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Abstract 
 

Integration of Digital Twins and 

Virtual Reality for Data Visualisation  

G.S. da Silva 

 

Department of Mechanical and Mechatronic Engineering 
Stellenbosch University 

Thesis: MEng (Mechatronic Engineering) 
December 2022 

This thesis considers an integration of digital twins (DTs) and virtual reality (VR) for 
enhancing the data driven decision-making process. An integrated DT and VR 
system is designed according to an available complex DT system design 
framework. The Six Layer Architecture for Digital Twins with Aggregation (SLADTA) 
is used for the internal architecture of the DTs in the system. A custom developed 
VR application is used to visualise the information using VR equipment. 

The Facilities Management (FM) Division at Stellenbosch University serves as the 
chosen case study context for the evaluation. The energy usage information for 
various facilities of FM is visualised in VR. The DT method of transferring 
information to VR is compared to a method that does not make use of DTs. 

Three experiments are used to evaluate the two implementation methods to allow 
for an adequate comparison of the two methods. The experiments focus on, 
respectively, latency, computer resource utilisation (in terms of RAM and CPU 
usage), and reconfigurability when a new feature is to be added to the system. The 
experiment results indicate that the DT method has lower latencies, the two 
methods have similar computational resource needs, and the non-DT method is 
more reconfigurable than the DT method.  

However, the DT method offers other advantages such as allowing for two VR 
experiences to visualise the same information, or allowing for a different 
visualisation tool, other than VR, to be integrated seamlessly into the system. The 
DT method also allows for a distributed operation functionality that reduces the 
computational load required from a single hardware device. The Non-DT method 
does not offer such advantages. The thesis concludes that the integration of DTs 
and VR for data visualisation is possible and is favourable for a system that will not 
only use VR as a data visualisation means.  
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Desember 2022 

Hierdie tesis oorweeg 'n integrasie van digitale tweelinge (DT’e) en virtuele 
realiteit (VR) vir die verbetering van die data-gedrewe besluitnemingsproses. 'n 
Geïntegreerde DT- en VR-stelsel is ontwerp volgens 'n beskikbare 
ontwerpraamwerk vir komplekse DT-stelsels. Die Six Layer Architecture for Digital 
Twins with Aggregation (SLADTA) word gebruik vir die interne argitektuur van die 
DT’e in die stelsel. 'n Pasgemaakte VR-toepassing word gebruik om die inligting 
met behulp van VR-toerusting te visualiseer. 

Die Afdeling Fasiliteitsbestuur (FB) aan die Universiteit Stellenbosch dien as die 
gekose gevallestudiekonteks vir die evaluering. Die inligting oor energieverbruik 
vir verskeie fasiliteite van FB word in VR gevisualiseer. Die DT-metode om inligting 
na VR oor te dra, word vergelyk met 'n metode wat nie van DT’e gebruik maak nie. 

Drie eksperimente word gebruik om die twee implementeringsmetodes te 
evalueer om 'n voldoende vergelyking van die twee metodes moontlik te maak. 
Die eksperimente fokus op, onderskeidelik latensie, rekenaarhulpbronbenutting 
(in terme van geheue- en mikroverwerker-gebruik), en herkonfigureerbaarheid 
wanneer 'n nuwe kenmerk by die stelsel gevoeg moet word. Die eksperimente se 
resultate dui aan dat die DT-metode laer latensie het, die twee metodes 
soortgelyke berekeningshulpbronbehoeftes het, en die nie-DT-metode meer 
herkonfigureerbaar as die DT-metode is. 

Die DT-metode bied egter ander voordele, soos om twee VR-ervarings toe te laat 
om dieselfde inligting te visualiseer, of om toe te laat dat 'n ander 
visualiseringsinstrument, anders as VR, naatloos in die stelsel geïntegreer word. 
Die DT-metode maak ook voorsiening berekeningslading te versprei wat die 
berekeningslading wat van 'n enkele hardeware-toestel benodig word, verminder. 
Die nie-DT metode bied nie sulke voordele nie. Die tesis kom tot die gevolgtrekking 
dat die integrasie van DT'e en VR vir datavisualisering moontlik en gunstig is vir 'n 
stelsel wat nie net VR as 'n datavisualiseringsmiddel sal gebruik nie. 
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1 

1 Introduction 

1.1 Background 

Industry 4.0 is the fourth industrial revolution that is related to concepts such as 
the Internet of Things (IoT), Cyber Physical Systems (CPSs) and Digital Twins (DTs). 
In essence, a DT is an accurate digital representation, in a digital environment, of 
a physical model (Redelinghuys et al., 2019). Along with a DT being a virtual 
representation of a physical model, the DT is able to support the prediction and 
operation of the physical model throughout its lifecycle (Malik et al., 2020). 

The use of DTs typically results in the recording of a vast amount of information. 
This information is not just recorded to have the operational history of a DT, but 
also to make informed decisions for the physical system relating to the DT. This 
results in a data driven decision-making process, where previously recorded data 
is used, in conjunction with previous experience and domain knowledge, to make 
a decision for a particular system. 

The advancement of technology has also seen the development of various virtual 
technologies such as augmented reality (AR) and virtual reality (VR). VR places the 
user in a 3D environment where, with the aid of the appropriate equipment, they 
are able to move around and interact with elements in the 3D environment. VR is 
currently mostly used in the computer or console gaming industry. However, the 
question arises of how VR can be used to aid and advance industries outside of the 
gaming industry. 

At the most basic level, VR can be seen as a way of visualising information. This 
introduces the concept of using this visualisation medium to visualise information; 
specifically the information obtained by DTs. Current research into this area is 
fairly scarce as it is a concept that is in its infancy. An unanswered question is 
whether using VR to visualise DT information will be more advantageous than viewing 
the information using conventional methods, such as a PC monitor; or whether VR will 
bring additional complexities and challenges that outweigh possible advantages. The 
answer to this question is context specific and will require careful investigation. This 
thesis, therefore, does not address this question. Another question is whether DTs 
can aid the information visualisation process in VR. This second question is 
considered in this thesis.  

The Mechatronics, Automation, and Design Research Group (MADRG) at 
Stellenbosch University’s Department of Mechanical and Mechatronic Engineering 
focusses on enabling Industry 4.0 for the South African context. The research 
group focuses especially on the IoT and CPS concepts of Industry 4.0. DTs form an 
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integral part of CPSs and the research group believes that DTs can “improve the 
global competitiveness of South African enterprises, while addressing important 
social concerns” (Kruger, n.d.). As a result, the research group has been 
responsible for developing DT implementations in various industries. Some of the 
implementations being in the manufacturing and maritime industries, as was 
compared by Taylor et al. (2020) who are also members of MADRG. The research 
group also developed the Six Layer Architecture for Digital Twins with Aggregation 
(SLADTA) (Redelinghuys et al., 2019) where, using this architecture, a DT can 
logically and effectively be implemented in the scenario of a manufacturing cell. 
However, SLADTA has the potential to be used in other implementations and not 
just for a manufacturing cell context.  

1.2 Objectives 

The main objective of the research is to evaluate the integration of DTs and VR to 
support data driven decision-making for complex systems.  

This study includes using existing DT system concepts and newly developed 
concepts to identify and evaluate possible opportunities that exist with the 
integration of DTs and VR. Integration refers to the manner in which a DT, and its 
information, will most effectively be interfaced with VR so that the two 
technologies may complement one another; such as the contextualisation of DT 
data in a VR space to enable using previously recorded information to make an 
informed decision for the future of a complex system.  

The research focuses on only transferring information for visualisation to VR and 
does not include making changes to a physical system using VR. The research 
works from an existing DT architecture (SLADTA). The research’s objective of 
integrating VR and DTs uses the Facilities Management Division at Stellenbosch 
University as a case study for evaluation. This division is responsible for overseeing 
the operations of complex facilities, such as a university campus. The ideas and 
concepts generated in this research were created to be used more generally than 
only for a facilities management division implementation. 

1.3 Motivation 

VR is growing in use as a visualisation tool that enhances the data visualisation and 
decision-making process. However, the need to effectively transfer information 
into a VR environment is rising and remains largely unexplored. This research 
allows for an effective method of transferring information, through the use of DTs, 
to the VR environment to be investigated. 
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The DT concept, inherently, requires the ordering of large quantities of data for 
the purposes of making better decisions for a physical system. DTs, therefore, 
provide a possible means to then also be used to transfer information to VR. This 
DT method of transferring information to VR could rival, what could be considered, 
a more “conventional” method of transferring information. However, a 
comparison of the two methods is required to determine the extent of this rivalry. 

Facilities management, with specific focus on the facilities management division 
at Stellenbosch University, is a suitable case study context for evaluation of 
integrating DTs and VR because it is a complex system, with many components 
and complex relationships. DTs can provide an accurate and near-real time 
reflection of reality which, for facilities management, is vital for decision-making. 
This presents an opportunity of DTs to be used in this context to accurately reflect 
this complex system. The opportunity of using VR for data visualisation to aid in 
the data driven decision-making process for facilities management is also present 
as large amounts of data about various facilities is recorded for decision-making 
purposes. These opportunities indicate the possibility and need for an effective DT 
and VR integrated system in the facilities management context. 

The selection of SLADTA, mentioned in Section 1.2, as the internal architecture for 
DTs in a system is supported by the implementations of Redelinghuys (2020) and 
Human (2022). SLADTA has been shown to aid with logically separating a physical 
system into hierarchical components, whose information can then be aggregated 
and used for decisions. This hierarchical separation and aggregation are concepts 
that are applicable to the facilities management context, further supporting the 
selection of SLADTA as the internal architecture for the DTs.  

The current study is a steppingstone to highlight the potential of using DTs to aid 
a VR experience for data visualisation and decision-making. During this study, VR 
is used purely as a visualisation tool. However, the technology has the potential to 
also be interactive and have bi-directional communication, where the physical 
system of a DT can be altered by a user interacting with the DT in a VR 
environment, and vice versa. 

1.4 Methodology and Overview 

This study investigates the opportunities for a data driven decision-making process 
that can be improved by the integration of DTs and VR. A literature review, 
provided in Chapter 2, is first conducted to gain insight into the current research 
of DTs and VR, and how these concepts fit into the broader context of Industry 4.0. 
The literature review contains information regarding DTs, the design of complex 
DT systems, SLADTA, the VR technology and some of the uses of VR. This literature 
review is used to provide valuable insight into how these concepts can relate to 
one another and what research has previously been conducted on these concepts. 

Stellenbosch University https://scholar.sun.ac.za



 

4 

Chapter 3 indicates various opportunities and challenges, associated with using 
DTs and VR, that are identified. New concepts of how to use VR and DTs together 
are developed and formulated based on these identified opportunities and 
challenges. These new concepts primarily focus on how the integration of VR and 
DTs can potentially be beneficial and advantageous in a data driven decision-
making process. Facilities under the authorisation of the Facilities Management 
Division at Stellenbosch University are used in the implementation case study. The 
case study is selected, from the facilities management context, based on how well 
the integration of VR and DTs can be displayed in the case study. The selection and 
design of this case study is presented in Chapter 4. 

The DT system for this selected case study is implemented and integrated with VR 
to enable a user to visualise facility information. A non-DT method for visualising 
the same facility information in VR is also implemented. Both implementations 
produce the same output and have the same functionality. The two 
implementations are compared and reviewed to determine the advantages, if any, 
of integrating DTs and VR for the data driven decision-making process. The DT and 
VR integration also shows the use of SLADTA as a possible internal architecture for 
the DT system. The implementations do not allow for changes to be made to 
facilities in the case study using VR. The details regarding the two 
implementations, as well as the VR application, are provided in Chapter 5. 

The selected case study only uses the energy usage information for the various 
facilities in the system. This information is reliably available and constantly being 
updated, unlike other utility usage information. The use of only energy usage 
information of the facilities allows for the concept of integrating DTs and VR to be 
showcased, and the addition of other information for visualisation would have had 
very little benefit. The case study is focused only on the main campus, located in 
Stellenbosch, for Stellenbosch University. The selected campus is sufficient in 
displaying the integration of DTs and VR with various system hierarchical levels. 
Stellenbosch University, as a whole, is not selected because this additional level in 
the system hierarchy provides little benefit for the subsequently increased 
complexity of the system. 

In Chapter 6, the case study implementations are evaluated using different 
metrics, such as system latency, computational resource utilisation, and system 
reconfigurability. The evaluation results of the two implementation methods are 
used to determine whether the use of a DT and VR system for the data driven 
decision-making process is, indeed, beneficial or not. Chapter 7 discusses the 
various components and outcomes of the research. Any possible areas for further 
work are also provided in this chapter. A conclusion, recalling the objectives of the 
research, is made based on these evaluation outcomes and is presented in 
Chapter 8. It is important to note that the research considers published work, as 
well as newly developed work, to achieve the objectives stated in Section 1.2. 
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2 Literature Review 

The chapter provides information of the various aspects that are used within this 
research. Digital twins are discussed, followed by a discussion for an existing 
design framework for designing complex DT systems. The internal DT architecture 
SLADTA is then discussed. The VR technology and its various components and uses 
are then discussed. The final section of the chapter is a discussion of how the 
various aspects relate to one another for the purposes of this research. 

2.1 Digital Twins 

Industry 4.0 is the result of many years of technological advancements. Some of 
these technologies include the Internet of Things and Cyber Physical Systems. 
Using these technologies, opportunities for greater levels of productivity are seen 
in the concept of digitalisation in manufacturing (Uhlemann, et al., 2017). Industry 
4.0 technologies allow for intelligent components to become easily 
interconnected and the components to be integrated (Negri et al, 2017). The 
digital technologies have enabled the idea of virtual product and process planning. 
This results in a vast amount of data being collected, stored, and analysed to make 
decisions (Kritzinger, et al., 2018). 

The DT concept is a concept that has arisen due to the advancement of Industry 
4.0 technologies. The term DT had first been used by Grieves in 2002. The term 
was used in a presentation of product lifecycle management (PLM) in an industry 
context (Grieves & Vickers, 2017). Grieves and Vickers (2017) stated that a DT is a 
“digital informational construct about a physical system, created as an entity on 
its own and linked with the physical system in question”. Included in the DT should 
be any information within the physical system that could be obtained by viewing 
the system in the real world (Grieves & Vickers, 2017). The DT concept was also 
mentioned with regards to use for future NASA and U.S. Air Force vehicles where 
the definition of a DT was “an integrated multi-physics, multi-scale, probabilistic 
simulation of a complex product and uses the best available physical models, 
sensor updates, etc., to mirror the life of its corresponding [physical] twin” 
(Glaessgen & Stargel, 2012). 

A key feature and benefit of a DT is to be able to provide data in a consistent 
format. DTs are not simply just data; they include algorithms that are able to 
reflect their physical twin and make decisions based on processed data. A 
definition of a DT is that it is the digital counterpart/representation/reflection of 
a physical system. However, it has been identified that the terms Digital Model, 
Digital Shadow, and DT are being used interchangeably (Kritzinger et al., 2018). 
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The terms Digital Model, Digital Shadow, and DT can be seen to differ in the level 
of the data interaction between the physical twin and the DT, as illustrated in 
Figure 1.  

A Digital Model refers to a digital representation of a physical system that does 
not make use of an automated data transfer between the physical system and the 
digital representation. A change in the physical system will have no direct impact 
on the digital representation or the other way around (Kritzinger et al., 2018). 

A Digital Shadow refers to when there is an automated flow in one direction, from 
the physical system to the digital representation, but the opposite direction of 
data flow is still manual. A change in the physical system results in an automatic 
change in the digital representation but not conversely (Kritzinger et al., 2018). 

If the data flow between the physical system and the digital representation are 
fully automated in both directions, the digital representation is deemed to be a 
DT. The digital representation could be acting as a controlling instance for the 
physical system. A change in the physical system will result in a change in the 
digital representation and the other way around (Kritzinger et al., 2018). 

 

Figure 1: Digital representation term data flows (Adapted from Kritzinger et al., 
2018) 

Due to the differences in the level of interaction between a physical system and 
its corresponding digital representation, the technologies needed for each 
implementation varies. The general technologies required are: simulation 
methods, communication protocols, and other technologies that form part of 
Industry 4.0 (IoT, Cloud Computing, Big Data, etc.) (Kritzinger et al., 2018). 
Kritzinger et al. (2018) show that the concept and development of DTs is still in its 
infancy because most literature consists only of having concepts of DT 
technologies and not having any suitable case-study implementations. 

Some advantages of DTs are that they can provide accurate representation or 
simulation for system components. DTs can act as a processing-monitoring tool 
for a user to be able to predict potential incidents, identify failures and can be used 
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to optimise the system. The realistic representation of a physical system using a 
DT allows for this optimisation aspect to provide realistic outcomes for the system 
(Havard et al., 2019). 

The definition of a DT in this research is a virtual representation of a physical 
system, where the DT is seen as an entity that can communicate with the physical 
system. 

2.2 Complex Digital Twin System Design Framework 

The “DT” of a complex system is also complex, to the extent that it can be referred 
to as a “complex DT system”. The design of such a complex DT system requires 
various aspects to be taken into account for implementation in a given context 
with desired functionality being required. A framework was developed by Human 
(2022) for designing complex DT systems, and this section reviews this design 
framework. This is a suitable complex DT design framework as SLADTA, required 
in this research (Section 1.2), is already considered and used in the framework. No 
other alternative, yet comparable design frameworks could be found in literature. 

The framework was developed to provide general principles to be used to design 
a DT system architecture, with some recommended implementation decisions, for 
managing complex physical systems. These complex systems are seen as a large 
network containing many components that result in complex behaviour and 
information processing, and require adaptation or evolution (Human, 2022). DTs, 
especially DTs with aggregation, are seen as a potential solution to managing these 
complex systems. Human (2022) states that the purpose of the design framework 
is “to enable systematic, effective decisions when designing a system of DTs to 
represent a complex physical system”. 

Figure 2 illustrates the design framework, which is divided into the Problem space 
and the Solution space. The Problem space receives the user’s requirements and 
the physical system as inputs. Specified design steps are then followed, and the 
output of the Problem space is then used as input for the Solution space. The 
output of the Problem space is a list of system functional requirements, a list of 
non-functional requirements, a hierarchical physical system decomposition, and 
the characterisation of the data present in the system. Functional requirements 
are the functions in a system that will achieve the user requirements. Non-
functional requirements are how or how well these functional requirements are 
achieved (Human, 2022). 
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Figure 2: Complex DT design framework (Human, 2022) 

The design process steps for the Solution space are then followed and the output 
for this space is the overall system architecture. Once the overall system 
architecture has been designed and implemented, various validation and 
verification tests are carried out to determine whether the user’s needs are met 
and to what degree they have been met. The Solution space development begins 
with identifying the services required in the system to meet the functional and 
non-functional requirements from the Problem space. Using the hierarchical 
physical system decomposition, DTs are derived to reflect the physical reality. The 
identified services are then allocated to the DTs in the system or to a services 
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network. The Shared Services component is a set of services, including the services 
network, offered to, or “shared” by the DT components in the system. The Shared 
Services component of the DT system could contain various system management 
services in addition to the services network, such as a service gateway, a directory 
service, an orchestration service, etc. These additional services are used to aid the 
operational aspects of the DT system. 

Human (2022) gives a number of design patterns and implementation 
considerations that guides the design in ensuring that the implemented system is 
able to achieve, firstly, the user requirements and, secondly, any additional system 
requirements that might not be directly stated in the user’s requirements. A 
design pattern is a set of architecture and implementation recommendations that 
prioritise certain system requirements. Human (2022) identified six design 
patterns for, respectively, performance efficiency, reliability, maintainability, 
compatibility, portability, and security.  

Before implementation details are considered, an overall DT system architecture 
and an internal structure for the DTs must be selected. Human (2022), and this 
research (as stated in Section 1.2), used SLADTA as the internal structure of the 
DTs and the reference architecture shown in Figure 3 for the overall architecture. 

After design, the overall system architecture must then be implemented, and 
various validation and verification evaluations should be carried out to determine 
if the system achieves all of the user requirements provided at the start of the 
design phase. This evaluation phase could also be used to determine to what 
degree, or how well, the requirements are achieved by the system. 

It must be noted that during the design process, iteration between phases is 
required to ensure that the correct system is designed. The final system 
architecture might not be fully designed during the first iteration as some 
considerations and implementation selections could affect other selections made 
previously in the design process. 

Human (2022) used the framework to design architectures for three different 
complex system case studies, i.e. a water distribution system, a smart city, and a 
heliostat field. The water distribution system and smart city case studies were 
more high-level case studies, while the heliostat field case study was more in-
depth and showed detailed application of the framework. The architecture for the 
heliostat field complex system was implemented to validate the design 
framework. The evaluation of the heliostat field case study showed that the 
framework was "able to guide the design of a feasible architecture for a system of 

DTs” (Human, 2022). This supports the notion of the design framework being able to 
be applied more generally to other contexts. 
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Figure 3: Design reference architecture (Human, 2022) 

2.3 Six Layer Architecture for Digital Twins with 
Aggregation 

As mentioned previously, the Six Layer Architecture for Digital Twins with 
Aggregation (SLADTA) is used as the internal architecture for the DTs in the 
system. An alternative architecture to SLADTA that could be considered is the 
architecture developed by Borangiu et al. (2020). The two architectures are briefly 
compared at the end of this section. 

SLADTA is an adaptation of the Six Layer Architecture for Digital Twins (SLADT), 
which has been configured to allow for the aggregation of DTs. SLADT was initially 
developed for the implementation of a DT of a manufacturing cell (Redelinghuys, 
2020). Figure 4 shows the basic structure of SLADT. 
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Figure 4: SLADT reference architecture layout (Redelinghuys et al., 2019) 

Figure 4 shows the data and information flow from a physical twin (Layer 1) to 
long-term storage, typically hosted in the cloud, but also locally (Layer 5). The 
information can also flow in the other direction from the cloud to the physical 
twin. Layer 4 contains functionality to convert data into information before it is 
sent to Layer 5. Layer 6 contains the simulation or emulation software that uses 
the information provided by the physical twin (Redelinghuys et al., 2018). Each 
layer of SLADT, Layer 1 to Layer 6, is expanded on below. 

Layer 1 contains the different physical devices (sensors and actuators) that can be 
used to provide information to the controllers in Layer 2. These devices provide 
information related to the physical twin and they are seen as being a part of the 
physical twin. Layer 2 is seen as a distinct layer because, although the controllers 
are connected to the physical twin, they are able to supply specific functionality 
to the DT. They transfer the data to Layer 3 (Redelinghuys et al., 2018). 

Layer 3 contains short-term local repositories of the stored data for the physical 
twin. These local repositories are located near the physical twin. This layer is 
supposed to be able to support vendor neutral integration, such as an OPC UA 
server that can be used to transfer and collect the data (Redelinghuys et al., 2018).  

Layer 4 is the gateway between the physical twin and the cyber world. This layer 
converts the data stored in Layer 3 into information that is stored in Layer 5 and 
used in Layer 6 (Redelinghuys et al., 2018). The layer is custom developed software 
and, as mentioned previously, can be used to provide some specific functionality 
to the DT using the data from Layer 3 and, possibly, Layer 5. 

Layer 5 includes cloud-based or local database servers that are used as a long-term 
information repository for the information obtained regarding the physical twin 
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and the DT. The information stored is generally the history of the physical twin and 
the physical twin’s current or latest state (Redelinghuys et al., 2018). This 
information, along with the data in Layer 3 is used in the emulation or simulation 
software that is present in Layer 6, as seen in Figure 4. 

Layers 1 to 5 are seen as the infrastructure for the DT and the actual intelligence 
is provided in Layer 6. This layer should transfer information between the physical 
twin via the long-term cloud, or local repositories in Layer 5 or even the short-term 
local repositories in Layer 3 (Redelinghuys et al., 2018). Layer 6 is responsible for 
making decisions for the DT that will impact the physical twin. The decision will 
then be sent back through the architecture to the physical twin. 

SLADT was developed to be vendor neutral and allow for clear distinctions to be 
made between the roles of different layers in a DT architecture. SLADT was 
developed to allow for the use of off-the-shelf components without having to use 
a specific vendor. Redelinghuys (2020) showed that SLADT is useful for developing 
the DT of a physical twin in cyberspace. 

SLADT was only demonstrated for a single physical twin and was, therefore, 
adapted to allow for multiple DTs to be connected. This adaptation is called 
SLADTA and has the functionality to aggregate DTs for more complex systems. 

In SLADTA there are two types of DTs, i.e. digital twin instances (DTIs) and digital 
twin aggregates (DTAs). The two types were derived from, but differ from, other 
definitions (Grieves & Vickers, 2017). A DTI corresponds to the digital twin that is 
connected to the physical twin for the entirety of its lifespan. A DTA is the 
aggregation of various DTIs, as well as other DTAs. A DTI can be viewed as 
independent, but a DTA is dependent on other DTIs and DTAs (Grieves & Vickers, 
2017). Redelinghuys (2020) identified that there was a need for the idea of a 
“digital twin of twins”. This is the concept of a having an aggregation architecture 
for DTs.  

Figure 5 shows the architecture layout for SLADTA. In the architecture, every 
physical twin has its own DTI that comprises of a SLADT implementation with all 
six layers of the architecture. The higher-level twins (DTAs) only contain the 
relevant layers of SLADT, i.e. Layer 3 to Layer 6. The connection between DTs (DTIs 
and DTAs) occurs through Layer 3 of each DT. Layer 4 is used to manage the 
interactions between DTs, but the actual information is transferred between Layer 
3 of the DTs (Redelinghuys, 2020). Further developments using SLADTA (Human, 
Basson & Kruger, 2021), however, evaluated having DTs communicate with each 
other through Layer 4 which differs from the originally proposed architecture by 
Redelinghuys (2020). This new communication through Layer 4 approach, is more 
generally applicable (Human et al., 2021) and should, therefore, be implemented 
in place of the original design by Redelinghuys (2020). 
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Figure 5: Architecture layout of SLADTA (Adapted from Redelinghuys et al., 
2020) 

SLADTA is designed to be reconfigurable and flexible because large hierarchical 
structures can be costly to design, maintain and modify. SLADTA allows for the 
aggregation of information from different DTs, but also allows for the information 
to be segmented. Aggregating information from multiple DTs reduces the 
complexity by encapsulating the functionality of related information to each DT. 
Each DT can make its own decision and is flexible and intelligent (Redelinghuys, 
2020). These are some of the advantages of using SLADTA for DTs. 

A digital twin technology review (Juarez et al., 2021) showed that the architecture 
developed by Borangiu et al. (2020) is the most similar to SLADTA as provision is 
made for aggregation, but the architecture does not have some of the other 
advantages that are offered by SLADTA. The architecture developed by Borangiu 
et al. (2020) makes use of the aggregation concept as data is acquired in the first 
layer of the architecture and is then aggregated in the second layer to develop the 
process models represented in the DTs. The third and fourth layers of their 
architecture are responsible for the analysis and decision makingt of the DT. The 
area where the architecture is lacking compared to SLADTA is where SLADTA offers 
the possibility of a “digital twin of twins”, where available information is both 
segmented and aggregated. This “digital twin of twins” is not possible with the 
architecture of Borangiu et al. (2020) as the data received by the sensors is 
aggregated in the architecture without each physical twin having their own DT and 
then aggregating the information to other DTs like with SLADTA. This segmenting 
of information allows for a better representation of the physical as each element 
is represented by a DT. 
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2.4   Virtual Reality 

Virtual Reality (VR) is a newly developing technology that could be beneficial for 
use in the data visualisation and decision-making process. The technology has 
been available for a number of years, but due to recent developments, there has 
been an increase in the accessibility to visualisation tools like VR (Havard et al., 
2019). A brief overview of VR is provided next, followed by the hardware and 
software aspects for VR, and different uses of VR. 

2.4.1 Virtual Reality Overview 

VR is a digital artificial environment that a human’s senses will perceive to be real. 
The core of VR is to be able to create a near real environment. This environment 
should be able to simulate or present a physical environment in real time (Liagkou 
et al., 2019; Malik et al., 2020). A user in VR is able to enter an immersive 
interactive environment that interprets the user’s prompts to respond accordingly 
to the user’s behaviour (Sekaran et al., 2021). The main purpose of VR is to provide 
the user with a “multi-modal, close-to-reality experience”. Considering visual 
senses, VR is able to showcase the highest level of graphic benefits when 
considering the dynamic and immersive visualisation in comparison with VR’s 
visualisation method counterparts (Sekaran et al., 2021). Users are able to 
experience a virtual environment with high detail, allowing them to experience a 
fully immersive environment that cannot be achieved using a conventional 
desktop computer (Andersen et al., 2019). 

VR is characterised by three main aspects called the “3I’s” (Phoon et al., 2017): 

• Imagination – The user can participate in a scenario simulation which is 
created in a virtual environment. 

• Interaction – A VR system must be able to react to some actions or 
behaviours carried out by the user. 

• Immersion – A VR system must be both mentally and physically immersive. 
The mental immersion is achieved by the quality, in terms of rendering and 
simulation, of the environment that the user is experiencing. The physical 
immersion is accomplished by updating what the user is seeing in real-time 
according to their actions or prompts. 

In contrast to the above, some researchers divide VR into two categories, namely 
immersive and non-immersive VR. Non-immersive VR is when users can visualise 
models or information on a screen, for example desktop PC screens or widescreen 
projectors. Immersive VR often makes use of head mounted displays (HMDs) that 
allow a user to virtually “enter” and interact with an environment to visualise 
models or information. Nowadays, when VR is mentioned, it is mostly referring to 
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immersive VR (Malik et al., 2020). Figure 6 is an illustration of the spectrum of VR 
with regards to the level of immersion. 

In this thesis, the focus is on visual immersion and not the other senses.  

 

Figure 6: VR spectrum (Malik et al., 2020) 

2.4.2 Virtual Reality Hardware 

VR is a technology that creates a real-world visual perception by using artificial 
computer-generated environments. This is achieved by using a combination of 
three effects: a total immersion experience; stereoscopic vision – where a scene 
is rendered for each of a user’s eye at a slightly different angle; and motion capture 
– where a user’s head and controller position are used to update the environment 
for the user (El Beheiry et al., 2019). A user can interact with VR using a variety of 
methods. Those interaction methods include HMDs, console gaming controllers, 
keyboards, and haptic devices (Sekaran et al., 2021). Other interaction hardware 
includes gloves, a 3D mouse, a space ball, voice recognition, biological sensors, 
and full-body suits (Liagkou et al., 2019). VR applications require some input from 
the user, and this is generally achieved by using keyboards, mouses, or joysticks. 
However, these devices “break the illusion that users are directly interacting with 
the virtual world because they are non-intuitive ways to interact with virtual 
objects” (Erra et al., 2019). 

There are different types of VR implementation hardware, and many VR platforms 
provide multi-user collaboration in virtual environments. These include CAVEs, 
PowerWalls, and HMDs. The differences in these implementations are the degree 
of user immersion, the maintenance effort, and the cost. CAVEs and HMDs are 
seen as full-immersion VR devices, whereas PowerWalls or monocular head-based 
VR devices are semi-immersive (Kroupa et al., 2018). 

The quality and realism of a VR application can influence the quality of user 
immersion. The cost of VR is an important consideration because, as expected, 
more expensive equipment provides the user with a better immersive experience 
(Liagkou et al., 2019). Previous VR technologies used complex and non-portable 
equipment such as CAVEs or hyperwalls (Donalek et al., 2015). A VR CAVE 
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implementation is where images are projected onto walls and an environment is 
created around a user. This VR implementation is expensive and requires large 
amounts of space to be implemented. This setup has been implemented in various 
universities and data centres to enhance visualisation in areas of science and 
engineering (Cordeil et al., 2017). 

A newer VR setup is the use of the previously mentioned HMDs. The technology 
has been developed to “ensure visual comfort and ergonomic usage” (El Beheiry 
et al., 2019). The technology has also become available to many consumers by the 
introduction of VR headsets such as HTC Vive, Oculus Rift, and Windows Mixed 
Reality that are now affordable (El Beheiry et al., 2019). Current HMDs are more 
portable and affordable than creating CAVE environments or previous HMD 
versions. This makes them an ideal tool for exploratory visualisation (Drouhard et 
al., 2015). As mentioned previously, VR applications require inputs from the user 
and some of these inputs could result in the user feeling less immersed. However, 
with more recent VR equipment developments, such as the HTC Vive and Oculus 
Rift, the user can make use of controllers to interact with the environment. The 
use of these controllers allows for the user to feel almost completely immersed in 
the environment and enhances their VR experience. 

2.4.3 Virtual Reality Software 

There are many software development environments that could be used to 
develop a VR environment, including Unity, Unreal Engine 4, Google VR for 
everyone, Amazon Sumerian, Blender, 3ds Max, and Maya to mention a few 
(Davies, n.d.). The reason for the large number of development environments is 
the increasing popularity and use of VR. This increased use creates the opportunity 
for competition to arise between different entities, resulting in a multitude of 
possible options to choose from.  

Related research has shown that Unity and Unreal Engine are the most widely 
used options (Donalek et al., 2015; Havard et al., 2019; Kroupa et al., 2018; Liagkou 
et al., 2019). This is due to their wide use in the game development area, their 
large community support base, and the familiarity of the development language 
used. Unity uses C# and Unreal Engine uses C++. Unity and Unreal Engine are both 
game engines and, thus, operate very similarly. Although related research has 
shown to consider both software environments, a large portion make use of Unity 
to develop the VR environments (Donalek et al., 2015; Havard et al., 2019; Kroupa 
et al., 2018; Liagkou et al., 2019). 

Unity makes use of two major aspects, i.e. GameObjects and the Components 
attached to the GameObjects (Kuts et al., 2019). The GameObjects are seen as any 
object that is used within the developed environment (Unity, 2017a). The use of 
the GameObjects allows for a modular approach of development to be adopted. 

Stellenbosch University https://scholar.sun.ac.za



 

17 

The term GameObject encapsulates multiple objects, including models, 
geometries, or effects, used within the environment. The Components that are 
attached to these GameObjects differ depending on the purpose of the 
GameObject. The Components include custom C# scripts or built-in functionality 
offered by Unity that are used to control the behaviour of the GameObject (Kuts 
et al., 2019).  

Figure 7 provides an example of a GameObject used in a Unity project and the 
Components that are attached to the GameObject. The GameObject is the grey 
cube on the left side of the figure, with the Components being in the tab on the 
right side of the figure. A Component example is the Transform Component that 
is used to control the position, rotation, and scale of the GameObject within the 
developed environment. 

 

Figure 7: Unity GameObject and Components (Unity, 2017b) 

GameObjects and Components are used in various combinations to develop a 
desired environment in Unity. Unity provides multiple built-in GameObjects and 
Components that aid in the development of VR environments. These are used, 
then, to help a developer more easily develop a VR environment with the 
functionality and appearance that they desire. 

Unity is a powerful tool to aid in the creation of both 2D and 3D environments 
which makes it a suitable choice for the development of complicated 
environments such as VR environment.  
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2.4.4 Virtual Reality Implementations 

VR is typically associated with use in the gaming and entertainment industry; 
however, it is beginning to be used in other areas and industries (Hu et al., 2021). 
VR’s use in science is still being elaborated (El Beheiry et al., 2019). The data and 
information obtained through integrated communication channels can be 
visualised using VR. This data and information include operational, reporting, and 
monitoring data and information (Kovar et al., 2017). For VR implementations in 
Industry 4.0, it must be adaptable and able to change to new events and situations 
(Liagkou et al., 2019). 

VR is becoming easier to implement as hardware and software is continually being 
advanced. The technology is being used in more activities such as product or 
process design, facility layout planning, training, and remote collaboration (Havard 
et al., 2019). There is a useful potential in combining VR and DT technologies to 
aid in training people in a virtual environment that behaves realistically. Using 
correct software and the integration of these two technologies could allow for 
dynamic virtual environments to be created for training or designing sessions 
(Havard et al., 2019). This indicates the potential of integrating the two 
technologies. Liagkou et al. (2019) stated that “Industry 4.0 could benefit from 
using VR models to display larger and complex processes and products referring 
to training, simulation, maintenance and all the aspects of production line and/or 
at management activities”. VR has been used in applications where it has been 
used to document the design and validation process of complex systems (Malik et 
al., 2020). 

Using VR as a tool for enhanced interaction and virtualisation allows for processes 
such as design, evaluation, and management improvement to be carried out in a 
way that is both cost and time effective. VR can be used to accelerate and 
streamline a task as it has the ability to represent models with a high level of detail 
and provides an interactive user experience (Sekaran et al., 2021). Using virtual 
spaces as testing areas is a way to design and evaluate complex systems (Malik et 
al., 2020). 

Previous work has shown that scientists benefit from immersion for 
palaeontology, brain tumours, shape perception, underground cave analysis 
structures, MRI, organic chemistry, and physics (Donalek et al., 2015). Other areas 
of implementation include automotive engineering, aerospace engineering, 
medicine and mechanical engineering (Kovar et al., 2017). Another area of use is 
with regards to manufacturing where VR could be used for analysing products in 
the design stages, analysing the interaction between the final product and 
customers, optimising or designing manufacturing processes, and remotely 
monitoring/supervising processes within a system (Liagkou et al., 2019). Engineers 
and technologists can use VR to test and experiment with a system in a way that 
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is close-to-reality and intuitive. This can be done before any further developments 
are made. Using this approach decreases the probability of system failures (Malik 
et al., 2020). 

2.5 Discussion 

DTs have been shown to be useful for implementation for complex systems and 
accurately reflecting their physical systems. DTs provide the benefit of adding 
value to recorded data and allow for the data available in complex systems to be 
ordered, in a consistent format, and accessible. This functionality of ordering 
information and allowing it to be accessible makes DTs a suitable method of 
transferring information to various applications, like VR. 

The design of a DT system for a complex system has currently no consensus due 
to the infancy of the concept and/or the diversity of applications. However, the 
design framework developed by Human (2022) offers a solution to the challenge 
of designing a complex DT system. Included in this design process is the need to 
select an internal DT architecture. SLADTA is a promising internal DT architecture 
that considers the interactions between DTs at different levels within a complex 
system. SLADTA also provides a logical separation between the different 
components that are contained within a DT. These different components ensure 
that the desired functionality of a DT is achieved. For complex systems, with many 
elements, there is value in a hierarchical separation of elements within the 
physical system, but for information from these various elements to still be 
aggregated and accessible. SLADTA makes provision for the aggregation of 
different DTs at various hierarchical levels. This further supports its use for the 
internal architecture of DTs of a complex system. 

The VR technology is shown to have various hardware and software components 
needing to be considered. The literature review indicates that a choice of Unity as 
a software development environment is supported by various implementations in 
scientific VR applications. The VR implementations provided show how VR can be 
used to visualise information and enhance the visualisation process. However, in 
VR implementations the information must be transferred to the VR application in 
some manner that is not always trivial.  

VR can also be used to visualise information from real-world complex systems, but 
these complex systems require an effective method for transferring information 
to VR that can cope with the complexities of the system. A well-designed DT 
system for a complex system could be a possible method for achieving this 
effective information transfer. Literature has mentioned the potential of 
integrating DTs and VR for data visualisation. However, some of the mentioned VR 
implementations, for more complex systems, did not make use of DTs for 
information transfer, and as such, this is an integration opportunity worth 
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exploring. VR also has a spatial component that could be well supported by DTs 
reflecting a physical system. This is because a physical system 3D model could form 
part of a DT, and like with transferring other information, this physical system 3D 
model could also be transferred to VR and be part of the visualisation. 

From the literature, it is therefore apparent that, although the DT and VR 
technologies can be used individually in respective applications, they can also be 
integrated to enhance and support the data driven decision-making process for 
complex systems. It is important in such a system that: the purpose of the DTs is 
understood clearly; the DT system architecture is designed by following a credible 
design process with a suitable internal DT architecture; and that a VR application, 
using DTs, is appropriately developed to allow for this enhanced data driven 
decision-making process to be realised. 
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3 Integration Opportunities and 
Challenges 

This chapter discusses various opportunities and challenges that are associated 
with VR as a visualisation technology, and then also the integration of the VR 
technology with DTs. The opportunities of using VR for data visualisation are first 
mentioned, followed by the opportunities for the integration of VR and DTs. After 
this, the challenges of VR for data visualisation are provided, followed by the 
challenges of integrating VR and DTs. It must be noted that the lists of 
opportunities and challenges provided below are not exhaustive. A brief 
discussion regarding the various opportunities and challenges is then provided. 
The information provided in this chapter is developed from that of Da Silva et al. 
(2022), unless another reference is given.  

3.1 Data Visualisation Opportunities 

The use of VR presents several opportunities for the purposes of data visualisation: 

• Users are able to move around through data more easily and navigate the 
data in a manner that is more intuitive for people. This intuitive data 
navigation enhances and aids the pattern recognition process (El Beheiry 
et al., 2019; Erra et al., 2019). As a VR environment is a 3D space, the user 
is able to interpret and visualise the data presented to them in a way that 
is more familiar. Humans perceive and function in a 3D physical world 
around them; having data presented in the same way creates more of a 
familiarity between the user and the data than there would be if the user 
is not in a VR environment. In the VR environment they are then able to 
move (in the virtual world) through the data in a similar, more intuitive, 
way that they would in the real world. Humans already have a useful 
pattern recognition process (Donalek et al., 2015), and VR allowing for 
better pattern recognition, enables the user to then obtain more useful 
insight when they are analysing data. This, therefore, allows better 
decision-making in comparison to conventional methods, like using a PC 
monitor for visualisation. 

• The current VR technology developments allow for a user to visualise data 
with a high level of detail. Data being presented with a high level of detail 
allows a user to go nearer to the data points without losing visual quality. 
Along with users being able to view the data close up, they are also able to 
visualise data in its entirety by viewing it from a distance. A high level of 
detail refers to the detail of the visualisation and not to the granularity of 
the data to be visualised.  
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• Presenting data in VR allows for the data to be visualised more realistically 
in terms of the distances between data points as well as the relations 
between data points. This more realistic and accurate visualisation will 
bring the perception of users closer to reality than with the use of 
conventional methods. This allows the user to better understand the 
relations within the data which aids the first mentioned opportunity.  

• VR allows for collaboration during the data visualisation process. Multiple 
users are able to visualise and interact with the same data together. This 
collaboration could be in the same VR environment where users are able 
to use multiple VR systems to enter the same environment or they can be 
in different VR environments, using different VR system, but visualising the 
same data. 

• VR aids the data visualisation process as it enables users to draw 
conclusions, and complete desired data visualisation tasks in a shorter time 
than compared to conventional methods (Filho et al., 2018). VR has also 
been shown to decrease the time needed during verification and validation 
processes (Akpan & Shanker, 2019). Along with reducing the amount of 
time taken to complete tasks, the use of VR also results in less errors being 
made by a user (Raja et al., 2004). 

3.2 Integration Opportunities 

Along with some of the data visualisation opportunities with the use of VR, 
outlined in the previous section, there are several opportunities for the integration 
of VR and DTs:  

• DTs could potentially include spatial Computer-Aided Design (CAD) models 
of the physical system they are “twinning”. VR allows users to have an 
immersive interaction with the DT and have a visualisation that is a more 
accurate representation of the physical system. This provides users with a 
better sense of the spatial mapping of a physical system represented by a 
DTs. 

• The use of VR to visualise DT data has the possibility of better converting 
the DT data to information by supplementing the data with more context. 
This contextualisation refers to the possibility of being able to overlay a 
spatial representation, as mentioned above, with information that is non-
spatial. An example of this contextualisation of non-spatial information is 
the colour of a motor in a virtual model can be changed to draw the user’s 
attention to it if the temperature of the motor exceeds a certain limit. 
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• DTs usually have the inherent functionality to update their models in near 
real time. This integration with VR will, thus, have the added benefit of 
updating these virtual models in near real time and allow users to monitor 
changes with the enhanced perception provided by VR. VR also has the 
ability to allow for multidimensional data to be visualised, annotated and 
changed with this near real time updating. 

• VR has the potential to aid the design phase of a DT by allowing for 
accurate and easier visualisation of the physical system. This would reduce 
design time as well as costs (Havard et al., 2019; Kovar et al., 2017; Sekaran 
et al., 2021). This visualisation of the physical system allows for DTs to be 
developed in parallel with or prior to the construction of the physical 
system. 

• VR facilitates a virtual more “hands-on” interaction with a DT because a 
user, as mentioned in the data visualisation opportunities, is able to 
intuitively interact with a DT’s data and make good decisions based on 
what they have visualised. 

• Another opportunity is in the standardisation of the integration 
procedures between DTs and VR. This standardising will enable a better 
synergy between DT developers and VR developers. These two teams will 
have better means of collaborating with each other to achieve the desired 
needs of the DT system and presenting the information to a user using VR. 

3.3 Data Visualisation Challenges 

Along with opportunities associated with using VR to visualise data, a number of 
challenges are also present: 

• VR has the risk of information overloading (Erra et al., 2019) because, when 
large amounts of data is presented to a user, they could become 
overwhelmed. This large amount of data being presented to a user could 
negatively impact their ability to make decisions (Sekaran et al., 2021).  

• Data navigation is another challenge with using VR to visualise data (Filho 
et al., 2018; Gracia et al., 2016). Unlike with navigating data displayed on 
2D monitors, there is no wide consensus about data navigation user 
interfaces (UIs) in VR. As such, users may find it challenging to navigate 
through the data as they desire and this could affect the visualisation 
process. 

• Developing a VR environment presents the challenge of how to best 
present the data to a user so that they are able to most effectively interpret 
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the data. Developing a VR environment could also require more time and 
effort to develop compared to creating visualisations using conventional 
methods (Akpan & Shanker, 2019).  

• Perspective distortion and occlusion are some visual challenges when 
wanting to visualise data in VR (Filho et al., 2018; Gracia et al., 2016). 
Occlusion is where an object, in a 3D space, is, from the user’s perspective, 
hidden behind another object and thus not visible. In VR it is possible that 
a user’s perspective is distorted due to the fisheye lenses that are used in 
a VR HMD to give the immersive feel of VR. This distortion, however, most 
likely only affects the pixels closer to the outer edge of the lens. 

• Drouhard et al. (2015) mentions that other challenges include the safety 
and comfort of a VR system user. VR system users could experience a 
number of symptoms including motion sickness, disorientation, nausea, 
sweating, and headaches when using the system for prolonged periods of 
time (Liagkou et al., 2019). 

• Another challenge is the VR system cost. VR systems are computationally 
expensive and, therefore, require relatively expensive computer 
processing hardware as it is still a technology that is only recently 
becoming more easily available. However, it is expected that a larger usage 
of VR will result in lower hardware costs. 

3.4 Integration Challenges 

There are several challenges with the integration of DT and VR technologies: 

• A challenge, much like a data visualisation challenge mentioned above, is 
to determine what DT information is to be displayed to the user in VR. 
There are a number of factors associated with this challenges, namely: the 
variety and amount of data, the possibility of information overloading, and 
the lack of experience industry members have had with using VR systems.  

• DTs and VR are currently technologies that are developing at relatively fast 
rates. These “moving targets” make it challenging to create a stable 
interface between these two technologies that will not be impacted as 
these technologies develop further. 

• The integration of the two technologies also presents the challenges of 
computational power utilisation. As mentioned previously, VR is already 
computationally expensive, and the addition of a DT system will require 
even more computational power resulting in higher hardware costs. 
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3.5 Discussion 

It is evident that there are many opportunities and challenges associated with the 
use of VR as a data visualisation tool, and the integration of VR with DT technology. 
It must be noted, again, that the list of opportunities and challenges is not 
exhaustive and that there is a possibility that there are other opportunities and 
challenges that have not been mentioned here.  

The opportunities and challenges mentioned for using VR as a data visualisation 
tool are also applicable in a system created by the integration of VR and DTs. These 
VR data visualisation opportunities and challenges are not meant to only be 
viewed in isolation, but also for an integration between the two technologies. It 
might not be possible that all opportunities or challenges will be realised in a single 
VR and DT implementation, and that different implementations could encounter 
their own challenges and opportunities. The above discussion looks at VR and DT 
systems in a general sense, but each specific system will require its own research 
to be conducted on the possible opportunities and challenges encountered in the 
system. 

Although there are both challenges and opportunities, the potential opportunities 
will often outweigh the potential challenges associated with the creation of a 
general VR and DT system. These opportunities and challenges must be evaluated 
in practice to determine the effectiveness of using VR and DTs together. 

Therefore, a system implementation is required to realise these potential 
opportunities, as well as identify any encountered challenges. The proposed 
implementation will be a DT system that makes use of VR to visualise the 
information obtained by the DT system for the decision-making process. It will be 
beneficial to compare this VR and DT system implementation to an 
implementation that does not make use of DTs. After comparing these two 
implementations, a more supported and credible conclusion can be made with 
regards to the integration of VR and DTs.  
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4 Facilities Management Division Case 
Study 

This chapter describes the context of the case study that is used to evaluate the 
integration of DTs and VR, i.e. using the Facilities Management Division at 
Stellenbosch University. The case study description is first provided, followed by 
the system architecture design process. 

4.1 Case Study Description 

The case study consists of two implementations: The one implementation is a 
system that contains and integrates VR and DTs (the DT implementation) and the 
other implementation (the Non-DT implementation) does not make use of DTs for 
importing information into a VR environment for data visualisation. In the two 
implementations, the VR environment and the presentation of the information to 
the user is identical. The aspect where the two implementations differ is with 
regards to how the information is retrieved for the VR environment. 

The Facilities Management (FM) Division at Stellenbosch University is responsible 
for overseeing the operational management of the various facilities that form part 
of Stellenbosch University. These facilities include faculty buildings, university 
residences, and private housing owned by the university for the purpose of 
student accommodation. Stellenbosch University has five different campuses: the 
main campus in Stellenbosch, the medical and health sciences campus in 
Tygerberg, the military science campus in Saldanha, the business school campus 
in Bellville, and another medical and health science campus in Worcester. 

FM is responsible for overseeing the many facilities at each of these campuses. 
Managing such a multitude of facilities involves a complex system containing many 
different elements (in this case, facilities). The overseeing of operational functions 
includes facility utility usage monitoring, maintenance management tasks, and 
campus construction planning among others. 

It is evident that such aspects will result in the vast amount of data being recorded 
with the purpose of decision-making. The visualisation of this vast amount of data 
could be challenging for the members of FM. This creates an opportunity where a 
VR and DT system could ease this data driven decision-making process.  

A DT system could be used to aid the data acquisition, ordering, and storing 
processes that are required for FM. The VR system is then useful as the 
visualisation medium for the purpose of data visualisation. These two technologies 
would be used collaboratively to provide the user with the most optimal solution 
to ease the already complex data driven decision-making process for FM. 
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4.2 System Architecture Design 

A VR and DT system is a suitable system for FM. This system first needs to be 
designed before it can be implemented and evaluated. This section describes the 
process used to design the architecture of the system. This design process uses 
the design framework developed Human (2022) that is discussed in Section 2.2 
and illustrated in Figure 2.  

4.2.1 User Needs 

The first step in the system design process is to determine what the user’s 
needs/requirements are for the system. For a system that uses VR and DTs, there 
are several stakeholders, but the following three types of users are identified: 

• End user: This user enters the VR application to visualise information 
obtained by the DTs in the system. 

• Configurator: This user configures the VR application or DT system for its 
use case, without changing any source code. A VR configurator determines 
what elements or information can be accessed by an end user in the VR 
application, but is not responsible for creating the elements needed to 
transfer or manage the information in the VR application. A DT 
configurator is responsible for ensuring that the DT system is configured 
correctly with various system components, but is not responsible for 
developing the various DT components. 

• VR developer and DT developer: These users are responsible for 
developing the VR application and DT system, respectively. The DT 
developers focus on creating the DT system elements allowing for the 
integration of the DT system with VR. The VR developer are required to 
develop the VR application that is able to make requests to the DT system 
for information. The two developments are separate from each other but 
must be integrated with one another to achieve the end user’s needs. 

The system is designed considering the different requirements for the identified 
stakeholders. The point of interest is how information is transferred to the VR 
application using the different implementation methods. However, if both 
implementations produce the same outputs for the same input, the end user does 
not need knowledge of how this information is retrieved for use in the VR 
application. Therefore, the requirements of the end users, referred to now as the 
user, are of a higher priority in the design process of this system than the other 
stakeholders’ requirements. 
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After some consultation with FM, the user requirements (URs) presented in Table 
1 were identified. Although FM is responsible for a number of functions, only the 
monitoring of energy usage information for the main Stellenbosch campus is 
selected as focus here. The reason for this is provided in Section 1.4. 

Table 1: User requirements 

UR ID Description 

UR1 Visualise energy usage information for facilities within Stellenbosch 
University. 

UR2 User must be able to select what energy data to visualise. 

UR3 Have access to all university facilities’ information from a central 
point. 

UR4 Information available must be specific for a facility or group of 
facilities. 

UR5 Allow for addition, removal, or modification of elements in the 
physical system (e.g. adding/removing buildings). 

UR6 Allow for system functions to be added to in the future if desired. 

4.2.2 System Requirements 

From the URs, the system requirements must be identified. These system 
requirements are separated into system functional requirements (FRs) and system 
non-functional requirements (NFRs). FRs are the functions that a system must 
perform to achieve the user’s requirements, while NFRs describe how, or how 
well, the system must perform the FRs (Human, 2022). 

4.2.2.1 Functional Requirements 

The system FRs that are derived from the above URs are provided in Table 2. These 
FRs are deemed to be the most fundamental functions that are used for a number 
of other functions within the system. 

Table 2: Functional requirements 

FR ID High-level 
Requirement 

Description 

FR1 VR visualisation A VR environment is required to visualise the 
energy usage information for the different facilities 
within the university. 

FR2 Remote 
monitoring 

Users should be able to visualise any energy 
information in the VR without needing to be at the 
facility. 
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Table 2 (continued): Functional requirements 

FR ID High-level 
Requirement 

Description 

FR3 Exploratory 
analysis 

A user should be able to visualise and analyse 
different facility information such as energy usage 
trends, or energy usage comparisons between 
facilities. 

FR4 Derived 
information 

To support some decisions, the user should be able 
to visualise information that is derived from sensor 
data (e.g. trends) and, potentially, analyses of the 
physical system (e.g. carbon footprint). 

4.2.2.2 Non-functional Requirements 

The NFRs most applicable to an FM context are provided in Table 3. The rationale 
for the NFRs in the FM context is also provided. The NFRs identified in Table 3 form 
part of various NFR groupings identified by Human (2022). These NFR groupings 
are used to identify the possible implications of the NFRs for the system. These 
implications result in suggestions to aid the design of the system architecture.  

For the identified NFRs in Table 3, four system architecture suggestions are made 
based on the NFR groupings. The first is the use of an aggregation hierarchy in the 
system. The remaining three are recommended design patterns that are used to 
design the architecture. Design patterns are discussed in Section 2.2. The design 
patterns used in the architecture design based on the identified NFR and 
subsequent NFR groupings are the performance efficiency, compatibility, and 
maintainability design patterns in Human (2022). 

Table 3: Non-functional requirements 

NFR ID NFR Rationale for NFR 

NFR1 Allow for 
retrofitting of 
new and 
existing 
technology and 
information 
systems 

A FM division must handle different maturity 
levels for various technologies. There is a 
possibility that many of the facilities still make 
use of legacy systems which must be integrated 
or “retrofitted” with newer technologies. The 
implemented system should not interfere with 
the current system. 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

30 

Table 3 (continued): Non-functional requirements 

NFR ID NFR Rationale for NFR 

NFR2 Allow for 
efficient 
system 
reconfiguration 

Facilities management can be viewed as a fairly 
static environment with not many aspects 
changing in short periods of time. However, if 
newer technologies, such as new energy meters or 
water sensors, are to be introduced, no matter 
how often, it is still an important requirement that 
the system is able to reconfigure efficiently. This 
NFR also includes the possible introduction of 
other additional services to the system requested 
by the user. 

NFR3 Provide a fault 
tolerant 
system 

The system is dependent on receiving readings 
from various meters over a wide geographical 
area. It is desired that if some of these meters 
become faulty and do not return readings, that the 
other aspects of the system are not affected, and 
the system is still able to function as required. 

NFR4 Facilitate 
heterogeneous 
data handling 

The facilities within a university will record large 
amounts of data and it is a highly likely that this 
data will be of different types. It is, therefore, 
necessary to ensure that this heterogeneous data 
is handled in a manner that the heterogeneity of 
the data will not negatively impact the data driven 
decision-making process. 

NFR5 Provide for 
large amounts 
of data 

A FM division will record large amounts of 
different data, but the system must still be able to 
function with low latencies. 

NFR6 Avoid physical 
resource 
contention 
amongst 
software 
components 

The system might be hosted on a single machine 
that will be responsible for hosting all elements of 
the system, including the VR application. 
Therefore, resource contention could potentially 
become a concern for the system and should be 
avoided. 

4.2.3 Physical System Decomposition 

This section considers the decomposition of the physical system for the FM 
context. Physical system decomposition is part of the definition of the Problem 
space, as illustrated in Figure 2. The section is divided into two parts, namely, a 
hierarchically decomposed physical system diagram and the system data 
characterisation. 
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4.2.3.1 Physical System Diagram 

Within this section, the various physical system components present within a FM 
division’s supervision are identified leading to a hierarchically decomposed 
physical system diagram. As mentioned in Section 1.4, the focus here is on energy 
usage data. 

The university contains the following components: 

• University – The main component of the system and is the highest level of 
the hierarchy. All other components are contained within the university. 

• Campuses – The university comprises of multiple campuses with each 
campus being comprised of the following components. 

• Precincts – A campus is comprised of multiple precincts. A precinct, in this 
thesis, is considered to be a geographical area in a campus that contains 
various system elements within that area. A precinct can also have a 
designated energy meter that records the overall energy usage for that 
precinct. 

• Buildings – A precinct contains buildings that, in this thesis, are considered 
to be facilities being supervised by FM. Buildings contain various energy 
meters that are used to record energy usages within a building. 

• Energy meter network – Precincts also contain energy meter networks. 
Some energy meters do not form part of a building but are still within a 
precinct area. These meters still represent some part of a precinct, and are, 
therefore, included as a system component. 

• Energy meters – Energy meters are a type of utility usage measuring device 
that is used to record the electrical energy usage for a specified area within 
a precinct, building, or energy meter network. 

The list above contains the various physical system components that form part of 
the physical system decomposition. Using these system components, a 
hierarchical physical decomposition diagram (Figure 8) is created. 

Stellenbosch University https://scholar.sun.ac.za



 

32 

 

Figure 8: Physical system decomposition 

4.2.3.2 Data Characterisation 

This section uses Figure 8 to obtain the data characterisation information for the 
different components within the system. The energy meter is the only system 
component where data is received from the physical world. The architecture 
assumes that all energy meters are IoT devices that transmit their readings 
periodically, typically at five-minute intervals, to a service provider’s servers. An 
application programming interface (API) is used to access the readings and 
timestamps through the internet. The other system components only receive 
information that is derived based on this energy meter data. 

4.2.4 Service Identification and Allocation 

This section is the start of defining the Solution space (as shown in Figure 2) for 
the identified FM system. Various services are identified in this section and 
allocated to either DTs or the Services Network, following the process detailed by 
Human (2022).  

4.2.4.1 Services Identification 

The following services are required to achieve the system requirements: 
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Mirror service 

The Mirror service allows for the energy usage of various components (buildings, 
energy networks, precincts, and campuses) within, and including, the university to 
be presented to the user. The user must be able to request specific information 
for a component(s) and the service will be responsible for retrieving that 
information. The Mirror service fulfils the remote monitoring requirement (FR2). 

For the building and energy meter network components the energy data for an 
energy meter is received using the API. This energy meter data is aggregated with 
data from other energy meters that form part of the component. The energy data 
for an energy meter is typically received at five-minute intervals, after which, it is 
then aggregated. For the precinct, campus, and university components energy 
information is received from the components lower in the physical system 
hierarchy. Similarly, this energy information received from a lower component is 
aggregated with information from other lower components. This frequency of 
information is dependent on the frequency of data received by the energy meters. 

This service is invoked periodically as requests are made by the user. A 
consideration for the implementation of this service is that the number of 
components in the university could result in a data communication bottleneck 
depending on how much information is requested by the user. 

Context generation service 

The Context generation service must generate new information once new data is 
received by an energy meter. This generated information is derived from the 
energy data and is specific to the needs of FM. For example, FM require the 
average daily energy usage for a facility. This average usage is derived from the 
raw energy data recorded by an energy meter. This service fulfils the requirement 
for derived information (FR4). 

The components in the system all require this service as components at different 
levels require for different information to be generated. For example, the 
information generated for a precinct is different to that generated for a building. 
For this service to be carried out for the building and energy meter network 
components, the data that is required is the energy data provided by the energy 
meters. This service at a precinct, campus, or university component level requires 
the aggregated energy information from the components lower in the physical 
system hierarchy. 

This service is used as new energy data is recorded. If no new energy data is 
available, the service will not operate, and no information will need to be 
generated. The service need not be invoked by a user, but is constantly requesting 
for new energy data. 
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Exploratory analytics service 

The Exploratory analytics service allows the user to compare information from 
various components within the system to identify any trends with regards to 
energy usages. The user is able to select what information they would like to 
compare from the components in the system. This service fulfils the requirement 
for exploratory analysis (FR3). 

The service requires access to be able to make requests to all system components 
or to a component that can make requests to other components. For example, the 
university component has access to other system components, either directly or 
indirectly. This access ensures the service is able to compare the energy usage 
information for any component. The information required in the service is the 
derived information generated using the Context generation service. 

The service is invoked when requests are made by the user. The service requires 
access to a network to access the requested information. Similarly to the Mirror 
service, the number of components in the university could result in a data 
communication bottleneck depending on how much information is requested by 
the user. A suitable communication method is required to transfer or collect the 
information. Alternatively, an information limit could be introduced allowing the 
user to view segments of the data if the amount of data requested is above a 
specified limit. 

4.2.4.2 Digital Twin Identification 

This section gives the DTs that are identified based on the physical system 
components in Section 4.2.3. The system components that are best suited for a DT 
implementation is given in Table 4 with the DT types, as well as the rationale. The 
energy meters are not included as DTs in the system as an individual meter will 
provide little useful information for FM as compared to a group of meters that 
form part of a building or energy meter network. 

 

Figure 9: Aggregation hierarchy 

Stellenbosch University https://scholar.sun.ac.za



 

35 

The aggregation hierarchy of the DTs identified in the system is illustrated in Figure 
9, with the DTIs at the lowest level and information being aggregated upwards in 
the aggregation hierarchy. 

Table 4: System digital twins 

Digital 
Twin 

Digital 
Twin 
Type 

Rationale 

Building 

DTI 

A building and energy meter network are the lowest level 
of the DT hierarchy because the case study focuses on 
the overall functioning of a facility, and not the 
functioning of specific meters within the facility as 
mentioned in Section 1.4. 

Energy 
meter 
network 

Precinct 

DTA 

The FM division would find it useful to analyse 
information for a specific precinct, campus, or university 
and not only the individual components that make up a 
precinct, campus, or university. 

Campus 

University 

4.2.4.3 Services to Digital Twin Allocation 

Table 5 shows the potential allocation of the identified services to either the 
identified DTs or the Services Network.  

The Mirror service and Context generation service are required for each DT 
because the information received by the energy usage meters must be used to 
derive new information for a DT. The Mirror service will not provide the user with 
the raw data received by the DT. Rather, it will provide the user with the derived 
information based on the received raw data. The DTIs will receive raw data from 
the meters, while the DTAs will receive derived information from DTIs or other 
DTAs, using the Mirror service, below it in the hierarchy. The DTs will use this 
derived information to derive new information for the DTA. It is possible to 
allocate these two services to the Services Network; however, because they are 
persistent services and require the raw or generated data obtained by the DTs, it 
is more logical to host them in each DT. 

The University DTA can host the Exploratory analytics service as it has access to all 
the information through its connection with the DTs below it in the hierarchy. 
However, as this is a periodically requested service and is a more general service 
and not specific to a DT, the service will reside in the Services Network and only 
be invoked when the user makes a request. The Services Network can also make 
use of external services or databases that are not part of the system. The Services 
Network may require these external elements to fulfil desired requests, and 
provision for this has been made. 
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Table 5: Potential services hosts 

Service Building 
DTI 

Energy 
Meter 
Network 
DTI 

Precinct 
DTA 

Campus 
DTA 

University 
DTA 

Services 
Network 

Mirror 
service 

X X X X X X 

Context 
generation 
service 

X X X X X X 

Exploratory 
analytics 
service 

    X X 

4.2.5 Digital Twin Internal Architecture and Design Pattern 
Application 

The internal architecture to be used for the DTs in the system, SLADTA, was 
determined in Section 1.2 as an objective for the thesis. SLADTA is discussed in 
greater detail in Section 2.3.  

Figure 10 illustrates the internal structure of the DTs in the system. The energy 
meters’ data is already stored and accessed using an API, as mentioned in the Data 
Characterisation section (4.2.3.2). Therefore, the relevant DTs need not 
implement a Layer 1 or Layer 2. These layers are, however, still illustrated to 
indicate that they have been implemented in some form but not in the scope of 
this system. Layer 4 is responsible for data acquisition using the provided API for 
the relevant energy meter. The API therefore fulfils the role of Layer 3 in this 
implementation. Only the DTIs and Precinct DTAs contain a Layer 3 because only 
they have associated meters and need to request information from the API. 

Having selected the internal DT architecture, the design patterns formulated by 
Human (2022) can be selected and applied to the system components. The three 
design patterns required for the design of the system are for maintainability, 
compatibility, and performance efficiency as identified in Section 4.2.2.2. These 
design patterns are used, in combination, to design the implementation 
architecture for the system. 
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Figure 10: DT internal architectures 

The system makes use of pre-storage aggregation as is recommended by the 
compatibility and performance efficiency design patterns. Therefore, the data that 
is obtained by Layer 3, using the API, is first aggregated and then stored for the 
relevant DTs (i.e. Buildings, Energy meter networks, and Precincts). Pre-storage 
aggregation is also implemented for the other DTs in the system. This pre-storage 
aggregation is a local aggregation (as opposed to cloud-based) as per the 
performance efficiency design pattern. Layer 4 uses a request-response 
communication between DTs to transfer information required for aggregation as 
recommended by the performance efficient design pattern.  

Layer 5 makes use of a local NoSQL database to store the aggregated DT 
information as recommended in the performance efficiency and compatibility 
design patterns. The reason for this choice is that a NoSQL database is more 
scalable, can handle heterogeneous data, supports high throughput, and has a 
lower latency than SQL databases (Human, 2022). A VR application for data 
visualisation purposes requires a quick responsiveness to adapt to the information 
requests by the user. The locally hosted databases aid in this regard due to the low 
latency they offer. 

The Mirror and Context generation services are hosted locally in Layer 6 for the 
DT. The reason for local hosting is that the system requires a low latency for the 
high throughput of information that is to be transferred between system 
components. The system components are all connected to the same network. 
Therefore, the system can make use of a local network communication protocol, 
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such as TCP/IP, for communicating between the various components. A local 
communication protocol also allows for lower latencies and high throughputs 
compared to cloud communication protocols. 

Figure 11, which illustrates the overall system architecture, shows the internal 
architecture of the Shared Services component. The Service Network hosts the 
Exploratory analytics service as mentioned in Section 4.2.4.3. The Shared Services 
component also contains a Service Gateway and DT directory service (which forms 
part of the Management services). A central user interface (CUI) is advised in the 
maintainability and compatibility design patterns. The CUI, in this implementation 
is the UI in the VR application that is used to request information from the DT 
system.  

Figure 11 illustrates how all of the system components are in communication with 
one another. The “VR application” aspect of Figure 11 is a custom designed 
application. The design of this application is implementation specific, and the 
internal architecture of the application is not shown in this diagram. The 
“Aggregation hierarchy” is the hierarchy shown in Figure 9. It must be noted that 
DTs are able to access external databases, as indicated in Figure 11, that a DT may 
require to be able to carry out a service.  

 

Figure 11: Overall system architecture 
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5 Case Study Implementations 

This chapter discusses the details of the two implementations used in the case 
study. The objectives of the case study are first discussed to determine how the 
implementations will be used to aid the research. The Non-DT implementation 
details are then discussed, followed by the DT implementation. The VR 
applications used in both implementations are then discussed and the chapter 
concludes with a comparison of the implementations. 

5.1 Case Study Objectives 

The main objective of the case study is to present two implementations, a Non-DT 
implementation and a DT implementation, that are compared to one another to 
determine the value of DTs for VR data visualisation purposes. The two 
implementations use different methods for transferring information into VR for a 
user to visualise, but are intended to provide the same output. The case study, 
therefore, highlights any differences or similarities in the implementation 
methods. These differences or similarities are then used, in conjunction with 
evaluations, to determine whether DTs are beneficial for use in a system that uses 
VR.  

As mentioned in Section 1.4, the implementations make use of the available 
energy meter data from FM. The implementations also focus on the main campus 
in Stellenbosch and not on the whole of Stellenbosch University with the various 
campuses. The implementations also do not include the energy meter network 
component and only focus on providing energy usage information for the buildings 
and precincts of the campus. A typical use case entails that a user is able to request 
and visualise energy information for the various components in the campus using 
VR. 

5.2 Non-DT Implementation 

This section discusses the Non-DT implementation, starting with the 
implementation architecture and followed by the implementation details. 

5.2.1 Implementation Architecture 

The development of the Non-DT implementation VR application first requires an 
implementation architecture to be developed. There is currently no consensus in 
literature on how this architecture should be structured. Therefore, the 
architecture is designed here specifically for this implementation case study. In 
this implementation, all the functionalities required for visualising data obtained 
from the external data source is carried out within the developed VR application. 
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The system does not make use of independently operating components, in 
contrast to the DT implementation. 

 

Figure 12: Non-DT implementation architecture 

Figure 12 shows that the selected implementation architecture consists of five 
layers, with each layer being responsible for certain functions for the VR 
application. The layers are the Display Layer, the Visualisation Display Layer, the 
Data Processing Layer, the Data Ingestion Layer, and the Data Layer.  

The Display Layer contains the visualisation that the VR application user is 
immersed into and can interact with. This layer receives information from the 
layers below it to display the correct VR environment to the user. The Visualisation 
Display Layer contains various functionalities that are used to create the correct 
VR environment for the user. This layer receives information from the Data 
Processing Layer and input from the user to update the visualisation as required. 
A user is able to make a request to visualise desired energy usage information in 
the VR application. This request is sent from the Visualisation Display Layer to the 
Data Processing layer. The Data Processing Layer is responsible for requesting and 
receiving information from the Data Ingestion Layer and performing any necessary 
calculations and processing of the data for use in the visualisation. Information is 
requested from the Data Ingestion Layer by the Data Processing Layer based on 
the request received from the user. 
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The Data Ingestion Layer contains the functionality to access the external database 
or to access the system specific data stored in the system configuration file. 
System specific data is contained in the configuration file that indicates which 
elements are present in the system, such as buildings, precincts, and the campus. 
A reason for having a specific layer for data ingestion is for the case where data 
for a new data type is to be added to the system. The functions in this layer will 
need to be changed to be able to make provision for this new data type. Having 
this separate Data Ingestion Layer with designated functionality will reduce the 
complexity to reconfigure this layer without needing to reconfigure functions that 
are part of other layers if there was no specific Data Ingestion Layer. 

The Data Ingestion Layer uses the request from the Data Processing Layer to 
obtain the necessary data from the Data Layer. The Data Layer is where any 
information available for visualisation, or system specific data, is stored. The Data 
Layer receives a request from the Data Processing Layer, then responds with the 
desired information. The information is then sent to the Visualisation Display 
Layer, and then to the Display Layer where the user can visualise the requested 
information. 

A VR application for the purposes of data visualisation can have two methods for 
accessing information. The first is by storing all the data in the VR application 
during initialisation. The data can then be accessed within the application. The 
second is by using an external database to access the information as requested. 
This second method does not require the data to be stored in the VR application 
as the data is available in an external database. Kroupa et al. (2018) makes use of 
the external database method in their implementation. On request, the external 
database is accessed using a client/server connection.  

Both methods provide the same outcome and the decision as to which method is 
implemented is dependent on the case study. In FM, the raw energy usage data is 
accessed using an API. As the information has already been stored and can be 
accessed externally, the Non-DT implementation architecture, therefore, makes 
use of the external database method for the implementation.  

5.2.2 Implementation Details 

This section provides the details regarding the implementation of the Non-DT 
implementation using the architecture in Figure 12. The architecture is 
implemented using Unity (which is discussed in Section 2.4.3). Unity is selected 
due to its popularity, reliability, and support. Unity also has VR functionalities that 
allow for a VR application to be created fairly easily. 
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5.2.2.1 Data Layer 

The configuration file in the system is a comma-separated values (CSV) file and 
contains information about the hierarchy of various elements (buildings and 
precincts) in the campus. This information includes the name of the element, the 
type of element, the physical coordinates of the element, and the relation of that 
element to the other elements in the hierarchy. A CSV file is used because FM uses 
a similar hierarchy CSV file in their operations. A sample of the configuration file 
used is provided in Appendix B. 

As mentioned previously, the raw energy data is stored in an external database 
that is accessed using an API. The API requires a URL and provides energy data 
based on the specified meter ID and the time period of the data requested. 
Requests are made to the API when the user makes a request in the VR application 
to visualise specified energy information. The data is received from the API in 
JavaScript Object Notation (JSON) format. 

5.2.2.2 Data Ingestion Layer 

The Data Ingestion Layer consists of an External database accessor and a 
Configuration file reader. The External database accessor is a set of functions that 
are used to access the energy data using the API mentioned previously. These 
functions receive the requested energy data and transfer the data to the Data 
Processing Layer. The Configuration file reader is responsible for obtaining system 
information from the system configuration file. This information can then be used 
by other system elements. For example, the information from the configuration 
file is used to populate menu items, such as a list of buildings, in the UI. 

5.2.2.3 Data Processing Layer 

This layer contains various data processing functions that are used to convert the 
raw energy data, received from the Data Ingestion Layer, to information for 
visualisation. These functions include calculating the daily, monthly, or yearly 
average energy usage for a system element. As mentioned in Section 4.2.3.2, the 
energy meter data records new data typically at five-minute intervals. This five-
minute interval energy data is processed to obtain the desired average energy 
usage information. A request can also be made for the latest energy usage for a 
system element. The Data Processing Layer then processes the energy meter data 
to obtain the latest energy usage for a system component. 

The energy usage information for the building components is derived from the raw 
energy data for the energy meters in that building. The derived energy usage 
information for the buildings, in a precinct, is then used to derive the energy usage 
information for that precinct. Similarly, the derived energy usage for the precincts 
in the campus are used to derive the energy usage information for the campus. An 
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example of this process is when the daily average energy usage for the entire 
campus over a specified period of time is requested. This process is illustrated in 
Figure 13. The campus requires information from the precincts which requires 
information from the buildings that receive the energy data from the energy 
meters. The configuration file is used to determine how information is distributed 
amongst the various system components. 

 

Figure 13: Requesting campus information process flow 

Figure 13 shows that after a user makes a request, the relevant energy meter data 
is requested using the API. The data is processed to derive the energy usage for 
the buildings in the various precincts in the campus. The buildings’ energy usage 
information is used to derive the various precincts’ energy usage information that 
is then used to derive the campus’ energy usage information. This campus energy 
usage information is then displayed to the user for visualisation. The user is then 
able to make another request after they have visualised the information. 

5.2.2.4 Visualisation Display Layer 

The Visualisation Display Layer consists of three aspects: Data display functions, 
UI functions, and User movement. These aspects together are used to ensure the 
correct VR environment is displayed to the user. The Data display functions receive 
the processed information from the Data Processing Layer. The information is then 
interpreted to populate the information in the VR environment for visualisation. 
The UI functions interpret the requests that are made by the user when interacting 
with the UI. The user’s request is then transferred to the Data Processing Layer by 
the UI functions. The User movement functions are a combination of built-in 
functionality available in Unity and custom developed functions for the user to 
navigate the VR environment. Using VR controllers the user is able to navigate 
through the VR environment. The VR application adjusts the visualisation 
according to this inputted user movement. The populated information in the VR 
environment is not altered during this adjustment, rather only the user’s viewing 
perspective is changed depending on their movement. These Visualisation Display 
Layer functions are similar to those for the DT implementation and are discussed 
in Section 5.4 because of this commonality between implementations. 
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5.2.2.5 Display layer 

This layer, as mentioned previously, contains the actual VR environment that the 
user will be immersed in. This VR environment uses the discussed layers above to 
display the environment with the correct energy usage information to the user. 
Using the VR equipment discussed in Section 5.4.1 the user can interact with and 
visualise the information in this VR environment. 

5.3 DT Implementation 

This section presents the DT implementation. The implementation is also used to 
visualise energy usage information for the Stellenbosch Campus in VR, like the 
Non-DT implementation. The implementation architecture is first discussed, 
followed by details regarding the DT components, the Shared Services component, 
and, finally, the operation of the system. 

5.3.1 Implementation Architecture 

The architecture for the DT implementation is developed in Chapter 4, as shown 
in Figure 11, with the internal architecture of the DT components to be used in the 
implementation shown in Figure 10. The aggregation hierarchy of the 
implementation differs slightly from the hierarchy provided in Figure 9 in that the 
University DTA component and the energy meter network DTI have been omitted 
because they would not add much value to the case study. 

The Shared Services component contains a Service Gateway, a DT Directory 
service, and the Exploratory analytics service, with the VR application being the 
CUI, as discussed in Section 4.2.5. The overall architecture for the DT 
implementation is shown in Figure 14. The VR application architecture is discussed 
in Section 5.4 as the details of the application are similar to the Visualisation 
Display Layer of the Non-DT implementation in Section 5.2.2.4. 
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Figure 14: Overall DT implementation architecture 
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5.3.2 Digital Twin Components 

The DT components are those of the aggregation hierarchy in Figure 14. The DT 
components are developed using the C# language as the VR application is 
developed in Unity that makes use of C#. The DT types (Building DTI, Precinct DTA, 
and Campus DTA) are similar, but there are differences in how each operates. The 
DTs consist of several aspects: the use of SLADTA for implementation, the 
communication and aggregation between DTs, and the services offered by the 
DTs.  

5.3.2.1 SLADTA 

SLADTA is selected as the internal architecture of the DTs in the system. As 
detailed in Section 2.3, SLADTA consists of six layers. Figure 10 indicates the details 
for each layer for a DTI or a DTA. 

5.3.2.1.1 Layers 1, 2, and 3 

Section 4.2.5 indicates that the energy usage data use in the implementation is 
already recorded, stored and is available through an API. The DTIs and Precinct 
DTAs in this implementation, therefore, have no Layers 1, 2, or 3. The API fulfils 
the role of Layer 3 in the implementation of the DTIs and Precinct DTAs, that is the 
same API used in the Non-DT implementation to access the raw energy data. The 
API requires a URL with specified API key, and other values like the desired meter 
ID, and the time period of the requested data. The API responds with the desired 
data in JSON format. 

5.3.2.1.2 Layer 4 

Layer 4 is a set of custom developed functions with the purpose of obtaining data 
from Layer 3, for DTIs, or information from other DTs, in the case of DTAs. This 
data or information is then processed and transferred to Layer 5 for long-term 
storage. As per the design selections made in Section 4.2.5, Layer 4 makes use of 
a request-response communication structure. When the functions for a DT’s Layer 
4 are to be carried out, a request is made to the necessary components for the 
desired information. The Layer 4 of each DT type is similar with slight differences 
in where the data or information is requested from.  

Building DTIs 

The Building DTIs are the lowest level of the aggregation hierarchy. Layer 4 of a 
Building DTI makes requests to the API of Layer 3 to retrieve energy data for all 
the energy meters in a building that, together, reflect the energy usage of the 
building. Layer 4 then aggregates the energy data before it is used by the Context 
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generation service. This pre-storage aggregation is a design decision made in 
Section 4.2.5. 

Precinct DTAs 

Layer 4 for a Precinct DTA is like that of a Building DTI, and also like that of a 
Campus DTA. A Precinct DTA has Building DTIs of buildings that form part of the 
precinct, but the precinct also has a main energy meter that is used to record the 
raw energy data for the precinct as a whole, like a building. As such, Layer 4 can 
make requests to the API in Layer 3 for the raw energy usage data for the precinct, 
like a Building DTI would, but because a precinct only contains one energy meter, 
it does not require for raw energy meter data to be aggregated like with the 
Building DTI. 

In addition to obtaining data from an energy meter, the Precinct DTA requests 
energy usage information from the various Building DTIs within that Precinct DTA. 
If a Building DTI has the necessary information, the information is then transferred 
to the Precinct DTA and aggregated with the other Building DTI energy information 
before it is used by the Context generation service. 

The aggregation of the Building DTI energy data ideally should coincide with the 
energy data from the precinct’s energy meter. Two data sources providing data 
for the same component allows for a possible anomaly detection service to be 
implemented. This service is not implemented in this case study, but the two 
methods of data retrieval are mentioned to indicate that provision has been made 
for this type of service to be implemented. 

Campus DTA 

Layer 4 for a Campus DTA is like that of a Precinct DTA’s Layer 4. The campus does 
not have a designated energy meter that provides energy data about the campus 
like a precinct. The Campus DTA must retrieve the energy meter information from 
the Precinct DTAs below it in the aggregation hierarchy. The energy information 
of the Precinct DTAs is aggregated to obtain the energy usage information for the 
campus. This aggregated energy information is then used by the Context 
generation service. 

5.3.2.1.3 Layer 5 

For Layer 5 a local NoSQL database is used for long-term storage as shown in Figure 
10. The reason for the locally hosted database is for a low latency system; this is a 
recommendation of the performance efficiency design pattern in Section 4.2.5. 
MongoDB is selected to implement these local databases. 
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The raw energy data available from the API is not duplicated and stored in the local 
database of a DT because the API data is under the control of FM and remains 
available in the long-term. Therefore, only some aggregated information, like the 
latest energy usage, the information that may be required by the Context 
generation service, like the average energy usage, and other more static data are 
stored in the local databases 

The static information stored for a DT in the database includes the name of the 
DT, the location coordinates of the DT, and the subordinate DTs or energy meters 
of the DT. A DT does not store any information about DTs higher up in the 
aggregation hierarchy as this does not form part of the span of reality of that DT. 
A DTA only stores information that is part of its span of reality, without duplicating 
information, like energy usage, for the span of reality of its subordinate DTIs or 
DTAs.  

5.3.2.1.4 Layer 6 

Layer 6 contains the services that are offered by the DTs in the system. For the 
case study, two services are offered by a DT, namely the Mirror service and the 
Context generation service, as mentioned in Section 4.2.4.  

Mirror Service 

The Mirror service provides the user with requested information about a DT or 
group of DTs. The service collects information from a DT or group of DTs based on 
the desired information that is requested by a user. A DT receives a message with 
what information is requested. For energy usage information, the implementation 
makes provision for requests for either the average energy usage or the latest 
energy usage. A DTA could also receive a request for the names of its subordinate 
DTIs and DTAs. The Mirror service is used to obtain this subordinate DT 
information. 

The Mirror service for a DTA can call for the Mirror service of any of its subordinate 
DTs. An example of this request is illustrated in Figure 15 where a request is made 
to the Campus DTA for the latest energy usage of all components in the campus, 
including the buildings, precincts, and the campus itself. The numbered lines in the 
figure show the order of information flow in processing this type of request. 

Once the request has been received by the Campus DTA, a request is made to the 
list of Precinct DTAs that form part of the campus for the same type of information. 
Each Precinct DTA makes requests to the Building DTIs that form part of the 
Precinct DTA for the same information. The Building DTIs respond to the Precinct 
DTA with the information. The Precinct DTA also retrieves its own latest energy 
usage information and, along with the information from the Building DTIs transfers 
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this information to the Campus DTA. This process occurs for all Precinct DTAs and 
Building DTIs. The Campus DTA then retrieves its own latest energy usage 
information from the NoSQL database. The reply to the external component 
contains the latest energy usage for the campus, all precincts, and all buildings in 
the DT system. 

 

Figure 15: Mirror service example 

Context Generation Service 

The Context generation service, as described in Section 4.2.4, derives new energy 
information for a DT. For a Building DTI, information is derived from the raw 
energy data from energy meters, while for a Precinct DTA and Campus DTA, the 
information is derived based on information from subordinate DTs. Precinct DTAs, 
however, can also derive information from raw data from its single energy meter. 
Every DT offers the Context generation service. 

Figure 16 illustrates this service being carried out when new energy data is 
available from the energy meters. The service is only invoked when new energy 
data becomes available for a DT. The functions in Layer 4 periodically make 
requests to the API in Layer 3 or other DTs, if applicable, to determine whether 
new energy data is available. If new data is available and has not been processed 
yet, the service uses this newly available data, as well as the already derived 
information in the NoSQL database for a DT to derive new information. This 
process begins at the Building DTI level, then moves to the Precinct DTA level, and 
finally to the Campus DTA level. 
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Figure 16: Context generation service process 

The service is fully executed first for the Building DTIs, then the Precinct DTAs, and 
finally the Campus DTA. The service is not executed fully for a DT until all the 
subordinate components have new information available. The reason for this idle 
period is that the service requires the complete aggregation of subordinate data 
to correctly generate the energy usage information for a DT. 

5.3.2.2 Communication 

The DTs in the system are independently operating instances of the various 
developed DT type classes and require a communication mechanism between the 
DTs. Socket communication, specifically Transmission Control Protocol/Internet 
Protocol (TCP/IP), is selected for this communication. All system components, 
including the DTs, Shared Services, and the VR application are hosted on the same 
network, and TCP/IP offers a low latency form of communication between the 
various components. Each DT contains a TCP/IP server for receiving requests from 
other components, and all also contain a TCP/IP client for making requests to other 
system components. This communication uses JSON strings for the message 
payload. 

The use of this socket communication presents an opportunity for a distributed 
hosting of system components. This allows for management of computational 
resource utilisation that could be a challenge of a DT and VR system, as mentioned 
in Section 3.4. 
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5.3.2.3 Digital Twin Component Operation 

The operation of the DT system consists of two aspects: the initialisation of the DT 
component and the operational functions of the DT component. More detailed 
information for these two aspects and some of the associated complexities of the 
DT system is provided in Appendix A. Figure 14 provides general names for the 
various DTs in the system. More specific names for some of the system DTs are 
provided in Appendix B which contains a sample of the configuration file used. 

5.3.3 Shared Services Component 

The other aspect of the DT system is the Shared Services component. This aspect 
is responsible for offering services in the system that are not offered by DTs. The 
general architecture of the Shared Services component internal structure is shown 
in Figure 11 and, as implemented in the case study, in Figure 14. This internal 
structure indicates that the Shared Services component consists of a Service 
Gateway, Management Services, and a Services Network. The services in this 
Shared Services component are discussed below. The Shared Services component 
is also developed using C#. The Shared Services component is separate from the 
DT hierarchy and is developed irrespective of the DT aggregation hierarchy. 

5.3.3.1 Service Gateway 

The Service Gateway receives requests from a component, which for the case 
study relates DT information or to the energy usage information from the DTs, 
formatted as a JSON string. When a request is received by the Service Gateway, 
the Service Gateway decodes the JSON string, interprets the request, and transfers 
the request to the correct service component. This service component then carries 
out the service and responds with the correct information, and the Service 
Gateway transfers this information to the component that made the original 
request. 

The Shared Services component makes use of TCP/IP socket communication like 
the DT aggregation hierarchy for communication between different system 
components to be possible. A TCP/IP server is hosted by the Service Gateway, 
allowing external requests to be received. The Service Gateway is then also able 
to use a TCP/IP client to make requests either to other service components 
(Management Services or Services Network) or to the DT aggregation hierarchy. 

5.3.3.2 Management Services 

The Management Services are services that are used to oversee the functioning of 
the system. In this implementation, the only management service used is a DT 
Directory service. The role of the DT Directory service is to contain information 
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about the DTs in the system, such as the names of the DTs, the communication 
addresses of the DTs, and the subordinate DTIs or DTAs for a DTA. 

A request is made to the DT Directory service when information about a DT is 
required. Any service in the Services Network can make a request to the DT 
Directory service. Services offered by the DT Directory service are: providing the 
communication address for a specific DT and the structure of the aggregation 
hierarchy, i.e. the various DTs in the system and their subordinate DTs. 

The DT Directory service is a single component that is responsible for storing 
information for the various DTs, as well as the structure of the aggregation 
hierarchy. Although this information can be obtained by making requests to the 
aggregation hierarchy directly, this method introduces complexities as a request 
will need to be made to every DT in the system every time this information is 
required. The DT Directory Service allows other services in the Shared Services 
component to have access to this information without needing to make requests 
to the aggregation hierarchy directly. 

5.3.3.3 Services Network 

The Services Network generally contains components that can offer various 
services for the system. In this implementation, the only service that is part of the 
Services Network is the Exploratory Analytics service discussed in Section 4.2.4. 

The Exploratory analytics service receives a request from the Service Gateway for 
the desired energy information for specified DTs in the aggregation hierarchy. The 
service interprets this request to determine for which DT the request for 
information must be made to. A request is then made to the DT Directory Service 
for the communication address of the DT. Using the communication address 
received from the DT Directory service the Exploratory Analytics service then 
makes a request to the relevant DT to obtain the desired energy usage 
information. Once the energy information is received from the DT, the Exploratory 
Analytics service then responds to the original request from the Service Gateway 
with this energy information. The Exploratory Analytics service can interact 
directly with DTs in the aggregation hierarchy, and with other services in the 
Service Component. 

5.3.3.4 Shared Services Component Operation 

The operation of the DT system consists of two aspects: the initialisation of the 
Shared Services component, and the operational functions of the Shared Services 
component. More detailed information and some implementation software code 
for these aspects is provided in Appendix A.   

Stellenbosch University https://scholar.sun.ac.za



 

53 

5.3.4 System Operation 

The DT system enters an operational stage after all the components, DT 
components and Shared Services components, have been initialised. In this 
implementation there are three operations that are carried out during this 
operational stage, i.e. the operation of the DT aggregation hierarchy, fulfilling the 
request for information about the DT aggregation hierarchy, and fulfilling the 
request for energy usage information. 

5.3.4.1 Digital Twin Aggregation Hierarchy Operation 

The operation for the DT aggregation hierarchy includes the updating and 
processing of new energy data that becomes available. When an energy meter 
records new energy data the Building DTI carries out the Context generation 
service for this new data. This propagates upwards in the aggregation hierarchy to 
the Precinct DTAs, and the Campus DTA. This operation for the aggregation 
hierarchy ensures that the latest energy usage information is available from the 
DT aggregation hierarchy. The operation of the DT aggregation hierarchy also 
includes the use of the Mirror service for a DT when a request is received. More 
information regarding these DT aggregation hierarchy operations is provided in 
Appendix A. 

5.3.4.2 Digital Twin Aggregation Hierarchy Request 

The DT system allows for information to be requested about the DT aggregation 
hierarchy with its DTs and how these DTs relate to one another. The handling of 
such a request is shown in Figure 17. This process is identical for all requests for 
information about the aggregation hierarchy. An example of this type of request 
is the user making a request to receive a list of the subordinate DTs that form part 
of the Campus DTA. The result of this request is a list of the names of the 
subordinate Precinct DTAs that are part of the Campus DTA. Figure 17 shows that 
handling this request for information is fairly simple as the information can be 
provided directly by a service in the Shared Services component, the DT Directory 
service, through interaction with the Service Gateway.  

 

Figure 17: DT aggregation hierarchy structure request 

5.3.4.3 Digital Twin Energy Information Request 

The DT system also fulfils requests for the energy usage information for the DTs. 
An example of this request is a request for the latest energy usage for only the 
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campus, and buildings in the campus. In this example the information at the 
Precinct DTA level in the aggregation hierarchy has not been requested. The 
process of this request is illustrated in Figure 18. Information is requested from 
the aggregation hierarchy by using the Mirror service of the DTs that is shown in 
Figure 15. For the sake of brevity the full procedure for the Mirror service of the 
DTs is not shown here. Rather, just an indication of the different components that 
are part of the request for energy information is provided. 

Figure 18 shows that although the precinct level information is not requested, the 
Precinct DTAs are still required to request information from their Building DTIs. 
Figure 18 shows how the DT aggregation hierarchy is used to obtain information 
from various DTs in the system. The result of this process is the latest energy usage 
for the campus as a whole, as well as the latest energy usage for all of the buildings 
in the campus. 

 

Figure 18: Exploratory analysis request example 

5.4 Virtual Reality Application 

The Non-DT implementation and the DT implementation each have their own VR 
application, but the functioning of the two VR applications, in terms of user 
interaction and displaying information, is similar. For this reason the VR 
application implementations are discussed together below. The VR application 
consists of four aspects: the hardware and software used, the virtual environment 
for the user experience, the user interaction with UI, and the displaying of 
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information to the user. The architectures used for the VR application 
implementations is shown in Figure 12 and Figure 14. 

5.4.1 Hardware and Software 

The VR hardware used in the implementation is the HTC Vive Pro (Figure 19), 
including an HMD, two VR controllers, and two infrared sensors. The HMD is used 
to display the developed VR environment to the user. The user uses the VR 
controllers to provide input to the VR application for the application then to adjust 
accordingly. The infrared sensors track the movement of the HMD and controllers 
to update the visualisation from the user’s perspective through the HMD. 

 

Figure 19: VR equipment setup 

A desktop PC is used to develop the DT implementation components, the Non-DT 
implementation components, and the VR applications. The same PC is used to host 
the various components for the implementations including the developed VR 
application. The VR equipment is connected to this PC which allows the user to 
visualise the VR environment on the PC, through the HMD. The PC used has 64 GB 
of RAM, an Intel Core i7 10th Gen CPU, 1 TB SSD, and an NVIDIA GeForce RTX 2060 
Super graphics card. The PC has high specifications as running a VR application is 
computationally intensive. 

The Unity game engine, discussed in Section 2.4.3, is the selected software to 
develop the VR application. The Unity game engine makes use of the SteamVR 
software to allow the user to enter the VR environment and interact with it. 

VR HMD 

VR controllers 

VR infrared 

sensor 

PC setup 
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Appendix C.1 provides some additional information about the Unity environment 
that was used during development. 

It should be noted that other software, such as ABB RobotStudio, is used in 
industry for the visualisation of 3D robotic systems in a virtual world and that such 
software could also be considered for this application. VR software provided by 
automation vendors was not used in this thesis because it is often expensive to 
maintain, vendor specific and not as expandable as software such as Unity. 

5.4.2 Virtual Environment 

Using Unity and its functionality, the user can be immersed in the VR environment 
and interact with it. The environment includes several elements to provide the 
user with a satisfactory experience when using the VR application to visualise 
energy information. These elements include the UI and the displaying of 
information to the user aspects which are discussed in Section 5.4.3 and 5.4.4, 
respectively. Other elements include the objects in the VR environment and the 
movement mechanics of the user.  

The case study is focussed on visualising energy usage information for the 
Stellenbosch University campus located in Stellenbosch. Therefore, a major aspect 
of the virtual environment is a map of Stellenbosch that is displayed to the user. 
This map is shown in the visualisation examples provided in Section 5.4.4 and 
Appendix C.3. 

An opportunity mentioned in Section 3.2 is the ability to overlay a physical model 
with DT information. The map of Stellenbosch allows for this opportunity to be 
realised. The energy usage information for the different components in the 
campus can be overlayed onto the map at the exact position of the coordinates of 
the component in the real world. This gives the user a better understanding of the 
information presented to them as more context is given to the information. An 
example of this overlaying of information is provided in Section 5.4.4. 

Along with this map being displayed to the user, the user is also able to navigate 
the map as they desire. This forms the User movement aspect of the VR 
application architecture shown in Figure 12 and Figure 14. The user is able to 
navigate the environment in several ways. The first is by simply moving around 
their physical location which will result in the same movement in the virtual 
environment. The infrared sensors register the movements of the HMD and adjust 
the VR environment accordingly. As the user moves in the physical world, the 
user’s GameObject is moved in the virtual world. Another mechanism of 
movement is using the trackpad on the controllers. A user can use the trackpad to 
either move forward, backward, or side-to-side for more precise movement. In 
addition to this, they are also able to turn in the VR environment using the 
trackpad instead of having to physically turn around. The last movement mechanic 
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is the ability to “fly”. Using the controller, the user is able to point in a direction, 
and when pressing the trackpad, they are able to fly towards that direction. 

The controllers that the user is holding are also represented in the VR 
environment. In this application, they are represented as a set of gloves to give 
the user a more natural feel when interacting with the VR environment. The 
reason for showing the user the controllers is that the user can see what position 
the controller is at compared to their view. This allows the user to have a better 
sense of their movements and interactions. When interacting with the UI, the 
gloves, in VR, emit a laser to allow the user to see on which element of the UI they 
are hovering over or selecting. 

5.4.3 User Interface Interaction 

The purpose of the UI in the VR application is to enable the user to make a 
selection as to what energy information they would like to visualise. The UI makes 
use of cascading menus that the user follows, and in the end, a message is 
generated containing the information selected using the UI by the user. This 
message is the request for the desired information that is then transferred to the 
necessary component to receive the information. In the DT implementation this 
component is the Service Gateway, and with the Non-DT implementation the 
component is the Data processing functions component. The UI used in the VR 
application is discussed in Appendix C.2. The functionality of creating the 
information request message based on the selections by the user using the UI is 
encapsulated in the UI Functions component of the architecture. This component 
also contains the functionality for displaying the correct menu after one another 
as the user works through the UI. Figure 20 provides an example of the VR UI 
where a user is selecting the span of reality to visualise. 

 

Figure 20: VR UI example 
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5.4.4 Displaying Information 

The displaying of the selected information to the user is a vital component of the 
VR application. This displaying process consists of two aspects: receiving and 
interpreting the information, and displaying the information. An example of the 
information displayed in the virtual environment from the user’s perspective with 
the visualisation UI is shown in Figure 21. 

 

Figure 21: Information overlay in VR 

The first aspect is the receiving of information. In the DT implementation the 
information is received in JSON format, whereas with the Non-DT implementation 
the information is simply transferred from one class to the other as a variable. This 
is possible because the Non-DT implementation contains all of the various layers 
and components in the same Unity project. Although the information received in 
the implementations are in different formats, the information received contains 
the same parameters. 

In the case of the DT implementation, the information is first converted from a 
JSON string to a usable variable format, which is the same variable format used in 
the Non-DT implementation. The type of information contained in the variable is 
the name of the element, the coordinates of the element, the value for the energy 
usage, the timestamp of the energy usage value, and the element type (building, 
precinct or campus). This variable contains values for these parameters for every 
data point that will be displayed to the user. The Displaying Functions, Figure 12 
and Figure 14, makes use of these parameters to display the correct information 
in the environment to the user. 

The last aspect of the displaying process is the actual displaying of information to 
the user. The received and interpreted information is used to instantiate 
GameObjects in the virtual environment. Unity GameObjects are discussed in 
Section 2.4.3. Using the coordinates provided in the list of information from the 
variable, a GameObject can be instantiated at a location on the map of 
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Stellenbosch in the position that corresponds with that system element. The 
energy usage value in the information is then used to set the height of this 
GameObject. 

The element type is then used to set the colour of the GameObject. In the VR 
application, buildings are represented by green columns, precincts by blue 
columns, and the campus by a red column. The GameObject also contains a panel 
with information about the data point. This panel indicates the name of the 
element, the energy usage value and the timestamp of the data point. An example 
of this panel with the information for a data point is shown in Figure 22. 

 

Figure 22: Information panel in VR 

Once all of the GameObjects have been instantiated correctly, the user is then 
notified on the visualisation UI that the visualisation is ready. The user is then able 
to begin navigating through the information. After visualisation is complete, the 
user can then request new information using the UI. The process of obtaining and 
displaying this information is then followed again. 

More examples of the operation of the VR application are provided in Appendix 
C.3. These examples contain some instances of a user requesting or visualising 
information, or adjusting the current visualisation as they desire. 

5.5 Comparison of Implementations 

This section compares the DT implementation and the Non-DT implementation. 
Various similarities are identified, as well as differences between the two 
implementations. The reason for this comparison is to indicate that although the 
two implementations have some similarities and produce the same outcome, the 
outcome is achieved by different means. It must be noted that the URs in Table 1 
are all achieved by both the DT implementation and the Non-DT implementation, 
showing that the implementations are similar to one another.  
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The most obvious difference between the two implementations is that the DT 
implementation makes use of several components that are not part of the same 
software application and can operate independently of one another. This is seen 
with the DTs in the DT aggregation hierarchy, the services in the Shared Services 
component, and the VR application; all of which are independent of each other 
but can operate concurrently. This is in contrast with the Non-DT implementation 
that makes use of the same software application in Unity to carry out its 
functionality. The different layers in the Non-DT implementation, including the VR 
application environment, are, therefore, dependent on each other to continue 
operation.  

The independently operating components allow for the DT implementation to 
have a distributed operation capability, as mentioned in Section 5.3.2.2, where 
different components are able to be hosted on various hardware devices on the 
same network. This distributed operation was tested for the DT implementation. 
Various DTs, as well as Shared Services service components were hosted on 
different hardware devices on the same network with the VR application being 
hosted on the PC mentioned in Section 5.4.1. The DT implementation was able to 
operate normally as if all the components were hosted on the same computer. In 
addition to this distributed operation, a second VR setup was used to be able to 
enter a duplicate of the developed DT implementation VR application, with the 
original VR application simultaneously, to visualise the energy usage information 
from the DT aggregation hierarchy. This second VR application was operated 
concurrently with the original VR application. Two VR applications were able to 
access the information from a single DT system’s DT aggregation hierarchy. This 
distributed operation is an aspect that the Non-DT implementation is not capable 
of. 

Another aspect that is similar but has slight differences for each implementation 
is with regards to data accessing and processing. Both implementations access 
information using the same API. Both implementations process the information 
received by the API similarly. In both implementations, the energy information for 
the lowest element (a building) must be aggregated upwards in the hierarchy to 
obtain the information for the other elements, such as a precinct or a campus. The 
difference between the two implementations is when this data processing occurs 
and what happens to the information afterwards. 

In the Non-DT implementation, the data is processed on-demand, as the user 
makes requests. The processed data is then cleared to allow for a new request to 
be processed. Therefore, this data processing must be carried out every time the 
user makes a request for information. Calls to the API must also be made 
whenever the user requests information. The DT implementation operates 
differently in that the API is automatically periodically queried for new data. Once 
new data is received, it is processed, and the new information is stored in a local 
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database. When a user makes a request, the already processed information, 
stored in a local database, is retrieved and displayed to the user. The data is not 
required to be processed every time a user makes the request, like with the Non-
DT implementation. This locally stored, already processed information is expected 
to result in a very responsive system for the DT implementation. 

The final aspect of comparison between the two implementations is with regards 
to the complexities of the implementations, as well as the development challenges 
associated with each implementation. The Non-DT implementation is the simpler 
implementation. The reason for this is that the Non-DT implementation does not 
contain as many independently operating components as the DT implementation. 
The components are part of the same software application and, therefore, are not 
required to make or receive any external communication. The Non-DT 
implementation is also not required to have any long-term storing functionality 
like with the DT implementation. There is other functionality, in addition to the 
two mentioned, that the DT implementation requires that the Non-DT 
implementation does not. This added complexity and functionality results in the 
DT implementation being more complicated, time consuming, and challenging to 
implement. 

However, the added complexity and functionality allow for the DT implementation 
to be more reconfigurable for the addition of other features. Due to the highly 
modular nature of the DT implementation, additional features can be added to the 
implementation without having to greatly change the core components of the 
system. This is because of the individually and independently operating 
components in the system. For example, if the energy information for the campus 
is to be viewed using a web application instead of a VR application, the DT 
implementation would easily be able to accommodate this. The web application 
would be able to connect to the Service Gateway and make requests in a similar 
manner to the VR application. 

The same cannot be said for the Non-DT implementation. For a web browser, or 
other application, to have access to the information available in the VR application 
for the Non-DT implementation, many changes to the core components of the 
implementation would be required. This shows that the DT implementation has 
the potential to be more easily used for situations outside of the use only of VR 
for data visualisation. 

The comparisons above are not exhaustive and there are several other aspects of 
the two implementations that could be compared. The ones mentioned above are 
provided to highlight some of the differences between and similarities of the two 
implementations. 
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6 Case Study Evaluation 

This chapter describes the evaluation that was conducted on the case study 
implementations. The section begins with discussing the objectives of the 
evaluation, as well as what evaluation experiments were conducted. The method 
of these evaluation experiments is then discussed, followed by the results of these 
evaluation experiments. A brief discussion of the results is then provided at the 
end of the chapter. 

6.1 Objective 

The objective of the evaluation is to compare the DT implementation to the Non-
DT implementation. The purpose of this comparison is to determine their relative 
merits for the use of VR in data visualisation.  

The implementations are evaluated using three different experiments to measure: 
the latency in the system, the computational resource utilisation of the system, 
and the reconfigurability of the system. 

Latency is considered as an evaluation experiment because VR is intended to aid 
a user in navigating and visualising information. The responsiveness of the system 
when a user requests new information is, therefore, an important factor to 
consider when implementing a VR system. This evaluation is aimed at measuring 
the responsiveness of the two implementations. The computational resource 
utilisation of each implementation is evaluated as the computational cost of such 
a system should remain as low as possible. This is so that no additional latency is 
added to the system that is the fault of insufficient computational power available. 
The reconfigurability of the system is also an important factor to consider for a 
system in the FM case study context. It is highly likely that, from time to time, the 
VR implementation will have to be altered and features added. The 
reconfigurability of the two implementations is therefore evaluated. 

Although there are many other factors that are of importance to the functioning 
of a VR system for the purposes of data visualisation, the three aspects selected 
to be evaluated are deemed important fundamental aspects of such a system. 

6.2 Method 

This section discusses the method that was followed in the three experiments of 
the evaluation to show that the results obtained from the experiments are 
credible and that an accurate conclusion can be drawn from the results. 
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6.2.1 Latency and Computational Resource Utilisation 

The latency and computational resource utilisation experiments are very much 
hardware dependent; however latency is also dependent on the network used. As 
such, the experiments were conducted on the same computer and network. Each 
experiment was conducted with multiple scenarios for added value to be 
extracted from the results. 

A latency experiment for each implementation was conducted to determine the 
latency associated with the implementations. The experiment involved a user 
making a request for specific energy information. The time taken from when the 
user requests the information to when the information is displayed to the user in 
VR is the latency measured for the system. This experiment includes varying 
system scenarios as well as varying information being requested. The different 
system scenarios refer to the number of elements (buildings, precincts, and the 
campus) that are present in the system. The varying of requested information 
refers to the number of data points that are requested from each element, as well 
as which element the information is requested from. Each scenario was repeated 
three times to reduce the possibility of outliers, and to obtain more reliable 
results. In some cases, the test for the scenario was conducted more than three 
times depending on the scenario.  

The results of this experiment were the latencies for different system scenarios 
and different amounts of information being requested. For each scenario in the 
system, there is at least one building, once precinct, and the campus. All building 
elements only contain one energy meter. The reason for this was to obtain an 
accurate comparison between the two implementation latencies that was not 
skewed by a building having multiple energy meters and the system having to 
access the API multiple times, in the case of the Non-DT implementation. 

The computational resource utilisation experiment was tightly coupled to the 
latency experiment because the latency of the system is measured as the system 
operates and the computational resource utilisation experiment obtained results 
during the same system operation period. As such, the computational resource 
utilisation experiment was conducted at the same time as the latency experiment. 
During this experiment, the RAM usage and CPU usage of the system were 
measured for each implementation. The RAM and CPU usage recorded was the 
total usage for the components in the implementation. For the DT implementation 
this included the DT aggregation hierarchy, the Shared Services component, and 
the VR application. For the Non-DT implementation, this was only the usage for 
the VR application which contains all the system functionalities. The experiment 
was conducted for the same scenarios as mentioned for the latency experiment. 
Functionality was added to the system source code to access information from the 
operating system to record the RAM and CPU usages of the various components 
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while the system was operating. The experiment was conducted while the 
application was in the debug configuration, as this allowed for more accurate 
results for the system’s overall CPU and RAM usage to be recorded.  

6.2.2 Reconfiguration 

The reconfiguration experiment was used to evaluate the reconfigurability of each 
of the implementations. In this experiment, a new feature/service was added to 
the system. This reconfigurability was measured in terms of how long it took to 
add the new feature, the lines of source code changed/added for this feature, the 
lines of the configuration file that was changed/added for this feature, and the 
percentage of code reused in adding this feature. These metrics are used to give 
an indication of how reconfigurable a system is with regards to time required and 
additional coding effort required. The experiment was conducted for three 
scenarios for each implementation. In each scenario, a new feature is added to the 
system. The first is a “Max” feature to be added that returns the maximum energy 
usage for a system element for a day, month, or year. The second is a “Total” 
feature that provides the total energy usage for a system element for a day, 
month, or year. The final feature is a “Cost” feature that uses the value from the 
“Total” feature to calculate the cost of energy usage for a day, month, or year for 
a system element. 

6.3 Results 

This section provides the results from the three different experiments. For the 
latency and computational resource utilisation experiments, a brief mention of the 
various scenarios used in the experiments is given followed by the results of these 
scenarios. The results for the reconfiguration experiment are also provided for 
each feature added to the system. 

6.3.1 Latency and Computational Resource Utilisation 

This experiment consisted of four different testing scenarios where the latency 
and computational resource utilisation of the two implementations were 
measured. For all the tested scenarios, the scenario began with the system 
containing three elements, a building, a precinct, and a campus. This is because a 
system like this in the FM context will at least have these three elements. The 
number of elements in each of the scenario was then increased to 18 elements 
comprised of a combination of buildings and precincts, but still with a single 
campus. Only a few results of the various test scenarios are provided in this 
section. The other recorded results are provided in Appendix D. The trend lines 
shown in the latency, RAM usage, and CPU usage results indicate linear trends in 
the measurements. 
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Scenario 1 and Scenario 2 are where energy usage information was requested for 
all the elements in the system. This includes energy information about the 
campus, all the precincts, and all the buildings. The difference between the two 
scenarios is that in the Scenario 1 only a single energy usage value was requested 
for all the system elements, and in Scenario 2, a range of the number of energy 
usage values was requested, ranging from a single requested value to requesting 
30 values. The top end of this range was selected as 30 values to simulate a request 
being made to visualise the daily average energy usage for every day in a month. 
Figure 23 shows the results of the latency experiment for the two scenarios. 

 

(a) 

 

(b) 

Figure 23: Scenario 1 (a) and Scenario 2 (b) latency results 
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From Figure 23 it is evident that the latency for the DT implementation was 
significantly lower than the latency for the Non-DT implementation. The latency 
for both implementations increased with more elements present in the system, as 
well as the number of data points requested for each element. The latency of the 
DT implementation does not seem to increase in the figure, but the reason for this 
is the scale of the figure. The DT implementation had latencies in the order of tens 
of milliseconds, whereas the Non-DT implementation had latencies in the order of 
seconds. 

Figure 24 provides the results of the RAM usage experiment for Scenario 1 and 
Scenario 2. The results show that the difference in RAM usage between the two 
implementations was modest, i.e. approximately 1000-1200 MB, which is a 
relatively low difference between systems that make use of a VR application. The 
DT implementation used more RAM than the Non-DT implementation, which is an 
expected outcome as the DT implementation had more components that require 
RAM, compared to the Non-DT implementation which only had the VR application. 
The VR application, in both implementations was responsible for most of the RAM 
usage in this system. This is expected as the VR application, developed in a game 
engine, is graphics heavy and requires sufficient RAM to operate and provide a 
satisfactory VR experience. 

Figure 24b shows a large difference between the individual RAM usage results for 
the DT system with 3 elements and 18 elements. A reason for this could be due to 
the development software making use of a Garbage Collector and the system 
operating in the debug configuration. The Garbage Collector manages the 
allocation and release of memory. This Garbage Collector forms part of the system 
and was, therefore, included in the RAM usage results. The Garbage Collector 
could have allocated memory differently for the testing of the DT system and 
resulted in a wide range of results for the individual RAM usage measurements 
between tests. 

Stellenbosch University https://scholar.sun.ac.za



 

67 

 

(a) 

 

(b) 

Figure 24: Scenario 1 (a) and Scenario 2 (b) RAM usage results 

The results of the CPU usage of the two implementations for Scenario 1 and 
Scenario 2 are provided in Figure 25. The results indicate that the CPU usage for 
both implementations in both scenarios was very similar. The CPU usage for the 
two implementations was typically between 10% and 20% during operation with 
the DT implementation using slightly more. 
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(a) 

 

(b) 

Figure 25: Scenario 1 (a) and Scenario 2 (b) CPU usage results 

The results presented in Figure 23 to Figure 25 indicate that the most glaring 
difference in performance between the two implementations was with regards to 
the latency in the system. A possible reason for this discrepancy in latencies is the 
Non-DT implementation having to reactively make requests to the API and having, 
then, to also process the data as necessary. This contrasts with the DT 
implementation where API requests are done proactively so that information is 
available in a local database and little processing of information is required when 
a request is received. The RAM and CPU usages were similar for both 
implementations and no significant differences are noted in this respect. 
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Test Scenario 3 and Scenario 4 were used to determine the latency and computer 
resource utilisation associated with requesting information for a single system 
component. In these scenarios, only information for a single building element was 
requested. In Scenario 3, like Scenario 1, only one energy value was requested, 
and in Scenario 4, like Scenario 2, a range of the number of values was requested. 
As only a single building’s information was requested in these scenarios, only one 
API call was made for the Non-DT implementation because the building only had 
one energy meter. This was in contrast with the other scenarios with multiple 
components which resulted in multiple API calls needing to be made in the Non-
DT implementation. These scenarios were used to determine whether a large 
portion of the latency or computer resource utilisation was due to the API calls 
being made or if it was simply due to the selected architecture. The latency results 
for Scenario 4 are shown in Figure 26. 

 

Figure 26: Scenario 4 latency results 

A similar trend to Scenario 1 and 2 is present in the latency results in Figure 26. 
The Non-DT implementation had a higher latency than the DT implementation, 
even if only information for a single element was requested. Figure 26 shows the 
results for a single data point request for a building element. This request required 
minimal processing, and as such, shows that the latency of receiving data from the 
API is the major contributing factor to the overall latency for the Non-DT 
implementation. 

The RAM usage results for Scenario 4 are shown in Figure 27. The results indicated, 
as expected due to the results of the previous scenarios, that the RAM usage for 
both implementations in these scenarios was very similar with an average 
difference of approximately 750-1000 MB between the implementations. The DT 
implementation was shown to use slightly more RAM than the Non-DT 
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implementation, and this is expected due to the DT implementation having more 
components operating concurrently. 

 

Figure 27: Scenario 4 RAM usage results 

The results shown in Figure 28 indicate CPU usages for both implementations that 
are very similar to the results obtained in Scenarios 1 and 2. The results indicate 
that both the DT implementation and the Non-DT implementation used between 
10% to 20% of the CPU with the DT implementation using slightly more. The results 
in Figure 28, along with the RAM usage results in Figure 27, further emphasise the 
conclusion that the type of implementation (either DT or Non-DT) has little 
difference in terms of the computer resource utilisation of the system. 

 

Figure 28: Scenario 4 CPU usage results 

The comparison between latencies of the two different implementations show 
that the Non-DT implementation had much larger latencies than the DT 
implementation. A reason for this is that the Non-DT implementation is required 
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to make requests to the API when information is needed. This request to the API 
takes a large amount of time to be fulfilled, compared to the DT implementation 
that makes requests to a local NoSQL storage database when fulfilling a request. 
To evaluate this hypothesis, the test scenarios conducted previously were carried 
out again for the Non-DT implementation that had a slight modification. This 
modification was that instead of requests being made to the API, requests were 
made to a local NoSQL storage database, like with the DT implementation. This 
local storage database contained the same information that was available directly 
from the API, this being the raw energy data. The data from this database still had 
to be processed, as done originally for the Non-DT implementation, to return the 
correct energy usage information that was being requested. Some of the latency 
results for Scenario 1 and Scenario 2 with this change are shown in Figure 29.  

 

(a) 

 

(b) 

Figure 29: Scenario 1 (a) and Scenario 2 (b) local database latency results 
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Figure 29 shows that the use of a local database reduced the latency experienced 
in the Non-DT implementation significantly. However, this latency was still higher 
than for the DT implementation. A possible reason for this was due to the 
processing of information that was still required in the Non-DT implementation to 
fulfil the request. As such, Scenarios 3 and 4 were tested again with this use of a 
local database. The results for the Scenario 4 test are provided in Figure 30. 

 

Figure 30: Scenario 4 local database latency results 

Figure 30 shows that even with the use of a local database, the latency of the Non-
DT implementation was still significantly higher than with the DT implementation. 
The expected reason for this is thought to be the time required to process the 
necessary data to fulfil the request. In the DT implementation the data had already 
been processed by the Context generation service and this already processed 
information was then used to fulfil the request. The computer resource utilisation 
results for this modification to the Non-DT implementation are provided in 
Appendix D. The results indicate a similar trend that was present in the other 
computer resource utilisation test scenarios conducted previously.  

6.3.2 Reconfiguration 

This section provides the results of the reconfiguration experiments for the DT 
implementation and the Non-DT implementation. As mentioned previously, the 
experiment consisted of adding three new features to the already existing 
systems.  

Both implementations required changes to the source code, and possibly to the 
configuration file, for the features to be added. For the DT implementation, there 
is a possibility to alter the source code or configuration file for the DT aggregation 
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hierarchy, the Shared Services component, or the VR application. The details of 
which components were altered are provided in the results. For the Non-DT 
implementation, the system functionality was developed in the VR application, as 
such there was only one component whose source code or configuration file could 
be changed, that being the Unity code, unlike with the DT implementation. 

6.3.2.1 Max Feature 

The addition of the Max feature required a change to the UI in the VR application 
for both implementations. The functionality was added to allow for the system to 
return the maximum energy usage for a selected element and time period. The 
reconfiguration results of adding this Max feature for both implementations are 
shown in Table 6 and Table 7, respectively.  

Table 6: DT implementation Max feature reconfiguration results 

Lines of 
code added 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
added 

9 0 690 0 699 
Lines of 
code reused 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
reused 

6 0 469 0 475 
Percentage 
of code 
reused 

Unity 
code 
(%) 

Shared 
Services 
Component 
code (%) 

DT 
Component 
code (%) 

Configuration 
file (%) 

Total 
lines 
reused 
(%) 

66.67 0 67.97 0 67.95 

Time taken 
(hrs:min) 

02:45 

Table 6 indicates that only changes to the DT aggregation hierarchy components 
and the Unity code were required. This is expected as the Max feature is a new 
service that is offered by the DT. This added service also then required an update 
in the Unity code in the form of adding a button and subsequent functionality to 
make use of the service. Table 6 also shows that almost three hours were required 
to add this feature to the DT implementation. A reason for this is that the test was 
conducted once both implementations were complete. The DT implementation 
was completed first, as such, a certain degree of “relearning” the specifics in terms 
of code layout and functions was required. This “relearning” aspect took place 
during testing, unbeknownst to the developer, and gives an incorrect impression 
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of the actual time that was required to implement the new feature. The Total 
feature test was conducted afterwards to determine whether the time taken 
result for the Max feature was skewed by the “relearning” aspect of the test. These 
results are further discussed in Section 6.3.2.2. 

Table 7: Non-DT implementation Max feature reconfiguration results 

Lines of code 
added 

Unity code Configuration file Total lines added 

406 0 406 

Lines of code 
reused 

Unity code Configuration file Total lines 
reused 

341 0 341 
Percentage of 
code reused 

Unity code (%) Configuration file 
(%) 

Total lines 
reused (%) 

84 0 84 

Time taken 
(hrs:min) 

00:21 

From Table 6 and Table 7 it is evident that more total lines of code were required 
to add the Max feature to the DT implementation compared to the Non-DT 
implementation. The reason for this is that the DT implementation has 
complexities that are not present in the Non-DT implementation. An example of 
these complexities is that a DT in the DT implementation is required to process 
and store the information for this Max feature. This processing and storing process 
resulted in more code being required, and some of this added code not being from 
reused code. This is the reason for the higher percentage of code reused for the 
Non-DT implementation compared to the DT implementation. The time taken to 
add this Max feature to the Non-DT implementation is also significantly shorter 
than with the DT implementation. 

6.3.2.2 Total Feature 

The addition of the Total feature was similar to the addition of the Max feature 
and was used to determine if the “relearning” aspect played a significant role in 
the Max feature experiment. Table 8 and Table 9 provide the reconfigurability 
results for the addition of the Total feature to the DT implementation and the Non-
DT implementation, respectively. 

Table 8 shows that the only code changes required were with the DT aggregation 
hierarchy code and the Unity code. The Total feature was an additional service 
offered by the DTs. The changes to the Unity code were the addition of a new UI 
button as well as the functionality for the user’s selection of this new service. Table 
8 indicates that the time required to add the Total feature to the DT 
implementation was significantly shorter than the time required for the Max 
feature in Table 6. This shows that the addition of the Max feature required time 
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for “relearning” of the DT implementation which resulted in a longer 
implementation time. As this “relearning” was already complete, the time 
required to add the Total feature is only based on the addition of the feature and 
is a better representation of the time required to add a new feature to the DT 
implementation. 

Table 8: DT implementation Total feature reconfiguration results 

Lines of 
code added 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
added 

8 0 605 0 613 

Lines of 
code reused 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
reused 

4 0 432 0 436 

Percentage 
of code 
reused 

Unity 
code 
(%) 

Shared 
Services 
Component 
code (%) 

DT 
Component 
code (%) 

Configuration 
file (%) 

Total 
lines 
reused 
(%) 

50 0 71.4 0 71.13 

Time taken 
(hrs:min) 

00:40 

Table 9: Non-DT implementation Total feature reconfiguration results 

Lines of code 
added 

Unity code Configuration file Total lines added 

396 0 396 

Lines of code 
reused 

Unity code Configuration file Total lines 
reused 

335 0 335 

Percentage of 
code reused 

Unity code (%) Configuration file 
(%) 

Total lines 
reused (%) 

84.6 0 84.6 
Time taken 
(hrs:min) 

00:15 

Table 8 and Table 9 show that, like with the addition of the Max feature, the DT 
implementation required more additional lines of code than the Non-DT 
implementation to add the Total feature. However, like with the Max feature, the 
reason for more lines of code being required is due to added complexities 
associated with the DT implementation that have been mentioned previously. The 
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Non-DT implementation also had a better percentage of code reused than the DT 
implementation. The Non-DT implementation also required less time to add the 
Total feature than the DT implementation. The reason for this better percentage 
code reused and less time required is, again, linked to the added complexities with 
the DT implementation.  

6.3.2.3 Cost Feature 

The final reconfiguration test was the addition of the Cost feature for the VR 
application. This would use the value returned by the Total feature and perform a 
calculation for the cost of the total energy used for a system element for the 
selected time period. This cost calculation was based on the electricity rate in 
South Africa of R 1.209/kWh (GlobalPetrolPrices.com, 2021).  Table 10 and Table 
11 provide the reconfigurability results for the addition of the Cost feature to the 
DT implementation and the Non-DT implementation, respectively. 

Table 10: DT implementation Cost feature reconfiguration results 

Lines of 
code added 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
added 

17 105 0 1 123 
Lines of 
code reused 

Unity 
code 

Shared 
Services 
Component 
code 

DT 
Component 
code 

Configuration 
file 

Total 
lines 
reused 

6 81 0 0 87 

Percentage 
of code 
reused 

Unity 
code 
(%) 

Shared 
Services 
Component 
code (%) 

DT 
Component 
code (%) 

Configuration 
file (%) 

Total 
lines 
reused 
(%) 

35.3 0 0 0 70.73 

Time taken 
(hrs:min) 

00:11 

Table 10 shows that in total 123 lines of code were added to the DT 
implementation for the addition of the “Cost” feature. The majority of this added 
code was in the Shared Services component. The other lines of code added were 
in the Unity code and the configuration file. Unlike with the other reconfiguration 
experiments where the added feature was a service offered by a DT, this added 
feature was a service that was offered by the Services network. The percentage of 
code reused was similar to the other reconfiguration experiments. The amount of 
time required to add this feature was much lower in comparison to adding the 
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other features. The reason for this is that adding a service to the Services Network 
does not have the added complexities that are encountered when adding a service 
to a DT. This reduction in complexity is also the reason why fewer lines of code 
were required to add the feature. 

Table 11: Non-DT implementation Cost feature reconfiguration results 

Lines of code 
added 

Unity code Configuration file Total lines added 

51 0 51 

Lines of code 
reused 

Unity code Configuration file Total lines 
reused 

34 0 34 
Percentage of 
code reused 

Unity code (%) Configuration file 
(%) 

Total lines 
reused (%) 

66.67 0 66.67 

Time taken 
(hrs:min) 

00:12 

Table 11 shows that fewer lines of code were required to add the “Cost” feature 
to the Non-DT implementation compared to with the DT implementation in Table 
10. However, although fewer lines of code were required, the percentage of code 
reused was less than for the DT implementation. Although the time required to 
add the feature was a minute longer than for the DT implementation, this is not 
significant enough to indicate that there was a great time difference between the 
two implementations for the addition of this Cost feature. 

6.4 Discussion 

The results presented in Section 6.3 show that in terms of latency, computer 
resource utilisation, and reconfigurability, latency was the biggest difference 
between the DT implementation and the Non-DT implementation. The DT 
implementation had latencies, with regards to obtaining and displaying 
information, in the order of milliseconds, whereas the Non-DT implementation 
had latencies for the same process in the order of seconds or even tens of seconds. 
Even with the use of a local database for both implementations, the DT 
implementation still had lower latencies.  

These results indicate that the DT implementation provided better 
responsiveness, which is desired for a VR application, than the Non-DT 
implementation. Although this is evident, there is a reason for this large 
discrepancy in latencies between the two implementations. As mentioned in 
Section 5.5, both implementations access the energy usage data from an API. The 
DT implementation processes this data and stores the processed information in a 
local database that is then later queried for information when requested. The Non-
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DT implementation on the other hand, carries out the same process of accessing 
and processing information like with the DT implementation. The difference 
between the two implementations is that the accessing and processing is carried 
out on user request for the Non-DT implementation but has already been 
completed for the DT implementation and the information must just be requested 
from the local database.  

The latency experiment, therefore, did compare the implementations to one 
another, but a nuance in this comparison was that the comparison could be seen 
as a comparison between pre-processed results and on-demand processed 
results. The Non-DT implementation could also make use of this pre-processing 
functionality, and the latencies would, in theory, then be comparable to those with 
the DT implementation. However, the reason this functionality was not 
implemented was due to the nature of the energy usage information available for 
FM, and what has been observed in other uses of VR for data visualisation. With 
new data being constantly recorded, the Non-DT implementation would have to 
be constantly updating the processed information, which is an inherent 
functionality of DTs. This implementation would then begin encroaching on the 
philosophies of DTs and possibly no longer be a Non-DT implementation, and 
rather a DT implementation. Based on this reasoning, the comparison of latencies 
in Section 6.3 between the two implementations, considering the pre-processing 
versus on-processing calculation argument, is, therefore, a fair comparison to 
make. The conclusion of this latency comparison is then that the DT 
implementation was a better choice for a more responsive VR application for data 
visualisation. 

With regards to the computer resource utilisation of each implementation, the 
two implementations required similar computational resources in the tested 
scenarios. The DT implementation required more RAM than the Non-DT 
implementation. This was expected due to the DT implementation having more 
components operating. Although the DT implementation required more RAM, the 
increased amount of RAM required (between 750-1200 MB) was not a significant 
enough value to indicate the Non-DT implementation being the better choice. The 
CPU usage of both implementations was also fairly similar for the tested scenarios. 
In terms of computer resource utilisation, the two implementations performed 
similarly showing that the choice of implementation did not greatly affect 
computer resource utilisation of the systems. 

The final aspect of the two implementations tested was the reconfigurability of 
the implementation. The Non-DT implementation was shown to perform better 
with regards to reconfigurability in comparison to the DT implementation. The 
Non-DT implementation generally required less time and lines of code to add the 
same features than the DT implementation. The Non-DT implementation also had 
a slightly better percentage of code reused in two of the reconfigurability tests.  
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The reason for the DT implementation requiring more code and time to add a 
feature was because of the additional complexity associated with the 
implementation. Additional functionality was required for processing, storing, and 
accessing of information in the DT implementation, that was not required in the 
Non-DT implementation. This additional functionality was only present when a 
service was added to a DT. If a service was added to the Services Network, the 
reconfigurability results for the DT implementation were similar to those of the 
Non-DT implementation indicating that the added functionality required by a DT 
was the reason for more code and time being required in the DT implementation. 
However, regardless of the additional functionality required in the DT 
implementation, the results of the reconfiguration experiment indicated that the 
Non-DT implementation was better in terms of reconfigurability than the DT 
implementation for a VR application for data visualisation. 

A reason for the similar and, slightly, better reconfigurability for the Non-DT 
implementation could be due to the order in which the two implementations were 
developed. The DT implementation was developed first and then the Non-DT 
implementation. Because of this order, some of the principles used to develop a 
reconfigurable DT system could have then been unintentionally applied and 
influenced the Non-DT implementation. If the order of development was reversed, 
with the Non-DT implementation being developed first and then the DT 
implementation, the results for the reconfigurability experiment could have been 
different as some of the Non-DT implementation development might have been 
influenced by the development of the DT implementation. 

It must be noted that the reconfigurability experiments were relatively simple and 
were used to showcase, primarily, how the integration of DTs and VR is affected 
by the addition of new features. More complex reconfigurations could be 
encountered on either side of the integrated system, i.e. the DT side or VR side. 
The complexity of the reconfigurations could yield differing results to what was 
obtained in the reconfiguration experiment with adding simple features. 
Therefore, the conclusions drawn from the reconfigurability experiment are 
limited in that they are very dependent on what feature was added. 
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7 Discussion and Further Work 

This chapter discusses the integration of a DT and VR system for the purpose of 
data visualisation. In the chapter, a discussion of the two implementations, the DT 
implementation and Non-DT implementation, is provided to determine if the use 
of DTs is more beneficial than the non-DT counterpart. The implications from the 
case study, with regards to DTs and VR, are provided, followed by the overall 
implications for the integration of DTs and VR. The final section focuses on the 
possible areas of further work than can be explored in this field. 

7.1 Case Study Implications 

The results of the case study evaluation presented in Chapter 6 show that the DT 
implementation and the Non-DT implementation perform similarly with regards to 
computer resource utilisation. The areas where they differ are with the latency of 
the system and, slightly, with the reconfigurability of the system. The DT 
implementation is shown to be more responsive than the Non-DT implementation; 
whereas, the Non-DT implementation is reconfigured more easily than the DT 
implementation. These results show that there is, overall, marginal differences, 
apart from latency, between the two implementations and that either 
implementation could be used to allow for data visualisation using VR. The 
latencies experienced in the Non-DT implementation are, however, significantly 
higher than with the DT implementation and this will be noticed by a user. Even 
with the modification and evaluation of using local storage databases for the Non-
DT implementation, the latencies encountered are still significantly higher in 
comparison to the DT implementation. 

As both implementations can be used, the question arises then as to which 
implementation should rather be selected. The answer to this is dependent on the 
intended use of such a system. For the cases used in the thesis, it can be concluded 
that if the intended use is mostly for visualising information in a VR environment, then 
the Non-DT implementation, with some modifications for lower latency, should be 

selected. The reason is that this implementation is less complex than the DT 
implementation, requiring less development time and effort as was discussed in 
Section 5.5. The Non-DT implementation does not contain multiple individually 
operating components like the DT implementation. This results in a lower 
complexity as the system need not be designed with consideration of the 
communication between and operation of these individually operating 
components. This Non-DT implemented system will still achieve the same 
outcome as the DT implementation. 

However, if the intended use of the system, present or possibly even future, is not 
only for visualising information in a VR environment, then the DT implementation, 
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with its various benefits, is the more favourable choice. The DT implementation is 
not limited to only being used for a VR application, unlike the Non-DT 
implementation. The DT implementation can be expanded to make provision for 
other applications used in the data driven decision-making process, like a web 
application. This is due to the modularity offered by the system with the 
individually and independently operating components that can communicate with 
one another. In addition to this, the use of DTs also has some other advantages 
for complex systems discussed in Section 2.1. 

Chapter 3 provides various opportunities and challenges that might be present 
with the integration of DTs and VR. The DT implementation in the case study 
provided further insight to some of the challenges. A challenge that was 
encountered with the case study was deciding on what information to make 
available to the user, and how to best display this information. This challenge led 
to the subsequent encountered challenge of information overloading sometimes 
experienced by the user. The comfort of the user was another encountered 
challenge. When using the VR application, the user sometimes experienced 
instances of discomfort, in the form of motion sickness.  

Although some of the challenges identified in Chapter 3 were encountered in the 
DT implementation, some identified opportunities were also realised. One such 
opportunity was being able to supplement the DT information with more context. 
This contextualisation was in the form of overlaying a map of Stellenbosch with 
information obtained from the DTs, which allowed the user to better understand 
the information they were visualising. Another realised opportunity was the DTs 
in the DT implementation allowing for the system to be able to respond in as near 
real-time as possible. A user always had access to the latest energy usage 
information because of this benefit of DTs. An opportunity that is not mentioned 
in Chapter 3, but was identified during the implementation of the case study, was 
with the possibility of distributed operation. The DT implementation was shown 
to be able to have different components hosted on multiple hardware devices 
connected to the same network. This distributed operation could aid in reducing 
the computational resource utilisation of the system that is imposed on individual 
hardware components. Another realised opportunity is the ability for the DT 
implementation to allow for multiple VR applications to have access to the same 
information. 

7.2 Overall Implications 

The implications of the case study, although specific to the case study, can be 
applied more generally. The case study focused on implementing a DT and VR 
system in the FM context. The implications of this system indicated that a DT and 
VR system can be developed for an application outside of the FM context. The 
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identified and realised opportunities and challenges of Chapter 3 and the case 
study, respectively, are not context specific and indicate that the use of VR and 
DTs does have the potential to enhance the data driven decision-making process 
in other areas. 

DTs are shown to be a useful technology for the data driven decision-making 
process regardless of the visualisation method being used, due to the possibility 
of integrating multiple data visualisation tools. DTs allow the various elements of 
a complex system to be encapsulated in a manageable and value-providing 
system. The complex DT system design framework, discussed in Section 2.2, and 
SLADTA have been shown to be useful tools in creating an FM DT system. This 
shows how these tools that could potentially also be applied to other contexts. 

Both implementations required the use of an API to request energy usage data. It 
is sometimes the case that data is not as easily available as with the use of this API 
and a system may need to be developed to be able to access information directly 
from sensors, e.g. energy meters. In that case, the advantages of using DTs instead 
of a non-DT method would be much more apparent as DTs can be used for this full 
data pipeline to transfer data from a sensor to a VR environment for visualisation. 
This data pipeline is difficult to emulate using non-DT methods.  

7.3 Further Work 

The current research has several areas where further work could be carried out to 
obtain more insight for the integration of DTs and VR. With regards to the FM 
context, the case study only focused on the use of one utility – energy usage. More 
utilities can be included such as water usage, solar power generation and usage, 
and building occupancy – all of which are areas of interest in FM. The case study 
does not consider information within the building and focuses on an entire 
building as the lowest element in the system. Further work could be conducted 
into focusing on the information within the building, such as the maintenance 
tasks within the building or utility usage within various parts of the building. 

As mentioned previously, the concepts generated in this thesis can be applied 
more generally, to contexts outside of FM. Some of these other possible contexts 
include the manufacturing industry, the healthcare industry, and the agricultural 
industry to name a few. These contexts, like FM, contain large amounts of 
recorded information for the data driven decision-making process. These contexts 
are also complex systems with many components. The use of a DT and VR system 
for these complex contexts would allow for further evaluation of the concept of 
integrating DTs and VR. Further work can also be done in using VR as a data 
visualisation medium and determining its effectiveness. 
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The case study makes use of Unity as VR development software. Further work 
could evaluate the use of 3D visualisation development software currently used in 
industry, such as ABB RobotStudio, instead of making use of a game engine 
software like Unity. This evaluation will indicate the merits of using existing and 
already adopted software to allow for the integration of DTs and VR in industry. 

New integration techniques, for DTs and VR, could also be identified to determine 
the best method to integrate the two technologies. Regardless, further 
investigation will provide valuable information regarding the use of DTs and VR, 
and if this is a useful combination of developing Industry 4.0 technologies. 

Further work could also be carried out to evaluate the scalability of a system using 
the integration approach proposed in this thesis. The scalability should be 
evaluated for a VR system that makes use of DTs, and also a VR system that does 
not use DTs. This will provide more insight into which approach is more scalable. 
An evaluation should also be conducted on determining whether the use of other 
development tools will have an impact on the performance of the developed 
system. This will provide insight into whether the advantages and disadvantages 
of the two approaches, DT or non-DT, are inherent to the fundamental technology 
or dependent on the development tools used for implementing the approaches. 
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8 Conclusion 

The research evaluates the integration of two developing technologies in 
Industry 4.0: DTs and VR. A DT and VR integrated system was developed for use in 
the FM context for the FM division at Stellenbosch University. The system was 
used to visualise the energy usage information for various facilities within the 
university. A system architecture was first designed from the identified user needs, 
and then implemented. This implemented system showed that a DT and VR system 
for data visualisation is possible. In conjunction with this DT and VR system, a VR 
application that does not make use of DTs was also developed. This non-DT system 
was designed to produce the same output as the DT system, but using different 
methods. The two implementation methods were then compared to evaluate the 
integration of DTs and VR. 

The two implementations were evaluated with regards to latency, computer 
resource utilisation (in terms of RAM and CPU usage), and reconfigurability. It was 
evident, from the results of these evaluations, that the DT system was more 
responsive and had lower latencies than the non-DT system. Both systems had 
also been shown to have a similar level of computation resource utilisation. The 
reconfigurability tests conducted on both systems indicated that the non-DT 
system was more reconfigurable than the DT system. This was, however, expected 
as the DT system had higher complexity and more functionality associated with it, 
which was not present or required in the non-DT system.  

The evaluations indicated that either method is a suitable implementation choice 
for using VR to visualise data to make decisions. If, however, there is a possibility 
of expanding the system outside of the use of only VR or accommodating multiple 
concurrent, but independent, VR setups, the DT method is a better 
implementation choice. The use of DTs has various benefits that support its use 
for complex systems. The non-DT method cannot, in most cases, provide the same 
benefits, and as such, is not a suitable implementation choice for such a system. 

The integration of DTs and VR has many opportunities and challenges that are 
associated with it. The implemented DT system allowed for some of these 
opportunities and challenges to be realised in a real-world context. The use of 
these two technologies were shown to allow a user to use VR, with the support of 
DTs, for the data driven decision-making process for complex systems. 

There is still much work that can be conducted to evaluate the integration of the 
two technologies, but this research provides valuable insight into the use of DTs 
and VR; two technologies that are constantly developing and growing in use in 
Industry 4.0. These two technologies could further be used for other aspects of 
Industry 4.0 that could aid various other contexts and industries in adopting the 
concepts associated with Industry 4.0. 
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Appendix A. DT System Operation 
 

This section provides information for the initialisation and operation stages for the 
DT component and Shared Services component in the implemented case study DT 
system. First, the initialisation and operation stage for the DT component is 
provided, followed by the initialisation and operation phase for the Shared 
Services component. 
 

A.1 Digital Twin Component Initialisation 

The initialisation aspect is comprised of various processes that are followed when 
the DT component is to begin operating. The initialisation of the system makes use 
of a configuration file. This configuration file is similar to the one provided in 
Appendix B. The configuration file is a CSV format file that contains information 
for the various DTs in the system as well as the DT aggregation hierarchy structure. 
The configuration file contains information for the DTs including the name of the 
DT, the type of DT (building, precinct, or campus), the energy meters forming part 
of the DT (if it is a Building DTI or Precinct DTA), the location coordinates of the 
component, and the IP Address and the port which is used for the socket 
communication. On start-up, each DT is initialised with these various parameters 
stored in the configuration file. 

The initialisation process for each DT in the system occurs concurrently as each DT 
runs on its own thread in the program. However, the initialisation process of some 
DTs is dependent on the completion of the initialisation process for subordinate 
DTs. For example, a Precinct DTA cannot fully initialise until all its Building DTIs 
have been fully initialised, because the Precinct DTA requires information from the 
Building DTIs below it to initialise correctly. The initialisation of a DT consists of 
four steps that must be followed in sequence for a DT and DT system to be 
initialised correctly. These being: the storing of subordinate component 
information (either energy meters or other DTs), a request for the subordinate 
component initialisation status, the carrying out of the Context generation service, 
and a notification that the DT has been initialised. The initialisation process is 
illustrated in Figure 31. 
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Figure 31: DT initialisation process 

As mentioned previously, the configuration file contains information regarding the 
aggregation hierarchy of the DTs. This includes which energy meters form part of 
which buildings, buildings for which precincts, and precincts for the campus. This 
information is used to ensure that DTs communicate with the correct system 
components. The first aspect for initialisation is the storing of subordinate 
component information in the DT. For example, the Building DTIs and Precinct 
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DTAs contain information for which energy meter IDs must be used when 
accessing the API in Layer 3 for energy data. The Precinct DTAs stores the IP 
address and port number for the Building DTIs that they can communicate with. 
The Campus DTA stores the IP address and port number of the Precinct DTAs it 
can communicate with. This subordinate identification process is important 
because a DT remains idle while its subordinates initialise before it, itself, can 
initialise fully. Knowing which components to communicate with ensures that the 
system initialises in the correct order. 

The second aspect of the process is the request made to a subordinate component 
for the status of initialisation for that component. This is required because of the 
dependencies some DTs have on the initialisation status of its components. 
Although the initialisation process for components occurs concurrently, the 
sequence of the initialisation process is that the Building DTIs are first fully 
initialised, followed by the Precinct DTAs, and finally the Campus DTA. Once a DT 
has completed the first aspect of storing subordinate DT information, it will then 
periodically make requests to its subordinate components as to whether the 
component is fully initialised or not. Once all the subordinate components respond 
to the request stating that they are initialised, the DT can then proceed to the third 
step. 

If all subordinate components of a DT are initialised, the DT can then receive 
information from these components to carry out its own initialisation process. The 
DT must then use the Context generation service, described in Section 5.3.2.1.4, 
to further the initialisation process. This service receives the necessary 
information from the subordinate components to ensure that the correct 
information is generated and stored by the service. As no information has been 
stored for the DT, any information available from the subordinate components is 
deemed new information, and thus, all this new information is processed. An 
arbitrary start date is selected for the time frame of the historic information the 
DT must process. This time frame is from the selected start date to the real-world 
current date and time of starting the initialisation process. The start date is the 
same for all DT components to not result in errors. The chosen initialisation start 
date for the system is 01-01-2022 and is selected arbitrarily. 

After the Context generation service has been carried out for the selected time 
frame of historic information, the DT is then initialised. The final step is for the DT 
to provide a notification that it is fully initialised. This occurs when the higher-level 
DT of a subordinate DT is completing the second stage of the initialisation process. 
When this request for the initialisation status is received by the subordinate DT 
component, the DT responds with indicating that it is fully initialised. The higher-
level DT is then able to continue with the remaining steps of the initialisation 
process. The total time taken for the initialisation process to be completed 
depends on the number of DTs in the system and the selected starting date. Once 
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all DTs have carried out the initialisation process, the system is then correctly 
initialised and can enter the Operating phase. 

The sample code provided below is the source code of the Bootstrap class that is 
used to initialise the various DTs in the DT system. The functions in the class use 
information from the CSV configuration file to instantiate the various DT classes in 
separate threads. 
 

class Bootstrap 

{ 
    // Declare list variables to store names of the DTs in the system 
    private static LoadExcel excel = new LoadExcel(); 
    private static List<Building_DT.Building> buildingList = new 

List<Building_DT.Building>(); 
    private static List<Precinct_DT.Precinct> precinctList = new 

List<Precinct_DT.Precinct>(); 
    private static List<Campus_DT.Campus> campusList = new 

List<Campus_DT.Campus>(); 
    public static void Main(String[] args){ 
        // Invoke the DT initialisation function 
        InitialiseDigitalTwins(); 
    } 
    private static void InitialiseDigitalTwins() 
    { 
        // Load a list of the buildings from the configuration file 
        buildingList = excel.LoadBuildingData(); 
        // Loop through the building list to start each Building DTI on a 

separate thread 
        foreach(var build in buildingList) 
        { 
            Thread buildingThread = new Thread(build.InitialiseBuilding); 
            buildingThread.Start(); 
        } 
        // Load a list of the precincts from the configuration file 
        precinctList = excel.LoadPrecinctData(); 
        // Loop through the precinct list to start each Precinct DTA on a 

separate thread 
        foreach (var prec in precinctList) 
        { 
            Thread precinctThread = new Thread(prec.InitialisePrecinct); 
            precinctThread.Start(); 
        } 
        // Load a list of the campuses from the configuration file 
        campusList = excel.LoadCampusData(); 
        // Loop through the building list to start each Campus DTA on a 

separate thread 
        foreach (var camp in campusList) 
        { 
            Thread campusThread = new Thread(camp.InitialiseCampus); 
            campusThread.Start(); 
        } 
    } 

} 
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A.2 Digital Twin Component Operation 

After the DT component has been fully initialised, it enters the Operating phase. 
This Operating phase includes the processing of new information becoming 
available in the system, and the processing of requests made for the use of DT 
services. These operation functions are carried out periodically or as requested. 
The processing of new information functions are called every minute, and the 
processing of requests for DT services used are carried out as the requests are 
received. These requests are received by a DT’s TCP/IP server. 

Much like for the Initialisation phase of the system, the propagation of new 
information becoming available occurs at the Building DTI level first and 
propagates upwards in the DT aggregation hierarchy to the Campus DTA. Every 
minute, a Building DTI makes a request to the API in Layer 3 for data from its 
energy meters. If new energy data is available, then the Building DTI receives this 
new data. This availability of new data is identified by comparing the timestamp 
of the last received data to the current timestamp of the received data. If the 
timestamps are different, it means that new energy data is available. The Building 
DTI waits until all energy meters have new information available, after which, the 
DT carries out the Context generation service to update the DT with new energy 
data. A similar process occurs at a Precinct DTA level, where the Precinct DTA 
requests for any newly available energy information from its Building DTIs. A 
similar process, like with the Precinct DTA, occurs for the Campus DTA. The 
Campus DTA requires all the Precinct DTAs to have new information, and all the 
Precinct DTAs requires all the Building DTIs to have new information, which 
require all the energy meters to have new energy data. Using this process, as new 
information becomes available, the Context generation service is used at the 
different levels to ensure all components of the system are kept up to date. 

The reason for checking for updated information every minute is that, although it 
is stated that energy meters typically record new data every five minutes, not all 
energy meters record data at the same time. If an energy meter does not take 
exactly five minutes, maybe six or seven minutes, other energy meters might have 
new data available already, and this could result in some energy meter data not 
being processed because of the frequency of the update functions being carried 
out. One minute is chosen arbitrarily as any faster would be unnecessary and any 
slower could result in some components not updating with the correct 
information which would mean that the DT system is not a correct reflection of 
reality. 

The other aspect of the Operating phase is the processing of requests made for 
use of the DT services. In this case, the only service offered externally by a DT is 
the Mirror Service. This service is discussed in greater detail in Section 5.3.2.1.4. 
Unlike the updating functions of the Operating phase, this service processing 
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function occurs as the request is received by a DT from another system 
component. As mentioned previously, this request is received by a DTs TCP/IP 
server which is constantly awaiting communication from other components. 

The software code provided below contains an example of the functions that are 
used to carry out the Mirror service for the Building DTI. Various requests can be 
made to the Mirror service, such as a request for energy usage information, the 
initialisation status of the Building DTI, and the subordinate DTs (which are none) 
for the Building DTI. 

 
// Function to carry out different services offered by a Building DTI 
public async Task<string> ServiceHandlerAsync(MessageModel message) 
        { 

// Check if energy service is requested 
            if (message.DataType == "Energy") 
            { 

// Check if current energy usage is requested 
                if (message.MessageType == "CurrentData") 
                { 

// Retrieve latest energy usage 
                    var tempEnergy = await 

ReturnLatestBuildingEnergyAsync(); 

// Create message with latest energy usage information 
                    EnergyMeterModel temp = new 

EnergyMeterModel(Building_name, 0, Latitude, Longitude, 
tempEnergy, "Latest Reading"); 

                    List<EnergyMeterModel> tempEnergyList = new 
List<EnergyMeterModel>(); 

                    tempEnergyList.Add(temp); 
                    List<InformationModel> tempList = 

GenerateInformationList(tempEnergyList); 

// Convert message to a JSON string 
                    var tempMess = JsonConvert.SerializeObject(tempList); 
                    return tempMess; 
                } 

// Check if average energy usage is requested 
                else if (message.MessageType == "Averages") 
                { 

// Retrieve time period from request message 
                    message.startDate = 

utilities.ChangeDateFormat(message.startDate); 
                    message.endDate = 

utilities.ChangeDateFormat(message.endDate); 

// Retrieve average energy usage information for time 
period 

Stellenbosch University https://scholar.sun.ac.za



 

95 

                    var temp = await 
ReturnBuildingEnergyAveragesAsync(utilities.GenerateDat
eList(message.startDate, message.endDate, 
message.timePeriod)); 

// Create message with average energy usage information 
and convert to JSON string 

                    var infoModelList = GenerateInformationList(temp); 
                    var response = 

JsonConvert.SerializeObject(infoModelList); 
                    return response; 
                } 
            } 

// Check if subordinate DT list is requested 
            else if (message.DataType == "DigitalTwins") 
            { 
                if (message.MessageType == "ChildDTList") 
                { 

// Retrieve list of subordinate DTs of Building DTI. A 
Building DTI has no subordinate DTs and thus the list is 
populated with “None”. Convert list message to JSON 
string 

                    ChildDTModel temp = new ChildDTModel("None", "None"); 
                    var tempList = new List<ChildDTModel>(); 
                    tempList.Add(temp); 
                    var tempMess = JsonConvert.SerializeObject(tempList); 
                    return tempMess; 
                } 
            } 

// Check if initialisation status is requested 
            else if (message.DataType == "Initialisation") 
            { 
                if (message.MessageType == "Status") 
                { 

// Return message with current initialisation status 
                    return Initialised.ToString(); 
                } 
                else if (message.MessageType == "LatestEnergy") 
                { 

// Return message with latest energy usage information 
                    var energy = await ReturnLatestBuildingEnergyAsync(); 
                    return energy.ToString(); 
                } 
                else if (message.MessageType == "Averages") 
                { 

// Return message with average energy usage information 
for initialisation 

var energy = await 
GetTotalEnergyAsync(message.startDate); 

                    return energy.ToString(); 
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                } 
            } 

// Check if a DT operation value status is requested 
            else if (message.DataType == "Operations") 
            { 
                if(message.MessageType == "LatestTimeStamp") 
                { 

// Return message with latest updated timestamp of 
energy data 

                    return EnergyMeters[0].latest_timestamp; 
                } 
                else if (message.MessageType == "LatestEnergy") 
                { 

// Return message with latest energy usage 
                    var energy = await ReturnLatestBuildingEnergyAsync(); 
                    return energy.ToString(); 
                } 
                else if (message.MessageType == "NewEnergyDataStatus") 
                { 

// Return message indicatin new energy data is 
available 

                    return NewEnergyDataAvailable.ToString(); 
                } 
                else if (message.MessageType == "ResetNewDataAvailable") 
                { 

// Reset the “New Data Available” flag to check if new 
energy data is available. 

                    ResetDataAvailable(); 
                    return "Complete"; 
                } 
            } 
                    return ""; 

        } 

A.3 Shared Services Component Initialisation 

The initialisation phase contains a set of processes that are to be followed for the 
Shared Services component to be initialised correctly before it can enter the 
Operating phase. During this phase, the three service components mentioned in 
Section 5.3.3 (Service Gateway, DT Directory service, and Exploratory analytics 
service) must each be initialised in their respective manner. A bootstrap C# class, 
like with the DTs, is used to start the initialisation procedure for each of the service 
components. The bootstrap program makes use of a CSV configuration file for 
initialising the service components with the correct parameters. The bootstrap 
program provides each Shared Services component class with the correct 
information from the configuration file when being instantiated. 

The initialisation process for the Service Gateway and Exploratory analytics is fairly 
simple. Based on the information received from the bootstrap program, the 
component will create a TCP/IP server socket to allow for communication to be 
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received from other components. With this, the service is also initialised with a list 
of information of the other services in the Shared Services component provided in 
the configuration file. This information is the name of the service component, and 
its communication address. The service component is able to access this list if they 
are required to communicate with another service. 

The initialisation process for the DT Directory service has an added step of 
initialisation compared to the other two service components. Like the other two 
services, the DT Directory service creates a TCP/IP server socket to receive any 
incoming communication. The service also receives, from the bootstrap program, 
the necessary information about the other service components. In addition to 
these aspects, the DT Directory service is also initialised with information 
regarding the structure of the DT aggregation hierarchy. The service will request a 
list of subordinate DTs from each DT in the hierarchy. It receives the 
communication address for the DTs in the hierarchy from the configuration file. 
This list allows for information of the structure of the aggregation hierarchy to be 
stored in the DT Directory service. Requests can then be made to the service for 
information about DTs and their subordinate DTs. 
 

A.4 Shared Services Component Operation 

Once the Shared Services component has been initialised correctly, it then 
transitions into the Operating phase. During the Operating phase, each service is 
continuously awaiting incoming communication to its TCP/IP server socket. Any 
requests that are made from an external component, in this case the VR 
application, are made to the Service Gateway as this service is the communication 
channel for any external components outside of the DT system. The Service 
Gateway then processes this request and sends it to the correct service to request 
the necessary information and send the information back to the VR application. 
The other services are waiting for requests to be made either by the Service 
Gateway or another service component where they are processed and the correct 
information is transferred to the sender of the request. Some of the details of the 
interactions between services is shown in Section 5.3.4. 

The sample code provided below contains the source code that was used by the 
Service Gateway during the operation of the Shared Services component. The 
Service Gateway receives requests from components and uses the function below 
to interpret what service has been requested or is required. A request is then 
made to this service for the desired information. The received information is then 
transferred to the component that made the original request. 
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// Function used to call other services in the Shared Services Component 
public async Task<string> MessageHandlerAsync(string mes) 
{ 

string message = ""; 
var tempMessage = JsonConvert.DeserializeObject<UIMessageModel>(mes); 

       // Check if the DT Directory service is requested 
       if (tempMessage.ServiceTag == "Directory") 
       { 
             // Loop through list of services to obtain communication 

address 
             foreach(var service in servicesList) 
             { 
                  // Check if service matches the requested service's name 
                  if (service.ServiceName == "Directory Service") 
                  { 
                        // Request and receive the subordinate DTs list for 

a specified DT from the DT Directory service 
                        var DTList = await myClient.sendMessageAsync(mes, 

service.IP_Address, service.Port); 
                        message = DTList; 
                        break; 
                  } 
             }                

} 
       // Check if the Exploratory Analytics service is requested 
       else if (tempMessage.ServiceTag == "Exploratory") 
       { 
              // Loop through list of services to obtain communication 

address 
              foreach (var service in servicesList) 
              { 
                 // Check if service matches the requested service's name 
                 if (service.ServiceName == "Exploratory Service") 
                 { 
                     // Request and receive the specified energy usage 

information for a DT 
                     var response = await myClient.sendMessageAsync(mes, 

service.IP_Address, service.Port); 
                      message = response; 
                      break; 
                 } 
              } 
        } 
        return message; 

  } 
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Appendix B. Configuration File Sample 

Figure 32 shows a sample of the CSV configuration file, loaded into Microsoft Excel, that was used in the case study implementations. 

 

Figure 32: Configuration file sample 
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Appendix C. Virtual Reality Application 

This section contains additional information about the developed VR application 
used in the DT implementation and Non-DT implementation of the FM case study. 
The Unity development environment is briefly discussed and showcased. The VR 
application UI developed for use in the VR environments is shown and explained. 
Various examples of using the VR application are then provided. 
 

C.1 Unity Environment 

Figure 33 shows the Unity development environment that is used to develop the 
VR applications. This figure shows the various aspects of the development 
environment. In addition to this environment, Visual Studio Code was used to 
develop the custom C# scripts that are attached as Components to the 
GameObjects in the application. 

 

Figure 33: Unity VR application software environment 

Figure 34 shows the scene view where an overview of the various GameObjects 
present in the environment are displayed and can be adjusted and modified as 
desired. This figure depicts the map of Stellenbosch that is used in the 
visualisation, as well as the UI GameObject that a user interacts with in VR. This is 
not the perspective that the user has in VR, rather it is the developer’s perspective 
for creating the VR environment. 
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Figure 34: VR application scene view 

Figure 35 shows the tabs that contain the GameObjects and the Components 
attached to those GameObjects. The “Hierarchy” tab indicates the various 
GameObjects that are present in the current environment. These GameObjects 
include the Stellenbosch Map, the user’s GameObject denoted as “XR Origin”, and 
a lighting GameObject to light the VR environment. Below the “Hierarchy” tab is 
the “Project” tab that contains all of the folders and files that contain scripts or 
models used in the VR application. The “Inspector” tab, on the right of the 
“Hierarchy” and “Project” tabs, shows the various Components, and their details, 
attached to a GameObject. In this figure, the displayed Components are for the 
user’s GameObject. 
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Figure 35: VR application GameObjects and Components 

C.2 VR Application UI 

The user can select elements on the UI using the VR controllers. Figure 36 shows 
the UI with the cascading menus and the various selections that can be made. 
Figure 36a is the main menu of the UI, here the user is able to select which span 
of reality they want energy information from, either the campus, a precinct, or a 
building. Figure 36b shows the menu of which elements in the span of reality the 
user would like to visualise. This could either be at the building level, the precinct 
level, campus level, or all levels depending on what span of reality was selected. If 
a building was selected as the span of reality, the only possible elements to 
visualise would be the building, whereas if the campus was selected, the possible 
elements to visualise include elements at a building level, precinct level or campus 
level. Figure 36c is the selection of which data type to visualise. In this case only 
energy data is used and is the only selection that can be made here, but provision 
has been made for the addition of other data types. Figure 36d shows a selection 
of the service type for visualising desired information. The user is able to select 
either the latest energy usage or they are able to select to visualise average usage 
information (day, monthly, or yearly averages). Figure 36e is the menu shown after 
selecting the “Averages” option in Figure 36d. The menu is not displayed if the 
“Latest” option is selected. Figure 36e allows the user to input a start date and end 
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date of the time span of information they would like to visualise. They are also 
able to select what type of average usage information they would like to visualise 
(either day, month, or year average usage). Figure 36f is the visualisation menu. 
This visualisation menu allows the user to adjust the visualisation as they desire. 
In all instances, the user is able to adjust the scale of the visualisation that is 
presented to them. In the case of visualising average usage information, the user 
is able to “Play” through the information presented to them or, for example, 
manually adjust which day’s average usage information they would like to 
visualise. 

 

Figure 36: VR UI menus 

The functionality of creating the request message based on the selections by the 
user in the UI is encapsulated in the UI functions component of the architecture 
shown in Figure 12 and Figure 14. This component also contains the functionality 
for displaying the correct menu after one another as the user works through the 
UI. 
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C.3 VR Application Examples 

This section provides examples of a user in VR using the VR application to visualise 
energy information of Stellenbosch Campus. Figure 37 shows a user visualising the 
latest energy reading for various precincts on the campus and buildings within 
those precincts. 

 

(a) 

 

(b) 

Figure 37: Visualising latest precinct and building energy usage information 
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Figure 38 shows an example of the user selecting the end date for a time period 
to make a request to visualise the average energy usage for a facility. After 
selecting the start date, the user is then required to select the end date of the time 
period and the type of average energy usage they would like to visualise (either 
daily, monthly, or yearly usage). 

 

Figure 38: Selecting time period start date 

Figure 39 is an example of a user making a request to visualise new information 
after they have already visualised the previously requested energy information. 
The previously requested information that has been displayed to the user is shown 
in the background, and the foreground shows the user using the UI and menus to 
make a request for new information to be displayed. 

 

Figure 39: Requesting new energy information 

Stellenbosch University https://scholar.sun.ac.za



 

106 

Figure 40 shows an example of a user adjusting the scale of the energy usage 
information they are visualising. Adjusting the visualisation scale does not affect 
the scale of the map, rather, the size of the displayed coloured columns is adjusted 
according to the scale selected by the user. 

 

(a) 

 

(b) 

Figure 40: Adjusting visualisation scale 
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Appendix D. Additional Evaluation 
Results 

 

This section provides additional evaluation results of the latency and computer 
resource utilisation experiments carried out for the DT implementation and Non-
DT implementation. Results are also provided for the Non-DT implementation with 
the modification of using a local database to access the information. 

Figure 41 shows the latency results for the DT implementation where a range of 
data points were requested from each element in the system. The results show, 
as expected, that the latency of the system increased with the number of elements 
in the system, as well as the number of data points requested per element. The 
latencies in the results were relatively low compared to the latencies of the Non-
DT implementation. 

 

Figure 41: DT implementation latency results 

Figure 42 provides the results of the RAM usage experiment for the DT 
implementation. The results indicate that the amount of RAM used by the DT 
implementation was fairly constant as more system elements were added and 
number of requested data points per element was increased. 
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Figure 42: DT implementation RAM usage results 

Figure 43 shows the results for the CPU usage experiment for the DT 
implementation. The results indicate that the CPU usage remained constant, like 
the RAM usage, as elements were added to the system and requested data points 
per element was increased. 

 

Figure 43: DT implementation CPU usage results 

Figure 44 provides the results for the latency experiment for the Non-DT 
implementation. These latency results were in the degree of tens of seconds which 
was significantly higher than the latency results for the DT implementation. The 
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results indicate that the latency of the system increased almost linearly as more 
system elements were added and more data points per element were requested. 
This was a similar trend to the DT implementation latency results. 

 

Figure 44: Non-DT implementation latency results 

Figure 45 shows the RAM usage experiment results for the Non-DT 
implementation. The results indicate that the RAM usage remained constant and 
did not increase as more system elements were added and more data points per 
element were requested. 

 

Figure 45: Non-DT implementation RAM usage results 
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Figure 46 shows the results for the CPU usage experiment for the Non-DT 
implementation. These results show that the CPU usage remained constant, at 
approximately between 11% and 14%, for the duration of the experiment. The 
addition of more system elements and requesting more data points per element 
did not have a significant impact on the CPU usage of the system. 

 

Figure 46: Non-DT implementation CPU usage results 

It is mentioned in Section 6.3.1 that a modification was made to the Non-DT 
implementation to conduct further evaluation of the Non-DT implementation’s 
latency. This modification was the use of a local database to store the requested 
energy usage data. The API originally used in the implementation was removed 
and the local database was then queried for the same energy data that was 
available using the API. Figure 47 provides the latency experiment results for the 
Non-DT implementation with this modification. The results show a similar trend as 
in Figure 44, however, the degree of the latency with this modification was halved 
in comparison to the original Non-DT implementation. The degree of latency was 
still significantly higher than for the DT implementation. 
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Figure 47: Local database Non-DT implementation latency results 

Figure 48 shows the RAM usage experiment results of the Non-DT implementation 
with this local database modification. The results indicate that the RAM usage 
increased slightly with more elements in the system, but remained constant as 
more data points were requested per element. 

 

Figure 48: Local database Non-DT implementation RAM usage results 

Figure 49 provides the results of the CPU usage experiment for the Non-DT 
implementation with the local database modification. The results show that when 
the system only had three elements that the CPU usage was lower than for the 
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other scenarios. The CPU usage did not, however, change significantly when more 
data points are requested per element. 

 

Figure 49: Local database Non-DT implementation CPU usage results 

Figure 50 to Figure 52 provide results for the latency and computer resource 
utilisation experiments for Scenario 4 where only a single data point is requested 
for a building element in the system. Figure 50 shows the results for the latency 
experiment for this scenario. Much like the other results, the latencies for the Non-
DT implementation with and without the local database modification was 
significantly higher than for the DT implementation. The degree of latency for the 
DT implementation was in the degree of milliseconds, and the degree of latency, 
in both instances, for the Non-DT implementation was in the degree of seconds. 

 

Figure 50: Single data point request latency results 
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Figure 51 provides the results for the RAM usage of the implementations for the 
scenario. The results show that the average RAM usage between the 
implementations was not significantly different. The DT implementation used 
more RAM which was expected due to the independently operating components, 
unlike the Non-DT implementation that only had the VR application. 

 

Figure 51: Single data point request RAM usage results 

Figure 52 provides the CPU usage experiment results for the scenario for the 
implementations. The results show that the CPU usage did not differ drastically 
between the implementations and that the average CPU usage of the 
implementations was between 10% and 15%. 

 

Figure 52: Single data point request CPU usage results 
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