
Integration of Digital Twins and

Virtual Reality for Data Visualisation

The financial assistance of the National Research Foundation (NRF) towards this research is hereby

acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily

to be attributed to the NRF.

by

Gabriel Santos da Silva

Thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering (Mechatronic Engineering) in the Faculty of

Engineering at Stellenbosch University

Supervisor: Dr Karel Kruger

Co-supervisor: Prof Anton Herman Basson

December 2022

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof (save
to the extent explicitly otherwise stated), that reproduction and publication
thereof by Stellenbosch University will not infringe any third party rights and that
I have not previously in its entirety or in part submitted it for obtaining any
qualification.

Date: 14 November 2022

Copyright © 2022 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

Integration of Digital Twins and

Virtual Reality for Data Visualisation

G.S. da Silva

Department of Mechanical and Mechatronic Engineering
Stellenbosch University

Thesis: MEng (Mechatronic Engineering)
December 2022

This thesis considers an integration of digital twins (DTs) and virtual reality (VR) for
enhancing the data driven decision-making process. An integrated DT and VR
system is designed according to an available complex DT system design
framework. The Six Layer Architecture for Digital Twins with Aggregation (SLADTA)
is used for the internal architecture of the DTs in the system. A custom developed
VR application is used to visualise the information using VR equipment.

The Facilities Management (FM) Division at Stellenbosch University serves as the
chosen case study context for the evaluation. The energy usage information for
various facilities of FM is visualised in VR. The DT method of transferring
information to VR is compared to a method that does not make use of DTs.

Three experiments are used to evaluate the two implementation methods to allow
for an adequate comparison of the two methods. The experiments focus on,
respectively, latency, computer resource utilisation (in terms of RAM and CPU
usage), and reconfigurability when a new feature is to be added to the system. The
experiment results indicate that the DT method has lower latencies, the two
methods have similar computational resource needs, and the non-DT method is
more reconfigurable than the DT method.

However, the DT method offers other advantages such as allowing for two VR
experiences to visualise the same information, or allowing for a different
visualisation tool, other than VR, to be integrated seamlessly into the system. The
DT method also allows for a distributed operation functionality that reduces the
computational load required from a single hardware device. The Non-DT method
does not offer such advantages. The thesis concludes that the integration of DTs
and VR for data visualisation is possible and is favourable for a system that will not
only use VR as a data visualisation means.

Stellenbosch University https://scholar.sun.ac.za

iii

Uittreksel

Integrasie van Digitale Tweelinge en

Virtuele Realiteit vir Datavisualisering

G.S. da Silva

Departement Meganiese en Megatroniese Ingenieurswese
Universiteit Stellenbosch

Tesis: MIng (Megatroniese Ingenieurswese)
Desember 2022

Hierdie tesis oorweeg 'n integrasie van digitale tweelinge (DT’e) en virtuele
realiteit (VR) vir die verbetering van die data-gedrewe besluitnemingsproses. 'n
Geïntegreerde DT- en VR-stelsel is ontwerp volgens 'n beskikbare
ontwerpraamwerk vir komplekse DT-stelsels. Die Six Layer Architecture for Digital
Twins with Aggregation (SLADTA) word gebruik vir die interne argitektuur van die
DT’e in die stelsel. 'n Pasgemaakte VR-toepassing word gebruik om die inligting
met behulp van VR-toerusting te visualiseer.

Die Afdeling Fasiliteitsbestuur (FB) aan die Universiteit Stellenbosch dien as die
gekose gevallestudiekonteks vir die evaluering. Die inligting oor energieverbruik
vir verskeie fasiliteite van FB word in VR gevisualiseer. Die DT-metode om inligting
na VR oor te dra, word vergelyk met 'n metode wat nie van DT’e gebruik maak nie.

Drie eksperimente word gebruik om die twee implementeringsmetodes te
evalueer om 'n voldoende vergelyking van die twee metodes moontlik te maak.
Die eksperimente fokus op, onderskeidelik latensie, rekenaarhulpbronbenutting
(in terme van geheue- en mikroverwerker-gebruik), en herkonfigureerbaarheid
wanneer 'n nuwe kenmerk by die stelsel gevoeg moet word. Die eksperimente se
resultate dui aan dat die DT-metode laer latensie het, die twee metodes
soortgelyke berekeningshulpbronbehoeftes het, en die nie-DT-metode meer
herkonfigureerbaar as die DT-metode is.

Die DT-metode bied egter ander voordele, soos om twee VR-ervarings toe te laat
om dieselfde inligting te visualiseer, of om toe te laat dat 'n ander
visualiseringsinstrument, anders as VR, naatloos in die stelsel geïntegreer word.
Die DT-metode maak ook voorsiening berekeningslading te versprei wat die
berekeningslading wat van 'n enkele hardeware-toestel benodig word, verminder.
Die nie-DT metode bied nie sulke voordele nie. Die tesis kom tot die gevolgtrekking
dat die integrasie van DT'e en VR vir datavisualisering moontlik en gunstig is vir 'n
stelsel wat nie net VR as 'n datavisualiseringsmiddel sal gebruik nie.

Stellenbosch University https://scholar.sun.ac.za

iv

Acknowledgements

To my supervisors, Dr Karel Kruger and Prof Anton Basson, thank you for your wise
guidance and exemplary support. Your passion and love for research has been an
inspiration to me and is something that I will take with me in my life. You have
showed me how to find joy in what I do and how to do it with excellence. To Dr
Anro Redelinghuys, thank you for all your help with the new skills I had to learn
and always being available for my queries.

To the MAD research group members, thank you all for fun coffee breaks and
conversations. The work environment you guys created really helped me to enjoy
and progress well with my work. Thank you all for being there to bounce ideas off
of and help me enjoy the two years I spent on this project.

To my flatmates and friends, thank you for being my constant support and
encouraging me to carry out my work with excitement and faith. Thank you for
picking me up when I am down and for showing me that the most important things
in life are the relationships we have with the people around us. You have all truly
helped shape me, over the past few years, into who I am and I hope that that will
continue.

To my parents, Dad and Mom, thank you for your unwavering and unconditional
love and support. Thank you for allowing me to follow my dreams and go in the
direction I want and feel led to go into. The pride you have for me and my work
has been important in helping me accomplish what I have with my studies. To my
brother, Samuel, thank you for making life challenging and never making it easy,
you have helped mould me in a way that cannot be expressed. Thank you for your
friendship and most importantly, being a brother I could not live without. To my
fiancée, Anja, thank you for allowing me to see more of the Father’s heart. Thank
you for always being there, for the joys and for the trials, and for pointing me back
to Jesus. Your constant love and support make me excited for what is to come.

Finally, I would like to honour God, Jesus and the Holy Spirit, who without, I would
not have been able to achieve any of the things I have. The grace that has been
extended to me by God through the sacrifice of Jesus has showed me a love that I
had never known. I pray that this thesis brings God all the glory and honour.

Stellenbosch University https://scholar.sun.ac.za

v

To my friends and family,

Trust in the Lord for His faithfulness

“O LORD, you are my God; I will exalt you and praise your name, for in perfect
faithfulness you have done marvellous things, things planned long ago.”

Isaiah 25:1

Stellenbosch University https://scholar.sun.ac.za

vi

Table of Contents

 Page

List of Figures ..ix

List of Tables ...xi

List of Abbreviations .. xii

1 Introduction ... 1

1.1 Background .. 1

1.2 Objectives .. 2

1.3 Motivation ... 2

1.4 Methodology and Overview .. 3

2 Literature Review ... 5

2.1 Digital Twins .. 5

2.2 Complex Digital Twin System Design Framework 7

2.3 Six Layer Architecture for Digital Twins with Aggregation 10

2.4 Virtual Reality .. 14

2.4.1 Virtual Reality Overview .. 14

2.4.2 Virtual Reality Hardware ... 15

2.4.3 Virtual Reality Software ... 16

2.4.4 Virtual Reality Implementations .. 18

2.5 Discussion .. 19

3 Integration Opportunities and Challenges ... 21

3.1 Data Visualisation Opportunities .. 21

3.2 Integration Opportunities ... 22

3.3 Data Visualisation Challenges ... 23

3.4 Integration Challenges .. 24

3.5 Discussion .. 25

4 Facilities Management Division Case Study ... 26

4.1 Case Study Description .. 26

4.2 System Architecture Design .. 27

4.2.1 User Needs .. 27

4.2.2 System Requirements .. 28

4.2.3 Physical System Decomposition .. 30

Stellenbosch University https://scholar.sun.ac.za

vii

4.2.4 Service Identification and Allocation ... 32

4.2.5 Digital Twin Internal Architecture and Design Pattern
Application ... 36

5 Case Study Implementations ... 39

5.1 Case Study Objectives ... 39

5.2 Non-DT Implementation ... 39

5.2.1 Implementation Architecture .. 39

5.2.2 Implementation Details ... 41

5.3 DT Implementation ... 44

5.3.1 Implementation Architecture .. 44

5.3.2 Digital Twin Components .. 46

5.3.3 Shared Services Component .. 51

5.3.4 System Operation .. 53

5.4 Virtual Reality Application ... 54

5.4.1 Hardware and Software .. 55

5.4.2 Virtual Environment .. 56

5.4.3 User Interface Interaction ... 57

5.4.4 Displaying Information .. 58

5.5 Comparison of Implementations .. 59

6 Case Study Evaluation ... 62

6.1 Objective.. 62

6.2 Method .. 62

6.2.1 Latency and Computational Resource Utilisation 63

6.2.2 Reconfiguration ... 64

6.3 Results ... 64

6.3.1 Latency and Computational Resource Utilisation 64

6.3.2 Reconfiguration ... 72

6.4 Discussion .. 77

7 Discussion and Further Work .. 80

7.1 Case Study Implications... 80

7.2 Overall Implications ... 81

7.3 Further Work ... 82

8 Conclusion .. 84

9 References ... 85

Appendix A. DT System Operation ... 89

Stellenbosch University https://scholar.sun.ac.za

viii

Appendix B. Configuration File Sample .. 99

Appendix C. Virtual Reality Application ..100

Appendix D. Additional Evaluation Results ...107

Stellenbosch University https://scholar.sun.ac.za

ix

List of Figures
 Page

Figure 1: Digital representation term data flows (Adapted from Kritzinger et al.,
2018) ... 6

Figure 2: Complex DT design framework (Human, 2022).. 8

Figure 3: Design reference architecture (Human, 2022) 10

Figure 4: SLADT reference architecture layout (Redelinghuys et al., 2019) 11

Figure 5: Architecture layout of SLADTA (Adapted from Redelinghuys et al., 2020)
... 13

Figure 6: VR spectrum (Malik et al., 2020) .. 15

Figure 7: Unity GameObject and Components (Unity, 2017b).............................. 17

Figure 8: Physical system decomposition .. 32

Figure 9: Aggregation hierarchy .. 34

Figure 10: DT internal architectures .. 37

Figure 11: Overall system architecture .. 38

Figure 12: Non-DT implementation architecture .. 40

Figure 13: Requesting campus information process flow 43

Figure 14: Overall DT implementation architecture .. 45

Figure 15: Mirror service example ... 49

Figure 16: Context generation service process ... 50

Figure 17: DT aggregation hierarchy structure request .. 53

Figure 18: Exploratory analysis request example .. 54

Figure 19: VR equipment setup ... 55

Figure 20: VR UI example ... 57

Figure 21: Information overlay in VR ... 58

Figure 22: Information panel in VR .. 59

Figure 23: Scenario 1 (a) and Scenario 2 (b) latency results.................................. 65

Figure 24: Scenario 1 (a) and Scenario 2 (b) RAM usage results 67

Figure 25: Scenario 1 (a) and Scenario 2 (b) CPU usage results 68

Figure 26: Scenario 4 latency results ... 69

Figure 27: Scenario 4 RAM usage results... 70

Stellenbosch University https://scholar.sun.ac.za

x

Figure 28: Scenario 4 CPU usage results .. 70

Figure 29: Scenario 1 (a) and Scenario 2 (b) local database latency results 71

Figure 30: Scenario 4 local database latency results ... 72

Figure 31: DT initialisation process .. 90

Figure 32: Configuration file sample .. 99

Figure 33: Unity VR application software environment 100

Figure 34: VR application scene view .. 101

Figure 35: VR application GameObjects and Components.................................. 102

Figure 36: VR UI menus .. 103

Figure 37: Visualising latest precinct and building energy usage information 104

Figure 38: Selecting time period start date ... 105

Figure 39: Requesting new energy information .. 105

Figure 40: Adjusting visualisation scale ... 106

Figure 41: DT implementation latency results... 107

Figure 42: DT implementation RAM usage results .. 108

Figure 43: DT implementation CPU usage results ... 108

Figure 44: Non-DT implementation latency results .. 109

Figure 45: Non-DT implementation RAM usage results 109

Figure 46: Non-DT implementation CPU usage results 110

Figure 47: Local database Non-DT implementation latency results 111

Figure 48: Local database Non-DT implementation RAM usage results 111

Figure 49: Local database Non-DT implementation CPU usage results 112

Figure 50: Single data point request latency results ... 112

Figure 51: Single data point request RAM usage results 113

Figure 52: Single data point request CPU usage results 113

Stellenbosch University https://scholar.sun.ac.za

xi

List of Tables
 Page

Table 1: User requirements ... 28

Table 2: Functional requirements .. 28

Table 3: Non-functional requirements .. 29

Table 4: System digital twins ... 35

Table 5: Potential services hosts.. 36

Table 6: DT implementation Max feature reconfiguration results........................ 73

Table 7: Non-DT implementation Max feature reconfiguration results................ 74

Table 8: DT implementation Total feature reconfiguration results 75

Table 9: Non-DT implementation Total feature reconfiguration results 75

Table 10: DT implementation Cost feature reconfiguration results 76

Table 11: Non-DT implementation Cost feature reconfiguration results 77

Stellenbosch University https://scholar.sun.ac.za

xii

List of Abbreviations

2D Two-dimensional

3D Three-dimensional

API Application Programming Interface

AR Augmented Reality

CAD Computer-Aided Design

CPS Cyber Physical System

CPU Central Processing Unit

CSV Comma-Separated Values

DT Digital Twin

DTA Digital Twin Aggregate

DTI Digital Twin Instance

FM Facilities Management

FR Functional Requirements

GB Gigabyte

HMD Head Mounted Display

IoT Internet of Things

JSON JavaScript Object Notation

MADRG Mechatronics, Automation and Design Research Group

MB Megabyte

NFR Non-Functional Requirements

PC Personal Computer

PLM Product Lifecycle Management

Stellenbosch University https://scholar.sun.ac.za

xiii

RAM Random Access Memory

SLADT Six Layer Architecture for Digital Twins

SLADTA Six Layer Architecture for Digital Twins with Aggregation

SSD Solid State Drive

TB Terabyte

TCP/IP Transmission Control Protocol/Internet Protocol

UI User Interface

VR Virtual Reality

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction

1.1 Background

Industry 4.0 is the fourth industrial revolution that is related to concepts such as
the Internet of Things (IoT), Cyber Physical Systems (CPSs) and Digital Twins (DTs).
In essence, a DT is an accurate digital representation, in a digital environment, of
a physical model (Redelinghuys et al., 2019). Along with a DT being a virtual
representation of a physical model, the DT is able to support the prediction and
operation of the physical model throughout its lifecycle (Malik et al., 2020).

The use of DTs typically results in the recording of a vast amount of information.
This information is not just recorded to have the operational history of a DT, but
also to make informed decisions for the physical system relating to the DT. This
results in a data driven decision-making process, where previously recorded data
is used, in conjunction with previous experience and domain knowledge, to make
a decision for a particular system.

The advancement of technology has also seen the development of various virtual
technologies such as augmented reality (AR) and virtual reality (VR). VR places the
user in a 3D environment where, with the aid of the appropriate equipment, they
are able to move around and interact with elements in the 3D environment. VR is
currently mostly used in the computer or console gaming industry. However, the
question arises of how VR can be used to aid and advance industries outside of the
gaming industry.

At the most basic level, VR can be seen as a way of visualising information. This
introduces the concept of using this visualisation medium to visualise information;
specifically the information obtained by DTs. Current research into this area is
fairly scarce as it is a concept that is in its infancy. An unanswered question is
whether using VR to visualise DT information will be more advantageous than viewing
the information using conventional methods, such as a PC monitor; or whether VR will
bring additional complexities and challenges that outweigh possible advantages. The
answer to this question is context specific and will require careful investigation. This
thesis, therefore, does not address this question. Another question is whether DTs
can aid the information visualisation process in VR. This second question is
considered in this thesis.

The Mechatronics, Automation, and Design Research Group (MADRG) at
Stellenbosch University’s Department of Mechanical and Mechatronic Engineering
focusses on enabling Industry 4.0 for the South African context. The research
group focuses especially on the IoT and CPS concepts of Industry 4.0. DTs form an

Stellenbosch University https://scholar.sun.ac.za

2

integral part of CPSs and the research group believes that DTs can “improve the
global competitiveness of South African enterprises, while addressing important
social concerns” (Kruger, n.d.). As a result, the research group has been
responsible for developing DT implementations in various industries. Some of the
implementations being in the manufacturing and maritime industries, as was
compared by Taylor et al. (2020) who are also members of MADRG. The research
group also developed the Six Layer Architecture for Digital Twins with Aggregation
(SLADTA) (Redelinghuys et al., 2019) where, using this architecture, a DT can
logically and effectively be implemented in the scenario of a manufacturing cell.
However, SLADTA has the potential to be used in other implementations and not
just for a manufacturing cell context.

1.2 Objectives

The main objective of the research is to evaluate the integration of DTs and VR to
support data driven decision-making for complex systems.

This study includes using existing DT system concepts and newly developed
concepts to identify and evaluate possible opportunities that exist with the
integration of DTs and VR. Integration refers to the manner in which a DT, and its
information, will most effectively be interfaced with VR so that the two
technologies may complement one another; such as the contextualisation of DT
data in a VR space to enable using previously recorded information to make an
informed decision for the future of a complex system.

The research focuses on only transferring information for visualisation to VR and
does not include making changes to a physical system using VR. The research
works from an existing DT architecture (SLADTA). The research’s objective of
integrating VR and DTs uses the Facilities Management Division at Stellenbosch
University as a case study for evaluation. This division is responsible for overseeing
the operations of complex facilities, such as a university campus. The ideas and
concepts generated in this research were created to be used more generally than
only for a facilities management division implementation.

1.3 Motivation

VR is growing in use as a visualisation tool that enhances the data visualisation and
decision-making process. However, the need to effectively transfer information
into a VR environment is rising and remains largely unexplored. This research
allows for an effective method of transferring information, through the use of DTs,
to the VR environment to be investigated.

Stellenbosch University https://scholar.sun.ac.za

3

The DT concept, inherently, requires the ordering of large quantities of data for
the purposes of making better decisions for a physical system. DTs, therefore,
provide a possible means to then also be used to transfer information to VR. This
DT method of transferring information to VR could rival, what could be considered,
a more “conventional” method of transferring information. However, a
comparison of the two methods is required to determine the extent of this rivalry.

Facilities management, with specific focus on the facilities management division
at Stellenbosch University, is a suitable case study context for evaluation of
integrating DTs and VR because it is a complex system, with many components
and complex relationships. DTs can provide an accurate and near-real time
reflection of reality which, for facilities management, is vital for decision-making.
This presents an opportunity of DTs to be used in this context to accurately reflect
this complex system. The opportunity of using VR for data visualisation to aid in
the data driven decision-making process for facilities management is also present
as large amounts of data about various facilities is recorded for decision-making
purposes. These opportunities indicate the possibility and need for an effective DT
and VR integrated system in the facilities management context.

The selection of SLADTA, mentioned in Section 1.2, as the internal architecture for
DTs in a system is supported by the implementations of Redelinghuys (2020) and
Human (2022). SLADTA has been shown to aid with logically separating a physical
system into hierarchical components, whose information can then be aggregated
and used for decisions. This hierarchical separation and aggregation are concepts
that are applicable to the facilities management context, further supporting the
selection of SLADTA as the internal architecture for the DTs.

The current study is a steppingstone to highlight the potential of using DTs to aid
a VR experience for data visualisation and decision-making. During this study, VR
is used purely as a visualisation tool. However, the technology has the potential to
also be interactive and have bi-directional communication, where the physical
system of a DT can be altered by a user interacting with the DT in a VR
environment, and vice versa.

1.4 Methodology and Overview

This study investigates the opportunities for a data driven decision-making process
that can be improved by the integration of DTs and VR. A literature review,
provided in Chapter 2, is first conducted to gain insight into the current research
of DTs and VR, and how these concepts fit into the broader context of Industry 4.0.
The literature review contains information regarding DTs, the design of complex
DT systems, SLADTA, the VR technology and some of the uses of VR. This literature
review is used to provide valuable insight into how these concepts can relate to
one another and what research has previously been conducted on these concepts.

Stellenbosch University https://scholar.sun.ac.za

4

Chapter 3 indicates various opportunities and challenges, associated with using
DTs and VR, that are identified. New concepts of how to use VR and DTs together
are developed and formulated based on these identified opportunities and
challenges. These new concepts primarily focus on how the integration of VR and
DTs can potentially be beneficial and advantageous in a data driven decision-
making process. Facilities under the authorisation of the Facilities Management
Division at Stellenbosch University are used in the implementation case study. The
case study is selected, from the facilities management context, based on how well
the integration of VR and DTs can be displayed in the case study. The selection and
design of this case study is presented in Chapter 4.

The DT system for this selected case study is implemented and integrated with VR
to enable a user to visualise facility information. A non-DT method for visualising
the same facility information in VR is also implemented. Both implementations
produce the same output and have the same functionality. The two
implementations are compared and reviewed to determine the advantages, if any,
of integrating DTs and VR for the data driven decision-making process. The DT and
VR integration also shows the use of SLADTA as a possible internal architecture for
the DT system. The implementations do not allow for changes to be made to
facilities in the case study using VR. The details regarding the two
implementations, as well as the VR application, are provided in Chapter 5.

The selected case study only uses the energy usage information for the various
facilities in the system. This information is reliably available and constantly being
updated, unlike other utility usage information. The use of only energy usage
information of the facilities allows for the concept of integrating DTs and VR to be
showcased, and the addition of other information for visualisation would have had
very little benefit. The case study is focused only on the main campus, located in
Stellenbosch, for Stellenbosch University. The selected campus is sufficient in
displaying the integration of DTs and VR with various system hierarchical levels.
Stellenbosch University, as a whole, is not selected because this additional level in
the system hierarchy provides little benefit for the subsequently increased
complexity of the system.

In Chapter 6, the case study implementations are evaluated using different
metrics, such as system latency, computational resource utilisation, and system
reconfigurability. The evaluation results of the two implementation methods are
used to determine whether the use of a DT and VR system for the data driven
decision-making process is, indeed, beneficial or not. Chapter 7 discusses the
various components and outcomes of the research. Any possible areas for further
work are also provided in this chapter. A conclusion, recalling the objectives of the
research, is made based on these evaluation outcomes and is presented in
Chapter 8. It is important to note that the research considers published work, as
well as newly developed work, to achieve the objectives stated in Section 1.2.

Stellenbosch University https://scholar.sun.ac.za

5

2 Literature Review

The chapter provides information of the various aspects that are used within this
research. Digital twins are discussed, followed by a discussion for an existing
design framework for designing complex DT systems. The internal DT architecture
SLADTA is then discussed. The VR technology and its various components and uses
are then discussed. The final section of the chapter is a discussion of how the
various aspects relate to one another for the purposes of this research.

2.1 Digital Twins

Industry 4.0 is the result of many years of technological advancements. Some of
these technologies include the Internet of Things and Cyber Physical Systems.
Using these technologies, opportunities for greater levels of productivity are seen
in the concept of digitalisation in manufacturing (Uhlemann, et al., 2017). Industry
4.0 technologies allow for intelligent components to become easily
interconnected and the components to be integrated (Negri et al, 2017). The
digital technologies have enabled the idea of virtual product and process planning.
This results in a vast amount of data being collected, stored, and analysed to make
decisions (Kritzinger, et al., 2018).

The DT concept is a concept that has arisen due to the advancement of Industry
4.0 technologies. The term DT had first been used by Grieves in 2002. The term
was used in a presentation of product lifecycle management (PLM) in an industry
context (Grieves & Vickers, 2017). Grieves and Vickers (2017) stated that a DT is a
“digital informational construct about a physical system, created as an entity on
its own and linked with the physical system in question”. Included in the DT should
be any information within the physical system that could be obtained by viewing
the system in the real world (Grieves & Vickers, 2017). The DT concept was also
mentioned with regards to use for future NASA and U.S. Air Force vehicles where
the definition of a DT was “an integrated multi-physics, multi-scale, probabilistic
simulation of a complex product and uses the best available physical models,
sensor updates, etc., to mirror the life of its corresponding [physical] twin”
(Glaessgen & Stargel, 2012).

A key feature and benefit of a DT is to be able to provide data in a consistent
format. DTs are not simply just data; they include algorithms that are able to
reflect their physical twin and make decisions based on processed data. A
definition of a DT is that it is the digital counterpart/representation/reflection of
a physical system. However, it has been identified that the terms Digital Model,
Digital Shadow, and DT are being used interchangeably (Kritzinger et al., 2018).

Stellenbosch University https://scholar.sun.ac.za

6

The terms Digital Model, Digital Shadow, and DT can be seen to differ in the level
of the data interaction between the physical twin and the DT, as illustrated in
Figure 1.

A Digital Model refers to a digital representation of a physical system that does
not make use of an automated data transfer between the physical system and the
digital representation. A change in the physical system will have no direct impact
on the digital representation or the other way around (Kritzinger et al., 2018).

A Digital Shadow refers to when there is an automated flow in one direction, from
the physical system to the digital representation, but the opposite direction of
data flow is still manual. A change in the physical system results in an automatic
change in the digital representation but not conversely (Kritzinger et al., 2018).

If the data flow between the physical system and the digital representation are
fully automated in both directions, the digital representation is deemed to be a
DT. The digital representation could be acting as a controlling instance for the
physical system. A change in the physical system will result in a change in the
digital representation and the other way around (Kritzinger et al., 2018).

Figure 1: Digital representation term data flows (Adapted from Kritzinger et al.,
2018)

Due to the differences in the level of interaction between a physical system and
its corresponding digital representation, the technologies needed for each
implementation varies. The general technologies required are: simulation
methods, communication protocols, and other technologies that form part of
Industry 4.0 (IoT, Cloud Computing, Big Data, etc.) (Kritzinger et al., 2018).
Kritzinger et al. (2018) show that the concept and development of DTs is still in its
infancy because most literature consists only of having concepts of DT
technologies and not having any suitable case-study implementations.

Some advantages of DTs are that they can provide accurate representation or
simulation for system components. DTs can act as a processing-monitoring tool
for a user to be able to predict potential incidents, identify failures and can be used

Stellenbosch University https://scholar.sun.ac.za

7

to optimise the system. The realistic representation of a physical system using a
DT allows for this optimisation aspect to provide realistic outcomes for the system
(Havard et al., 2019).

The definition of a DT in this research is a virtual representation of a physical
system, where the DT is seen as an entity that can communicate with the physical
system.

2.2 Complex Digital Twin System Design Framework

The “DT” of a complex system is also complex, to the extent that it can be referred
to as a “complex DT system”. The design of such a complex DT system requires
various aspects to be taken into account for implementation in a given context
with desired functionality being required. A framework was developed by Human
(2022) for designing complex DT systems, and this section reviews this design
framework. This is a suitable complex DT design framework as SLADTA, required
in this research (Section 1.2), is already considered and used in the framework. No
other alternative, yet comparable design frameworks could be found in literature.

The framework was developed to provide general principles to be used to design
a DT system architecture, with some recommended implementation decisions, for
managing complex physical systems. These complex systems are seen as a large
network containing many components that result in complex behaviour and
information processing, and require adaptation or evolution (Human, 2022). DTs,
especially DTs with aggregation, are seen as a potential solution to managing these
complex systems. Human (2022) states that the purpose of the design framework
is “to enable systematic, effective decisions when designing a system of DTs to
represent a complex physical system”.

Figure 2 illustrates the design framework, which is divided into the Problem space
and the Solution space. The Problem space receives the user’s requirements and
the physical system as inputs. Specified design steps are then followed, and the
output of the Problem space is then used as input for the Solution space. The
output of the Problem space is a list of system functional requirements, a list of
non-functional requirements, a hierarchical physical system decomposition, and
the characterisation of the data present in the system. Functional requirements
are the functions in a system that will achieve the user requirements. Non-
functional requirements are how or how well these functional requirements are
achieved (Human, 2022).

Stellenbosch University https://scholar.sun.ac.za

8

Figure 2: Complex DT design framework (Human, 2022)

The design process steps for the Solution space are then followed and the output
for this space is the overall system architecture. Once the overall system
architecture has been designed and implemented, various validation and
verification tests are carried out to determine whether the user’s needs are met
and to what degree they have been met. The Solution space development begins
with identifying the services required in the system to meet the functional and
non-functional requirements from the Problem space. Using the hierarchical
physical system decomposition, DTs are derived to reflect the physical reality. The
identified services are then allocated to the DTs in the system or to a services

Stellenbosch University https://scholar.sun.ac.za

9

network. The Shared Services component is a set of services, including the services
network, offered to, or “shared” by the DT components in the system. The Shared
Services component of the DT system could contain various system management
services in addition to the services network, such as a service gateway, a directory
service, an orchestration service, etc. These additional services are used to aid the
operational aspects of the DT system.

Human (2022) gives a number of design patterns and implementation
considerations that guides the design in ensuring that the implemented system is
able to achieve, firstly, the user requirements and, secondly, any additional system
requirements that might not be directly stated in the user’s requirements. A
design pattern is a set of architecture and implementation recommendations that
prioritise certain system requirements. Human (2022) identified six design
patterns for, respectively, performance efficiency, reliability, maintainability,
compatibility, portability, and security.

Before implementation details are considered, an overall DT system architecture
and an internal structure for the DTs must be selected. Human (2022), and this
research (as stated in Section 1.2), used SLADTA as the internal structure of the
DTs and the reference architecture shown in Figure 3 for the overall architecture.

After design, the overall system architecture must then be implemented, and
various validation and verification evaluations should be carried out to determine
if the system achieves all of the user requirements provided at the start of the
design phase. This evaluation phase could also be used to determine to what
degree, or how well, the requirements are achieved by the system.

It must be noted that during the design process, iteration between phases is
required to ensure that the correct system is designed. The final system
architecture might not be fully designed during the first iteration as some
considerations and implementation selections could affect other selections made
previously in the design process.

Human (2022) used the framework to design architectures for three different
complex system case studies, i.e. a water distribution system, a smart city, and a
heliostat field. The water distribution system and smart city case studies were
more high-level case studies, while the heliostat field case study was more in-
depth and showed detailed application of the framework. The architecture for the
heliostat field complex system was implemented to validate the design
framework. The evaluation of the heliostat field case study showed that the
framework was "able to guide the design of a feasible architecture for a system of

DTs” (Human, 2022). This supports the notion of the design framework being able to
be applied more generally to other contexts.

Stellenbosch University https://scholar.sun.ac.za

10

Figure 3: Design reference architecture (Human, 2022)

2.3 Six Layer Architecture for Digital Twins with
Aggregation

As mentioned previously, the Six Layer Architecture for Digital Twins with
Aggregation (SLADTA) is used as the internal architecture for the DTs in the
system. An alternative architecture to SLADTA that could be considered is the
architecture developed by Borangiu et al. (2020). The two architectures are briefly
compared at the end of this section.

SLADTA is an adaptation of the Six Layer Architecture for Digital Twins (SLADT),
which has been configured to allow for the aggregation of DTs. SLADT was initially
developed for the implementation of a DT of a manufacturing cell (Redelinghuys,
2020). Figure 4 shows the basic structure of SLADT.

Stellenbosch University https://scholar.sun.ac.za

11

Figure 4: SLADT reference architecture layout (Redelinghuys et al., 2019)

Figure 4 shows the data and information flow from a physical twin (Layer 1) to
long-term storage, typically hosted in the cloud, but also locally (Layer 5). The
information can also flow in the other direction from the cloud to the physical
twin. Layer 4 contains functionality to convert data into information before it is
sent to Layer 5. Layer 6 contains the simulation or emulation software that uses
the information provided by the physical twin (Redelinghuys et al., 2018). Each
layer of SLADT, Layer 1 to Layer 6, is expanded on below.

Layer 1 contains the different physical devices (sensors and actuators) that can be
used to provide information to the controllers in Layer 2. These devices provide
information related to the physical twin and they are seen as being a part of the
physical twin. Layer 2 is seen as a distinct layer because, although the controllers
are connected to the physical twin, they are able to supply specific functionality
to the DT. They transfer the data to Layer 3 (Redelinghuys et al., 2018).

Layer 3 contains short-term local repositories of the stored data for the physical
twin. These local repositories are located near the physical twin. This layer is
supposed to be able to support vendor neutral integration, such as an OPC UA
server that can be used to transfer and collect the data (Redelinghuys et al., 2018).

Layer 4 is the gateway between the physical twin and the cyber world. This layer
converts the data stored in Layer 3 into information that is stored in Layer 5 and
used in Layer 6 (Redelinghuys et al., 2018). The layer is custom developed software
and, as mentioned previously, can be used to provide some specific functionality
to the DT using the data from Layer 3 and, possibly, Layer 5.

Layer 5 includes cloud-based or local database servers that are used as a long-term
information repository for the information obtained regarding the physical twin

Stellenbosch University https://scholar.sun.ac.za

12

and the DT. The information stored is generally the history of the physical twin and
the physical twin’s current or latest state (Redelinghuys et al., 2018). This
information, along with the data in Layer 3 is used in the emulation or simulation
software that is present in Layer 6, as seen in Figure 4.

Layers 1 to 5 are seen as the infrastructure for the DT and the actual intelligence
is provided in Layer 6. This layer should transfer information between the physical
twin via the long-term cloud, or local repositories in Layer 5 or even the short-term
local repositories in Layer 3 (Redelinghuys et al., 2018). Layer 6 is responsible for
making decisions for the DT that will impact the physical twin. The decision will
then be sent back through the architecture to the physical twin.

SLADT was developed to be vendor neutral and allow for clear distinctions to be
made between the roles of different layers in a DT architecture. SLADT was
developed to allow for the use of off-the-shelf components without having to use
a specific vendor. Redelinghuys (2020) showed that SLADT is useful for developing
the DT of a physical twin in cyberspace.

SLADT was only demonstrated for a single physical twin and was, therefore,
adapted to allow for multiple DTs to be connected. This adaptation is called
SLADTA and has the functionality to aggregate DTs for more complex systems.

In SLADTA there are two types of DTs, i.e. digital twin instances (DTIs) and digital
twin aggregates (DTAs). The two types were derived from, but differ from, other
definitions (Grieves & Vickers, 2017). A DTI corresponds to the digital twin that is
connected to the physical twin for the entirety of its lifespan. A DTA is the
aggregation of various DTIs, as well as other DTAs. A DTI can be viewed as
independent, but a DTA is dependent on other DTIs and DTAs (Grieves & Vickers,
2017). Redelinghuys (2020) identified that there was a need for the idea of a
“digital twin of twins”. This is the concept of a having an aggregation architecture
for DTs.

Figure 5 shows the architecture layout for SLADTA. In the architecture, every
physical twin has its own DTI that comprises of a SLADT implementation with all
six layers of the architecture. The higher-level twins (DTAs) only contain the
relevant layers of SLADT, i.e. Layer 3 to Layer 6. The connection between DTs (DTIs
and DTAs) occurs through Layer 3 of each DT. Layer 4 is used to manage the
interactions between DTs, but the actual information is transferred between Layer
3 of the DTs (Redelinghuys, 2020). Further developments using SLADTA (Human,
Basson & Kruger, 2021), however, evaluated having DTs communicate with each
other through Layer 4 which differs from the originally proposed architecture by
Redelinghuys (2020). This new communication through Layer 4 approach, is more
generally applicable (Human et al., 2021) and should, therefore, be implemented
in place of the original design by Redelinghuys (2020).

Stellenbosch University https://scholar.sun.ac.za

13

Figure 5: Architecture layout of SLADTA (Adapted from Redelinghuys et al.,
2020)

SLADTA is designed to be reconfigurable and flexible because large hierarchical
structures can be costly to design, maintain and modify. SLADTA allows for the
aggregation of information from different DTs, but also allows for the information
to be segmented. Aggregating information from multiple DTs reduces the
complexity by encapsulating the functionality of related information to each DT.
Each DT can make its own decision and is flexible and intelligent (Redelinghuys,
2020). These are some of the advantages of using SLADTA for DTs.

A digital twin technology review (Juarez et al., 2021) showed that the architecture
developed by Borangiu et al. (2020) is the most similar to SLADTA as provision is
made for aggregation, but the architecture does not have some of the other
advantages that are offered by SLADTA. The architecture developed by Borangiu
et al. (2020) makes use of the aggregation concept as data is acquired in the first
layer of the architecture and is then aggregated in the second layer to develop the
process models represented in the DTs. The third and fourth layers of their
architecture are responsible for the analysis and decision makingt of the DT. The
area where the architecture is lacking compared to SLADTA is where SLADTA offers
the possibility of a “digital twin of twins”, where available information is both
segmented and aggregated. This “digital twin of twins” is not possible with the
architecture of Borangiu et al. (2020) as the data received by the sensors is
aggregated in the architecture without each physical twin having their own DT and
then aggregating the information to other DTs like with SLADTA. This segmenting
of information allows for a better representation of the physical as each element
is represented by a DT.

Stellenbosch University https://scholar.sun.ac.za

14

2.4 Virtual Reality

Virtual Reality (VR) is a newly developing technology that could be beneficial for
use in the data visualisation and decision-making process. The technology has
been available for a number of years, but due to recent developments, there has
been an increase in the accessibility to visualisation tools like VR (Havard et al.,
2019). A brief overview of VR is provided next, followed by the hardware and
software aspects for VR, and different uses of VR.

2.4.1 Virtual Reality Overview

VR is a digital artificial environment that a human’s senses will perceive to be real.
The core of VR is to be able to create a near real environment. This environment
should be able to simulate or present a physical environment in real time (Liagkou
et al., 2019; Malik et al., 2020). A user in VR is able to enter an immersive
interactive environment that interprets the user’s prompts to respond accordingly
to the user’s behaviour (Sekaran et al., 2021). The main purpose of VR is to provide
the user with a “multi-modal, close-to-reality experience”. Considering visual
senses, VR is able to showcase the highest level of graphic benefits when
considering the dynamic and immersive visualisation in comparison with VR’s
visualisation method counterparts (Sekaran et al., 2021). Users are able to
experience a virtual environment with high detail, allowing them to experience a
fully immersive environment that cannot be achieved using a conventional
desktop computer (Andersen et al., 2019).

VR is characterised by three main aspects called the “3I’s” (Phoon et al., 2017):

• Imagination – The user can participate in a scenario simulation which is
created in a virtual environment.

• Interaction – A VR system must be able to react to some actions or
behaviours carried out by the user.

• Immersion – A VR system must be both mentally and physically immersive.
The mental immersion is achieved by the quality, in terms of rendering and
simulation, of the environment that the user is experiencing. The physical
immersion is accomplished by updating what the user is seeing in real-time
according to their actions or prompts.

In contrast to the above, some researchers divide VR into two categories, namely
immersive and non-immersive VR. Non-immersive VR is when users can visualise
models or information on a screen, for example desktop PC screens or widescreen
projectors. Immersive VR often makes use of head mounted displays (HMDs) that
allow a user to virtually “enter” and interact with an environment to visualise
models or information. Nowadays, when VR is mentioned, it is mostly referring to

Stellenbosch University https://scholar.sun.ac.za

15

immersive VR (Malik et al., 2020). Figure 6 is an illustration of the spectrum of VR
with regards to the level of immersion.

In this thesis, the focus is on visual immersion and not the other senses.

Figure 6: VR spectrum (Malik et al., 2020)

2.4.2 Virtual Reality Hardware

VR is a technology that creates a real-world visual perception by using artificial
computer-generated environments. This is achieved by using a combination of
three effects: a total immersion experience; stereoscopic vision – where a scene
is rendered for each of a user’s eye at a slightly different angle; and motion capture
– where a user’s head and controller position are used to update the environment
for the user (El Beheiry et al., 2019). A user can interact with VR using a variety of
methods. Those interaction methods include HMDs, console gaming controllers,
keyboards, and haptic devices (Sekaran et al., 2021). Other interaction hardware
includes gloves, a 3D mouse, a space ball, voice recognition, biological sensors,
and full-body suits (Liagkou et al., 2019). VR applications require some input from
the user, and this is generally achieved by using keyboards, mouses, or joysticks.
However, these devices “break the illusion that users are directly interacting with
the virtual world because they are non-intuitive ways to interact with virtual
objects” (Erra et al., 2019).

There are different types of VR implementation hardware, and many VR platforms
provide multi-user collaboration in virtual environments. These include CAVEs,
PowerWalls, and HMDs. The differences in these implementations are the degree
of user immersion, the maintenance effort, and the cost. CAVEs and HMDs are
seen as full-immersion VR devices, whereas PowerWalls or monocular head-based
VR devices are semi-immersive (Kroupa et al., 2018).

The quality and realism of a VR application can influence the quality of user
immersion. The cost of VR is an important consideration because, as expected,
more expensive equipment provides the user with a better immersive experience
(Liagkou et al., 2019). Previous VR technologies used complex and non-portable
equipment such as CAVEs or hyperwalls (Donalek et al., 2015). A VR CAVE

Stellenbosch University https://scholar.sun.ac.za

16

implementation is where images are projected onto walls and an environment is
created around a user. This VR implementation is expensive and requires large
amounts of space to be implemented. This setup has been implemented in various
universities and data centres to enhance visualisation in areas of science and
engineering (Cordeil et al., 2017).

A newer VR setup is the use of the previously mentioned HMDs. The technology
has been developed to “ensure visual comfort and ergonomic usage” (El Beheiry
et al., 2019). The technology has also become available to many consumers by the
introduction of VR headsets such as HTC Vive, Oculus Rift, and Windows Mixed
Reality that are now affordable (El Beheiry et al., 2019). Current HMDs are more
portable and affordable than creating CAVE environments or previous HMD
versions. This makes them an ideal tool for exploratory visualisation (Drouhard et
al., 2015). As mentioned previously, VR applications require inputs from the user
and some of these inputs could result in the user feeling less immersed. However,
with more recent VR equipment developments, such as the HTC Vive and Oculus
Rift, the user can make use of controllers to interact with the environment. The
use of these controllers allows for the user to feel almost completely immersed in
the environment and enhances their VR experience.

2.4.3 Virtual Reality Software

There are many software development environments that could be used to
develop a VR environment, including Unity, Unreal Engine 4, Google VR for
everyone, Amazon Sumerian, Blender, 3ds Max, and Maya to mention a few
(Davies, n.d.). The reason for the large number of development environments is
the increasing popularity and use of VR. This increased use creates the opportunity
for competition to arise between different entities, resulting in a multitude of
possible options to choose from.

Related research has shown that Unity and Unreal Engine are the most widely
used options (Donalek et al., 2015; Havard et al., 2019; Kroupa et al., 2018; Liagkou
et al., 2019). This is due to their wide use in the game development area, their
large community support base, and the familiarity of the development language
used. Unity uses C# and Unreal Engine uses C++. Unity and Unreal Engine are both
game engines and, thus, operate very similarly. Although related research has
shown to consider both software environments, a large portion make use of Unity
to develop the VR environments (Donalek et al., 2015; Havard et al., 2019; Kroupa
et al., 2018; Liagkou et al., 2019).

Unity makes use of two major aspects, i.e. GameObjects and the Components
attached to the GameObjects (Kuts et al., 2019). The GameObjects are seen as any
object that is used within the developed environment (Unity, 2017a). The use of
the GameObjects allows for a modular approach of development to be adopted.

Stellenbosch University https://scholar.sun.ac.za

17

The term GameObject encapsulates multiple objects, including models,
geometries, or effects, used within the environment. The Components that are
attached to these GameObjects differ depending on the purpose of the
GameObject. The Components include custom C# scripts or built-in functionality
offered by Unity that are used to control the behaviour of the GameObject (Kuts
et al., 2019).

Figure 7 provides an example of a GameObject used in a Unity project and the
Components that are attached to the GameObject. The GameObject is the grey
cube on the left side of the figure, with the Components being in the tab on the
right side of the figure. A Component example is the Transform Component that
is used to control the position, rotation, and scale of the GameObject within the
developed environment.

Figure 7: Unity GameObject and Components (Unity, 2017b)

GameObjects and Components are used in various combinations to develop a
desired environment in Unity. Unity provides multiple built-in GameObjects and
Components that aid in the development of VR environments. These are used,
then, to help a developer more easily develop a VR environment with the
functionality and appearance that they desire.

Unity is a powerful tool to aid in the creation of both 2D and 3D environments
which makes it a suitable choice for the development of complicated
environments such as VR environment.

Stellenbosch University https://scholar.sun.ac.za

18

2.4.4 Virtual Reality Implementations

VR is typically associated with use in the gaming and entertainment industry;
however, it is beginning to be used in other areas and industries (Hu et al., 2021).
VR’s use in science is still being elaborated (El Beheiry et al., 2019). The data and
information obtained through integrated communication channels can be
visualised using VR. This data and information include operational, reporting, and
monitoring data and information (Kovar et al., 2017). For VR implementations in
Industry 4.0, it must be adaptable and able to change to new events and situations
(Liagkou et al., 2019).

VR is becoming easier to implement as hardware and software is continually being
advanced. The technology is being used in more activities such as product or
process design, facility layout planning, training, and remote collaboration (Havard
et al., 2019). There is a useful potential in combining VR and DT technologies to
aid in training people in a virtual environment that behaves realistically. Using
correct software and the integration of these two technologies could allow for
dynamic virtual environments to be created for training or designing sessions
(Havard et al., 2019). This indicates the potential of integrating the two
technologies. Liagkou et al. (2019) stated that “Industry 4.0 could benefit from
using VR models to display larger and complex processes and products referring
to training, simulation, maintenance and all the aspects of production line and/or
at management activities”. VR has been used in applications where it has been
used to document the design and validation process of complex systems (Malik et
al., 2020).

Using VR as a tool for enhanced interaction and virtualisation allows for processes
such as design, evaluation, and management improvement to be carried out in a
way that is both cost and time effective. VR can be used to accelerate and
streamline a task as it has the ability to represent models with a high level of detail
and provides an interactive user experience (Sekaran et al., 2021). Using virtual
spaces as testing areas is a way to design and evaluate complex systems (Malik et
al., 2020).

Previous work has shown that scientists benefit from immersion for
palaeontology, brain tumours, shape perception, underground cave analysis
structures, MRI, organic chemistry, and physics (Donalek et al., 2015). Other areas
of implementation include automotive engineering, aerospace engineering,
medicine and mechanical engineering (Kovar et al., 2017). Another area of use is
with regards to manufacturing where VR could be used for analysing products in
the design stages, analysing the interaction between the final product and
customers, optimising or designing manufacturing processes, and remotely
monitoring/supervising processes within a system (Liagkou et al., 2019). Engineers
and technologists can use VR to test and experiment with a system in a way that

Stellenbosch University https://scholar.sun.ac.za

19

is close-to-reality and intuitive. This can be done before any further developments
are made. Using this approach decreases the probability of system failures (Malik
et al., 2020).

2.5 Discussion

DTs have been shown to be useful for implementation for complex systems and
accurately reflecting their physical systems. DTs provide the benefit of adding
value to recorded data and allow for the data available in complex systems to be
ordered, in a consistent format, and accessible. This functionality of ordering
information and allowing it to be accessible makes DTs a suitable method of
transferring information to various applications, like VR.

The design of a DT system for a complex system has currently no consensus due
to the infancy of the concept and/or the diversity of applications. However, the
design framework developed by Human (2022) offers a solution to the challenge
of designing a complex DT system. Included in this design process is the need to
select an internal DT architecture. SLADTA is a promising internal DT architecture
that considers the interactions between DTs at different levels within a complex
system. SLADTA also provides a logical separation between the different
components that are contained within a DT. These different components ensure
that the desired functionality of a DT is achieved. For complex systems, with many
elements, there is value in a hierarchical separation of elements within the
physical system, but for information from these various elements to still be
aggregated and accessible. SLADTA makes provision for the aggregation of
different DTs at various hierarchical levels. This further supports its use for the
internal architecture of DTs of a complex system.

The VR technology is shown to have various hardware and software components
needing to be considered. The literature review indicates that a choice of Unity as
a software development environment is supported by various implementations in
scientific VR applications. The VR implementations provided show how VR can be
used to visualise information and enhance the visualisation process. However, in
VR implementations the information must be transferred to the VR application in
some manner that is not always trivial.

VR can also be used to visualise information from real-world complex systems, but
these complex systems require an effective method for transferring information
to VR that can cope with the complexities of the system. A well-designed DT
system for a complex system could be a possible method for achieving this
effective information transfer. Literature has mentioned the potential of
integrating DTs and VR for data visualisation. However, some of the mentioned VR
implementations, for more complex systems, did not make use of DTs for
information transfer, and as such, this is an integration opportunity worth

Stellenbosch University https://scholar.sun.ac.za

20

exploring. VR also has a spatial component that could be well supported by DTs
reflecting a physical system. This is because a physical system 3D model could form
part of a DT, and like with transferring other information, this physical system 3D
model could also be transferred to VR and be part of the visualisation.

From the literature, it is therefore apparent that, although the DT and VR
technologies can be used individually in respective applications, they can also be
integrated to enhance and support the data driven decision-making process for
complex systems. It is important in such a system that: the purpose of the DTs is
understood clearly; the DT system architecture is designed by following a credible
design process with a suitable internal DT architecture; and that a VR application,
using DTs, is appropriately developed to allow for this enhanced data driven
decision-making process to be realised.

Stellenbosch University https://scholar.sun.ac.za

21

3 Integration Opportunities and
Challenges

This chapter discusses various opportunities and challenges that are associated
with VR as a visualisation technology, and then also the integration of the VR
technology with DTs. The opportunities of using VR for data visualisation are first
mentioned, followed by the opportunities for the integration of VR and DTs. After
this, the challenges of VR for data visualisation are provided, followed by the
challenges of integrating VR and DTs. It must be noted that the lists of
opportunities and challenges provided below are not exhaustive. A brief
discussion regarding the various opportunities and challenges is then provided.
The information provided in this chapter is developed from that of Da Silva et al.
(2022), unless another reference is given.

3.1 Data Visualisation Opportunities

The use of VR presents several opportunities for the purposes of data visualisation:

• Users are able to move around through data more easily and navigate the
data in a manner that is more intuitive for people. This intuitive data
navigation enhances and aids the pattern recognition process (El Beheiry
et al., 2019; Erra et al., 2019). As a VR environment is a 3D space, the user
is able to interpret and visualise the data presented to them in a way that
is more familiar. Humans perceive and function in a 3D physical world
around them; having data presented in the same way creates more of a
familiarity between the user and the data than there would be if the user
is not in a VR environment. In the VR environment they are then able to
move (in the virtual world) through the data in a similar, more intuitive,
way that they would in the real world. Humans already have a useful
pattern recognition process (Donalek et al., 2015), and VR allowing for
better pattern recognition, enables the user to then obtain more useful
insight when they are analysing data. This, therefore, allows better
decision-making in comparison to conventional methods, like using a PC
monitor for visualisation.

• The current VR technology developments allow for a user to visualise data
with a high level of detail. Data being presented with a high level of detail
allows a user to go nearer to the data points without losing visual quality.
Along with users being able to view the data close up, they are also able to
visualise data in its entirety by viewing it from a distance. A high level of
detail refers to the detail of the visualisation and not to the granularity of
the data to be visualised.

Stellenbosch University https://scholar.sun.ac.za

22

• Presenting data in VR allows for the data to be visualised more realistically
in terms of the distances between data points as well as the relations
between data points. This more realistic and accurate visualisation will
bring the perception of users closer to reality than with the use of
conventional methods. This allows the user to better understand the
relations within the data which aids the first mentioned opportunity.

• VR allows for collaboration during the data visualisation process. Multiple
users are able to visualise and interact with the same data together. This
collaboration could be in the same VR environment where users are able
to use multiple VR systems to enter the same environment or they can be
in different VR environments, using different VR system, but visualising the
same data.

• VR aids the data visualisation process as it enables users to draw
conclusions, and complete desired data visualisation tasks in a shorter time
than compared to conventional methods (Filho et al., 2018). VR has also
been shown to decrease the time needed during verification and validation
processes (Akpan & Shanker, 2019). Along with reducing the amount of
time taken to complete tasks, the use of VR also results in less errors being
made by a user (Raja et al., 2004).

3.2 Integration Opportunities

Along with some of the data visualisation opportunities with the use of VR,
outlined in the previous section, there are several opportunities for the integration
of VR and DTs:

• DTs could potentially include spatial Computer-Aided Design (CAD) models
of the physical system they are “twinning”. VR allows users to have an
immersive interaction with the DT and have a visualisation that is a more
accurate representation of the physical system. This provides users with a
better sense of the spatial mapping of a physical system represented by a
DTs.

• The use of VR to visualise DT data has the possibility of better converting
the DT data to information by supplementing the data with more context.
This contextualisation refers to the possibility of being able to overlay a
spatial representation, as mentioned above, with information that is non-
spatial. An example of this contextualisation of non-spatial information is
the colour of a motor in a virtual model can be changed to draw the user’s
attention to it if the temperature of the motor exceeds a certain limit.

Stellenbosch University https://scholar.sun.ac.za

23

• DTs usually have the inherent functionality to update their models in near
real time. This integration with VR will, thus, have the added benefit of
updating these virtual models in near real time and allow users to monitor
changes with the enhanced perception provided by VR. VR also has the
ability to allow for multidimensional data to be visualised, annotated and
changed with this near real time updating.

• VR has the potential to aid the design phase of a DT by allowing for
accurate and easier visualisation of the physical system. This would reduce
design time as well as costs (Havard et al., 2019; Kovar et al., 2017; Sekaran
et al., 2021). This visualisation of the physical system allows for DTs to be
developed in parallel with or prior to the construction of the physical
system.

• VR facilitates a virtual more “hands-on” interaction with a DT because a
user, as mentioned in the data visualisation opportunities, is able to
intuitively interact with a DT’s data and make good decisions based on
what they have visualised.

• Another opportunity is in the standardisation of the integration
procedures between DTs and VR. This standardising will enable a better
synergy between DT developers and VR developers. These two teams will
have better means of collaborating with each other to achieve the desired
needs of the DT system and presenting the information to a user using VR.

3.3 Data Visualisation Challenges

Along with opportunities associated with using VR to visualise data, a number of
challenges are also present:

• VR has the risk of information overloading (Erra et al., 2019) because, when
large amounts of data is presented to a user, they could become
overwhelmed. This large amount of data being presented to a user could
negatively impact their ability to make decisions (Sekaran et al., 2021).

• Data navigation is another challenge with using VR to visualise data (Filho
et al., 2018; Gracia et al., 2016). Unlike with navigating data displayed on
2D monitors, there is no wide consensus about data navigation user
interfaces (UIs) in VR. As such, users may find it challenging to navigate
through the data as they desire and this could affect the visualisation
process.

• Developing a VR environment presents the challenge of how to best
present the data to a user so that they are able to most effectively interpret

Stellenbosch University https://scholar.sun.ac.za

24

the data. Developing a VR environment could also require more time and
effort to develop compared to creating visualisations using conventional
methods (Akpan & Shanker, 2019).

• Perspective distortion and occlusion are some visual challenges when
wanting to visualise data in VR (Filho et al., 2018; Gracia et al., 2016).
Occlusion is where an object, in a 3D space, is, from the user’s perspective,
hidden behind another object and thus not visible. In VR it is possible that
a user’s perspective is distorted due to the fisheye lenses that are used in
a VR HMD to give the immersive feel of VR. This distortion, however, most
likely only affects the pixels closer to the outer edge of the lens.

• Drouhard et al. (2015) mentions that other challenges include the safety
and comfort of a VR system user. VR system users could experience a
number of symptoms including motion sickness, disorientation, nausea,
sweating, and headaches when using the system for prolonged periods of
time (Liagkou et al., 2019).

• Another challenge is the VR system cost. VR systems are computationally
expensive and, therefore, require relatively expensive computer
processing hardware as it is still a technology that is only recently
becoming more easily available. However, it is expected that a larger usage
of VR will result in lower hardware costs.

3.4 Integration Challenges

There are several challenges with the integration of DT and VR technologies:

• A challenge, much like a data visualisation challenge mentioned above, is
to determine what DT information is to be displayed to the user in VR.
There are a number of factors associated with this challenges, namely: the
variety and amount of data, the possibility of information overloading, and
the lack of experience industry members have had with using VR systems.

• DTs and VR are currently technologies that are developing at relatively fast
rates. These “moving targets” make it challenging to create a stable
interface between these two technologies that will not be impacted as
these technologies develop further.

• The integration of the two technologies also presents the challenges of
computational power utilisation. As mentioned previously, VR is already
computationally expensive, and the addition of a DT system will require
even more computational power resulting in higher hardware costs.

Stellenbosch University https://scholar.sun.ac.za

25

3.5 Discussion

It is evident that there are many opportunities and challenges associated with the
use of VR as a data visualisation tool, and the integration of VR with DT technology.
It must be noted, again, that the list of opportunities and challenges is not
exhaustive and that there is a possibility that there are other opportunities and
challenges that have not been mentioned here.

The opportunities and challenges mentioned for using VR as a data visualisation
tool are also applicable in a system created by the integration of VR and DTs. These
VR data visualisation opportunities and challenges are not meant to only be
viewed in isolation, but also for an integration between the two technologies. It
might not be possible that all opportunities or challenges will be realised in a single
VR and DT implementation, and that different implementations could encounter
their own challenges and opportunities. The above discussion looks at VR and DT
systems in a general sense, but each specific system will require its own research
to be conducted on the possible opportunities and challenges encountered in the
system.

Although there are both challenges and opportunities, the potential opportunities
will often outweigh the potential challenges associated with the creation of a
general VR and DT system. These opportunities and challenges must be evaluated
in practice to determine the effectiveness of using VR and DTs together.

Therefore, a system implementation is required to realise these potential
opportunities, as well as identify any encountered challenges. The proposed
implementation will be a DT system that makes use of VR to visualise the
information obtained by the DT system for the decision-making process. It will be
beneficial to compare this VR and DT system implementation to an
implementation that does not make use of DTs. After comparing these two
implementations, a more supported and credible conclusion can be made with
regards to the integration of VR and DTs.

Stellenbosch University https://scholar.sun.ac.za

26

4 Facilities Management Division Case
Study

This chapter describes the context of the case study that is used to evaluate the
integration of DTs and VR, i.e. using the Facilities Management Division at
Stellenbosch University. The case study description is first provided, followed by
the system architecture design process.

4.1 Case Study Description

The case study consists of two implementations: The one implementation is a
system that contains and integrates VR and DTs (the DT implementation) and the
other implementation (the Non-DT implementation) does not make use of DTs for
importing information into a VR environment for data visualisation. In the two
implementations, the VR environment and the presentation of the information to
the user is identical. The aspect where the two implementations differ is with
regards to how the information is retrieved for the VR environment.

The Facilities Management (FM) Division at Stellenbosch University is responsible
for overseeing the operational management of the various facilities that form part
of Stellenbosch University. These facilities include faculty buildings, university
residences, and private housing owned by the university for the purpose of
student accommodation. Stellenbosch University has five different campuses: the
main campus in Stellenbosch, the medical and health sciences campus in
Tygerberg, the military science campus in Saldanha, the business school campus
in Bellville, and another medical and health science campus in Worcester.

FM is responsible for overseeing the many facilities at each of these campuses.
Managing such a multitude of facilities involves a complex system containing many
different elements (in this case, facilities). The overseeing of operational functions
includes facility utility usage monitoring, maintenance management tasks, and
campus construction planning among others.

It is evident that such aspects will result in the vast amount of data being recorded
with the purpose of decision-making. The visualisation of this vast amount of data
could be challenging for the members of FM. This creates an opportunity where a
VR and DT system could ease this data driven decision-making process.

A DT system could be used to aid the data acquisition, ordering, and storing
processes that are required for FM. The VR system is then useful as the
visualisation medium for the purpose of data visualisation. These two technologies
would be used collaboratively to provide the user with the most optimal solution
to ease the already complex data driven decision-making process for FM.

Stellenbosch University https://scholar.sun.ac.za

27

4.2 System Architecture Design

A VR and DT system is a suitable system for FM. This system first needs to be
designed before it can be implemented and evaluated. This section describes the
process used to design the architecture of the system. This design process uses
the design framework developed Human (2022) that is discussed in Section 2.2
and illustrated in Figure 2.

4.2.1 User Needs

The first step in the system design process is to determine what the user’s
needs/requirements are for the system. For a system that uses VR and DTs, there
are several stakeholders, but the following three types of users are identified:

• End user: This user enters the VR application to visualise information
obtained by the DTs in the system.

• Configurator: This user configures the VR application or DT system for its
use case, without changing any source code. A VR configurator determines
what elements or information can be accessed by an end user in the VR
application, but is not responsible for creating the elements needed to
transfer or manage the information in the VR application. A DT
configurator is responsible for ensuring that the DT system is configured
correctly with various system components, but is not responsible for
developing the various DT components.

• VR developer and DT developer: These users are responsible for
developing the VR application and DT system, respectively. The DT
developers focus on creating the DT system elements allowing for the
integration of the DT system with VR. The VR developer are required to
develop the VR application that is able to make requests to the DT system
for information. The two developments are separate from each other but
must be integrated with one another to achieve the end user’s needs.

The system is designed considering the different requirements for the identified
stakeholders. The point of interest is how information is transferred to the VR
application using the different implementation methods. However, if both
implementations produce the same outputs for the same input, the end user does
not need knowledge of how this information is retrieved for use in the VR
application. Therefore, the requirements of the end users, referred to now as the
user, are of a higher priority in the design process of this system than the other
stakeholders’ requirements.

Stellenbosch University https://scholar.sun.ac.za

28

After some consultation with FM, the user requirements (URs) presented in Table
1 were identified. Although FM is responsible for a number of functions, only the
monitoring of energy usage information for the main Stellenbosch campus is
selected as focus here. The reason for this is provided in Section 1.4.

Table 1: User requirements

UR ID Description

UR1 Visualise energy usage information for facilities within Stellenbosch
University.

UR2 User must be able to select what energy data to visualise.

UR3 Have access to all university facilities’ information from a central
point.

UR4 Information available must be specific for a facility or group of
facilities.

UR5 Allow for addition, removal, or modification of elements in the
physical system (e.g. adding/removing buildings).

UR6 Allow for system functions to be added to in the future if desired.

4.2.2 System Requirements

From the URs, the system requirements must be identified. These system
requirements are separated into system functional requirements (FRs) and system
non-functional requirements (NFRs). FRs are the functions that a system must
perform to achieve the user’s requirements, while NFRs describe how, or how
well, the system must perform the FRs (Human, 2022).

4.2.2.1 Functional Requirements

The system FRs that are derived from the above URs are provided in Table 2. These
FRs are deemed to be the most fundamental functions that are used for a number
of other functions within the system.

Table 2: Functional requirements

FR ID High-level
Requirement

Description

FR1 VR visualisation A VR environment is required to visualise the
energy usage information for the different facilities
within the university.

FR2 Remote
monitoring

Users should be able to visualise any energy
information in the VR without needing to be at the
facility.

Stellenbosch University https://scholar.sun.ac.za

29

Table 2 (continued): Functional requirements

FR ID High-level
Requirement

Description

FR3 Exploratory
analysis

A user should be able to visualise and analyse
different facility information such as energy usage
trends, or energy usage comparisons between
facilities.

FR4 Derived
information

To support some decisions, the user should be able
to visualise information that is derived from sensor
data (e.g. trends) and, potentially, analyses of the
physical system (e.g. carbon footprint).

4.2.2.2 Non-functional Requirements

The NFRs most applicable to an FM context are provided in Table 3. The rationale
for the NFRs in the FM context is also provided. The NFRs identified in Table 3 form
part of various NFR groupings identified by Human (2022). These NFR groupings
are used to identify the possible implications of the NFRs for the system. These
implications result in suggestions to aid the design of the system architecture.

For the identified NFRs in Table 3, four system architecture suggestions are made
based on the NFR groupings. The first is the use of an aggregation hierarchy in the
system. The remaining three are recommended design patterns that are used to
design the architecture. Design patterns are discussed in Section 2.2. The design
patterns used in the architecture design based on the identified NFR and
subsequent NFR groupings are the performance efficiency, compatibility, and
maintainability design patterns in Human (2022).

Table 3: Non-functional requirements

NFR ID NFR Rationale for NFR

NFR1 Allow for
retrofitting of
new and
existing
technology and
information
systems

A FM division must handle different maturity
levels for various technologies. There is a
possibility that many of the facilities still make
use of legacy systems which must be integrated
or “retrofitted” with newer technologies. The
implemented system should not interfere with
the current system.

Stellenbosch University https://scholar.sun.ac.za

30

Table 3 (continued): Non-functional requirements

NFR ID NFR Rationale for NFR

NFR2 Allow for
efficient
system
reconfiguration

Facilities management can be viewed as a fairly
static environment with not many aspects
changing in short periods of time. However, if
newer technologies, such as new energy meters or
water sensors, are to be introduced, no matter
how often, it is still an important requirement that
the system is able to reconfigure efficiently. This
NFR also includes the possible introduction of
other additional services to the system requested
by the user.

NFR3 Provide a fault
tolerant
system

The system is dependent on receiving readings
from various meters over a wide geographical
area. It is desired that if some of these meters
become faulty and do not return readings, that the
other aspects of the system are not affected, and
the system is still able to function as required.

NFR4 Facilitate
heterogeneous
data handling

The facilities within a university will record large
amounts of data and it is a highly likely that this
data will be of different types. It is, therefore,
necessary to ensure that this heterogeneous data
is handled in a manner that the heterogeneity of
the data will not negatively impact the data driven
decision-making process.

NFR5 Provide for
large amounts
of data

A FM division will record large amounts of
different data, but the system must still be able to
function with low latencies.

NFR6 Avoid physical
resource
contention
amongst
software
components

The system might be hosted on a single machine
that will be responsible for hosting all elements of
the system, including the VR application.
Therefore, resource contention could potentially
become a concern for the system and should be
avoided.

4.2.3 Physical System Decomposition

This section considers the decomposition of the physical system for the FM
context. Physical system decomposition is part of the definition of the Problem
space, as illustrated in Figure 2. The section is divided into two parts, namely, a
hierarchically decomposed physical system diagram and the system data
characterisation.

Stellenbosch University https://scholar.sun.ac.za

31

4.2.3.1 Physical System Diagram

Within this section, the various physical system components present within a FM
division’s supervision are identified leading to a hierarchically decomposed
physical system diagram. As mentioned in Section 1.4, the focus here is on energy
usage data.

The university contains the following components:

• University – The main component of the system and is the highest level of
the hierarchy. All other components are contained within the university.

• Campuses – The university comprises of multiple campuses with each
campus being comprised of the following components.

• Precincts – A campus is comprised of multiple precincts. A precinct, in this
thesis, is considered to be a geographical area in a campus that contains
various system elements within that area. A precinct can also have a
designated energy meter that records the overall energy usage for that
precinct.

• Buildings – A precinct contains buildings that, in this thesis, are considered
to be facilities being supervised by FM. Buildings contain various energy
meters that are used to record energy usages within a building.

• Energy meter network – Precincts also contain energy meter networks.
Some energy meters do not form part of a building but are still within a
precinct area. These meters still represent some part of a precinct, and are,
therefore, included as a system component.

• Energy meters – Energy meters are a type of utility usage measuring device
that is used to record the electrical energy usage for a specified area within
a precinct, building, or energy meter network.

The list above contains the various physical system components that form part of
the physical system decomposition. Using these system components, a
hierarchical physical decomposition diagram (Figure 8) is created.

Stellenbosch University https://scholar.sun.ac.za

32

Figure 8: Physical system decomposition

4.2.3.2 Data Characterisation

This section uses Figure 8 to obtain the data characterisation information for the
different components within the system. The energy meter is the only system
component where data is received from the physical world. The architecture
assumes that all energy meters are IoT devices that transmit their readings
periodically, typically at five-minute intervals, to a service provider’s servers. An
application programming interface (API) is used to access the readings and
timestamps through the internet. The other system components only receive
information that is derived based on this energy meter data.

4.2.4 Service Identification and Allocation

This section is the start of defining the Solution space (as shown in Figure 2) for
the identified FM system. Various services are identified in this section and
allocated to either DTs or the Services Network, following the process detailed by
Human (2022).

4.2.4.1 Services Identification

The following services are required to achieve the system requirements:

Stellenbosch University https://scholar.sun.ac.za

33

Mirror service

The Mirror service allows for the energy usage of various components (buildings,
energy networks, precincts, and campuses) within, and including, the university to
be presented to the user. The user must be able to request specific information
for a component(s) and the service will be responsible for retrieving that
information. The Mirror service fulfils the remote monitoring requirement (FR2).

For the building and energy meter network components the energy data for an
energy meter is received using the API. This energy meter data is aggregated with
data from other energy meters that form part of the component. The energy data
for an energy meter is typically received at five-minute intervals, after which, it is
then aggregated. For the precinct, campus, and university components energy
information is received from the components lower in the physical system
hierarchy. Similarly, this energy information received from a lower component is
aggregated with information from other lower components. This frequency of
information is dependent on the frequency of data received by the energy meters.

This service is invoked periodically as requests are made by the user. A
consideration for the implementation of this service is that the number of
components in the university could result in a data communication bottleneck
depending on how much information is requested by the user.

Context generation service

The Context generation service must generate new information once new data is
received by an energy meter. This generated information is derived from the
energy data and is specific to the needs of FM. For example, FM require the
average daily energy usage for a facility. This average usage is derived from the
raw energy data recorded by an energy meter. This service fulfils the requirement
for derived information (FR4).

The components in the system all require this service as components at different
levels require for different information to be generated. For example, the
information generated for a precinct is different to that generated for a building.
For this service to be carried out for the building and energy meter network
components, the data that is required is the energy data provided by the energy
meters. This service at a precinct, campus, or university component level requires
the aggregated energy information from the components lower in the physical
system hierarchy.

This service is used as new energy data is recorded. If no new energy data is
available, the service will not operate, and no information will need to be
generated. The service need not be invoked by a user, but is constantly requesting
for new energy data.

Stellenbosch University https://scholar.sun.ac.za

34

Exploratory analytics service

The Exploratory analytics service allows the user to compare information from
various components within the system to identify any trends with regards to
energy usages. The user is able to select what information they would like to
compare from the components in the system. This service fulfils the requirement
for exploratory analysis (FR3).

The service requires access to be able to make requests to all system components
or to a component that can make requests to other components. For example, the
university component has access to other system components, either directly or
indirectly. This access ensures the service is able to compare the energy usage
information for any component. The information required in the service is the
derived information generated using the Context generation service.

The service is invoked when requests are made by the user. The service requires
access to a network to access the requested information. Similarly to the Mirror
service, the number of components in the university could result in a data
communication bottleneck depending on how much information is requested by
the user. A suitable communication method is required to transfer or collect the
information. Alternatively, an information limit could be introduced allowing the
user to view segments of the data if the amount of data requested is above a
specified limit.

4.2.4.2 Digital Twin Identification

This section gives the DTs that are identified based on the physical system
components in Section 4.2.3. The system components that are best suited for a DT
implementation is given in Table 4 with the DT types, as well as the rationale. The
energy meters are not included as DTs in the system as an individual meter will
provide little useful information for FM as compared to a group of meters that
form part of a building or energy meter network.

Figure 9: Aggregation hierarchy

Stellenbosch University https://scholar.sun.ac.za

35

The aggregation hierarchy of the DTs identified in the system is illustrated in Figure
9, with the DTIs at the lowest level and information being aggregated upwards in
the aggregation hierarchy.

Table 4: System digital twins

Digital
Twin

Digital
Twin
Type

Rationale

Building

DTI

A building and energy meter network are the lowest level
of the DT hierarchy because the case study focuses on
the overall functioning of a facility, and not the
functioning of specific meters within the facility as
mentioned in Section 1.4.

Energy
meter
network

Precinct

DTA

The FM division would find it useful to analyse
information for a specific precinct, campus, or university
and not only the individual components that make up a
precinct, campus, or university.

Campus

University

4.2.4.3 Services to Digital Twin Allocation

Table 5 shows the potential allocation of the identified services to either the
identified DTs or the Services Network.

The Mirror service and Context generation service are required for each DT
because the information received by the energy usage meters must be used to
derive new information for a DT. The Mirror service will not provide the user with
the raw data received by the DT. Rather, it will provide the user with the derived
information based on the received raw data. The DTIs will receive raw data from
the meters, while the DTAs will receive derived information from DTIs or other
DTAs, using the Mirror service, below it in the hierarchy. The DTs will use this
derived information to derive new information for the DTA. It is possible to
allocate these two services to the Services Network; however, because they are
persistent services and require the raw or generated data obtained by the DTs, it
is more logical to host them in each DT.

The University DTA can host the Exploratory analytics service as it has access to all
the information through its connection with the DTs below it in the hierarchy.
However, as this is a periodically requested service and is a more general service
and not specific to a DT, the service will reside in the Services Network and only
be invoked when the user makes a request. The Services Network can also make
use of external services or databases that are not part of the system. The Services
Network may require these external elements to fulfil desired requests, and
provision for this has been made.

Stellenbosch University https://scholar.sun.ac.za

36

Table 5: Potential services hosts

Service Building
DTI

Energy
Meter
Network
DTI

Precinct
DTA

Campus
DTA

University
DTA

Services
Network

Mirror
service

X X X X X X

Context
generation
service

X X X X X X

Exploratory
analytics
service

 X X

4.2.5 Digital Twin Internal Architecture and Design Pattern
Application

The internal architecture to be used for the DTs in the system, SLADTA, was
determined in Section 1.2 as an objective for the thesis. SLADTA is discussed in
greater detail in Section 2.3.

Figure 10 illustrates the internal structure of the DTs in the system. The energy
meters’ data is already stored and accessed using an API, as mentioned in the Data
Characterisation section (4.2.3.2). Therefore, the relevant DTs need not
implement a Layer 1 or Layer 2. These layers are, however, still illustrated to
indicate that they have been implemented in some form but not in the scope of
this system. Layer 4 is responsible for data acquisition using the provided API for
the relevant energy meter. The API therefore fulfils the role of Layer 3 in this
implementation. Only the DTIs and Precinct DTAs contain a Layer 3 because only
they have associated meters and need to request information from the API.

Having selected the internal DT architecture, the design patterns formulated by
Human (2022) can be selected and applied to the system components. The three
design patterns required for the design of the system are for maintainability,
compatibility, and performance efficiency as identified in Section 4.2.2.2. These
design patterns are used, in combination, to design the implementation
architecture for the system.

Stellenbosch University https://scholar.sun.ac.za

37

Figure 10: DT internal architectures

The system makes use of pre-storage aggregation as is recommended by the
compatibility and performance efficiency design patterns. Therefore, the data that
is obtained by Layer 3, using the API, is first aggregated and then stored for the
relevant DTs (i.e. Buildings, Energy meter networks, and Precincts). Pre-storage
aggregation is also implemented for the other DTs in the system. This pre-storage
aggregation is a local aggregation (as opposed to cloud-based) as per the
performance efficiency design pattern. Layer 4 uses a request-response
communication between DTs to transfer information required for aggregation as
recommended by the performance efficient design pattern.

Layer 5 makes use of a local NoSQL database to store the aggregated DT
information as recommended in the performance efficiency and compatibility
design patterns. The reason for this choice is that a NoSQL database is more
scalable, can handle heterogeneous data, supports high throughput, and has a
lower latency than SQL databases (Human, 2022). A VR application for data
visualisation purposes requires a quick responsiveness to adapt to the information
requests by the user. The locally hosted databases aid in this regard due to the low
latency they offer.

The Mirror and Context generation services are hosted locally in Layer 6 for the
DT. The reason for local hosting is that the system requires a low latency for the
high throughput of information that is to be transferred between system
components. The system components are all connected to the same network.
Therefore, the system can make use of a local network communication protocol,

Stellenbosch University https://scholar.sun.ac.za

38

such as TCP/IP, for communicating between the various components. A local
communication protocol also allows for lower latencies and high throughputs
compared to cloud communication protocols.

Figure 11, which illustrates the overall system architecture, shows the internal
architecture of the Shared Services component. The Service Network hosts the
Exploratory analytics service as mentioned in Section 4.2.4.3. The Shared Services
component also contains a Service Gateway and DT directory service (which forms
part of the Management services). A central user interface (CUI) is advised in the
maintainability and compatibility design patterns. The CUI, in this implementation
is the UI in the VR application that is used to request information from the DT
system.

Figure 11 illustrates how all of the system components are in communication with
one another. The “VR application” aspect of Figure 11 is a custom designed
application. The design of this application is implementation specific, and the
internal architecture of the application is not shown in this diagram. The
“Aggregation hierarchy” is the hierarchy shown in Figure 9. It must be noted that
DTs are able to access external databases, as indicated in Figure 11, that a DT may
require to be able to carry out a service.

Figure 11: Overall system architecture

Stellenbosch University https://scholar.sun.ac.za

39

5 Case Study Implementations

This chapter discusses the details of the two implementations used in the case
study. The objectives of the case study are first discussed to determine how the
implementations will be used to aid the research. The Non-DT implementation
details are then discussed, followed by the DT implementation. The VR
applications used in both implementations are then discussed and the chapter
concludes with a comparison of the implementations.

5.1 Case Study Objectives

The main objective of the case study is to present two implementations, a Non-DT
implementation and a DT implementation, that are compared to one another to
determine the value of DTs for VR data visualisation purposes. The two
implementations use different methods for transferring information into VR for a
user to visualise, but are intended to provide the same output. The case study,
therefore, highlights any differences or similarities in the implementation
methods. These differences or similarities are then used, in conjunction with
evaluations, to determine whether DTs are beneficial for use in a system that uses
VR.

As mentioned in Section 1.4, the implementations make use of the available
energy meter data from FM. The implementations also focus on the main campus
in Stellenbosch and not on the whole of Stellenbosch University with the various
campuses. The implementations also do not include the energy meter network
component and only focus on providing energy usage information for the buildings
and precincts of the campus. A typical use case entails that a user is able to request
and visualise energy information for the various components in the campus using
VR.

5.2 Non-DT Implementation

This section discusses the Non-DT implementation, starting with the
implementation architecture and followed by the implementation details.

5.2.1 Implementation Architecture

The development of the Non-DT implementation VR application first requires an
implementation architecture to be developed. There is currently no consensus in
literature on how this architecture should be structured. Therefore, the
architecture is designed here specifically for this implementation case study. In
this implementation, all the functionalities required for visualising data obtained
from the external data source is carried out within the developed VR application.

Stellenbosch University https://scholar.sun.ac.za

40

The system does not make use of independently operating components, in
contrast to the DT implementation.

Figure 12: Non-DT implementation architecture

Figure 12 shows that the selected implementation architecture consists of five
layers, with each layer being responsible for certain functions for the VR
application. The layers are the Display Layer, the Visualisation Display Layer, the
Data Processing Layer, the Data Ingestion Layer, and the Data Layer.

The Display Layer contains the visualisation that the VR application user is
immersed into and can interact with. This layer receives information from the
layers below it to display the correct VR environment to the user. The Visualisation
Display Layer contains various functionalities that are used to create the correct
VR environment for the user. This layer receives information from the Data
Processing Layer and input from the user to update the visualisation as required.
A user is able to make a request to visualise desired energy usage information in
the VR application. This request is sent from the Visualisation Display Layer to the
Data Processing layer. The Data Processing Layer is responsible for requesting and
receiving information from the Data Ingestion Layer and performing any necessary
calculations and processing of the data for use in the visualisation. Information is
requested from the Data Ingestion Layer by the Data Processing Layer based on
the request received from the user.

Stellenbosch University https://scholar.sun.ac.za

41

The Data Ingestion Layer contains the functionality to access the external database
or to access the system specific data stored in the system configuration file.
System specific data is contained in the configuration file that indicates which
elements are present in the system, such as buildings, precincts, and the campus.
A reason for having a specific layer for data ingestion is for the case where data
for a new data type is to be added to the system. The functions in this layer will
need to be changed to be able to make provision for this new data type. Having
this separate Data Ingestion Layer with designated functionality will reduce the
complexity to reconfigure this layer without needing to reconfigure functions that
are part of other layers if there was no specific Data Ingestion Layer.

The Data Ingestion Layer uses the request from the Data Processing Layer to
obtain the necessary data from the Data Layer. The Data Layer is where any
information available for visualisation, or system specific data, is stored. The Data
Layer receives a request from the Data Processing Layer, then responds with the
desired information. The information is then sent to the Visualisation Display
Layer, and then to the Display Layer where the user can visualise the requested
information.

A VR application for the purposes of data visualisation can have two methods for
accessing information. The first is by storing all the data in the VR application
during initialisation. The data can then be accessed within the application. The
second is by using an external database to access the information as requested.
This second method does not require the data to be stored in the VR application
as the data is available in an external database. Kroupa et al. (2018) makes use of
the external database method in their implementation. On request, the external
database is accessed using a client/server connection.

Both methods provide the same outcome and the decision as to which method is
implemented is dependent on the case study. In FM, the raw energy usage data is
accessed using an API. As the information has already been stored and can be
accessed externally, the Non-DT implementation architecture, therefore, makes
use of the external database method for the implementation.

5.2.2 Implementation Details

This section provides the details regarding the implementation of the Non-DT
implementation using the architecture in Figure 12. The architecture is
implemented using Unity (which is discussed in Section 2.4.3). Unity is selected
due to its popularity, reliability, and support. Unity also has VR functionalities that
allow for a VR application to be created fairly easily.

Stellenbosch University https://scholar.sun.ac.za

42

5.2.2.1 Data Layer

The configuration file in the system is a comma-separated values (CSV) file and
contains information about the hierarchy of various elements (buildings and
precincts) in the campus. This information includes the name of the element, the
type of element, the physical coordinates of the element, and the relation of that
element to the other elements in the hierarchy. A CSV file is used because FM uses
a similar hierarchy CSV file in their operations. A sample of the configuration file
used is provided in Appendix B.

As mentioned previously, the raw energy data is stored in an external database
that is accessed using an API. The API requires a URL and provides energy data
based on the specified meter ID and the time period of the data requested.
Requests are made to the API when the user makes a request in the VR application
to visualise specified energy information. The data is received from the API in
JavaScript Object Notation (JSON) format.

5.2.2.2 Data Ingestion Layer

The Data Ingestion Layer consists of an External database accessor and a
Configuration file reader. The External database accessor is a set of functions that
are used to access the energy data using the API mentioned previously. These
functions receive the requested energy data and transfer the data to the Data
Processing Layer. The Configuration file reader is responsible for obtaining system
information from the system configuration file. This information can then be used
by other system elements. For example, the information from the configuration
file is used to populate menu items, such as a list of buildings, in the UI.

5.2.2.3 Data Processing Layer

This layer contains various data processing functions that are used to convert the
raw energy data, received from the Data Ingestion Layer, to information for
visualisation. These functions include calculating the daily, monthly, or yearly
average energy usage for a system element. As mentioned in Section 4.2.3.2, the
energy meter data records new data typically at five-minute intervals. This five-
minute interval energy data is processed to obtain the desired average energy
usage information. A request can also be made for the latest energy usage for a
system element. The Data Processing Layer then processes the energy meter data
to obtain the latest energy usage for a system component.

The energy usage information for the building components is derived from the raw
energy data for the energy meters in that building. The derived energy usage
information for the buildings, in a precinct, is then used to derive the energy usage
information for that precinct. Similarly, the derived energy usage for the precincts
in the campus are used to derive the energy usage information for the campus. An

Stellenbosch University https://scholar.sun.ac.za

43

example of this process is when the daily average energy usage for the entire
campus over a specified period of time is requested. This process is illustrated in
Figure 13. The campus requires information from the precincts which requires
information from the buildings that receive the energy data from the energy
meters. The configuration file is used to determine how information is distributed
amongst the various system components.

Figure 13: Requesting campus information process flow

Figure 13 shows that after a user makes a request, the relevant energy meter data
is requested using the API. The data is processed to derive the energy usage for
the buildings in the various precincts in the campus. The buildings’ energy usage
information is used to derive the various precincts’ energy usage information that
is then used to derive the campus’ energy usage information. This campus energy
usage information is then displayed to the user for visualisation. The user is then
able to make another request after they have visualised the information.

5.2.2.4 Visualisation Display Layer

The Visualisation Display Layer consists of three aspects: Data display functions,
UI functions, and User movement. These aspects together are used to ensure the
correct VR environment is displayed to the user. The Data display functions receive
the processed information from the Data Processing Layer. The information is then
interpreted to populate the information in the VR environment for visualisation.
The UI functions interpret the requests that are made by the user when interacting
with the UI. The user’s request is then transferred to the Data Processing Layer by
the UI functions. The User movement functions are a combination of built-in
functionality available in Unity and custom developed functions for the user to
navigate the VR environment. Using VR controllers the user is able to navigate
through the VR environment. The VR application adjusts the visualisation
according to this inputted user movement. The populated information in the VR
environment is not altered during this adjustment, rather only the user’s viewing
perspective is changed depending on their movement. These Visualisation Display
Layer functions are similar to those for the DT implementation and are discussed
in Section 5.4 because of this commonality between implementations.

Stellenbosch University https://scholar.sun.ac.za

44

5.2.2.5 Display layer

This layer, as mentioned previously, contains the actual VR environment that the
user will be immersed in. This VR environment uses the discussed layers above to
display the environment with the correct energy usage information to the user.
Using the VR equipment discussed in Section 5.4.1 the user can interact with and
visualise the information in this VR environment.

5.3 DT Implementation

This section presents the DT implementation. The implementation is also used to
visualise energy usage information for the Stellenbosch Campus in VR, like the
Non-DT implementation. The implementation architecture is first discussed,
followed by details regarding the DT components, the Shared Services component,
and, finally, the operation of the system.

5.3.1 Implementation Architecture

The architecture for the DT implementation is developed in Chapter 4, as shown
in Figure 11, with the internal architecture of the DT components to be used in the
implementation shown in Figure 10. The aggregation hierarchy of the
implementation differs slightly from the hierarchy provided in Figure 9 in that the
University DTA component and the energy meter network DTI have been omitted
because they would not add much value to the case study.

The Shared Services component contains a Service Gateway, a DT Directory
service, and the Exploratory analytics service, with the VR application being the
CUI, as discussed in Section 4.2.5. The overall architecture for the DT
implementation is shown in Figure 14. The VR application architecture is discussed
in Section 5.4 as the details of the application are similar to the Visualisation
Display Layer of the Non-DT implementation in Section 5.2.2.4.

Stellenbosch University https://scholar.sun.ac.za

45

Figure 14: Overall DT implementation architecture

Stellenbosch University https://scholar.sun.ac.za

46

5.3.2 Digital Twin Components

The DT components are those of the aggregation hierarchy in Figure 14. The DT
components are developed using the C# language as the VR application is
developed in Unity that makes use of C#. The DT types (Building DTI, Precinct DTA,
and Campus DTA) are similar, but there are differences in how each operates. The
DTs consist of several aspects: the use of SLADTA for implementation, the
communication and aggregation between DTs, and the services offered by the
DTs.

5.3.2.1 SLADTA

SLADTA is selected as the internal architecture of the DTs in the system. As
detailed in Section 2.3, SLADTA consists of six layers. Figure 10 indicates the details
for each layer for a DTI or a DTA.

5.3.2.1.1 Layers 1, 2, and 3

Section 4.2.5 indicates that the energy usage data use in the implementation is
already recorded, stored and is available through an API. The DTIs and Precinct
DTAs in this implementation, therefore, have no Layers 1, 2, or 3. The API fulfils
the role of Layer 3 in the implementation of the DTIs and Precinct DTAs, that is the
same API used in the Non-DT implementation to access the raw energy data. The
API requires a URL with specified API key, and other values like the desired meter
ID, and the time period of the requested data. The API responds with the desired
data in JSON format.

5.3.2.1.2 Layer 4

Layer 4 is a set of custom developed functions with the purpose of obtaining data
from Layer 3, for DTIs, or information from other DTs, in the case of DTAs. This
data or information is then processed and transferred to Layer 5 for long-term
storage. As per the design selections made in Section 4.2.5, Layer 4 makes use of
a request-response communication structure. When the functions for a DT’s Layer
4 are to be carried out, a request is made to the necessary components for the
desired information. The Layer 4 of each DT type is similar with slight differences
in where the data or information is requested from.

Building DTIs

The Building DTIs are the lowest level of the aggregation hierarchy. Layer 4 of a
Building DTI makes requests to the API of Layer 3 to retrieve energy data for all
the energy meters in a building that, together, reflect the energy usage of the
building. Layer 4 then aggregates the energy data before it is used by the Context

Stellenbosch University https://scholar.sun.ac.za

47

generation service. This pre-storage aggregation is a design decision made in
Section 4.2.5.

Precinct DTAs

Layer 4 for a Precinct DTA is like that of a Building DTI, and also like that of a
Campus DTA. A Precinct DTA has Building DTIs of buildings that form part of the
precinct, but the precinct also has a main energy meter that is used to record the
raw energy data for the precinct as a whole, like a building. As such, Layer 4 can
make requests to the API in Layer 3 for the raw energy usage data for the precinct,
like a Building DTI would, but because a precinct only contains one energy meter,
it does not require for raw energy meter data to be aggregated like with the
Building DTI.

In addition to obtaining data from an energy meter, the Precinct DTA requests
energy usage information from the various Building DTIs within that Precinct DTA.
If a Building DTI has the necessary information, the information is then transferred
to the Precinct DTA and aggregated with the other Building DTI energy information
before it is used by the Context generation service.

The aggregation of the Building DTI energy data ideally should coincide with the
energy data from the precinct’s energy meter. Two data sources providing data
for the same component allows for a possible anomaly detection service to be
implemented. This service is not implemented in this case study, but the two
methods of data retrieval are mentioned to indicate that provision has been made
for this type of service to be implemented.

Campus DTA

Layer 4 for a Campus DTA is like that of a Precinct DTA’s Layer 4. The campus does
not have a designated energy meter that provides energy data about the campus
like a precinct. The Campus DTA must retrieve the energy meter information from
the Precinct DTAs below it in the aggregation hierarchy. The energy information
of the Precinct DTAs is aggregated to obtain the energy usage information for the
campus. This aggregated energy information is then used by the Context
generation service.

5.3.2.1.3 Layer 5

For Layer 5 a local NoSQL database is used for long-term storage as shown in Figure
10. The reason for the locally hosted database is for a low latency system; this is a
recommendation of the performance efficiency design pattern in Section 4.2.5.
MongoDB is selected to implement these local databases.

Stellenbosch University https://scholar.sun.ac.za

48

The raw energy data available from the API is not duplicated and stored in the local
database of a DT because the API data is under the control of FM and remains
available in the long-term. Therefore, only some aggregated information, like the
latest energy usage, the information that may be required by the Context
generation service, like the average energy usage, and other more static data are
stored in the local databases

The static information stored for a DT in the database includes the name of the
DT, the location coordinates of the DT, and the subordinate DTs or energy meters
of the DT. A DT does not store any information about DTs higher up in the
aggregation hierarchy as this does not form part of the span of reality of that DT.
A DTA only stores information that is part of its span of reality, without duplicating
information, like energy usage, for the span of reality of its subordinate DTIs or
DTAs.

5.3.2.1.4 Layer 6

Layer 6 contains the services that are offered by the DTs in the system. For the
case study, two services are offered by a DT, namely the Mirror service and the
Context generation service, as mentioned in Section 4.2.4.

Mirror Service

The Mirror service provides the user with requested information about a DT or
group of DTs. The service collects information from a DT or group of DTs based on
the desired information that is requested by a user. A DT receives a message with
what information is requested. For energy usage information, the implementation
makes provision for requests for either the average energy usage or the latest
energy usage. A DTA could also receive a request for the names of its subordinate
DTIs and DTAs. The Mirror service is used to obtain this subordinate DT
information.

The Mirror service for a DTA can call for the Mirror service of any of its subordinate
DTs. An example of this request is illustrated in Figure 15 where a request is made
to the Campus DTA for the latest energy usage of all components in the campus,
including the buildings, precincts, and the campus itself. The numbered lines in the
figure show the order of information flow in processing this type of request.

Once the request has been received by the Campus DTA, a request is made to the
list of Precinct DTAs that form part of the campus for the same type of information.
Each Precinct DTA makes requests to the Building DTIs that form part of the
Precinct DTA for the same information. The Building DTIs respond to the Precinct
DTA with the information. The Precinct DTA also retrieves its own latest energy
usage information and, along with the information from the Building DTIs transfers

Stellenbosch University https://scholar.sun.ac.za

49

this information to the Campus DTA. This process occurs for all Precinct DTAs and
Building DTIs. The Campus DTA then retrieves its own latest energy usage
information from the NoSQL database. The reply to the external component
contains the latest energy usage for the campus, all precincts, and all buildings in
the DT system.

Figure 15: Mirror service example

Context Generation Service

The Context generation service, as described in Section 4.2.4, derives new energy
information for a DT. For a Building DTI, information is derived from the raw
energy data from energy meters, while for a Precinct DTA and Campus DTA, the
information is derived based on information from subordinate DTs. Precinct DTAs,
however, can also derive information from raw data from its single energy meter.
Every DT offers the Context generation service.

Figure 16 illustrates this service being carried out when new energy data is
available from the energy meters. The service is only invoked when new energy
data becomes available for a DT. The functions in Layer 4 periodically make
requests to the API in Layer 3 or other DTs, if applicable, to determine whether
new energy data is available. If new data is available and has not been processed
yet, the service uses this newly available data, as well as the already derived
information in the NoSQL database for a DT to derive new information. This
process begins at the Building DTI level, then moves to the Precinct DTA level, and
finally to the Campus DTA level.

Stellenbosch University https://scholar.sun.ac.za

50

Figure 16: Context generation service process

The service is fully executed first for the Building DTIs, then the Precinct DTAs, and
finally the Campus DTA. The service is not executed fully for a DT until all the
subordinate components have new information available. The reason for this idle
period is that the service requires the complete aggregation of subordinate data
to correctly generate the energy usage information for a DT.

5.3.2.2 Communication

The DTs in the system are independently operating instances of the various
developed DT type classes and require a communication mechanism between the
DTs. Socket communication, specifically Transmission Control Protocol/Internet
Protocol (TCP/IP), is selected for this communication. All system components,
including the DTs, Shared Services, and the VR application are hosted on the same
network, and TCP/IP offers a low latency form of communication between the
various components. Each DT contains a TCP/IP server for receiving requests from
other components, and all also contain a TCP/IP client for making requests to other
system components. This communication uses JSON strings for the message
payload.

The use of this socket communication presents an opportunity for a distributed
hosting of system components. This allows for management of computational
resource utilisation that could be a challenge of a DT and VR system, as mentioned
in Section 3.4.

Stellenbosch University https://scholar.sun.ac.za

51

5.3.2.3 Digital Twin Component Operation

The operation of the DT system consists of two aspects: the initialisation of the DT
component and the operational functions of the DT component. More detailed
information for these two aspects and some of the associated complexities of the
DT system is provided in Appendix A. Figure 14 provides general names for the
various DTs in the system. More specific names for some of the system DTs are
provided in Appendix B which contains a sample of the configuration file used.

5.3.3 Shared Services Component

The other aspect of the DT system is the Shared Services component. This aspect
is responsible for offering services in the system that are not offered by DTs. The
general architecture of the Shared Services component internal structure is shown
in Figure 11 and, as implemented in the case study, in Figure 14. This internal
structure indicates that the Shared Services component consists of a Service
Gateway, Management Services, and a Services Network. The services in this
Shared Services component are discussed below. The Shared Services component
is also developed using C#. The Shared Services component is separate from the
DT hierarchy and is developed irrespective of the DT aggregation hierarchy.

5.3.3.1 Service Gateway

The Service Gateway receives requests from a component, which for the case
study relates DT information or to the energy usage information from the DTs,
formatted as a JSON string. When a request is received by the Service Gateway,
the Service Gateway decodes the JSON string, interprets the request, and transfers
the request to the correct service component. This service component then carries
out the service and responds with the correct information, and the Service
Gateway transfers this information to the component that made the original
request.

The Shared Services component makes use of TCP/IP socket communication like
the DT aggregation hierarchy for communication between different system
components to be possible. A TCP/IP server is hosted by the Service Gateway,
allowing external requests to be received. The Service Gateway is then also able
to use a TCP/IP client to make requests either to other service components
(Management Services or Services Network) or to the DT aggregation hierarchy.

5.3.3.2 Management Services

The Management Services are services that are used to oversee the functioning of
the system. In this implementation, the only management service used is a DT
Directory service. The role of the DT Directory service is to contain information

Stellenbosch University https://scholar.sun.ac.za

52

about the DTs in the system, such as the names of the DTs, the communication
addresses of the DTs, and the subordinate DTIs or DTAs for a DTA.

A request is made to the DT Directory service when information about a DT is
required. Any service in the Services Network can make a request to the DT
Directory service. Services offered by the DT Directory service are: providing the
communication address for a specific DT and the structure of the aggregation
hierarchy, i.e. the various DTs in the system and their subordinate DTs.

The DT Directory service is a single component that is responsible for storing
information for the various DTs, as well as the structure of the aggregation
hierarchy. Although this information can be obtained by making requests to the
aggregation hierarchy directly, this method introduces complexities as a request
will need to be made to every DT in the system every time this information is
required. The DT Directory Service allows other services in the Shared Services
component to have access to this information without needing to make requests
to the aggregation hierarchy directly.

5.3.3.3 Services Network

The Services Network generally contains components that can offer various
services for the system. In this implementation, the only service that is part of the
Services Network is the Exploratory Analytics service discussed in Section 4.2.4.

The Exploratory analytics service receives a request from the Service Gateway for
the desired energy information for specified DTs in the aggregation hierarchy. The
service interprets this request to determine for which DT the request for
information must be made to. A request is then made to the DT Directory Service
for the communication address of the DT. Using the communication address
received from the DT Directory service the Exploratory Analytics service then
makes a request to the relevant DT to obtain the desired energy usage
information. Once the energy information is received from the DT, the Exploratory
Analytics service then responds to the original request from the Service Gateway
with this energy information. The Exploratory Analytics service can interact
directly with DTs in the aggregation hierarchy, and with other services in the
Service Component.

5.3.3.4 Shared Services Component Operation

The operation of the DT system consists of two aspects: the initialisation of the
Shared Services component, and the operational functions of the Shared Services
component. More detailed information and some implementation software code
for these aspects is provided in Appendix A.

Stellenbosch University https://scholar.sun.ac.za

53

5.3.4 System Operation

The DT system enters an operational stage after all the components, DT
components and Shared Services components, have been initialised. In this
implementation there are three operations that are carried out during this
operational stage, i.e. the operation of the DT aggregation hierarchy, fulfilling the
request for information about the DT aggregation hierarchy, and fulfilling the
request for energy usage information.

5.3.4.1 Digital Twin Aggregation Hierarchy Operation

The operation for the DT aggregation hierarchy includes the updating and
processing of new energy data that becomes available. When an energy meter
records new energy data the Building DTI carries out the Context generation
service for this new data. This propagates upwards in the aggregation hierarchy to
the Precinct DTAs, and the Campus DTA. This operation for the aggregation
hierarchy ensures that the latest energy usage information is available from the
DT aggregation hierarchy. The operation of the DT aggregation hierarchy also
includes the use of the Mirror service for a DT when a request is received. More
information regarding these DT aggregation hierarchy operations is provided in
Appendix A.

5.3.4.2 Digital Twin Aggregation Hierarchy Request

The DT system allows for information to be requested about the DT aggregation
hierarchy with its DTs and how these DTs relate to one another. The handling of
such a request is shown in Figure 17. This process is identical for all requests for
information about the aggregation hierarchy. An example of this type of request
is the user making a request to receive a list of the subordinate DTs that form part
of the Campus DTA. The result of this request is a list of the names of the
subordinate Precinct DTAs that are part of the Campus DTA. Figure 17 shows that
handling this request for information is fairly simple as the information can be
provided directly by a service in the Shared Services component, the DT Directory
service, through interaction with the Service Gateway.

Figure 17: DT aggregation hierarchy structure request

5.3.4.3 Digital Twin Energy Information Request

The DT system also fulfils requests for the energy usage information for the DTs.
An example of this request is a request for the latest energy usage for only the

Stellenbosch University https://scholar.sun.ac.za

54

campus, and buildings in the campus. In this example the information at the
Precinct DTA level in the aggregation hierarchy has not been requested. The
process of this request is illustrated in Figure 18. Information is requested from
the aggregation hierarchy by using the Mirror service of the DTs that is shown in
Figure 15. For the sake of brevity the full procedure for the Mirror service of the
DTs is not shown here. Rather, just an indication of the different components that
are part of the request for energy information is provided.

Figure 18 shows that although the precinct level information is not requested, the
Precinct DTAs are still required to request information from their Building DTIs.
Figure 18 shows how the DT aggregation hierarchy is used to obtain information
from various DTs in the system. The result of this process is the latest energy usage
for the campus as a whole, as well as the latest energy usage for all of the buildings
in the campus.

Figure 18: Exploratory analysis request example

5.4 Virtual Reality Application

The Non-DT implementation and the DT implementation each have their own VR
application, but the functioning of the two VR applications, in terms of user
interaction and displaying information, is similar. For this reason the VR
application implementations are discussed together below. The VR application
consists of four aspects: the hardware and software used, the virtual environment
for the user experience, the user interaction with UI, and the displaying of

Stellenbosch University https://scholar.sun.ac.za

55

information to the user. The architectures used for the VR application
implementations is shown in Figure 12 and Figure 14.

5.4.1 Hardware and Software

The VR hardware used in the implementation is the HTC Vive Pro (Figure 19),
including an HMD, two VR controllers, and two infrared sensors. The HMD is used
to display the developed VR environment to the user. The user uses the VR
controllers to provide input to the VR application for the application then to adjust
accordingly. The infrared sensors track the movement of the HMD and controllers
to update the visualisation from the user’s perspective through the HMD.

Figure 19: VR equipment setup

A desktop PC is used to develop the DT implementation components, the Non-DT
implementation components, and the VR applications. The same PC is used to host
the various components for the implementations including the developed VR
application. The VR equipment is connected to this PC which allows the user to
visualise the VR environment on the PC, through the HMD. The PC used has 64 GB
of RAM, an Intel Core i7 10th Gen CPU, 1 TB SSD, and an NVIDIA GeForce RTX 2060
Super graphics card. The PC has high specifications as running a VR application is
computationally intensive.

The Unity game engine, discussed in Section 2.4.3, is the selected software to
develop the VR application. The Unity game engine makes use of the SteamVR
software to allow the user to enter the VR environment and interact with it.

VR HMD

VR controllers

VR infrared

sensor

PC setup

Stellenbosch University https://scholar.sun.ac.za

56

Appendix C.1 provides some additional information about the Unity environment
that was used during development.

It should be noted that other software, such as ABB RobotStudio, is used in
industry for the visualisation of 3D robotic systems in a virtual world and that such
software could also be considered for this application. VR software provided by
automation vendors was not used in this thesis because it is often expensive to
maintain, vendor specific and not as expandable as software such as Unity.

5.4.2 Virtual Environment

Using Unity and its functionality, the user can be immersed in the VR environment
and interact with it. The environment includes several elements to provide the
user with a satisfactory experience when using the VR application to visualise
energy information. These elements include the UI and the displaying of
information to the user aspects which are discussed in Section 5.4.3 and 5.4.4,
respectively. Other elements include the objects in the VR environment and the
movement mechanics of the user.

The case study is focussed on visualising energy usage information for the
Stellenbosch University campus located in Stellenbosch. Therefore, a major aspect
of the virtual environment is a map of Stellenbosch that is displayed to the user.
This map is shown in the visualisation examples provided in Section 5.4.4 and
Appendix C.3.

An opportunity mentioned in Section 3.2 is the ability to overlay a physical model
with DT information. The map of Stellenbosch allows for this opportunity to be
realised. The energy usage information for the different components in the
campus can be overlayed onto the map at the exact position of the coordinates of
the component in the real world. This gives the user a better understanding of the
information presented to them as more context is given to the information. An
example of this overlaying of information is provided in Section 5.4.4.

Along with this map being displayed to the user, the user is also able to navigate
the map as they desire. This forms the User movement aspect of the VR
application architecture shown in Figure 12 and Figure 14. The user is able to
navigate the environment in several ways. The first is by simply moving around
their physical location which will result in the same movement in the virtual
environment. The infrared sensors register the movements of the HMD and adjust
the VR environment accordingly. As the user moves in the physical world, the
user’s GameObject is moved in the virtual world. Another mechanism of
movement is using the trackpad on the controllers. A user can use the trackpad to
either move forward, backward, or side-to-side for more precise movement. In
addition to this, they are also able to turn in the VR environment using the
trackpad instead of having to physically turn around. The last movement mechanic

Stellenbosch University https://scholar.sun.ac.za

57

is the ability to “fly”. Using the controller, the user is able to point in a direction,
and when pressing the trackpad, they are able to fly towards that direction.

The controllers that the user is holding are also represented in the VR
environment. In this application, they are represented as a set of gloves to give
the user a more natural feel when interacting with the VR environment. The
reason for showing the user the controllers is that the user can see what position
the controller is at compared to their view. This allows the user to have a better
sense of their movements and interactions. When interacting with the UI, the
gloves, in VR, emit a laser to allow the user to see on which element of the UI they
are hovering over or selecting.

5.4.3 User Interface Interaction

The purpose of the UI in the VR application is to enable the user to make a
selection as to what energy information they would like to visualise. The UI makes
use of cascading menus that the user follows, and in the end, a message is
generated containing the information selected using the UI by the user. This
message is the request for the desired information that is then transferred to the
necessary component to receive the information. In the DT implementation this
component is the Service Gateway, and with the Non-DT implementation the
component is the Data processing functions component. The UI used in the VR
application is discussed in Appendix C.2. The functionality of creating the
information request message based on the selections by the user using the UI is
encapsulated in the UI Functions component of the architecture. This component
also contains the functionality for displaying the correct menu after one another
as the user works through the UI. Figure 20 provides an example of the VR UI
where a user is selecting the span of reality to visualise.

Figure 20: VR UI example

Stellenbosch University https://scholar.sun.ac.za

58

5.4.4 Displaying Information

The displaying of the selected information to the user is a vital component of the
VR application. This displaying process consists of two aspects: receiving and
interpreting the information, and displaying the information. An example of the
information displayed in the virtual environment from the user’s perspective with
the visualisation UI is shown in Figure 21.

Figure 21: Information overlay in VR

The first aspect is the receiving of information. In the DT implementation the
information is received in JSON format, whereas with the Non-DT implementation
the information is simply transferred from one class to the other as a variable. This
is possible because the Non-DT implementation contains all of the various layers
and components in the same Unity project. Although the information received in
the implementations are in different formats, the information received contains
the same parameters.

In the case of the DT implementation, the information is first converted from a
JSON string to a usable variable format, which is the same variable format used in
the Non-DT implementation. The type of information contained in the variable is
the name of the element, the coordinates of the element, the value for the energy
usage, the timestamp of the energy usage value, and the element type (building,
precinct or campus). This variable contains values for these parameters for every
data point that will be displayed to the user. The Displaying Functions, Figure 12
and Figure 14, makes use of these parameters to display the correct information
in the environment to the user.

The last aspect of the displaying process is the actual displaying of information to
the user. The received and interpreted information is used to instantiate
GameObjects in the virtual environment. Unity GameObjects are discussed in
Section 2.4.3. Using the coordinates provided in the list of information from the
variable, a GameObject can be instantiated at a location on the map of

Stellenbosch University https://scholar.sun.ac.za

59

Stellenbosch in the position that corresponds with that system element. The
energy usage value in the information is then used to set the height of this
GameObject.

The element type is then used to set the colour of the GameObject. In the VR
application, buildings are represented by green columns, precincts by blue
columns, and the campus by a red column. The GameObject also contains a panel
with information about the data point. This panel indicates the name of the
element, the energy usage value and the timestamp of the data point. An example
of this panel with the information for a data point is shown in Figure 22.

Figure 22: Information panel in VR

Once all of the GameObjects have been instantiated correctly, the user is then
notified on the visualisation UI that the visualisation is ready. The user is then able
to begin navigating through the information. After visualisation is complete, the
user can then request new information using the UI. The process of obtaining and
displaying this information is then followed again.

More examples of the operation of the VR application are provided in Appendix
C.3. These examples contain some instances of a user requesting or visualising
information, or adjusting the current visualisation as they desire.

5.5 Comparison of Implementations

This section compares the DT implementation and the Non-DT implementation.
Various similarities are identified, as well as differences between the two
implementations. The reason for this comparison is to indicate that although the
two implementations have some similarities and produce the same outcome, the
outcome is achieved by different means. It must be noted that the URs in Table 1
are all achieved by both the DT implementation and the Non-DT implementation,
showing that the implementations are similar to one another.

Stellenbosch University https://scholar.sun.ac.za

60

The most obvious difference between the two implementations is that the DT
implementation makes use of several components that are not part of the same
software application and can operate independently of one another. This is seen
with the DTs in the DT aggregation hierarchy, the services in the Shared Services
component, and the VR application; all of which are independent of each other
but can operate concurrently. This is in contrast with the Non-DT implementation
that makes use of the same software application in Unity to carry out its
functionality. The different layers in the Non-DT implementation, including the VR
application environment, are, therefore, dependent on each other to continue
operation.

The independently operating components allow for the DT implementation to
have a distributed operation capability, as mentioned in Section 5.3.2.2, where
different components are able to be hosted on various hardware devices on the
same network. This distributed operation was tested for the DT implementation.
Various DTs, as well as Shared Services service components were hosted on
different hardware devices on the same network with the VR application being
hosted on the PC mentioned in Section 5.4.1. The DT implementation was able to
operate normally as if all the components were hosted on the same computer. In
addition to this distributed operation, a second VR setup was used to be able to
enter a duplicate of the developed DT implementation VR application, with the
original VR application simultaneously, to visualise the energy usage information
from the DT aggregation hierarchy. This second VR application was operated
concurrently with the original VR application. Two VR applications were able to
access the information from a single DT system’s DT aggregation hierarchy. This
distributed operation is an aspect that the Non-DT implementation is not capable
of.

Another aspect that is similar but has slight differences for each implementation
is with regards to data accessing and processing. Both implementations access
information using the same API. Both implementations process the information
received by the API similarly. In both implementations, the energy information for
the lowest element (a building) must be aggregated upwards in the hierarchy to
obtain the information for the other elements, such as a precinct or a campus. The
difference between the two implementations is when this data processing occurs
and what happens to the information afterwards.

In the Non-DT implementation, the data is processed on-demand, as the user
makes requests. The processed data is then cleared to allow for a new request to
be processed. Therefore, this data processing must be carried out every time the
user makes a request for information. Calls to the API must also be made
whenever the user requests information. The DT implementation operates
differently in that the API is automatically periodically queried for new data. Once
new data is received, it is processed, and the new information is stored in a local

Stellenbosch University https://scholar.sun.ac.za

61

database. When a user makes a request, the already processed information,
stored in a local database, is retrieved and displayed to the user. The data is not
required to be processed every time a user makes the request, like with the Non-
DT implementation. This locally stored, already processed information is expected
to result in a very responsive system for the DT implementation.

The final aspect of comparison between the two implementations is with regards
to the complexities of the implementations, as well as the development challenges
associated with each implementation. The Non-DT implementation is the simpler
implementation. The reason for this is that the Non-DT implementation does not
contain as many independently operating components as the DT implementation.
The components are part of the same software application and, therefore, are not
required to make or receive any external communication. The Non-DT
implementation is also not required to have any long-term storing functionality
like with the DT implementation. There is other functionality, in addition to the
two mentioned, that the DT implementation requires that the Non-DT
implementation does not. This added complexity and functionality results in the
DT implementation being more complicated, time consuming, and challenging to
implement.

However, the added complexity and functionality allow for the DT implementation
to be more reconfigurable for the addition of other features. Due to the highly
modular nature of the DT implementation, additional features can be added to the
implementation without having to greatly change the core components of the
system. This is because of the individually and independently operating
components in the system. For example, if the energy information for the campus
is to be viewed using a web application instead of a VR application, the DT
implementation would easily be able to accommodate this. The web application
would be able to connect to the Service Gateway and make requests in a similar
manner to the VR application.

The same cannot be said for the Non-DT implementation. For a web browser, or
other application, to have access to the information available in the VR application
for the Non-DT implementation, many changes to the core components of the
implementation would be required. This shows that the DT implementation has
the potential to be more easily used for situations outside of the use only of VR
for data visualisation.

The comparisons above are not exhaustive and there are several other aspects of
the two implementations that could be compared. The ones mentioned above are
provided to highlight some of the differences between and similarities of the two
implementations.

Stellenbosch University https://scholar.sun.ac.za

62

6 Case Study Evaluation

This chapter describes the evaluation that was conducted on the case study
implementations. The section begins with discussing the objectives of the
evaluation, as well as what evaluation experiments were conducted. The method
of these evaluation experiments is then discussed, followed by the results of these
evaluation experiments. A brief discussion of the results is then provided at the
end of the chapter.

6.1 Objective

The objective of the evaluation is to compare the DT implementation to the Non-
DT implementation. The purpose of this comparison is to determine their relative
merits for the use of VR in data visualisation.

The implementations are evaluated using three different experiments to measure:
the latency in the system, the computational resource utilisation of the system,
and the reconfigurability of the system.

Latency is considered as an evaluation experiment because VR is intended to aid
a user in navigating and visualising information. The responsiveness of the system
when a user requests new information is, therefore, an important factor to
consider when implementing a VR system. This evaluation is aimed at measuring
the responsiveness of the two implementations. The computational resource
utilisation of each implementation is evaluated as the computational cost of such
a system should remain as low as possible. This is so that no additional latency is
added to the system that is the fault of insufficient computational power available.
The reconfigurability of the system is also an important factor to consider for a
system in the FM case study context. It is highly likely that, from time to time, the
VR implementation will have to be altered and features added. The
reconfigurability of the two implementations is therefore evaluated.

Although there are many other factors that are of importance to the functioning
of a VR system for the purposes of data visualisation, the three aspects selected
to be evaluated are deemed important fundamental aspects of such a system.

6.2 Method

This section discusses the method that was followed in the three experiments of
the evaluation to show that the results obtained from the experiments are
credible and that an accurate conclusion can be drawn from the results.

Stellenbosch University https://scholar.sun.ac.za

63

6.2.1 Latency and Computational Resource Utilisation

The latency and computational resource utilisation experiments are very much
hardware dependent; however latency is also dependent on the network used. As
such, the experiments were conducted on the same computer and network. Each
experiment was conducted with multiple scenarios for added value to be
extracted from the results.

A latency experiment for each implementation was conducted to determine the
latency associated with the implementations. The experiment involved a user
making a request for specific energy information. The time taken from when the
user requests the information to when the information is displayed to the user in
VR is the latency measured for the system. This experiment includes varying
system scenarios as well as varying information being requested. The different
system scenarios refer to the number of elements (buildings, precincts, and the
campus) that are present in the system. The varying of requested information
refers to the number of data points that are requested from each element, as well
as which element the information is requested from. Each scenario was repeated
three times to reduce the possibility of outliers, and to obtain more reliable
results. In some cases, the test for the scenario was conducted more than three
times depending on the scenario.

The results of this experiment were the latencies for different system scenarios
and different amounts of information being requested. For each scenario in the
system, there is at least one building, once precinct, and the campus. All building
elements only contain one energy meter. The reason for this was to obtain an
accurate comparison between the two implementation latencies that was not
skewed by a building having multiple energy meters and the system having to
access the API multiple times, in the case of the Non-DT implementation.

The computational resource utilisation experiment was tightly coupled to the
latency experiment because the latency of the system is measured as the system
operates and the computational resource utilisation experiment obtained results
during the same system operation period. As such, the computational resource
utilisation experiment was conducted at the same time as the latency experiment.
During this experiment, the RAM usage and CPU usage of the system were
measured for each implementation. The RAM and CPU usage recorded was the
total usage for the components in the implementation. For the DT implementation
this included the DT aggregation hierarchy, the Shared Services component, and
the VR application. For the Non-DT implementation, this was only the usage for
the VR application which contains all the system functionalities. The experiment
was conducted for the same scenarios as mentioned for the latency experiment.
Functionality was added to the system source code to access information from the
operating system to record the RAM and CPU usages of the various components

Stellenbosch University https://scholar.sun.ac.za

64

while the system was operating. The experiment was conducted while the
application was in the debug configuration, as this allowed for more accurate
results for the system’s overall CPU and RAM usage to be recorded.

6.2.2 Reconfiguration

The reconfiguration experiment was used to evaluate the reconfigurability of each
of the implementations. In this experiment, a new feature/service was added to
the system. This reconfigurability was measured in terms of how long it took to
add the new feature, the lines of source code changed/added for this feature, the
lines of the configuration file that was changed/added for this feature, and the
percentage of code reused in adding this feature. These metrics are used to give
an indication of how reconfigurable a system is with regards to time required and
additional coding effort required. The experiment was conducted for three
scenarios for each implementation. In each scenario, a new feature is added to the
system. The first is a “Max” feature to be added that returns the maximum energy
usage for a system element for a day, month, or year. The second is a “Total”
feature that provides the total energy usage for a system element for a day,
month, or year. The final feature is a “Cost” feature that uses the value from the
“Total” feature to calculate the cost of energy usage for a day, month, or year for
a system element.

6.3 Results

This section provides the results from the three different experiments. For the
latency and computational resource utilisation experiments, a brief mention of the
various scenarios used in the experiments is given followed by the results of these
scenarios. The results for the reconfiguration experiment are also provided for
each feature added to the system.

6.3.1 Latency and Computational Resource Utilisation

This experiment consisted of four different testing scenarios where the latency
and computational resource utilisation of the two implementations were
measured. For all the tested scenarios, the scenario began with the system
containing three elements, a building, a precinct, and a campus. This is because a
system like this in the FM context will at least have these three elements. The
number of elements in each of the scenario was then increased to 18 elements
comprised of a combination of buildings and precincts, but still with a single
campus. Only a few results of the various test scenarios are provided in this
section. The other recorded results are provided in Appendix D. The trend lines
shown in the latency, RAM usage, and CPU usage results indicate linear trends in
the measurements.

Stellenbosch University https://scholar.sun.ac.za

65

Scenario 1 and Scenario 2 are where energy usage information was requested for
all the elements in the system. This includes energy information about the
campus, all the precincts, and all the buildings. The difference between the two
scenarios is that in the Scenario 1 only a single energy usage value was requested
for all the system elements, and in Scenario 2, a range of the number of energy
usage values was requested, ranging from a single requested value to requesting
30 values. The top end of this range was selected as 30 values to simulate a request
being made to visualise the daily average energy usage for every day in a month.
Figure 23 shows the results of the latency experiment for the two scenarios.

(a)

(b)

Figure 23: Scenario 1 (a) and Scenario 2 (b) latency results

Stellenbosch University https://scholar.sun.ac.za

66

From Figure 23 it is evident that the latency for the DT implementation was
significantly lower than the latency for the Non-DT implementation. The latency
for both implementations increased with more elements present in the system, as
well as the number of data points requested for each element. The latency of the
DT implementation does not seem to increase in the figure, but the reason for this
is the scale of the figure. The DT implementation had latencies in the order of tens
of milliseconds, whereas the Non-DT implementation had latencies in the order of
seconds.

Figure 24 provides the results of the RAM usage experiment for Scenario 1 and
Scenario 2. The results show that the difference in RAM usage between the two
implementations was modest, i.e. approximately 1000-1200 MB, which is a
relatively low difference between systems that make use of a VR application. The
DT implementation used more RAM than the Non-DT implementation, which is an
expected outcome as the DT implementation had more components that require
RAM, compared to the Non-DT implementation which only had the VR application.
The VR application, in both implementations was responsible for most of the RAM
usage in this system. This is expected as the VR application, developed in a game
engine, is graphics heavy and requires sufficient RAM to operate and provide a
satisfactory VR experience.

Figure 24b shows a large difference between the individual RAM usage results for
the DT system with 3 elements and 18 elements. A reason for this could be due to
the development software making use of a Garbage Collector and the system
operating in the debug configuration. The Garbage Collector manages the
allocation and release of memory. This Garbage Collector forms part of the system
and was, therefore, included in the RAM usage results. The Garbage Collector
could have allocated memory differently for the testing of the DT system and
resulted in a wide range of results for the individual RAM usage measurements
between tests.

Stellenbosch University https://scholar.sun.ac.za

67

(a)

(b)

Figure 24: Scenario 1 (a) and Scenario 2 (b) RAM usage results

The results of the CPU usage of the two implementations for Scenario 1 and
Scenario 2 are provided in Figure 25. The results indicate that the CPU usage for
both implementations in both scenarios was very similar. The CPU usage for the
two implementations was typically between 10% and 20% during operation with
the DT implementation using slightly more.

Stellenbosch University https://scholar.sun.ac.za

68

(a)

(b)

Figure 25: Scenario 1 (a) and Scenario 2 (b) CPU usage results

The results presented in Figure 23 to Figure 25 indicate that the most glaring
difference in performance between the two implementations was with regards to
the latency in the system. A possible reason for this discrepancy in latencies is the
Non-DT implementation having to reactively make requests to the API and having,
then, to also process the data as necessary. This contrasts with the DT
implementation where API requests are done proactively so that information is
available in a local database and little processing of information is required when
a request is received. The RAM and CPU usages were similar for both
implementations and no significant differences are noted in this respect.

Stellenbosch University https://scholar.sun.ac.za

69

Test Scenario 3 and Scenario 4 were used to determine the latency and computer
resource utilisation associated with requesting information for a single system
component. In these scenarios, only information for a single building element was
requested. In Scenario 3, like Scenario 1, only one energy value was requested,
and in Scenario 4, like Scenario 2, a range of the number of values was requested.
As only a single building’s information was requested in these scenarios, only one
API call was made for the Non-DT implementation because the building only had
one energy meter. This was in contrast with the other scenarios with multiple
components which resulted in multiple API calls needing to be made in the Non-
DT implementation. These scenarios were used to determine whether a large
portion of the latency or computer resource utilisation was due to the API calls
being made or if it was simply due to the selected architecture. The latency results
for Scenario 4 are shown in Figure 26.

Figure 26: Scenario 4 latency results

A similar trend to Scenario 1 and 2 is present in the latency results in Figure 26.
The Non-DT implementation had a higher latency than the DT implementation,
even if only information for a single element was requested. Figure 26 shows the
results for a single data point request for a building element. This request required
minimal processing, and as such, shows that the latency of receiving data from the
API is the major contributing factor to the overall latency for the Non-DT
implementation.

The RAM usage results for Scenario 4 are shown in Figure 27. The results indicated,
as expected due to the results of the previous scenarios, that the RAM usage for
both implementations in these scenarios was very similar with an average
difference of approximately 750-1000 MB between the implementations. The DT
implementation was shown to use slightly more RAM than the Non-DT

Stellenbosch University https://scholar.sun.ac.za

70

implementation, and this is expected due to the DT implementation having more
components operating concurrently.

Figure 27: Scenario 4 RAM usage results

The results shown in Figure 28 indicate CPU usages for both implementations that
are very similar to the results obtained in Scenarios 1 and 2. The results indicate
that both the DT implementation and the Non-DT implementation used between
10% to 20% of the CPU with the DT implementation using slightly more. The results
in Figure 28, along with the RAM usage results in Figure 27, further emphasise the
conclusion that the type of implementation (either DT or Non-DT) has little
difference in terms of the computer resource utilisation of the system.

Figure 28: Scenario 4 CPU usage results

The comparison between latencies of the two different implementations show
that the Non-DT implementation had much larger latencies than the DT
implementation. A reason for this is that the Non-DT implementation is required

Stellenbosch University https://scholar.sun.ac.za

71

to make requests to the API when information is needed. This request to the API
takes a large amount of time to be fulfilled, compared to the DT implementation
that makes requests to a local NoSQL storage database when fulfilling a request.
To evaluate this hypothesis, the test scenarios conducted previously were carried
out again for the Non-DT implementation that had a slight modification. This
modification was that instead of requests being made to the API, requests were
made to a local NoSQL storage database, like with the DT implementation. This
local storage database contained the same information that was available directly
from the API, this being the raw energy data. The data from this database still had
to be processed, as done originally for the Non-DT implementation, to return the
correct energy usage information that was being requested. Some of the latency
results for Scenario 1 and Scenario 2 with this change are shown in Figure 29.

(a)

(b)

Figure 29: Scenario 1 (a) and Scenario 2 (b) local database latency results

Stellenbosch University https://scholar.sun.ac.za

72

Figure 29 shows that the use of a local database reduced the latency experienced
in the Non-DT implementation significantly. However, this latency was still higher
than for the DT implementation. A possible reason for this was due to the
processing of information that was still required in the Non-DT implementation to
fulfil the request. As such, Scenarios 3 and 4 were tested again with this use of a
local database. The results for the Scenario 4 test are provided in Figure 30.

Figure 30: Scenario 4 local database latency results

Figure 30 shows that even with the use of a local database, the latency of the Non-
DT implementation was still significantly higher than with the DT implementation.
The expected reason for this is thought to be the time required to process the
necessary data to fulfil the request. In the DT implementation the data had already
been processed by the Context generation service and this already processed
information was then used to fulfil the request. The computer resource utilisation
results for this modification to the Non-DT implementation are provided in
Appendix D. The results indicate a similar trend that was present in the other
computer resource utilisation test scenarios conducted previously.

6.3.2 Reconfiguration

This section provides the results of the reconfiguration experiments for the DT
implementation and the Non-DT implementation. As mentioned previously, the
experiment consisted of adding three new features to the already existing
systems.

Both implementations required changes to the source code, and possibly to the
configuration file, for the features to be added. For the DT implementation, there
is a possibility to alter the source code or configuration file for the DT aggregation

Stellenbosch University https://scholar.sun.ac.za

73

hierarchy, the Shared Services component, or the VR application. The details of
which components were altered are provided in the results. For the Non-DT
implementation, the system functionality was developed in the VR application, as
such there was only one component whose source code or configuration file could
be changed, that being the Unity code, unlike with the DT implementation.

6.3.2.1 Max Feature

The addition of the Max feature required a change to the UI in the VR application
for both implementations. The functionality was added to allow for the system to
return the maximum energy usage for a selected element and time period. The
reconfiguration results of adding this Max feature for both implementations are
shown in Table 6 and Table 7, respectively.

Table 6: DT implementation Max feature reconfiguration results

Lines of
code added

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
added

9 0 690 0 699
Lines of
code reused

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
reused

6 0 469 0 475
Percentage
of code
reused

Unity
code
(%)

Shared
Services
Component
code (%)

DT
Component
code (%)

Configuration
file (%)

Total
lines
reused
(%)

66.67 0 67.97 0 67.95

Time taken
(hrs:min)

02:45

Table 6 indicates that only changes to the DT aggregation hierarchy components
and the Unity code were required. This is expected as the Max feature is a new
service that is offered by the DT. This added service also then required an update
in the Unity code in the form of adding a button and subsequent functionality to
make use of the service. Table 6 also shows that almost three hours were required
to add this feature to the DT implementation. A reason for this is that the test was
conducted once both implementations were complete. The DT implementation
was completed first, as such, a certain degree of “relearning” the specifics in terms
of code layout and functions was required. This “relearning” aspect took place
during testing, unbeknownst to the developer, and gives an incorrect impression

Stellenbosch University https://scholar.sun.ac.za

74

of the actual time that was required to implement the new feature. The Total
feature test was conducted afterwards to determine whether the time taken
result for the Max feature was skewed by the “relearning” aspect of the test. These
results are further discussed in Section 6.3.2.2.

Table 7: Non-DT implementation Max feature reconfiguration results

Lines of code
added

Unity code Configuration file Total lines added

406 0 406

Lines of code
reused

Unity code Configuration file Total lines
reused

341 0 341
Percentage of
code reused

Unity code (%) Configuration file
(%)

Total lines
reused (%)

84 0 84

Time taken
(hrs:min)

00:21

From Table 6 and Table 7 it is evident that more total lines of code were required
to add the Max feature to the DT implementation compared to the Non-DT
implementation. The reason for this is that the DT implementation has
complexities that are not present in the Non-DT implementation. An example of
these complexities is that a DT in the DT implementation is required to process
and store the information for this Max feature. This processing and storing process
resulted in more code being required, and some of this added code not being from
reused code. This is the reason for the higher percentage of code reused for the
Non-DT implementation compared to the DT implementation. The time taken to
add this Max feature to the Non-DT implementation is also significantly shorter
than with the DT implementation.

6.3.2.2 Total Feature

The addition of the Total feature was similar to the addition of the Max feature
and was used to determine if the “relearning” aspect played a significant role in
the Max feature experiment. Table 8 and Table 9 provide the reconfigurability
results for the addition of the Total feature to the DT implementation and the Non-
DT implementation, respectively.

Table 8 shows that the only code changes required were with the DT aggregation
hierarchy code and the Unity code. The Total feature was an additional service
offered by the DTs. The changes to the Unity code were the addition of a new UI
button as well as the functionality for the user’s selection of this new service. Table
8 indicates that the time required to add the Total feature to the DT
implementation was significantly shorter than the time required for the Max
feature in Table 6. This shows that the addition of the Max feature required time

Stellenbosch University https://scholar.sun.ac.za

75

for “relearning” of the DT implementation which resulted in a longer
implementation time. As this “relearning” was already complete, the time
required to add the Total feature is only based on the addition of the feature and
is a better representation of the time required to add a new feature to the DT
implementation.

Table 8: DT implementation Total feature reconfiguration results

Lines of
code added

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
added

8 0 605 0 613

Lines of
code reused

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
reused

4 0 432 0 436

Percentage
of code
reused

Unity
code
(%)

Shared
Services
Component
code (%)

DT
Component
code (%)

Configuration
file (%)

Total
lines
reused
(%)

50 0 71.4 0 71.13

Time taken
(hrs:min)

00:40

Table 9: Non-DT implementation Total feature reconfiguration results

Lines of code
added

Unity code Configuration file Total lines added

396 0 396

Lines of code
reused

Unity code Configuration file Total lines
reused

335 0 335

Percentage of
code reused

Unity code (%) Configuration file
(%)

Total lines
reused (%)

84.6 0 84.6
Time taken
(hrs:min)

00:15

Table 8 and Table 9 show that, like with the addition of the Max feature, the DT
implementation required more additional lines of code than the Non-DT
implementation to add the Total feature. However, like with the Max feature, the
reason for more lines of code being required is due to added complexities
associated with the DT implementation that have been mentioned previously. The

Stellenbosch University https://scholar.sun.ac.za

76

Non-DT implementation also had a better percentage of code reused than the DT
implementation. The Non-DT implementation also required less time to add the
Total feature than the DT implementation. The reason for this better percentage
code reused and less time required is, again, linked to the added complexities with
the DT implementation.

6.3.2.3 Cost Feature

The final reconfiguration test was the addition of the Cost feature for the VR
application. This would use the value returned by the Total feature and perform a
calculation for the cost of the total energy used for a system element for the
selected time period. This cost calculation was based on the electricity rate in
South Africa of R 1.209/kWh (GlobalPetrolPrices.com, 2021). Table 10 and Table
11 provide the reconfigurability results for the addition of the Cost feature to the
DT implementation and the Non-DT implementation, respectively.

Table 10: DT implementation Cost feature reconfiguration results

Lines of
code added

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
added

17 105 0 1 123
Lines of
code reused

Unity
code

Shared
Services
Component
code

DT
Component
code

Configuration
file

Total
lines
reused

6 81 0 0 87

Percentage
of code
reused

Unity
code
(%)

Shared
Services
Component
code (%)

DT
Component
code (%)

Configuration
file (%)

Total
lines
reused
(%)

35.3 0 0 0 70.73

Time taken
(hrs:min)

00:11

Table 10 shows that in total 123 lines of code were added to the DT
implementation for the addition of the “Cost” feature. The majority of this added
code was in the Shared Services component. The other lines of code added were
in the Unity code and the configuration file. Unlike with the other reconfiguration
experiments where the added feature was a service offered by a DT, this added
feature was a service that was offered by the Services network. The percentage of
code reused was similar to the other reconfiguration experiments. The amount of
time required to add this feature was much lower in comparison to adding the

Stellenbosch University https://scholar.sun.ac.za

77

other features. The reason for this is that adding a service to the Services Network
does not have the added complexities that are encountered when adding a service
to a DT. This reduction in complexity is also the reason why fewer lines of code
were required to add the feature.

Table 11: Non-DT implementation Cost feature reconfiguration results

Lines of code
added

Unity code Configuration file Total lines added

51 0 51

Lines of code
reused

Unity code Configuration file Total lines
reused

34 0 34
Percentage of
code reused

Unity code (%) Configuration file
(%)

Total lines
reused (%)

66.67 0 66.67

Time taken
(hrs:min)

00:12

Table 11 shows that fewer lines of code were required to add the “Cost” feature
to the Non-DT implementation compared to with the DT implementation in Table
10. However, although fewer lines of code were required, the percentage of code
reused was less than for the DT implementation. Although the time required to
add the feature was a minute longer than for the DT implementation, this is not
significant enough to indicate that there was a great time difference between the
two implementations for the addition of this Cost feature.

6.4 Discussion

The results presented in Section 6.3 show that in terms of latency, computer
resource utilisation, and reconfigurability, latency was the biggest difference
between the DT implementation and the Non-DT implementation. The DT
implementation had latencies, with regards to obtaining and displaying
information, in the order of milliseconds, whereas the Non-DT implementation
had latencies for the same process in the order of seconds or even tens of seconds.
Even with the use of a local database for both implementations, the DT
implementation still had lower latencies.

These results indicate that the DT implementation provided better
responsiveness, which is desired for a VR application, than the Non-DT
implementation. Although this is evident, there is a reason for this large
discrepancy in latencies between the two implementations. As mentioned in
Section 5.5, both implementations access the energy usage data from an API. The
DT implementation processes this data and stores the processed information in a
local database that is then later queried for information when requested. The Non-

Stellenbosch University https://scholar.sun.ac.za

78

DT implementation on the other hand, carries out the same process of accessing
and processing information like with the DT implementation. The difference
between the two implementations is that the accessing and processing is carried
out on user request for the Non-DT implementation but has already been
completed for the DT implementation and the information must just be requested
from the local database.

The latency experiment, therefore, did compare the implementations to one
another, but a nuance in this comparison was that the comparison could be seen
as a comparison between pre-processed results and on-demand processed
results. The Non-DT implementation could also make use of this pre-processing
functionality, and the latencies would, in theory, then be comparable to those with
the DT implementation. However, the reason this functionality was not
implemented was due to the nature of the energy usage information available for
FM, and what has been observed in other uses of VR for data visualisation. With
new data being constantly recorded, the Non-DT implementation would have to
be constantly updating the processed information, which is an inherent
functionality of DTs. This implementation would then begin encroaching on the
philosophies of DTs and possibly no longer be a Non-DT implementation, and
rather a DT implementation. Based on this reasoning, the comparison of latencies
in Section 6.3 between the two implementations, considering the pre-processing
versus on-processing calculation argument, is, therefore, a fair comparison to
make. The conclusion of this latency comparison is then that the DT
implementation was a better choice for a more responsive VR application for data
visualisation.

With regards to the computer resource utilisation of each implementation, the
two implementations required similar computational resources in the tested
scenarios. The DT implementation required more RAM than the Non-DT
implementation. This was expected due to the DT implementation having more
components operating. Although the DT implementation required more RAM, the
increased amount of RAM required (between 750-1200 MB) was not a significant
enough value to indicate the Non-DT implementation being the better choice. The
CPU usage of both implementations was also fairly similar for the tested scenarios.
In terms of computer resource utilisation, the two implementations performed
similarly showing that the choice of implementation did not greatly affect
computer resource utilisation of the systems.

The final aspect of the two implementations tested was the reconfigurability of
the implementation. The Non-DT implementation was shown to perform better
with regards to reconfigurability in comparison to the DT implementation. The
Non-DT implementation generally required less time and lines of code to add the
same features than the DT implementation. The Non-DT implementation also had
a slightly better percentage of code reused in two of the reconfigurability tests.

Stellenbosch University https://scholar.sun.ac.za

79

The reason for the DT implementation requiring more code and time to add a
feature was because of the additional complexity associated with the
implementation. Additional functionality was required for processing, storing, and
accessing of information in the DT implementation, that was not required in the
Non-DT implementation. This additional functionality was only present when a
service was added to a DT. If a service was added to the Services Network, the
reconfigurability results for the DT implementation were similar to those of the
Non-DT implementation indicating that the added functionality required by a DT
was the reason for more code and time being required in the DT implementation.
However, regardless of the additional functionality required in the DT
implementation, the results of the reconfiguration experiment indicated that the
Non-DT implementation was better in terms of reconfigurability than the DT
implementation for a VR application for data visualisation.

A reason for the similar and, slightly, better reconfigurability for the Non-DT
implementation could be due to the order in which the two implementations were
developed. The DT implementation was developed first and then the Non-DT
implementation. Because of this order, some of the principles used to develop a
reconfigurable DT system could have then been unintentionally applied and
influenced the Non-DT implementation. If the order of development was reversed,
with the Non-DT implementation being developed first and then the DT
implementation, the results for the reconfigurability experiment could have been
different as some of the Non-DT implementation development might have been
influenced by the development of the DT implementation.

It must be noted that the reconfigurability experiments were relatively simple and
were used to showcase, primarily, how the integration of DTs and VR is affected
by the addition of new features. More complex reconfigurations could be
encountered on either side of the integrated system, i.e. the DT side or VR side.
The complexity of the reconfigurations could yield differing results to what was
obtained in the reconfiguration experiment with adding simple features.
Therefore, the conclusions drawn from the reconfigurability experiment are
limited in that they are very dependent on what feature was added.

Stellenbosch University https://scholar.sun.ac.za

80

7 Discussion and Further Work

This chapter discusses the integration of a DT and VR system for the purpose of
data visualisation. In the chapter, a discussion of the two implementations, the DT
implementation and Non-DT implementation, is provided to determine if the use
of DTs is more beneficial than the non-DT counterpart. The implications from the
case study, with regards to DTs and VR, are provided, followed by the overall
implications for the integration of DTs and VR. The final section focuses on the
possible areas of further work than can be explored in this field.

7.1 Case Study Implications

The results of the case study evaluation presented in Chapter 6 show that the DT
implementation and the Non-DT implementation perform similarly with regards to
computer resource utilisation. The areas where they differ are with the latency of
the system and, slightly, with the reconfigurability of the system. The DT
implementation is shown to be more responsive than the Non-DT implementation;
whereas, the Non-DT implementation is reconfigured more easily than the DT
implementation. These results show that there is, overall, marginal differences,
apart from latency, between the two implementations and that either
implementation could be used to allow for data visualisation using VR. The
latencies experienced in the Non-DT implementation are, however, significantly
higher than with the DT implementation and this will be noticed by a user. Even
with the modification and evaluation of using local storage databases for the Non-
DT implementation, the latencies encountered are still significantly higher in
comparison to the DT implementation.

As both implementations can be used, the question arises then as to which
implementation should rather be selected. The answer to this is dependent on the
intended use of such a system. For the cases used in the thesis, it can be concluded
that if the intended use is mostly for visualising information in a VR environment, then
the Non-DT implementation, with some modifications for lower latency, should be

selected. The reason is that this implementation is less complex than the DT
implementation, requiring less development time and effort as was discussed in
Section 5.5. The Non-DT implementation does not contain multiple individually
operating components like the DT implementation. This results in a lower
complexity as the system need not be designed with consideration of the
communication between and operation of these individually operating
components. This Non-DT implemented system will still achieve the same
outcome as the DT implementation.

However, if the intended use of the system, present or possibly even future, is not
only for visualising information in a VR environment, then the DT implementation,

Stellenbosch University https://scholar.sun.ac.za

81

with its various benefits, is the more favourable choice. The DT implementation is
not limited to only being used for a VR application, unlike the Non-DT
implementation. The DT implementation can be expanded to make provision for
other applications used in the data driven decision-making process, like a web
application. This is due to the modularity offered by the system with the
individually and independently operating components that can communicate with
one another. In addition to this, the use of DTs also has some other advantages
for complex systems discussed in Section 2.1.

Chapter 3 provides various opportunities and challenges that might be present
with the integration of DTs and VR. The DT implementation in the case study
provided further insight to some of the challenges. A challenge that was
encountered with the case study was deciding on what information to make
available to the user, and how to best display this information. This challenge led
to the subsequent encountered challenge of information overloading sometimes
experienced by the user. The comfort of the user was another encountered
challenge. When using the VR application, the user sometimes experienced
instances of discomfort, in the form of motion sickness.

Although some of the challenges identified in Chapter 3 were encountered in the
DT implementation, some identified opportunities were also realised. One such
opportunity was being able to supplement the DT information with more context.
This contextualisation was in the form of overlaying a map of Stellenbosch with
information obtained from the DTs, which allowed the user to better understand
the information they were visualising. Another realised opportunity was the DTs
in the DT implementation allowing for the system to be able to respond in as near
real-time as possible. A user always had access to the latest energy usage
information because of this benefit of DTs. An opportunity that is not mentioned
in Chapter 3, but was identified during the implementation of the case study, was
with the possibility of distributed operation. The DT implementation was shown
to be able to have different components hosted on multiple hardware devices
connected to the same network. This distributed operation could aid in reducing
the computational resource utilisation of the system that is imposed on individual
hardware components. Another realised opportunity is the ability for the DT
implementation to allow for multiple VR applications to have access to the same
information.

7.2 Overall Implications

The implications of the case study, although specific to the case study, can be
applied more generally. The case study focused on implementing a DT and VR
system in the FM context. The implications of this system indicated that a DT and
VR system can be developed for an application outside of the FM context. The

Stellenbosch University https://scholar.sun.ac.za

82

identified and realised opportunities and challenges of Chapter 3 and the case
study, respectively, are not context specific and indicate that the use of VR and
DTs does have the potential to enhance the data driven decision-making process
in other areas.

DTs are shown to be a useful technology for the data driven decision-making
process regardless of the visualisation method being used, due to the possibility
of integrating multiple data visualisation tools. DTs allow the various elements of
a complex system to be encapsulated in a manageable and value-providing
system. The complex DT system design framework, discussed in Section 2.2, and
SLADTA have been shown to be useful tools in creating an FM DT system. This
shows how these tools that could potentially also be applied to other contexts.

Both implementations required the use of an API to request energy usage data. It
is sometimes the case that data is not as easily available as with the use of this API
and a system may need to be developed to be able to access information directly
from sensors, e.g. energy meters. In that case, the advantages of using DTs instead
of a non-DT method would be much more apparent as DTs can be used for this full
data pipeline to transfer data from a sensor to a VR environment for visualisation.
This data pipeline is difficult to emulate using non-DT methods.

7.3 Further Work

The current research has several areas where further work could be carried out to
obtain more insight for the integration of DTs and VR. With regards to the FM
context, the case study only focused on the use of one utility – energy usage. More
utilities can be included such as water usage, solar power generation and usage,
and building occupancy – all of which are areas of interest in FM. The case study
does not consider information within the building and focuses on an entire
building as the lowest element in the system. Further work could be conducted
into focusing on the information within the building, such as the maintenance
tasks within the building or utility usage within various parts of the building.

As mentioned previously, the concepts generated in this thesis can be applied
more generally, to contexts outside of FM. Some of these other possible contexts
include the manufacturing industry, the healthcare industry, and the agricultural
industry to name a few. These contexts, like FM, contain large amounts of
recorded information for the data driven decision-making process. These contexts
are also complex systems with many components. The use of a DT and VR system
for these complex contexts would allow for further evaluation of the concept of
integrating DTs and VR. Further work can also be done in using VR as a data
visualisation medium and determining its effectiveness.

Stellenbosch University https://scholar.sun.ac.za

83

The case study makes use of Unity as VR development software. Further work
could evaluate the use of 3D visualisation development software currently used in
industry, such as ABB RobotStudio, instead of making use of a game engine
software like Unity. This evaluation will indicate the merits of using existing and
already adopted software to allow for the integration of DTs and VR in industry.

New integration techniques, for DTs and VR, could also be identified to determine
the best method to integrate the two technologies. Regardless, further
investigation will provide valuable information regarding the use of DTs and VR,
and if this is a useful combination of developing Industry 4.0 technologies.

Further work could also be carried out to evaluate the scalability of a system using
the integration approach proposed in this thesis. The scalability should be
evaluated for a VR system that makes use of DTs, and also a VR system that does
not use DTs. This will provide more insight into which approach is more scalable.
An evaluation should also be conducted on determining whether the use of other
development tools will have an impact on the performance of the developed
system. This will provide insight into whether the advantages and disadvantages
of the two approaches, DT or non-DT, are inherent to the fundamental technology
or dependent on the development tools used for implementing the approaches.

Stellenbosch University https://scholar.sun.ac.za

84

8 Conclusion

The research evaluates the integration of two developing technologies in
Industry 4.0: DTs and VR. A DT and VR integrated system was developed for use in
the FM context for the FM division at Stellenbosch University. The system was
used to visualise the energy usage information for various facilities within the
university. A system architecture was first designed from the identified user needs,
and then implemented. This implemented system showed that a DT and VR system
for data visualisation is possible. In conjunction with this DT and VR system, a VR
application that does not make use of DTs was also developed. This non-DT system
was designed to produce the same output as the DT system, but using different
methods. The two implementation methods were then compared to evaluate the
integration of DTs and VR.

The two implementations were evaluated with regards to latency, computer
resource utilisation (in terms of RAM and CPU usage), and reconfigurability. It was
evident, from the results of these evaluations, that the DT system was more
responsive and had lower latencies than the non-DT system. Both systems had
also been shown to have a similar level of computation resource utilisation. The
reconfigurability tests conducted on both systems indicated that the non-DT
system was more reconfigurable than the DT system. This was, however, expected
as the DT system had higher complexity and more functionality associated with it,
which was not present or required in the non-DT system.

The evaluations indicated that either method is a suitable implementation choice
for using VR to visualise data to make decisions. If, however, there is a possibility
of expanding the system outside of the use of only VR or accommodating multiple
concurrent, but independent, VR setups, the DT method is a better
implementation choice. The use of DTs has various benefits that support its use
for complex systems. The non-DT method cannot, in most cases, provide the same
benefits, and as such, is not a suitable implementation choice for such a system.

The integration of DTs and VR has many opportunities and challenges that are
associated with it. The implemented DT system allowed for some of these
opportunities and challenges to be realised in a real-world context. The use of
these two technologies were shown to allow a user to use VR, with the support of
DTs, for the data driven decision-making process for complex systems.

There is still much work that can be conducted to evaluate the integration of the
two technologies, but this research provides valuable insight into the use of DTs
and VR; two technologies that are constantly developing and growing in use in
Industry 4.0. These two technologies could further be used for other aspects of
Industry 4.0 that could aid various other contexts and industries in adopting the
concepts associated with Industry 4.0.

Stellenbosch University https://scholar.sun.ac.za

85

9 References

Akpan, I.J. & Shanker, M. 2019. A comparative evaluation of the effectiveness of
virtual reality, 3D visualization and 2D visual interactive simulation: an
exploratory meta-analysis. Simulation. 95(2):145–170.

Andersen, B.J.H., Davis, A.T.A., Weber, G. & Wunsche, B.C. 2019. Immersion or
diversion: Does virtual reality make data visualisation more effective? in ICEIC
2019 - International Conference on Electronics, Information, and
Communication. Auckland, New Zealand.

Borangiu, T., Oltean, E., Răileanu, S., Anton, F., Anton, S. & Iacob, I. 2020.
Embedded Digital Twin for ARTI-Type Control of Semi-continuous Production
Processes. Service Oriented, Holonic and Multi-agent Manufacturing Systems
for Industry of the Future. SOHOMA 2019. Studies in Computational
Intelligence, Vol 853 Springer, Cham. 113–133. Valencia, Spain

Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K. & Thomas, B.H. 2017.
Immersive Collaborative Analysis of Network Connectivity: CAVE-style or
Head-Mounted Display? IEEE Transactions on Visualization and Computer
Graphics. 23(1):441–450.

Da Silva, G.S., Kruger, K. & Basson, A.H. 2022. Opportunities for Visualising
Complex Data by Integrating Virtual Reality and Digital Twins. in International
Conference on Competitive Manufacturing, COMA ’22. Stellenbosch, South
Africa.

Davies, A. n.d. 10 Great Tools for VR Development I DevTeam.Space. [Online],
Available: https://www.devteam.space/blog/10-great-tools-for-vr-
development/ [2022, August 03].

Donalek, C., Djorgovski, S.G., Cioc, A., Wang, A., Zhang, J., Lawler, E., Yeh, S.,
Mahabal, A., Graham, M., Drake, A., Davidoff, S., Norris, J.S., Longo, G. 2015.
Immersive and collaborative data visualization using virtual reality platforms.
in 2014 IEEE International Conference on Big Data, IEEE Big Data 2014.
Washington, USA: IEEE. 609–614.

Drouhard, M., Steed, C.A., Hahn, S., Proffen, T., Daniel, J. & Matheson, M. 2015.
Immersive visualization for materials science data analysis using the Oculus
Rift. in 2015 IEEE International Conference on Big Data, IEEE Big Data 2015.
Santa Clara, USA: IEEE. 2453–2461.

El Beheiry, M., Doutreligne, S., Caporal, C., Ostertag, C., Dahan, M. & Masson, J.B.
2019. Virtual Reality: Beyond Visualization. Journal of Molecular Biology.

Stellenbosch University https://scholar.sun.ac.za

86

431(7):1315–1321.

Erra, U., Malandrino, D. & Pepe, L. 2019. Virtual Reality Interfaces for Interacting
with Three-Dimensional Graphs. International Journal of Human-Computer
Interaction. 35(1):75–88.

Filho, J.A.W., Rey, M.F., Freitas, C.M.D.S. & Nedel, L. 2018. Immersive Visualization
of Abstract Information: An Evaluation on Dimensionally-Reduced Data
Scatterplots. in 25th IEEE Conference on Virtual Reality and 3D User
Interfaces, VR 2018 - Proceedings. Tuebingen/Reutlingen, Germany: IEEE.
483–490.

Glaessgen, E.H. & Stargel, D.S. 2012. The digital twin paradigm for future NASA
and U.S. Air force vehicles. in 53rd Structures, Structural Dynamics, and
Materials Conference. Honolulu, USA.

GlobalPetrolPrices.com. 2021. South Africa electricity prices. [Online], Available:
https://www.globalpetrolprices.com/South-Africa/electricity_prices/ [2022,
July 27].

Gracia, A., González, S., Robles, V., Menasalvas, E. & Von Landesberger, T. 2016.
New insights into the suitability of the third dimension for visualizing
multivariate/multidimensional data: A study based on loss of quality
quantification. Information Visualization. 15(1):3–30.

Grieves, M. & Vickers, J. 2017. Digital Twin: Mitigating Unpredictable, Undesirable
Emergent Behavior in Complex Systems. Transdisciplinary Perspectives on
Complex Systems. 85–113.

Havard, V., Jeanne, B., Lacomblez, M. & Baudry, D. 2019. Digital twin and virtual
reality: a co-simulation environment for design and assessment of industrial
workstations. Production and Manufacturing Research. 7(1):472–489.

Hu, M., Luo, X., Chen, J., Lee, Y.C., Zhou, Y. & Wu, D. 2021. Virtual reality: A survey
of enabling technologies and its applications in IoT. Journal of Network and
Computer Applications. 178.

Human, C. 2022. A Design Framework for Aggregation in a System of Digital Twins.
PhD (Eng) Dissertation. University of Stellenbosch. Stellenbosch.

Human, C., Basson, A.H. & Kruger, K., 2021. Digital twin data pipeline based on
SLADTA and MQTT. Service Oriented, Holonic and Multi-Agent Manufacturing
Systems for Industry of the Future: Proceedings of SOHOMA 2020. Studies in
Computational Intelligence, 952:111-122. Paris, France.

Stellenbosch University https://scholar.sun.ac.za

87

Juarez, M.G., Botti, V.J. & Giret, A.S. 2021. Digital twins: Review and challenges.
Journal of Computing and Information Science in Engineering. 21(3).

Kovar, J., Mouralova, K., Ksica, F., Kroupa, J., Andrs, O. & Hadas, Z. 2017. Virtual
reality in context of Industry 4.0. in 2016 17th International Conference on
Mechatronics - Mechatronika (ME). Prague, Czech Republic: Czech Technical
University in Prague.

Kritzinger, W., Karner, M., Traar, G., Henjes, J. & Sihn, W. 2018. Digital Twin in
manufacturing: A categorical literature review and classification. IFAC-
PapersOnLine. 51(11):1016–1022.

Kroupa, J., Tumova, E., Tuma, Z., Kovar, J. & Singule, V. 2018. Processing and
visualization of microclimatic data by using virtual reality. MM Science
Journal. 2018(December):2621–2624.

Kruger, K. n.d. MAD Research Group - Research. [Online], Available:
https://sites.google.com/view/mad-research-group/research?authuser=0
[2021, July 27].

Kuts, V., Otto, T., Tähemaa, T. & Bondarenko, Y. 2019. Digital twin based
synchronised control and simulation of the industrial robotic cell using virtual
reality. Journal of Machine Engineering. 19(1):128–144.

Liagkou, V., Salmas, D. & Stylios, C. 2019. Realizing Virtual Reality Learning
Environment for Industry 4.0. Procedia CIRP. 79:712–717.

Malik, A.A., Masood, T. & Bilberg, A. 2020. Virtual reality in manufacturing:
immersive and collaborative artificial-reality in design of human-robot
workspace. International Journal of Computer Integrated Manufacturing.
33(1):22–37.

Negri, E., Fumagalli, L. & Macchi, M. 2017. A Review of the Roles of Digital Twin in
CPS-based Production Systems. Procedia Manufacturing. 11:939–948.

Phoon, S.Y., Yap, H.J., Taha, Z. & Pai, Y.S. 2017. Interactive solution approach for
loop layout problem using virtual reality technology. International Journal of
Advanced Manufacturing Technology. 89(5–8):2375–2385.

Raja, D., Bowman, D.A., Lucas, J. & North, C. 2004. Exploring the Benefits of
Immersion in Abstract Information Visualization. in Proceedings of the 8th
Immersive Projection Technology Workshop. 61–69.

Redelinghuys, A.J.H. 2020. An Architecture for the Digital Twin of a Manufacturing
Cell. PhD (Eng) Dissertation. University of Stellenbosch. Stellenbosch.

Stellenbosch University https://scholar.sun.ac.za

88

Redelinghuys, A.J.H., Basson, A.H. & Kruger, K. 2018. A Six-Layer Digital Twin
Architecture for a Manufacturing Cell. in Service Orientation in Holonic and
Multi-Agent Manufacturing, SOHOMA 2018. Studies in Computational
Intelligence, Vol. 803. Bergamo, Italy. 412–423.

Redelinghuys, A.J.H., Kruger, K. & Basson, A.H. 2019. A six-layer architecture for
digital twins with aggregation. in International Workshop on Service
Orientation in Holonic and Multi-Agent Manufacturing, SOHOMA 2019.
Studies in Computational Intelligence, Vol. 853. Valencia, Spain. 171–182.

Sekaran, S.C., Yap, H.J., Musa, S.N., Liew, K.E., Tan, C.H. & Aman, A. 2021. The
implementation of virtual reality in digital factory—a comprehensive review.
International Journal of Advanced Manufacturing Technology. 115(5–
6):1349–1366.

Taylor, N., Human, C., Kruger, K., Bekker, A. & Basson, A. 2020. Comparison of
digital twin development in manufacturing and maritime domains. in
International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing, SOHOMA 2019. Studies in Computational Intelligence, Vol.
853. Valencia, Spain. 158–170.

Uhlemann, T.H.J., Schock, C., Lehmann, C., Freiberger, S. & Steinhilper, R. 2017.
The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition
in Production Systems. Procedia Manufacturing. 9:113–120.

Unity. 2017a. Unity - Manual: GameObjects. [Online], Available:
https://docs.unity3d.com/560/Documentation/Manual/GameObjects.html
[2022, August 03].

Unity. 2017b. Unity - Manual: GameObject. [Online], Available:
https://docs.unity3d.com/560/Documentation/Manual/class-
GameObject.html [2022, August 03].

Stellenbosch University https://scholar.sun.ac.za

89

Appendix A. DT System Operation

This section provides information for the initialisation and operation stages for the
DT component and Shared Services component in the implemented case study DT
system. First, the initialisation and operation stage for the DT component is
provided, followed by the initialisation and operation phase for the Shared
Services component.

A.1 Digital Twin Component Initialisation

The initialisation aspect is comprised of various processes that are followed when
the DT component is to begin operating. The initialisation of the system makes use
of a configuration file. This configuration file is similar to the one provided in
Appendix B. The configuration file is a CSV format file that contains information
for the various DTs in the system as well as the DT aggregation hierarchy structure.
The configuration file contains information for the DTs including the name of the
DT, the type of DT (building, precinct, or campus), the energy meters forming part
of the DT (if it is a Building DTI or Precinct DTA), the location coordinates of the
component, and the IP Address and the port which is used for the socket
communication. On start-up, each DT is initialised with these various parameters
stored in the configuration file.

The initialisation process for each DT in the system occurs concurrently as each DT
runs on its own thread in the program. However, the initialisation process of some
DTs is dependent on the completion of the initialisation process for subordinate
DTs. For example, a Precinct DTA cannot fully initialise until all its Building DTIs
have been fully initialised, because the Precinct DTA requires information from the
Building DTIs below it to initialise correctly. The initialisation of a DT consists of
four steps that must be followed in sequence for a DT and DT system to be
initialised correctly. These being: the storing of subordinate component
information (either energy meters or other DTs), a request for the subordinate
component initialisation status, the carrying out of the Context generation service,
and a notification that the DT has been initialised. The initialisation process is
illustrated in Figure 31.

Stellenbosch University https://scholar.sun.ac.za

90

Figure 31: DT initialisation process

As mentioned previously, the configuration file contains information regarding the
aggregation hierarchy of the DTs. This includes which energy meters form part of
which buildings, buildings for which precincts, and precincts for the campus. This
information is used to ensure that DTs communicate with the correct system
components. The first aspect for initialisation is the storing of subordinate
component information in the DT. For example, the Building DTIs and Precinct

Stellenbosch University https://scholar.sun.ac.za

91

DTAs contain information for which energy meter IDs must be used when
accessing the API in Layer 3 for energy data. The Precinct DTAs stores the IP
address and port number for the Building DTIs that they can communicate with.
The Campus DTA stores the IP address and port number of the Precinct DTAs it
can communicate with. This subordinate identification process is important
because a DT remains idle while its subordinates initialise before it, itself, can
initialise fully. Knowing which components to communicate with ensures that the
system initialises in the correct order.

The second aspect of the process is the request made to a subordinate component
for the status of initialisation for that component. This is required because of the
dependencies some DTs have on the initialisation status of its components.
Although the initialisation process for components occurs concurrently, the
sequence of the initialisation process is that the Building DTIs are first fully
initialised, followed by the Precinct DTAs, and finally the Campus DTA. Once a DT
has completed the first aspect of storing subordinate DT information, it will then
periodically make requests to its subordinate components as to whether the
component is fully initialised or not. Once all the subordinate components respond
to the request stating that they are initialised, the DT can then proceed to the third
step.

If all subordinate components of a DT are initialised, the DT can then receive
information from these components to carry out its own initialisation process. The
DT must then use the Context generation service, described in Section 5.3.2.1.4,
to further the initialisation process. This service receives the necessary
information from the subordinate components to ensure that the correct
information is generated and stored by the service. As no information has been
stored for the DT, any information available from the subordinate components is
deemed new information, and thus, all this new information is processed. An
arbitrary start date is selected for the time frame of the historic information the
DT must process. This time frame is from the selected start date to the real-world
current date and time of starting the initialisation process. The start date is the
same for all DT components to not result in errors. The chosen initialisation start
date for the system is 01-01-2022 and is selected arbitrarily.

After the Context generation service has been carried out for the selected time
frame of historic information, the DT is then initialised. The final step is for the DT
to provide a notification that it is fully initialised. This occurs when the higher-level
DT of a subordinate DT is completing the second stage of the initialisation process.
When this request for the initialisation status is received by the subordinate DT
component, the DT responds with indicating that it is fully initialised. The higher-
level DT is then able to continue with the remaining steps of the initialisation
process. The total time taken for the initialisation process to be completed
depends on the number of DTs in the system and the selected starting date. Once

Stellenbosch University https://scholar.sun.ac.za

92

all DTs have carried out the initialisation process, the system is then correctly
initialised and can enter the Operating phase.

The sample code provided below is the source code of the Bootstrap class that is
used to initialise the various DTs in the DT system. The functions in the class use
information from the CSV configuration file to instantiate the various DT classes in
separate threads.

class Bootstrap

{
 // Declare list variables to store names of the DTs in the system
 private static LoadExcel excel = new LoadExcel();
 private static List<Building_DT.Building> buildingList = new

List<Building_DT.Building>();
 private static List<Precinct_DT.Precinct> precinctList = new

List<Precinct_DT.Precinct>();
 private static List<Campus_DT.Campus> campusList = new

List<Campus_DT.Campus>();
 public static void Main(String[] args){
 // Invoke the DT initialisation function
 InitialiseDigitalTwins();
 }
 private static void InitialiseDigitalTwins()
 {
 // Load a list of the buildings from the configuration file
 buildingList = excel.LoadBuildingData();
 // Loop through the building list to start each Building DTI on a

separate thread
 foreach(var build in buildingList)
 {
 Thread buildingThread = new Thread(build.InitialiseBuilding);
 buildingThread.Start();
 }
 // Load a list of the precincts from the configuration file
 precinctList = excel.LoadPrecinctData();
 // Loop through the precinct list to start each Precinct DTA on a

separate thread
 foreach (var prec in precinctList)
 {
 Thread precinctThread = new Thread(prec.InitialisePrecinct);
 precinctThread.Start();
 }
 // Load a list of the campuses from the configuration file
 campusList = excel.LoadCampusData();
 // Loop through the building list to start each Campus DTA on a

separate thread
 foreach (var camp in campusList)
 {
 Thread campusThread = new Thread(camp.InitialiseCampus);
 campusThread.Start();
 }
 }

}

Stellenbosch University https://scholar.sun.ac.za

93

A.2 Digital Twin Component Operation

After the DT component has been fully initialised, it enters the Operating phase.
This Operating phase includes the processing of new information becoming
available in the system, and the processing of requests made for the use of DT
services. These operation functions are carried out periodically or as requested.
The processing of new information functions are called every minute, and the
processing of requests for DT services used are carried out as the requests are
received. These requests are received by a DT’s TCP/IP server.

Much like for the Initialisation phase of the system, the propagation of new
information becoming available occurs at the Building DTI level first and
propagates upwards in the DT aggregation hierarchy to the Campus DTA. Every
minute, a Building DTI makes a request to the API in Layer 3 for data from its
energy meters. If new energy data is available, then the Building DTI receives this
new data. This availability of new data is identified by comparing the timestamp
of the last received data to the current timestamp of the received data. If the
timestamps are different, it means that new energy data is available. The Building
DTI waits until all energy meters have new information available, after which, the
DT carries out the Context generation service to update the DT with new energy
data. A similar process occurs at a Precinct DTA level, where the Precinct DTA
requests for any newly available energy information from its Building DTIs. A
similar process, like with the Precinct DTA, occurs for the Campus DTA. The
Campus DTA requires all the Precinct DTAs to have new information, and all the
Precinct DTAs requires all the Building DTIs to have new information, which
require all the energy meters to have new energy data. Using this process, as new
information becomes available, the Context generation service is used at the
different levels to ensure all components of the system are kept up to date.

The reason for checking for updated information every minute is that, although it
is stated that energy meters typically record new data every five minutes, not all
energy meters record data at the same time. If an energy meter does not take
exactly five minutes, maybe six or seven minutes, other energy meters might have
new data available already, and this could result in some energy meter data not
being processed because of the frequency of the update functions being carried
out. One minute is chosen arbitrarily as any faster would be unnecessary and any
slower could result in some components not updating with the correct
information which would mean that the DT system is not a correct reflection of
reality.

The other aspect of the Operating phase is the processing of requests made for
use of the DT services. In this case, the only service offered externally by a DT is
the Mirror Service. This service is discussed in greater detail in Section 5.3.2.1.4.
Unlike the updating functions of the Operating phase, this service processing

Stellenbosch University https://scholar.sun.ac.za

94

function occurs as the request is received by a DT from another system
component. As mentioned previously, this request is received by a DTs TCP/IP
server which is constantly awaiting communication from other components.

The software code provided below contains an example of the functions that are
used to carry out the Mirror service for the Building DTI. Various requests can be
made to the Mirror service, such as a request for energy usage information, the
initialisation status of the Building DTI, and the subordinate DTs (which are none)
for the Building DTI.

// Function to carry out different services offered by a Building DTI
public async Task<string> ServiceHandlerAsync(MessageModel message)
 {

// Check if energy service is requested
 if (message.DataType == "Energy")
 {

// Check if current energy usage is requested
 if (message.MessageType == "CurrentData")
 {

// Retrieve latest energy usage
 var tempEnergy = await

ReturnLatestBuildingEnergyAsync();

// Create message with latest energy usage information
 EnergyMeterModel temp = new

EnergyMeterModel(Building_name, 0, Latitude, Longitude,
tempEnergy, "Latest Reading");

 List<EnergyMeterModel> tempEnergyList = new
List<EnergyMeterModel>();

 tempEnergyList.Add(temp);
 List<InformationModel> tempList =

GenerateInformationList(tempEnergyList);

// Convert message to a JSON string
 var tempMess = JsonConvert.SerializeObject(tempList);
 return tempMess;
 }

// Check if average energy usage is requested
 else if (message.MessageType == "Averages")
 {

// Retrieve time period from request message
 message.startDate =

utilities.ChangeDateFormat(message.startDate);
 message.endDate =

utilities.ChangeDateFormat(message.endDate);

// Retrieve average energy usage information for time
period

Stellenbosch University https://scholar.sun.ac.za

95

 var temp = await
ReturnBuildingEnergyAveragesAsync(utilities.GenerateDat
eList(message.startDate, message.endDate,
message.timePeriod));

// Create message with average energy usage information
and convert to JSON string

 var infoModelList = GenerateInformationList(temp);
 var response =

JsonConvert.SerializeObject(infoModelList);
 return response;
 }
 }

// Check if subordinate DT list is requested
 else if (message.DataType == "DigitalTwins")
 {
 if (message.MessageType == "ChildDTList")
 {

// Retrieve list of subordinate DTs of Building DTI. A
Building DTI has no subordinate DTs and thus the list is
populated with “None”. Convert list message to JSON
string

 ChildDTModel temp = new ChildDTModel("None", "None");
 var tempList = new List<ChildDTModel>();
 tempList.Add(temp);
 var tempMess = JsonConvert.SerializeObject(tempList);
 return tempMess;
 }
 }

// Check if initialisation status is requested
 else if (message.DataType == "Initialisation")
 {
 if (message.MessageType == "Status")
 {

// Return message with current initialisation status
 return Initialised.ToString();
 }
 else if (message.MessageType == "LatestEnergy")
 {

// Return message with latest energy usage information
 var energy = await ReturnLatestBuildingEnergyAsync();
 return energy.ToString();
 }
 else if (message.MessageType == "Averages")
 {

// Return message with average energy usage information
for initialisation

var energy = await
GetTotalEnergyAsync(message.startDate);

 return energy.ToString();

Stellenbosch University https://scholar.sun.ac.za

96

 }
 }

// Check if a DT operation value status is requested
 else if (message.DataType == "Operations")
 {
 if(message.MessageType == "LatestTimeStamp")
 {

// Return message with latest updated timestamp of
energy data

 return EnergyMeters[0].latest_timestamp;
 }
 else if (message.MessageType == "LatestEnergy")
 {

// Return message with latest energy usage
 var energy = await ReturnLatestBuildingEnergyAsync();
 return energy.ToString();
 }
 else if (message.MessageType == "NewEnergyDataStatus")
 {

// Return message indicatin new energy data is
available

 return NewEnergyDataAvailable.ToString();
 }
 else if (message.MessageType == "ResetNewDataAvailable")
 {

// Reset the “New Data Available” flag to check if new
energy data is available.

 ResetDataAvailable();
 return "Complete";
 }
 }
 return "";

 }

A.3 Shared Services Component Initialisation

The initialisation phase contains a set of processes that are to be followed for the
Shared Services component to be initialised correctly before it can enter the
Operating phase. During this phase, the three service components mentioned in
Section 5.3.3 (Service Gateway, DT Directory service, and Exploratory analytics
service) must each be initialised in their respective manner. A bootstrap C# class,
like with the DTs, is used to start the initialisation procedure for each of the service
components. The bootstrap program makes use of a CSV configuration file for
initialising the service components with the correct parameters. The bootstrap
program provides each Shared Services component class with the correct
information from the configuration file when being instantiated.

The initialisation process for the Service Gateway and Exploratory analytics is fairly
simple. Based on the information received from the bootstrap program, the
component will create a TCP/IP server socket to allow for communication to be

Stellenbosch University https://scholar.sun.ac.za

97

received from other components. With this, the service is also initialised with a list
of information of the other services in the Shared Services component provided in
the configuration file. This information is the name of the service component, and
its communication address. The service component is able to access this list if they
are required to communicate with another service.

The initialisation process for the DT Directory service has an added step of
initialisation compared to the other two service components. Like the other two
services, the DT Directory service creates a TCP/IP server socket to receive any
incoming communication. The service also receives, from the bootstrap program,
the necessary information about the other service components. In addition to
these aspects, the DT Directory service is also initialised with information
regarding the structure of the DT aggregation hierarchy. The service will request a
list of subordinate DTs from each DT in the hierarchy. It receives the
communication address for the DTs in the hierarchy from the configuration file.
This list allows for information of the structure of the aggregation hierarchy to be
stored in the DT Directory service. Requests can then be made to the service for
information about DTs and their subordinate DTs.

A.4 Shared Services Component Operation

Once the Shared Services component has been initialised correctly, it then
transitions into the Operating phase. During the Operating phase, each service is
continuously awaiting incoming communication to its TCP/IP server socket. Any
requests that are made from an external component, in this case the VR
application, are made to the Service Gateway as this service is the communication
channel for any external components outside of the DT system. The Service
Gateway then processes this request and sends it to the correct service to request
the necessary information and send the information back to the VR application.
The other services are waiting for requests to be made either by the Service
Gateway or another service component where they are processed and the correct
information is transferred to the sender of the request. Some of the details of the
interactions between services is shown in Section 5.3.4.

The sample code provided below contains the source code that was used by the
Service Gateway during the operation of the Shared Services component. The
Service Gateway receives requests from components and uses the function below
to interpret what service has been requested or is required. A request is then
made to this service for the desired information. The received information is then
transferred to the component that made the original request.

Stellenbosch University https://scholar.sun.ac.za

98

// Function used to call other services in the Shared Services Component
public async Task<string> MessageHandlerAsync(string mes)
{

string message = "";
var tempMessage = JsonConvert.DeserializeObject<UIMessageModel>(mes);

 // Check if the DT Directory service is requested
 if (tempMessage.ServiceTag == "Directory")
 {
 // Loop through list of services to obtain communication

address
 foreach(var service in servicesList)
 {
 // Check if service matches the requested service's name
 if (service.ServiceName == "Directory Service")
 {
 // Request and receive the subordinate DTs list for

a specified DT from the DT Directory service
 var DTList = await myClient.sendMessageAsync(mes,

service.IP_Address, service.Port);
 message = DTList;
 break;
 }
 }

}
 // Check if the Exploratory Analytics service is requested
 else if (tempMessage.ServiceTag == "Exploratory")
 {
 // Loop through list of services to obtain communication

address
 foreach (var service in servicesList)
 {
 // Check if service matches the requested service's name
 if (service.ServiceName == "Exploratory Service")
 {
 // Request and receive the specified energy usage

information for a DT
 var response = await myClient.sendMessageAsync(mes,

service.IP_Address, service.Port);
 message = response;
 break;
 }
 }
 }
 return message;

 }

Stellenbosch University https://scholar.sun.ac.za

99

Appendix B. Configuration File Sample

Figure 32 shows a sample of the CSV configuration file, loaded into Microsoft Excel, that was used in the case study implementations.

Figure 32: Configuration file sample

Stellenbosch University https://scholar.sun.ac.za

100

Appendix C. Virtual Reality Application

This section contains additional information about the developed VR application
used in the DT implementation and Non-DT implementation of the FM case study.
The Unity development environment is briefly discussed and showcased. The VR
application UI developed for use in the VR environments is shown and explained.
Various examples of using the VR application are then provided.

C.1 Unity Environment

Figure 33 shows the Unity development environment that is used to develop the
VR applications. This figure shows the various aspects of the development
environment. In addition to this environment, Visual Studio Code was used to
develop the custom C# scripts that are attached as Components to the
GameObjects in the application.

Figure 33: Unity VR application software environment

Figure 34 shows the scene view where an overview of the various GameObjects
present in the environment are displayed and can be adjusted and modified as
desired. This figure depicts the map of Stellenbosch that is used in the
visualisation, as well as the UI GameObject that a user interacts with in VR. This is
not the perspective that the user has in VR, rather it is the developer’s perspective
for creating the VR environment.

Stellenbosch University https://scholar.sun.ac.za

101

Figure 34: VR application scene view

Figure 35 shows the tabs that contain the GameObjects and the Components
attached to those GameObjects. The “Hierarchy” tab indicates the various
GameObjects that are present in the current environment. These GameObjects
include the Stellenbosch Map, the user’s GameObject denoted as “XR Origin”, and
a lighting GameObject to light the VR environment. Below the “Hierarchy” tab is
the “Project” tab that contains all of the folders and files that contain scripts or
models used in the VR application. The “Inspector” tab, on the right of the
“Hierarchy” and “Project” tabs, shows the various Components, and their details,
attached to a GameObject. In this figure, the displayed Components are for the
user’s GameObject.

Stellenbosch University https://scholar.sun.ac.za

102

Figure 35: VR application GameObjects and Components

C.2 VR Application UI

The user can select elements on the UI using the VR controllers. Figure 36 shows
the UI with the cascading menus and the various selections that can be made.
Figure 36a is the main menu of the UI, here the user is able to select which span
of reality they want energy information from, either the campus, a precinct, or a
building. Figure 36b shows the menu of which elements in the span of reality the
user would like to visualise. This could either be at the building level, the precinct
level, campus level, or all levels depending on what span of reality was selected. If
a building was selected as the span of reality, the only possible elements to
visualise would be the building, whereas if the campus was selected, the possible
elements to visualise include elements at a building level, precinct level or campus
level. Figure 36c is the selection of which data type to visualise. In this case only
energy data is used and is the only selection that can be made here, but provision
has been made for the addition of other data types. Figure 36d shows a selection
of the service type for visualising desired information. The user is able to select
either the latest energy usage or they are able to select to visualise average usage
information (day, monthly, or yearly averages). Figure 36e is the menu shown after
selecting the “Averages” option in Figure 36d. The menu is not displayed if the
“Latest” option is selected. Figure 36e allows the user to input a start date and end

Stellenbosch University https://scholar.sun.ac.za

103

date of the time span of information they would like to visualise. They are also
able to select what type of average usage information they would like to visualise
(either day, month, or year average usage). Figure 36f is the visualisation menu.
This visualisation menu allows the user to adjust the visualisation as they desire.
In all instances, the user is able to adjust the scale of the visualisation that is
presented to them. In the case of visualising average usage information, the user
is able to “Play” through the information presented to them or, for example,
manually adjust which day’s average usage information they would like to
visualise.

Figure 36: VR UI menus

The functionality of creating the request message based on the selections by the
user in the UI is encapsulated in the UI functions component of the architecture
shown in Figure 12 and Figure 14. This component also contains the functionality
for displaying the correct menu after one another as the user works through the
UI.

Stellenbosch University https://scholar.sun.ac.za

104

C.3 VR Application Examples

This section provides examples of a user in VR using the VR application to visualise
energy information of Stellenbosch Campus. Figure 37 shows a user visualising the
latest energy reading for various precincts on the campus and buildings within
those precincts.

(a)

(b)

Figure 37: Visualising latest precinct and building energy usage information

Stellenbosch University https://scholar.sun.ac.za

105

Figure 38 shows an example of the user selecting the end date for a time period
to make a request to visualise the average energy usage for a facility. After
selecting the start date, the user is then required to select the end date of the time
period and the type of average energy usage they would like to visualise (either
daily, monthly, or yearly usage).

Figure 38: Selecting time period start date

Figure 39 is an example of a user making a request to visualise new information
after they have already visualised the previously requested energy information.
The previously requested information that has been displayed to the user is shown
in the background, and the foreground shows the user using the UI and menus to
make a request for new information to be displayed.

Figure 39: Requesting new energy information

Stellenbosch University https://scholar.sun.ac.za

106

Figure 40 shows an example of a user adjusting the scale of the energy usage
information they are visualising. Adjusting the visualisation scale does not affect
the scale of the map, rather, the size of the displayed coloured columns is adjusted
according to the scale selected by the user.

(a)

(b)

Figure 40: Adjusting visualisation scale

Stellenbosch University https://scholar.sun.ac.za

107

Appendix D. Additional Evaluation
Results

This section provides additional evaluation results of the latency and computer
resource utilisation experiments carried out for the DT implementation and Non-
DT implementation. Results are also provided for the Non-DT implementation with
the modification of using a local database to access the information.

Figure 41 shows the latency results for the DT implementation where a range of
data points were requested from each element in the system. The results show,
as expected, that the latency of the system increased with the number of elements
in the system, as well as the number of data points requested per element. The
latencies in the results were relatively low compared to the latencies of the Non-
DT implementation.

Figure 41: DT implementation latency results

Figure 42 provides the results of the RAM usage experiment for the DT
implementation. The results indicate that the amount of RAM used by the DT
implementation was fairly constant as more system elements were added and
number of requested data points per element was increased.

Stellenbosch University https://scholar.sun.ac.za

108

Figure 42: DT implementation RAM usage results

Figure 43 shows the results for the CPU usage experiment for the DT
implementation. The results indicate that the CPU usage remained constant, like
the RAM usage, as elements were added to the system and requested data points
per element was increased.

Figure 43: DT implementation CPU usage results

Figure 44 provides the results for the latency experiment for the Non-DT
implementation. These latency results were in the degree of tens of seconds which
was significantly higher than the latency results for the DT implementation. The

Stellenbosch University https://scholar.sun.ac.za

109

results indicate that the latency of the system increased almost linearly as more
system elements were added and more data points per element were requested.
This was a similar trend to the DT implementation latency results.

Figure 44: Non-DT implementation latency results

Figure 45 shows the RAM usage experiment results for the Non-DT
implementation. The results indicate that the RAM usage remained constant and
did not increase as more system elements were added and more data points per
element were requested.

Figure 45: Non-DT implementation RAM usage results

Stellenbosch University https://scholar.sun.ac.za

110

Figure 46 shows the results for the CPU usage experiment for the Non-DT
implementation. These results show that the CPU usage remained constant, at
approximately between 11% and 14%, for the duration of the experiment. The
addition of more system elements and requesting more data points per element
did not have a significant impact on the CPU usage of the system.

Figure 46: Non-DT implementation CPU usage results

It is mentioned in Section 6.3.1 that a modification was made to the Non-DT
implementation to conduct further evaluation of the Non-DT implementation’s
latency. This modification was the use of a local database to store the requested
energy usage data. The API originally used in the implementation was removed
and the local database was then queried for the same energy data that was
available using the API. Figure 47 provides the latency experiment results for the
Non-DT implementation with this modification. The results show a similar trend as
in Figure 44, however, the degree of the latency with this modification was halved
in comparison to the original Non-DT implementation. The degree of latency was
still significantly higher than for the DT implementation.

Stellenbosch University https://scholar.sun.ac.za

111

Figure 47: Local database Non-DT implementation latency results

Figure 48 shows the RAM usage experiment results of the Non-DT implementation
with this local database modification. The results indicate that the RAM usage
increased slightly with more elements in the system, but remained constant as
more data points were requested per element.

Figure 48: Local database Non-DT implementation RAM usage results

Figure 49 provides the results of the CPU usage experiment for the Non-DT
implementation with the local database modification. The results show that when
the system only had three elements that the CPU usage was lower than for the

Stellenbosch University https://scholar.sun.ac.za

112

other scenarios. The CPU usage did not, however, change significantly when more
data points are requested per element.

Figure 49: Local database Non-DT implementation CPU usage results

Figure 50 to Figure 52 provide results for the latency and computer resource
utilisation experiments for Scenario 4 where only a single data point is requested
for a building element in the system. Figure 50 shows the results for the latency
experiment for this scenario. Much like the other results, the latencies for the Non-
DT implementation with and without the local database modification was
significantly higher than for the DT implementation. The degree of latency for the
DT implementation was in the degree of milliseconds, and the degree of latency,
in both instances, for the Non-DT implementation was in the degree of seconds.

Figure 50: Single data point request latency results

Stellenbosch University https://scholar.sun.ac.za

113

Figure 51 provides the results for the RAM usage of the implementations for the
scenario. The results show that the average RAM usage between the
implementations was not significantly different. The DT implementation used
more RAM which was expected due to the independently operating components,
unlike the Non-DT implementation that only had the VR application.

Figure 51: Single data point request RAM usage results

Figure 52 provides the CPU usage experiment results for the scenario for the
implementations. The results show that the CPU usage did not differ drastically
between the implementations and that the average CPU usage of the
implementations was between 10% and 15%.

Figure 52: Single data point request CPU usage results

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Motivation
	1.4 Methodology and Overview

	2 Literature Review
	2.1 Digital Twins
	2.2 Complex Digital Twin System Design Framework
	2.3 Six Layer Architecture for Digital Twins with Aggregation
	2.4 Virtual Reality
	2.4.1 Virtual Reality Overview
	2.4.2 Virtual Reality Hardware
	2.4.3 Virtual Reality Software
	2.4.4 Virtual Reality Implementations

	2.5 Discussion

	3 Integration Opportunities and Challenges
	3.1 Data Visualisation Opportunities
	3.2 Integration Opportunities
	3.3 Data Visualisation Challenges
	3.4 Integration Challenges
	3.5 Discussion

	4 Facilities Management Division Case Study
	4.1 Case Study Description
	4.2 System Architecture Design
	4.2.1 User Needs
	4.2.2 System Requirements
	4.2.2.1 Functional Requirements
	4.2.2.2 Non-functional Requirements

	4.2.3 Physical System Decomposition
	4.2.3.1 Physical System Diagram
	4.2.3.2 Data Characterisation

	4.2.4 Service Identification and Allocation
	4.2.4.1 Services Identification
	4.2.4.2 Digital Twin Identification
	4.2.4.3 Services to Digital Twin Allocation

	4.2.5 Digital Twin Internal Architecture and Design Pattern Application

	5 Case Study Implementations
	5.1 Case Study Objectives
	5.2 Non-DT Implementation
	5.2.1 Implementation Architecture
	5.2.2 Implementation Details
	5.2.2.1 Data Layer
	5.2.2.2 Data Ingestion Layer
	5.2.2.3 Data Processing Layer
	5.2.2.4 Visualisation Display Layer
	5.2.2.5 Display layer

	5.3 DT Implementation
	5.3.1 Implementation Architecture
	5.3.2 Digital Twin Components
	5.3.2.1 SLADTA
	5.3.2.1.1 Layers 1, 2, and 3
	5.3.2.1.2 Layer 4
	5.3.2.1.3 Layer 5
	5.3.2.1.4 Layer 6

	5.3.2.2 Communication
	5.3.2.3 Digital Twin Component Operation

	5.3.3 Shared Services Component
	5.3.3.1 Service Gateway
	5.3.3.2 Management Services
	5.3.3.3 Services Network
	5.3.3.4 Shared Services Component Operation

	5.3.4 System Operation
	5.3.4.1 Digital Twin Aggregation Hierarchy Operation
	5.3.4.2 Digital Twin Aggregation Hierarchy Request
	5.3.4.3 Digital Twin Energy Information Request

	5.4 Virtual Reality Application
	5.4.1 Hardware and Software
	5.4.2 Virtual Environment
	5.4.3 User Interface Interaction
	5.4.4 Displaying Information

	5.5 Comparison of Implementations

	6 Case Study Evaluation
	6.1 Objective
	6.2 Method
	6.2.1 Latency and Computational Resource Utilisation
	6.2.2 Reconfiguration

	6.3 Results
	6.3.1 Latency and Computational Resource Utilisation
	6.3.2 Reconfiguration
	6.3.2.1 Max Feature
	6.3.2.2 Total Feature
	6.3.2.3 Cost Feature

	6.4 Discussion

	7 Discussion and Further Work
	7.1 Case Study Implications
	7.2 Overall Implications
	7.3 Further Work

	8 Conclusion
	9 References
	Appendix A. DT System Operation
	A.1 Digital Twin Component Initialisation
	A.2 Digital Twin Component Operation
	A.3 Shared Services Component Initialisation
	A.4 Shared Services Component Operation

	Appendix B. Configuration File Sample
	Appendix C. Virtual Reality Application
	Appendix A
	Appendix B
	Appendix C
	C.1 Unity Environment
	C.2 VR Application UI
	C.3 VR Application Examples
	Appendix D. Additional Evaluation Results

	Appendix D

