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SUMMARY 

 

The use of agricultural nets is rapidly expanding worldwide as farmers are forced to adapt to the 

adverse effects of climate change on crops. These nets have diverse spectral properties due to their 

differing colours, thicknesses, porosities and the large variety of plastic compounds used to make 

the nets. As such, nets are difficult to map using existing remote sensing techniques. To address 

this problem, this study aimed to fill several research gaps pertaining to mapping agricultural nets, 

with a specific focus on the use of Sentinel-2 imagery. Sentinel-2 imagery is freely available and 

has a short (5-day) revisit time, making it a viable data source for monitoring large areas. However, 

there are limited research findings about whether Sentinel-2 imagery has the necessary spatial and 

spectral resolutions to effectively capture nets. This question was addressed through two 

experiments conducted in the Western Cape, South Africa. 

The first experiment aimed to record and interpret the spectral signatures of the most common 

types of nets used in the Western Cape and to investigate how these signatures are affected by the 

seasonal changes of their underlying crops. Spectral signatures of nets covering vineyards, citrus, 

and berry crops were collected for an entire growing season. The Jeffries-Matusita distance was 

used to quantify the spectral separability among the net classes and their surrounding land cover 

and how the signatures changed over time. The results showed that the spectral resolution of the 

Sentinel-2 imagery was adequate to identify distinguishable net signatures. Furthermore, it was 

found that the signatures of the underlying crops could also be identified. The net types were most 

separable during the summer months. 

The second experiment aimed to investigate whether Sentinel-2 imagery has the necessary spatial 

and spectral resolutions required to map nets. The experiment also tested different machine 

learning classifiers and classification features to determine which method and features were best 

suited for mapping nets. The classifications achieved high accuracies which were comparable to 

the accuracies achieved by studies that used very-high-resolution imagery (like WorldView-3 and 

QuickBird) for mapping agricultural nets. The accuracies achieved in the second experiment were 

higher than those found in studies using lower resolution Landsat imagery. The results showed 

that the unaltered Sentinel-2 bands contained the most important features for classification and 

that both the random forest and the neural network algorithms achieved high accuracies for 

mapping nets.  

Both experiments confirmed that Sentinel-2 imagery has the necessary spatial and spectral 

resolutions to effectively capture and map nets. This insight makes Sentinel-2 a practical and viable 

option for mapping strategies in agriculture. Furthermore, this study provided valuable information 
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about the spectral characteristics of agricultural nets, and effective techniques for mapping the 

distribution of agricultural nets.  

KEY WORDS 

agricultural nets, Jeffries-Matusita, machine learning, neural network, plasticulture, random forest, 
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OPSOMMING 

 

Die gebruik van nette vir landbou neem wêreldwyd toe, hoofsaaklik omdat hierdie nette die oeste 

teen die negatiewe gevolge van klimaatsverandering beskerm. Landbounette word van 

verskillende tipes plastiek gemaak en kan in vele kleure en digthede voorkom. Daarom het hierdie 

nette uiteenlopende spektrale eienskappe en word nette moeilik met die gebruik van satellietbeelde 

gekarteer. Om hierdie probleem op te los, ondersoek hierdie studie die gebruik van Sentinel-2 

satellietbeelde om landbounette te klassifiseer. Sentinel-2 satellietbeelde is vrylik beskikbaar en 

word elke vyf dae herhaal. Hierdie twee eienskappe maak Sentinel-2 beelde geskik om groot 

landbougebiede met landbounette te karteer, maar ongelukkig was daar nog geen navorsing gedoen 

om Sentinel-2 beelde hiervoor te toets nie. Hierdie studie is gevolglik gerig om dié 

navorsingsvraag te beantwoord. Om te bepaal of Sentinel-2 beelde vir die klassifikasie van 

landbounette gebruik kan word, het die huidige studie twee eksperimente uitgevoer.  

Die eerste eksperiment het die spektrale eienskappe van die landbounette ondersoek om te bepaal 

hoe hierdie nette in die Sentinel-2 beelde vertoon en om vas te stel of die spektrale eienskappe as 

gevolg van die plante onder die net oor tyd verander. ‘n Spektrale grafiek is vir drie tipes nette 

geskep, naamlik vir  nette wat oor druiwe, sitrus en bessie gewasse gespan was. Die Jeffries-

Matusita metode is gebruik om te bepaal of die unieke spektrale eienskappe van landbounette 

akkuraat genoeg in Sentinel-2 beelde uitgebeeld kan word sodat uitgekenning uitgevoer kan word. 

Daarna was die grafieke gebruik om vas te stel hoe die spektrale eienskappe van die landbounette 

verander soos wat die gewasse onder die nette gedurend die groeiseisoen verander. Die resultate 

toon dat die resolusie van die Sentinel-2 beelde goed genoeg is om die unieke spektrale eienskappe 

van die landbounette en die gewasse onder die nette vas te stel. Die resultate toon ook dat die 

landbounette die maklikste tydens somer geklassifiseer kan word.  

Die doel van die tweede eksperiment was om te sien of Sentinel-2 beelde vir die kartering van 

landbounette geskik is. Die eksperiment het ook ondersoek ingestel oor watter masjienleer 

metodes en veranderlikes die beste vir klassifikasie werk. Die neurale netwerk en ewekansige 

woud metodes het die beste resultate gelewer. Die akkuraatheid van dié klassifikasies was hoër as 

kaarte wat deur ander navorsers met Landsat beelde gemaak is en net so hoog soos kaarte wat met 

baie hoë resolusie beelde (soos Wordview-3 en QuickBird) gemaak is.  

Die studie het bewys dat Sentinel-2 satellietbeelde gebruik kan word om landbounette te 

klassifiseer en om akkurate landboukaarte te maak. Verder voorsien die resultate unieke insig oor 

die spektrale eienskappe van landbounette, en watter masjienleer metodes en veranderlikes nuttig 

is om landbounette te klassifiseer.  

Stellenbosch University https://scholar.sun.ac.za



 vi 

 

TREFWOORDE 

Beeldklassifikasie, landbounette, masjienleer, Sentinel-2 

Stellenbosch University https://scholar.sun.ac.za



 vii 

ACKNOWLEDGEMENTS 

 

I sincerely thank: 

▪ My supervisor, Professor Adriaan Van Niekerk, for his patience and guidance throughout 

my research. 

▪ My family and friends for their support and belief in my abilities. 

▪ The Water Research Commission for funding this study, which formed part of a larger 

project titled WATER FOOTPRINT AS A SUSTAINABILITY INDICATOR FOR TABLE 

AND WINE GRAPE PRODUCTION. More information about this project is available in 

the WRC Report No. 2710/1/20 (ISBN 978-0-6392-0151-1) available at www.wrc.org.za. 

 

Stellenbosch University https://scholar.sun.ac.za



 viii 

CONTENTS 
 

 

DECLARATION ..................................................................................................... ii 

SUMMARY ............................................................................................................. iii 

OPSOMMING ......................................................................................................... v 

ACKNOWLEDGEMENTS .................................................................................. vii 

CONTENTS .......................................................................................................... viii 

TABLES .................................................................................................................. xi 

FIGURES ............................................................................................................... xii 

APPENDICES ...................................................................................................... xiii 

ACRONYMS AND ABBREVIATIONS ............................................................ xiv 

CHAPTER 1: INTRODUCTION ....................................................................... 1 

1.1 AGRICULTURAL NETS ............................................................................................. 1 

1.2 OPTICAL REMOTE SENSING FOR MAPPING PLASTICULTURE ................. 3 

1.3 SENTINEL-2 IMAGERY FOR LAND COVER CLASSIFICATION .................... 4 

1.4 AGRICULTURAL NETS IN SOUTH AFRICAN ..................................................... 5 

1.5 PROBLEM FORMULATION ..................................................................................... 6 

1.6 RESEARCH AIMS AND OBJECTIVES ................................................................... 7 

1.7 RESEARCH DESIGN .................................................................................................. 8 

1.8 STUDY AREA ............................................................................................................... 9 

1.9 SYNOPSIS ................................................................................................................... 10 

CHAPTER 2: MAPPING PLASTICULTURE USING REMOTE 

SENSING: A LITERATURE REVIEW ............................................................. 11 

2.1 PRINCIPLES OF REMOTE SENSING ................................................................... 11 

2.1.1 Electromagnetic spectrum .................................................................................. 11 

2.1.2 Atmospheric windows ......................................................................................... 12 

2.1.3 Active and passive sensors .................................................................................. 13 

2.1.4 Digital imagery .................................................................................................... 14 

2.1.5 Image classification ............................................................................................. 15 

2.2 AN OVERVIEW OF SENTINEL-2 IMAGERY...................................................... 16 

2.2.1 Properties of Sentinel-2 imagery ........................................................................ 17 

2.2.2 Preprocessing and sources of Sentinel-2 imagery ............................................ 18 

Stellenbosch University https://scholar.sun.ac.za



 ix 

2.3 IMAGE TRANSFORMATION FEATURES USED FOR MAPPING 

PLASTICULTURE ................................................................................................................. 19 

2.3.1 Spectral indices .................................................................................................... 19 

2.3.1.1 Vegetation indices ............................................................................................. 20 

2.3.1.2 Indices relating to other land cover types .......................................................... 22 

2.3.2 Texture features ................................................................................................... 24 

2.3.3 Feature selection .................................................................................................. 25 

2.4 MACHINE LEARNING CLASSIFIERS ................................................................. 26 

2.4.1 Introduction to machine learning algorithms ................................................... 26 

2.4.2 Comparison of machine learning classifiers used for plasticulture mapping 28 

2.5 PER-PIXEL AND OBJECT-BASED APPROACHES FOR MAPPING 

PLASTICULTURE ................................................................................................................. 29 

2.6 ACCURACY ASSESMENT....................................................................................... 30 

2.6.1 Training samples ................................................................................................. 31 

2.6.2 Measures of accuracy .......................................................................................... 32 

2.6.2.1 Descriptive measures ......................................................................................... 33 

2.6.2.2 Analytical measures .......................................................................................... 34 

2.6.2.3 Measures of statistical significance ................................................................... 35 

2.7 SPECTRAL ANALYSIS OF PLASTICULTURE ................................................... 36 

2.7.1 Spectral properties of plasticulture ................................................................... 36 

2.7.2 Spectral separability of plasticulture ................................................................. 37 

2.8 SYNOPSIS ................................................................................................................... 40 

CHAPTER 3: SPECTRAL AND TEMPORAL ANALYSIS OF 

AGRICULTURAL NETS USING SENTINEL-2 IMAGERY ......................... 43 

3.1 ABSTRACT ................................................................................................................. 43 

3.2 INTRODUCTION ....................................................................................................... 43 

3.3 METHODS .................................................................................................................. 46 

3.3.1 Study area ............................................................................................................ 46 

3.3.2 Phenology of grape, citrus and berry crops in the Western Cape .................. 48 

3.3.3 Acquisition of Sentinel-2 imagery ...................................................................... 49 

3.3.4 Acquisition of land cover samples...................................................................... 50 

3.3.5 Spectral signatures and separability analysis ................................................... 51 

3.4 RESULTS ..................................................................................................................... 52 

3.4.1 Separability analysis ........................................................................................... 52 

3.4.2 Spectral signatures .............................................................................................. 55 

Stellenbosch University https://scholar.sun.ac.za



 x 

3.5 DISCUSSION .............................................................................................................. 57 

3.6 CONCLUSION ............................................................................................................ 61 

CHAPTER 4: REGIONAL MAPPING OF TABLE GRAPES UNDER 

AGRICULTURAL NETS USING SENTINEL-2 IMAGERY ......................... 63 

4.1 ABSTRACT ................................................................................................................. 63 

4.2 INTRODUCTION ....................................................................................................... 63 

4.3 METHODS .................................................................................................................. 66 

4.3.1 Study region and sites ......................................................................................... 66 

4.3.2 Data acquisition and preparation ...................................................................... 68 

4.3.2.1 Sentinel-2 imagery ............................................................................................ 68 

4.3.2.2 Training and reference data ............................................................................... 68 

4.3.2.3 Spectral indices ................................................................................................. 69 

4.3.2.4 Texture measures ............................................................................................... 70 

4.3.3 Feature selection .................................................................................................. 70 

4.3.4 Classification of nets ............................................................................................ 71 

4.3.5 Accuracy assessment ........................................................................................... 72 

4.4 RESULTS ..................................................................................................................... 73 

4.4.1 Spectral profile of classes .................................................................................... 73 

4.4.2 Feature selection .................................................................................................. 74 

4.4.3 Image classification ............................................................................................. 75 

4.5 DISCUSSION .............................................................................................................. 78 

4.6 CONCLUSION ............................................................................................................ 81 

CHAPTER 5: SYNTHESIS AND CONCLUSIONS ....................................... 83 

5.1 REVISITING THE AIMS AND OBJECTIVES ...................................................... 83 

5.2 SYNTHESIS OF KEY FINDINGS ............................................................................ 83 

5.3 LIMITATIONS AND RECCOMMENDATIONS FOR FUTURE RESEARCH . 85 

5.4 CONCLUSIONS.......................................................................................................... 86 

REFERENCES ...................................................................................................... 87 

APPENDICES ..................................................................................................... 110 

 

  

Stellenbosch University https://scholar.sun.ac.za



 xi 

TABLES 
 

Table 2.1   Principal regions of the electromagnetic spectrum ..................................................... 12 

Table 2.2   Band allocation and description of Sentinel-2 imagery .............................................. 17 

Table 3.1   Sentinel-2 bands and their features ............................................................................. 49 

Table 3.2   Acquisition dates of Sentinel-2 imagery ..................................................................... 50 

Table 3.3   Samples collected for each spectral class .................................................................... 51 

Table 4.1   Acquisition dates of Sentinel-2 images for the study sites ......................................... 68 

Table 4.2   Number of pixels collected for each training class ..................................................... 69 

Table 4.3   Spectral indices used as additional predictor variables ............................................... 70 

Table 4.4   Feature set considered for classification of agricultural nets covering table grapes ... 71 

Table 4.5   Number of pixels indicating the presence and absence of nets for each reference mask

 ................................................................................................................................... 72 

Table 4.6   Rank (#) achieved by each classification feature as produced by RF-RFE ................ 74 

Table 4.7   Mean overall accuracy (OA), kappa statistic (KS) and balanced accuracy (BA) of the 

four test sites for each classification scenario ........................................................... 76 

 

 
 

 

Stellenbosch University https://scholar.sun.ac.za



 xii 

 FIGURES 

 

Figure 1.1    Agricultural shade nets covering crops in the Western Cape province, South Arica . 6 

Figure 1.2   Research design ........................................................................................................... 9 

Figure 1.3   Location of known agricultural nets in the Western Cape province .......................... 10 

Figure 2.1   Percentage of atmospheric transmission for each region of the electromagnetic 

spectrum .................................................................................................................... 13 

Figure 3.1   Location of the selected test sites in the Western Cape and how they relate to the 

grape, citrus and berry varieties that are typically grown under agricultural nets in 

the region ................................................................................................................... 47 

Figure 3.2   Phenological stages of grape, citrus, and berry crops grown in the Western Cape ... 48 

Figure 3.3   Mean Jeffries-Matusita distance between grape nets and each other class per season

 ................................................................................................................................... 52 

Figure 3.4   Mean Jeffries-Matusita distance between citrus nets and each other class per season

 ................................................................................................................................... 53 

Figure 3.5   Mean Jeffries-Matusita distance between berry nets and each other class per season

 ................................................................................................................................... 53 

Figure 3.6   Mean Jeffries-Matusita distance of all the classes for grapes nets, citrus nets, and 

berry nets for each image acquisition period……………….………………………55 

Figure 3.7   Mean spectral signatures of the grape nets, citrus nets, berry nets, grape crops, 

citrus crops, berry crops, and all crops classes for: a) Summer, b) Autumn, c) 

Winter and d) Spring ................................................................................................. 56 

Figure 4.1   Study sites within the Western Cape Province and the location of known table grapes 

under agricultural nets ............................................................................................... 67 

Figure 4.2   The mean spectral signature of each land cover class with the standard deviation 

displayed as error bars ............................................................................................... 73 

Figure 4.3   Accuracy achieved for different feature subset sizes by RF-RFE feature selection. . 77 

Figure 4.4   Classified agricultural nets produced by the RF, SVM and NN classifiers for 

Scenario 14 (RF-RFE60) compared to Sentinel-2 reference imagery....................... 78 

 

 

 

 

 

  

Stellenbosch University https://scholar.sun.ac.za



 xiii 

APPENDICES 

 

Appendix A:  Link to tables containing the JM distance between each net class and 

the other land cover classes for each acquisition period 

 

Appendix B: 

 

Appendix C:  

Link to tables containing the confusion matrices for each 

classification scenario 

Link to table containing the correlation matrix for the classification 

features 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 xiv 

ACRONYMS AND ABBREVIATIONS  

 

ABA Average balanced accuracy 

AKS Average kappa statistic 

AOA Average overall accuracy 

ARVI Atmospheric resistant vegetation index 

ASM Angular second moment 

BA Balanced accuracy 

BioPar Biophysical Parameter Service 

BOA Bottom of atmosphere 

DT Decision tree 

ED2 Euclidean distance 2 

EMR Electromagnetic radiation 

EMS Electromagnetic spectrum 

ESA European Space Agency 

ESP Estimation of scale parameter 

EUROLAND European Land Monitoring Service 

EVI Enhanced vegetation index 

FSO Feature space optimization 

GCP Ground control point 

GDP Gross domestic product 

GEE Google Earth Engine 

GLCM Grey-level co-occurrence matrix 

GLDV Grey-level difference vector 

IFOV Instantaneous field of view 

JM Jeffries-Matusita 

KNN K-nearest neighbour 

KS Kappa statistic 

ML Machine learning 

MRS Multiresolution segmentation 

MSI Multispectral instrument 

NDSI Normalized difference sandy index 

NDVI Normalized difference vegetation index 

NIR Near-infrared 

NN Neural networks 

OA Overall accuracy 

Stellenbosch University https://scholar.sun.ac.za



 xv 

OBIA Object-based image analysis 

OSAVI Optimized soil-adjusted vegetation index 

PBIA Per-pixel image analysis 

PE Polyethene 

PGI Plastic greenhouse index 

PML Plastic-mulched land cover 

PMLI Plastic-mulched land cover index 

PP Polypropylene 

PSI Plastic surface index 

RBF Radial basis function 

RBT Rescaled brightness temperature 

RE Red edge 

RF Random forest 

RF-RFE Random forest recursive feature elimination 

RGB Red, green and blue 

ROI Regions of interest 

SAR Synthetic aperture radar 

SATChMo Seasonal and Annual Change Monitoring Service 

SAVI Soil-adjusted vegetation index 

SVM Support vector machines 

SWIR Short-wave infrared 

TD Transformed divergence 

TOA Top of atmosphere 

VARI Visible atmospherically resistant index 

Stellenbosch University https://scholar.sun.ac.za



 1 

CHAPTER 1:  INTRODUCTION 

Climate is the primary constituent influencing agricultural productivity (Adams et al. 1998). Given 

the crucial role that agriculture plays in food security, there are growing concerns about the effects 

of climate change on crop production (Matsei 2016). Climate change is primarily characterised by 

increased weather variability, which includes unreliable rainfall, increased temperatures and the 

increased frequency of extreme weather conditions (Jones, Singels & Ruane 2015). Farmers have 

had to adapt to these changes to maintain yields (Bryan et al. 2009). A variety of adaptation 

methods are employed by farmers, including the use of agricultural nets (Howden et al. 2007). 

These nets are used to protect crops from sunburn, wind, intense rainfall, hail and pests, which all 

contribute to losses in crop yield and quality (Briassoulis, Mistriotis & Eleftherakis 2007).  

Remote sensing can provide timely and accurate images of large areas, thus making it an 

indispensable tool for mapping, monitoring and managing agricultural activities (Atzberger 2013). 

Some of the applications of remote sensing in agriculture are the estimation of water stress in 

plants, the assessment of plant health and the determination of crop yield which all provide 

essential information to maintain a successful agricultural sector (Mulla 2013). However, the 

introduction of agricultural nets has limited the capabilities of remote sensing in the agricultural 

sector. For instance, Van Niekerk et al. (2018) used remote sensing to quantify water use of 

irrigated crops, but they had to exclude crops grown under agricultural nets due to the nets’ effect 

on spectral reflection and the uncertainties they cause in estimating evapotranspiration.  

Agricultural nets are made from plastic thread woven or knitted to form a regular porous geometric 

structure which allows the free movement of fluids (Castellano et al. 2008). Given this broad 

definition, the diverse nature of agricultural practices and the variety of applications that 

agricultural nets are used for, the physical properties of these nets vary greatly (Briassoulis, 

Mistriotis & Eleftherakis 2007). Consequently, agricultural nets are difficult to identify, classify 

and map using remote sensing, and no robust methodology for mapping agricultural nets exists as 

yet. Accurate maps of agricultural areas, crops and activities, including the use of agricultural nets, 

will aid the effective management of natural and agricultural resources, ultimately contributing to 

food security and economic growth.  

1.1 AGRICULTURAL NETS 

Protected agriculture involves the modification of the natural environment to optimize conditions 

for plant growth. These modifications have undergone a rapid spatial expansion in recent years to 

cover more than 500 000 hectares worldwide (Agüera, Aguilar & Aguilar 2008). The 

modifications can be divided into three main categories, namely greenhouses, plastic tunnels and 
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agricultural nets (Jensen & Malter 1995). Traditionally, glass-covered greenhouses were the most 

popular modification used in agriculture. However, the advancement of plastic technologies has 

led to the rapid adoption of plasticulture, a term used to describe the practice of plastic-covered 

agriculture (Levin et al. 2010).  

Agricultural nets constitute a large part of plasticulture and they have gained popularity as a less 

expensive alternative to greenhouses and tunnels, covering some 61 800 hectares of crops in 

Europe (Scarascia-Mugnozzo, Sica & Russo 2011). These nets have a variety of uses and are 

therefore characterised by various threading patterns, plastic materials, weights, colours, shading 

factors, durabilities, porosities, air permeabilities and breaking strengths (Castellano, Candura & 

Scarascia Mugnozza 2008). Consequently, the nets interact with electromagnetic radiation (EMR) 

in slightly differing ways that have implications for the development and mapping of crops (Levin 

et al. 2010). Previous research has mainly investigated the reflective and transmissive properties 

of nets as these are most relevant for agricultural and remote sensing applications. Agricultural 

nets interact with both diffuse and direct radiation (Al-Helal & Abdel-Ghany 2011). Diffuse 

radiation is electromagnetic energy that has been scattered by the atmosphere and therefore results 

from the atmosphere’s inherent illumination, whereas direct radiation is electromagnetic energy 

that is directly produced by an active sensor or the sun (Liu & Jordan 1960).  

Scarascia-Mugnozzo, Sica & Russo (2011) investigated the different types of plastic material that 

are used to make agricultural nets in Europe and they found that polyethene (PE) and 

polypropylene (PP) were the most popular groups of material used. They determined that the 

unique properties of each plastic group significantly affected the transmissive and reflective 

properties of the agricultural nets, resulting in distinct spectral responses in different regions of the 

electromagnetic spectrum. They also noted that newer technologies were applying the unique 

properties of certain plastic materials to create nets with specific photoselective and 

photoluminescent properties. Hemming et al. (2008) found that the spectral characteristics of 

agricultural nets were significantly affected by the porosity of the nets and the angle of incident 

radiation. They observed that the spectral responses of agricultural nets change depending on the 

season and time of day, as well as the shape and thickness of the netted structure.  

Al-Helal & Abdel-Ghany (2011) examined the effect of incidence angle and time of day on the 

spectral characteristics of agricultural nets. They concluded that the colour of the nets and the angle 

of illumination affected the transmission and reflection of the radiation more than the porosity, 

with brighter colours and a higher incident angle producing higher reflectance. Shahak et al. (2004) 

studied the effect of net colour on the transmissive and reflective properties of the nets. The 

coloured (red, blue or yellow) nets showed varied responses in the visible portion of the spectrum, 
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while the spectral responses of neutral-coloured (black, white or grey) nets were more 

homogenous.  However, both the coloured and neutral nets showed similar reflective responses in 

the near-infrared (NIR) portion of the electromagnetic spectrum. The transmittance of all the nets 

were wavelength-dependent and increased as the wavelength increased. Similar findings were 

reported by Castellano, Russo & Mugnozza (2006) and Espí et al. (2006). A limitation of these 

studies was that wavelengths beyond 850 nm (NIR) were not considered. Sica & Picuno (2008) 

extended the range to 2500 nm and found an additional absorption feature around 1800 nm which 

could be utilized by remote sensors to identify agricultural nets. Understanding the spectral 

properties of plastic-covered agriculture, allow these properties to be exploited to map plasticulture 

using remote sensing. The following section gives a brief introduction to optical remote sensing 

and examines how optical sensors have been used to map plasticulture.  

1.2 OPTICAL REMOTE SENSING FOR MAPPING PLASTICULTURE 

Remote sensing applications use different types of sensors, of which optical and synthetic aperture 

radar (SAR) sensors are common. The optical type include air- or space-borne sensors that rely on 

the visible to short-wave infrared (SWIR) portion of the electromagnetic spectrum to capture 

information about the earth’s surface (Campbell & Wynne 2011). These optical sensors have 

become indispensable for mapping and monitoring land cover (Lautenbacher 2006) but the 

standard techniques used for land cover mapping are often less effective for mapping agricultural 

nets (Agüera, Aguilar & Aguilar 2008). Optical sensors can have a small number of discrete bands 

(multispectral) or a large number of contiguous bands (hyperspectral) (Campbell & Wynne 2011). 

Multispectral Landsat imagery has been widely used for mapping plasticulture (Lanorte et al. 

2017; Levin et al. 2010; Novelli et al. 2016; Novelli & Tarantino 2015). This high-resolution 

imagery is freely available, it has global coverage and it is useful for mapping land cover (Gibson 

& Power 2000). Lanorte et al. (2017) mapped plastic films and nets using Landsat-8 imagery. The 

classification achieved a user’s accuracy of 87% and a producer’s accuracy of 97% for the nets 

class. However, their study was limited by the small size and homogeneity of the study area. 

Novelli & Tarantino (2015) had earlier used Landsat-8 imagery to map agricultural nets involving 

four spectral indices, namely the normalized difference vegetation index (NDVI), the rescaled 

brightness temperature (RBT) index, the plastic surface index (PSI) and the normalized difference 

sandy index (NDSI). All the test sites achieved overall accuracies above 82%, with NDVI and PSI 

making significant contributions to these accuracies. Levin et al. (2010) compared the use of 

AISA-ES hyperspectral imagery and Landsat-7 ETM+ imagery for mapping agricultural nets. The 

hyperspectral imagery was able to use absorption features at 1218 nm, 1732 nm and 2313 nm in 

combination with NDVI to achieve a classification accuracy of 90%. The lower spectral and spatial 
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resolutions (30 m) of the Landsat-7 imagery led to a classification accuracy that was significantly 

lower than that of the hyperspectral imagery. Novelli et al. (2016) compared the use of Landsat-8 

imagery and Sentinel-2 imagery for mapping plastic greenhouses. They followed an object-based 

approach with several spectral indices, including NDVI and the plastic-mulched land cover index 

(PMLI). Sentinel-2 significantly outperformed Landsat-8, owing the former’s higher spatial 

resolution. Based on this outcome, Novelli et al. (2016) speculated that Sentinel-2 imagery could 

be used to map other types of plasticulture. Considering that Sentinel-2 imagery has not been used 

to map agricultural nets, the following section will discuss the properties of Sentinel-2 imagery 

that present this sensor as a viable source of imagery for this application. 

1.3 SENTINEL-2 IMAGERY FOR LAND COVER CLASSIFICATION 

Sentinel-2 is a high-resolution, space-borne sensor that captures multispectral imagery in the 

visible to SWIR portion of the electromagnetic spectrum. The onboard multispectral instrument 

(MSI) of Sentinel-2 acquires 13 spectral bands of which four have a spatial resolution of 10 m, six 

have a spatial resolution of 20 m and each of the remaining three has a spatial resolution of 60 m 

(Wang et al. 2016). The constellation of two satellites provides freely available data every five 

days with global coverage (Drusch et al. 2012).  

The mapping of agricultural nets requires that the nets’ signatures be separated from the 

surrounding agricultural and other land covers (Novelli & Tarantino 2015) because the spectral 

signatures of agricultural nets consist of the combined signatures of the underlying crops and the 

plastic net. Similarly, urban mapping requires the detection of objects that represent a spectral 

mixture of artificial material and vegetation (Levin et al. 2010). Consequently, the extant studies 

combined the methods used to map land cover in agricultural and in urban areas to classify 

agricultural nets (Levin et al. 2010).  

The Sentinel-2 sensor has three bands in the red edge (RE) region, namely bands five to seven 

which are useful for vegetation mapping (Clevers & Gitelson 2012). The RE refers to the region 

of extreme change in the reflection of healthy vegetation measured between the red and NIR 

portions of the electromagnetic spectrum (Horler, Dockray & Barber 1983). Immitzer et al. (2016) 

explored the suitability of Sentinel-2 imagery for the classification of land cover in agricultural 

and forested areas. They specifically aimed to determine the importance of each Sentinel-2 band 

for this application. They found that band 5, the first RE band, was the most important feature for 

detecting agricultural land cover and the third most important for detecting forested land cover. 

The SWIR bands (bands 11 and 12) ranked among the top five most important bands for both 

agriculture and forest classifications. They determined that Sentinel-2 imagery was highly 

effective for large-scale land cover classification. Belgiu & Csillik (2018) later used multitemporal 
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NDVI imagery, derived from Sentinel-2 imagery, to classify agricultural land and achieved 

accuracies exceeding 85% for two of their three study sites. However, they recommended that 

NDVI should be used in addition to the spectral bands and not as the only classification feature. 

Maponya, Van Niekerk & Mashimbye (2020) used multitemporal Sentinel-2 imagery for the 

mapping of crop types. They found that the multitemporal imagery produced higher accuracies 

than single-date imagery. Other studies that have demonstrated the suitability of Sentinel-2 

imagery for land cover classification are those by Varga et al. (2018) and Prins & Niekerk (2020). 

Lefebvre et al. (2016) proposed the use of Sentinel-2 imagery to update an existing urban data set, 

which had originally been created using Landsat-8 imagery. The results showed that both the 

spectral and the spatial characteristics of the Sentinel-2 imagery were effective for mapping urban 

land cover. They also found that the Sentinel-2 imagery improved the geometric accuracy of the 

existing Landsat-8 classification. Pesaresi et al. (2016) compared the use of Sentinel-2 and 

Landsat-8 imagery for mapping urban land cover to detect built-up areas in Italy. Sentinel-2 was 

shown to outperform Landsat-8 and it was concluded that Sentinel-2 imagery was highly effective 

for mapping highly heterogenous landscapes due to the sensor’s high spatial and spectral 

resolutions. The aptitude of Sentinel-2 imagery for mapping plastic greenhouses, agriculture and 

complex urban landscapes allude to viability of Sentinel-2 imagery for mapping agricultural nets. 

South Africa has a prominent need for accurate maps of agricultural areas that include agricultural 

nets. The following section expands on the role of agricultural nets within the agricultural sector 

of South Africa. 

1.4 AGRICULTURAL NETS IN SOUTH AFRICAN 

Agriculture is a prominent sector in the South African economy that contributed more than R80 

billion to the country’s gross domestic product (GDP) in 2017 (Matsei 2016). With the country’s 

population projected to grow by two percent per year (SSA 2017) and the adverse effects of climate 

change threatening our agricultural productivity (SANBI 2013), South Africa’s food security is 

under threat (Matsei 2016). Agricultural nets are considered to play a major role in the adaptive 

strategies needed to ensure food security and economic development in the country (Pienaar 2018). 

However, where other countries such as Spain (Aguilar et al. 2016), Italy (Blanco et al. 2018) and 

Israel (Levin et al. 2010) have proactively implemented programmes to map and analyse the 

efficacy of agricultural nets, South Africa is yet to investigate this. Consequently, only limited 

information is available about the current extent, the location and the effect on crop yield of 

agricultural nets within South Africa. Figure 1.1 shows what agricultural shade nets used in South 

Africa typically look like. 
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Adapted from Knitex (2020) 

Figure 1.1 Agricultural shade nets covering crops in the Western Cape province, South Arica 

1.5 PROBLEM FORMULATION 

Accurate and complete maps of agricultural activities are needed for effective management and 

policy implementation in the agricultural sector. Remote sensing is a proven method for accurately 

mapping large agricultural areas. However, the diverse spectral properties of agricultural nets 

make them difficult to map using remote sensing. To successfully map these nets it is important 

to understand their spectral dynamics and to experiment with a range of classification strategies. 

Several authors have studied the spectral properties of agricultural nets (Agüera, Aguilar & Aguilar 

2008; Hemming et al. 2008; Levin et al. 2010). They have published that three important factors 

affect their spectral properties, namely the types and seasonal variations of the crops under the 

nets, the physical characteristics of the nets, and the angle of illumination (Levin et al. 2010). The 

accurate mapping of nets therefore requires an understanding of the spectral dynamics of 

agricultural nets and the ways how the spectral signatures of nets are affected by underlying crops.  

Several classification approaches have been followed to map plasticulture (Aguilar et al. 2016; 

Carvajal et al. 2006; Hörig et al. 2001). Generally, the use of imagery with high spatial resolutions 

lead to the most accurate classification results. Very-high-resolution imagery acquired with 

WorldView-3 and QuickBird is particularly effective, but this imagery is expensive so limiting its 

viability for mapping large areas (Carleer, Debeir & Wolff 2005). High-resolution imagery from 

Landsat-8 and Sentinel-2 have been accessed for mapping plasticulture (Levin et al. 2010; Novelli 

et al. 2016). The spatial resolution of Landsat-8 imagery proved to be inadequate, although 

ancillary classification features, such as NDVI, were found to improve accuracy (Levin et al. 

2010). Sentinel-2 imagery yielded higher accuracies than those of Landsat-8 imagery (Novelli et 

al. 2016). Sentinel-2 imagery has been proven useful in diverse land cover mapping applications, 

including the mapping of plastic greenhouses (Novelli et al. 2016), but has not yet been evaluated 

for mapping agricultural nets. Hence a clear need exists to access the efficacy of spectral indices, 
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texture features and different classification algorithms for mapping agricultural nets using 

Sentinel-2 imagery.  Little is also known about the spectral signatures of nets used in South Africa 

and how these signatures change with the seasonal variations of underlying crops. Such 

information is essential to developing a strategy for mapping nets in South Africa. This research 

therefore intends to answer the following research questions: 

1. What are the spectral properties of agricultural nets as captured by the Sentinel-2 MSI? 

2. How do the underlying crops affect the spectral signatures of agricultural nets? 

3. Which spectral indices, texture features and classification algorithms are the most effective 

for mapping agricultural nets using Sentinel-2 imagery? 

4. To what extent can Sentinel-2 be used to cost-effectively map specific crops grown under 

nets at regional (provincial) scale? 

The information gained by answering these questions will add to the body of knowledge required 

to develop a robust methodology for mapping the distribution of agricultural nets across South 

Africa. The following section will outline the aims and objectives through which the research 

questions will be addressed.  

1.6 RESEARCH AIMS AND OBJECTIVES 

The primary aim of this study is to develop a spectral profile of agricultural nets using Sentinel-2 

imagery and the secondary aim is to demonstrate how the spectral profile can be used to map 

agricultural nets and the specific crops grown under the nets. To achieve these aims, six objectives 

are pursued: 

1. review the relevant literature on the properties of agricultural nets, multispectral 

classification techniques and the approaches to accuracy assessment; 

2. acquire appropriate remotely sensed data and collect suitable reference data for spectral 

analysis, classifier training and accuracy assessment; 

3. compile a spectral profile for agricultural nets in the Western Cape using Sentinel-2 

imagery; 

4. determine the influence underlying crops have on the spectral signatures of agricultural 

nets; 

5. develop and demonstrate a method for differentiating agricultural nets in the Western Cape 

from other land covers using Sentinel-2 imagery;  
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6. interpret the results within the context of finding operational solutions for mapping 

agricultural nets in South Africa. 

A systematic research design was created to complete the objectives and address the aims of this 

study. The research will be presented in five chapters which are outlined with the research design 

in the following section. 

1.7 RESEARCH DESIGN 

The research is both experimental (Chapter 3) and methodological (Chapter 4) in nature. Chapters 

2 and 3 report on the investigation of the spectral properties of nets and the experimentation with 

a range of different classification procedures respectively. The results of these exercises are used 

to make recommendations for developing robust operational procedures for mapping agricultural 

nets in the Western Cape.  Empirical data, comprising digital satellite imagery, and quantitative 

data, comprising point (locational) samples of agricultural nets, were collected. The satellite data 

were used to construct a spectral profile of areas covered by agricultural nets and to develop a 

method for the classification of the nets. The point samples were used as reference data. Qualitative 

and quantitative methods were used to assess the accuracy of the classification methods.  

The research is reported in five chapters as shown in Figure 1.1. Chapter 1 presents the research 

background, the research problem, the research aims and objectives, and the research design. In 

Chapter 2 the theory and practice relating to remote sensing, preprocessing techniques, 

classification algorithms and methods, Sentinel-2 applications and approaches to accuracy 

assessment are covered and reviewed. Thus Chapter 2 addresses Objective 1 and lays the 

theoretical foundations for Chapters 3 and 4. Chapters 3 and 4 both relate to Objective 2. The use 

of digital satellite (Sentinel-2) data for classification are described. Chapter 3 covers the use of 

Sentinel-2 imagery to construct spectral signatures of agricultural nets in the Western Cape. These 

signatures are used to better understand the spectral properties of nets and to investigate the effects 

of seasonal variation on the separability of nets, thereby addressing Objectives 3 and 4. Chapter 4 

documents the use of Sentinel-2 data classification procedures for mapping table grapes under nets 

in the Western Cape, as envisaged by Objective 5. Quantitative and qualitative assessments of the 

classifications are reported. Chapters 3 and 4 are written as publication-ready, stand-alone articles. 

Duplication among the chapters, particularly in terms of the literature reviewed, the study area 

descriptions and data collection overviews, is consequently unavoidable. In Chapter 5 the study’s 

findings are summarized, the research aims and objectives are revisited, the study’s limitations are 

identified, recommendations are made and conclusions are drawn (Objective 6). 
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Figure 1.1 Research design  

This research intents to address the need for accurate maps of agricultural nets in South Africa. 

Given the diverse agricultural practices in South Africa, the scope has been narrowed to focus on 

agricultural nets in the Western Cape and the following section provides information about the 

agricultural practices of this province. 

1.8 STUDY AREA  

The research will focus on agricultural nets in the Western Cape province of South Africa (Figure 

1.2). The Western Cape covers an area of 12 938 600 ha of which 79% is used for agriculture as 

grazing and cultivated fields (DEADP 2011). The province has a typical Mediterranean climate 

characterised by warm, dry summers and mild winters with high rainfall (Cowling et al. 1996).  
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Adapted from Pienaar (2018) 

Figure 1.2 Location of known agricultural nets in the Western Cape province 

There are four major agricultural regions in this province: the Cape South Coast which is known 

for wheat, barley and intensive vegetable production; the Klein Karoo which mainly produces 

stone fruit, table grapes and lucerne; the Boland which primarily produces wine grapes and stone 

fruit; and the Swartland which is a major wheat-growing area (Vink & Tregurtha 2003). A 

prominent feature in these agricultural areas is the use of agricultural nets, which are the focus of 

this research. 

1.9 SYNOPSIS 

The current chapter has motivated the need for accurate, large-scale maps of agricultural areas, 

including agricultural nets, in South Africa. Research gaps around the spectral signatures of 

agricultural nets and the use of Sentinel-2 imagery for mapping nets have been identified. The 

reasons behind the selection of Sentinel-2 imagery as the focus of this research has been discussed. 

The aims and objectives required to address the research gaps have been stated and a clear research 

design and focus area have been outlined. The following chapter will investigate the literature that 

relate to the current study. 
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CHAPTER 2:  MAPPING PLASTICULTURE USING REMOTE 

SENSING: A LITERATURE REVIEW 

A clear understanding of the concepts and theories pertaining to classification approaches, remote 

sensing techniques and spectral signatures is an essential prelude to mapping agricultural nets 

using remote sensing. In Chapter 2 these concepts are discussed and the relevant literature is 

reviewed in the pursuit of developing robust procedures for the mapping of agricultural nets at 

regional scales. 

2.1 PRINCIPLES OF REMOTE SENSING 

Remote sensing is the science of acquiring information about an object, scene or phenomenon 

without interacting with the intended target (Tempfli et al. 2009).  Information is obtained by 

detecting and recording reflected energy, storing this data and interpreting the produced image 

(Lillesand, Kiefer & Chipman 1994). The process of remote sensing relies on five mechanisms, 

namely the emission of energy; the propagation of the energy through the atmosphere, the 

interaction of the energy with the target, the recording of the reflected energy and the interpretation 

and analysis of the recorded data (Campbell & Wynne 2011). In each of the following subsections 

a brief exposition is given of concepts relating to remote sensing and its application to crop 

mapping. They are, in order, the electromagnetic spectrum, atmospheric windows, active and 

passive sensors, digital imagery and image classification. 

2.1.1 Electromagnetic spectrum 

Remote sensing requires an energy source to capture imagery. This energy specifically refers to 

electromagnetic radiation (EMR) which is primarily produced by the sun (Campbell & Wynne 

2011). EMR is a type of energy consisting of an electrical field and a magnetic field that oscillate 

at a perpendicular angle to the direction of propagation (Campbell & Wynne 2011). The electric 

and magnetic fields can both be conceptualized as waves that travel at the speed of light which is 

3×108  m/s. EMR is classified by frequency and wavelength. The frequency of a wave, measured 

in hertz, is the number of waves that pass a fixed point in space in one second. Wavelength, 

measured in metres, is the length of a single wave cycle (Tempfli et al. 2009). The range of EMR 

is known as the electromagnetic spectrum (Lillesand, Kiefer & Chipman 1994). Table 2.1 lists the 

different divisions (principal regimes) and the corresponding wavelength intervals of the 

electromagnetic spectrum (Campbell & Wynne 2011). 
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Table 2.1 Principal regions of the electromagnetic spectrum 

Division Wavelength range 

Gamma rays < 0.03 nm 

X-rays 0.03 – 300 nm 

Ultraviolet radiation 0.30 – 0.38 µm 

Visible light 0.38 – 0.72 µm 

Near-infrared 0.72 – 1.30 µm 

Mid-infrared 1.30 – 3.00 µm 

Far-infrared 7.00 – 1000 µm 

Microwave region 1 mm – 30 cm 

Radio region ≥ 30 cm 

Adapted from Campbell & Wynne (2011) 

The regions, shown in Table 2.1, that are used for remote sensing are the visible light, near-

infrared, mid-infrared and microwave regions as these regions correspond to atmospheric windows 

(Campbell & Wynne 2011). The concept of atmospheric windows will be explained in Subsection 

2.1.2. 

2.1.2 Atmospheric windows 

Emitted EMR must travel through layers of atmosphere to reach target objects on the earth’s 

surface (Lillesand, Kiefer & Chipman 1994). Atmospheric particles interact with the EMR through 

several mechanisms, including scattering and absorption (Campbell & Wynne 2011).  

Atmospheric scattering is characterised by the redirection of EMR by atmospheric particles 

(Lillesand, Kiefer & Chipman 1994). The degree to which the path of the EMR is altered depends 

on the wavelength of the incoming radiation, the size and characteristics of the particles and the 

distance that the EMR must travel to reach the earth’s surface. Scattering causes the atmosphere 

to have its own illumination which enables remote sensors to measure brightness from both the 

target object and the inherent illumination of the atmosphere (Kaufman et al. 1997).  

Atmospheric absorption occurs when atmospheric particles prevent or strongly attenuate the 

propagation of EMR through the atmosphere (Campbell & Wynne 2011). The degree of absorption 

is dependent on the wavelength of the incoming radiation. Consequently, certain portions of the 

electromagnetic spectrum are unaffected or only partially affected by atmospheric absorption 

(Lillesand, Kiefer & Chipman 1994). These portions are called atmospheric windows (Figure 2.1) 

and are utilized in remote sensing as they allow EMR to freely move through the atmosphere and 

to be recorded by sensors (Tempfli et al. 2009). Figure 2.1 shows the percentage of energy that is 
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allowed to pass through the atmosphere (transmission) without being absorbed for each region of 

the electromagnetic spectrum.  

 

Source: Kuplich (2001) 

Figure 2.1 Percentage of atmospheric transmission for each region of the electromagnetic spectrum  

The atmospheric windows are located in areas of high transmission (Ketsdever 2014) and the three 

major atmospheric windows, shown in Figure 2.1, occur in the visible, infrared and microwave 

regions of the electromagnetic spectrum (Campbell & Wynne 2011). The visible and infrared 

regions are used by active sensors and the microwave region is used by passive sensors  (Lillesand, 

Kiefer & Chipman 1994). Subsection 2.1.3 explains the differences between active and passive 

sensors.  

2.1.3 Active and passive sensors 

Sensors that record reflected or re-emitted solar energy are called passive sensors (Lillesand, 

Kiefer & Chipman 1994), whereas active sensors produce and record their own source of energy 

(Tempfli et al. 2009). Both sensor types record the intensity of certain wavelength regions to 

produce digital images (described in Subsection 2.1.4). Passive sensors are generally associated 

with optical sensors, whereas active sensors are associated with microwave sensors (Turner et al. 

2003). Optical remote sensing typically utilizes wavelengths between 0.4 and 14 µm which include 

the visible, near-infrared, mid-infrared and far-infrared (thermal) portions of the electromagnetic 

spectrum (Figure 2.1). EMR from these regions primarily originate from reflected solar energy, 

although a portion of the far-infrared section consists of re-emitted solar energy (Turner et al. 

2003). Microwave sensors are active sensors that use radar waves in the microwave portion. The 

region of microwave radiation is significantly larger than the optical wavelengths and ranges from 

0.75 cm to 1 m (Turner et al. 2003). Both active and passive sensors record and store their 
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respective types of energy as digital values stored in a digital image. This process is discussed in 

the following subsection. 

2.1.4 Digital imagery 

Modern remote sensors use specialized instruments to systematically scan the earth’s surface to 

create a regular grid of values that can be used to create a coherent digital image (Campbell & 

Wynne 2011). Digital images consist of an array of pixels each containing a single value pertaining 

to information about a specific location on the earth (Gibson & Power 2000). These values are 

usually stored as binary integers in the range 0 to 255 and are known as digital numbers (Morisette, 

Privette & Justice 2002). The specific characteristics of a pixel and its corresponding digital 

number are dependent upon the resolution of the sensor used to capture the pixel (Turner et al. 

2003). The image resolution of a sensor is dependent on four separate aspects, namely spatial 

resolution, spectral resolution, radiometric resolution and temporal resolution (Campbell & Wynne 

2011).   

Spatial resolution is the measure of the smallest discernible object within an image and is primarily 

determined by the instantaneous field of view (IFOV) (Liang, Li & Wang 2012). The IFOV refers 

to the zone of visibility of a sensor at a given time and it determines the visible area on the ground 

(Morisette, Privette & Justice 2002). This area is called the resolution cell which determines the 

maximum spatial resolution of the sensor (Lillesand, Kiefer & Chipman 1994). Spatial resolution 

is measured in metres on the ground. Low spatial resolution refers to images where only large 

objects are visible, while high spatial resolution refers to an image where smaller objects are visible 

(Tempfli et al. 2009). ESA (2018) classifies sensors with a spatial resolution greater than 60 m as 

low-resolution, 15 m to 30 m as medium-resolution, 5 m to 15 m as high-resolution, and 30 cm to 

5 m as very-high resolution. 

Spectral resolution represents the sensor’s ability to divide a received signal into wavelength 

intervals (Campbell & Wynne 2011). Therefore, the spectral resolution determines the number of 

bands that are provided by a sensor (Tempfli et al. 2009). A sensor with narrow intervals for each 

band is considered to have fine spectral resolution (Gibson & Power 2000). Most optical systems 

record EMR from more than one portion of the electromagnetic spectrum so that these systems are 

classified as either multispectral or hyperspectral. Multispectral sensors capture fewer bands 

within several separate regions of the electromagnetic spectrum, whereas hyperspectral sensors 

collect many narrow, near-contiguous bands (Liang, Li & Wang 2012). 

Radiometric resolution is a sensor’s ability to distinguish different brightness values within a scene 

(Jensen 2016). Sensors that have course radiometric resolution are less sensitive to small changes 
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in brightness and typically capture a scene using a small number of intensity values as opposed to 

an image with fine radiometric resolution that uses a large number of values (Lillesand, Kiefer & 

Chipman 1994). Most digital images use 255 different brightness values to capture a scene 

(Campbell & Wynne 2011). 

Temporal resolution describes the length of time that passes between successive acquisitions of a 

single scene by a sensor (Liang, Li & Wang 2012). The ability of a sensor to capture the same 

scene at different periods allows a sensor to be used for monitoring changes on the earth’s surface. 

These types of images are called multitemporal images (Tempfli et al. 2009). 

2.1.5 Image classification 

Image classification is the basis of many environmental and socio-economic applications of remote 

sensing (Lu & Weng 2007).  The process of image classification involves grouping pixels into 

thematic classes based on their spectral properties (Campbell & Wynne 2011).  Modern image 

classification involves a computer program that recognizes the relationship between the spectral 

information within an image and the real-life phenomenon represented by the spectral information 

(Li et al. 2014). Computers recognize spectral information through unsupervised or supervised 

learning. Unsupervised image classification is the process by which computers group pixels 

together based on similar features without the use of categorized training samples (Olaode et al. 

2014). Features refer to the spectral attributes used to group the pixels. Unsupervised classification 

algorithms use clustering whereby pixels are conceptualized as vectors with multiple spectral 

values and grouped according to their distribution in image space (Tempfli et al. 2009). Three 

popular unsupervised classifiers used in remote sensing are ISODATA, k-means and modified k-

means. Supervised classification uses user-defined samples of known identity to classify pixels of 

unknown identity (Campbell & Wynne 2011). Supervised algorithms include either statistical 

methods, such as minimum distance and maximum likelihood, or modern non-parametric, machine 

learning (ML) classifiers such as decision trees (DT), k-nearest neighbour (KNN), random forest 

(RF), neural networks (NN) and support vector machines (SVM). 

Image classification can be conducted using either a per-pixel or  an object-based approach (Li et 

al. 2014). Traditional per-pixel classification methods, also known as per-pixel image analysis 

(PPIA), group individual image pixels into thematic classes. However, as remote sensors evolved 

and improved in spatial resolution, per-pixel methods became incapable of handling the internal 

variability of complex scenes (Dey, Zhang & Zhong 2010). This led to the development of object-

based image analysis (OBIA) that aggregates spectrally homogenous pixels to form image objects 

using image segmentation algorithms. These image objects are then individually classified based 

on the spectral characteristics of the entire object (Blaschke 2010). Image segmentation algorithms 
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are designed to divide an image into contiguous, spectrally homogenous groupings of pixels 

known as image objects (Espindola et al. 2006). Dey, Zhang & Zhong (2010) reviewed the 

suitability of several segmentation algorithms for use in optical remote sensing. They divided the 

segmentation algorithms into two categories, namely model-driven (top-down) algorithms and 

image-driven (bottom-up) algorithms.  

Image-driven segmentation algorithms construct initial objects based solely on pixels having 

similar values and then use the statistical features of the objects to guide the segmentation (Tong 

et al. 2012). These include edge-detection algorithms, which are usually used for feature 

extraction, and the watershed segmentation algorithm (Dey, Zhang & Zhong 2010). Watershed 

segmentation regards an image as a topological surface and divides regions into theoretical 

catchment regions based on the pixel values (Beucher 1992). Although this algorithm is rarely 

used in remote sensing as it often causes oversegmentation, it is useful for segmenting images 

before applying multiresolution segmentation (MRS) (Beucher 1992).  

Model-driven segmentation algorithms assume that objects exist in a predetermined pattern. The 

algorithm uses prior knowledge of object features (texture, shape or colour) to guide the 

segmentation (Cremers, Sochen & Schnörr 2006). A model-driven algorithm that has gained 

popularity for remote sensing applications is MRS (Dey, Zhang & Zhong 2010). This algorithm 

begins with an initial object (which can be a single pixel) and merges adjacent objects based on 

similar attributes (Darwish, Leukert & Reinhardt 2003). A user-defined homogeneity threshold 

that incorporates scale, shape and compactness, determines the similarity of image objects. The 

incorporation of these features makes the algorithm especially effective for high-resolution 

imagery and complex scenes (Dey, Zhang & Zhong 2010).  

The preceding sections covered the fundamental theoretical concepts of image classification using 

remote sensing. In Section 2.2 the properties and procedures for sourcing and preprocessing 

Sentinel-2 imagery will be discussed in the context of mapping plasticulture.  

2.2 AN OVERVIEW OF SENTINEL-2 IMAGERY 

The various sensors that have been used to map plasticulture were discussed in Chapter 1.  Several 

studies found that very-high-resolution imagery was effective for mapping plastic-covered 

agriculture (Agüera, Aguilar & Aguilar 2008; Aguilar et al. 2015; Aguilar et al. 2016; Novelli et 

al. 2016; Tarantino et al. 2012). But the high cost of very-high-resolution imagery makes it 

expensive to map large areas using this imagery (Levin et al. 2010). As a more cost-effective 

option, Landsat imagery was investigated to map agricultural nets. Unfortunately, the spatial 

resolution (30 m) of Landsat imagery was too low to map the nets with the required accuracy. 
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Novelli et al. (2016) established that Sentinel-2 imagery performed better than Landsat-8 imagery 

for mapping plastic greenhouses and they suggested the use of Sentinel-2 imagery for mapping 

other agricultural nets. The Sentinel-2 sensor provides free, high-resolution imagery with global 

coverage and presents a cost-effective option for mapping plasticulture. However, Sentinel-2 

imagery has not yet been used to map agricultural nets, thus presenting the gap that warranted this 

research. The following subsections briefly discuss the properties of Sentinel-2 imagery and 

procedures for sourcing and preprocessing Sentinel-2 imagery.  

2.2.1 Properties of Sentinel-2 imagery 

The Sentinel-2 sensor provides multispectral, high spatial resolution imagery with global coverage 

(Drusch et al. 2012).  The satellite’s orbit is sun-synchronous at 716 km above the earth’s surface 

and it has a five-day revisit period (Drusch et al. 2012). Table 2.2 records the band allocation and 

descriptions of the 13 Sentinel-2 bands. The bands have varying spatial resolutions that range from 

10 to 60 m. 

Table 2.2 Band allocation and description of Sentinel-2 imagery 

Band Band ID Spectral resolution 
(nanometres) 

Spatial resolution (metres) 

Coastal aerosol 1 433 - 453 60 

Blue 2 458 - 523 10 

Green 3 543 - 578 10 

Red 4 650 - 680 10 

Vegetation red edge 1 5 698 - 713 20 

Vegetation red edge 2 6 733 - 748 20 

Vegetation red edge 3 7 773 - 793 20 

Near-infrared (NIR) 8 785 - 900 10 

Near-infrared narrow 8A 855 - 875 20 

Water vapour 9 935 - 955 60 

Shortwave-infrared cirrus 10 1360 - 1390 60 

Shortwave-infrared 1 
(SWIR1) 

11 1565 - 1655 20 

Shortwave-infrared 2 
(SWIR2) 

12 2100 - 2280 20 

Adapted from Kramer (2002) 

The main objectives of the Sentinel-2 mission are to provide freely available imagery for three 

European mapping services and seven information services (Drusch et al. 2012). The European 

Land Monitoring Service (EUROLAND) uses Sentinel-2 imagery to monitor land cover change 
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and urban development. The Biophysical Parameter Service (BioPar) uses the imagery to classify 

continental vegetation, monitor the energy budget and model the water cycle. The Seasonal and 

Annual Change Monitoring Service (SATChMo) aims to provide seasonal, Europe-wide land 

cover data and land cover change data. The information services for which the Sentinel-2 sensor 

were designed aim to provide data for spatial planning, agri-environmental monitoring, water 

monitoring, forest monitoring, land carbon estimation, natural resource monitoring in Africa, and 

global crop monitoring (Drusch et al. 2012). Consequently, Sentinel-2 imagery has become an 

essential tool for a number of research applications, including the classification of plastic-mulched 

land cover (PML) (Lu, Tao & Di 2018) and the classification of plastic greenhouses (Aguilar et 

al. 2016). Sentinel-2 imagery can be obtained from several sourced and requires preprocessing to 

be used for land cover classification. Subsection 2.2.2 explores the sources and preprocessing 

procedures that have been used for Sentinel-2 imagery as a precursor for plasticulture mapping. 

2.2.2 Preprocessing and sources of Sentinel-2 imagery 

Preprocessing is the sequence of corrective operations conducted to prepare raw remote sensing 

imagery for analysis. The two most common operations are radiometric and geometric correction 

(Campbell & Wynne 2011). Radiometric correction ensures that the digital numbers in a scene 

accurately represent the reflected radiation from the surface (Russ 1995). These adjustments are 

necessary to address radiometric interference caused by factors like variations in illumination, 

shadows, sensor noise, sensor error, atmospheric conditions or atmospheric scattering (Campbell 

& Wynne 2011). By contrast geometric correction rectifies errors caused by the inherent 

relationship between sensor geometry and Earth geometry. This correction also converts data from 

image coordinates to real-world coordinates (Russ 1995).  

The European Space Agency (ESA) supplies Sentinel-2 imagery that has undergone different 

levels of preprocessing. Level 0 and Level 1A data products provide raw compressed and 

uncompressed data respectively. Level 1B products have been radiometrically corrected and 

converted to radiance values. Level 1B products are used to collect ground control points (GCPs) 

for geometric correction. Level 1C products consist of orthorectified top of atmosphere (TOA) 

reflectance values that have been resampled to create a regular grid of pixels. ESA provides several 

options to convert the TOA reflectance values to bottom of atmosphere (BOA) reflectance values, 

this additional step produces the Level 2A product. 

Another popular source of Sentinel-2 imagery is Google Earth Engine (GEE). GEE is a cloud-

computing platform created to aid the analysis of spatial data (Mutanga & Kumar 2019). This 

platform hosts imagery from a variety of different satellites, including both Level 1C and Level 

2A Sentinel-2 imagery (Pahlefi, Danoedoro & Kamal 2021). Level 2A products are derived from 
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the Level 1C products by running Sen2Cor, an atmospheric correction processor. This processor 

was designed specifically to transform single-date, Level 1C products, which represent TOA 

reflection, to Level 2A products that represent surface reflection (Main-Knorn et al. 2017). Lu, 

Tao & Di (2018) used Level 2A Sentinel-2 imagery, obtained from the Copernicus Open Access 

Hub, to map PML cover in Xinjiang, China. Borgogno-Mondino, Palma & Novello (2020) 

acquired Level 1C Sentinel-2 imagery from GEE and used the Sen2Cor algorithm to convert the 

digital numbers to surface values. The imagery was used to extract the spectral signatures of 

plastic-covered vineyards. Data preprocessing is an essential prelude to data analysis. The 

following sections will discuss different image analysis techniques, including image 

transformation and image classification. 

2.3 IMAGE TRANSFORMATION FEATURES USED FOR MAPPING 

PLASTICULTURE 

Image transformation describes a set of functions whereby the spectral information within a scene 

is modified to highlight specific characteristics (Campbell & Wynne 2011). The Hughes effect, 

first described by Hughes (1968), explains the decrease in accuracy that occurs when too many 

variables are considered for classification. According to Lu & Weng (2007), image transformation 

methods aid classification by addressing the Hughes effect, as these operations reduce redundant 

information by extracting pertinent spectral data to create new features. Digital image processing 

offers a nearly limitless range of image transformation techniques, including spectral indices and 

texture features (Russ 1995). Owing to their significance in plasticulture mapping, a selection of 

spectral indices is discussed in the next subsection, followed by attention given to textural features 

and feature selection.  

2.3.1 Spectral indices 

Spectral indices are linear combinations of spectral bands that indicate the relative abundance of 

features of interest (Jackson 1983). According to Jensen (2016), a spectral index must: (1) be 

scalable to indicate the abundance of a particular land cover; (2) normalize or reduce noise to allow 

consistent spatial comparison; and (3) apply to specific and measurable surface phenomena. 

Spectral indices were initially developed using simple band ratios to visualize the growth of 

vegetation. Vegetated areas present a unique spectral challenge as they represent complex scenes 

that are influenced by growth cycles, soil brightness, moisture and environmental factors (Russ 

1995). More than 40 different vegetation indices have been proposed to enhance the response of 

vegetation while reducing the influence of the above factors. Vegetation indices are based on the 

notion that vegetation has a high reflectance in the near-infrared (NIR) portion of the EMS and a 
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low reflectance in the red portion of the spectrum owing to the reaction of chlorophyll to EMR 

(Campbell & Wynne 2011). The following subsections will examine spectral indices that have 

been used for mapping plasticulture, starting with vegetation indices and then exploring indices 

relating to other land cover. 

2.3.1.1 Vegetation indices 

Basic vegetation indices are computationally simple and effective for the identification of healthy 

vegetation. However, they fail to compensate for factors such as soil brightness and atmospheric 

interference (Russ 1995). The NDVI is the most widely used basic vegetation index in remote 

sensing (Jensen 2016). The index is expressed as: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
                               Equation 2.1 

 

where  NDVI   is the normalized difference vegetation index;   

NIR   is the near-infrared band; and  

RED   is the red band.  

The NDVI is a normalized index with a range between -1 and 1, where values closer to 1 indicate 

the presence of healthy vegetation (Xue & Su 2017). Jia et al. (2014) showed that the inclusion of 

the NDVI as a feature for land cover mapping not only improved the classification accuracy by a 

statistically significant degree, but also aided in vegetation type discrimination. Belgiu & Csillik 

(2018) made use of the NDVI to decrease the dimensionality of a large multitemporal data set for 

crop classification. This approach was successful and achieved an average overall accuracy of over 

86%. Hasituya & Chen (2017) found that the NDVI contributed significantly toward increasing 

the classification accuracy while mapping PML. In contrast, Perilla & Mas (2019) found that the 

NDVI increased the confusion between vegetation, plastic greenhouses and nets.  

One limitation of the NDVI is that this index is sensitive to the effects of soil brightness, 

atmospheric brightness, cloud cover and shadow (Xue & Su 2017). These limitations led to the 

development of additional indices that consider soil and atmospheric brightness (Bannari et al. 

1995). Kaufman & Tanre (1992) proposed the atmospheric resistant vegetation index (ARVI). 

This index was based on the idea that the red band is affected by the atmosphere to a larger degree 

than the NIR band due to the difference in their wavelengths. The index compensates for 

atmospheric brightness by modifying the red band value with the difference in brightness between 

the red and the blue bands. The ARVI is expressed as: 
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𝐴𝑅𝑉𝐼 =  
𝑁𝐼𝑅−((2× 𝑅𝐸𝐷)−𝐵𝐿𝑈𝐸)

𝑁𝐼𝑅+((2× 𝑅𝐸𝐷)−𝐵𝐿𝑈𝐸)
                 Equation 2.2 

 

where   ARVI   is the atmospheric resistant vegetation index;  

NIR   is the near-infrared band;    

RED   is the red band; and  

BLUE   is the blue band.  

According to Kaufman & Tanre (1992), the ARVI shares a similar dynamic range with the NDVI, 

but it is four times less sensitive to atmospheric brightness. However, the index’s accuracy 

decreases when vegetation is sparse due to the increased effect of soil brightness (Bannari et al. 

1995). Soil brightness has a major effect on the computation of soil indices (Bannari et al. 1995). 

Consequently, indices such as the NDVI or the ARVI, which both fail to compensate for soil 

brightness, have limitations when applied to scenarios of sparse vegetation. Huete (1988) 

addressed these limitations by developing the soil-adjusted vegetation index (SAVI) that considers 

the soil characteristics of the target scene. The SAVI index is expressed as: 

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
 × (1 + L)                Equation 2.3 

 

where   SAVI   is the soil-adjusted vegetation index;  

NIR   is the near-infrared band;  

RED   is the red band; and  

L   is the relative soil constant.  

Both Panda et al. (2010) and Vani & Mandla (2017) compared the use of the SAVI to other 

vegetation indices, including the NDVI, for land cover classification. Vani & Mandla (2017) found 

that the NDVI outperformed the SAVI for indicating relative vegetation abundance in all cases, 

except for semi-arid areas. Similarly, Panda et al. (2010) concluded that the effect of soil brightness 

is negligible is cases of high vegetation abundance and found that the NDVI outperformed the 

SAVI. Liu & Huete (1995) speculated that the atmosphere and soil brightness interact with 

vegetation in a complex manner which cannot be modelled independently by indices such as the 

SAVI or the ARVI. They proposed a new index, the enhanced vegetation index (EVI), that uses a 

feedback mechanism that simultaneously compensates for atmospheric and soil brightness. The 

EVI is expressed as: 
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𝐸𝑉𝐼 = 𝐺 ×
𝑁𝐼𝑅 −𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1(𝑅𝐸𝐷)−𝐶2(𝐵𝐿𝑈𝐸)+𝐿
                Equation 2.4 

 

where   EVI   is the enhanced vegetation index;  

G   is the canopy background adjustment; 

NIR   is the near-infrared band;  

RED   is the red band;  

BLUE   is the blue image band;  

C1   is the first aerosol-resistant coefficient;  

C2   is the second aerosol-resistant coefficient; and  

L   is the canopy background adjustment factor.  

Ahmad (2012) compared the EVI, the SAVI and the NDVI for the classification of land cover. 

The EVI achieved the best classification accuracy when using coefficients values of: L = 1, C1 = 

6, C2 = 7.5 and G = 2.5. Arvor et al. (2011) employed the EVI successfully for land cover 

classification but found that the performance of the EVI was dependent on how well the coefficient 

values were able to model the target scene.  

2.3.1.2 Indices relating to other land cover types 

Indices such as the NDVI, the SAVI and the EVI are aimed at the detection of the abundance of 

vegetation. However, spectral indices can be used to detect the relative abundance of a number of 

different phenomena, such as plastic-covered agriculture (Xue & Su 2017). Tarantino et al. (2012) 

determined that the visible atmospherically resistant index (VARI) was the most important feature, 

compared to spectral bands and texture features, in mapping plastic-covered vineyards using aerial 

imagery. The VARI is expressed as: 

𝑉𝐴𝑅𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁 +𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸  
                  Equation 2.5 

 

where   GREEN  is the green band; 

RED   is the red band; and  

BLUE   is the blue band.  

The advantage of the VARI is that it only uses spectra within the visible portion of the EMS, thus 

making it applicable to a wide range of sensors, including true-colour aerial imagery. However, 
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Tarantino et al. (2012) also criticized the index as it did not use several plastic absorption features 

identified by Levin et al. (2010).  

Lu, Di & Ye (2014) proposed an index that discriminates PML in a decision-based classifier. Their 

plastic-mulched land cover index (PMLI) is expressed as: 

𝑃𝑀𝐿𝐼 =  
𝑁𝐼𝑅−𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅+𝐺𝑅𝐸𝐸𝑁
                  Equation 2.6 

 

where   PMLI   is the plastic-mulched land cover index;  

NIR   is the near-infrared band; and  

GREEN  is the green band.  

Lu, Di & Ye (2014) classified the PMLI values greater than 0.69 as PML. The classification 

achieved an accuracy of 78% for the PML class. Both the PMLI and the VARI have been criticized 

by Yang et al. (2017) for failing to capture the dynamic spectral nature of plasticulture structures 

that changes over time, is highly dependent on the crops that the structures cover and resembles 

man-made surfaces both spectrally and texturally. Yang et al. (2017) developed the plastic 

greenhouse index (PGI) to compensate for the limitations of the PMLI and the VARI. The index 

is based on the results of spectral separability analyses conducted on plastic greenhouses in the 

target scene using Landsat-8 imagery. The PGI is expressed as: 

𝑃𝐺𝐼 = 100 × 
𝐵𝐿𝑈𝐸 ×(𝑁𝐼𝑅−𝑅𝐸𝐷)

1−𝑀𝑒𝑎𝑛(𝐵𝐿𝑈𝐸+𝐺𝑅𝐸𝐸𝑁+𝑅𝐸𝐷)
               Equation 2.7 

 

where   PGI   is the plastic greenhouse index;  

NIR   is the near-infrared band;  

Blue   is the blue band; and  

RED   is the red band.  

Perilla & Mas (2019) determined that the PMLI and the PGI did not significantly increase the 

separability between surrounding land cover and protected agriculture, including agricultural nets. 

Novelli & Tarantino (2015) looked to Landsat-8 OLI and TIRS imagery to create an index that 

accounts for different types of plastic coverings for crops. The index, known as the plastic surface 

index (PSI), utilizes the thermal bands of the TIRS sensor to identify plastic coverings that increase 

the temperature over crops (Novelli & Tarantino 2015). The index is expressed as: 
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𝑃𝑆𝐼 =  
𝑅𝐸𝐷−(

𝐵𝑇+𝑆𝑊𝐼𝑅

2
)

𝑅𝐸𝐷+ (
𝐵𝑇+𝑆𝑊𝐼𝑅

2
)
                 Equation 2.8 

 

where   RED   is the red band;  

SWIR2 is the SWIR band; and  

BT   is the rescaled brightness temperature.  

BT is calculated as: 

𝐵𝑇 =  
𝑇−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥− 𝑇𝑚𝑖𝑛
                Equation 2.9 

 

where   T   is the brightness temperature;  

Tmin   is the minimum brightness temperature for the study area; and  

Tmax   is the maximum brightness temperature for the study area.  

The index contributes significantly to the separability between the plasticulture classes and the 

surrounding land cover classes. However, the use of the thermal bands limits the usability of this 

index as thermal bands are not typically available for multispectral sensors (Novelli & Tarantino 

2015). Aside from spectral indices, spectral texture is also exploited to aid image classification. A 

brief introduction of texture features and their application to mapping plasticulture is given in 

Subsection 2.3.2. 

2.3.2 Texture features 

Li et al. (2012) define image texture as the visual effect caused by spatial variation in tonal quantity 

over relatively small areas. In the field of remote sensing, a number of texture features have been 

developed to identify and analyse surface objects (Haralick, Shanmugam & Dinstein 1973).  

Haralick, Shanmugam & Dinstein (1973) proposed a set of 14 statistical texture features that 

exploit the grey-level co-occurrence matrix (GLCM) and the grey-level difference vector (GLDV) 

of imagery to extract texture features. These methods have since become the main approaches to 

texture analysis (Agüera, Aguilar & Aguilar 2008). Many scholars have used texture features to 

aid the classification of plastic greenhouses. Carvajal et al. (2006) investigated the use of texture 

features, specifically employing the GLCM method, for the per-pixel classification of greenhouses 

using QuickBird imagery. Although the addition of the texture features improved the overall 

accuracy by an average of two percent, the margin of increase was deemed insignificant compared 

to the additional processing time required to compute the texture features. They noted that the 
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texture model parameters, specifically window size, significantly affected the performance of the 

classification. Sothe et al. (2017) used texture features for mapping successional forest stages. 

They determined that a seven-by-seven pixel window size produced the best results using Sentinel-

2 imagery. Zheng et al. (2017) and Pandit, Tsuyuki & Dube (2020) also recommended a seven-

by-seven pixel window size when creating texture features for land cover classification using 

Sentinel-2 imagery. Similarly, Agüera, Aguilar & Aguilar (2008) conducted a per-pixel 

classification of plastic greenhouses using ten GLCM texture features, namely homogeneity, 

contrast, dissimilarity, mean, standard deviation, entropy, angular second moment (ASM), 

correlation, GLDV ASM and GLDV entropy. The texture features made no significant 

improvement to classification accuracy. Carvajal et al. (2006) found that most of the texture 

features did not aid the classification of greenhouses. However, the inclusion of the mean feature 

did decrease the errors of commission, and the ASM feature decreased errors of omission in the 

greenhouse class. Texture features have also been used in object-based classification of 

greenhouses. For example, Chaofan et al. (2016) compared WorldView-2 and Landsat-8 for 

mapping plastic greenhouses and found that texture features increased the accuracy by a small 

margin, but this margin was insignificant for the Landsat-8 imagery. Aguilar et al. (2014), Aguilar 

et al. (2015) and Aguilar et al. (2016) similarly concluded that texture features made no significant 

difference to classification accuracy when mapping plastic greenhouses. In contrast to these 

results, Tarantino et al. (2012) employed texture features to map plastic nets with very-high-

resolution aerial imagery. They used feature space optimization for feature selection and the ASM 

of the blue band was shown to facilitate the classification significantly.  

Spectral indices and texture features can significantly improve the spectral separability of classes 

when used with spectral bands. However, the addition of ancillary classification features can 

increase the dimensionality of feature sets which can decrease classification accuracy (Guyon & 

Elisseeff 2003). Feature selection addresses this problem and will be discussed in the following 

subsection.  

2.3.3 Feature selection 

Feature selection methods are used to reduce the dimensionality of feature sets by eliminating 

redundant features in the preparations for classification (Guyon & Elisseeff 2003). These methods 

are deemed important in modern classification practices as they improve the performance of ML 

classifiers that can be sensitive to high dimensionality. Furthermore, feature selection reduces the 

computational power and time required to classify large data sets (Ma et al. 2017). According to 

Guyon & Elisseeff (2003), feature selection methods can be grouped into three categories, namely 

wrapper, filter and embedded methods. Wrapper methods use existing ML algorithms to select 

Stellenbosch University https://scholar.sun.ac.za



 26 

features that achieve the highest classification accuracy (Stromann et al. 2019). Filters rank 

features according to a statistical metric and remove the low-scoring features. Embedded methods 

find the best preforming subset of features during classifier training  (Guyon & Elisseeff 2003).  

A number of feature selection approaches have been used to improve the accuracy of plasticulture 

classifications. Tarantino et al. (2012) used the feature space optimization (FSO) tool to select the 

optimum set of features for classifying vineyard nets using aerial imagery. The algorithm selected 

the VARI spectral index and the ASM texture feature of the blue band for classification (Tarantino 

et al. 2012). Hasituya & Chen (2017) used RF feature ranking, a wrapper method, to select features 

for mapping PML using Landsat-8 imagery. The results showed that the spectral bands were the 

most important for classification compared to the spectral indices and texture features, although 

the mean texture feature also ranked high. Specifically, the visible and SWIR1 bands were ranked 

the highest. The results also indicated that the importance of features changed throughout the 

growing season of the vegetation under the PML. Both Tarantino et al. (2012) and  Hasituya & 

Chen (2017) found that the use of feature selection methods improved the accuracy of 

classification and provided valuable insight about which features were most appropriate for the 

classification. The appropriate selection of features is highly dependent on which ML algorithm is 

used for classification (Guyon & Elisseeff 2003). In Section 2.4, several ML algorithms that have 

been used to classify plasticulture are discussed.  

2.4 MACHINE LEARNING CLASSIFIERS 

ML classifiers are a group of algorithms that construct classification models based on information 

provided by labelled training data (Talukdar et al. 2020). These models are used to classify 

unlabelled pixels into the specified thematic classes. The ability of ML classifiers to model 

complex classification problems have resulted in their extensive application in the field of remote 

sensing (Lary et al. 2016). In the following two subsections some common ML algorithms used 

for land cover classification are introduced first and then several ML classifiers for mapping 

plasticulture are compared.  

2.4.1 Introduction to machine learning algorithms 

The ML algorithms that have been applied to land cover mapping problems, including plasticulture 

mapping, are DT, RF, support vector machine (SVM) and NN. The following paragraphs outline 

each of these ML algorithms and point out their advantages and disadvantages.  

DTs are supervised classifiers that use a series of binary rules to assign pixels or objects to classes 

(Safavian & Landgrebe 1991). Univariant DTs consider a single feature at decision nodes, whereas 

a multivariant DT considers multiple features at decision nodes (Yildiz & Alpaydin 2012). DTs 
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are computationally efficient, make no-statistical assumptions about the data and can classify a 

range of different data types (Pal & Mather 2003). However, the algorithm has been criticized for 

its lack of transferability, it’s inability to classify data in high-dimensional feature space and for 

being prone to overfitting. The accuracy of the classification is also heavily dependent on the 

selection of features (Nair & Bindhu 2016).  

SVMs have become popular for a number of remote sensing applications, especially those where 

limited training data are available (Mountrakis, Im & Ogole 2011). The classifier is a supervised, 

non-parametric ML algorithm that aims to separate training samples in feature space using a 

statistical hyperplane. This hyperplane can be based on a number of kernel functions, including 

linear, polynomial or radial basis function (RBF) (Mountrakis, Im & Ogole 2011). The 

performance of  SVMs is greatly dependent on the appropriate selection of the kernel function for 

a particular application (Kavzoglu & Colkesen 2009). SVMs are sensitive to outliers and the 

performance can decrease significantly if the training data are noisy or if the classes have similar 

spectral characteristics (Mountrakis, Im & Ogole 2011).  

RF has rapidly become one of the most popular classifiers for remote sensing applications (Belgiu 

& Drăguţ 2016). RF is an ensemble classifier, because it uses a number of different models to 

conduct a classification (Waske & Braun 2009). RF uses a set of DTs, which are constructed from 

a subset of the training samples to classify objects or pixels. The training sample set is usually split 

with two thirds being used to train the classifier and the remaining one third used to validate the 

model (Belgiu & Drăguţ 2016). The two important features that separate RF classifiers from simple 

DT classifiers are: (1) each tree built by RF uses a random subset of the training samples selected 

with replacement; and (2) each node in a tree uses a random subset of features to create the binary 

split (Horing 2010). Furthermore, unlike DTs, RF is less sensitive to the input parameters, less 

prone to overfitting and automatically determines the accuracy of the model and the importance 

of the variables used (Horing 2010).   

NN is a complex ML algorithm that mimics the human brain. It uses multiple layers of decision 

nodes (resembling neurons) to classify image objects or pixels (Atkinson & Tatnall 1997). NNs 

are effective for image classification owing to their ability to classify complex data sets with 

varying statistical distributions, incorporating prior knowledge to the problem, and handling 

different data types (Atkinson & Tatnall 1997). However, NNs have been used less frequently than 

algorithms such as RF and SVM for image classification because parameter selection for NNs is 

difficult. The algorithm is also difficult to implement, it is processing intensive and the model is 

sensitive to the selection of features (Mas & Flores 2008). 
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2.4.2 Comparison of machine learning classifiers used for plasticulture mapping 

Lu, Di & Ye (2014) used a univariant DT to classify PML using the NDVI and the PMLI as 

classification features. This DT classification achieved an overall accuracy of 97% and concluded 

that DTS are effective for mapping PML. However, the study concluded that the DT model was 

not transferable and it achieved low accuracies when applied to a different scene. Aguilar et al. 

(2015) used a DT for an object-based classification of crops under plastic greenhouses. The 

classification included multitemporal Landsat images, texture features and vegetation indices to 

classify the greenhouses, achieving an overall accuracy of 81%. Two other studies that recommend 

the use of DT classifiers for mapping plasticulture are those by Aguilar et al. (2015) and Aguilar 

et al. (2016). 

Hasituya et al. (2016) used Landsat-8 imagery to test the effect of different kernel functions and 

feature sets for the classification of PML using SVMs. The linear function produced the highest 

overall accuracy of 93% using both spectral and texture features. Chaofan et al. (2016) also used 

the linear kernel for SVMs to classify plastic greenhouses with Landsat-8 imagery. The 

classification achieved an overall accuracy of 91.5%. Lanorte et al. (2017) used an SVM and 

selected the RBF as a kernel function with Landsat-8 imagery to map plastic films and nets and 

achieved an overall accuracy of 87%. Other studies in which SVMs were used for mapping 

plasticulture are those of Lu, Tao & Di (2018) and Hasituya & Chen (2017).  

RF has been extensively used to map plasticulture, including PML and plastic greenhouses 

(Hasituya et al. 2016; Hasituya & Chen 2017; Lu, Tao & Di 2018; Novelli & Tarantino 2015). Lu, 

Tao & Di (2018) compared RF and SVM for object-based mapping of PML using Sentinel-1 and 

Sentinel-2 imagery. The highest overall classification accuracy was achieved by SVM using 

spectral indices, spectral bands and texture features as input, although the difference in 

classification accuracy between RF and SVM was marginal (1.5%). The most important Sentinel-

2 features were the NDVI, band 8 and band 1. Hasituya & Chen (2017) compared RF and SVM 

for per-pixel PML mapping using Landsat-8 data and found that RF significantly outperformed 

SVM. Both classifications were carried out using EnMAP-Box, which is a tool used for image 

classification. Novelli et al. (2016) used RF for an object-based classification of plastic 

greenhouses. RF was implemented using STATISTICAv10® with 500 trees as a precautionary 

value. The method produced an accuracy of 91% using Sentinel-2 imagery for both segmentation 

and classification.  
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Carvajal et al. (2006) employed a NN to detect plastic greenhouses. The classification accuracy 

improved when texture features were used and achieved an overall accuracy of 85%. Shao & 

Lunetta (2012) found that SVM outperformed NN for land cover classification when limited 

training data was available. The results of SVM were more reliable when different features were 

used for classification. Sun et al. (2021) applied an NN to classify plastic greenhouses with 

Sentinel-2 imagery. The method achieved an average overall accuracy of 87% using single-date 

imagery and 91% using multitemporal imagery. ML algorithms have been used in both pixel- and 

object-based classification. In Section 2.4, these approaches are compared for mapping 

plasticulture.  

2.5 PER-PIXEL AND OBJECT-BASED APPROACHES FOR MAPPING 

PLASTICULTURE 

The effectiveness of object-based classification has been demonstrated for a number of 

classification applications, including plasticulture mapping (Aguilar et al. 2015; Aguilar et al. 

2016; Aguilar et al. 2018; Chaofan et al. 2016; González-Yebra et al. 2018; Lu, Tao & Di 2018; 

Novelli et al. 2016; Tarantino et al. 2012). The object-based classification approach achieved 

accuracies greater than 90% for mapping plastic nets (Tarantino et al. 2012) and plastic 

greenhouses (Aguilar et al. 2018) when using very-high-resolution imagery. However, poorer 

accuracies were achieved with low-resolution imagery. For instance, when Chaofan et al. (2016) 

used Landsat-8 imagery for the object-based classification of plastic greenhouses, the highest 

overall accuracy achieved was 85%. In attempts to improve the accuracies of plasticulture 

classifications using low-resolution imagery, several scholars have used low-resolution imagery 

in combination with very-high-resolution imagery (Aguilar et al. 2015; González-Yebra et al. 

2018; Novelli et al. 2016). Both Aguilar et al. (2015) and Novelli et al. (2016) explored 

WorldView-2 imagery during the segmentation process, after which the objects were classified 

using Landsat-8 and Sentinel-2 imagery. Novelli et al. (2016) reported a significant increase in 

classification accuracy, especially for the greenhouse class, when using WorldView-2 for 

segmentation. In following a similar approach, González-Yebra et al. (2018) used very-high-

resolution orthoimagery to create segmentation objects for plastic greenhouses and then conducted 

the classification using Landsat-8 imagery. A different method was proposed by Lu, Tao & Di 

(2018), who used both Sentinel-1 and Sentinel-2 imagery to classify PML to achieve an overall 

accuracy of 94%. 

Most authors that used object-based classificaion for plasticulture successfully applied the MRS 

algorithm for segmentation (Aguilar et al. 2015; Aguilar et al. 2016; Aguilar et al. 2018; Chaofan 

et al. 2016; González-Yebra et al. 2018; Novelli et al. 2016). However, the success rate of MRS is 
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highly dependent on the selection of appropriate parameters (Dey, Zhang & Zhong 2010). Smith 

(2010) proposed a method to optimize the selection of the scale parameter by using the RF 

algorithm. The method was used to identify three critical image object scales that were successfully 

applied to classify land cover using 11 SPOT scenes, with an average accuracy of 85%. Drǎguţ, 

Tiede & Levick (2010) developed a tool called estimation of scale parameter (ESP) to determine 

the optimal scale parameter for MRS. The tool iteratively creates image objects at different scales 

by calculating the local variance for each scale. The most appropriate scale is selected based on 

the rate of change of the local variance. The authors concluded that the method is robust and 

accurate. Novelli et al. (2016) developed an open-source tool called AssesSeg. The tool uses an 

adjusted version of the Euclidean distance 2 (ED2) supervised discrepancy measure to estimate 

the MRS segmentation parameters from Sentinel-2, Landsat-8 and WorldView-2 imagery. 

AssesSeg was subsequently applied by González-Yebra et al. (2018) to estimate the segmentation 

parameters for mapping plastic greenhouses using Landsat-5 and Landsat-7 imagery. 

Due to the major issue of parameter selection for OBIA, a number of scholars have experimented 

with per-pixel classification to map plasticulture (Agüera, Aguilar & Aguilar 2008; Carvajal et al. 

2006; Hasituya & Chen 2017; Lanorte et al. 2017; Lu, Di & Ye 2014; Novelli & Tarantino 2015; 

Yang et al. 2017). Lanorte et al. (2017), for example, mapped plastic films and nets using Landsat-

8 imagery. The classification achieved an accuracy of 95%. Yang et al. (2017) achieved an average 

overall accuracy of 92% using Landsat ETM+ imagery to map plastic greenhouses. Hasituya & 

Chen (2017) achieved an overall accuracy of 97% using multitemporal Landsat-8 imagery for 

mapping PML. Sun et al. (2021) achieved an average overall accuracy of 87% using a single 

Sentinel-2 image and 91% using multitemporal imagery when conducting a per-pixel classification 

of both PML and plastic greenhouses. In order to compare different classification procedures, 

robust methods for accuracy assessments are required. Accuracy assessment approaches will be 

explored in Section 2.6. 

2.6 ACCURACY ASSESMENT 

In the field of remote sensing, accuracy is the term used to describe the degree to which a map or 

image correctly portrays reality (Foody 2002). Accuracy assessments are required to ascertain the 

quality and usability of data for thematic classification maps (Congalton 1991). According to 

Millard & Richardson (2015) the accuracy of a classification depends on the training sample size, 

the number of classes in the classification, the sampling scheme and the accuracy metric being 

used. These factors, as they relate to land cover classification, are discussed in the following 

subsections. 
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2.6.1 Training samples 

Training and validation data, collectively known as ground truth data, are closely related and can 

be sourced from the same image or independent data sources (Curran & Williamson 1985). The 

quality of this data affects the training of the classifier as well as the validity of the accuracy 

assessment (Millard & Richardson 2015). It is therefore vital that careful consideration must be 

given to the collection of ground truth data, the sample size and the sampling scheme (Congalton 

1991).  

Training data can be collected from various sources like field surveys, digitized vector data, aerial 

imagery, satellite imagery or thematic maps. These sources differ in terms of accessibility, 

accuracy and applicability. There are many different approaches to the collection of training data 

and the appropriate approach depends on the nature of the classification and the accuracy metric 

being used (Congalton 1991). Guidelines have been established to promote the collection of 

applicable training samples (Curran & Williamson 1985; Millard & Richardson 2015; Zhou 1996). 

Curran & Williamson (1985) emphasized the importance of representative ground truth data, 

stating that samples should have sufficient representation of each training class and account for 

the variation within a class. Therefore, they recommended that samples are balanced between 

classes and that samples should be collected at the same scale as the spatial resolution of the ground 

truth imagery (Curran & Williamson 1986). Zhou (1996) agreed with the approach recommended 

by Curran & Williamson (1985), but found fault with the traditional method of manual, visual 

interpretation in the collection of ground truth data. They proposed that manually collected training 

samples must be analysed for spectral separability before they are used for training or validation. 

This ensures that the classifier is able to distinguish different classes and serves as a method to test 

the quality of training samples (Zhou 1996). 

The appropriate sample size for both training and validation is a much debated topic among 

scholars (Congalton 1991; Curran & Williamson 1986; Curran & Williamson 1985; Foody 2002; 

Millard & Richardson 2015). Traditional methods used the distribution of values in a scene to 

estimate the number of samples required for training and validation. The estimations were based 

on the variations within the scene (Congalton 1991). But, this method failed to recommend a 

number of samples that reflected the confusion between classes and therefore could not be used to 

produce an error matrix (Fitzpatrick-Lins 1981). Fitzpatrick-Lins (1981) recommended the use of 

a normal approximation equation to determine a larger number of samples that meet the statistical 

requirements of an error matrix. Although this method produced statistically sound results, 

Congalton (1991) regarded the method to be impracticable when time and cost were considered. 

As an alternative, Congalton (1991) recommended 50 samples per class for areas smaller than 1 
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million acres and 75 or 100 samples per class for larger areas. Subsequently, Li et al. (2014) 

compared 15 classification algorithms using Landsat TM data for land cover classification in an 

exercise to determine the effect of training sample size on classifier accuracy. The larger sample 

sets (>200) preformed the best for all classifiers, however for RF and SVM the difference in 

accuracy between 100 samples and 240 samples was less than 3%. Moreover, Li et al. (2014) 

advised that achieving representative samples of each class was more important than collecting a 

large number of samples.  

Sampling schemes are categorized according to the spatial distributions of samples (Curran & 

Williamson 1985). A poor sampling scheme selection may lead to bias or the undersampling of 

certain classes, ultimately resulting in the over- or underestimation of error in a classification 

(Congalton 1991). Although there is disagreement among scholars about the best sampling 

scheme, simple random, stratified random and cluster sampling schemes are the most popular for 

assessing land cover classifications (Congalton 1991; Curran & Williamson 1985; Plourde & 

Congalton 2003). Campbell & Wynne (2011) describe simple random sampling as the generation 

of random sample points in a manner that every area in a scene has an equal probability of being 

sampled. Stratified random sampling divides the study area into strata based on the classes and 

then generates points randomly within the strata. Cluster sampling generates cluster centres and 

then assigns sample points around the centres. According to Congalton (1991), simple random 

sampling provides the most unbiased samples, but it tends to under sample certain classes. 

Stratified random sampling is recommended by Plourde & Congalton (2003) as this method 

ensures that all classes are represented and it contains minimal bias as points are distributed 

randomly within classes. Curran & Williamson (1985) endorsed cluster sampling because this 

scheme considers time, cost and accessibility constraints. Congalton (1991) prescribes that clusters 

should contain no more than ten points so as to avoid errors caused by spatial autocorrelation. 

Once representative samples have been collected, these samples must be analysed using accuracy 

metrics. In Subsection 2.6.2, different measures of accuracy will be described and evaluated.  

2.6.2 Measures of accuracy 

The approaches to accuracy assessment in remote sensing have progressed in type from qualitative 

visual interpretation to locational, quantitative methods (Congalton 1991). The modern, 

quantitative methods are grouped into descriptive (user’s accuracy, producer’s accuracy, overall 

accuracy, balanced accuracy), analytical (kappa statistic) and statistical significance measures 

(McNemar test, Z-score) (Congalton 1991). In the following three subsections, each of these 

metrics are discussed in turn. 
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2.6.2.1 Descriptive measures 

The use of an error matrix is the most common descriptive method used in remote sensing (Janssen 

& Van der Wel 1994). An error matrix refers to a cross-tabulation method that compares the class 

labels of classified pixels with the labels of reference pixels (Foody 2002). Image objects can be 

used as accuracy assessment units, but for the sake of brevity the term ‘pixels’ is henceforth used 

for all types of units.  

Confusion matrices indicate inter-class confusion that can be used to adjust classifications to 

improve accuracy. Three accuracy measures can be derived from an accuracy matrix, namely 

user’s accuracy, producer’s accuracy and overall accuracy (Foody 2002). User’s accuracy is 

calculated as the number of correctly classified samples divided by the total number of pixels in a 

class produced by the classification data. Users accuracy relates to the errors of omission in a class 

which are the pixels that belong to a particular class that have been misclassified and therefore 

omitted from the true class (Campbell & Wynne 2011). A user’s accuracy of 80% for X means 

that 80% of the pixels labelled as X represent class X in reality (Janssen & Van der Wel 1994).  

Producer’s accuracy is calculated by dividing the number of correctly classified pixels of a class 

by the total number of pixels within that class reported by the reference data (Janssen & Van der 

Wel 1994). Producer’s accuracy is an indication of the errors of commission present in a data set. 

Errors of commission are pixels that have been misclassified and committed to the wrong class 

(Campbell & Wynne 2011). A producer’s accuracy of 80% indicates that 80% of the pixels that 

represent class X in reality have been correctly classified as X (Janssen & Van der Wel 1994).  

Overall accuracy is the most widely used measure for indicating classification accuracy (Carfagna 

& Gallego 2006). This measure is calculated by dividing the total number of correctly classified 

pixels by the total number of pixels in the error matrix (Campbell & Wynne 2011). Overall 

accuracy indicates the general agreement between the classification and the real-life phenomenon 

that the classes aim to represent (Congalton 1991). Many researchers have used per-pixel 

confusion matrices with overall, producer’s and consumer’s accuracy as their accuracy metrics 

(Aguilar et al. 2015; Chaofan et al. 2016; González-Yebra et al. 2018; Hasituya & Chen 2017; Lu, 

Di & Ye 2014; Lu, Tao & Di 2018; Novelli et al. 2016). Novelli & Tarantino (2015) used a 

confusion matrix to assess the classification accuracy of plastic-covered vineyards. Instead of 

collecting validation samples for each class, they commend the use of a binary mask that gives a 

better indication of the success of the proposed methodology for mapping vineyard nets in 

particular. The binary mask is used to construct a binary confusion matrix which indicates the level 

of agreement between the mask and the classified nets (Novelli & Tarantino 2015).  

Stellenbosch University https://scholar.sun.ac.za



 34 

Regarding binary classification, McKeown et al. (1999) proposed three additional summary 

statistics that can be derived from the confusion matrix, namely the detection percentage, 

branching factor and quality percentage. Detection percentage is the portion of pixels correctly 

classified as the target class. The branching factor is the number of pixels incorrectly classified as 

the target class for every correctly classified pixel. Quality percentage is a measure of overall 

classification quality which, unlike overall accuracy, accounts for all misclassifications 

(McKeown et al. 1999). Agüera, Aguilar & Aguilar (2008) employed detection percentage, 

branching factor and quality percentage measures to compare the performance of QuickBird and 

IKONOS for the detection of plastic greenhouses. These metrics do not, however, compensate for 

binary classifications with imbalanced classes. Tharwat (2018) advocates the use of the balanced 

accuracy (BA) metric, which combines sensitivity and specificity to compensate for unbalanced 

classes. Sensitivity, also known as the true positive rate, is the positive detection rate compared to 

the total number of positive samples (Luque et al. 2019). In the context of plasticulture, sensitivity 

is the total number of identified plastic coverings in relation to the total number of pixels that 

represent plastic coverings. Specificity, or the true negative rate, is the ratio of correctly classified 

negative values to the total number of negative values. Regarding plasticulture mapping, 

specificity is the total number of pixels correctly classified as non-plastic coverings compared to 

the total number of non-plastic covering pixels. BA considers both these metrics and is expressed 

as: 

𝐵𝐴 =
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
)               Equation 2.10 

 

where  𝑇𝑃  is the number of correctly classified positive values; 

  𝐹𝑁  is the number of falsely classified negative pixels; 

  𝑇𝑁  is the number of correctly classified negative values; and 

  𝐹𝑃   is the number of falsely classified positive values. 

 

2.6.2.2 Analytical measures 

The kappa statistic, first proposed by Cohen (1960), is a popular analytical measure of 

classification accuracy (Campbell & Wynne 2011). Kappa (ҡ) quantifies the difference between 

the observed agreement between two data sets and the agreement between the data sets obtained 

per chance (Campbell & Wynne 2011). Congalton (1991) and Fitzpatrick-Lins (1981) regard the 

kappa statistic as a superior measure of accuracy to the overall accuracy because kappa 
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compensates for chance agreement which occurs frequently in spatial data sets due to spatial 

autocorrelation. The kappa statistic is calculated using the following equation: 

�̂� =  
𝑛 ∑ 𝑋𝑖𝑖

𝑛
𝑖=1 − ∑ 𝑋𝑖+𝑋+𝑖

𝑛
𝑖=𝑖

𝑛2− ∑ 𝑋𝑖+𝑋+𝑖
𝑛
𝑖=𝑖

               Equation 2.11 

 

where  �̂�  is the kappa statistic; 

  𝑛  is the sample size; 

  𝑋𝑖𝑖  is the observed agreement; and 

  𝑋𝑖+ and  𝑋+𝑖 are the estimates of expected agreement for each category. 

 

Fitzgerald & Lees (1994) tested the ability of the kappa statistic and overall accuracy to capture 

the known agreement between two data sets. Kappa emerged as the more effective method, as the 

statistic modelled the agreement more accurately. Nonetheless, many scholars still prefer to use 

both the kappa statistic and overall accuracy to quantify the quality of their land cover 

classifications (Huang, Davis & Townshend 2002; Manandhar et al. 2009; Rodriguez-Galiano et 

al. 2012). González-Yebra et al. (2018) used the kappa statistic for the accuracy assessment of 

their classification of plastic greenhouses. 

2.6.2.3 Measures of statistical significance 

Apart from accuracy measures such as the kappa statistic and overall accuracy, additional 

measures have been considered to determine whether the differences between classification 

accuracies are statistically significant (Bostanci & Bostanci 2013). Two such measures are the 

McNemar’s test and the Z-test. The McNemar test, first proposed by (McNemar 1974), is a non-

parametric statistical test applied to paired nominal data. The test produces a P-value which 

describes the statistical significance between the paired data which, in the case of land cover 

classification, is the difference between two classification results (Bostanci & Bostanci 2013). The 

McNemar test has been recommended by Foody (2002), Manandhar et al. (2009), and Rodriguez-

Galiano et al. (2012) to determine the statistical validity of differences in accuracy results.  

Hasituya & Chen (2017) suggested the use of the Z-test to measure statistical significance between 

kappa statistic values when comparing the accuracy of different feature sets and image dates for 

mapping PML. The Z-test is a flexible metric that allows the comparison of classifications which 

use different types of imagery, those conducted with different acquisition times or those using 
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different classification algorithms (Congalton & Green 2009). This metric assumes a normal 

distribution thus excluding its use for skewed data sets (Hasituya & Chen 2017).  

The most effective accuracy assessment approaches use descriptive measures, analytical measures 

and statistical measures together. The use of a confusion matrix is the most popular method of 

accuracy assessment in land cover classification. The inclusion of confusion matrix metrics, 

especially OA, therefore allows classification procedures to be compared to methods used by other 

scholars through a common metric (Janssen & Van der Wel 1994). Analytical and statistical 

measures then provide useful information that, when used in conjunction with descriptive 

measures, provides a more wholistic view of the quality of the classifications.  

The accuracy of classifications is affected by several factors. One major factor is whether the 

imagery used for classification has the necessary resolution to capture distinguishable signatures 

of the classes in the study area (Tempfli et al. 2009). As such, classification accuracy is an 

indication of how suitable a sensor is for a particular purpose. Another indicator of how well a 

sensor is able to capture a particular phenomenon is through spectral analysis (Herold, Gardner & 

Roberts 2003). The following section covers methods of spectral analysis and how these methods 

have been used to investigate the spectral properties plasticulture. 

2.7 SPECTRAL ANALYSIS OF PLASTICULTURE 

Remote sensors can measure the spectral response of an object over a range of wavelengths, which 

can be visualized as a spectral curve known as a spectral signature (Campbell & Wynne 2011). 

The specific characteristics of an object’s spectral signature can be used to identify or classify the 

objects in a scene (Tempfli et al. 2009). However, the success of the classification is highly 

dependant on how well the classification strategy can separate and identify unique spectral 

signatures. Spectral seperability refers to how easily spectral signatures from different land cover 

types can be distinguished (Herold, Gardner & Roberts 2003). The following subsections will 

cover studies that have investigated the spectral signatures of plasticulture, followed by a 

discussion of spectral separability measures and how they have been applied to plasticulture. 

2.7.1 Spectral properties of plasticulture 

Aside from the hyperspectral sensors discussed in the first chapter, a number of multispectral 

sensors have also been employed to investigate the spectral properties of plastic-covered 

agriculture (Borgogno-Mondino, Palma & Novello 2020; Hasituya & Chen 2017; Lu, Di & Ye 

2014; Tarantino et al. 2012; Yang et al. 2017). 
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Lu, Di & Ye (2014) have, for example, extracted the average radiance per regions of interest (ROI) 

for eight land cover classes using Landsat-5 TM imagery. An analysis of these spectral signatures 

was applied to create rules to classify PML and to select spectral indices to aid classification. The 

PML signatures that were obtained at the beginning of the growing season closely resembled the 

fallow land and bare land classes. However, the PML signatures were significantly different from 

the water and crop classes (Lu, Di & Ye 2014). Hasituya & Chen (2017) extracted the spectral 

signatures of five land cover types using Landsat-8 imagery over a five-month period. The 

signatures were created using the average reflectance of 40 pixels per class. The spectral signatures 

changed dramatically over the course of the five months due to crop growth. The PML signatures 

closely resembled bare ground at the beginning of the growing season and then changed to 

resemble vegetation toward the end of the growing season. Consequently, scholars recommend 

multitemporal imagery  for discriminating plastic films from vegetation. Yang et al. (2017) used 

Landsat ETM+ imagery to analyse the spectral properties of plastic greenhouses to facilitate the 

development of a spectral index. Spectral signatures were constructed for eight classes, including 

cropland, plastic greenhouses and soil, by sampling 20 pixels per class. The signatures indicated 

that (1) plastic greenhouses had higher reflectance than uncovered crops and bare fields over the 

visible spectrum; (2) the NIR-red slope is relatively independent of the presence of plastic 

greenhouses; (3) the greenhouse signatures closely resembled the shape of the crop signatures; and 

(4) the blue band is the most effective for separating plastic greenhouses and crops. Tarantino et 

al. (2012) achieved similar results while investigating plastic vineyard nets using very-high-

resolution aerial imagery. The signatures for nets resembled the shape of the uncovered vineyards, 

but reflectance was higher for the red, green and blue bands. The reflectance difference in the blue 

band was the most significant for discriminating nets from other classes. Borgogno-Mondino, 

Palma & Novello (2020) used Sentinel-2 imagery to extract spectral signatures from covered and 

uncovered vineyards. Although the results showed higher reflectance values for the covered 

vineyards, the shape of the covered vineyards resembled that of the uncovered vineyards. They 

concluded that the Sentinel-2 sensor was able to capture a reliable signature of crops under nets. 

2.7.2 Spectral separability of plasticulture 

The ability of a sensor to distinguish between the spectral signatures of different land cover classes 

is dependent on the differences between the signatures (Herold, Gardner & Roberts 2003). Various 

approaches can be followed to quantify the differences between spectral signatures (Richards & 

Jia 2006).  Two popular approaches are statistical measures and distance measures (Schmidt & 

Skidmore 2003). Statistical measures, such as the Mann-Whitney U-test, determine whether the 

differences between spectral signatures are statistically significant. These measures therefore 
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provide a good indication of the ability of a sensor to capture objects at a spectral resolution 

acceptable for classification (Schmidt & Skidmore 2003). The Mann-Whitney U-test is a non-

parametric test and does not assume that the samples have a normal distribution. The test 

determines whether the variance within classes is significantly greater than the variance between 

classes (Artigas & Yang 2006). Schmidt & Skidmore (2003) relied on the Mann-Whitney U-test 

to identify wavelength intervals that could be used to differentiate between different species of 

coastal vegetation. A significance level of 0.01 was applied and it was found that more than 75% 

of the species were separable for most of the wavelength intervals.  Using a significance level of 

0.01 is popular for testing the statistical significance of seperability measures (Artigas & Yang 

2006; Van Til, Bijlmer & De Lange 2004). Amani et al. (2018) compared the use of RapidEye 

imagery, Sentinel-2 imagery, ASTER imagery and Landsat-8 imagery for mapping wetland types. 

The Mann-Whitney U-test was applied to determine each sensor’s ability to discriminate between 

different wetland types. The measure was also used to compare the ability of different indices, 

texture features and spectral bands to increase the separability between classes. A significance 

level of 0.05 was specified. Matongera et al. (2017) employed a similar method to determine 

suitable features for vegetation mapping using Landsat-8 OLI. Another study that turned to the 

Mann-Whitney U-test to investigate spectral signatures is that of Van Til, Bijlmer & De Lange 

(2004). 

Distance measures quantify the distance between object spectra in feature space (Schmidt & 

Skidmore 2003). Gunal & Edizkan (2008) have described three distance measures frequently used 

to quantify spectral separability, namely Bhattacharyya distance, Jeffries-Matusita (JM) distance, 

and transformed divergence (TD). The less frequently used Mahalanobis distance quantifies the 

distance between two measurements in multivariant feature space (Richards 1993). Bhattacharyya 

distance is similar to Mahalanobis distance but with no assumption that the standard deviation 

between two samples is equal. In remote sensing the Bhattacharyya distance is often incorporated 

with JM distance which uses the Bhattacharyya distance to rank features for feature selection (Qiu 

et al. 2014). JM distance is a parametric measure that makes use of the distance between class 

means and the distribution of class values to determine class separation (Dabboor et al. 2014).  JM 

distance is calculated by:  

𝐽𝑀𝑖𝑗 = 2(1 − 𝑒−𝐵)                Equation 2.12 

 

where 𝐵 represents the Bhattacharyya distance, expressed as: 
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where  𝑖 and 𝑗  are the two class signatures; 

  𝑚𝑖 and 𝑚𝑗 are the mean vectors of signatures i and j; and 

  ∑ 𝑖 and ∑ 𝑗  are the covariance matrices of signatures i and j. 

 

Transformed divergence (TD) quantifies spectral distance by decreasing the weights given to 

classes as the spectral distance between classes increases (Jensen 2016). This algorithm is 

computationally more effective than the Bhattacharyya and JM distance measures and is calculated 

with the following formula: 

𝑇𝐷𝑖𝑗 = 2000(1 − 𝑒−
𝑑𝑖𝑗

8 )                            Equation 2.14 

 

where 
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where  𝑖 and 𝑗  are the two class signatures; 

tr  is the trace function; 

𝑚𝑖 and 𝑚𝑗 are the mean vectors of signatures i and j; and 

 C  is the covariance matrix of each class. 

Both TD and JM range from 0 to 2. According to Jensen (2016), classes that achieve a score of 1.9 

are considered to have good separation, while scores lower that 1.7 indicate poor separability. 

TD and JM distance have both been used for the spectral analysis of plasticulture. Perilla & Mas 

(2019) used TD to determine which band combinations of Sentinel-2 imagery increased the 

separability between protected agriculture (which included nets and plastic greenhouses) and 

surrounding land cover. The bands that produced the highest separability, and subsequently used 

for classification, were Blue, NIR, SWIR1, SWIR2 (Perilla & Mas 2019). Lanorte et al. (2017) 

used JM to access the quality of classifier training samples. They noted a very high degree of 

separability between the net and plastic film classes. However, the separation between the 

plasticulture (net and film) classes and the vegetation class was low. It should be noted that the 
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samples were acquired towards the end of the growing season of the crops under the plastic nets 

and films, which affects the class seperability (Lanorte et al. 2017).  

The literature revised in the preceding paragraphs prove that agricultural nets have complex 

spectral signatures that are affected by the sensor used to capture the signatures, the physical 

properties of the nets and the spectral characteristics of the crops under the nets. The insights 

gained through the study of these spectral properties, and their separability from surrounding land 

cover, have proved invaluable to inform classification strategies.  

2.8 SYNOPSIS 

This chapter has provided a review of the literature on remote sensing and image classification, 

specifically as the latter applies to the classification of plasticulture. The contents relate directly to 

Objective 1 as they provide insight into the properties of agricultural nets, multispectral 

classification techniques and the approaches to accuracy assessment. Technical topics such as 

spectral signatures, spectral indices, texture features and classification algorithms have been 

explored to build a foundation for the strategies developed in the next chapters. 

Objective 2 is to acquire appropriate remotely sensed data and collect suitable reference data for 

spectral analysis, classifier training and accuracy assessment. Although very-high-resolution 

imagery is effective for mapping plasticulture, it is evident that a knowledge gap exists regarding 

the use of Sentinel-2 imagery for mapping agricultural nets. The vital advantages of Sentinel-2 

imagery are the accessibility of imagery, the global coverage, the short revisit time and the superior 

spectral and spatial resolutions of Sentinel-2 imagery compared to other freely available data such 

as Landsat imagery. Therefore, Sentinel-2 imagery will be acquired to capture and distinguish the 

spectral signatures of agricultural nets and to demonstrate the potential of Sentinel-2 for mapping 

plasticulture. The literature confirms GEE to be a valuable platform for obtaining level 2A 

Sentinel-2 products for spectral analysis and classification (Amani et al. 2020).  

Objectives 3 and 4 respectively aim to develop a spectral profile of agricultural nets in the Western 

Cape using Sentinel-2 multispectral imagery and to describe the influence underlying crops have 

on the spectral signatures of agricultural nets. Agricultural nets have diverse spectral properties 

(Levin et al. 2010). It is important to understand the spectral variation of nets and how variation 

changes over time to inform crucial decisions about the optimal time of the year to map nets, which 

classification scheme to use and which ancillary features to include. Borgogno-Mondino, Palma 

& Novello's (2020) investigation of the differences between covered and uncovered vineyards over 

the course of a year has confirmed that the signatures of the covered vineyards do change over 

time. Regrettably, they did not compare the spectral signatures to surrounding land cover nor 
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investigate the seperability of the covered vineyards. The analyses in Chapter 3 are devoted to 

comparing the spectral signatures of various covered crops with their uncovered counterparts to 

further our understanding of the relationships between the spectral signatures of agricultural nets 

and the underlying crops based on Sentinel-2 imagery. Perilla & Mas (2019) used the JM algorithm 

to quantify the seperability of their classes to inform feature selection for plasticulture mapping. 

In this study the JM algorithm will be used to compare the separability of agricultural nets from 

surrounding land cover over the course of a year. The results of these exercises will lay the 

foundation for addressing Objective 5 in Chapter 4.  

Objective 5 aims to develop and demonstrate a method for mapping nets using Sentinel-2 imagery. 

According to the literature several ML algorithms have been applied to map plasticulture. RF and 

SVM have been used frequently to map plastic greenhouses and PML (Chaofan et al. 2016; 

Hasituya et al. 2016; Lu, Tao & Di 2018). The linear kernel emerged as the most effective function 

for mapping plastic greenhouses and PML using SVM (Hasituya et al. 2016; Lanorte et al. 2017). 

NN has been proven effective for mapping plastic greenhouses using Sentinel-2 imagery (Sun et 

al. 2021). However, the RF, SVM and NN algorithms have not yet been used to classify 

agricultural nets, so there is a research gap regarding the performance of RF, SVM and NN for 

mapping agricultural nets using Sentinel-2 imagery. The challenge of filling this gap is taken up 

in Chapter 4. Per-pixel and object-based approaches have been followed in other studies to map 

plasticulture. The OBIA approaches were effective when using VHR imagery but achieved lower 

accuracies than per-pixel classification using medium-resolution Landsat imagery. Additionally, 

parameter selection for segmentation is also presented as a limitation of OBIA. This justified the 

choice of per-pixel classification applied in Chapter 4. 

The addition of spectral indices and texture features to aid the classification of plasticulture has 

yielded varying degrees of success. For example, Hasituya & Chen (2017) found that NDVI 

contributed significantly to the classification accuracy for mapping PML using Landsat-8 imagery 

with RF and SVM classifiers, whereas Perilla & Mas (2019) experienced that NDVI, PMLI and 

PGI made no significant impact on the classification accuracy of mapping plasticulture (including 

nets) using Sentinel-2 imagery and the maximum entropy classifier. The current study’s evaluation 

of the NDVI, the SAVI, the EVI, the PMLI and the PGI for classifying agricultural nets in the 

Western Cape is reported in Chapter 4. The investigation of the performance of these indices has 

never been done using RF, SVM and ANN classifiers and Sentinel-2 imagery in the Western Cape. 

The usefulness of GLCM texture features in the classification of nets was demonstrated by 

Tarantino et al. (2012). Texture features have also been shown to improve the performance of 

ANN for mapping plastic greenhouses (Carvajal et al. 2006). Chapter 4 reports on the performance 
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of texture features for the classification of nets. The addition of spectral indices and texture features 

increases the number of classification features which can decrease classification accuracy due to 

the Hughes effect (Hughes 1968). RF feature ranking will be used to select features for 

classification as this algorithm provides valuable insights about the importance of features for 

classification accuracy. Hasituya & Chen (2017) and Hasituya et al. (2016) have corroborated the 

effectiveness of RF feature ranking in feature selection to improve the classification accuracy in 

mapping PML. 

Classification accuracy can be measured by several different methods of which the error matrix is 

the most routinely used (Foody 2002). The classification exercise done in Chapter 4 aims to map 

agricultural nets. Novelli & Tarantino's (2015) used a mask, indicating the presence and absence 

of plasticulture, to construct a binary error matrix for accuracy assessment. This approach 

highlighted the ability of the classification strategy to distinguish plasticulture from surrounding 

land cover and is therefore appropriate for the current study.  Similarly, the validated use of the 

overall accuracy and kappa statistic metrics to evaluate the classification accuracy by Aguilar et 

al. (2015), Chaofan et al. (2016), González-Yebra et al. (2018), Hasituya & Chen (2017), Lu, Di 

& Ye (2014), Lu, Tao & Di (2018) and Novelli et al. (2016) justifies the use of these two metrics 

for evaluating the classifications of agricultural nets in Chapter 4. The BA metric, designed to 

compensate for unbalanced binary confusion matrices, is adopted in this study because the 

classification deals with an unbalanced error matrix. The McNemar test for statistical significance 

will be used to determine whether the results of the different classification strategies (in terms of 

feature selection and ML algorithm) are statistically different. This will allow the performance of 

the different classifiers and feature sets to be compared accurately. 

In the final chapter, the key findings of the current study will be discussed and the potential of 

Sentinel-2 imagery as a source of data for mapping agricultural nets will be evaluated. So 

completing Objective 6 by interpreting the results within the context of finding operational 

solutions for mapping agricultural nets in South Africa. 
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CHAPTER 3:  SPECTRAL AND TEMPORAL ANALYSIS OF 

AGRICULTURAL NETS USING SENTINEL-2 IMAGERY1 

3.1 ABSTRACT 

The use of agricultural nets has increased rapidly worldwide. Consequently, the study of these nets 

has become popular in remote sensing. However, the mapping of nets presents several challenges 

due to their diverse spectral properties. Understanding these spectral properties is essential for 

developing an operational mapping solution. This study’s primary aim is to investigate the spectral 

properties of agricultural nets using Sentinel-2 imagery. The secondary aim is to gain insight into 

the effect of seasonal variability on the spectral signatures of nets. Sentinel-2 imagery was acquired 

from 1 June 2019 to 30 May 2020 for 12 test sites in the Western Cape province of South Africa. 

The imagery was used to extract the spectral signatures of nets covering grape, citrus and berry 

crops as well as for surrounding land cover. The spectral signatures of the covered crops were 

compared with the uncovered signatures of the same crop type. The Jeffries-Matusita (JM) 

distance was calculated for different combinations of crop types and land cover for each 

acquisition period. Reliable signatures of crops under nets were obtained using Sentinel-2 imagery 

so confirming the potential of Sentinel-2 imagery for mapping crops under nets. Summer was 

shown to be the best time to map nets in the Western Cape, because that is when the crops under 

the nets reach maturity and present unique spectral characteristics that make their spectral 

signatures easier to separate. The results provide valuable insight into the spectral dynamics of 

nets, particularly in the Western Cape, that can be exploited to develop an operational solution for 

mapping nets at regional scale. 

3.2 INTRODUCTION 

The study of agricultural nets has become increasingly popular in the field of remote sensing (Al-

Helal & Abdel-Ghany 2011; Blanco et al. 2018; Lanorte et al. 2017; Levin et al. 2010). This 

newfound interest stems from the extensive and steadily expanding use of nets worldwide (Levin 

et al. 2010). The advantages of agricultural nets are increased yields, earlier harvests, the reduced 

need for pesticide and herbicide applications, protection from extreme weather conditions such as 

wind, hail and frost, a decreased need for irrigation and the improvement of crop quality 

(Scarascia-Mugnozzo, Sica & Russo 2011). Nets are used for a variety of applications and they 

differ in terms of their physical and spectral properties. The nets are therefore difficult to detect 

and to map using remotely sensed data, particularly when using multispectral sensors (Levin et al. 

 
1 This chapter is formatted as a standalone, publication-ready article. Some duplication with Chapters 2 and 4 should 

consequently be expected.  
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2010). Levin et al. (2010) have described two major challenges associated with the unique spectral 

characteristics of agricultural nets. First, the spectral properties of nets vary over time due to dust 

accumulation and the change of the vegetation spectra under semi-transparent nets. Second, the 

variations in plastic compound, thickness, density, transparency and colour of nets result in 

different spectral signatures recorded for the agricultural nets (Levin et al. 2010).  

Several studies have investigated the spectral response of agricultural nets using remote sensing. 

Most of these studies used hyperspectral sensors to investigate the signatures (Hörig et al. 2001; 

Kühn, Oppermann & Hörig 2004; Levin et al. 2010; Shahak et al. 2004; Sica & Picuno 2008). 

These studies led to the identification of a number of absorption features at 1218, 1732, 1800 and 

2320 nm, which facilitated the classification of agricultural nets with hyperspectral imagery 

(Agüera, Aguilar & Aguilar 2008; Aguilar et al. 2014; Arcidiacono & Porto 2012; Carvajal et al. 

2010; Tarantino et al. 2012). Levin et al. (2010) found the spectral resolution of Landsat-7 to be 

too low to detect these absorption features. Yang et al. (2017) compared the separability of plastic 

greenhouses to surrounding land cover using Landsat TM and ETM+ imagery with the goal being 

to identify Landsat bands that improve the separability of the plastic-covered crops and uncovered 

crops. The visible and near-infrared (NIR) bands turned out to be the most important bands for 

separating plastic greenhouses from the bare soil and urban classes (Yang et al. 2017) and the 

shortwave-infrared (SWIR) region proved the most effective for separating greenhouses from 

fields planted with crops (Yang et al. 2017). Borgogno-Mondino, Palma & Novello (2020) 

compared the spectral signatures of covered and uncovered vineyards using Sentinel-2 imagery to 

determine whether the spectral and spatial resolutions of Sentinel-2 were adequate to detect a 

reliable signature of vineyards through the nets. They found that nets do not limit the monitoring 

of covered vineyards using Sentinel-2 imagery. However, none of these studies investigated the 

separability of net signatures captured by the Sentinel-2 sensor. 

Spectral separability describes how easily spectral signatures can be differentiated by classifiers 

(Richards & Jia 2006). Wicaksono & Aryaguna (2020) determined that high spectral separability 

between classes significantly improved the overall accuracy of the classification, especially when 

machine learning (ML) classifiers were used. Therefore, to map agricultural nets successfully the 

net signatures must be spectrally separable from surrounding land cover. This requires high inter-

class spectral variability and low intra-class spectral variability (Aplin 2004). Intra-class variation 

is the spectral variation of samples within a single class (Debba, Cho & Mathieu 2009), whereas 

inter-class variation refers to the spectral variation between different land cover classes (Debba, 

Cho & Mathieu 2009). Debba, Cho & Mathieu (2009) observed that land cover with high intra-

class variation resulted in lower accuracies for such classes. 
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The spectral variation within and among land cover classes is affected by several factors, namely 

the temporal variation of land cover, the classification scheme, the selection of training samples 

and the resolution of the sensor (Carrao et al. 2007; Debba, Cho & Mathieu 2009; Guerschman et 

al. 2003; Wicaksono & Aryaguna 2020). Hu et al. (2017) noted that the overall accuracies of their 

land cover classification differed by as much as 30% depending on the phenological stage of the 

crops being mapped. Other studies in which significant effects of seasonal variation on 

classification accuracy have been listed are those by Hestir et al. (2008), Dudley et al. (2015) and 

Guerschman et al. (2003). Most of the studies investigating methods to map plasticulture have 

used imagery acquired when the crops planted under the nets are mature (Aguilar et al. 2014; 

González-Yebra et al. 2018; Novelli et al. 2016; Tarantino et al. 2012; Yang et al. 2017) so that 

little is known about the impact seasonal variations may have on classification accuracy. One 

exception is the work by Aguilar et al. (2015) in which crops under nets were mapped for different 

times in the growing season in southern Spain. Significant differences in overall accuracy among 

the different dates were produced, with the imagery acquired during August producing the highest 

accuracies.  

The selection of training classes and the collection of training samples play crucial roles in 

ensuring that classes are distinguishable (Wicaksono & Aryaguna 2020). Guerschman et al. (2003) 

concluded that the number of training classes impacts largely on the accuracy of land cover 

classifications, their results showing that inter-class separability decreased as the number of classes 

increased, so resulting in poorer accuracies for classifications with more classes. Consequently, 

the mapping of plasticulture has witnessed the use of various approaches for class selection. 

Tarantino et al. (2012), for example, excluded urban and water land covers from their classification 

scheme due to an insufficiency of training samples available for these classes in their study area. 

The selected classes included agricultural nets, bare soil, crops and natural vegetation, resulting in 

an overall accuracy of 90% (Tarantino et al. 2012). Lanorte et al. (2017) and Aguilar et al. (2014) 

did include urban land cover as a class for mapping plasticulture, but both studies noted significant 

confusion between the bare soil, agricultural nets and urban classes. Clearly, more investigations 

of the spectral separability of agricultural nets from other land cover classes are required to 

determine which classification scheme is most suitable for mapping plasticulture. 

Class separability is further affected by the resolution of the imaging sensor and not all systems 

have the requisite resolution for capturing the spectral information to effectively map certain land 

cover features (Wicaksono & Aryaguna 2020). Carrao et al. (2007) and Mishra et al. (2012) have 

underlined this importance of high spatial resolution to increase spectral separability between land 

cover classes and Carrao et al. (2007) went even further by noting that high spatial resolution 
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contributed significantly more to classification accuracy than does improved spectral resolution. 

This conclusion is supported by Herold, Gardner & Roberts (2003) who found that higher spectral 

resolution imagery improves the classification of complex spectral classes only marginally.  

The use of agricultural nets has increased rapidly in recent years in South Africa with an estimated 

area of 2 400 ha in 2016 (Pienaar 2018). The proliferation of these nets has complicated the 

application of existing remote sensing methods for mapping and monitoring agricultural land use 

and practices (Van Niekerk et al. 2018). The development of a solution to the problem of mapping 

crops under agricultural nets is essential to improved farm management and agricultural policy 

making. The Sentinel-2 mission, launched in 2014 to provide high-resolution imagery for land 

cover mapping and monitoring (Phiri et al. 2020), potentially provides a practical resolution to the 

issue of mapping and monitoring agricultural nets at regional scales. However, it is still unclear 

whether the spectral and physical properties of nets, as they relate to the spectral and spatial 

resolution of Sentinel-2 imagery, are suitable.  

The primary aim of this article is to analyse the spectral signatures (as captured by Sentinel-2 

imagery) of different types of agricultural nets and crops that they cover. The study evaluates the 

ability of Sentinel-2 imagery to spectrally discern different agricultural nets from surrounding land 

cover. The purpose of this exercise is to determine whether Sentinel-2 imagery has sufficient 

spectral and spatial resolutions to distinguish between covered and uncovered crops of the same 

type, and between different netted crops and other types of land cover. The secondary aim is to 

investigate the effect of seasonal variation on the intra- and inter-class separability of agricultural 

nets. The results are interpreted in the context of finding an operational solution for mapping and 

monitoring agricultural nets, and the crops they cover, over large and complex regions such as the 

Western Cape.  

3.3 METHODS 

In the following subsections, the methods that were used to achieve the aims of the present study 

are outlined. Specifically, the following will be explained: how the test sites were selected, the 

phenology of the crops relevant to the study, how Sentinel-2 imagery and ground samples were 

obtained and how the separability analysis was conducted.  

3.3.1 Study area 

The Western Cape province, which covers an area of 129 370 km2, is the study area. This province 

is situated on the south-western edge of South Africa where the southern and western coastal 

boundaries are bordered by the warm Mozambique current and the cold Benguela current 

respectively (Van Niekerk & Joubert 2011). These currents, along with the diverse topography of 
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the province, have resulted in a unique climatic profile (Du Plessis 2017). The study area is divided 

into four main climate regions, namely the South Coast, the Klein Karoo, the Boland, and the 

Swartland (Van Niekerk & Joubert 2011). This diversity of climates allows for a variety of 

agricultural practices, including the growing of grains, fruits, vegetables, and nuts (Pienaar 2018).  

The Western Cape’s agricultural sector is estimated to contribute R25 billion to South Africa’s 

GDP (Vink & Tregurtha 2003). Vink & Tregurtha (2003) specifically highlight the fruit industry 

as the backbone of the agricultural economy in the Western Cape. The fruit cultivars grown in the 

study area are especially sensitive to climatic variations with high yields being largely dependent 

on cold winters and sufficient water availability during the dry, hot summers (GreenAgri 2016). 

As a result, Western Cape farmers have had to find innovative ways to address the variable rainfall, 

increased temperatures and extreme weather conditions caused by climate change. One such 

strategy is the use of agricultural nets (Bryan et al. 2009). In the Western Cape, fruit varieties make 

up 88% of crops under nets, with grape, citrus and berry varieties prevalent (Pienaar 2018). 

Consequently, these three crop types were chosen as the focus of this study. 

 
Adapted from Pienaar (2018) 

Figure 3.1   Location of the selected test sites in the Western Cape and how they relate to the grape, citrus 

and berry varieties that are typically grown under agricultural nets in the region 
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Figure 3.1 shows the twelve 25x25 km test sites selected for sample collection and the location of 

grape, citrus and berry varieties under nets. The sites were chosen for four specific reasons, namely 

1) cloud-free Sentinel-2 imagery is available for the sites for the duration of the growing season; 

2) the sites contain a good representation of the diverse types of nets used in the Western Cape 

regarding size, density and shape; 3) the sites adequately represent the occurrence of the three 

targeted crop types, as well as other typical rural land cover types; and 4) spatially they cover all 

four climate regions of the Western Cape.  

3.3.2 Phenology of grape, citrus and berry crops in the Western Cape 

Phenology describes the key events that occur in the biological life cycles of plants or animals 

(Liang 2019). The phenological stages of the grape, citrus and berry crops grown in the Western 

Cape are shown in Figure 3.2.  

  Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Table 
grapes 

Harvest Dormant Growing 

Citrus Growing Harvest Leaves Growing 

Blueberries Growing Dormant Growing Harvest 

Strawberries   Dormant Planting Growing Harvest 

Figure 3.2 Phenological stages of grape, citrus and berry crops grown in the Western Cape 

Table grapes make up 99% of grapes grown under nets in the Western Cape (Pienaar 2018). There 

are four major phenological stages in the production of table grapes, namely the dormant stage, 

the bud-break stage, the blooming stage and the ripening stage which ends with the harvest 

(Araujo, Abiodun & Crespo 2014). During dormancy, which occurs from April to August, the 

vines lose their leaves and enter a dormant state. Bud-break, typically occurring from September 

to October, is when the vines show the first signs of growth as new leaves start to form (Araujo, 

Abiodun & Crespo 2014). Blooming occurs when new flowers are formed and fruit formation 

begins, from November to December. The grapes then ripen and harvesting is done from January 

to March (Araujo, Abiodun & Crespo 2014).  

The primary citrus varieties grown in the Western Cape are lemons, naartjies (tangerines) and 

oranges. Stander (2015) has described the three major phenological phases of citrus trees in the 

Western Cape. Blooming occurs from the end of September to mid-October and fruit development 

is from November to December. Citrus fruits reach maturity around April and the harvest season 

continues until August. Citrus trees maintain their leaves after the harvest (Stander 2015).   
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Blueberries and strawberries make up the bulk of berry crops grown under nets within the Western 

Cape (Pienaar 2018). Darnell et al. (1992) has identified five phenological stages of blueberries. 

Vegetative development occurs from December to April and flower bud initiation is from April to 

June. During the dormant phase (June to August) the blueberry leaves discolour and fall from the 

bush. The flower bloom and fruit development begin in phase four which ranges from August to 

October. Fruit mature and are harvested from October to December. Strawberry planting occurs 

from March to April and the flower bud initiation and blooming stages from April to August. 

Strawberries reach maturity and are harvested from October to the beginning of January (Water 

2010). 

3.3.3 Acquisition of Sentinel-2 imagery 

The required Level 2A Sentinel-2 products were acquired using the Google Earth Engine (GEE) 

platform. GEE is a cloud-computing platform launched in 2010 to provide access to remote sensing 

data sets and advanced computational infrastructure (Amani et al. 2020). Level 2A products are 

created using the Sen2Cor package which is used to preform terrain- and atmospheric corrections, 

and to convert top of atmosphere (TOA) values to surface reflection.  

Table 3.1 Sentinel-2 bands and their features 

Band number Description Wavelength interval (nm) Spatial resolution 

B1 Coastal aerosol 433 - 553 60 

B2 Blue 458 - 523 10 

B3 Green 543 - 578 10 

B4 Red 650 - 680 10 

B5 Vegetation red edge 1 698 - 713 20 

B6 Vegetation red edge 2 733 - 748 20 

B7 Vegetation red edge 3 773 - 793 20 

B8 Near-infrared (NIR) 785 - 899 10 

B8A Narrow NIR 855 - 875 20 

B9 Water vapour 935 - 955 60 

B10 Cirrus shortwave-infrared 
(SWIR) 

1362 - 1392 60 

B11 SWIR 1 1565 - 1655 20 

B12 SWIR 2 2100 - 2280 20 

Adapted from Kramer (2002) 

Each Sentinel-2 image contains 13 bands where bands 2, 3, 4 and 8 have a spatial resolution of 10 

m; bands 5, 6, 7, 8A, 11 and 12 have a spatial resolution of 20 m; and bands 1, 9 and 10 have a 
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spatial resolution of 60 m. Band 10 is used exclusively for atmospheric correction and is therefore 

excluded from the analysis (ESA 2018). All bands were resampled to 10 m. Each band’s spatial 

resolution, description and wavelength interval is given in Table 3.1.Vegetation signatures change 

rapidly within a single season (Dudley et al. 2015). To investigate the effect of phenological 

changes on the spectral signatures of nets, frequent and cloud-free images are required for the 

entire growing season of the targeted crops. Hence a total of 288 images, 24 images per test site, 

were collected for the period June 2019 to May 2020. Table 3.2 lists the acquisition dates of the 

images collected for each test site.  

Table 3.2 Acquisition dates of Sentinel-2 imagery  

Study 
site 

Acquisition dates Study 
site 

Acquisition dates 

A 3 Jun; 15 Jun; 3 Jul; 20 Jul; 9 Aug; 17 Aug; 1 Sept; 
16 Sept; 1 Oct; 16 Oct; 2 Nov; 16 Nov; 5 Dec; 17 
Dec; 1 Jan; 16 Jan; 3 Feb; 18 Feb; 1 Mar; 16 Mar; 3 
Apr; 18 Apr; 5 May; 20 May;   

G 14 Jun; 25 June; 10 Jul; 15 Jul; 9 Aug; 19 Aug; 3 
Sept; 23 Sept; 3 Oct; 16 Oct; 2 Nov; 17 Nov; 2 Dec; 
17 Dec; 1 Jan; 16 Jan; 10 Feb; 15 Feb; 1 Mar; 16 
Mar; 14 Apr; 25 Apr; 10 May; 20 May; 

B 3 Jun; 15 June; 3 Jul; 20 Jul; 9 Aug; 17 Aug; 1 Sept; 
16 Sept; 1 Oct; 16 Oct; 2 Nov; 15 Nov; 5 Dec; 17 
Dec; 1 Jan; 16 Jan; 3 Feb; 18 Feb; 1 Mar; 16 Mar; 3 
Apr; 18 Apr; 5 May; 20 May; 

H 14 Jun; 25 June; 10 Jul; 15 Jul; 9 Aug; 19 Aug; 3 
Sept; 23 Sept; 3 Oct; 18 Oct; 14 Nov; 22 Nov; 2 Dec; 
17 Dec; 1 Jan; 16 Jan; 10 Feb; 15 Feb; 6 Mar; 16 
Mar; 14 Apr; 25 Apr; 10 May; 20 May; 

C 3 Jun; 15 June; 3 Jul; 18 Jul; 2 Aug; 17 Aug; 1 Sept; 
16 Sept; 1 Oct; 16 Oct; 2 Nov; 15 Nov; 5 Dec; 15 
Dec; 1 Jan; 16 Jan; 3 Feb; 18 Feb; 1 Mar; 16 Mar; 3 
Apr; 18 Apr; 5 May; 15 May; 

I 14 Jun; 25 June; 5 Jul; 15 Jul; 9 Aug; 19 Aug; 3 
Sept; 23 Sept; 3 Oct; 18 Oct; 2 Nov; 17 Nov; 2 Dec; 
17 Dec; 1 Jan; 16 Jan; 10 Feb; 15 Feb; 1 Mar; 16 
Mar; 14 Apr; 25 Apr; 10 May; 20 May; 

D 8 Jun; 15 June; 3 Jul; 20 Jul; 9 Aug; 17 Aug; 1 Sept; 
16 Sept; 1 Oct; 16 Oct; 2 Nov; 15 Nov; 5 Dec; 17 
Dec; 1 Jan; 16 Jan; 10 Feb; 18 Feb; 1 Mar; 16 Mar; 
3 Apr; 18 Apr; 5 May; 20 May; 

J 14 Jun; 25 June; 5 Jul; 15 Jul; 9 Aug; 19 Aug; 3 
Sept; 23 Sept; 3 Oct; 18 Oct; 14 Nov; 22 Nov; 2 Dec; 
17 Dec; 1 Jan; 16 Jan; 10 Feb; 15 Feb; 1 Mar; 16 
Mar; 14 Apr; 25 Apr; 10 May; 20 May; 

E 3 Jun; 15 June; 3 Jul; 15 Jul; 4 Aug; 17 Aug; 1 Sept; 
16 Sept; 1 Oct; 16 Oct; 2 Nov; 17 Nov; 2 Dec; 17 
Dec; 1 Jan; 16 Jan; 3 Feb; 18 Feb; 1 Mar; 16 Mar; 3 
Apr; 18 Apr; 3 May; 18 May; 

K 7 Jun; 15 June; 5 Jul; 15 Jul; 1 Aug; 21 Aug; 3 Sept; 
23 Sept; 3 Oct; 15 Oct; 4 Nov; 19 Nov; 2 Dec; 17 
Dec; 1 Jan; 16 Jan; 12 Feb; 15 Feb; 1 Mar; 21 Mar; 
2 Apr; 20 Apr; 2 May; 20 May; 

F 8 Jun; 15 June; 10 Jul; 15 Jul; 9 Aug; 17 Aug; 3 
Sept; 16 Sept; 1 Oct; 16 Oct; 2 Nov; 15 Nov; 5 Dec; 
17 Dec; 1 Jan; 16 Jan; 8 Feb; 15 Feb; 1 Mar; 16 
Mar; 3 Apr; 18 Apr; 8 May; 20 May; 

L 7 Jun; 27 June; 14 Jul; 22 Jul; 1 Aug; 21 Aug; 14 
Sept; 25 Sept; 5 Oct; 15 Oct; 4 Nov; 19 Nov; 14 Dec; 
24 Dec; 3 Jan; 28 Jan; 12 Feb; 18 Feb; 14 Mar; 28 
Mar; 2 Apr; 22 Apr; 2 May; 22 May; 

 

Two images were collected per month for each site, the first image was captured at the start of 

each month (the closest image to the 1st of each month) and the second during the middle of each 

month (the closest image to the 15th of the month). 

3.3.4 Acquisition of land cover samples 

Sample polygons for nine land cover classes, namely grape nets, citrus nets, berry nets, grape 

crops without nets, citrus crops without nets, berry crops without nets, all crops without nets, 

natural vegetation, bare fields, natural bare ground, water and urban; were collected in the test 

sites. The samples were manually collected on-screen using very-high resolution aerial imagery as 
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reference data. Table 3.3 records the number of pixels sampled for each land cover class, the 

percentage of the total area covered by the class that was sampled, and the total percentage of the 

total test area covered by each class.  

Table 3.3   Samples collected for each spectral class 

Class Number of pixels Percentage of class 
sampled 

Percentage of study 
area covered by class 

Grape nets 645 079 100% < 1% 

Citrus nets 380 145 100% < 1% 

Berry nets 95 055 100% < 1% 

Grape crops 647 178 23% 2% 

Citrus crops 647 348 30% < 1% 

Berry crops 206 544 100% < 1% 

All crops 1 855 713  13% 12% 

Natural vegetation 646 117 15% 8% 

Bare fields 646 031 18% 7% 

Natural bare 647 289 1% 32% 

Water 646 024 18% 7% 

Urban 384 488 27% <1% 

 

The citrus nets, berry nets, berry crops and urban classes were under sampled, as there were 

limited occurrences of these classes in the sampling areas. The remaining classes have a similar 

number of training samples. 

3.3.5 Spectral signatures and separability analysis 

The sampled pixels were used to extract spectral values from each of the Sentinel-2 scenes. These 

values were used to create spectral signatures for each land cover class for the start and middle of 

each month. The separability between the nine classes was calculated for each acquisition period 

using the Jeffries-Matusita (JM) algorithm. JM distance is a statistical metric used to quantify the 

separability between two signatures in feature space (Dabboor et al. 2014). The metric ranges 

between 0 and 2, where a value of 0 indicates no separability between signatures and 2 indicates 

complete separability (Dabboor et al. 2014). Within the field of remote sensing, values lower than 

1.7 are considered to have poor separability (Jensen 2016). The JM algorithm was implemented 

using the statistical computing language R (Tippmann 2015). 
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3.4 RESULTS  

The outcomes of the separability analysis are summarized in the following subsections. 

Specifically, the net classes’ separability with surrounding land cover, their average seperability 

per month and the spectral signatures of the three net classes and their corresponding uncovered 

crops will be visualized. The JM distance between the spectral signatures of each class can be 

found in Appendix A. 

3.4.1 Separability analysis 

Figure 3.3 shows the mean JM distance between grape nets and each of the other classes by season 

obtained by calculating the JM distance between grape nets and each other class for each 

acquisition period. The JM distances were averaged per season for each class. Similarly, Figures 

3.4 and 3.5 respectively illustrate the mean JM distance of citrus nets and berry nets against the 

other classes per season. The standard deviation of the JM distances per each class is demonstrated 

by the error bars for Figures 3.3, 3.4 and 3.5. 

 
Figure 3.3 Mean Jeffries-Matusita distance between grape nets and each class per season  
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Figure 3.4 Mean Jeffries-Matusita distance between citrus nets and each class per season  

 
Figure 3.5 Mean Jeffries-Matusita distance between berry nets and each class per season 

Figures 3.3, 3.4 and 3.5 all confirm that there are seasonal variations that affect the separability of 

the netted and the other land cover classes. Furthermore, all three net classes clearly achieve the 

highest separability values with the water class. 

The grape nets class (Figure 3.3) shows the greatest seasonal variations in separability per class 

and, aside from the water class, grape nets returned JM distance values of less than 0.6 when 

paired against all the other land cover classes. The lowest separability values are recorded between 

grape nets and the bare ground classes (bare field, natural bare), the crop classes (grape crops, 

citrus crops, berry crops, all crops) and the other net classes (citrus nets, berry nets). Regarding 

the separability between grape nets and the bare ground classes, the highest separability scores are 
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evident in summer for both the bare field and natural bare classes. This is followed closely by the 

values for spring with lowest values achieved in winter and autumn. The separability between 

grape nets and the crop classes is the highest in winter. During winter, the separability values 

between grape nets and citrus crops, and between grape nets and all crops, are especially high 

compared to the other crop classes. The separability between grape nets and the crop classes is the 

second highest in summer, whereas the poorest separability values for the crop classes and grape 

nets are associated with autumn and spring. The separability between grape nets and grape crops 

is marginally lower than the separability of citrus crops and berry crops. The separability between 

grape nets and the other crops under nets (citrus nets, berry nets) are the highest in summer, 

followed closely by winter, then by spring and autumn. Grape nets attain a good degree of 

separability with natural vegetation and urban land cover compared to those for the other classes. 

However, grape nets reached its lowest separability against urban during winter. 

It is evident in Figure 3.4 that all the classes, except water, have separability of less than 0.4. 

Similar to the separability scores of grape nets (Figure 3.3) the separability of citrus nets is lowest 

for the bare ground, crops and other net classes. Citrus nets also manifest low separability with the 

urban class. As with grape nets, the separability between citrus nets and all crops is the highest 

for winter. The separability scores between citrus nets and the other classes (Figure 3.4) show less 

seasonal variability compared to that of grape nets (Figure 3.3).  

As with the separability values of citrus nets, Figure 3.5 affirms that the values of berry nets are 

less than 0.4 for all classes except water. The berry nets’ separability values exhibit similar 

seasonal variations to those of grape nets. The lowest separability scores characterise the urban 

class, although the bare field, natural bare, grape nets, citrus nets, grape crops, citrus crops and 

berry crops classes all have low separability scores with the berry nets class. The separability 

between berry nets and berry crops is particularly low during autumn. 

The mean JM distances of all the classes for grape nets, citrus nets and berry nets are graphically 

portrayed in Figure 3.6 for each image acquisition period.  The means were calculated by averaging 

the JM distances of each class for each acquisition period. 

Stellenbosch University https://scholar.sun.ac.za



 55 

 
Figure 3.6 Mean Jeffries-Matusita distances of all the classes for grapes nets, citrus nets and berry nets for 

each image acquisition period 

The illustration clearly shows that the grape nets class achieve relatively high (0.27 to 0.43) 

separability scores for all the acquisition periods compared to the citrus nets and berry nets classes 

with scores (< 0.3). The citrus nets and berry nets classes reach similar separability values 

throughout the year. The grape nets class is consistently more separable than the other two net 

classes.  

All three classes (grape nets, citrus nets and berry nets) earn their highest separability scores in 

the summer (Dec to Feb) and winter (Jun to Aug) months, with the grape nets class achieving the 

overall highest separability value of 0.43 at the end of June. In contrast, berry nets and citrus nets 

achieve their highest JM distance values at the end of December. The grape nets class also gains 

high separability values during December, but not as high as during June and July. Compared to 

the relatively high summer and winter scores, relatively low separability scores are achieved 

during the spring months (Sept to Nov) with the lowest separability scores recorded during autumn 

(Mar to May). 

3.4.2 Spectral signatures 

Spectral signatures show the reflectance recorded by each band of a sensor for a particular land 

cover. These signatures can be used to compare the spectral response of different land cover to 

inform feature selection for classification (Mutanga, Adam & Cho 2012). 
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Figure 3.7 Mean spectral signatures of the grape nets, citrus nets, berry nets, grape crops, citrus crops, berry crops, and all crops classes for a) Summer, b) Autumn, c) 

Winter and d) Spring where the error bars represent the standard deviation of the signatures 

d) Summer c) Autumn 

b) Winter a) Spring 
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Figures 3.7a to d compare the seasonal mean spectral signatures of grape nets, citrus nets and 

berry nets to grape crops, citrus crops, berry crops and all crops. It is evident in Figure 3.7 that 

higher reflectance values were consistently recorded in bands 1 (coastal aerosol), 2 (blue), 3 

(green), and 4 (red) for net-covered crops, compared to uncovered crops. However, the shapes of 

the covered crop signatures mimic the shape and seasonal changes of their uncovered counterparts. 

The standard deviation of the spectral signatures for all seven classes are high throughout the year, 

particularly for the NIR (8 and 8A) and SWIR (11 and 12) bands.  

The signature shapes of the seven classes change according to season. From summer to winter the 

grape nets and grape crops signatures decrease in reflectance for bands 6 to 9 which correspond 

to the red edge (RE) and near infrared (NIR) regions of the electromagnetic spectrum (EMS). 

Furthermore, during this period, both these classes increase in reflectance for bands 11 and 12 

which correspond to the SWIR region of the EMS. The reflectance in the RE and NIR regions then 

increases during spring in contrast to decreasing reflectance in the SWIR region. 

The spectral signature of the citrus nets shows less variation over the seasons than the case of 

grape nets but there is a decrease in reflectance in the RE and NIR regions for both citrus nets and 

citrus crops during autumn. Furthermore, the reflectance of citrus nets is higher than the 

reflectance of citrus crops in all the Sentinel-2 bands. The difference between these two signatures 

is larger in the visible (bands 1, 2 and 3) and SWIR (bands 11 and 12) regions than in the RE and 

NIR regions (bands 5, 6, 7, 8 and 8A).  

For bands 2, 3 and 4 (visible region), the reflectance of berry nets is higher than all the other classes 

over the course of the entire year. However, during the winter months the berry nets and berry 

crops signatures decrease in reflectance in the RE and NIR regions. In winter, these two signatures 

are nearly identical in the RE, NIR and SWIR regions of the EMS.  

3.5 DISCUSSION 

According to Jensen (2016), classes that have JM scores lower than 1.7 are considered to have 

poor separability. The foregoing analysis of separability established that all three net classes 

achieved separability values lower than 0.6 for all the classes except water (Figures 3.3, 3.4 and 

3.5). These findings make it clear that the agricultural nets exhibit a poor degree of separability 

from most of the surrounding land covers in the study sites. Nets vary greatly in their thickness, 

density, transparency, light dispersal as well as their ultraviolet and infrared absorption properties 

(Levin et al. 2010). Consequently, the spectral variance in each net class is high and this decreases 

their separability from other land cover classes (Du & Sun 2008). This low separability is 
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attributable to the large variations in the net signatures. This is substantiated by the large standard 

deviations recorded for the grape nets, citrus nets and berry nets spectral responses (Figure 3.7).  

The separability of all three net classes is particularly low for the urban, bare field, natural bare, 

grape nets, citrus nets, grape crops, citrus crops and berry crops classes (Figures 3.3, 3.4 and 3.5). 

These results agree with findings in other studies where a high degree of confusion is noted 

between the net and urban (Aguilar et al. 2015; Aguilar et al. 2016; Levin et al. 2010; Yang et al. 

2017), crop (Lanorte et al. 2017; Tarantino et al. 2012; Yang et al. 2017), bare soil (Lanorte et al. 

2017; Yang et al. 2017), natural vegetation (Lanorte et al. 2017; Tarantino et al. 2012), and other 

plastic covering classes (Aguilar et al. 2014; Aguilar et al. 2015; Levin et al. 2010).  

Levin et al. (2010) attribute the poor separability of nets and built-up structures to vertical mixing, 

i.e. when the net signature and the signature of the crops under the net combine to form a single 

mixed pixel value. This type of mixing is most prevalent when high-to medium-resolution imagery 

is used to capture agricultural nets. These mixed signatures resemble the signatures of urban land 

cover which comprise artificial structures and surrounding vegetation (Levin et al. 2010). This 

explains why the separability between agricultural nets and urban land cover is low. Aguilar et al. 

(2016) found that the confusion between white buildings and thicker plastic coverings, such as 

films and nets with low porosity, was particularly high. In the Western Cape berry crops are 

primarily covered to protect the plants from hail and extreme weather conditions whereas citrus 

and grape crops are primarily covered to provide shading and protection from birds (Ngubane 

2018; Tarantino et al. 2012). Such so-called hail nets are made from thicker, more durable plastic 

with a lower porosity than the shade and pest nets (Castellano et al. 2008). This likely explains the 

lower separability registered for the berry nets versus the urban class, as the thicker and denser 

nets resemble built-up features (i.e. high reflectance in the visible bands).  

Tarantino et al. (2012) used aerial imagery to compare the spectral signatures of uncovered 

vineyards to those of vineyards grown under nets. The analysis of the three bands, namely red, 

green and blue (RGB), revealed that the reflection of the covered vineyards was higher than that 

of the uncovered vineyards for all three bands.  Similarly, the results presented in Figure 3.7 show 

that covered vineyards have higher reflectance values in the RGB bands (bands 2, 3 and 4) 

compared to those of uncovered vineyards. The results in Figure 3.7 expand on that of Tarantino 

et al. (2012) by revealing that netted citrus and berries also have higher reflectance values than 

uncovered citrus and berries, and that this phenomenon occurs consistently throughout the year. 

This is attributable to white objects usually having very high reflectance values in the visible region 

of the EMS (Lillesand, Kiefer & Chipman 1994) and to the fact that most nets in the Western Cape 

are white (Pienaar 2018). This finding bodes well for finding an operational solution to classifying 
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agricultural nets in the province. Levin et al. (2010) have compared the spectral signature of shade 

nets captured by a hyperspectral sensor to the signature extracted from a Landsat-7 image and 

found that the hyperspectral sensor detected three major absorption features at 1218, 1732 and 

2313 nm. However, the spectral and spatial resolutions of Landsat-7 imagery were too low to 

detect these features (Levin et al. 2010). Likewise Figure 3.7 shows that Sentinel-2 imagery is 

unable to detect these unique absorption features, but it does illustrate that the spectral signatures 

of covered and uncovered crops of the same type are similar in shape. This signifies that Sentinel-

2 imagery can capture a reliable signal of the crops under nets. This finding corroborates those of 

Borgogno-Mondino, Palma & Novello (2020) who compared the spectral signatures of uncovered 

and covered vineyards captured by Sentinel-2 and found that the imagery was able to capture the 

unique spectral properties of the vineyards under the nets. This finding suggests that Sentinel-2 

imagery could potentially be used to map crops under nets. 

However, the spectral signatures of crops can change dramatically over time as crops enter 

different phenological stages (Levin et al. 2010). This, in turn, can cause the spectral signatures of 

agricultural nets to change according to the phenological stages of the crops they cover (Levin et 

al. 2010). The foregoing analysis proves that the signatures of the crops and the signatures of the 

nets change throughout the seasons (Figure 3.7) to the extent that changes in reflectance of each 

covered crop mimic the changed reflectance of the corresponding uncovered crops. This suggests 

that the seasonal changes in the signature of the nets is caused by the underlying crops and that the 

Sentinel-2 imagery can capture the signature of the crops under the nets, although the effect of the 

nets is non-linear (not constant for all wavelengths). The separability of the agricultural nets from 

surrounding land cover also changes throughout the year (Figures 3.3, 3.4, 3.5 and 3.6). This 

seasonal variation is likely caused by the changing spectral signatures of the nets, as well as the 

crops grown in the test sites.  

Yang et al. (2017) found that seasonal changes particularly affect the separability of nets from 

vegetation and bare classes. This effect is noticeable in Figure 3.3 which shows that grape nets 

demonstrate higher seasonal variation in separability compared to citrus nets and berry nets, 

especially when juxtaposed with the uncovered crops and natural bare classes. The visible 

appearance of vineyards changes dramatically throughout the year as the vineyards mature in 

summer, the vine foliage changes colour (from green to yellows and reds) in autumn and the leaves 

are shed in winter. Grape nets therefore have lower separability from other crop types during 

summer (Figure 3.3) because the signature of the mature vineyards resembles that of the crops in 

the test sites (Figure 3.7a). Tarantino et al. (2012) and Lanorte et al. (2017) all reported large errors 

of commission and omission between mature vineyards under nets and surrounding crops. The 
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separability of grape nets and other crops – particularly evergreen crops such as citrus – improve 

during winter as the vineyards colour and the vines enter dormancy (Figure 3.3). This is supported 

by the change in the spectral signature shape of grape nets during winter (Figure 3.7) which is 

noticeably different (flatter in the near-infrared region of the EMS) to the shape of the other classes 

of crops. However, as the leaves are shed, a larger proportion of the background soil signal 

influences the spectral signature of the vines, which decreases the separability of grape nets from 

the bare ground, grape crops and natural bare classes.  

During autumn, vineyards start to discolour in preparation to leaf shedding, but this discolouration 

occurs at different rates within vineyards as well as among vineyards depending on the cultivars 

planted (Araujo, Abiodun & Crespo 2014). The effect is that the intra-class variation of vineyards 

is high during autumn. This may explain why the separability scores achieved by grape nets is 

lower in autumn than during the other seasons (Figures 3.3 and 3.6). Similarly, the intra-class 

variation of grape nets is higher in spring when vineyards flower at different rates depending on 

their cultivar and on chilling during winter (Araujo, Abiodun & Crespo 2014). The separability 

scores of grape nets are consequently lower in spring than in winter and summer. However, 

differences in bud-break rates do not seem to influence the separability as severely as the 

discolouration of the vineyards during autumn (compare Figures 3.3 and 3.6). 

Citrus nets and berry nets both achieve lower mean separability scores than grape nets for each 

acquisition date (Figure 3.6) and show less seasonal variation in their spectral signatures and 

separability scores. Citrus nets and berry nets both represent multiple varieties. Specifically, citrus 

nets include the varieties oranges, tangerines, and lemons under nets and the berry nets class 

include the varieties blueberries and strawberries. The subtle differences among fruit varieties 

within classes increases intra-class variation that leads to the lower separability values for these 

classes (Figures 3.4, 3.5 and 3.6). In the case of citrus nets, the different citrus varieties have 

similar phenological stages and maintain their leaves throughout the year. Therefore, the spectral 

signature of citrus nets does not change as dramatically as for grape nets in Figure 3.7. In the case 

of berry nets, strawberries and blueberries have different phenological stages (Figure 3.2). By 

combining these berry varieties, the unique changes caused by the phenological changes of each 

variety are not captured by the averaged berry nets signature in Figure 3.7. Hence, the spectral 

profiles of the berry nets and berry crops classes show little seasonal variation. This is most likely 

why the separability scores of berry nets show less seasonal variation compared to those of grape 

nets. However, berry nets achieve lower separability scores in autumn (Figure 3.6) when the leaves 

of blueberry bushes – which make up the majority of the berry nets class – change colour, so 

causing an increase in intra-class variation. Another factor contributing to the low separability 
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scores recorded in the autumn for all three net classes is the discolouration in the leaves of other 

vegetation and crops within the test sites. This is corroborated by the decrease in separability 

during autumn for the all crops and natural vegetation classes (Figures 3.3, 3.4 and 3.5). 

The analyses provide useful insight into the periods during the year that maximize the separability 

of the net classes from surrounding land cover (Figure 3.6). The highest separability scores for 

both citrus nets and berry nets are achieved toward the end of December. The grape nets class also 

achieve high separability scores in this period. These results point to the summer as the most 

appropriate time to map crops under nets in the Western Cape. During summer most of the crops 

under nets have already matured and their unique spectral properties have developed, making the 

different crop types under nets easier to differentiate (Aguilar et al. 2015). Aguilar et al. (2015) 

mapped crops under nets in southern Spain using multiple images throughout the crop-growing 

season and found that relatively high overall accuracy (67%) was achieved for the image captured 

in September towards the end of the growing season. They attributed this to the crops having 

reached maturity which resulted in a brighter and unique signature for each netted crop type studied 

(Aguilar et al. 2015). In the current study, grape nets achieve the highest separability values at the 

end of June so suggesting that this period will yield better results for mapping vineyards under 

nets.  

The clear differences between the signatures of the different crop types under nets (Figure 3.7) 

forebode that any combining of the different nets into a single class will result in high levels of 

confusion in land cover classification when using Sentinel-2 imagery. The results of this study 

indicate that this problem can be addressed by separating the different crop types grown under nets 

into separate classes and then mapping these nets during summer, but more research is needed to 

test this possibility. Moreover, other methods such as spectral indices and texture features should 

be investigated to find ways to improve seperability. This present study has been constrained by 

limited availability of training data for the net classes. Future studies would benefit from separating 

the berries and citrus classes into their constituent varieties.  

3.6 CONCLUSION 

This chapter has reported on an investigation of the spectral signatures of different agricultural 

nets captured by Sentinel-2 imagery. The study sought to gain insight into how the presence of 

agricultural nets affects the signatures of crops under nets, with the primary aim was to evaluate 

the spatial and spectral capabilities of Sentinel-2 for mapping agricultural nets and the crops they 

cover. The secondary aim was to examine the effect of temporal variability on the separability of 

net signatures to determine which time of the year is best for mapping the different types of nets 

and the crops they typically cover. The mean spectral separability of grape nets, citrus nets and 
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berry nets classes were compared for the period June 2019 to May 2020 that corresponds to the 

fruit-growing season in the Western Cape.  

The results give new insight into the spectral properties of agricultural nets, which is essential for 

developing mapping and monitoring solutions. The presence of nets was found not to dramatically 

change the characteristics (shape) of the spectral profiles of the crops they cover. For the most 

part, the spectral profiles of the netted crop classes mimic those of their respective uncovered 

counterparts. The reflectance of the netted classes tend to be higher, particularly in the visible 

spectrum of the EMS. The Sentinel-2 imagery is also able to capture the unique properties of the 

different nets as the signatures change due to seasonal variations of the crops under nets. This 

holds promise for Sentinel-2 imagery being used to differentiate crop types covered by nets.  

The separability values of the net classes were generally low and the presence of nets increased 

the confusion between crops under nets with bare soil and urban land cover. It was also established 

that the seasonal variations of the crops under nets significantly affect the separability of 

agricultural nets from surrounding land cover. Notably, summer is the best time to differentiate 

between targeted crop types grown under nets, although winter is the most appropriate time for 

mapping covered vineyards.  

The findings reported in this chapter represent the first attempt to understand the spectral dynamics 

of agricultural nets in a South African context and specifically in the context of using Sentinel-2 

imagery. The findings also lay a solid foundation for developing a solution for mapping and 

monitoring crops grown under nets at regional scales. Such a solution is essential for expanding 

the capacity of existing remote sensing techniques used for agricultural monitoring to include crops 

grown under nets. 
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CHAPTER 4:  REGIONAL MAPPING OF TABLE GRAPES UNDER 

AGRICULTURAL NETS USING SENTINEL-2 IMAGERY1 

4.1 ABSTRACT 

The table grape industry is an integral part of South Africa’s economy, contributing some R3 

billion toward the gross domestic product. Over the last decade, this industry has been put under 

increasing strain due to climatic variations and extreme weather events. Many table grape farms 

are utilizing agricultural nets as an adaptation strategy to mitigate the potential impact of such 

variations on table grape production. However, agricultural nets have adverse environmental 

effects such as increased plastic waste pollution and the disruption of the water infiltration-run-off 

balance. Little is known about the extent of these impacts, mainly because no record of the netted 

areas exists. The mapping and monitoring of agricultural nets will provide a better understanding 

of their potential environmental impact at regional scales. Remote sensing has become a reliable 

tool for mapping and monitoring land cover over large areas, but the variable spectral properties 

and semi-transparent nature of nets pose a unique challenge to remote sensing applications. This 

study investigated the potential of Sentinel-2 imagery for mapping agricultural nets at regional 

(provincial) scale. Eight study sites which contain a variety of agricultural nets in terms of size, 

shape and density, were selected in the Western Cape province. Several configurations of image 

features, including spectral bands, spectral indices and grey-level co-occurrence matrix (GLCM) 

texture features, were used as input to random forest (RF), support vector machine (SVM) and 

neural network (NN) machine learning classifiers.  The results show that NN preformed best with 

an overall accuracy of 97% and a kappa statistic of 0.87. RF and NN both proved to be effective 

classifiers for mapping agricultural nets with both achieving high average accuracies for the 

different feature sets. The Sentinel-2 bands contained the most important information for 

classification. The results of this study present Sentinel-2 imagery as a practical and viable source 

of data for mapping agricultural nets.  

4.2 INTRODUCTION 

South Africa accounts for 22% of the southern hemisphere’s table grape exports, estimated at 63.5 

million cartons per year (SATI 2020). In 2020 this industry employed  78 670 farm workers (SATI 

2020) and contributed some R3 billion to the gross domestic product (Mtshiselwa 2020). However, 

the industry is under threat from climate change as table grapes are particularly sensitive to high 

temperatures, prolonged heat waves and reduced rainfall (GreenAgri 2016). 

 
1 This chapter is formatted as a standalone, publication-ready article. Some duplication with Chapters 2 and 3 should 

consequently be expected. 
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Agricultural nets are used to protect crops against sunburn, dehydration, hail, wind, snow, rain and 

pests (Briassoulis, Mistriotis & Eleftherakis 2007). These nets provide a versatile and cost-

effective solution to adapt to the increased weather variability, unreliable rainfall and increased 

frequency of extreme weather conditions associated with climate change (Jones, Singels & Ruane 

2015). The estimated global coverage of plastic nets was 86 000 ha in 1999; had tripled by 2002 

and is predicted to increase exponentially as time progresses (Takakura & Fang 2002). In South 

Africa it has been estimated that 2323 ha of agricultural land had been covered by agricultural nets 

by 2017, the most notable increase occurring over citrus and table grape cultivars (Pienaar 2018).  

The growing utilization of agricultural nets has three noteworthy implications. First, agricultural 

nets have become an important tool for increasing the quality and quantity of agricultural produce 

(Levin et al. 2010). As such, the area of plastic-covered agricultural is considered to be an indicator 

of agricultural intensification (Lim 2002). Second, these nets generate a large amount of plastic 

waste (Levin et al. 2010). In South Africa, the agricultural sector is responsible for 9% of the 

country’s plastic consumption, of which 15% can be repurposed (PlasticsSA 2018). Third, 

agricultural nets have a major impact on the rate of evapotranspiration and water stress in crops, 

as well as the water infiltration-run-off balance of cultivated land (Levin et al. 2010). For these 

reasons, the monitoring and mapping of agricultural nets are essential for gauging the 

environmental and hydrological impacts of agricultural practices (Aguilar et al. 2014).  

Remote sensing has become indispensable to agricultural applications. Frequent and accurate 

imagery over large areas facilitate the mapping and monitoring of crop extent, weed infestations, 

pest damage, plant health, nutrient needs, water use and water stress (Wójtowicz, Wójtowicz & 

Piekarczyk 2016). This information ensures the effective management of agricultural resources 

and agricultural waste (Wójtowicz, Wójtowicz & Piekarczyk 2016). However, the introduction of 

plastic netting prevents the application of standard remote sensing approaches for monitoring crop 

characteristics (Van Niekerk et al. 2018). New remote sensing methods are needed for monitoring 

crops under nets, but the application of such methods is dependent on knowing which crops are 

covered by nets. Due to their diverse applications, agricultural nets differ greatly regarding their 

physical properties (e.g. material, colour, density) and therefore present a unique challenge to 

remote sensing practices (Levin et al. 2010). 

A number of studies have been devoted to mapping plasticulture using remote sensing (Aguilar et 

al. 2014; Aguilar et al. 2015; Aguilar et al. 2016; Carvajal et al. 2006; Tarantino et al. 2012). 

Invariably, very-high-resolution satellite imagery acquired by WorldView-2 (Aguilar et al. 2016), 

WorldView-3 (Aguilar et al. 2018), GeoEye-1 (Aguilar et al. 2014) and aerial imagery (Tarantino 

et al. 2012) have been employed for this purpose. Although these methods have proved to be 
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successful, very-high-resolution products are expensive and difficult to acquire, and therefore 

present an obstacle to mapping large areas (Boyle et al. 2014).  

The medium- and high-resolution satellites, such as Landsat and Sentinel-2, are widely used for 

land cover mapping as they provide cost-effective imagery with global coverage (Thanh Noi et al. 

2017). Novelli & Tarantino (2015) have implemented a rule-based classification of agricultural 

nets using Landsat-8 OLI and TIRS imagery. Their classification scheme used the normal 

difference vegetation index (NDVI), the plastic surface index (PSI) and the normalized difference 

sandy index (NDSI) to achieve an overall accuracy of over 80% for each study area. Lanorte et al. 

(2017) used Landsat-8 imagery in a per-pixel classification of plastic-covered (nets and films) 

vegetation. An overall accuracy of 95% was achieved by the support vector machine (SVM) 

classifier (Lanorte et al. 2017). Levin et al. (2010) simulated various spatial resolutions to map 

greenhouses in Israel and found that the optimal spatial resolution for mapping these greenhouses 

was 16 m or finer resolution. Therefore, Sentinel-2 imagery with a spatial resolution of 10 m, may 

be more appropriate for mapping plasticulture than with Landsat-8 imagery which has a spatial 

resolution of 30 m. 

Sentinel-2 was launched in 2014 with the goal of providing high-resolution satellite imagery for 

land cover monitoring and other applications (Phiri et al. 2020). The products acquired by Sentinel-

2 are freely available and therefore have the potential to contribute toward sustainable, global land 

cover mapping and monitoring initiatives (Phiri et al. 2020). Although Sentinel-2 imagery has not 

been used to map agricultural nets, Novelli et al. (2016) have compared Landsat-8 and Sentinel-2 

imagery for object-based classification of plastic greenhouses. Sentinel-2 imagery outperformed 

Landsat-8 imagery by achieving an overall accuracy of 92% when using the random forest (RF) 

classification algorithm  (Novelli et al. 2016). The RF algorithm is one of many machine learning 

(ML) algorithms like SVM and neural network (NN) that have been effectively applied to mapping 

applications (Maxwell, Warner & Fang 2018). ML methods have the unique ability to model 

complex class signatures so making these algorithms ideal for complex mapping problems, such 

as agricultural nets (Maxwell, Warner & Fang 2018). RF and SVM have been repeatedly utilized 

to map plasticulture (González-Yebra et al. 2018; Hasituya et al. 2017; Lu, Tao & Di 2018; Novelli 

et al. 2016). RF is an ensemble algorithm that uses a set of decision trees to classify data (Belgiu 

& Drăguţ 2016). SVM classifies data by isolating classes in feature space using a kernel function 

(Maxwell, Warner & Fang 2018). Although both classifiers can be used to map agricultural nets, 

Hasituya & Chen (2017) found that RF significantly outperforms SVM for mapping plastic-

mulched land cover (PML). NN is not popular for mapping plasticulture with medium- and high-

resolution imagery, but it has shown promise when used for mapping plastic greenhouses with 
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very-high-resolution imagery as input (Aguilar et al. 2014). Despite their effectiveness for remote 

sensing applications, ML algorithms have limitations when applied to high-dimensional and highly 

correlated data sets (Darst, Malecki & Engelman 2018). Georganos et al. (2018) have 

demonstrated that feature selection methods mitigate the effect of high dimensionality and 

significantly improve the accuracy and performance of ML classifiers. 

A mapping solution that can accommodate table grapes planted under agricultural nets is urgently 

required to effectively map and monitor table grapes in South Africa. According to Aplin (2004) 

a successful land cover mapping solution requires the target feature to be spectrally separable from 

surrounding features; the remote sensor to have adequate resolutions to discriminate the target 

signature from the surrounding land cover; and an appropriate classification methodology. 

Sentinel-2 imagery has the potential to meet these requirements and to provide a practical solution 

for mapping agricultural nets and the crops they cover. The primary aim of this study is to evaluate 

the potential of Sentinel-2 imagery to identify and map nets covering table grapes. The secondary 

aim is to identify the spectral features and classification algorithms that are best suited for this 

application. 

4.3 METHODS 

The following subsections outline the procedures followed to achieve the above-mentioned aims. 

Specifically, these subsections address the selection of study sites for the experiment, the data 

acquisition and preprocessing, and the methods used for classification and accuracy assessment. 

4.3.1 Study region and sites 

The Western Cape province, located on the south-western coast of South Africa, was chosen as 

the study region (Figure 4.1). The province is the fourth largest in South Africa with an area of 

129 449 km2 and it is topographically and climatically diverse (Griffiths et al. 2010). The western 

part of the province borders the Atlantic Ocean and is characterised by a semi-arid microclimate 

due to the cold Benguela current. The eastern region borders the Indian Ocean, with its warm 

Agulhas current (Griffiths et al. 2010). Consequently, the eastern parts have a maritime climate 

with cool, moist winters and mild, moist summers (Griffiths et al. 2010). The interior of the 

province has a Mediterranean climate with hot, dry summers and cold, wet winters (Cowling et al. 

1996). The eastern region is dominated by a range of folded sandstone mountains known as the 

Cape Fold Belt (Compton 2016). The valleys between these mountains provide fertile soils for a 

range of agricultural activities, including vineyards (table and wine grapes), fruit orchards and 

rooibos tea plantations (Compton 2016).  
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Adapted from Pienaar (2018) 

Figure 4.1 Study sites in the Western Cape and the location of known table grape cultivation under 

agricultural nets 

Three of the five primary South African table grape regions, namely the Olifants River region, the 

Berg River region and the Hex River region, are located in the Western Cape (SATI 2020). In the 

Western Cape table grapes vines are planted towards the end of winter and the grapes are harvested 

in mid- to end of summer depending on the specific cultivar (VinPro 2021). The Western Cape 

experienced a severe drought from 2015 to 2019 that caused a decline in agricultural productivity 

(Zwane 2019). Consequently, there has been a significant increase in the use of agricultural nets 

in the region (Pienaar 2018). In the Western Cape table grapes make up 36% of the crops grown 

under nets, while berry (19%) and citrus (15%) crops are often covered too (WCDoA 2018).     

Selection of the study sites was based on four factors. First, the availability of the Western Cape 

Department of Agriculture (WCDoA) crop census (WCDoA 2018), a.k.a. the ‘Elsenburg fly-over 

data set’, comprising the digitized boundaries of agricultural fields and nets in the Western Cape. 

The digitizing of field and net boundaries are time-consuming and expensive processes that are 

infrequently carried out, especially at provincial scale. The preceding census of agricultural nets 

was conducted more than a decade ago (Pienaar 2018). Therefore, the Elsenburg fly-over data set, 

which is unique to the Western Cape, is an asset to this study. Second, cloud-free Sentinel-2 

Stellenbosch University https://scholar.sun.ac.za



 68 

imagery is available for the study sites. Third, the sites represent the most common types of plastic 

nets found in the Western Cape in terms of their size, shape and plastic material used. Fourth, the 

sites were chosen to study the transferability of the method as they represent the different land use 

patterns and topography that characterise the Western Cape. 

4.3.2 Data acquisition and preparation 

4.3.2.1 Sentinel-2 imagery 

Sentinel-2 images with Level 2A processing were acquired using Google Earth Engine (GEE). 

Level 2A products have been geometrically corrected and contain 12 bands representing rescaled 

surface reflectance values (SIC 2016).  The 12 bands comprise bands 1 and 9 that have a resolution 

of 60 m; bands 2, 3, 4 and 8 that have a resolution of 10 m; and bands 5, 6, 7, 8A, 11 and 12 that 

have a spatial resolution of 20 m. The Sentinel-2 sensor has an additional cirrus band (band 10) 

that is exclusively used for atmospheric correction and is therefore excluded from the Level 2A 

product  (ESA 2018).  

Table 4.1 Acquisition dates of Sentinel-2 images for the study sites 

Study site Sentinel-2 image acquisition date 

SS1 10 June 2020 

SS2 10 June 2020 

SS3 10 June 2020 

SS4 10 June 2020 

SS5 10 June 2020 

SS6 15 June 2020 

SS7 15 June 2020 

SS8 15 June 2020 

All the bands were resampled to a spatial resolution of 10 m before being exported from GEE. All 

the images are cloud-free and captured between 10 and 15 June 2020 (Table 4.1). June corresponds 

with the pruning stage of the table grape production cycle and therefore represents a period when 

vines are dormant and bare (VinPro 2021). 

4.3.2.2 Training and reference data 

In order to test the accuracy and transferability of the classification method, the test sites were 

divided into training and reference groups. SS1, SS2, SS4 and SS7 were chosen for model building 

(training) and sites SS3, SS5, SS6 and SS8 were used as reference. The training and the reference 

groups contain table grapes planted under a variety of net types and shapes, as well as a mixture 
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of surrounding land cover types that will facilitate the evaluation of the accuracy and transferability 

of the classification.  

Digitised polygons of agricultural nets (sourced from the Elsenburg fly-over data set) was used to 

manually identify initial samples. A combination of Sentinel-2 imagery and very-high-resolution 

aerial imagery was then used to confirm these samples and identify additional ground truth for the 

eight sites. Five land cover classes were chosen for the classification, namely table grapes under 

agricultural nets (grape nets); non-netted (open), bare agricultural fields (bare field); rocky and 

sandy natural land cover (bare natural); non-netted (open) agricultural fields with crops (including 

but not limited to table grapes) present (crops); and natural vegetation (natural vegetation). The 

number of pixels collected for each class are summarized in Table 4.2. 

Table 4.2 Number of pixels collected for each training class  

Class name Grape nets Bare field Bare natural Crops Natural vegetation Total 

SS1 6 323 3 107 4 474 1 546 1 069 16 519 

SS2 3 774 5 576 4 130 3 748 3 833 21 061 

SS4 6 996 4 541 9 566 8 076 6 711 35 890 

SS7 4 074 5 814 3 748 5 530 5 465 24 631 

Total 21 167 19 038 21 918 18 900 17 078 98 101 

 

4.3.2.3 Spectral indices 

Spectral indices are band equations designed to create image features that highlight specific 

attributes in a data set (Campbell & Wynne 2011). These indices have been widely proven to aid 

the classification of plasticulture (Aguilar et al. 2014; Ihuoma & Madramootoo 2019; Levin et al. 

2007; Lu, Tao & Di 2018; Yang et al. 2017). The most popular indices that have been applied to 

the mapping of agricultural nets are vegetation indices, specifically the NDVI (Levin et al. 2007), 

the optimized soil-adjusted vegetation index (OSAVI) (Ihuoma & Madramootoo 2019) and the 

enhanced vegetation index (EVI) (Aguilar et al. 2014); as well as specialized plasticulture indices, 

such as the plastic-mulched land cover index (PMLI) (Lu, Tao & Di 2018) and the plastic 

greenhouse index (PGI) (Yang et al. 2017). Each of these five indices was calculated according to 

the respective equations given in Table 4.3 and each applied as an additional predictor variable. 
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Table 4.3 Spectral indices used as additional predictor variables 

Spectral Index Equation 

NDVI 𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

OSAVI 𝐵8 − 𝐵4

𝐵8 + 𝐵4 + 0.16
 

EVI 
2.5 ×

𝐵8 − 𝐵4

𝐵8 + 𝐶1 ∗ 𝐵4 − 𝐶2 ∗ 𝐵2 + 𝐿
 

PMLI 𝐵8 − 𝐵3

𝐵8 + 𝐵3
 

PGI 𝐵2 ∗ (𝐵8 − 𝐵4)

1 − 𝑀𝑒𝑎𝑛(𝐵2 + 𝐵3 + 𝐵4)
 

Note: B is the Sentinel-2 band; C1 = 6, C2 = 7.5, L = 1 

4.3.2.4 Texture measures 

Image texture, defined as the visual effect caused by spatial variation in tonal quantity over a 

relatively small area, plays an important role in discerning differences between land cover classes 

(Liang, Li & Wang 2012). There are several methods for quantifying image texture, a frequently 

used one being a grey-level co-occurrence matrix (GLCM). The use of GLCM, first proposed by 

Julesz (1962), describes the occurrence of value pairs within an image window using a matrix. 

This approach has become fundamental in land cover classification methods and has been proven 

to improve the classification of plasticulture (Agüera, Aguilar & Aguilar 2008; Carvajal et al. 

2006).  Seven texture features were selected for inclusion in the feature set, namely mean, variance, 

homogeneity, contrast, dissimilarity, entropy and angular second moment (ASM). The selection 

of window size has a major impact on performance of the texture features for classification (Sothe 

et al. 2017). The features were therefore calculated for each of the bands with a window size of 

seven pixels, as recommended by Zvoleff (2020) .  

4.3.3 Feature selection 

The full feature set is detailed in Table 4.4, the set containing: the 12 Sentinel-2 bands, the NDVI, 

the OSAVI, the EVI, the PMLI and the PGI spectral indices, as well as the GLCM texture features 

which are mean, variance, homogeneity, contrast, dissimilarity, entropy and ASM for each of the 

12 bands. Two approaches to the reduction of dimensionality were evaluated. First, the features 

were grouped into ten semantic subsets. Aside from reducing the number of features, this approach 

is a proven way of providing insight into the factors driving classification accuracies (Campos-

Taberner et al. 2019). 
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Table 4.4 Feature set considered for classification agricultural nets covering table grapes 

Type Feature Total number of 
features 

Spectral bands B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12 12 

Spectral indices NDVI, OSAVI, EVI, PMLI, PGI 5 

GLCM texture features mean, variance, homogeneity, contrast, dissimilarity, 
entropy and ASM 

84 

 

These subsets are: (1) the 12 bands (BANDS); (2) the 12 bands and the NDVI index (BANDS + 

NDVI); (3) the 12 bands and the OSAVI index  (BANDS + OSAVI); (4) the 12 bands and the EVI 

index  (BANDS + EVI); (5) the 12 bands and the PMLI index (BANDS + PMLI); (6) the 12 bands 

and the PGI index  (BANDS + PGI); (7) all the indices (INDICES); (8) all the texture features 

(TEXTURE); (9) the 12 bands and all five indices (BANDS + INDICES); and (10) the 12 bands 

and the texture features (BANDS + TEXTURE). Second, feature selection was performed using 

the random forest recursive feature elimination (RF-RFE) algorithm on the full feature set. The 

removal of redundant or irrelevant features through feature selection is an established way of 

improving the accuracy of ML classifications (Khalid, Khalil & Nasreen 2014). The RF-RFE 

algorithm provides a solution to the problem of high-dimensional data sets by recursively training 

a random forest model and removing the lowest preforming features (Darst, Malecki & Engelman 

2018). The model gives insights into the best preforming features and the effects of the size of 

feature sets has on the performance (Kuhn 2015).  The caret library was used to preform RF-RFE 

in the R programming language (Kuhn 2015). The variable importance scores of the RF-RFE 

analysis were used to select features subsets of 10, 20, 40, 60, 80 and 101 features. A correlation 

matrix was constructed to determine the association between the different features. The absolute 

correlation coefficient can be interpreted in the following manner: values of 0 to 0.09 indicate 

negligible correlation, values of 0.1 to 0.39 indicate weak correlation, values of 0.4 to 0.69 indicate 

moderate correlation and values greater than 0.7 indicate high correlation (Schober & Schwarte 

2018).  

4.3.4 Classification of nets 

The caret library, implemented using R, was used to execute the RF, the SVM and the NN 

classifiers (Kuhn 2015). The parameters were set according to the library recommendations for RF 

and NN. However, grid search was used to select the most appropriate parameters for SVM. Grid 

search is an exhaustive search algorithm that optimizes SVM parameters based on cross-validation 

as a performance metric (Syarif, Prugel-Bennett & Wills 2016). Furthermore, the linear kernel 
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function was used for SVM, as recommended by Hasituya et al. (2016) for the classification of 

plastic-covered vegetation. Each feature subset–classifier combination was iterated 100 times to 

allow for stochastic variations. 

4.3.5 Accuracy assessment 

Study sites SS3, SS5, SS6 and SS8, were used as reference sites to test the performance of the 

classifiers. Visual interpretation of the Sentinel-2 imagery, the aerial imagery and the Elsenburg 

fly-over data set was done to create reference masks for the presence (1) and absence (0) of 

agricultural nets in the four reference sites. These masks were used to construct binary confusion 

matrices for each classification iteration. Table 4.5 details the number of pixels included in the 

presence (1) and absence (0) classes for each reference site.  

Table 4.5 Number of pixels indicating the presence and absence of nets for each reference mask 

Study site SS3 SS5 SS6  SS8 Total 

Nets present (1) 3 840 31 277 5 724 17 057 57 898 

Nets absent (0) 155 760 128 723 153 477 142 943 580 903 

Total 159 600 160 000 159 201 160 000 638 801 

 

Confusion matrices compare classified data with reference data and they are used to derive a 

number of meaningful statistics to quantify the accuracy of classifications (Tharwat 2018). Thus a 

confusion matrix was constructed and used to calculate the overall accuracy, kappa statistic and 

balanced accuracy. Overall accuracy and the kappa statistic respectively indicate the percentage 

of correctly classified pixels and the true agreement of pixels. These statistics are the most 

commonly implemented accuracy metrics for land cover classifications (Foody 2002). However, 

these methods produce biased results when applied to unbalanced data sets. Table 4.5 clearly 

shows an unbalanced data set with the total number of pixels representing the absence of nets far 

exceeding the number of pixels indicating the presence of nets. Therefore the balanced accuracy 

(BA) metric, which compensates for the differences in the number of pixels that indicate the 

presence or absence of nets, was included (Luque et al. 2019). The McNemar test was used to test 

the statistical significance of the differences between classifier performances. McNemar’s test is 

a non-parametric test that uses the chi-squared value of dichotomous data to produce a P-value as 

output (Pembury Smith & Ruxton 2020). In this case P-values lower than 0.05 were considered 

significant. 
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4.4 RESULTS  

The results produced by the procedures outlined in the preceding section are summarized in the 

following subsections, namely the spectral profile of the classes, the results of the feature selection 

and feature ranking, and the classification accuracy scores are visualized. The confusion matrix 

for each individual classification can be found in Appendix B. 

4.4.1 Spectral profile of classes 

Figure 4.2 shows the mean spectral reflectance of each land cover class over the 12 Sentinel-2 

bands. The error bars represent the standard deviation of the spectral response per band.  

Figure 4.2 The mean spectral signature of each land cover class with the standard deviation displayed as 

error bars 

The grape nets signature has higher reflectance in bands 2, 3 and 4, which corresponds to the 

visible region, compared to those of the other classes. In the RE to the near-infrared (NIR) regions 

(bands 6, 7, 8 and 8A) the reflectance of grape nets is lower than that of the crops class, but higher 

than natural vegetation, bare fields and bare natural. For bands 11 and 12 (SWIR), the reflection 

of grape nets is lower than the bare field and bare natural classes but higher than the crops and 

natural vegetation classes. The standard deviation of the grape nets, crops and natural vegetation 

signatures are larger in the RE and NIR (bands 6, 7, 8 and 8A) regions than in the visible (bands 

2,3 and 5) and SWIR (bands 11 and 12) regions. 

0

50

100

150

200

250

300

350

400

450

500

B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12

R
ef

le
ct

an
ce

 x
 1

0
0

0

Sentinel-2 bands

Grape nets Bare field Bare natural Crops Natural vegetation

Stellenbosch University https://scholar.sun.ac.za



 74 

4.4.2 Feature selection 

The rank allocated to each feature by the RF-RFE algorithm is listed in Table 4.6.  

Table 4.6 Rank (#) achieved by each classification feature as produced by RF-RFE 

# Feature # Feature # Feature # Feature # Feature 

1 B12 mean 21 B4 mean 41 NDVI 61 B2 homogeneity 81 B8 contrast 

2 B12 variance 22 B1 mean 42 PMLI 62 B2 contrast 82 B6 ASM  

3 B11 mean 23 B3 mean 43 B12 dissimilarity 63 B11 contrast 83 B5 dissimilarity 

4 B11 variance 24 B1 variance 44 B7 mean 64 OSAVI 84 B5 homogeneity 

5 B9 mean 25 B12 contrast 45 B2 entropy 65 B8 entropy 85 B6 dissimilarity 

6 B9 variance 26 B6 Variance 46 B8 mean 66 B4 contrast 86 B9 homogeneity 

7 B11 27 B2 ASM 47 B5 contrast 67 B2 dissimilarity 87 B11 
homogeneity 

8 B5 mean 28 B12 entropy 48 B4 entropy 68 B1 entropy 88 B8A 

9 B12 29 B3 49 B3 contrast 69 B7 89 B8A ASM 

10 B5 variance 30 B4 ASM 50 EVI 70 B1 ASM 90 B7 ASM 

11 B2 mean 31 B9 51 B11 ASM 71 PGI 91 B8A contrast 

12 B1 32 B8 ASM 52 B7 variance 72 B9 ASM 92 B11 dissimilarity 

13 B8A variance 33 B4 variance 53 B9 dissimilarity 73 B9 entropy 93 B8 dissimilarity 

14 B2 variance 34 B3 ASM 54 B6 contrast 74 B5 ASM 94 B7 entropy 

15 B8A mean 35 B2 ASM 55 B2 75 B4 dissimilarity 95 B8A entropy 

16 B6 36 B3 variance 56 B3 homogeneity 76 B1 homogeneity 96 B6 homogeneity 

17 B1 contrast 37 B1 dissimilarity 57 B11 entropy 77 B8 homogeneity 97 B7 dissimilarity 

18 B5 38 B12 
homogeneity 

58 B4 homogeneity 78 B6 entropy 98 B8 

19 B6 mean 39 B3 entropy 59 B4 79 B5 entropy 99 B7 homogeneity 

20 B9 Contrast 40 B8 variance 60 B3 dissimilarity 80 B7 contrast 100 B8A 
homogeneity 

        101 B8A 
dissimilarity 

 

Bands 11 and 12 (SWIR bands), along with their respective mean and variance texture features, 

are ranked in the top ten feature positions. Bands 8, 8A and 7 (NIR bands), with several of their 

corresponding texture features, are ranked the lowest and comprise 13 out of the 20 lowest ranked 

features. The visible bands (bands 2, 3 and 4) and the texture features derived from the visible 

bands generally rank higher than the RE and NIR features, but lower than the SWIR features.  The 

mean and the variance texture features have high ranks, representing 17 out of the first 25 ranked 
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features. Furthermore, the spectral indices are ranked lower than the spectral bands and texture 

features, that is they are ranked lower than the top 40 features. The correlation matrix shows that 

the visible bands (bands 2, 3 and 4) are highly correlated with one another (Appendix C).  

Similarly, the NIR and RE bands (bands 6, 7, 8 and 8A) are highly correlated and the SWIR bands 

(bands 11 and 12) are highly correlated with one another. There is also a high correlation between 

each group of spectral bands (VIS, NIR + RE, and SWIR) and their corresponding mean, variance 

and homogeneity texture features. The remaining texture features, namely contrast, dissimilarity, 

entropy and ASM, show low correlation with the spectral bands and other texture features.  

4.4.3 Image classification 

Sixteen different feature combinations (scenarios) of features were used to classify the nets. The 

mean overall accuracy (OA), the kappa statistic (KS) and the BA of the test sites are summarized 

for each classification in Table 4.7. Each classification scenario is numbered (#) and the number 

of features (n) used in each scenario for RF, SVM and NN are shown.  

The best individual classification scores (OA = 97%, KS = 0.87, BA = 87%) were achieved using 

the NN classifier for Scenario 10 for which the spectral bands and texture features were used as 

input. The McNemar test confirmed that the differences between this result and the other 

classification results are statistically significant. The column averages given in Table 4.7 represent 

the overall performance of each classifier. Both RF and NN achieved an averaged OA (AOA) of 

95% and an averaged BA (ABA) of 84%, although the averaged KS (AKS) of NN (0.76) is slightly 

higher than that of RF (0.75). The SVM (AOA = 89%, AKS = 0.63,  

ABA = 78%) classifier achieved significantly lower accuracies than those of NN and RF.  

The row averages in Table 4.7 indicate the overall performance of each feature set. Scenario 10 

(BANDS + TEXTURE) has the highest AOA (96%), AKS (0.78) and ABA (86%). This 

performance is followed closely by Scenarios 14 (RF-RFE 60) and 9, which also achieved AOAs 

of 96%, but lower AKS (0.77) and ABA (85%) scores. Scenario 14 is based on the first 60 features 

recommended by RF-RFE for classification, while Scenario 9 used the spectral bands and spectral 

indices for classification. The accuracies of these two scenarios were only marginally higher than 

that of Scenario 1, where only the Sentinel-2 bands were used for classification. When RF and 

SVM are used as classifiers, the inclusion of texture features (Scenario 10) and spectral indices 

(Scenario 9) result in an increase in accuracy that is not statistically significant. By contrast, the 

inclusion of texture features does result in a statistically significant increase in accuracy when NN 

is used as the classifier. Moreover, the average accuracies of Scenarios 7 and 8, where the indices 

and texture features are used without the spectral bands respectively, are lower than when only the 

bands are used as in Scenario 1. 
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Table 4.7 Mean overall accuracy (OA), kappa statistic (KS) and balanced accuracy (BA) of the four test 

sites for each classification scenario  

# Scenario n RF     SVM     NN     Ave     

      OA KS BA OA KS BA OA KS BA OA KS BA 

1 BANDS 12 0.96 0.79 0.85 0.95 0.71 0.83 0.94 0.72 0.83 0.95 0.74 0.84 

2 BANDS + NDVI 13 0.95 0.79 0.85 0.94 0.70 0.83 0.95 0.77 0.84 0.95 0.75 0.84 

3 BANDS + OSAVI 13 0.95 0.79 0.85 0.93 0.66 0.82 0.94 0.72 0.83 0.94 0.72 0.83 

4 BANDS + EVI 13 0.95 0.79 0.85 0.93 0.66 0.82 0.95 0.77 0.84 0.95 0.74 0.84 

5 BANDS + PMLI 13 0.95 0.79 0.85 0.93 0.66 0.82 0.96 0.78 0.85 0.95 0.74 0.84 

6 BANDS+ PGI 13 0.95 0.79 0.85 0.94 0.68 0.83 0.94 0.76 0.84 0.95 0.74 0.84 

7 INDICES 5 0.93 0.66 0.82 0.83 0.45 0.73 0.92 0.64 0.81 0.89 0.58 0.78 

8 TEXTURE 84 0.93 0.66 0.82 0.94 0.70 0.83 0.95 0.74 0.84 0.94 0.71 0.83 

9 BANDS + INDICES 17 0.96 0.80 0.85 0.94 0.71 0.83 0.96 0.78 0.85 0.96 0.77 0.84 

10 BANDS + TEXTURE 96 0.95 0.80 0.85 0.95 0.73 0.84 0.97 0.82 0.87 0.96 0.78 0.86 

11 RF-RFE 10 10 0.92 0.66 0.81 0.49 0.11 0.39 0.93 0.67 0.82 0.78 0.48 0.67 

12 RF-RFE 20 20 0.95 0.76 0.84 0.90 0.64 0.79 0.95 0.79 0.84 0.94 0.73 0.83 

13 RF-RFE 40 40 0.96 0.79 0.85 0.94 0.73 0.83 0.95 0.76 0.84 0.95 0.76 0.84 

14 RF-RFE 60 60 0.96 0.80 0.85 0.95 0.74 0.84 0.96 0.79 0.85 0.96 0.77 0.84 

15 RF-RFE 80 80 0.96 0.80 0.85 0.94 0.72 0.83 0.96 0.78 0.84 0.95 0.77 0.84 

16 RF-RFE All 101 0.96 0.80 0.85 0.95 0.73 0.83 0.96 0.76 0.85 0.95 0.76 0.84 

  
Ave 0.95 0.75 0.84 0.89 0.63 0.78 0.95 0.76 0.84 0.93 0.71 0.82 

 

The accuracies of Scenarios 11 to 16, where the RF-RFE feature subsets were tested, increased as 

subset size increased. However, no significant improvements were achieved when using more than 

40 features for any of the classifiers. Figure 4.3 illustrates the effect that feature subset size has on 

classification accuracy. The RF-RFE algorithm was used to rank the features and these features 

were then added in the order of their ranking to create the subsets. Accuracy increased as the 

number of variables in the feature subset increased, although, the rate of increase varied 

significantly with the number of features.  
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Figure 4.3 Accuracy achieved for different feature subset sizes by RF-RFE feature selection 

Figure 4.3 is divided into four zones each based on the rate of change in accuracy. From zero to 

four features (Zone 1) accuracy increases rapidly (by 41%) and in zone 2 (four to 10 features) 

accuracy increases moderately (12%). Between 10 and 60 features (Zone 3) accuracy increases 

rapidly (43%) and in Zone 4 (60 to 101 features) the accuracy increases with less than 1%.  

The agricultural nets classified by RF, SVM and NN for Scenario 14 (RF-RFE60) were compared 

to the Sentinel-2 reference imagery in Figure 4.4. The red polygons represent the perimeter of the 

reference nets and the blue polygons show the pixels classified as nets. Blue polygons that fall 

within the red outline represent correctly classified nets, whereas red outlines with no blue 

polygons represent nets that have been grouped into another class (i.e. they represent omission 

errors). Blue polygons that fall outside the red polygons represent other land cover that has been 

incorrectly classified as nets (i.e. they represent commission errors).  

ZONE 1 ZONE 2 ZONE 3 ZONE 4 
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Figure 4.4 Classified agricultural nets produced by the RF, SVM and NN classifiers for Scenario 14 (RF-

RFE60) compared to Sentinel-2 reference imagery 

Figure 4.4 shows that the RF and the NN classifiers have made no errors of omission, while SVM 

failed to classify a vineyard net in the northern region of SS3. All three classifiers produce a 

considerable number of commission errors. These errors primarily originate from the 

misclassification of waterbodies, buildings and bare fields.  

4.5 DISCUSSION 

Overall, the classifications for RF and NN achieve comparable accuracies to those of other studies 

that mapped plasticulture. For example, Carvajal et al. (2006) achieved a general accuracy of 83% 

using QuickBird imagery to detect plastic greenhouses; Tarantino & Figorito (2012) achieved an 
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average OA of 90.3% for all study sites when mapping plastic-covered vineyards with aerial 

imagery; Aguilar et al. (2014) achieved an OA of 97.5% while mapping agricultural nets with 

WorldView-3 and GeoEye-1 imagery; and Aguilar et al. (2016) achieved an average OA of 98% 

using WorldView-3 imagery to map plastic greenhouses. When using medium- and high-

resolution imagery, Aguilar et al. (2015) achieved a maximum OA of 79.1% for mapping 

greenhouse crops using Landsat-8; Novelli et al. (2016) achieved an OA of 91% using Sentinel-2 

imagery to map plastic greenhouses; Yang et al. (2017) achieved an accuracy of 91.8% using 

Landsat-8 data to map plastic greenhouses; and González-Yebra et al. (2018) classified plastic 

greenhouses using Landsat 5 TM and Landsat 7 ETM + imagery and achieved a best OA of  93.4%. 

The OA scores achieved by RF and NN in this study (Table 4.7) exceed 90% for all the scenarios 

and thus fall within a range comparable to those of other studies. More specifically, the accuracies 

achieved by NN and RF are similar to those gained by methods that use very-high-resolution 

imagery, such as Worldview-3 imagery (Aguilar et al. 2015) or QuickBird imagery (Carvajal et 

al. 2006), and they exceed the Oas of studies that use Landsat imagery (Aguilar et al. 2015; 

González-Yebra et al. 2018). Figure 4.4 confirms that there are no errors of omission for the RF 

and NN classifiers. Levin et al. (2010) compared Landsat-8 imagery and hyperspectral AISA-ES 

imagery to map agricultural nets and concluded that the coarse spectral and spatial resolutions of 

the Landsat-8 data caused significant errors of omission for the nets class. The results illustrated 

in Figure 4.4 validate Sentinel-2 imagery as having a better detection rate for agricultural nets than 

that of Landsat-8 imagery. It is safe to conclude that Sentinel-2 imagery has the necessary spatial 

and spectral resolutions to map agricultural nets at regional scale. 

Both RF and NN consistently achieved higher accuracies than SVM (Table 4.7). Several studies 

(Hasituya et al. 2017; Hasituya & Chen 2017; Lu, Tao & Di 2018; Novelli et al. 2016; Sun et al. 

2021) have already demonstrated RF to be an effective classifier for mapping plasticulture. 

Hasituya & Chen (2017) even found that RF significantly outperformed SVM in all the scenarios 

for mapping PML using Landsat-8 imagery. The superior performance of the RF algorithm 

achieved in the present study is therefore consistent with the evidence in the existing literature. 

However, limited studies have investigated NN for mapping plasticulture, particularly agricultural 

nets. Ma et al. (2019) discuss the benefits and applications of NN in remote sensing and pointed 

out that this algorithm is especially effective for urban classifications using imagery with 

resolutions of 10 m or smaller. The mapping of plasticulture has often been compared to urban 

mapping as the spectral signatures of both types of land cover represent a mixture of artificial 

surfaces and vegetation (Levin et al. 2010). Therefore, NN’s ability to map complex urban settings 

using high-resolution imagery may explain why the classifier performs well for mapping 

agricultural nets in the present study.  The NN classifier also achieves the best overall classification 
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result using spectral bands and texture features for classification. These results corroborate 

Carvajal et al.'s (2006) findings that the addition of GLCM texture features improvs the overall 

accuracy of plastic greenhouse mapping using NN with QuickBird imagery. Furthermore, Sun et 

al.'s (2021) comparison of NN, RF and SVM for mapping plastic greenhouses determined that NN 

consistently outperformed the other classifiers.  

Recall that Table 4.6 shows that the SWIR (bands 11 and 12) and visible bands (bands 2, 3 and 4) 

rank higher than the NIR and RE bands (bands 6, 7, 8 and 8A), and that the texture features rank 

higher than the spectral indices. Recall also that Figure 4.2 shows that the standard deviation of 

the visible and SWIR bands is smaller than that of the NIR bands. High intra-class variation 

decreases the separability of classes and thus decreases classification accuracy (Debba, Cho & 

Mathieu 2009). This probably explains why the visible and SWIR bands, which have lower 

degrees of spectral variation, are ranked above the RE and NIR bands. Spectral indices, such as 

NDVI, have been proven to significantly improve plasticulture classification accuracies toward 

the end of the growing season (Hasituya & Chen 2017). However, these indices become less 

effective when crops are dormant under nets as these nets have similar NDVI values to other types 

of land cover such as urban and bare soil. By contrast, texture features have been shown to aid the 

classification of plasticulture, regardless of crops’ phenological stages (Hasituya & Chen 2017). 

This quite likely explains why the texture features rank higher than the spectral indices and also 

why Scenario 10 (BANDS + TEXTURE) achieves the highest average accuracies. Table 4.6 also 

shows that the mean and variance are the highest rated texture features. This agrees with Hasituya 

& Chen (2017), Agüera, Aguilar & Aguilar (2008) and Aguilar et al. (2016) who all noted that the 

mean texture feature is the most important texture feature for mapping plasticulture. However, the 

present study’s correlation matrix (Appendix C) shows that the mean and variance texture features 

of the different bands are highly correlated with the unaltered Sentinel-2 bands suggesting that a 

number of these features have been duplicated. 

The row averages in Table 4.7 show how well each feature set preforms. Scenario 10 (BANDS + 

TEXTURE) performs best, followed by Scenario 9 (BANDS + INDICES) and Scenario 14 (RF-

RFE 60). However, the accuracies for these three scenarios are only marginally higher than that of 

Scenario 1 (BANDS). This marginal increase is likely attributable to the inclusion of texture 

features and spectral indices that cause no significant increase in the accuracies for RF and SVM. 

Perilla & Mas (2019) tested a range of different features, including GLCM texture features, NDVI, 

PMLI and PGI, to map mixed plasticulture using Sentinel-2 imagery with the maximum entropy 

classifier. They found a high correlation and redundancy among these ancillary features and the 

Sentinel-2 bands. Consequently, the ancillary features made no significant improvement to the 
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classification accuracy when used in combination with the Sentinel-2 bands (Perilla & Mas 2019). 

In the present study the correlation matrix (Appendix C) shows high correlation between the 

spectral bands and the texture features, and between the spectral bands and the spectral indices. 

This explains why the spectral indices and texture features make no significant difference to the 

classification accuracy for the RF and SVM classifiers (Table 4.7). All the classifiers show 

decreases in accuracy when the spectral indices only (Scenario 7) and the texture features only 

(Scenario 8) are used, in comparison to when the spectral bands are used (Scenario 1). These 

results suggest that the untransformed Sentinel-2 bands contain the most valuable information for 

mapping vineyards under nets.  

Scenarios 11 to 16 (Table 4.7) that use the RF-RFE feature subsets show no significant 

improvement in accuracy when using more than 40 features. This plateau in accuracy can be 

further explained by the high correlations among the bands, indices and texture features. Hasituya 

& Chen (2017) had used RF-RFE to select features to classify PML using Landsat-8 imagery. The 

features included the Landsat-8 bands, vegetation indices, derivatives of reflectance, GLCM 

texture features and thermal features. The results showed that for three of the four acquisition 

dates, no significant improvement in accuracy was achieved when using more than 44 features 

(Hasituya & Chen 2017).  

The results of the present study show that Sentinel-2 imagery has the necessary spectral and spatial 

resolutions to effectively map agricultural nets and moreover, RF and NN turn out to be effective 

classifiers for such an application. Clearly, more research is required to investigate object-based 

versus per-pixel classification approaches using Sentinel-2 imagery; the use of different feature 

selection methods; and the use of different classification schemes (class nomenclature and 

configurations). Three other further avenues of research are to evaluate the ability of Sentinel-2 

imagery to map different crop types under agricultural nets, to investigate the fusion of synthetic 

aperture radar data and to examine multitemporal imagery for classification purposes. 

4.6 CONCLUSION 

The complex spectral properties of agricultural nets have long challenged the ability of existing 

remote sensing strategies to map and monitor agricultural regions (Levin et al. 2010). This has 

engendered the need to develop a regional crop mapping solution that includes crops under nets. 

Within this context, the current study aimed primarily to evaluate the potential of Sentinel-2 

imagery to map agricultural nets covering table grapes and secondly to gain insight into which 

machine learning (ML) classifiers and image features can most effectively classify agricultural 

nets. 
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These goals were pursued by first acquiring Sentinel-2 imagery for eight study sites in the Western 

Cape. Four of these sites were earmarked for the collection of training data, to be used to classify 

the remaining four sites using the RF, the SVM and the NN classifiers. Sixteen different feature 

sets that include different combinations of the Sentinel-2 bands, spectral indices and GLCM 

texture features were evaluated for each test site. The results provide novel insights into the 

performance of Sentinel-2 imagery for mapping nets, as well as which features and classifiers aid 

this classification. Overall, both RF and NN proved to be reliable classifiers to map agricultural 

nets, whereas SVM proved less effective. The highest OA of 97%, kappa statistic (KS) of 0.87 and 

BA of 87% were achieved by the NN classifier with spectral bands used in combination with 

texture features. However, the results show that the untransformed Sentinel-2 bands contain the 

most important spectral information for the classification. Notably, the results of the classification 

show that the use of Sentinel-2 imagery achieve higher accuracies and higher detection rates for 

agricultural nets compared to studies that used lower resolution Landsat imagery. Furthermore, the 

accuracies achieved in this study are comparable with those achieved using very-high-resolution 

imagery. This supports the conclusion that Sentinel-2 imagery has the necessary spectral and 

spatial resolutions for mapping agricultural nets. Given these new insights, the frequent revisit 

time of Sentinel-2 and the fact that Sentinel-2 imagery is freely available, Sentinel-2 imagery is 

evidently a practical and viable source of imagery for mapping agricultural nets at regional scale. 

The various methods evaluated and demonstrated in this study provide a logical foundation for 

developing and operationalizing a solution to the problem of mapping agricultural nets in the 

Western Cape, which is essential for gauging the environmental and hydrological impacts of 

modern agricultural practices.  
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CHAPTER 5:  SYNTHESIS AND CONCLUSIONS 

In this concluding chapter the findings of the study are evaluated in the context of finding an 

operational solution for mapping agricultural nets and the crops that are grown under the nets. The 

findings of the study are summarized, the aims and objectives are revised, the value of the study 

is evaluated, the limitations are pointed out, recommendations are made and final conclusions are 

drawn. 

5.1 REVISITING THE AIMS AND OBJECTIVES 

The uses and nature of agricultural nets was introduced in Chapter 1. The rapidly growing use of 

such nets has complicated existing remote sensing methods for mapping and monitoring 

agriculture. It is therefore imperative that these methods be modified to include areas under nets. 

A key aspect of addressing this problem is to investigate the use of Sentinel-2 imagery for mapping 

agricultural nets at a regional scale. This study set out to achieve this goal. The primary aim was 

to develop a spectral profile of agricultural nets using Sentinel-2 imagery and the secondary aim 

was to demonstrate how the spectral profile can be used to map agricultural nets and specific crops 

grown under nets. This study set out to accomplish the aims by setting six objectives, the pursuance 

of which is reported in Chapters 2 to 4. 

In Chapter 2 Objective 1 was addressed by examining the literature relating to the spectral 

properties of agricultural nets, the classification strategies suitable for mapping these nets, as well 

as a range of relevant remote sensing techniques and approaches to accuracy assessment. Chapter 

3 and 4 both report on the acquisition of Sentinel-2 imagery and therefore fulfil the requirements 

of Objective 2. Spectral signatures were constructed for vineyards, citrus and berries grown under 

nets (Objective 3). These signatures were compared to the signatures of surrounding land cover to 

investigate the effects that seasonal variations of the underlying crops have on the net signatures 

(Objective 4). These were used to develop and demonstrate a methodology for mapping nets 

covering table grapes using Sentinel-2 imagery (Objective 5). In the current chapter, the findings 

are summarized in the context of finding operational solutions to the problem of mapping crops 

under agricultural nets (Objective 6). 

5.2 SYNTHESIS OF KEY FINDINGS 

The literature review (Chapter 2) explored the concepts of remote sensing, image classification 

and accuracy assessment as they relate to the mapping of plasticulture. The review provided 

several insights that formed the basis of the methods employed in Chapters 3 and 4. Several studies 

Stellenbosch University https://scholar.sun.ac.za



 84 

found that very-high-resolution imagery achieved high accuracies for mapping plasticulture 

(Aguilar et al. 2015; Aguilar et al. 2016; Novelli et al. 2016; Shen & Sarris 2008), while the use 

of lower-resolution Landsat imagery resulted in significant misclassification errors (Aguilar et al. 

2016; Rodriguez-Galiano et al. 2012). Sentinel-2 imagery was recommended by Sun et al. (2021) 

for mapping plasticulture as this imagery has a higher spatial resolution than Landsat and produced 

high accuracies for the classification of plastic greenhouses. Additionally it was determined that 

very-high-resolution imagery, such as WorldView-3, is prohibitively expensive for regional 

mapping tasks, whereas Sentinel-2 imagery is freely available and has global coverage. Based on 

the literature review it was concluded that Sentinel-2 imagery would be a more practical source of 

data for mapping plasticulture. Prior to the present study, no study has investigated the use of 

Sentinel-2 imagery for mapping agricultural nets.   

Borgogno-Mondino, Palma & Novello (2020) compared the spectral signatures of agricultural nets 

and uncovered crops over the course of year and found that the signatures of the agricultural nets 

showed significant temporal changes. However, their study did not determine whether the 

signatures of the agricultural nets were spectrally separable from the uncovered crops or other land 

cover. To determine whether Sentinel-2 imagery is a viable source of data for mapping agricultural 

nets, the spectral properties of these nets, as captured by Sentinel-2, and different classification 

techniques needed to be investigated for this purpose. The primary intention of Chapter 3 was 

therefore to identify and interpret the spectral signatures, as captured by Sentinel-2 imagery, of 

different agricultural nets, the crops that they cover and the surrounding land cover. The purpose 

was to evaluate whether Sentinel-2 imagery has the necessary spatial and spectral resolutions to 

distinguish agricultural nets from their surrounding land cover. The secondary purpose of Chapter 

3 was to investigate the effect of temporal variation on the separability of the net signatures. The 

spectral signatures of the nets were compared to the corresponding signatures of their uncovered 

crop types for each season (i.e. summer, autumn, winter, spring). The results show that a reliable 

signature of the crops under agricultural nets can be extracted from Sentinel-2 imagery, as the 

signature of the covered crops mimic the shape and seasonal changes of the signatures of the 

corresponding uncovered crops. The separability between each crop type under nets was compared 

to the surrounding land cover classes per season. The separability scores showed that the signatures 

of the nets were distinguishable from the signatures of surrounding land cover. The separability 

analysis also showed that summer, particularly toward the end of December, was the best time to 

separate nets covering different crop types from surrounding land cover. The insights obtained 

form the foundation of developing a strategy for mapping nets at regional scale using Sentinel-2 

imagery. 
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The review of classification methods (Chapter 2) revealed that the RF, SVM and NN classifiers 

proved to be effective in combination with spectral indices and texture features to map plasticulture 

(Chaofan et al. 2016; Hasituya et al. 2016; Lu, Tao & Di 2018; Perilla & Mas 2019; Sun et al. 

2021). However, these techniques have not been investigated for mapping agricultural nets using 

Sentinel-2 imagery. The intentions of Chapter 4 were therefore to evaluate the potential of 

Sentinel-2 imagery to identify and map nets covering table grapes and to determine which spectral 

features and classification algorithms are most effective for mapping nets. Classifications were 

conducted using the random forest (RF), support vector machine (SVM) and neural network (NN) 

algorithms to classify Sentinel-2 imagery collected for four study sites. Different feature subsets 

consisting of spectral indices, texture features and spectral bands were evaluated. Several studies, 

reviewed in Chapter 2, validated the use of the overall accuracy, kappa statistic and balanced 

accuracy metrics to access classification accuracy (Aguilar et al. 2015; Aguilar et al. 2016; 

Chaofan et al. 2016; González-Yebra et al. 2018; Hasituya et al. 2017; Lu, Di & Ye 2014). These 

metrics were therefore used in Chapter 4. RF and NN both achieved relatively high accuracies, 

whereas SVM proved to be less reliable for this application. Regarding classification features, the 

untransformed spectral bands proved to be the most effective for classification. The accuracies 

attained by specifically using RF and NN were better than those of other studies that used lower 

resolution (Landsat) imagery, and similar to studies that have used very-high-resolution imagery. 

Therefore, the results validate Sentinel-2 as a viable sensor for the regional mapping of agricultural 

nets. The insights obtained through this research add to the body of knowledge pertaining to 

agricultural net mapping.  

5.3 LIMITATIONS AND RECCOMMENDATIONS FOR FUTURE RESEARCH  

The study was limited by two factors. First, there was very little reference data available for 

covered crops. The use of agricultural nets is rapidly growing in South Africa, but the total area 

covered by nets is still small compared to countries such as Spain, China and the USA. As such, 

the use of nets in South Africa is sporadic and dispersed. This limitation had two major 

implications in this study. First, the different citrus and berry varieties were grouped into larger 

classes, namely berry and citrus to ensure sufficient reference data for spectral analysis. By 

grouping these crops certain spectral characteristics caused by the unique seasonal changes of each 

fruit variety were lost. Second, the mapping of nets was limited to those covering table grapes 

because test sites containing sufficient reference data for multiple crop types is rare.  

Despite these limitations the study provides a sound foundation for future research. The 

development of a robust classification scheme for crops under nets would benefit from the spectral 

analysis of the individual citrus and berry varieties. The effect of spectral indices and texture 
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features on the separability of net signatures can be investigated to find out if these results align 

with classification results. The spectral analysis and the classification should both be expanded to 

investigate the spectral characteristics of other crops covered by nets, such as pome fruit, stone 

fruit, flowers and nuts. The study concentrated on four sites for training and four sites for testing 

to demonstrate the transferability of the method. Further research is required to test the method at 

regional scale. 

5.4 CONCLUSIONS 

Climate change has forced the agricultural sector to adapt to extreme weather conditions, variable 

rainfall and increased temperatures. Agricultural nets are a popular adopted strategy to cope with these 

extremes. However, the introduction of nets has created a need to develop new methods for mapping 

and monitoring our agricultural resources. This study aimed to access the capacity and usefulness of 

Sentinel-2 imagery for mapping agricultural nets. Although Sentinel-2 imagery is freely available 

and has a temporal resolution of five days – which makes it a practical and cost-effective source 

of data for mapping and monitoring large areas – it was initially unclear whether Sentinel-2 

imagery had the necessary spatial and spectral resolutions to map nets. This investigation 

demonstrated that Sentinel-2 imagery has the requisite spectral resolution to capture distinct 

signatures of agricultural nets. The study also gives direction to the selection of image dates and 

the classification scheme design for mapping nets. The classifications achieved comparable 

accuracies to those gained by using very-high-resolution satellite imagery, like Worldview-3 and 

QuickBird. Furthermore, the unaltered Sentinel-2 bands were shown to contain the most valuable 

information for classification. The research confirms that Sentinel-2 imagery has adequate spatial 

and spectral resolutions for mapping nets, and the results of this study verify the effectiveness of 

machine learning classifiers and classification features for mapping nets. 

The research has provided valuable insights into the spectral characteristics of nets, thereby laying 

the foundation for the development of a practical solution for mapping nets at regional scale. Such 

a solution will help to gauge the environmental impact of nets regarding plastic waste and it can 

be used for examining their hydrological impacts. Accurate agricultural maps enable the effective 

management and policy implementation of agricultural resources, which will contribute to 

improved food security.  

[35 114] 
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APPENDIX A 

 

Link to tables containing the JM distance between each net class and the other land cover 

classes for each acquisition period 

https://drive.google.com/drive/folders/1RXFb2eZV_MX78Wx1dSJMYoVBJuLmhCAz?usp=shar

ing 

 

APPENDIX B 

 

Link to tables containing the confusion matrices for each classification scenario 

https://drive.google.com/drive/folders/14ut4U5bg4bUU0dqLOXkhCYXvoBpuHVaf?usp=sharing 

 

APPENDIX C 

 

Link to tables containing the correlation matrix for the classification features 

https://drive.google.com/drive/folders/1Rd9lkjfjOLKcrF8d3Cf3K09pq41hyvQw?usp=sharing 
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