0.91383

NNE Testing RMSE 2.68447 1.97284 2.59921 1.96010 1.90395

Training RMSE 2.08087 1.58957 2.36598 1.78221 1.80734

GF 1.66428 1.54038 1.20687 1.20959 1.10976
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 0.88384 0.88083 0.88354 0.84517 0.96974

Training RMSE 0.53263 0.53753 0.55365 0.56258 0.57057

GF 2.75353 2.68516 2.54675 2.25692 2.88864

DThte Testing RMSE 0.54759 0.54167 0.55499 0.49339 0.55431

Training RMSE 0.43123 0.43606 0.42656 0.42701 0.42733

GF 1.61244 1.54306 1.69286 1.33502 1.68255

SVRhte Testing RMSE 2.54693 2.57444 2.52577 2.51627 2.54701

Training RMSE 2.59335 2.57513 2.56518 2.56295 2.56531

GF 0.96452 0.99947 0.96951 0.96391 0.98578

NNhte Testing RMSE 1.83540 1.71204 2.21989 1.74936 1.26337

Training RMSE 1.47136 1.49053 1.94989 1.45282 1.23412

GF 1.55605 1.31930 1.29611 1.44989 1.04795

HTEsm Testing RMSE 0.98003 0.90933 1.19712 0.85265 0.88083

Training RMSE 0.86663 0.82525 1.10878 0.79039 0.77824

GF 1.27881 1.21412 1.16570 1.16376 1.28104

HTEdf Testing RMSE 0.86764 0.93673 0.8771 0.95016 0.93548

Training RMSE 0.77579 0.83000 0.7775 0.91799 0.88158

GF 1.25080 1.27373 1.27262 1.07132 1.12601
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Air Quality Dataset

Table G.8: Ensemble Performance on the Severity of Outliers for Air Quality Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 19.96879 18.89618 18.81328 18.41109 18.49930

Training RMSE 12.67559 13.16393 13.70278 13.98017 14.14685

GF 2.48180 2.06052 1.88500 1.73434 1.70998

DTE Testing RMSE 21.80001 19.62944 19.80078 19.40976 19.06127

Training RMSE 10.14830 10.84320 11.19249 11.92670 12.14288

GF 4.61452 3.27718 3.12976 2.64850 2.46411

RF Testing RMSE 18.11814 17.41050 16.46223 16.66264 16.13618

Training RMSE 6.02477 6.26907 6.46261 6.68528 6.82203

GF 9.04371 7.71288 6.48876 6.21224 5.59467

SVRE Testing RMSE 28.59417 28.46361 28.38742 28.54141 28.59044

Training RMSE 25.60611 26.54332 27.37580 27.80374 28.10535

GF 1.24700 1.14993 1.07527 1.05377 1.03482

NNE Testing RMSE 19.71845 19.43568 19.12897 18.64904 18.81092

Training RMSE 16.09674 16.27908 16.78254 16.88921 17.61510

GF 1.50062 1.42541 1.29918 1.21925 1.14038
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 19.43022 18.37249 17.89726 17.61146 17.59477

Training RMSE 10.81570 11.20130 11.64371 11.88487 12.06055

GF 3.22735 2.69029 2.36260 2.19585 2.12830

DThte Testing RMSE 19.07238 18.17248 17.36068 16.85797 16.75181

Training RMSE 8.07801 8.33126 8.75398 9.16062 9.78064

GF 5.57443 4.75780 3.93299 3.38657 2.93352

SVRhte Testing RMSE 22.95817 22.86159 22.81804 22.95700 22.95467

Training RMSE 20.59446 21.26015 21.94328 22.29737 22.54708

GF 1.24272 1.15633 1.08132 1.06004 1.03648

NNhte Testing RMSE 18.82194 18.90116 18.94923 18.54008 18.08490

Training RMSE 15.36636 15.77933 16.74032 16.65988 16.71065

GF 1.50033 1.43483 1.28131 1.23845 1.17124

HTEsm Testing RMSE 17.25672 16.33996 16.24082 15.90768 15.93601

Training RMSE 10.09008 10.38600 10.84621 11.21791 11.51360

GF 2.92501 2.47518 2.24213 2.01090 1.91574

HTEdf Testing RMSE 16.75567 16.02766 15.76371 15.61563 15.33018

Training RMSE 8.56694 8.85901 9.10510 9.52238 9.56787

GF 3.82536 3.27318 2.99742 2.68923 2.56723
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Bike Sharing Dataset

Table G.9: Ensemble Performance on the Severity of Outliers for Bike Sharing Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 52.48071 46.61149 42.98166 42.82314 42.82517

Training RMSE 34.47091 34.78236 34.57036 34.49206 34.49870

GF 2.31790 1.79584 1.54582 1.54141 1.54097

DTE Testing RMSE 30.89302 22.66902 21.78735 20.90164 20.56664

Training RMSE 13.57923 13.30457 14.87266 14.30802 14.10241

GF 5.17571 2.90311 2.14601 2.13404 2.12687

RF Testing RMSE 26.89443 19.12063 18.34443 18.19344 18.14037

Training RMSE 7.94481 7.59783 7.73229 7.88670 7.67069

GF 11.45930 6.33323 5.62849 5.32156 5.59272

SVRE Testing RMSE 86.84046 86.01063 86.31709 86.32127 86.33219

Training RMSE 82.26196 85.45117 88.93576 90.00621 90.04985

GF 1.11441 1.01314 0.94198 0.91979 0.91914

NNE Testing RMSE 20.60434 17.56158 17.35812 17.30144 16.97960

Training RMSE 12.08835 11.87549 11.66342 12.36351 11.87361

GF 2.90525 2.18688 2.21489 1.95831 2.04498
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 50.49662 43.89881 39.58632 39.37502 39.37534

Training RMSE 28.43568 28.63009 28.39111 28.32212 28.32566

GF 3.15353 2.35104 1.94413 1.93281 1.93236

DThte Testing RMSE 28.74554 22.75687 22.01916 21.34918 21.30328

Training RMSE 14.46734 14.24531 14.32528 14.89847 14.89844

GF 3.94788 2.55201 2.36263 2.05343 2.04462

SVRhte Testing RMSE 52.63703 51.10676 50.76307 50.65350 50.64981

Training RMSE 50.87582 51.15627 51.71439 52.06904 52.06736

GF 1.07043 0.99807 0.96355 0.94637 0.94629

NNhte Testing RMSE 22.01513 17.52969 17.97177 16.89333 16.68307

Training RMSE 12.23115 10.23633 10.77720 9.93368 10.00393

GF 3.23972 2.93265 2.78080 2.89208 2.78106

HTEsm Testing RMSE 18.93371 18.35210 18.62963 18.77078 19.29445

Training RMSE 17.94761 17.49682 17.94064 18.01195 18.62132

GF 1.11291 1.10015 1.07828 1.08603 1.07360

HTEdf Testing RMSE 17.17417 18.05786 16.98915 16.89008 18.06899

Training RMSE 16.05729 17.29386 16.10228 16.08467 17.28273

GF 1.14395 1.09031 1.11319 1.10265 1.09306
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Gas Turbine Dataset

Table G.10: Ensemble Performance on the Severity of Outliers for Gas Turbine Dataset

Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNE Testing RMSE 5.96655 5.25700 4.91637 4.70868 4.58307

Training RMSE 3.12869 3.27337 3.30791 3.35919 3.37107

GF 3.63682 2.57920 2.20893 1.96485 1.84833

DTE Testing RMSE 7.24747 6.16323 5.93571 5.74889 5.63213

Training RMSE 3.87462 4.13620 4.19764 4.17750 4.26442

GF 3.49876 2.22031 1.99956 1.89381 1.74432

RF Testing RMSE 5.66019 4.96622 4.59384 4.29757 4.20929

Training RMSE 1.64303 1.68298 1.67765 1.72730 1.73198

GF 11.86788 8.70756 7.49803 6.19027 5.90653

SVRE Testing RMSE 7.71420 7.30281 7.08551 6.91786 6.79943

Training RMSE 5.73676 6.06951 6.24643 6.40502 6.46419

GF 1.80821 1.44768 1.28670 1.16655 1.10641

NNE Testing RMSE 5.76858 5.74303 5.46981 5.30234 5.33118

Training RMSE 4.39148 4.80010 4.44872 4.50632 4.76039

GF 1.72551 1.43147 1.51173 1.38449 1.25418
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Ensemble Measure
Severity of Outliers (σ)

2.0 2.5 3.0 3.5 4.0

kNNhte Testing RMSE 5.76542 5.03969 4.67621 4.42550 4.29948

Training RMSE 2.63310 2.75530 2.77904 2.82337 2.83409

GF 4.79431 3.34556 2.83137 2.45692 2.30147

DThte Testing RMSE 6.15879 5.47397 5.3025 5.05457 4.98598

Training RMSE 3.25708 3.36040 3.4726 3.50449 3.59413

GF 3.57546 2.65353 2.33158 2.08027 1.92448

SVRhte Testing RMSE 6.74663 6.37385 6.19918 6.09907 6.04138

Training RMSE 5.29398 5.58465 5.71845 5.82206 5.84037

GF 1.62409 1.30260 1.17520 1.09742 1.07002

NNhte Testing RMSE 5.60585 5.08595 5.33598 5.25340 5.02782

Training RMSE 4.22423 4.17701 4.28420 4.41452 4.16973

GF 1.76112 1.48256 1.55127 1.41617 1.45393

HTEsm Testing RMSE 5.13140 4.67598 4.43382 4.53470 4.27738

Training RMSE 3.10205 3.30846 3.19409 3.55854 3.34138

GF 2.73636 1.99754 1.92691 1.62388 1.63871

HTEdf Testing RMSE 5.24853 4.55302 4.49845 4.27547 4.27679

Training RMSE 2.82534 2.94569 3.04881 3.07904 3.10356

GF 3.45090 2.38906 2.17704 1.92813 1.89896
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Appendix H

Ensemble Performance on Bagged

Subsets for Regression Problems

The results of the ensembles over the bagged subsets of the training dataset for regression

problems are provided in this appendix. Plots of the testing and training RMSE for each

regression dataset are first presented. Then the results of testing RMSE, training RMSE,

and GF of the ensembles over the regression datasets are provided.
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Figure H.1: Ensemble Performance on Bagged Subsets of the Yacht Hydrodynamics
Dataset

Figure H.2: Ensemble Performance on Bagged Subsets of the Residential Building Dataset
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Figure H.3: Ensemble Performance on Bagged Subsets of the Student Performance
Dataset

Figure H.4: Ensemble Performance on Bagged Subsets of the Real Estate Dataset
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Figure H.5: Ensemble Performance on Bagged Subsets of the Energy Efficiency Dataset

Figure H.6: Ensemble Performance on Bagged Subsets of the Concrete Dataset
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Figure H.7: Ensemble Performance on Bagged Subsets of the Parkinsons Disease Dataset

Figure H.8: Ensemble Performance on Bagged Subsets of the Air Quality Dataset
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Figure H.9: Ensemble Performance on Bagged Subsets of the Bike Sharing Dataset

Figure H.10: Ensemble Performance on Bagged Subsets of the Gas Turbine Dataset
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Yacht Hydrodynamics Dataset

Table H.1: Ensemble Performance on Bagged Subsets of the Yacht Hydrodynamics
Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 9.058 9.843 8.780 10.390 11.128 10.119 10.098 8.095 9.570 8.676

Training RMSE 10.103 9.291 10.209 7.848 6.941 5.996 6.652 6.233 6.246 5.902

GF 0.804 1.122 0.740 1.753 2.571 2.848 2.305 1.686 2.347 2.161

DTE

Testing RMSE 1.922 2.524 0.961 1.284 0.795 1.039 1.221 0.956 1.410 1.037

Training RMSE 0.204 0.627 0.428 0.575 0.493 0.554 0.679 0.517 0.746 0.666

GF 89.154 16.196 5.042 4.979 2.598 3.512 3.230 3.416 3.575 2.428

RF

Testing RMSE 4.477 1.384 0.740 1.093 0.565 1.022 1.079 1.132 1.069 0.896

Training RMSE 2.475 0.660 0.579 0.662 0.449 0.409 0.421 0.494 0.380 0.261

GF 3.273 4.400 1.630 2.727 1.587 6.231 6.559 5.252 7.913 11.825

SVRE

Testing RMSE 10.497 9.792 8.194 9.220 8.452 8.494 8.381 8.241 8.438 8.285

Training RMSE 11.477 15.020 14.363 10.579 13.057 10.450 11.391 9.481 10.631 10.109

GF 0.837 0.425 0.325 0.760 0.419 0.661 0.541 0.755 0.630 0.672

NNE

Testing RMSE 7.316 1.469 1.012 0.788 0.988 0.767 0.998 1.068 1.088 1.242

Training RMSE 0.900 0.274 0.622 0.241 0.530 0.486 0.510 0.424 0.418 0.797

GF 66.138 28.771 2.650 10.657 3.477 2.488 3.824 6.341 6.766 2.430
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 9.000 9.817 8.895 9.750 9.229 9.635 9.781 7.574 9.372 9.513

Training RMSE 8.668 8.707 8.580 6.443 5.793 5.488 5.890 4.960 5.292 5.144

GF 1.078 1.271 1.075 2.290 2.538 3.082 2.758 2.332 3.136 3.420

DThte

Testing RMSE 2.539 2.169 0.728 1.219 0.620 0.683 0.995 1.000 0.798 0.774

Training RMSE 0.311 0.377 0.941 0.432 0.427 0.386 0.655 0.407 0.357 0.637

GF 66.560 33.142 0.599 7.942 2.108 3.142 2.307 6.036 4.991 1.477

SVRhte

Testing RMSE 10.283 9.198 7.364 8.796 7.669 7.508 7.500 7.271 7.606 7.219

Training RMSE 11.139 13.621 12.828 9.936 11.764 8.831 9.962 7.821 9.184 8.163

GF 0.852 0.456 0.330 0.784 0.425 0.723 0.567 0.864 0.686 0.782

NNhte

Testing RMSE 6.472 1.630 0.929 0.902 1.027 0.745 0.975 1.029 1.005 1.351

Training RMSE 0.991 0.302 0.557 0.283 0.512 0.460 0.519 0.394 0.469 0.849

GF 42.655 29.231 2.789 10.171 4.021 2.627 3.527 6.838 4.597 2.534

HTEsm

Testing RMSE 5.964 3.817 3.552 4.396 4.074 3.952 4.156 3.642 3.978 3.750

Training RMSE 4.831 4.773 4.744 3.785 3.799 2.999 3.417 2.972 3.095 2.791

GF 1.524 0.640 0.561 1.349 1.150 1.736 1.479 1.502 1.651 1.804

HTEdf

Testing RMSE 5.909 3.705 3.069 3.905 3.581 3.431 3.756 3.181 3.814 3.420

Training RMSE 4.663 4.315 4.182 3.079 3.244 2.633 2.810 2.332 2.692 2.283

GF 1.606 0.737 0.538 1.608 1.219 1.698 1.787 1.861 2.007 2.244
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Residential Building Dataset

Table H.2: Ensemble Performance on Bagged Subsets of the Residential Building Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 1045.241 948.660 859.303 901.854 812.091 865.657 905.063 900.529 822.351 806.101

Training RMSE 696.959 568.959 700.431 720.323 698.990 665.212 660.326 674.975 679.242 635.210

GF 2.249 2.780 1.505 1.568 1.350 1.693 1.879 1.780 1.466 1.610

DTE

Testing RMSE 641.621 399.555 472.476 501.958 273.969 472.399 354.701 362.479 544.913 319.607

Training RMSE 20.687 32.913 45.774 52.158 63.520 66.122 68.504 76.851 81.602 77.950

GF 961.976 147.372 106.543 92.619 18.603 51.041 26.809 22.247 44.592 16.811

RF

Testing RMSE 699.136 439.991 468.728 437.645 325.825 319.010 400.686 291.508 327.775 283.167

Training RMSE 299.597 145.142 153.578 130.235 128.550 98.470 132.228 134.745 89.162 122.921

GF 5.446 9.190 9.315 11.292 6.424 10.496 9.182 4.680 13.514 5.307

SVRE

Testing RMSE 865.425 921.051 803.570 732.199 745.918 752.762 756.200 750.403 755.115 751.679

Training RMSE 656.334 516.319 582.407 594.435 653.798 609.951 622.372 643.079 615.821 611.687

GF 1.739 3.182 1.904 1.517 1.302 1.523 1.476 1.362 1.504 1.510

NNE

Testing RMSE 734.449 620.055 1017.450 992.686 520.675 781.274 489.289 280.315 208.287 186.759

Training RMSE 28.991 236.930 798.662 797.528 402.912 650.022 352.883 158.590 96.496 114.519

GF 641.807 6.849 1.623 1.549 1.670 1.445 1.923 3.124 4.659 2.660
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 988.505 1023.367 818.560 933.402 731.492 779.652 804.403 834.035 736.880 752.148

Training RMSE 626.134 498.771 601.428 618.233 599.822 558.393 549.920 560.091 546.188 535.444

GF 2.492 4.210 1.852 2.279 1.487 1.949 2.140 2.217 1.820 1.973

DThte

Testing RMSE 612.774 370.178 395.626 417.501 241.644 335.926 296.209 290.378 370.497 290.026

Training RMSE 38.701 35.335 38.575 61.610 46.604 45.547 53.283 61.838 56.943 48.673

GF 250.697 109.753 105.188 45.920 26.884 54.397 30.905 22.051 42.333 35.506

SVRhte

Testing RMSE 858.049 900.989 757.879 726.326 732.847 737.608 739.857 743.519 744.834 743.073

Training RMSE 654.333 511.153 570.420 583.866 649.830 603.381 614.933 637.496 610.250 605.883

GF 1.720 3.107 1.765 1.548 1.272 1.494 1.448 1.360 1.490 1.504

NNhte

Testing RMSE 718.671 449.757 607.722 674.778 370.321 699.025 470.738 258.070 233.600 202.508

Training RMSE 29.455 43.703 449.451 537.592 211.831 573.875 353.718 151.287 132.681 122.524

GF 595.295 105.907 1.828 1.575 3.056 1.484 1.771 2.910 3.100 2.732

HTEsm

Testing RMSE 662.652 584.795 476.257 385.864 372.384 399.603 471.365 440.497 370.094 393.128

Training RMSE 313.348 238.536 274.703 274.387 285.832 271.542 325.876 290.190 266.021 271.900

GF 4.472 6.010 3.006 1.978 1.697 2.166 2.092 2.304 1.936 2.091

HTEdf

Testing RMSE 688.482 694.091 424.300 505.054 431.972 339.385 392.940 409.262 341.372 361.498

Training RMSE 302.886 282.261 239.084 343.262 345.835 234.550 256.873 235.730 230.276 231.139

GF 5.167 6.047 3.150 2.165 1.560 2.094 2.340 3.014 2.198 2.446
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Student Performance Dataset

Table H.3: Ensemble Performance on Bagged Subsets of the Student Performance Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 4.510 4.182 4.078 3.982 3.984 4.198 3.710 3.842 5.024 4.119

Training RMSE 3.647 3.442 3.304 2.799 2.921 3.342 3.069 3.032 2.845 2.910

GF 1.529 1.476 1.523 2.024 1.861 1.578 1.461 1.606 3.118 2.004

DTE

Testing RMSE 2.357 2.787 3.285 2.837 2.015 2.618 2.817 2.978 2.162 2.246

Training RMSE 0.053 0.062 0.087 0.091 0.095 0.097 0.100 0.105 0.117 0.126

GF 1986.341 2014.016 1413.108 977.482 449.789 733.659 799.941 808.991 340.468 316.073

RF

Testing RMSE 2.268 2.836 3.101 2.711 1.930 1.970 2.284 2.216 1.926 2.005

Training RMSE 1.114 0.521 0.486 0.505 0.458 0.504 0.692 0.717 0.454 0.454

GF 4.146 29.638 40.715 28.839 17.781 15.258 10.880 9.562 17.983 19.515

SVRE

Testing RMSE 3.776 3.307 3.118 3.120 3.074 3.277 3.104 3.022 3.213 3.221

Training RMSE 1.826 2.192 2.065 1.722 1.999 1.850 1.635 1.733 1.634 1.736

GF 4.275 2.275 2.280 3.283 2.365 3.137 3.602 3.041 3.867 3.442

NNE

Testing RMSE 3.264 2.931 2.894 2.372 2.697 2.768 2.703 2.375 2.811 2.709

Training RMSE 0.045 0.076 0.080 0.175 0.283 0.255 0.252 0.424 0.382 0.376

GF 5153.767 1476.275 1315.048 183.516 91.038 118.094 115.169 31.450 54.124 51.887
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 4.189 4.214 3.965 3.864 3.765 4.101 3.708 3.919 4.584 3.796

Training RMSE 3.085 2.782 2.857 2.393 2.415 2.655 2.445 2.493 2.293 2.325

GF 1.844 2.294 1.926 2.608 2.430 2.386 2.301 2.472 3.997 2.666

DThte

Testing RMSE 2.221 2.426 2.716 2.801 2.087 2.227 2.370 2.149 2.150 2.267

Training RMSE 0.241 0.181 0.220 0.226 0.309 0.371 0.402 0.473 0.435 0.308

GF 84.619 180.113 152.405 153.666 45.523 35.964 34.743 20.679 24.400 54.168

SVRhte

Testing RMSE 3.803 3.381 3.133 3.174 3.085 3.242 3.097 3.001 3.178 3.174

Training RMSE 2.066 2.486 2.386 2.039 2.337 2.201 1.967 2.077 1.984 2.160

GF 3.387 1.849 1.724 2.424 1.743 2.169 2.480 2.088 2.566 2.160

NNhte

Testing RMSE 3.363 3.007 2.822 2.534 2.670 2.713 2.728 2.329 2.700 2.693

Training RMSE 0.038 0.044 0.117 0.152 0.231 0.175 0.212 0.451 0.308 0.317

GF 7867.846 4622.090 581.966 276.811 133.390 240.777 165.332 26.655 76.994 71.992

HTEsm

Testing RMSE 2.839 2.683 2.602 2.504 2.329 2.559 2.485 2.310 2.656 2.439

Training RMSE 1.257 1.229 1.172 1.005 1.061 1.138 1.035 1.010 0.979 0.966

GF 5.105 4.765 4.926 6.203 4.815 5.063 5.763 5.228 7.362 6.372

HTEdf

Testing RMSE 2.899 2.570 2.529 2.429 2.247 2.463 2.406 2.240 2.580 2.300

Training RMSE 1.172 1.025 0.996 0.865 0.933 0.927 0.922 0.956 0.834 0.835

GF 6.118 6.287 6.442 7.895 5.803 7.065 6.816 5.488 9.560 7.586
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Real Estate Dataset

Table H.4: Ensemble Performance on Bagged Subsets of the Real Estate Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 9.675 9.057 8.880 9.646 8.572 8.588 9.286 8.957 8.009 8.578

Training RMSE 7.636 5.899 7.354 8.992 6.537 8.669 8.123 7.800 5.854 7.488

GF 1.605 2.357 1.458 1.151 1.720 0.981 1.307 1.319 1.872 1.312

DTE

Testing RMSE 11.047 9.192 8.088 11.901 8.427 10.846 7.848 8.731 7.213 6.725

Training RMSE 0.394 0.653 1.885 1.842 2.738 2.642 2.812 3.017 2.708 3.749

GF 786.414 198.230 18.408 41.760 9.468 16.848 7.788 8.372 7.097 3.219

RF

Testing RMSE 10.380 8.098 7.768 9.335 7.785 9.240 7.703 6.909 6.776 6.953

Training RMSE 3.596 3.156 4.480 5.021 3.847 4.314 4.873 4.556 3.680 4.485

GF 8.330 6.586 3.006 3.457 4.095 4.588 2.498 2.299 3.391 2.403

SVRE

Testing RMSE 11.126 10.350 10.341 9.779 9.404 9.310 9.264 9.355 9.238 9.174

Training RMSE 10.651 8.003 9.997 11.912 9.060 11.262 10.879 10.047 8.747 9.943

GF 1.091 1.672 1.070 0.674 1.077 0.683 0.725 0.867 1.115 0.851

NNE

Testing RMSE 8.604 10.078 9.555 8.409 8.712 8.318 9.068 8.375 8.318 8.301

Training RMSE 4.878 7.875 9.372 9.941 8.131 9.953 10.057 8.642 7.265 8.377

GF 3.111 1.638 1.039 0.715 1.148 0.698 0.813 0.939 1.311 0.982
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 9.217 8.801 8.388 8.983 8.268 8.023 8.310 8.232 7.687 7.715

Training RMSE 6.373 4.890 6.386 7.862 5.561 7.420 6.822 6.688 5.159 6.281

GF 2.092 3.240 1.726 1.305 2.211 1.169 1.484 1.515 2.220 1.509

DThte

Testing RMSE 9.736 8.469 7.429 10.667 7.307 8.114 7.411 7.652 6.903 6.568

Training RMSE 1.043 1.266 2.529 2.534 3.155 3.606 3.386 3.578 3.224 3.989

GF 87.147 44.754 8.626 17.717 5.364 5.063 4.791 4.574 4.585 2.712

SVRhte

Testing RMSE 11.903 11.398 11.747 10.881 10.631 10.619 10.559 10.452 10.363 10.240

Training RMSE 11.814 9.368 11.070 13.112 10.644 12.435 12.166 11.213 10.080 11.077

GF 1.015 1.480 1.126 0.689 0.998 0.729 0.753 0.869 1.057 0.855

NNhte

Testing RMSE 8.941 8.415 8.850 8.272 8.126 8.172 9.096 8.322 8.263 8.289

Training RMSE 4.254 5.536 8.484 9.249 6.916 9.750 9.999 8.592 7.204 8.303

GF 4.417 2.311 1.088 0.800 1.381 0.702 0.828 0.938 1.316 0.997

HTEsm

Testing RMSE 8.907 8.167 7.676 8.267 7.766 7.285 7.769 7.375 7.228 7.235

Training RMSE 4.452 3.656 5.412 6.820 5.025 6.539 6.834 6.165 4.954 6.034

GF 4.003 4.989 2.012 1.469 2.389 1.241 1.292 1.431 2.129 1.438

HTEdf

Testing RMSE 9.035 8.337 7.873 7.849 7.718 7.441 7.428 7.345 7.100 7.031

Training RMSE 4.116 3.883 5.630 6.271 4.926 6.254 6.008 5.723 4.776 5.541

GF 4.819 4.610 1.955 1.567 2.454 1.415 1.528 1.647 2.210 1.610
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Energy Efficiency Dataset

Table H.5: Ensemble Performance on Bagged Subsets of the Energy Efficiency Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 3.214 3.079 3.329 2.565 2.025 2.009 1.855 1.473 2.163 1.464

Training RMSE 1.781 1.960 1.588 1.420 1.187 1.030 0.951 0.933 0.886 0.844

GF 3.257 2.468 4.396 3.266 2.911 3.802 3.808 2.492 5.957 3.009

DTE

Testing RMSE 2.953 2.687 1.818 2.309 2.243 2.099 1.901 1.678 2.183 1.717

Training RMSE 0.046 0.023 0.103 0.040 0.406 0.171 0.311 0.221 0.406 0.361

GF 4066.443 13729.487 313.818 3350.429 30.580 149.996 37.329 57.649 28.907 22.623

RF

Testing RMSE 2.376 2.009 1.775 2.184 1.938 1.733 1.348 1.513 1.636 1.607

Training RMSE 0.808 0.781 0.587 0.558 0.509 0.448 0.467 0.369 0.450 0.416

GF 8.638 6.614 9.139 15.343 14.491 14.942 8.339 16.832 13.222 14.912

SVRE

Testing RMSE 3.500 3.339 2.718 2.293 2.436 2.298 2.353 2.538 2.106 2.304

Training RMSE 2.915 2.598 2.295 2.094 2.019 1.902 2.087 2.143 2.017 2.082

GF 1.442 1.652 1.403 1.199 1.456 1.459 1.271 1.403 1.089 1.225

NNE

Testing RMSE 2.660 2.931 2.051 2.198 2.105 2.032 2.004 2.156 2.028 2.029

Training RMSE 1.464 2.306 1.793 1.703 1.801 1.667 1.804 1.911 1.882 1.835

GF 3.300 1.615 1.308 1.666 1.365 1.486 1.235 1.273 1.161 1.222
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 2.984 3.059 2.687 2.203 2.002 1.838 1.773 1.465 1.877 1.485

Training RMSE 1.690 1.645 1.325 1.151 1.048 0.888 0.837 0.784 0.780 0.743

GF 3.117 3.459 4.110 3.664 3.649 4.280 4.485 3.495 5.794 3.999

DThte

Testing RMSE 2.345 1.986 1.778 1.920 1.766 1.686 1.489 1.397 1.762 1.555

Training RMSE 0.320 0.440 0.438 0.444 0.447 0.407 0.492 0.523 0.517 0.500

GF 53.788 20.348 16.499 18.711 15.630 17.146 9.153 7.147 11.612 9.692

SVRhte

Testing RMSE 5.796 5.299 4.117 3.340 3.659 3.499 3.537 3.561 3.009 3.276

Training RMSE 4.964 4.203 3.672 3.401 3.137 3.101 3.138 3.177 2.964 3.062

GF 1.363 1.590 1.257 0.965 1.361 1.273 1.271 1.256 1.030 1.145

NNhte

Testing RMSE 2.714 3.100 2.250 2.113 2.074 2.035 2.008 2.150 2.048 2.033

Training RMSE 1.633 2.486 2.012 1.775 1.801 1.645 1.781 1.928 1.903 1.849

GF 2.762 1.555 1.250 1.418 1.327 1.531 1.271 1.244 1.159 1.209

HTEsm

Testing RMSE 2.844 2.360 2.111 1.906 1.831 1.753 1.639 1.520 1.677 1.424

Training RMSE 1.431 1.671 1.258 1.067 1.090 0.946 1.007 1.034 1.024 1.007

GF 3.948 1.995 2.816 3.189 2.820 3.434 2.649 2.163 2.679 2.000

HTEdf

Testing RMSE 2.668 2.052 1.960 1.937 1.782 1.651 1.537 1.435 1.544 1.390

Training RMSE 1.110 1.329 1.093 0.999 0.971 0.855 0.901 0.910 0.906 0.897

GF 5.776 2.382 3.212 3.755 3.368 3.730 2.908 2.486 2.909 2.399
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Concrete Dataset

Table H.6: Ensemble Performance on Bagged Subsets of the Concrete Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 13.408 12.150 12.879 10.565 11.026 10.481 10.838 11.663 10.697 11.384

Training RMSE 10.855 10.428 8.546 8.798 7.897 7.705 6.991 6.531 6.605 6.882

GF 1.526 1.357 2.271 1.442 1.949 1.850 2.404 3.189 2.623 2.736

DTE

Testing RMSE 11.658 12.237 9.473 8.905 8.301 8.394 9.439 9.262 8.355 8.789

Training RMSE 0.479 2.402 0.392 0.650 0.866 0.911 1.482 1.476 1.104 2.314

GF 592.217 25.945 584.855 187.959 91.823 84.864 40.572 39.366 57.249 14.424

RF

Testing RMSE 8.316 8.768 8.111 8.216 7.443 6.885 7.068 7.231 6.621 6.350

Training RMSE 3.717 4.154 2.481 2.807 2.329 2.456 2.206 1.997 1.754 2.461

GF 5.005 4.455 10.687 8.568 10.211 7.857 10.265 13.115 14.249 6.659

SVRE

Testing RMSE 15.089 14.658 13.941 13.229 12.937 12.791 12.768 12.571 12.192 12.225

Training RMSE 16.128 13.775 14.057 13.197 13.626 12.922 12.092 12.142 11.788 11.839

GF 0.875 1.132 0.984 1.005 0.902 0.980 1.115 1.072 1.070 1.066

NNE

Testing RMSE 14.812 11.259 7.686 16.134 11.487 13.276 8.541 8.273 8.175 11.548

Training RMSE 3.555 6.503 5.667 7.327 7.594 7.449 6.825 6.855 6.221 7.247

GF 17.355 2.998 1.840 4.849 2.288 3.177 1.566 1.456 1.727 2.539
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 13.210 11.638 12.215 9.902 10.947 10.205 10.343 11.053 9.878 10.491

Training RMSE 9.034 8.229 6.951 7.428 6.548 6.444 5.769 5.442 5.421 5.631

GF 2.138 2.000 3.089 1.777 2.795 2.508 3.214 4.126 3.320 3.471

DThte

Testing RMSE 9.728 8.792 7.828 7.468 7.652 6.693 7.326 7.668 6.679 6.530

Training RMSE 1.644 3.223 1.999 2.016 2.223 2.313 2.370 2.256 2.146 2.721

GF 35.006 7.440 15.338 13.725 11.843 8.371 9.553 11.550 9.682 5.757

SVRhte

Testing RMSE 14.347 13.881 12.812 11.782 11.383 11.391 11.101 10.871 10.501 10.725

Training RMSE 14.984 12.741 12.712 11.499 11.318 10.885 9.946 9.806 9.270 9.124

GF 0.917 1.187 1.016 1.050 1.012 1.095 1.246 1.229 1.283 1.382

NNhte

Testing RMSE 15.662 10.168 7.683 15.178 9.546 10.974 8.382 6.872 7.886 11.411

Training RMSE 3.870 6.344 5.146 6.757 6.424 6.736 6.815 5.491 6.047 6.977

GF 16.382 2.568 2.229 5.046 2.208 2.654 1.513 1.566 1.701 2.675

HTEsm

Testing RMSE 9.605 9.493 8.247 8.249 8.324 7.051 7.482 7.882 7.458 7.297

Training RMSE 5.753 5.910 4.823 5.417 5.856 4.692 4.465 4.503 4.605 4.385

GF 2.788 2.580 2.923 2.319 2.021 2.259 2.809 3.064 2.623 2.769

HTEdf

Testing RMSE 9.352 9.481 8.017 8.342 7.534 7.735 7.646 7.559 6.847 7.196

Training RMSE 5.295 5.572 4.371 5.069 4.340 4.736 4.617 4.100 3.640 4.198

GF 3.119 2.896 3.363 2.709 3.013 2.667 2.743 3.398 3.538 2.938
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Parkinsons Disease Dataset

Table H.7: Ensemble Performance on Bagged Subsets of the Parkinsons Disease Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 2.856 1.856 1.556 1.310 1.254 1.247 1.046 1.000 0.984 0.943

Training RMSE 1.876 1.400 1.183 1.027 0.858 0.841 0.809 0.748 0.682 0.688

GF 2.316 1.756 1.730 1.625 2.136 2.200 1.671 1.785 2.082 1.880

DTE

Testing RMSE 3.165 1.542 1.837 1.140 1.066 0.965 0.733 0.887 0.659 0.645

Training RMSE 0.376 0.334 0.466 0.411 0.369 0.491 0.437 0.460 0.415 0.433

GF 70.822 21.280 15.547 7.682 8.355 3.861 2.820 3.723 2.521 2.215

RF

Testing RMSE 2.409 1.426 1.176 0.915 0.894 0.768 0.675 0.596 0.553 0.447

Training RMSE 1.040 0.633 0.509 0.405 0.360 0.327 0.253 0.243 0.234 0.211

GF 5.368 5.067 5.343 5.106 6.151 5.530 7.123 6.042 5.595 4.495

SVRE

Testing RMSE 5.493 4.681 4.316 3.953 3.822 3.770 3.629 3.626 3.483 3.459

Training RMSE 5.302 4.713 4.342 4.175 4.023 3.850 3.744 3.662 3.607 3.526

GF 1.073 0.986 0.988 0.897 0.903 0.959 0.940 0.980 0.932 0.962

NNE

Testing RMSE 2.916 2.855 2.784 3.064 2.514 2.546 2.482 2.233 2.187 1.865

Training RMSE 2.852 2.780 2.603 2.485 2.134 2.123 2.082 1.861 1.906 1.599

GF 1.046 1.055 1.144 1.521 1.388 1.438 1.421 1.438 1.317 1.361

Stellenbosch University https://scholar.sun.ac.za



Appendix H. Ensemble Performance on Bagged Subsets for Regression Problems 553

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 2.459 1.600 1.377 1.202 1.214 1.146 0.958 0.942 0.899 0.879

Training RMSE 1.547 1.140 0.963 0.843 0.683 0.678 0.641 0.576 0.529 0.539

GF 2.529 1.970 2.045 2.036 3.162 2.859 2.232 2.674 2.889 2.658

DThte

Testing RMSE 2.237 1.447 1.375 1.129 1.043 1.026 1.032 1.058 0.952 0.936

Training RMSE 0.909 0.866 0.902 0.885 0.815 0.898 0.879 0.937 0.884 0.850

GF 6.058 2.794 2.325 1.629 1.638 1.304 1.378 1.276 1.160 1.214

SVRhte

Testing RMSE 3.447 3.069 2.899 2.745 2.700 2.758 2.678 2.668 2.566 2.606

Training RMSE 3.116 2.969 2.838 2.786 2.745 2.690 2.662 2.636 2.619 2.586

GF 1.224 1.068 1.043 0.971 0.967 1.051 1.012 1.024 0.960 1.016

NNhte

Testing RMSE 3.031 2.719 2.721 2.648 2.090 2.258 2.091 1.942 2.229 1.769

Training RMSE 2.910 2.647 2.532 2.283 1.711 1.839 1.750 1.698 1.958 1.537

GF 1.084 1.055 1.155 1.345 1.492 1.508 1.428 1.308 1.296 1.325

HTEsm

Testing RMSE 2.300 1.642 1.555 1.204 1.145 1.286 1.091 1.146 0.987 0.845

Training RMSE 1.564 1.396 1.302 1.054 0.984 1.113 1.026 1.044 0.914 0.757

GF 2.163 1.383 1.427 1.305 1.354 1.336 1.130 1.206 1.167 1.245

HTEdf

Testing RMSE 2.157 1.597 1.469 1.326 1.159 1.055 1.096 0.890 0.992 0.863

Training RMSE 1.434 1.210 1.199 1.141 0.999 0.884 0.925 0.770 0.889 0.786

GF 2.261 1.744 1.501 1.350 1.347 1.426 1.401 1.335 1.244 1.204
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Air Quality Dataset

Table H.8: Ensemble Performance on Bagged Subsets of the Air Quality Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 23.907 22.880 21.065 21.584 20.589 20.705 20.020 20.089 19.597 19.590

Training RMSE 17.476 16.792 15.294 15.238 14.675 14.259 14.383 14.368 13.717 13.573

GF 1.871 1.857 1.897 2.006 1.968 2.108 1.937 1.955 2.041 2.083

DTE

Testing RMSE 25.264 24.465 22.891 22.613 21.433 21.385 21.397 21.442 20.977 20.957

Training RMSE 4.368 6.159 7.167 8.701 9.201 9.604 10.890 11.349 10.817 11.041

GF 33.456 15.779 10.203 6.754 5.426 4.958 3.860 3.569 3.760 3.603

RF

Testing RMSE 20.653 19.991 18.492 18.086 17.107 17.152 17.072 16.698 16.974 17.013

Training RMSE 8.638 7.751 7.225 6.823 7.008 6.683 6.871 6.792 6.744 6.577

GF 5.716 6.652 6.551 7.026 5.959 6.587 6.173 6.044 6.335 6.692

SVRE

Testing RMSE 34.957 33.325 31.709 31.511 30.577 29.639 29.260 29.011 28.712 28.370

Training RMSE 34.326 31.342 29.679 29.030 28.534 27.487 27.425 27.405 26.832 26.582

GF 1.037 1.131 1.142 1.178 1.148 1.163 1.138 1.121 1.145 1.139

NNE

Testing RMSE 20.010 22.464 19.049 18.943 18.611 19.010 18.366 17.983 17.129 17.197

Training RMSE 19.731 21.278 17.595 17.121 17.499 17.721 17.498 17.032 16.098 16.329

GF 1.028 1.115 1.172 1.224 1.131 1.151 1.102 1.115 1.132 1.109
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 23.230 22.258 20.258 20.933 19.854 19.943 19.421 19.449 19.088 18.974

Training RMSE 14.756 13.942 12.846 12.896 12.241 12.026 12.110 12.010 11.578 11.520

GF 2.478 2.549 2.487 2.635 2.631 2.750 2.572 2.622 2.718 2.713

DThte

Testing RMSE 20.428 20.393 18.273 19.395 18.228 18.425 18.156 18.494 18.347 17.896

Training RMSE 6.834 6.689 7.531 7.781 8.076 8.567 8.918 8.913 8.837 8.836

GF 8.935 9.294 5.887 6.213 5.094 4.625 4.145 4.306 4.310 4.102

SVRhte

Testing RMSE 30.176 27.401 25.742 25.268 24.594 23.879 23.809 23.461 23.316 23.089

Training RMSE 29.756 25.840 23.685 23.426 23.050 22.098 22.109 22.105 21.670 21.487

GF 1.028 1.124 1.181 1.163 1.138 1.168 1.160 1.126 1.158 1.155

NNhte

Testing RMSE 20.090 19.616 18.842 18.740 18.011 17.766 17.605 17.534 17.326 17.566

Training RMSE 19.957 18.504 17.336 17.067 16.773 16.444 16.662 16.416 15.993 16.474

GF 1.013 1.124 1.181 1.206 1.153 1.167 1.116 1.141 1.174 1.137

HTEsm

Testing RMSE 19.298 18.754 17.561 18.028 16.820 17.466 16.816 16.999 16.452 16.538

Training RMSE 11.432 10.501 10.523 11.052 10.580 10.599 11.069 11.241 10.610 10.941

GF 2.850 3.190 2.785 2.661 2.527 2.715 2.308 2.287 2.404 2.285

HTEdf

Testing RMSE 19.016 19.210 17.206 17.543 17.160 16.552 16.391 16.509 16.383 16.127

Training RMSE 10.238 9.850 9.369 9.059 9.318 9.258 9.360 9.431 9.516 9.242

GF 3.450 3.803 3.372 3.750 3.392 3.197 3.067 3.064 2.964 3.045
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Bike Sharing Dataset

Table H.9: Ensemble Performance on Bagged Subsets of the Bike Sharing Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 71.425 62.305 56.827 54.585 51.315 49.061 47.340 47.081 45.016 44.420

Training RMSE 58.078 48.320 46.046 41.804 40.369 39.006 37.495 36.675 35.379 34.492

GF 1.512 1.663 1.523 1.705 1.616 1.582 1.594 1.648 1.619 1.659

DTE

Testing RMSE 31.064 26.985 26.972 25.558 23.770 23.718 22.695 23.342 22.465 22.276

Training RMSE 5.258 10.727 10.693 11.778 13.028 12.939 13.896 13.505 14.465 14.560

GF 34.910 6.329 6.362 4.708 3.329 3.360 2.667 2.987 2.412 2.341

RF

Testing RMSE 25.251 22.270 21.914 20.785 19.822 19.454 19.181 18.965 18.650 18.588

Training RMSE 10.204 9.733 9.307 8.662 8.698 8.297 8.073 8.000 8.023 7.835

GF 6.124 5.235 5.544 5.757 5.193 5.498 5.645 5.620 5.404 5.628

SVRE

Testing RMSE 111.009 105.343 101.600 98.388 94.158 92.479 90.847 89.243 87.507 86.039

Training RMSE 116.279 108.613 107.030 102.014 100.949 97.298 95.771 93.356 92.187 90.807

GF 0.911 0.941 0.901 0.930 0.870 0.903 0.900 0.914 0.901 0.898

NNE

Testing RMSE 22.803 22.287 22.790 21.874 19.742 19.105 20.508 19.147 19.139 19.280

Training RMSE 21.020 20.363 21.574 20.860 19.183 18.267 19.588 18.218 18.654 18.624

GF 1.177 1.198 1.116 1.100 1.059 1.094 1.096 1.105 1.053 1.072
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 68.053 59.547 52.938 51.481 48.097 45.921 44.306 43.800 41.895 41.028

Training RMSE 49.971 41.378 38.569 34.916 33.429 32.382 30.719 29.982 29.025 28.378

GF 1.855 2.071 1.884 2.174 2.070 2.011 2.080 2.134 2.083 2.090

DThte

Testing RMSE 26.061 23.771 23.933 23.585 22.067 22.790 21.348 21.512 20.796 21.285

Training RMSE 12.038 12.824 13.593 14.841 14.333 15.391 13.508 14.394 13.788 14.824

GF 4.687 3.436 3.100 2.525 2.370 2.192 2.497 2.234 2.275 2.062

SVRhte

Testing RMSE 99.402 88.375 80.354 74.521 67.540 63.542 60.213 57.004 53.710 51.324

Training RMSE 104.419 91.036 84.203 76.760 71.924 66.539 62.808 58.584 55.685 52.983

GF 0.906 0.942 0.911 0.943 0.882 0.912 0.919 0.947 0.930 0.938

NNhte

Testing RMSE 22.465 22.637 21.665 20.262 19.858 19.341 19.084 18.558 19.334 17.729

Training RMSE 20.597 20.900 20.763 18.738 19.354 18.529 18.198 17.315 18.557 17.003

GF 1.190 1.173 1.089 1.169 1.053 1.090 1.100 1.149 1.085 1.087

HTEsm

Testing RMSE 23.989 21.608 22.190 20.282 19.267 19.233 18.654 19.005 18.540 17.423

Training RMSE 11.014 11.803 12.671 12.009 12.369 12.337 12.699 12.732 12.757 11.740

GF 4.744 3.352 3.067 2.852 2.426 2.431 2.158 2.228 2.112 2.203

HTEdf

Testing RMSE 23.023 20.936 20.623 19.237 19.320 18.842 18.632 17.863 17.666 17.052

Training RMSE 9.944 10.913 11.338 11.010 11.061 10.770 11.259 9.705 10.541 10.015

GF 5.361 3.680 3.308 3.053 3.051 3.060 2.739 3.388 2.809 2.899
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Gas Turbine Dataset

Table H.10: Ensemble Performance on Bagged Subsets of the Gas Turbine Dataset

Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 6.821 6.310 5.967 5.775 5.656 5.535 5.437 5.408 5.284 5.234

Training RMSE 4.649 4.111 4.060 3.791 3.781 3.549 3.492 3.405 3.332 3.262

GF 2.152 2.356 2.161 2.321 2.238 2.432 2.425 2.521 2.515 2.576

DTE

Testing RMSE 7.708 6.870 7.004 7.010 6.437 6.376 6.561 6.224 6.397 6.367

Training RMSE 3.606 3.527 3.553 3.542 3.641 3.765 3.943 3.946 3.945 3.973

GF 4.570 3.795 3.886 3.917 3.126 2.868 2.769 2.488 2.630 2.568

RF

Testing RMSE 6.217 5.568 5.378 5.169 5.112 5.125 4.889 5.124 4.992 4.996

Training RMSE 2.283 2.035 1.961 1.840 1.858 1.815 1.768 1.761 1.703 1.688

GF 7.416 7.489 7.523 7.893 7.568 7.976 7.646 8.468 8.589 8.757

SVRE

Testing RMSE 8.398 8.220 8.043 7.903 7.823 7.746 7.685 7.677 7.608 7.600

Training RMSE 6.913 6.484 6.603 6.448 6.433 6.279 6.262 6.213 6.181 6.147

GF 1.476 1.607 1.484 1.502 1.479 1.522 1.506 1.527 1.515 1.529

NNE

Testing RMSE 6.980 6.478 6.529 6.035 5.657 5.838 5.761 5.238 5.573 4.983

Training RMSE 5.666 5.218 5.634 5.447 5.193 5.228 4.884 4.714 5.019 4.395

GF 1.518 1.541 1.343 1.228 1.186 1.247 1.391 1.235 1.233 1.285
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Measure
Bagged Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 6.592 6.093 5.746 5.548 5.416 5.324 5.265 5.208 5.082 5.048

Training RMSE 3.917 3.464 3.432 3.231 3.165 2.978 2.931 2.857 2.809 2.745

GF 2.832 3.093 2.803 2.949 2.929 3.195 3.226 3.323 3.273 3.383

DThte

Testing RMSE 6.327 5.966 5.896 5.903 5.594 5.657 5.561 5.580 5.460 5.571

Training RMSE 2.805 2.808 2.972 2.971 3.116 3.218 3.310 3.306 3.291 3.373

GF 5.088 4.513 3.936 3.947 3.222 3.089 2.823 2.849 2.753 2.728

SVRhte

Testing RMSE 7.672 7.411 7.157 6.953 6.904 6.802 6.746 6.715 6.655 6.652

Training RMSE 6.197 5.777 5.973 5.862 5.876 5.747 5.745 5.724 5.706 5.679

GF 1.533 1.646 1.436 1.407 1.380 1.401 1.379 1.376 1.360 1.372

NNhte

Testing RMSE 6.682 6.469 6.051 5.772 5.628 5.354 5.460 4.922 4.952 4.512

Training RMSE 5.529 5.266 5.411 5.192 5.173 4.830 4.763 4.351 4.524 3.957

GF 1.461 1.509 1.251 1.236 1.184 1.229 1.314 1.280 1.198 1.300

HTEsm

Testing RMSE 6.302 5.784 5.507 5.396 5.103 5.138 4.901 4.746 4.898 4.836

Training RMSE 4.032 3.727 3.732 3.644 3.549 3.507 3.508 3.326 3.355 3.167

GF 2.443 2.409 2.177 2.193 2.067 2.146 1.952 2.036 2.131 2.332

HTEdf

Testing RMSE 5.866 5.682 5.436 5.054 5.147 4.864 4.923 4.811 4.728 4.637

Training RMSE 3.502 3.329 3.414 3.205 3.326 3.064 3.186 3.113 3.133 3.063

GF 2.806 2.913 2.536 2.487 2.394 2.520 2.388 2.389 2.278 2.292
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Appendix I

Ensemble Performance on Feature

Subsets for Regression Problems

The results of the ensembles over the feature subsets of the training dataset for regression

problems are provided in this appendix. Plots of the testing and training RMSE for each

regression dataset are first presented. Then the results of testing RMSE, training RMSE,

and GF of the ensembles over the regression datasets are provided.
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Figure I.1: Ensemble Performance on Feature Subsets of the Yacht Hydrodynamics
Dataset

Figure I.2: Ensemble Performance on Feature Subsets of the Residential Building Dataset
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Figure I.3: Ensemble Performance on Feature Subsets of the Student Performance Dataset

Figure I.4: Ensemble Performance on Feature Subsets of the Real Estate Dataset
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Figure I.5: Ensemble Performance on Feature Subsets of the Energy Efficiency Dataset

Figure I.6: Ensemble Performance on Feature Subsets of the Concrete Dataset
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Figure I.7: Ensemble Performance on Feature Subsets of the Air Quality Dataset

Figure I.8: Ensemble Performance on Feature Subsets of the Bike Sharing Dataset
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Figure I.9: Ensemble Performance on Feature Subsets of the Gas Turbine Dataset
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Yacht Hydrodynamics Dataset

Table I.1: Ensemble Performance on Feature Subsets of the Yacht Hydrodynamics Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 0.834 15.022 1.863 1.562 2.832 6.236 5.839 6.430 6.148 8.752

Training RMSE 1.786 16.407 2.209 2.164 3.824 5.846 5.748 5.085 6.432 8.286

GF 0.218 0.838 0.711 0.521 0.548 1.138 1.032 1.599 0.914 1.116

DTE

Testing RMSE 0.821 13.266 1.067 0.918 1.268 0.833 0.539 1.312 0.830 0.555

Training RMSE 1.709 15.643 1.494 0.606 0.518 0.518 0.046 0.026 0.518 0.050

GF 0.231 0.719 0.510 2.296 5.999 2.586 139.782 2547.090 2.570 124.783

RF

Testing RMSE 0.869 13.160 1.040 0.936 0.926 0.885 0.779 0.772 0.816 0.605

Training RMSE 1.722 15.664 1.519 0.910 0.784 0.705 0.509 0.601 0.699 0.589

GF 0.254 0.706 0.469 1.058 1.396 1.574 2.343 1.650 1.361 1.054

SVRE

Testing RMSE 8.647 12.604 8.942 8.663 8.136 8.100 8.651 8.028 7.699 7.906

Training RMSE 12.147 17.354 11.712 12.054 11.771 11.785 11.569 11.172 11.439 11.077

GF 0.507 0.527 0.583 0.516 0.478 0.472 0.559 0.516 0.453 0.509

NNE

Testing RMSE 1.640 12.939 1.806 1.601 1.883 2.749 2.787 3.095 2.784 3.516

Training RMSE 2.723 15.698 2.525 2.543 2.861 3.286 3.171 3.270 3.540 3.852

GF 0.363 0.679 0.512 0.396 0.433 0.700 0.772 0.895 0.618 0.833
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 0.799 14.539 1.634 1.309 2.620 4.988 4.996 5.270 5.376 7.520

Training RMSE 1.746 16.386 2.053 2.217 3.271 4.791 4.997 4.549 5.262 6.811

GF 0.209 0.787 0.634 0.349 0.642 1.084 1.000 1.342 1.044 1.219

DThte

Testing RMSE 0.893 12.409 1.084 0.875 1.063 0.794 0.555 0.921 0.751 0.656

Training RMSE 1.763 16.080 1.544 0.812 0.714 0.682 0.430 0.478 0.704 0.444

GF 0.256 0.596 0.493 1.159 2.213 1.355 1.667 3.712 1.138 2.176

SVRhte

Testing RMSE 6.311 12.611 6.866 6.483 6.322 6.641 7.019 6.868 6.483 6.834

Training RMSE 8.896 17.338 8.778 9.079 9.074 9.525 9.220 9.240 9.359 9.255

GF 0.503 0.529 0.612 0.510 0.485 0.486 0.580 0.553 0.480 0.545

NNhte

Testing RMSE 1.411 12.680 1.621 1.353 1.709 2.326 2.453 2.481 2.159 2.859

Training RMSE 2.447 15.816 2.379 2.171 2.282 2.806 2.724 2.573 2.761 2.987

GF 0.333 0.643 0.464 0.388 0.561 0.687 0.811 0.930 0.611 0.916

HTEsm

Testing RMSE 0.851 13.074 0.783 1.021 1.111 0.824 0.808 0.840 0.703 0.926

Training RMSE 1.760 15.671 1.640 1.514 1.444 0.995 0.726 0.835 0.963 0.845

GF 0.234 0.696 0.228 0.455 0.592 0.686 1.239 1.011 0.533 1.203

HTEdf

Testing RMSE 0.922 12.945 0.765 1.013 1.092 0.828 0.914 0.877 0.754 0.842

Training RMSE 1.797 15.669 1.682 1.514 1.450 1.019 0.823 0.802 1.039 0.812

GF 0.263 0.683 0.207 0.448 0.568 0.659 1.234 1.195 0.527 1.075
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Residential Building Dataset

Table I.2: Ensemble Performance on Feature Subsets of the Residential Building Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 1134.153 540.091 859.934 753.465 772.504 826.705 790.380 773.841 802.849 806.101

Training RMSE 921.455 468.000 756.741 576.256 603.206 678.841 611.322 645.553 648.732 635.210

GF 1.515 1.332 1.291 1.710 1.640 1.483 1.672 1.437 1.532 1.610

DTE

Testing RMSE 1032.231 307.387 917.450 914.790 326.088 298.106 328.459 315.566 319.963 314.144

Training RMSE 867.198 13.266 89.058 122.994 13.722 11.455 8.869 10.398 8.127 7.927

GF 1.417 536.868 106.126 55.319 564.695 677.204 1371.595 921.101 1550.202 1570.404

RF

Testing RMSE 1026.980 286.197 723.018 625.803 304.215 244.446 283.004 306.885 277.043 282.167

Training RMSE 873.814 96.648 353.887 220.603 122.417 123.393 116.807 104.812 110.868 126.041

GF 1.381 8.769 4.174 8.047 6.176 3.925 5.870 8.573 6.244 5.012

SVRE

Testing RMSE 1381.631 1109.382 1191.392 968.794 796.998 774.178 767.075 751.801 753.425 751.679

Training RMSE 1110.253 896.582 940.535 815.651 646.276 636.830 624.886 613.513 614.907 611.687

GF 1.549 1.531 1.605 1.411 1.521 1.478 1.507 1.502 1.501 1.510

NNE

Testing RMSE 1093.868 393.312 806.447 677.678 396.968 407.978 380.346 383.470 373.760 379.391

Training RMSE 891.652 294.148 496.090 369.096 275.563 286.321 257.280 270.729 270.704 272.376

GF 1.505 1.788 2.643 3.371 2.075 2.030 2.185 2.006 1.906 1.940
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 1140.105 580.989 889.444 739.622 722.406 766.691 735.496 730.962 742.214 752.148

Training RMSE 895.640 424.756 637.498 516.340 520.479 572.880 518.954 534.578 547.893 535.444

GF 1.620 1.871 1.947 2.052 1.926 1.791 2.009 1.870 1.835 1.973

DThte

Testing RMSE 1095.363 277.812 695.401 707.320 278.836 261.494 279.479 248.707 265.278 283.976

Training RMSE 885.554 55.329 186.260 130.724 53.378 53.791 54.462 49.695 59.625 52.831

GF 1.530 25.211 13.939 29.277 27.289 23.632 26.334 25.047 19.795 28.892

SVRhte

Testing RMSE 1397.157 1092.101 1150.372 944.582 773.230 757.461 755.540 751.043 746.398 743.073

Training RMSE 1119.585 886.190 903.254 795.284 625.108 621.157 615.493 607.867 607.714 605.883

GF 1.557 1.519 1.622 1.411 1.530 1.487 1.507 1.527 1.508 1.504

NNhte

Testing RMSE 1107.085 387.726 772.424 651.431 382.890 360.927 331.063 361.228 340.970 353.820

Training RMSE 894.215 252.815 483.016 342.076 233.754 249.126 225.563 227.493 228.974 229.385

GF 1.533 2.352 2.557 3.627 2.683 2.099 2.154 2.521 2.217 2.379

HTEsm

Testing RMSE 1076.867 226.887 728.188 654.179 209.953 165.040 175.314 208.516 184.895 178.968

Training RMSE 930.836 141.815 631.066 411.227 110.014 112.917 90.054 101.035 115.799 99.659

GF 1.338 2.560 1.331 2.531 3.642 2.136 3.790 4.259 2.549 3.225

HTEdf

Testing RMSE 1068.634 216.121 760.395 642.149 206.925 169.719 181.175 205.307 192.675 174.688

Training RMSE 930.820 134.352 653.758 400.207 109.342 118.342 97.469 109.045 126.092 99.931

GF 1.318 2.588 1.353 2.575 3.581 2.057 3.455 3.545 2.335 3.056
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Student Performance Dataset

Table I.3: Ensemble Performance on Feature Subsets of the Student Performance Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 5.139 2.975 4.758 3.744 3.958 3.814 4.159 4.105 3.949 3.740

Training RMSE 4.813 2.589 3.925 3.326 3.128 3.260 3.598 3.511 3.501 3.230

GF 1.140 1.320 1.469 1.267 1.601 1.369 1.336 1.367 1.272 1.340

DTE

Testing RMSE 4.662 3.456 6.179 3.933 3.292 2.334 2.257 2.720 3.004 2.411

Training RMSE 4.409 1.587 2.033 0.403 0.622 0.110 0.080 0.319 0.307 0.039

GF 1.118 4.741 9.234 95.398 28.006 452.675 791.312 72.552 95.454 3826.417

RF

Testing RMSE 4.648 2.887 5.239 2.878 2.549 1.873 1.979 2.324 2.471 1.797

Training RMSE 4.420 1.869 2.466 1.390 1.016 0.553 0.637 1.052 1.052 0.645

GF 1.106 2.385 4.512 4.289 6.290 11.451 9.642 4.881 5.521 7.754

SVRE

Testing RMSE 4.566 2.663 4.584 3.164 3.247 2.789 3.272 3.541 3.524 3.160

Training RMSE 4.478 2.852 4.025 2.636 2.296 1.844 1.875 1.901 1.907 1.904

GF 1.040 0.872 1.297 1.441 2.001 2.288 3.046 3.471 3.415 2.755

NNE

Testing RMSE 4.650 3.019 5.194 3.014 2.873 2.129 2.514 2.925 3.083 2.580

Training RMSE 4.429 2.202 3.083 1.456 1.018 0.578 0.656 0.732 0.735 0.501

GF 1.102 1.879 2.838 4.286 7.957 13.571 14.672 15.950 17.582 26.562
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 4.866 2.952 4.793 3.770 3.780 3.816 3.980 4.006 3.923 3.724

Training RMSE 4.574 2.377 3.440 2.804 2.678 2.589 3.089 2.912 2.981 2.767

GF 1.131 1.542 1.941 1.807 1.992 2.172 1.660 1.892 1.731 1.811

DThte

Testing RMSE 4.612 2.843 5.323 2.928 2.623 1.880 1.967 2.401 2.415 2.032

Training RMSE 4.420 1.762 1.984 0.910 0.684 0.450 0.582 0.682 0.650 0.453

GF 1.088 2.605 7.197 10.346 14.696 17.438 11.415 12.405 13.825 20.098

SVRhte

Testing RMSE 4.545 2.982 4.636 3.438 3.448 2.911 3.210 3.491 3.493 3.105

Training RMSE 4.520 3.189 4.018 2.782 2.549 2.158 2.126 2.132 2.132 2.067

GF 1.011 0.874 1.331 1.528 1.830 1.820 2.279 2.680 2.684 2.257

NNhte

Testing RMSE 4.645 2.932 5.208 3.110 2.950 2.214 2.579 2.798 3.191 2.664

Training RMSE 4.434 2.278 3.033 1.648 1.061 0.667 0.550 0.767 0.748 0.471

GF 1.097 1.658 2.949 3.561 7.722 11.021 21.956 13.299 18.210 32.030

HTEsm

Testing RMSE 4.666 2.800 5.034 2.901 2.599 2.237 2.474 2.704 2.671 2.401

Training RMSE 4.436 2.036 2.702 1.627 1.356 1.138 1.284 1.284 1.282 1.130

GF 1.107 1.892 3.473 3.180 3.673 3.862 3.715 4.438 4.341 4.511

HTEdf

Testing RMSE 4.636 2.781 4.892 2.919 2.564 2.157 2.397 2.489 2.636 2.248

Training RMSE 4.427 1.976 2.673 1.552 1.352 1.065 1.119 1.173 1.240 1.053

GF 1.097 1.980 3.349 3.538 3.599 4.099 4.588 4.504 4.517 4.558
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Real Estate Dataset

Table I.4: Ensemble Performance on Feature Subsets of the Real Estate Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 14.281 12.717 7.966 8.977 10.224 9.053 9.067 8.104 8.369 8.034

Training RMSE 14.293 10.980 6.899 7.794 8.726 8.088 8.115 7.445 8.338 7.812

GF 0.998 1.341 1.333 1.327 1.373 1.253 1.248 1.185 1.007 1.058

DTE

Testing RMSE 13.340 14.623 8.806 9.430 11.318 7.930 8.162 8.026 8.682 7.918

Training RMSE 13.204 7.596 3.208 4.232 2.164 2.465 2.481 1.757 1.355 1.796

GF 1.021 3.706 7.534 4.965 27.359 10.346 10.824 20.866 41.073 19.440

RF

Testing RMSE 13.326 13.848 7.578 9.151 11.435 7.046 7.304 6.608 7.249 6.668

Training RMSE 13.220 7.919 4.014 4.414 5.090 3.889 3.777 3.532 3.560 3.545

GF 1.016 3.058 3.564 4.298 5.047 3.283 3.740 3.500 4.147 3.537

SVRE

Testing RMSE 13.222 13.185 12.636 11.882 11.795 11.236 11.339 10.889 10.609 10.073

Training RMSE 13.624 13.688 12.838 12.254 12.322 11.424 11.405 10.998 11.099 10.636

GF 0.942 0.928 0.969 0.940 0.916 0.967 0.988 0.980 0.914 0.897

NNE

Testing RMSE 12.987 11.481 8.417 10.045 9.591 8.034 8.095 7.272 7.556 7.275

Training RMSE 13.510 12.596 8.651 10.365 10.263 8.541 8.561 7.450 8.337 7.812

GF 0.924 0.831 0.947 0.939 0.873 0.885 0.894 0.953 0.821 0.867
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 14.879 12.468 7.980 8.087 9.969 8.726 8.760 7.641 8.075 7.780

Training RMSE 14.663 9.960 6.196 6.554 7.387 6.832 6.852 6.248 6.982 6.563

GF 1.030 1.567 1.659 1.522 1.821 1.631 1.635 1.495 1.338 1.405

DThte

Testing RMSE 13.305 13.155 7.303 8.164 9.686 7.124 7.185 6.875 6.888 7.069

Training RMSE 13.229 7.141 3.697 4.227 2.860 2.958 2.782 2.267 2.249 2.406

GF 1.012 3.394 3.902 3.731 11.468 5.801 6.672 9.202 9.380 8.632

SVRhte

Testing RMSE 13.215 12.990 10.707 10.530 10.704 9.671 9.764 9.074 9.060 8.427

Training RMSE 13.614 13.521 11.354 11.270 11.224 10.318 10.351 9.542 10.067 9.457

GF 0.942 0.923 0.889 0.873 0.909 0.879 0.890 0.904 0.810 0.794

NNhte

Testing RMSE 12.963 11.486 8.445 9.693 9.609 8.070 8.087 7.170 7.578 7.236

Training RMSE 13.493 12.592 8.679 10.189 10.240 8.527 8.577 7.372 8.361 7.700

GF 0.923 0.832 0.947 0.905 0.881 0.896 0.889 0.946 0.821 0.883

HTEsm

Testing RMSE 13.141 12.109 7.699 8.124 9.395 7.687 7.690 6.852 7.163 6.948

Training RMSE 13.264 9.767 6.185 6.965 6.823 6.182 6.132 5.347 5.982 5.632

GF 0.981 1.537 1.550 1.361 1.896 1.546 1.573 1.642 1.434 1.522

HTEdf

Testing RMSE 13.154 12.402 7.452 7.781 9.435 7.619 7.656 6.787 7.100 6.945

Training RMSE 13.281 9.298 5.820 6.354 6.272 5.573 5.656 5.107 5.524 5.201

GF 0.981 1.779 1.639 1.500 2.263 1.869 1.832 1.767 1.652 1.783
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Energy Efficiency Dataset

Table I.5: Ensemble Performance on Feature Subsets of the Energy Efficiency Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 4.739 3.256 1.304 2.848 1.855 2.847 2.010 1.141 1.132 1.096

Training RMSE 4.504 3.184 1.243 2.868 1.700 2.821 1.749 1.130 1.099 1.076

GF 1.107 1.046 1.100 0.986 1.191 1.019 1.320 1.019 1.062 1.039

DTE

Testing RMSE 4.146 3.612 1.447 2.863 2.055 2.901 1.991 1.398 1.393 1.421

Training RMSE 4.073 3.464 1.187 2.869 1.964 2.896 1.915 1.100 1.128 1.121

GF 1.036 1.087 1.486 0.996 1.095 1.004 1.081 1.616 1.525 1.608

RF

Testing RMSE 4.000 2.760 1.402 2.759 1.736 2.759 1.740 1.200 1.326 1.222

Training RMSE 3.993 2.643 0.800 2.641 1.557 2.642 1.562 0.637 0.619 0.616

GF 1.004 1.090 3.071 1.092 1.242 1.090 1.241 3.543 4.591 3.932

SVRE

Testing RMSE 5.407 9.111 3.887 4.429 4.020 4.234 3.862 3.279 3.265 3.301

Training RMSE 5.188 8.680 3.676 4.306 3.769 4.131 3.637 3.088 3.059 3.093

GF 1.087 1.102 1.118 1.058 1.138 1.051 1.127 1.128 1.140 1.139

NNE

Testing RMSE 4.474 7.213 2.148 3.649 3.032 3.658 3.141 2.047 2.063 2.032

Training RMSE 4.343 6.811 2.000 3.756 3.040 3.764 3.097 1.951 1.994 1.928

GF 1.061 1.122 1.154 0.944 0.994 0.944 1.029 1.100 1.070 1.111
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 4.826 3.060 1.268 2.873 1.876 2.838 1.933 1.173 1.134 1.111

Training RMSE 4.580 2.971 1.073 2.890 1.742 2.847 1.705 0.969 0.936 0.944

GF 1.110 1.061 1.395 0.988 1.159 0.994 1.285 1.466 1.468 1.386

DThte

Testing RMSE 4.233 4.164 1.411 2.877 2.037 2.898 1.937 1.373 1.371 1.346

Training RMSE 4.125 3.937 1.099 2.872 1.912 2.899 1.824 1.006 1.013 0.992

GF 1.053 1.119 1.649 1.004 1.135 0.999 1.128 1.864 1.831 1.839

SVRhte

Testing RMSE 4.381 8.351 2.114 3.593 3.106 3.573 3.066 2.224 2.285 2.334

Training RMSE 4.281 7.894 2.048 3.637 3.016 3.615 2.967 2.071 2.139 2.159

GF 1.047 1.119 1.065 0.976 1.060 0.977 1.068 1.153 1.141 1.168

NNhte

Testing RMSE 4.488 5.149 2.111 3.657 3.059 3.643 3.050 2.055 2.063 1.996

Training RMSE 4.350 4.920 1.989 3.756 3.064 3.706 3.036 1.954 1.972 1.929

GF 1.064 1.095 1.127 0.948 0.997 0.966 1.009 1.106 1.094 1.071

HTEsm

Testing RMSE 3.993 2.756 1.503 2.756 1.748 2.756 1.748 1.519 1.470 1.519

Training RMSE 3.992 2.639 0.621 2.639 1.555 2.639 1.555 0.455 0.451 0.451

GF 1.001 1.090 5.851 1.090 1.264 1.090 1.264 11.165 10.628 11.361

HTEdf

Testing RMSE 4.041 2.802 1.434 2.752 1.828 2.755 1.834 1.259 1.364 1.232

Training RMSE 4.007 2.690 0.729 2.656 1.629 2.657 1.642 0.608 0.596 0.652

GF 1.017 1.085 3.863 1.073 1.259 1.075 1.248 4.288 5.242 3.567
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Concrete Dataset

Table I.6: Ensemble Performance on Feature Subsets of the Concrete Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 16.215 12.912 12.371 10.572 12.503 12.939 8.903 9.848 9.233 9.284

Training RMSE 12.907 11.335 11.630 7.978 10.717 10.791 6.922 8.428 7.378 7.347

GF 1.578 1.298 1.131 1.756 1.361 1.438 1.654 1.365 1.566 1.597

DTE

Testing RMSE 15.887 13.599 12.860 10.480 12.617 13.154 7.258 8.712 6.402 7.420

Training RMSE 11.948 10.237 9.788 4.793 10.093 10.052 2.407 3.753 2.409 2.564

GF 1.768 1.765 1.726 4.781 1.562 1.713 9.093 5.389 7.061 8.375

RF

Testing RMSE 15.876 13.542 11.847 9.389 12.693 13.116 6.141 6.890 6.019 6.429

Training RMSE 11.841 10.370 9.283 4.339 10.189 10.209 2.517 3.172 2.604 2.396

GF 1.797 1.705 1.629 4.683 1.552 1.651 5.954 4.717 5.343 7.202

SVRE

Testing RMSE 16.038 14.843 16.017 14.753 14.491 13.465 12.646 13.157 11.867 11.486

Training RMSE 16.805 15.091 16.857 15.588 15.004 13.993 13.450 14.120 12.634 12.019

GF 0.911 0.967 0.903 0.896 0.933 0.926 0.884 0.868 0.882 0.913

NNE

Testing RMSE 16.079 12.863 22.028 12.687 11.881 11.526 12.511 12.677 10.396 6.674

Training RMSE 16.325 13.252 13.904 11.531 12.021 12.220 7.548 8.797 7.379 5.954

GF 0.970 0.942 2.510 1.211 0.977 0.890 2.747 2.076 1.985 1.256
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 15.869 13.093 11.648 10.099 12.190 12.692 8.159 9.141 8.400 8.376

Training RMSE 12.675 10.972 10.852 7.026 10.561 10.557 5.917 7.160 6.285 6.341

GF 1.568 1.424 1.152 2.066 1.332 1.445 1.901 1.630 1.786 1.745

DThte

Testing RMSE 15.394 13.117 11.861 8.975 12.392 12.736 6.220 6.995 6.522 6.408

Training RMSE 12.098 10.302 9.200 4.487 10.195 10.105 2.902 3.784 2.755 2.786

GF 1.619 1.621 1.662 4.001 1.478 1.589 4.592 3.417 5.603 5.289

SVRhte

Testing RMSE 15.946 13.519 15.285 13.089 12.963 12.273 10.476 11.465 9.988 9.440

Training RMSE 16.672 13.991 16.257 14.292 13.350 12.866 10.792 12.347 10.263 9.741

GF 0.915 0.934 0.884 0.839 0.943 0.910 0.942 0.862 0.947 0.939

NNhte

Testing RMSE 16.043 12.790 23.014 10.432 11.891 11.557 10.479 10.423 7.933 6.602

Training RMSE 16.333 13.193 14.027 10.712 11.933 12.245 7.159 8.519 6.529 5.760

GF 0.965 0.940 2.692 0.949 0.993 0.891 2.143 1.497 1.476 1.314

HTEsm

Testing RMSE 14.986 12.441 12.561 9.350 11.836 11.881 7.520 7.954 6.629 6.522

Training RMSE 13.201 11.204 11.083 7.653 10.702 10.731 5.644 6.494 5.113 4.740

GF 1.289 1.233 1.285 1.493 1.223 1.226 1.776 1.500 1.681 1.893

HTEdf

Testing RMSE 14.965 12.479 12.581 9.171 11.930 12.136 6.551 7.555 6.377 6.297

Training RMSE 12.737 10.914 10.595 6.982 10.544 10.506 4.692 5.761 4.473 4.173

GF 1.380 1.307 1.410 1.725 1.280 1.334 1.949 1.720 2.033 2.278
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Parkinsons Disease Dataset

Table I.7: Ensemble Performance on Feature Subsets of the Parkinsons Disease Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 6.977 11.057 2.619 1.169 1.013 4.356 1.616 0.753 0.953 0.982

Training RMSE 5.048 9.454 2.113 0.707 0.798 3.396 1.142 0.561 0.684 0.691

GF 1.910 1.368 1.536 2.740 1.611 1.646 2.003 1.802 1.942 2.023

DTE

Testing RMSE 7.548 11.006 2.312 1.272 1.139 3.529 1.224 0.877 0.930 0.917

Training RMSE 6.068 8.985 2.108 1.252 1.100 2.960 1.064 0.783 0.815 0.855

GF 1.547 1.500 1.204 1.032 1.072 1.422 1.325 1.254 1.301 1.151

RF

Testing RMSE 7.524 11.334 1.536 0.507 0.656 2.001 0.758 0.571 0.523 0.465

Training RMSE 3.057 4.842 0.736 0.217 0.254 0.542 0.335 0.220 0.208 0.220

GF 6.056 5.480 4.356 5.430 6.661 13.611 5.110 6.759 6.320 4.485

SVRE

Testing RMSE 10.195 10.510 4.837 4.717 3.661 9.197 3.731 3.512 3.392 3.445

Training RMSE 10.566 10.944 5.040 4.943 3.827 9.566 3.832 3.657 3.535 3.530

GF 0.931 0.922 0.921 0.910 0.915 0.924 0.948 0.922 0.921 0.953

NNE

Testing RMSE 10.214 16.454 3.303 2.959 2.242 8.640 2.229 2.050 2.137 2.467

Training RMSE 10.015 10.632 3.398 3.075 2.199 4.100 2.007 1.811 1.819 2.255

GF 1.040 2.395 0.945 0.926 1.040 4.441 1.233 1.282 1.380 1.197
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 6.889 10.919 2.484 1.014 0.855 4.009 1.488 0.715 0.873 0.826

Training RMSE 4.408 8.120 1.759 0.580 0.601 2.730 0.958 0.458 0.521 0.538

GF 2.443 1.808 1.994 3.055 2.023 2.156 2.412 2.431 2.808 2.356

DThte

Testing RMSE 7.319 10.646 2.221 1.306 1.225 3.408 1.302 0.908 0.996 0.787

Training RMSE 5.572 8.138 1.933 1.298 1.182 2.902 1.111 0.828 0.872 0.683

GF 1.726 1.712 1.320 1.012 1.075 1.379 1.374 1.203 1.306 1.327

SVRhte

Testing RMSE 10.171 10.542 3.666 3.651 2.749 8.850 3.107 2.704 2.565 2.536

Training RMSE 10.364 10.906 3.815 3.810 2.881 9.191 3.024 2.718 2.594 2.586

GF 0.963 0.934 0.924 0.918 0.911 0.927 1.055 0.990 0.978 0.962

NNhte

Testing RMSE 10.422 12.949 3.268 2.787 2.011 6.744 2.226 1.485 1.664 2.094

Training RMSE 9.947 10.644 3.388 2.841 1.908 3.730 2.015 1.181 1.437 1.742

GF 1.098 1.480 0.931 0.962 1.111 3.269 1.221 1.581 1.341 1.445

HTEsm

Testing RMSE 6.744 12.077 2.067 0.767 0.902 2.276 0.955 0.623 0.729 0.538

Training RMSE 4.931 9.307 1.510 0.548 0.625 1.032 0.588 0.414 0.413 0.422

GF 1.871 1.684 1.873 1.963 2.081 4.868 2.645 2.261 3.124 1.624

HTEdf

Testing RMSE 6.832 10.671 1.863 1.104 1.089 2.799 1.120 0.951 0.940 0.890

Training RMSE 4.092 7.127 1.441 1.070 0.982 2.156 0.994 0.909 0.869 0.839

GF 2.788 2.242 1.671 1.065 1.231 1.685 1.270 1.094 1.172 1.127
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Air Quality Dataset

Table I.8: Ensemble Performance on Feature Subsets of the Air Quality Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 37.959 24.018 29.381 21.541 18.993 18.916 19.127 19.308 19.300 19.557

Training RMSE 34.861 17.492 23.457 14.454 13.713 13.525 14.174 13.563 13.604 13.617

GF 1.186 1.885 1.569 2.221 1.918 1.956 1.821 2.027 2.012 2.063

DTE

Testing RMSE 36.675 24.895 30.892 23.674 21.054 19.848 20.494 20.937 20.463 19.684

Training RMSE 34.091 16.004 20.556 12.814 12.215 12.151 11.938 11.530 11.785 11.277

GF 1.157 2.420 2.259 3.413 2.971 2.668 2.947 3.297 3.015 3.047

RF

Testing RMSE 37.936 24.423 28.180 20.266 17.749 17.146 17.233 16.979 16.401 16.299

Training RMSE 33.478 9.575 12.715 7.605 6.933 7.072 7.232 6.407 6.575 6.569

GF 1.284 6.506 4.912 7.102 6.554 5.878 5.678 7.022 6.223 6.156

SVRE

Testing RMSE 41.756 39.616 37.452 34.970 31.922 32.321 31.214 30.063 29.562 27.998

Training RMSE 40.119 36.795 36.158 33.045 29.995 30.824 29.718 28.194 27.882 26.763

GF 1.083 1.159 1.073 1.120 1.133 1.100 1.103 1.137 1.124 1.094

NNE

Testing RMSE 35.708 28.278 29.241 23.204 20.404 21.345 18.838 20.222 18.232 17.389

Training RMSE 35.520 23.972 28.613 21.583 18.948 19.975 18.102 18.326 17.187 16.542

GF 1.011 1.391 1.044 1.156 1.160 1.142 1.083 1.218 1.125 1.105
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 37.765 23.535 28.793 20.879 18.537 18.347 18.746 18.592 18.668 18.846

Training RMSE 34.560 15.169 20.406 12.342 11.725 11.593 12.170 11.583 11.569 11.593

GF 1.194 2.407 1.991 2.862 2.499 2.504 2.373 2.576 2.604 2.643

DThte

Testing RMSE 36.492 23.281 26.940 20.254 18.944 18.073 18.199 18.117 18.047 17.515

Training RMSE 33.872 12.241 17.277 9.871 9.938 10.089 9.614 9.086 9.069 9.219

GF 1.161 3.617 2.431 4.210 3.633 3.209 3.583 3.976 3.960 3.610

SVRhte

Testing RMSE 38.895 32.438 32.331 28.531 25.465 25.772 24.974 24.648 24.078 22.766

Training RMSE 38.070 30.801 31.608 26.549 23.615 24.434 23.549 22.778 22.465 21.689

GF 1.044 1.109 1.046 1.155 1.163 1.113 1.125 1.171 1.149 1.102

NNhte

Testing RMSE 35.621 28.430 28.985 21.646 19.389 19.921 18.784 21.480 18.127 17.586

Training RMSE 35.481 23.403 28.541 20.332 18.269 18.861 17.983 18.998 17.124 16.740

GF 1.008 1.476 1.031 1.133 1.126 1.116 1.091 1.278 1.121 1.104

HTEsm

Testing RMSE 36.135 22.426 27.020 19.367 16.860 16.493 17.176 16.379 16.531 16.020

Training RMSE 33.899 15.912 20.439 13.083 11.605 11.627 11.909 11.250 11.253 10.731

GF 1.136 1.986 1.748 2.191 2.111 2.012 2.080 2.120 2.158 2.229

HTEdf

Testing RMSE 36.428 22.548 26.789 19.061 16.765 16.463 16.510 16.168 16.020 15.987

Training RMSE 33.763 13.936 18.275 10.915 10.215 10.845 10.337 9.457 9.497 9.580

GF 1.164 2.618 2.149 3.050 2.694 2.305 2.551 2.923 2.846 2.785
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Bike Sharing Dataset

Table I.9: Ensemble Performance on Feature Subsets of the Bike Sharing Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 170.247 181.874 88.777 35.457 94.332 31.292 101.679 41.458 44.501 45.708

Training RMSE 179.366 181.860 75.998 20.747 77.297 20.055 84.502 30.963 34.494 34.897

GF 0.901 1.000 1.365 2.921 1.489 2.435 1.448 1.793 1.664 1.716

DTE

Testing RMSE 159.503 169.474 84.366 26.494 82.581 21.285 80.870 23.210 22.331 21.550

Training RMSE 167.387 168.642 81.467 20.171 74.648 15.337 74.723 15.275 15.251 14.308

GF 0.908 1.010 1.072 1.725 1.224 1.926 1.171 2.309 2.144 2.268

RF

Testing RMSE 159.589 170.072 91.680 26.920 78.332 18.553 74.815 19.661 18.330 18.394

Training RMSE 167.418 167.818 55.962 13.690 33.722 8.005 31.867 8.066 8.261 7.930

GF 0.909 1.027 2.684 3.867 5.396 5.371 5.512 5.941 4.924 5.380

SVRE

Testing RMSE 169.227 173.545 145.278 72.014 141.126 54.832 140.125 49.652 50.298 51.989

Training RMSE 177.466 179.795 156.105 71.025 151.949 54.529 151.424 49.697 52.698 52.218

GF 0.909 0.932 0.866 1.028 0.863 1.011 0.856 0.998 0.911 0.991

NNE

Testing RMSE 162.499 168.949 93.116 24.479 73.978 19.391 73.752 20.182 17.673 18.179

Training RMSE 170.034 173.537 98.005 23.970 73.309 19.077 74.624 17.897 17.840 17.490

GF 0.913 0.948 0.903 1.043 1.018 1.033 0.977 1.272 0.981 1.080
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 168.327 180.380 86.316 35.633 89.725 30.225 96.706 39.694 40.908 42.400

Training RMSE 178.397 179.549 69.078 18.508 65.276 16.902 71.214 25.435 28.386 28.658

GF 0.890 1.009 1.561 3.707 1.889 3.198 1.844 2.436 2.077 2.189

DThte

Testing RMSE 159.930 168.526 86.926 26.722 79.339 21.302 78.514 23.831 22.108 21.542

Training RMSE 168.514 169.657 70.780 17.627 58.276 15.012 58.343 17.461 16.152 14.374

GF 0.901 0.987 1.508 2.298 1.853 2.014 1.811 1.863 1.874 2.246

SVRhte

Testing RMSE 176.211 176.130 153.912 112.723 150.452 97.222 148.482 88.903 85.716 86.378

Training RMSE 183.113 181.908 165.407 108.977 161.663 96.407 160.111 90.986 89.800 87.947

GF 0.926 0.937 0.866 1.070 0.866 1.017 0.860 0.955 0.911 0.965

NNhte

Testing RMSE 162.442 168.668 83.022 24.523 78.617 20.409 76.790 21.418 17.447 18.819

Training RMSE 170.108 173.549 88.172 24.001 79.462 20.074 77.904 17.600 17.489 18.150

GF 0.912 0.945 0.887 1.044 0.979 1.034 0.972 1.481 0.995 1.075

HTEsm

Testing RMSE 159.782 167.834 81.879 24.532 75.105 17.885 71.665 19.424 17.531 17.230

Training RMSE 167.680 168.889 66.728 16.503 56.239 12.017 51.429 11.197 11.066 10.519

GF 0.908 0.988 1.506 2.210 1.783 2.215 1.942 3.009 2.510 2.683

HTEdf

Testing RMSE 160.032 167.621 80.565 24.427 73.788 19.273 71.346 19.134 17.227 17.238

Training RMSE 167.823 169.039 73.996 19.047 61.937 14.661 60.336 12.261 12.426 11.851

GF 0.909 0.983 1.185 1.645 1.419 1.728 1.398 2.435 1.922 2.116
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Gas Turbine Dataset

Table I.10: Ensemble Performance on Feature Subsets of the Gas Turbine Dataset

Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNE

Testing RMSE 11.944 9.921 8.580 7.847 7.371 6.002 5.983 5.422 5.883 5.086

Training RMSE 10.947 8.032 6.612 6.071 5.668 4.286 4.412 3.181 3.433 3.268

GF 1.190 1.526 1.684 1.671 1.691 1.961 1.839 2.905 2.937 2.423

DTE

Testing RMSE 11.241 10.108 9.476 8.511 8.195 7.677 7.131 6.795 6.669 6.380

Training RMSE 10.846 8.532 7.367 7.118 6.258 5.502 5.304 4.250 4.154 4.057

GF 1.074 1.403 1.654 1.429 1.715 1.947 1.807 2.556 2.578 2.473

RF

Testing RMSE 11.826 10.351 8.733 7.538 6.848 6.163 5.657 5.378 5.067 4.814

Training RMSE 10.412 4.269 3.446 3.081 2.791 2.332 2.180 1.776 1.726 1.695

GF 1.290 5.880 6.421 5.985 6.019 6.981 6.734 9.169 8.623 8.069

SVRE

Testing RMSE 11.529 9.786 11.290 10.541 10.001 9.945 9.345 8.425 8.228 7.356

Training RMSE 11.648 9.741 11.247 10.031 9.325 8.526 8.295 6.576 6.641 6.177

GF 0.980 1.009 1.008 1.104 1.150 1.361 1.269 1.642 1.535 1.418

NNE

Testing RMSE 11.189 9.322 8.975 8.687 8.320 7.233 6.275 5.836 6.658 5.655

Training RMSE 11.316 9.208 8.558 8.719 7.251 6.442 5.887 5.178 4.980 4.860

GF 0.978 1.025 1.100 0.993 1.316 1.261 1.136 1.270 1.788 1.354
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Measure
Feature Subsets %

10 20 30 40 50 60 70 80 90 100

kNNhte

Testing RMSE 11.870 9.801 8.442 7.667 7.168 5.825 5.811 5.278 5.645 4.857

Training RMSE 10.887 6.946 5.694 5.209 4.865 3.658 3.758 2.692 2.880 2.742

GF 1.189 1.991 2.198 2.167 2.171 2.536 2.390 3.844 3.841 3.138

DThte

Testing RMSE 11.121 9.371 8.426 7.716 7.212 6.775 6.222 5.965 5.683 5.451

Training RMSE 10.644 6.866 5.939 5.835 5.148 4.435 4.260 3.543 3.360 3.378

GF 1.092 1.863 2.013 1.748 1.963 2.333 2.134 2.835 2.862 2.604

SVRhte

Testing RMSE 11.518 9.512 10.787 10.035 9.580 8.912 8.236 7.408 7.490 6.410

Training RMSE 11.628 9.435 10.698 9.802 9.136 7.916 7.593 6.110 6.124 5.649

GF 0.981 1.016 1.017 1.048 1.099 1.268 1.177 1.470 1.496 1.287

NNhte

Testing RMSE 11.212 9.331 8.701 8.008 7.683 7.112 6.118 5.708 5.560 4.889

Training RMSE 11.331 9.206 8.251 8.069 7.185 6.540 5.815 4.978 4.573 4.148

GF 0.979 1.027 1.112 0.985 1.144 1.182 1.107 1.315 1.478 1.389

HTEsm

Testing RMSE 11.084 9.275 8.329 7.485 6.962 5.972 5.549 5.366 5.339 4.764

Training RMSE 10.733 7.915 6.928 6.461 5.832 4.554 4.427 3.559 3.602 3.343

GF 1.066 1.373 1.445 1.342 1.425 1.720 1.571 2.273 2.198 2.031

HTEdf

Testing RMSE 11.128 9.314 8.239 7.405 6.775 5.923 5.568 5.521 5.163 4.558

Training RMSE 10.656 7.237 6.280 5.804 5.292 4.339 4.147 3.403 3.175 3.004

GF 1.090 1.656 1.721 1.628 1.639 1.863 1.803 2.632 2.644 2.302
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