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Abstract

Contributions to the theory of near-vector spaces, their

geometry, and hyperstructures

J. Rabie

Dissertation: PhD

December 2022

This thesis expands on the theory and application of near-vector spaces — in 
particular, the underlying geometry of near-vector spaces is studied, and the theory 
of near-vector spaces is applied to hyperstructures.

More specifically, a near-linear space is defined and some properties of these spaces 
are proved. It is shown that by adding some axioms, the nearaffine space, as 
defined by André, i s o btained. A  correspondence i s shown b etween subspaces of 
nearaffine spaces generated by near-vector spaces, and the cosets of subspaces of 
the corresponding near-vector space. As a highlight, some of the geometric results 
are used to prove an open problem in near-vector space theory, namely that a 
non-empty subset of a near-vector space that is closed under addition and scalar 
multiplication is a subspace of the near-vector space. The geometric work of this 
thesis is concluded with a first l ook i nto t he p rojections o f n earaffine s paces, a 
branch of the geometry that contains interesting avenues for future research.

Next the theory of hyper near-vector spaces is developed. Hyper near-vector 
spaces are defined h aving s imilar p roperties t o A ndré’s n ear-vector s pace. Im-
portant concepts, including independence, the notion of a basis, regularity, and 
subhyperspaces are defined, and an analogue o f the Decomposition Theorem, an 
important theorem in the study of near-vector spaces, is proved for these spaces.
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Uittreksel

Contributions to the theory of near-vector spaces, their

geometry, and hyperstructures

J. Rabie

Proefskrif: PhD

Desember 2022

Hierdie tesis bou op die teorie en toepassing van naby-vektorruimtes — besonderlik 
word die onderliggende meetkunde van naby-vektorruimtes bestudeer en die teorie 
van naby-vektorruimtes word toegepas op hiperstrukture.

Spesifiek work ’n naby-lineêre ruimte gedefinieer en  sommige eienskappe van hier-
die ruimtes word bewys. Dit word bewys dat, deur sekere aksiomas by te las, die 
naby-affiene ruimte, soos gedefinieer deur André, verkry word. ’n Verwantskap tus-
sen die deelruimtes van naby-affiene ruimtes gegenereer deur naby-vektorruimtes 
en die resklasse van die deelruimtes van die verwante naby-vektorruimte word be-
wys. As ’n hoogtepunt word van die meetkundige resultate gebruik om ’n oop 
probleem op te los in naby-vektorruimteteorie, naamlik dat ’n nie-leë deelversa-
meling van ’n naby-vektorruimte wat geslote is onder optelling en skalaarverme-
nigvuldiging ’n deelruimte is van die naby-vektorruimte. Die meetkundige werk in 
dié tesis sluit af met ’n eerste bestudering van projeksies van naby-affiene ruimtes, 
’n tak in die meetkunde wat interessante toekomstige navorsingsrigtings bevat.

Volgende word die teorie agter hiper naby-vektorruimtes ontwikkel. Hiper naby-
vektorruimtes word gedefinieer s oortgelyk a an André s e n aby-vektorruimte. Be-
langrike konsepte, insluitent onafhanklikheid, die begrip van ’n basis, regulêriteit 
en hiper-deelruimtes word gedefinieer e n ’ n a naloog van d ie Ontbindingstelling, 
belangrik in die teorie van naby-vektorruimtes, word bewys vir hierdie ruimtes.
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Chapter 1

Introduction

The idea of a vector space was generalised to a structure comprising a bit more
non-linearity by various authors, the so-called near-vector space (see [1], [4], [13],
and [14]). The weakening of the axioms compared to a vector space, results in
a space with only one distributive law holding in general. André’s near-vector
spaces are the focus of my work. Recently there have been a number of papers
investigating their algebraic structure (see for example [9],[11]). For an analysis
of the definition André proposed for near-vector spaces, we refer the reader to [8].

Geometry was key to André’s motivation for defining his near-vector spaces (see
[2] and [3]). These structures give rise to what is known as a nearaffine space,
a structure of particular importance in the study of noncommutative geometry
(incidence structures in which the line joining two points depends on the order
in which you join them). The algebraic and geometric structure of near-vector
spaces has been the focus of my work so far.

This thesis adds new insight into the study of near-vector spaces: starting with, a
brief study of the behaviour of the quasi-kernel of near-vector spaces. In particular,
it is shown that, for a set of compatible elements of the quasi-kernel of a near-vector
space, any linear combination of elements of this set will be in the quasi-kernel,
This ultimately made the proof of the Decomposition Theorem of near-vector
spaces (which states that every near-vector space may be expressed as the direct
sum of its maximal regular subspaces) more accessible.

The discovery of two papers by André, On Finite Non-Commutative Affine Spaces
([2]) and Some New Results on Incidence Structures ([3]) inspired a renewed study
in the geometry of near-vector spaces. These papers are in the field of incidence

1
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CHAPTER 1. INTRODUCTION 2

geometry, and lay out the geometric structure of near-vector spaces. The book
Foundations of Incidence Geometry ([23]) served as reference for the exploration
of incidence structures.

In particular, the nearaffine space as defined in [2] and [3] is studied.Similar to
affine spaces, these geometries have points, lines, and a parallelism. However, the
lines joining two points differ depending on the order in which you connect them.
With André’s papers as reference, a number of new results are proved, and results
from his first paper from the finite case are generalised. This research resulted in
a paper, Geometries with Non-Commutative Joins and their Application to Near-
Vector Spaces ([12]), which has been published online.

In this paper, a near-linear space, a generalisation of a linear space, is defined
by taking inspiration from André’s definition of a nearaffine space, and some pre-
liminary results are proved. These structures, and the geometries that may arise
from them, have produced a new avenue of research in incidence geometry. In
particular, it is shown show that, for an arbitrary nearaffine space, a subset of its
point set is a subspace if and only if it is a weak subspace — a proof of this result
was given in [2] for finite nearaffine spaces, but it contained an omission. Next
nearfield spaces (nearaffine spaces over near-vector spaces) are investigated, and it
is shown that, as with affine spaces over vector spaces, a subset of the near-vector
space is a subspace of the nearfield space if and only if it is the coset of a subspace
of a nearaffine space. Finally, the paper ends with a preliminary investigation
into projections of nearaffine spaces. These structures are defined similarly to the
projective space over a vector space, and initial results show that they are very
similar to projective spaces; however, there is still scope for future research.

Subspaces of near-vector spaces were first defined in [9] and it was proved that a
subset of a near-vector space is a subspace if and only if it is closed under addi-
tion and scalar multiplication; however, the proof of the converse was incomplete,
as picked up by Sophie Marques in 2019. In particular, it was unclear how the
so-called quasi-kernel of the subset would generate the subset as a group — a
requirement for near-vector spaces. This was partially remedied in [10], where
Sophie Marques showed that the result holds in the specific case for near-vector
spaces over division rings. Subsequently, using the aforementioned geometric re-
sults in [12], the result is proved to hold in general. This is of particular interest, as
it shows how the understanding of the geometry of near-vector spaces can inform
the understanding of their algebraic structure.
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CHAPTER 1. INTRODUCTION 3

In [9], the above result was used to characterise the subspaces of certain near-
vector spaces constructed using copies of nearfields. As a result of work mentioned
above, these characterisations may now be used. The result also ensures that the
kernel of near-linear mappings will necessarily form a subspace of its domain —
this fundamentally links near-linear mappings to quotient spaces (first explored by
Wessels in [27]). Wessels also defined the subspace inclusion graph of a near-vector
space in her PhD thesis and the result will be useful in the further exploration
of these graphs of different constructions of near-vector spaces, which now can be
identified with the incidence graph of the associated geometry.

Following the chapter on the geometry of near-vector spaces, a new algebraic
structure is defined — the hyper near-vector space. This structure is a generali-
sation of a near-vector space, where instead of an additive group of vectors, one
has a canonical hypergroup of vectors (in which the sum of any two vectors gives
a non-empty set of vectors). In particular, the hyper near-vector space behaves
surprisingly well, allowing for notions of independence, bases, subhyperspaces and
even an analogue of André’s Decomposition Theorem. The culmination of this
work resulted in a second paper, Hyper near-vector spaces ([6]), which has been
submitted for review.

Throughout this thesis, for any set S, define S∗ as S \ {0}.
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Chapter 2

Preliminary Material on
Near-Vector Spaces

2.1 Definition and some basic results
The purpose of this chapter is to give the reader an overview of the construction
of a near-vector space. The idea that André used is to think of the elements of
a group as the vectors and a set of endomorphisms of the group as the scalars of
the group. This idea gives rise to the following definition.

Definition 2.1. ([1], p. 303)

A pair (V,A) is called a near-vector space if the following conditions hold.

1. (V,+) is a group and A is a set of endomorphisms of V .

2. A contains the endomorphisms 0, idV , and −idV (hereafter simply 0, 1,−1).

3. If A∗ is nonempty, then it is a subgroup of Aut(V ).

4. A acts freely on V , that is, for each x ∈ V and α, β ∈ A, if αx = βx, then
x = 0 or α = β.

5. The quasi-kernel of V , defined by

Q(V ) = {x ∈ V | ∀α, β ∈ A ∃γ ∈ A [αx+ βx = γx]}

generates V as a group, i.e. for every v ∈ V , there exists u1, . . . , un ∈ Q(V )

such that v =
∑n

i=1 ui.

4
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 5

It might be strange to add the condition that A∗ be non-empty before we assume
that it is a subgroup of Aut(V ) in the above definition. In fact, André does not
require this condition. However, this is for a very simple reason: when V = {0},
1 = −1 = 0 in A. In fact, any endomorphism of V would be 0, so A∗ would
be empty. We add this condition, because we want {0} to have a near-vector
space construction. This is useful, for without it, the trivial vector space is not
a near-vector space. However, the case where V = {0} is the only case where A∗

is empty, so generally results are proven with the assumption that A∗ is a group
and with the understanding that these results apply to the zero space as well.

Notation. From now on, the quasi-kernel Q(V ) of a near-vector space (V,A) will
be denoted just as Q, if there is no confusion.

Example 2.2. ([11], p. 89) The smallest example of a proper near-vector space
(i.e. a near-vector space that is not also a vector space) is (V,A) = (Z2

5,Z5), where
for each (x, y) ∈ V and α ∈ A, the corresponding map α : V → V is defined by

α(x, y) = (αx, α3y).

Here, Q = {(x, 0) |x ∈ Z5} ∪ {(0, y) | y ∈ Z5}.

Some basic results follow.

Lemma 2.3. ([1], p. 297) Let (V,A) be a near-vector space. Then (V,+) is an
abelian group.

Proof. Let a, b, c, d ∈ V such that a = −c and b = −d. Then a+b = (−c)+(−d) =

−(d + c). But −(d + c) = (−1)(d + c) = (−1)d + (−1)c = (−d) + (−c), since −1

is an endomorphism of V by 2. in Definition 2.1. Therefore a + b = −(d + c) =

(−d) + (−c) = b+ a and so it follows V is abelian. �

A natural question to ask would be whether all vector spaces are near-vector
spaces. Indeed, this is the case.

Lemma 2.4. Let V be a vector space over a field F . Then (V, F ) is a near-vector
space. Here, the endomorphisms in F are given by the scalar multiplication of the
vector space. In this case, Q = V .

The quasi-kernel seems to be a very arbitrary construction. One way to think of
it would be as the set of linear axes of the near-vector space. The following results
strengthen this idea.
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 6

Lemma 2.5. (Properties of the quasi-kernel, [1], p. 299) The quasi-kernel Q of
a near-vector space (V,A) has the following properties.

a. 0 ∈ Q.

b. For each u ∈ Q∗ and α, β ∈ A, if αu+βu = γu, then γ is uniquely determined
by α and β.

c. If u ∈ Q and λ ∈ A, λu ∈ Q, i.e. AQ ⊆ Q.

d. If u ∈ Q and λi ∈ A for each i ∈ {1, . . . , n}, then
∑n

i=1 λiu = ηu ∈ Q for
some η ∈ A.

e. If u ∈ Q and α, β ∈ A, there exists γ ∈ A such that αu− βu = γu.

2.2 A new addition on A

As with vector spaces, one would generally desire some type of addition for the
scalars of near-vector spaces. Unfortunately, α+β is not necessarily in A if α and
β are. This can be partially remedied by the elements of the quasi-kernel: for each
nonzero element of Q, we may define an addition as below.

Definition 2.6. ([1], p.299) Let (V,A) be a near-vector space, with u ∈ Q∗.
Define the binary operation +u on A such that for all α, β ∈ A,

(α +u β)u = αu+ βu.

The operation +u is well-defined, by Lemma 2.5b.

Example 2.7. Consider the near-vector space in Example 2.2. As noted before,
Q = {(x, 0) |x ∈ Z5} ∪ {(0, y) | y ∈ Z5}. In this case

α +(x,0) β = α + β

for all α, β ∈ A and x ∈ Z∗5, and

α +(0,y) β =
(
α3 + β3

) 1
3

for all α, β ∈ A and y ∈ Z∗5.

The next natural question to ask would be whether this addition gives us a group
structure on A.
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 7

Lemma 2.8. ([1], p.300) Let (V,A) be a near-vector space, with u ∈ Q∗. Then
(A,+u) is an abelian group.

Lemma 2.9. ([1], p.301) Let (V,A) be a near-vector space and suppose that
u, v ∈ Q∗ such that v /∈ Au. Suppose αu+βv = α′u+β′v for some α, α′, β, β′ ∈ A.
Then α = α′ and β = β′.

Definition 2.10. ([1], p.300) Let λ ∈ A∗. Define αλ = λ−1αλ for all α ∈ A.

Of course, for u, v ∈ Q(V ), +u and +v do not in general have to be equal. However,
when some elements of the quasi-kernel do have the same addition, we group them
together in the following way.

Definition 2.11. ([1], p.301) Let (V,A) be a near-vector space and let u ∈ Q∗.
Define the kernel Ru(V ) = Ru of (V,A) by the set

Ru = {v ∈ V | (α +u β)v = αv + βv for every α, β ∈ A} .

Lemma 2.12. ([1], p.301) (Properties of Ru)

Let (V,A) be a near-vector space and let u ∈ Q∗. Then

a. u ∈ Ru.

b. Ru ⊆ Q.

c. (Ru,+) is a subgroup of (V,+).

2.3 Independence and a basis for Q
The next question one might have about André’s near-vector space construction
would be whether there is a suitable definition of a basis for a near-vector space,
and what properties this basis may have that are analogous to that of a vector
space. In particular, we would like the definition of a basis for a near-vector space
to coincide with that of a vector space when our near-vector space is a vector
space.

For this, some compromises have to be made. Because, generally, the elements
of a near-vector space outside its quasi-kernel are not well-behaved, we rather
build a basis for the quasi-kernel from its elements. The fifth axiom of near-vector
spaces then ensures that this basis generates the whole near-vector space. This
compromise does not affect our requirement that the definition must coincide with
that of a vector space, for the quasi-kernel of a vector space is the whole space, as
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 8

remarked before.

As near-vector spaces are not the only structure for which we will define indepen-
dence, it is useful to generalise the concept, by introducing a dependence relation.

Definition 2.13. A dependence relation is a relation between a set X and its
power set P(X), denoted by v / M where v ∈ X and M ⊆ X such that the
following conditions hold for u, v, w ∈ X and M,N ⊆ X.

(D1) If v ∈M , then v / M .

(D2) If w /M and v / N for each v ∈M , then w / N .

(D3) If v / M and v 6M \ {u}, then u / (M \ {u}) ∪ {v}.

Example 2.14. A trivial (but not very illuminating) example of a dependence
relation is the relation ∈ on any set. A more illuminating example is the relation
/ ⊆ V × P(V ) for a vector space V , where x / U if x ∈ span(U) for any x ∈ V
and U ⊆ V .

The axioms of a dependence relation are given by Van der Waerden in [24] as
fundamental theorems of independence, from which all the necessary properties of
independence are derived. Later, Pickert defines the above relation in [18].

From a dependence relation, we may define the following concepts.

Definition 2.15. Let X be a set and / be a dependence relation on X. Let
M,N ⊆ X.

1. If M is finite, then M is independent if x 6M \ {x} for every x ∈M .

2. If M is not finite, then M is independent if each of its finite subsets is
independent.

3. N is said to depend on M (or N is generated by M) if, for each x ∈ N , there
exists a finite subset M ′ ⊆M such that x / M ′.

4. M is a basis of X if M is independent and X depends on M .

It is a consequence of Zorn’s Lemma that, if X is equipped with a dependence
relation, then every independent subset M of X will be contained in a basis of X,
a proof of which is presented in [8], p.19. As a direct corollary, we have that X
will have a basis, since the empty set vacuously satisfies the condition for being
independent. Likewise, every subset of X can be shown to have its own basis (that
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 9

is, an independent subset that generates it) by restricting the dependence relation
to that subset.

The dependence relation is, of course, not the standard generalisation of inde-
pendence, namely the matroid. It was shortly before Van der Waerden laid out
the fundamental theorems of independence, that Whitney’s foundational paper,
On the abstract properties of linear dependence ([28]) was published. However,
since matroids are restricted to finite sets, it is useful to rather examine one of its
generalisations: the finitary matroid. For this, we give the definition as given by
Klee.

Definition 2.16. ([15], p.138) A finitary matroid is a system (M, f), where M is
a set and f : P(M) → P(M) satisfying the following conditions for all x, y ∈ M
and X, Y ⊆M .

(E) X ⊆ f(X) (f is enlarging).

(I) If X ⊆ Y , then f(X) ⊆ f(Y ) (f is isotonic).

(wI) If x ∈ f(Y ), then f({x} ∪ Y ) ⊆ f(Y ) (f is weakly idempotent).

(wE) If y ∈ f(Y ) and y /∈ f(Y \ {x}), then x ∈ f((Y \ {x}) ∪ {y}) (f is weakly
exchanging).

(F) If x ∈ f(Y ), then there is a finite U ⊆ Y such that x ∈ f(U).

While, in general, dependence relations and matroids do not seem to be mentioned
together, it can be shown that a finite set together with a dependence relation on
it serves as yet another equivalent definition of a matroid — a fact that was un-
doubtably known to the authors who studied independence abstractly. Moreover,
more generally, an arbitrary set together with a dependence relation on it form a
finitary matroid. A proof of the latter is given below.

Theorem 2.17. Let X be independent, and suppose / ⊆ X × P(X). Then /

is a dependence relation if and only if (X, cl) forms a finitary matroid, where
cl : P(X)→ P(X) such that cl(M) = {x ∈ X |x / M}.

Proof. Suppose / is a dependence relation. Let M,N ⊆ X and x, y ∈ X.

(E) Suppose x ∈M , then x / M , so x ∈ cl(M).

(I) Suppose M ⊆ N , and suppose x ∈ cl(M), Then x / M . Furthermore, since
M ⊆ N , for each u ∈M , u ∈ N , and so u / N . It follows x / N .
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CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 10

(wI) Suppose x ∈ cl(M), then x/M . Suppose y ∈ cl(M∪{x}). Then y/M∪{x}.
For each u ∈M ∪ {x}, u / M , so y / M , and hence y ∈ cl(M).

(wE) Suppose x ∈ cl(M) and x /∈ cl(M \ {y}). Then x / M and x 6 M \ {y}. It
follows y / (M \ {y}) ∪ {x}, so that y ∈ cl((M \ {y}) ∪ {x}).

(F) Suppose x ∈ cl(M), then x/M . Let B be a basis for M in terms of /. Then
there exists some finite subset of B, say M ′, such that x / M ′.

Conversely, suppose (X, cl) is a finitary matroid.

(D1) Suppose x ∈M . Then x ∈ cl(M), so that x / M .

(D2) Suppose x / M and u / N for each u ∈ M . Then x ∈ cl(M), so that
x ∈ cl(M ′) for some finite subset M ′ = {u1, . . . , un} of M . Inductively, we
show cl(M ′ ∪N) ⊆ cl(N). First, since u1 ∈ cl(N), it follows cl(N ∪ {u1}) ⊆
cl(N). Suppose then cl(N ∪ {u1, . . . , uk}) ⊆ cl(N). Then uk+1 ∈ cl(N),
so that uk+1 ∈ cl(N ∪ {u1, . . . , uk}), and finally cl(N ∪ {u1, . . . , uk+1}) ⊆
cl(N ∪{u1, . . . , uk}) ⊆ cl(N). Hence cl(N ∪M ′) ⊆ cl(N). But x ∈ cl(M ′) ⊆
cl(N ∪M ′) ⊆ cl(N), so x / N .

(D3) Suppose x / M and x 6 M \ {y}. Then x ∈ cl(M) and x /∈ cl(M \ {y}), so
that y ∈ cl(M \ {y} ∪ {x}). It follows y / M \ {y} ∪ {x} .

�

We now return to the near-vector space. André defines a relation / on the quasi-
kernel of a near-vector space.

Definition 2.18. ([1], p.302) Let (V,A) be a near-vector space, and define the
relation / ⊆ Q× P(Q) as follows, for u ∈ Q and M ⊆ Q.

1. 0 /∅.

2. u / M if there exist u1, . . . , un ∈M and λ1, . . . , λn ∈ A such that

u =
n∑
i=1

λiui.

In the above definition, / is a dependence relation ([1], p. 302). Moreover, if
V is a vector space over A, then the independent sets of V defined by / are
exactly the independent sets of V obtained from the standard definition of linear
independence. A basis for Q is as is defined in Definition 2.15; more precisely,
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B ⊆ Q is a basis of Q if B is independent and, for each u ∈ Q, there exists
b1, . . . , bn ∈ B and λ1, . . . , λn ∈ A such that u =

∑n
i=1 λibi. Generally, if B is a

basis of Q, then it is also said to be a basis of the corresponding near-vector space
V .

Lemma 2.19. ([1], p.302) M ⊆ Q is independent if and only if, for any n ∈ N
and distinct u1, . . . , un ∈ M , if 0 =

∑n
i=1 λiui for some λ1, . . . , λn ∈ A, then

λ1 = . . . = λn = 0.

Theorem 2.20. ([1], p.303) Let (V,A) be a near-vector space and suppose S ⊆ Q

is an independent set. Then there exists a basis B of Q such that S ⊆ B.

As a simple corollary, because ∅ is independent, the following result holds.

Corollary 2.21. ([1], p.303) The quasi-kernel of every near-vector space has a
basis.

Near-vector spaces have a corresponding notion of dimension.

Theorem 2.22. ([1], p.303) Let (V,A) be a near-vector space with B, B′ bases
of Q. Then |B| = |B′|.

Definition 2.23. ([1], p.303) Let (V,A) be a near-vector space and let B be a
basis of Q. Then |B| is called the dimension of (V,A). If |B| = n ∈ N, then (V,A)

is called an n-dimensional near-vector space, and if B is infinite, then (V,A) is
called an infinite-dimensional near-vector space.

We end this section with the following result.

Theorem 2.24. ([1], p.304) Let (V,A) be an near-vector space. Let B be a basis
for Q. Then for each v ∈ V there exists n ∈ N, λ1, . . . , λn ∈ A, and distinct
u1, . . . , un ∈ B such that v =

∑n
i=1 λiui. Moreover, this expression is unique.

2.4 Subspaces and regularity
One might wonder what a suitable definition of a subspace of a near-vector space
would be. For a vector space V , a subspace V ′ of V is a nonempty subset of V
that is closed under addition and scalar multiplication. It is tempting to apply this
to near-vector spaces. However, in general, it is not immediately clear whether
the quasi-kernel of such a subset would necessarily generate it. A more suitable
definition would therefore be the following.

Definition 2.25. ([8]) Let (V,A) be a near-vector space and let X be an inde-
pendent subset of Q(V ). Let V ′ = 〈AX〉, i.e. V ′ is generated additively by AX.
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Then (V ′, A) is a subspace of (V,A). We also say V ′ is a subspace of V .

Strictly speaking, we want (V ′, A′) to be a subspace of (V,A), where A′ consists
of the restrictions of the endomorphisms in A to V ′. However, it is useful to
remember that we don’t really think of these endomorphisms as functions on V ,
but rather as the scalars of the near-vector space. Therefore, in practice, there is
functionally no difference between (V ′, A) and (V ′, A′). In fact, when V ′ 6= {0},
then A′ even has the same cardinality as A by the fixed-point-free property (if
V ′ = {0} then all endomorphisms in A must restrict to the identity map of V ′).
Therefore, in the future, we take (V ′, A) to mean the same thing as (V ′, A′).

It is routine to show that a subspace (V ′, A) of a near-vector space (V,A) is a near-
vector space itself, and moreover, that every near-vector space (V ′, A) contained
in a near-vector space (V,A) is a subspace of (V,A).

Example 2.26. In the case of Example 2.2, the subspaces of V are as follows.

• {(0, 0)} (generated by X = ∅)

• {(x, 0) |x ∈ Z5} (generated by X = {(x, 0)}, for any x ∈ Z∗5)

• {(0, y) | y ∈ Z5} (generated by X = {(0, y)}, for any y ∈ Z∗5)

• V (generated by X = {(x, 0), (0, y)}, for any x, y ∈ Z∗5)

If X contains two distinct elements from Q1 = {(x, 0) |x ∈ Z5}, then X is de-
pendent, since for any (x, 0), (x′, 0) ∈ Q1 with x 6= x′, supposing without loss of
generality x 6= 0, it follows if α = x′x−1 that α(x, 0) = (x′, 0), and so α(x, 0) +

(−1)(x′, 0) = (0, 0). Likewise, by a similar argument, if X contains two elements
from Q2 = {(0, y) | y ∈ Z5}, then X is dependent. Furthermore, any subset of Q
containing more than two elements will contain more than one element in either Q1

or Q2 and can therefore not be independent. Finally, {(0, 0)} is not independent
by Lemma 2.19, and so the above list of possibilities for X is exhaustive.

Lemma 2.27. ([9], p.2527) Let (V,A) be a near-vector space and let (V ′, A) be
a subspace of (V,A). Then Q(V ′) = Q(V ) ∩ V ′.

Proof. Suppose (V,A) is a near-vector space and suppose V ′ is a subspace of V .
Let v ∈ Q(V ′). Then v ∈ V ′. Furthermore, since v ∈ Q(V ′), it follows for every
α, β ∈ A there exists γ ∈ A such that αv + βv = γv. But then v ∈ Q(V ), so
v ∈ V ′ ∩Q(V ). �
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The above lemma has the following obvious consequence, and is applied in [9],
Theorem 5.9, p.2538, while citing the above lemma in its use.

Corollary 2.28. If V ′ is a subspace of V , then Q(V ′) ⊆ Q(V ).

It is easy to show that any subspace of a near-vector space is a subgroup of V closed
under scalar multiplication. A proof was published in [9] that the converse — that
any subgroup of V closed under scalar multiplication would also be a subspace
— was also true, but an error was picked up in this proof by Sophie Marques in
2019. In particular, it was unclear how the quasi-kernel of such subgroups would
generate these sets. In the same year, it was partially proved that was true the
converse in the case where dim(V ) ≤ 2, a proof of which was contained in [20]
and which is given below. Independently, the converse was proved to hold in a
separate case, for near-vector spaces over division rings by Sophie Marques and was
subsequently published in [10] in 2022. The result is finally proved to hold, using
a geometric argument, for all near-vector spaces, a proof of which was published
in 2022 in [12], and appears in Chapter 3 of this thesis. For the following results,
note, in order to prove Corollary 2.28, it is not used that V ′ is a subspace of V .
In fact, one could for any subset V ′ of V define a quasi-kernel Q(V ′) in the same
way as one would define it for a near-vector space. Then Q(V ′) = Q(V ) ∩ V ′, so
Q(V ′) ⊆ Q(V ).

Theorem 2.29. ([20], p.14) Let (V,A) be a near-vector space. Let V ′ ⊆ V be
closed under addition and scalar multiplication. Let B be a basis for V . Suppose
that v ∈ V ′ such that v =

∑n
i=1 λiui, where u2, . . . , un ∈ B ∩ V ′, where λ1 6= 0.

Then u1 ∈ V ′.

Proof. We have that v =
∑n

i=1 λiui, so λ1u1 = v −
∑n

i=2 λiui. Then u1 = λ−11 (v −∑n
i=2 λiui). Since V

′ is closed under addition and scalar multiplication, it follows
that u1 ∈ V ′. �

Corollary 2.30. ([20], p.14) Let (V,A) be a 2-dimensional near-vector space and
V ′ ⊆ V . Then (V ′, A) is a subspace of V if and only if V ′ is closed under addition
and scalar multiplication.

Proof. If V ′ is a subspace of V , then it is closed under addition and scalar multi-
plication.

Suppose V ′ is closed under addition and scalar multiplication. Let B′ be a basis for
Q(V ′). We know that Q(V ′) ⊆ Q(V ) by the same argument as in Corollary 2.28.
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Therefore B′ is an independent subset of Q(V ), so it extends to a basis B for Q(V )

by Theorem 2.20. Let v ∈ V ′ such that v = λ1u1 + λ2u2, where B = {u1, u2}. If
u1 and u2 are in B′, then B′ = B. Now, if v ∈ V , then v = αu1 + βu2 for some
α, β ∈ A, since {u1, u2} is a basis for Q(V ). But then v ∈ V ′, since u1, u2 ∈ V ′

and V ′ is by assumption closed under addition and scalar multiplication. Hence
V = V ′ and so the result follows. Without loss of generality, assume u1 /∈ B′.
If λ1 6= 0, then by Theorem 2.29 u1 ∈ V ′. But then u1 / B

′ = B′ \ {u1}, so
that B′ ∪ {u1} is dependent — a contradiction, since B′ ∪ {u1} ⊆ B and B is
independent. Hence v = λu2 ∈ V ′. But then u2 ∈ V ′ or λ2 = 0, since V ′ is
closed under scalar multiplication. If u2 ∈ V ′, then u2 ∈ B′, so B′ = {u2}.
Then 〈AB′〉 = {λu2 |λ ∈ A} = V ′. If u2 /∈ V ′, then B′ = ∅, and λ2 = 0, so
〈AB′〉 = {0} = V ′. Therefore, in all cases, V ′ is a subspace of V . �

We return to the subspace problem in Chapter 3.

In [1], André defines the notion of compatibility between vectors in the quasi-
kernel. The purpose of this is to decompose a near-vector space into well-behaved
subspaces, called regular subspaces.

Definition 2.31. ([1], p.305) For a near-vector space (V,A), let u, v ∈ Q∗. u and
v are called compatible (u cp v) if there exists some λ ∈ A∗ such that u+ λv ∈ Q.

Lemma 2.32. ([1], p.305) For a near-vector space (V,A), let u, v ∈ Q∗. Then
u cp v if and only if there exists some λ ∈ A \ {0} such that +u = +λv.

Theorem 2.33. ([1], p.306) The relation cp is an equivalence relation on Q∗.

Definition 2.34. ([1], p.306) A near-vector space is called regular if any two
nonzero elements in its quasi-kernel are compatible.

Lemma 2.35. ([1], p.306) A near-vector space is regular if and only if it has a
basis of mutually pairwise compatible vectors.

We now move on the the Decomposition Theorem for near-vector spaces. For this,
we will need the following definition.

Definition 2.36. Let G be an abelian group and let {Hi i ∈ I} be a set of sub-
groups of G. Then G is called the direct sum of the subgroups Hi, i ∈ I if for
every g ∈ G there exist unique hi ∈ Hi, i ∈ I such that g =

∑
i∈I hi.

Theorem 2.37. (Decomposition Theorem, [1], p.306) Every near-vector space V
is the direct sum of regular near-vector spaces Vj (j ∈ J) such that each u ∈ Q∗
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lies in precisely one Vj. The subspaces Vj are maximal regular near-vector spaces.

The proof of the Decomposition Theorem used to be quite involved. In particular,
it was tricky to show that each u ∈ Q∗ lies in precisely one maximal regular
subspace Vj. I was able to shorten this argument with the addition of the following
lemma.

Lemma 2.38. Let (V,A) be a near-vector space, and let u1, . . . , un be independent
elements in Q. Let u =

∑n
i=1 λiui ∈ Q for some λ1, . . . , λn ∈ A\{0}. Then u cp ui

for all i ∈ {1, . . . , n}.

Proof. Let α, β ∈ A. Since u ∈ Q we know that there exists γ ∈ A such that
αu + βu = γu. We know that, since λ1, . . . , λn are nonzero and u1, . . . , un are
independent, u is nonzero, so γ = α +u β is uniquely defined by α and β. Now:

αu+ βu = γu

α
n∑
i=1

λiui + β
n∑
i=1

λiui = γ
n∑
i=1

λiui

α
n∑
i=1

λiui + β
n∑
i=1

λiui − γ
n∑
i=1

λiui = 0

n∑
i=1

(αλiui + βλiui + (−γ)λiui) = 0

n∑
i=1

(α +λiui β +λiui (−γ))λiui = 0.

Since u1, . . . , un are independent, it follows that:

α +λiui β +λiui (−γ) = 0,

or equivalently
α +λiui β = γ

for all i ∈ {1, . . . , n}. Therefore α +u β = α +λiui β, so that Ru = Rλiui for all
i ∈ {1, . . . , n}. Therefore, since u ∈ Ru, λiui ∈ Rλiui = Ru, and Ru is a subgroup
of V , it follows that

u+ λiui ∈ Ru

for each i ∈ {1, . . . , n}. But Ru ⊆ Q, so

u+ λiui ∈ Q
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for each i ∈ {1, . . . , n}. Because λi is nonzero for all i ∈ {1, . . . , n}, we may
conclude u cp ui for all i ∈ {1, . . . , n}. �

We are now ready to prove the Decomposition Theorem.

Proof. Let B = {bi | i ∈ I} be a basis for V and Q \ {0} / cp = {Qj | j ∈ J}.
Define, for each j ∈ J , Bj = B ∩ Qj = {bij | i ∈ Ij}, and Vj = 〈ABj〉. Because
B is independent, so is Bj for each j ∈ J , and hence Vj is a subspace of V for
each j ∈ J . Now let v ∈ V , and suppose v =

∑
j∈J
∑

i∈Ij λijbij, where λij ∈ A
for each i ∈ I and j ∈ J , and λij = 0 for all but finitely many i ∈ I and j ∈ J .
Define vj =

∑
i∈Ij λijbij for each j ∈ J . Then vj ∈ Vj and v =

∑
j∈J vj. Moreover,

because the decomposition of v in terms of B is unique by Theorem 2.24, each
vj ∈ Vj is uniquely determined, and so

∑
j∈J vj is the unique decomposition of v

in terms of {Vj | j ∈ J}. It follows that V is the direct sum of Vj, j ∈ J .

Next, suppose u ∈ Q\{0}. Then, since Q∗ is partitioned by Qj’s, j ∈ J , it follows
that u ∈ Qi for exactly one i ∈ J . We wish to show that u ∈ Vi. Let u =

∑n
j=1 λjbj

for some b1, . . . , bn ∈ B and λ1, . . . , λn ∈ A∗. Then u cp bj for each j ∈ {1, . . . , n}
by Lemma 2.38. It follows that bj ∈ Qi for each j ∈ {1, . . . , n}, so bj ∈ B∩Qi = Bi

for all j ∈ {1, . . . , n}. It follows that u =
∑n

j=1 λjbj ∈ 〈ABi〉 = Vi.

Now, suppose u ∈ Vk for some k ∈ J such that i 6= k. Then, because the unique
expression for u in terms of the basis B is u =

∑n
j=1 λjbj, b1, . . . , bn ∈ Bk, so

b1, . . . , bn ∈ Qk — a contradiction, since b1, . . . , bn ∈ Qi and Qi ∩Qk = ∅. Hence
u lies in exactly one Vj, j ∈ J .

Finally, to show each Vj is maximal, suppose for some j ∈ J there exists a regular
subspace W of V such that Vj ⊆ W ( V . Because W is regular, Q(W )∗ contains
only compatible vectors. But Qj ⊆ Q(Vj) ⊆ Q(W ). Since Qj is an equivalence
class of cp , it contains a maximal set of compatible elements, and soQ(W )∗ ⊆ Qj.
Hence Qj = Q(W )∗, and so Q(W ) ⊆ Q(Vj), and hence W ⊆ Vj. It follows that
Vj = W , so that W is maximal. �

Example 2.39. Refer back to Example 2.2. Note that B = {(1, 0), (0, 1)} is
a basis for V , with Q/ cp = {Q1, Q2}, where Q1 = {(x, 0) |x ∈ Z∗5} and Q2 =

{(0, y) | y ∈ Z∗5}, so that B1 = B ∩ Q1 = {(1, 0)} with V1 = {(x, 0) |x ∈ Z5}, and
B2 = B ∩Q2 = {(0, 1)} with V2 = {(0, y) | y ∈ Z5}. It follows that V = V1 ⊕ V2.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. PRELIMINARY MATERIAL ON NEAR-VECTOR SPACES 17

2.5 Nearfield theory and Van Der Walt’s

Theorem
The following section establishes a connection between André’s near-vector spaces
and nearfields.

Definition 2.40. ([19], p.11) A (left) nearfield is a triple (G,+, ·) such that the
following conditions hold.

• (G,+) is a group.

• (G∗, ·) is a group.

• For any a, b, c ∈ G, a · (b+ c) = a · b+ a · c.

• 0 · a = 0 for all a ∈ G.

While the definition does not require it, it can be shown that the additive group
of a nearfield is abelian. The proof of this is omitted.

There is an analogous definition of a right nearfield that has the right distributive
law in place of the left one. For more on nearfields, we refer the reader to Pilz
([19]).

Example 2.41. ([p.257, 19]) The smallest example of a nearfield that is not a
field is the Dickson nearfield F = (GF (32),+, ◦), where

x ◦ y =

x · y if x is a square in (GF (32),+, ·);

x · y3 otherwise.

Nearfields are closely linked to near-vector spaces, in much the same way as fields
are linked to vector spaces.

Theorem 2.42. ([1],p.300) Let (V,A) be a near-vector space and u ∈ Q∗. Then
(A,+u, ◦) is a near-field.

André noted in [1] that one can construct near-vector spaces using copies of a
nearfield.

Theorem 2.43. ([1], p.303) Let F be a nearfield and I an index set. Then the
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set

F (I) = {(ξi)i∈I | ξi ∈ F and ξi 6= 0 for only finitely many i ∈ I} if I 6= ∅,

F∅ = {0}

is a near-vector space over F , when one defines addition and scalar multiplication
componentwise.

A near-vector space constructed as above will always be regular. To show this,
let B = {bj | j ∈ I}, where bj = (δij)i∈I and δij is the Kronecker-delta. Then
αbj +βbj = (αδij +βδij)i∈I = ((α+β)δij)i∈I = (α+β)bj (because δij ∈ {0, 1}, the
right-distributive law holds). It follows B ⊆ Q(F (I))∗, and +bj = + for all j ∈ I,
so that B is a basis of mutually pairwise compatible basis vectors.

Example 2.44. Let V = F 2, where F is as defined in as in Example 2.41. Then
(V, F ) is a regular near-vector space. In this case, Q ( V ([1], p.312), making
it the smallest example of a regular near-vector space where its quasi-kernel is
properly contained in it.

André continues on to show that the following holds for any near-vector space.

Theorem 2.45. ([1], p.305) Let (V,A) be a near-vector space with basis B =

{bi | i ∈ I}. Then there exists a bijective map f : V → A(I) such that f(αv) =

αf(v) for each α ∈ A and v ∈ V .

It should be noted that the above is not, in general, an additive group isomorphism,
as A does not have a unique addition defined on it. In fact, f is an additive group
isomorphism if and only if V is a regular near vector space ([1]). To remedy this,
Van der Walt gave a way to characterise all finite-dimensional near-vector spaces
as the direct sum of nearfields.

Theorem 2.46. (Van der Walt’s Theorem, [25], p.301)

Let (G,+) be a group and A = D ∪ {0}, where D is a fixed-point-free group of
automorphisms of G. Then (G,A) is a finite dimensional near-vector space if
and only if there exists a finite number of nearfields F1, . . . , Fn, semigroup iso-
morphisms ψi : (A, ◦) → (Fi, ·) and an additive group isomorphism Φ : G →
F1 ⊕ . . . ⊕ Fn such that, for any g ∈ G and α ∈ A if Φ(g) = (x1, . . . , xn), then
Φ(αg) = (ψ1(α)x1, . . . , ψn(α)xn).

While Van der Walt’s Theorem may only have been stated for finite-dimensional
near-vector spaces, the theorem generalises to all near-vector spaces in a natural
way – for this, see [10], p.3669.
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Chapter 3

Noncommutative Geometry

The work in this chapter appears largely in [12]. The main motivation for André’s
near-vector space construction was the so-called nearfield space, a generalisation
of an incidence structure called an affine space. We start off this chapter by giving
a brief overview of incidence structures, and build up to the nearfield space.

3.1 Incidence structures
We use the book Foundations of Incidence Geometry by Johannes Ueberberg ([23])
as reference for our definitions for pregeometries and geometries. The concept of a
linear space is then generalised to that of a near-linear space, and projective and
affine spaces, are generalised to their suitable near-structures.

Definition 3.1. ([23], p.1) Let I be a non-empty set whose elements are called
types. A pregeometry over the type set I is a triple Γ = (X, ∗, type) fulfilling the
following conditions.

i X is a non-empty set whose elements are called the elements of the prege-
ometry Γ.

ii type is a surjective function from X to I. It is called the type function of Γ.

iii ∗ is a reflexive and symmetric relation on X, the so-called incidence relation.
It fulfills the condition: If x and y are incident elements of the same type,
that is x ∗ y and type(x) = type(y), we have x = y.

The rank of a pregeometry over a type set I is |I|.

Example 3.2. ([23], p.2) Consider a cube with numbered vertices as in the figure.

19
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Let X = {1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 23, 26, 34, 37, 48, 56, 58, 67, 78, 1234,
1256, 1458, 2367, 3478, 5678} and I = {vertex, edge, face}. Let type : X → I be
a function that maps each single digit number to vertex, each two-digit number
to edge, and each four digit number to face. Finally, let a vertex and an edge, a
vertex and a face, or an edge and a face be incident under ∗ if the digits of the
former appear in the latter (in the figure, a vertex-edge, vertex-face, or edge-face
pair are incident if the former lies on the latter). Then Γ = (X, ∗, type) is a
pregeometry over I.

Definition 3.3. Let Γ = (X, ∗, type) be a pregeometry over type set I. A flag F
of Γ is a subset of X such that all elements of F are incident with each other. The
rank of a flag F is |type(F )|. A chamber C of Γ is a flag such that type(C) = I.
If every flag of Γ is contained in a chamber, then Γ is a geometry over the type
set I.

Example 3.4. ([23], p.2) Γ of Example 3.2 is a geometry over I. The flags of Γ

containing the vertex 1 are {1} , {1, 12} , {1, 14} , {1, 15} , {1, 1234} , {1, 1256} , {1, 1458} ,
{1, 12, 1234} , {1, 12, 1256} , {1, 14, 1234} , {1, 14, 1458} , {1, 15, 1256}, and {1, 15, 1458}.

In essence, what it means for a pregeometry Γ to be a geometry, is that any
element of Γ is incident to an element of each type in I. In the next section, we
delve into near-linear spaces. These are geometries over the type set {point, line}.
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3.2 The near-linear space
In this section we generalise the concept of a linear space to a near-linear space.
Recall a linear space is a geometry of rank 2 over the type set {point, line} such
that every line is incident to at least two points, there are at least two lines, and,
given two distinct points x and y, there is exactly one line incident to both of
them ([23], p.4). Elements of type point are called points, and elements of type
line are called lines. We will denote the set of points by P, and the set of lines by
L.

From this we can construct a natural surjective map t : P2 \ 4P → L (here
4P = {(x, x) |x ∈ P}), and denote t(x, y) rather as xt y — this line is called the
join of x and y. Note that the order of x and y does not matter here: x t y must
be the same as y t x, else there are two distinct lines incident to both x and y. It
follows that in a linear space, t is commutative.

This is the property that is generalised in a near-linear space. The choice of axioms
for a near-linear space are derived from the work of André in [2], and each of them
serve a purpose in proving some elementary properties of a near-linear space.

Definition 3.5. Let L be a geometry of rank 2 over the type set {point, line}
with the following incidence structure.

(1) L ⊆ P(P), and a point x and line L are incident if and only if x ∈ L.

(2) There is a surjective mapping t : P2 \ 4P → L such that (x, y) 7→ x t y.

Then L is a near-linear space if L satisfies the following conditions.

(L1) x, y ∈ x t y.

(L2) If x, y, z are distinct points, then z ∈ xt y \ {x} if and only if xt y = xt z.

(L3) If x, y, z are distinct points with z ∈ x t y = y t x, then x t z = z t x.

(R) There are at least two distinct lines.

(G1) If x, y are points such that G = x t y = y t x, then for any line L 6= x t y,
|L ∩G| ≤ 1.

(G2) For any two distinct points x and y, there exists a finite sequence of points
p0 = x, p1, . . . , pn = y such that pitpi+1 = pi+1tpi for all i ∈ {0, . . . , n− 1}.

Some consequences of the above, as noted in [2].
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• (1) implies that lines are completely determined by the points on them: if
L and L′ are lines incident to exactly the same points, then L = L′.

• It is easy to see in the definition above that, if t is commutative, then L is
a linear space. Moreover, since lines in a linear space are clearly completely
determined by the set of points incident to them, we can choose to consider
lines in a linear space as the set of points incident to them. Hence every
linear space is a near-linear space.

• (L1) implies that every line contains at least two points.

• If L is a line such that L = x t y, then we call x a base point of L.

• A line L is called a straight line if there are two points x, y ∈ L such that
L = x t y = y t x. Lines that are not straight are called proper lines.

• (G1) implies that any line can intersect a straight line at most once.

• (G2) implies that there is a finite sequence of straight lines connecting any
two points and that any point is incident to a straight line. As a shorthand,
two points are said to be joinable if this property is satisfied.

As mentioned in [2], the following lemma (there mentioned in the context of near-
affine spaces) is a simple consequence of (L3).

Lemma 3.6. ([2], p.68) The following statements are equivalent for a given line
L in a near-linear space.

1. L has two base points.

2. Every point of L is a base point of L.

3. If x and y are different points on L then L = x t y = y t x.

From this lemma, it is clear that every point on a straight line G is a base point
of G.

Next, we prove some basic properties of near-linear spaces.

Theorem 3.7. A near-linear space contains at least two straight lines.

Proof. Let L be a near-linear space. By (R), L has at least two lines. Suppose
that one of these lines, say L, is a proper line. Let L = x t y. Then x and y are
joinable by (G2). Let p0 = x, . . . , pn = y be a finite sequence as described in (G2).
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If n > 1, then L has at least two straight lines. Suppose not. Then n = 1, so that
x t y is straight. But x t y = L is a proper line, so this is a contradiction. �

Lemma 3.8. In a near-linear space, distinct lines that share a base point intersect
exactly once.

Proof. Let L and L′ be two distinct lines that share a base point x. Clearly, these
two lines intersect at x. Assume now that the lines intersect at a point p different
from x. Then p is incident with L and L′, hence L = x t p = L′ by (L2) — a
contradiction, since L and L′ are distinct. Hence L and L′ intersect only at x. �

Next, we introduce the notion of subspaces for near-linear spaces.

Definition 3.9. ([2], p.90) Let L be a near-linear space, and let U be a set of
points of L. U is called a weak subspace of L if for any two points x and y in U ,
all points of the line x t y are contained in U . By convention, we say a line L is
contained in a weak subspace U whenever L ⊆ U .

It is clear that a weak subspace U of a near-linear space satisfies all the conditions
of a near-linear space, except possibly (R) and (G2) (where the lines of U are all
the lines totally contained in U). We specify further with the following definition.

Definition 3.10. ([2], p.79) Let L be a near-linear space. A (strong) subspace U
of L is a weak subspace such that any pair of points in U are joinable by straight
lines completely contained in U .

Some trivial examples of subspaces of near-linear spaces are singletons of points,
straight lines, the empty set, and the whole point set P (in this last case, we say
L is a subspace of itself).

Lemma 3.11. Let L be a near-linear space. The intersection of an arbitrary
family of weak subspaces of L is a weak subspace of L.

Proof. Let (Ui)i∈I be a family of weak subspaces of L, and let x and y be two
points contained in Ui for all i ∈ I. Since Ui is a weak subspace for all i ∈ I, the
line x t y is contained in Ui for all i ∈ I. �

The above property allows us to create the following definition.

Definition 3.12. Let L be a near-linear space.
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1. A set of points M of L is called collinear if all points of M lie on a common
line of L.

2. Let M be a set of points of L, and let

〈M〉 =
⋂
{U |U is a weak subspace of L containing M} .

〈M〉 is the smallest weak subspace of L containing M . It is called the weak
subspace generated by M .

If M = {pi | i ∈ I} is a set of points, we may also use the notation 〈pi | i ∈ I〉 to
denote 〈M〉. Likewise, 〈p0, . . . , pn〉 = 〈{p0, . . . , pn}〉.

If U is a weak subspace, then clearly 〈U〉 = U . In particular, 〈G〉 = G for any
straight line G.

The following lemma will be useful later in the chapter.

Lemma 3.13. Let M and M ′ be sets of points of a near-linear space. Then
〈M ∪M ′〉 = 〈〈M〉 ∪M ′〉.

Proof. SinceM∪M ′ ⊆ 〈M〉∪M ′ ⊆ 〈〈M〉 ∪M ′〉, we have 〈M ∪M ′〉 ⊆ 〈〈M〉 ∪M ′〉.
Conversely, 〈M〉 ⊆ 〈M ∪M ′〉, since M ⊆ M ∪M ′ ⊆ 〈M ∪M ′〉. It follows that
〈M〉 ∪ M ′ ⊆ 〈M ∪M ′〉, and so 〈〈M〉 ∪M ′〉 ⊆ 〈M ∪M ′〉. Hence 〈M ∪M ′〉 =

〈〈M〉 ∪M ′〉. �

Theorem 3.14. Any near-linear space contains three non-collinear points.

Proof. Let L be a linear space. By Theorem 3.7, L contains at least two distinct
straight lines, say L and L′. Let x and y be two distinct points on L, and x′ and
y′ be two distinct points on L′. If L and L′ do not intersect, then x, y, y′ are three
distinct points. If L and L′ do intersect, then they intersect at most once by (G1),
we may assume at x′, so that x, y, y′ are distinct points. Now suppose there is a
line L′′ connecting x, y, and y′. Since L and L′′ intersect at two points, they must
be the same line, otherwise (G1) would be contradicted. But y′ does not lie on L,
so this is a contradiction. Hence there is no common line incident to x, y, y′, and
so the three points are non-collinear. �

We now introduce hyperplanes.

Definition 3.15. Let L be a near-linear space. A maximal proper subspace of L
is called a hyperplane of L.
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Theorem 3.16. Let L be a near-linear space, and let H be a subspace of L. Then
H is a hyperplane of L if every line of L has at least one point in common with
H.

Proof. Suppose H is a subspace of a linear space L such that every line of L has
a point in common with H. Assume there exists a proper subspace U of L such
that H is a proper subspace of U . Let x ∈ U \H and y ∈ L \ U , the existence of
which is ensured by the fact that U is a proper subspace of L. Then the line xt y
meets H in a point z by the assumption. Since z is incident with x t y, it follows
xt y = xt z by (L2). But x and z are contained in U , hence xt z is contained in
U by definition — a contradiction, since y is incident to x t z, and therefore also
contained in U . Hence H must be a hyperplane of L. �

We close this section by introducing the notion of parallelism and proving some
properties.

Definition 3.17. ([2], p.68,73) A parallelism on a near-linear space L is an equiv-
alence relation ‖ on the set of lines of L such that the following conditions hold:

(P1) For any line L and point x of L, there exists a unique line L′ such that x is
a base point of L′ and L ‖ L′. We denote L′ by (x ‖ L).

(P2) If L is a straight line and L ‖ L′, then L′ is a straight line.

(P3) For all points x and y, x t y ‖ y t x.

Lines L and L′ are said to be parallel if L ‖ L′.

Note that (P2) and (L2) imply (L3): If x t y = y t x, and z is incident to x t y,
then x t y = x t z, so that x t y ‖ x t z. Hence by (P2), x t z = z t x.

Lemma 3.18. In a near-linear space, distinct straight lines that are parallel never
intersect.

Proof. Suppose G and G′ are two distinct parallel straight lines with intersection
point x. Then x is a base point ofG andG′, so thatG = (x ‖ G) = (x ‖ G′) = G′—
a contradiction. Hence G and G′ do not intersect, or are not parallel. �

Theorem 3.19. (G2’) Let L be a near-linear space that admits a parallelism.
Then L has at least two non-parallel straight lines.
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Proof. By Theorem 3.7 there are at least two straight lines, say G and G′. If G
and G′ intersect, then we are done by Lemma 3.18. Suppose not. Let x be a
point on G and y be a point on G′. Then by (G2) there exists a finite sequence
x = p0, . . . , pn = y such that pi t pi+1 is straight. Since y is not incident to G,
there exists i ∈ {0, . . . , n− 1} such that pitpi+1 6= G. Let j be the smallest index
for which pj t pj+1 6= G. Then G intersects pj t pj+1 at pj. Hence G and pj t pj+1

are two straight lines that are not parallel by Lemma 3.18. �

3.3 The nearaffine space
By adding some axioms to a near-linear space, we arrive at a nearaffine space, as
defined by André in [2].

Definition 3.20. ([1], p.73) A nearaffine space A is a near-linear space that
admits a parallellism ‖ such that the following condition holds.

(T) If x, y, and z are pairwise distinct points, and x′ and y′ are different points
with x t y ‖ x′ t y′, then

(x′ ‖ x t z) ∩ (y′ ‖ y t z) 6= ∅.

If we specialise (T) by putting x = x′, then we get the affine version of the axiom
of Veblen-Young ([2], p.69).

(V) If x, y, y′, and z are pairwise different points and x t y = x t y′, then

(x t z) ∩ (y′ ‖ y t z) 6= ∅.

Next, we list a few properties of nearaffine spaces.

Theorem 3.21. ([2], p.69) A nearaffine space with a commutative join t is an
affine space.

Theorem 3.22. ([2], p.73) The following condition holds in a nearaffine space.

(Pa) (Condition for closed parallelograms) If x, y, and z are pairwise different
points such that x t y 6= x t z, then (z ‖ x t y) ∩ (y ‖ x t z) 6= ∅.

The following proof appears in [3], and is expanded upon here with clarifying
detail.
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Theorem 3.23. ([3], p.208) Let A be a nearaffine space. Then all lines of A
have the same cardinality.

Proof. The proof is given in four steps:

1. Two intersecting straight lines have the same cardinality:

Let G and G′ be distinct straight lines, with common point p. Fix q ∈ G\{p}
and q′ ∈ G′ \ {p}. Let x be a point in G = p t q different from p. By (V),
we know that G′ ∩ (x ‖ q t q′) = (p t q′) ∩ (x ‖ q t q′) 6= ∅. By (G1),
|G′∩(x ‖ qtq′)| ≤ 1, so that |G′∩(x ‖ qtq′)| = 1, and so G′ and (x ‖ qtq′)
have a unique intersection point. Moreover, this unique intersection point
cannot be p, else G = xtp ‖ qtq′, implying that G = qtq′ since they share
the common point q. But then q′ ∈ G so that G = pt q′ = G′, contradicting
that these lines are distinct. We may therefore construct a map f : G→ G′

such that x 7→ x′ ∈ G′ ∩ (x ‖ q t q′) when x 6= p, and f(p) = p.
Suppose that x′ is a point on G′. By a similar argument as before, we may
construct a map g : G′ → G such that x′ 7→ x ∈ G ∩ (x′ ‖ q′ t q) for any
x′ 6= p and g(p) = p. We show f and g are inverses. Let x ∈ G \ {p},
then x t f(x) = (x ‖ q t q′). Likewise, f(x) t g(f(x)) = (f(x) ‖ q′ t q).
Hence x t f(x) ‖ q t q′ ‖ q′ t q ‖ f(x) t g(f(x)) by (P3), hence x t f(x) ‖
f(x)t g(f(x)). Again by (P3), this implies f(x)tx ‖ f(x)t g(f(x)) so that
f(x) t x = f(x) t g(f(x)) by (P1). Hence x and g(f(x)) are common to G
and f(x) t x, so by (G1), x = g(f(x)). It follows that f and g are inverses,
and so f is a bijection from G to G′. Thus |G| = |G′|.

2. Any two straight lines have the same cardinality:
Let G and G′ be any two straight lines. Let x ∈ G and y ∈ G′. By (G2)
there is a sequence of points p0 = x, p1, . . . , pn = y such that pi t pi+1 is
straight. These straight lines intersect at the points pi, so by (1.) |G| =

|p0 t p1| = . . . = |pn−1 t pn| = |G′|. Hence |G| = |G′|.

3. Any two lines with common base point have the same cardinality:
We prove the following by induction: for all n ∈ N, if L and L′ are two lines
with a base point p, and q ∈ L, q′ ∈ L′ such that q and q′ are joinable by a
sequence q = q0, q1 . . . , qn = q′, then |L| = |L′|.

Base Case: Suppose n = 1, then q t q′ is straight. Let x ∈ L = p t q
such that x 6= p. We know L′ = p t q′. Then by (V), we have L′ ∩ (x ‖
q t q′) = (p t q′) ∩ (x ‖ q t q′) 6= ∅. Since q t q′ is straight, by (P2) we
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have that (x ‖ q t q′) is straight, so that by (G1), |L′ ∩ (x ‖ q t q′)| ≤ 1.
Hence |L∩ (x ‖ qt q′)| = 1. Moreover, this intersection point is not p, else L
intersects the straight line (x ‖ q t q′) at both x and p, contradicting (G1).
Hence we may construct a map f : L → L′ such that f(x) = x′ ∈ L′ ∩ (x ‖
q t q′) if x 6= p and f(p) = p. Likewise, we may construct a map g : L′ → L

such that g(x′) = x ∈ L ∩ (x′ ‖ q t q′) when x′ 6= p and g(p) = p. These
functions are inverses: for any point x ∈ L, x t f(x) ‖ q t q′ is straight, so
xt f(x) = f(x)t x by (P2). Now f(x)t x ‖ q t q′ ‖ f(x)t g(f(x)), so that
f(x) t x ‖ f(x) t g(f(x)), and thus f(x) t x = f(x) t g(f(x)). It follows
that g(f(x)) and x are common to L and f(x) t x, hence, since f(x) t x is
straight, by (G1) we have that x = g(f(x)). It follows g and f are inverses,
so that f is a bijection L→ L′, hence |L| = |L′|.

Inductive Hypothesis: Suppose for all n ≤ k, if two lines L and L′ share the
base point p, with two points q ∈ L and q′ ∈ L′ being joinable by a sequence
q0 = q, q1, . . . , qn = q′, then |L1| = |L2|.

Inductive Step: Suppose L and L′ share the base point p, with two points
q ∈ L and q′ ∈ L′ being joinable by a sequence q0 = q, q1, . . . , qk+1 = q′. We
first consider the case where k + 1 = 2 and q1 = p: then L = p t q = q t p
and L′ = p t q′ = q′ t p, so that L and L′ are straight. By (1.) we are
done. In all other cases, if qi = p for some i ∈ {1, . . . , k}, then by our
induction hypothesis, |L| = |qi−1 t p| and |pt qi+1| = |L′|, so that |L| = |L′|.
Finally, if qi 6= p, for all i ∈ {1, . . . , k}, then, since q = q0 and qk are
joinable by the sequence q0, . . . , qk, by the induction hypothesis we have
that |L| = |p t qk|. Furthermore, qk t q′ = qk t qk+1 is straight, so by the
base case, |p t qk| = |p t q′| = |L′|, hence |L| = |L′|. By induction we may
conclude, if two lines L and L′ share the base point p, and two points q ∈ L
and q′ ∈ L′ are joinable, then |L| = |L′|. Since all points are joinable, any
two lines with common base point have the same order.

4. Any two lines have the same cardinality:

Let L be a line with base point p. By (G2) there exists a straight line G
such that p ∈ G. Since p ∈ G, p is a base point of G. Hence for all lines
L, there exists a straight line G that shares a base point with L. Since all
straight lines have the same order by (2.), and all lines with a common base
point have the same order by (3.), we may conclude that all lines have the
same order.
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�

Definition 3.24. ([2], p.74) The cardinality of each line in a nearaffine space A

is called the order of A.

By (L1) we always have that the order of a nearaffine space is greater than or
equal to 2. If the order of a nearaffine space A is 2, then x t y = {x, y} = y t x
for any two points x and y, hence A is an affine space ([2], p.69).

3.4 Subspaces of nearaffine spaces
What follows is some general theory of subspaces of a nearaffine space. Note that
every nearaffine space is a subspace of itself. We fix a nearaffine space A, and
assume that the order of A is always greater than or equal to 3. We start with
the following two results that appear in [2], the first without a proof, which has
been added here, and the second with a proof, which has been expanded upon
with clarifying detail.

Lemma 3.25. ([2], p.79) Let U be a subspace of A and G be a straight line of
A. Then G is a subspace of U , or |G ∩ U | ≤ 1.

Proof. Suppose G is not a subspace of U . If U contains two points of G, say x
and y, then G = x t y by Lemma 3.6, so U contains at most one point of G. �

Theorem 3.26. ([2], p.79) Let U be a subspace of A, and x and L a point and
line contained in U . Then (x ‖ L) ⊆ U .

Proof. Let L be a line completely contained in U and let y be a base point of L.
For any x ∈ U , if x = y or x t y = L, then (x ‖ L) = L ⊆ U , so we consider all
x ∈ U such that x 6= y and L 6= x t y. We show by induction that, for all n ∈ N,
if y = p0, p1, . . . pn = x is a sequence of points joining a given point x and y in U ,
then (pi ‖ L) ⊆ U for all i ∈ {1, . . . , n}.

Base Case: Suppose x ∈ U such that n = 1, i.e. y t x is straight. Since the order
of A is greater than or equal to three, we know that there exists a point z ∈ xt y
different from x and y. Then z /∈ L, else z and y would be common to L and the
straight line x t y, contradicting (G1). Let x′ ∈ (x ‖ L) different from x, then we
know x′ /∈ x t y by (G1). It follows the points z, x, y and x′ are pairwise distinct
points. We also have x t x′ = (x ‖ L) ‖ L, so that L = (y ‖ x t x′). Furthermore,
z t x = z t y = x t y, since z ∈ x t y and x t y is straight. Now, it follows from
(V) (ztx′)∩L = (ztx′)∩ (y ‖ xtx′) 6= ∅. Let y′ ∈ (ztx′)∩L. Since L ⊆ U , it
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follows y′ ∈ U . By (L2), it follows zty′ = ztx;′. Therefore the line ztx′ = zty′

is contained in U , and so x′ ∈ U . It follows (x ‖ L) = x t x′ ⊆ U .

Inductive Hypothesis: Suppose that for any point x ∈ U such that there exists
a sequence y = p0, . . . , pk = x joining x and y, we have (pi ‖ L) ⊆ U for all
i ∈ {1, . . . , k}.

Inductive Step: Let x ∈ U such that there exists a sequence y = p0, p1, . . . , pk+1 =

x joining y and x. Then y = p0, p1, . . . , pk is a sequence joining y and pk ∈ U ,
hence by the inductive hypothesis, (pi ‖ L) ⊆ U for all i ∈ {0, . . . , k}. Let
L′ = (pk ‖ L) ⊆ U . Then by the same argument as in the base case, since pktx is
straight, (x ‖ L′) ⊆ U . But (x ‖ L′) ‖ L′ = (pk ‖ L) ‖ L, hence (x ‖ L′) = (x ‖ L).
Hence (x ‖ L) ⊆ U , as required.

Hence, if y and x are joinable in U , then (x ‖ L) ⊆ U . Since all points in U are
joinable in U , it follows for all x ∈ U , (x ‖ L) ⊆ U . �

A consequence of the above theorem is that if U is a subspace of A, then the set of
points U , together with the set of lines contained in U satisfy all the conditions to
be a nearaffine space with the same parallelism as A, possibly with the exception
of (R) ([2], Corollary, p.79).

Theorem 3.27. ([2], p.79) A subspace U of A that contains two lines is a
nearaffine space.

We now prove some results. The following proof appears in [2], and is expanded
upon below with clarifying detail.

Theorem 3.28. ([2], p.80) Let U be a subspace of A and G a straight line of A.
Then

〈U,G〉 =
⋃
y∈U

(y ‖ G)

is a subspace of A.

Proof. Let x and y be two points in 〈U,G〉. Note that U ⊆ 〈U,G〉, so if x and
y are in U , then x t y ⊆ U ⊆ 〈U,G〉. We may assume x, y /∈ U , then there
exist x′, y′ ∈ U such that x ∈ (x′ ‖ G) and y ∈ (y′ ‖ G). By (Pa), since
x′ t x 6= x′ t y′, (y′ ‖ G) ∩ (x ‖ x′ t y′) = (y′ ‖ x′ t x) ∩ ((x ‖ x′ t y′) 6= ∅.
Let z ∈ (y′ ‖ G) ∩ (x ‖ x′ t y′). Then x t z ‖ x t y′. Now, if z′ ∈ x t z \ {x},
then, again by (Pa), x′ t y′ ∩ (z′ ‖ G) = (x′ ‖ x t z′) ∩ (z′ ‖ x t x′) 6= ∅. Let
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z′′ ∈ x′ t y′ ∩ (z′ ‖ G). Then (z′′ ‖ G) = (z′ ‖ G), and thus z′ ∈ (z′′ ‖ G) ⊆ 〈U,G〉.
It follows x t z ⊆ 〈U,G〉.

If xty = xtz, then we are done, so suppose not, then y 6= z and ytz = (y′ ‖ G).
Let p ∈ x t y different from x and y. Since x t p = x t y, by (V), (x t z) ∩ (p ‖
G) = (x t z) ∩ (p ‖ y t z) 6= ∅. Let p′ ∈ (x t z) ∩ (p ‖ G), then, since p′ ∈ x t z,
p′ ∈ 〈U,G〉, so that there exists p′′ ∈ U such that p′ ∈ (p′′ ‖ G). Then p′ ∈ (p′′ ‖ G)

and p′ ∈ (p ‖ G), so by (P1), (p′′ ‖ G) = (p ‖ G). Hence p ∈ (p′′ ‖ G) ⊆ 〈U,G〉.
Hence x t y ⊆ 〈U,G〉.

Next, we show any two points are joinable in U . Let x and y be points in 〈U,G〉.
We may assume x ∈ U and y /∈ U , for if x and y are both in U , then they are
joinable in U , and therefore also in 〈U,G〉, and if both x and y are not in U and are
both joinable in 〈U,G〉 with an intermediate point z ∈ U , then they are joinable.
Since y ∈ 〈U,G〉 there exists a point y′ in U such that y ∈ (y′ ‖ G). The points
x and y′ are joinable in U , say by a sequence x = p0, p1, . . . , pn = y′ ∈ U . But
then x = p0, . . . pn = y′, y is a sequence joining x and y, since y′ t y = (y′ ‖ G)

are straight by (P2). Hence all points in 〈U,G〉 are joinable in 〈U,G〉. It follows
〈U,G〉 is a subspace of A. �

Theorem 3.29. For a subspace U and straight line G of A, 〈U,G〉 contains G if
and only if G ∩ U 6= ∅.

Proof. Suppose G ∩ U 6= ∅, then there exists x ∈ G ∩ U . Then G = (x ‖ G) ⊆
〈U,G〉.

Conversely, suppose 〈U,G〉 contains G. If G ⊆ U , then we are done, so suppose
not. Then there exists some x ∈ G\U . Since G ⊆ 〈U,G〉, it follows x ∈ 〈U,G〉, so
that there exists some x′ ∈ U such that x ∈ (x′ ‖ G). But (x′ ‖ G) = (x ‖ G) = G,
hence x′ ∈ G. It follows x′ ∈ U ∩G, so U ∩G 6= ∅. �

Theorem 3.30. Let U be a subspace of A and G be a straight line with U∩G 6= ∅.
Then the weak subspace generated by U ∪ G, namely 〈U ∪G〉, is a subspace. In
particular, 〈U ∪G〉 = 〈U,G〉.

Proof. If |G ∩ U | > 1, then G ⊆ U by Lemma 3.25 and so 〈U,G〉 = U = 〈U〉 =

〈U ∪G〉. Suppose then G and U intersect in a single point y. Since U and G inter-
sect in y, 〈U,G〉 is a (weak) subspace containing U ∪G, so that 〈U ∪G〉 ⊆ 〈U,G〉.
We show that 〈U,G〉 ⊆ 〈U ∪G〉 by proving the following statement inductively.
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For all n ∈ N, if x ∈ 〈U,G〉 is a point outside of U ∪ G such that x lies on the
line (x′ ‖ G) for some point x′ ∈ U , and if y and x′ are joinable by the sequence
y = p0, p1, . . . , pn = x′ in U , then x ∈ 〈U ∪G〉.

Base Case: Suppose that x ∈ 〈U,G〉 is a point outside of U ∪ G such that x lies
on the line (x′ ‖ G) for some point x′ ∈ U such that y t x′ is straight. Since the
order of A is greater than or equal to three, there exists a point z ∈ ytx′ distinct
from y and x′. Then z t x′ = z t y = y t x′, since y t x′ is straight. It follows
by (V) that (z t x) ∩ G = (z t x) ∩ (y ‖ x t x′) 6= ∅. Let z′ ∈ (z t x) ∩ G, then
z t x = z t z′. Since z ∈ y t x′ ⊆ U and z′ ∈ G, it follows that z, z′ ∈ U ∪ G, so
that z t z′ ⊆ 〈U ∪G〉. Hence x ∈ 〈U ∪G〉.

Inductive Hypothesis: Suppose that, if x ∈ 〈U,G〉 is a point outside of U ∪G such
that x lies on the line (x′ ‖ G) for some point x′ ∈ U , and if y and x′ are joinable
by the sequence y = p0, p1, . . . , pk = x′ in U , then x ∈ 〈U ∪G〉.

Inductive Step: Let x ∈ 〈U,G〉 be a point outside of U ∪ G such that x lies on
the line (x′ ‖ G) for some point x′ ∈ U , and suppose y and x′ are joinable by the
sequence y = p0, p1, . . . , pk+1 = x′ in U . Since x /∈ U , we know that x′tx 6= x′tpk,
so that by (Pa), (pk ‖ G) ∩ (x ‖ x′ t pk) = (pk ‖ x′ t x) ∩ (x ‖ x′ t pk) 6= ∅.
Let p′k ∈ (pk ‖ G) ∩ (x ‖ x′ t pk). If p′k ∈ U , then pk t p′k ⊆ U , but then, since
x′ t x ‖ pk t p′k, x′ t x ⊆ U by Theorem 3.26, contradicting that x /∈ U , hence
p′k /∈ U . Furthermore, if p′k ∈ G, since p′k t pk ‖ G, it follows that G = p′k t pk so
that pk = y (since U and G intersect in a unique point), which reduces to the base
case. Suppose therefore that p′k /∈ U ∪G. Then, since p′k ∈ (pk ‖ G) and y and pk
are joinable by the sequence y = p0, p1, . . . , pk in U , by the inductive hypothesis,
p′k ∈ 〈U ∪G〉.

Let z ∈ pktx′ different from pk and x′. Then ztpk = ztx′ = pktx′ since pktx′

is straight. By (V), (z t x) ∩ (pk t p′k) 6= ∅. Let z′ ∈ (z t x) ∩ (pk t p′k). Then
z ∈ U ⊆ 〈U ∪G〉 and z′ ∈ pk t p′k ⊆ 〈U ∪G〉 so that z t z′ ⊆ 〈U ∪G〉. It follows
that x ∈ z t z′ ⊆ 〈U ∪G〉.

It follows by induction, for all x ∈ 〈U,G〉 outside of U ∪ G, x ∈ 〈U,G〉, so that
〈U,G〉 ⊆ 〈U ∪G〉. Hence 〈U ∪G〉 = 〈U,G〉. �

The above result can be generalised slightly by noting that, in the above proof, to
show that x ∈ 〈U ∪G〉, we only needed that x′ ∈ U ∩ (x ‖ G) and y are joinable
in U . Therefore, using a similar proof as above, we can show the following result.
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Corollary 3.31. Let U be a weak subspace and G be a straight line intersecting U
in a point x. Let y be a point in U joinable with x in U . Then (y ‖ G) ⊆ 〈U ∪G〉 .

Corollary 3.32. Let G = {G1, . . . , Gn} be a set of straight lines intersecting in a
common point. Then 〈

⋃n
i=1Gi〉 is a subspace.

Proof. By induction on n. We know that
〈⋃1

i=1Gi

〉
= 〈G1〉 = G1 is a subspace,

which completes the base case. Suppose then that
〈⋃k

i=1Gi

〉
is a subspace for

some k ∈ N. Then〈⋃k+1
i=1 Gi

〉
=
〈(⋃k

i=1Gi

)
∪Gk+1

〉
=
〈〈⋃k

i=1Gi

〉
∪Gk+1

〉
(by Lemma 3.13)

=
〈〈⋃k

i=1Gi

〉
, Gk+1

〉
(by Theorem 3.30)

which is a subspace. It follows by induction 〈
⋃n
i=1Gi〉 is a subspace. �

Theorem 3.33. Let G = {Gi |i ∈ I} be a set of straight lines all intersecting in
a point. Then

〈G〉 =
〈⋃

i∈I
Gi

〉
is a subspace.

Proof. Let x be the intersection point of the lines in G, and let U0 = {x}, and for
each n ∈ N, define Un recursively by

Un =
⋃

y∈Un−1

⋃
G∈G

(y ‖ G).

Note that Un ⊆ Un+1 for all n ∈ N ∪ {0}. Define U =
⋃
n∈N Un.

1. For all n ∈ N∪{0} and y ∈ Un\{x}, there exists a sequence x = p0, . . . , pk =

y in Un such that k ≤ n and (x ‖ pi−1 t pi) ∈ G for all i ∈ {1 . . . , k}.

We prove this by induction. For the base case, the statement is vacuously
satisfied. Suppose then for an arbitrary n ∈ N ∪ {0} that for all points
z ∈ Un, there exists a sequence x = p0, . . . , pk = z in Un such that k ≤ n

and (x ‖ pi−1 t pi) ∈ G for all i ∈ {1 . . . , k}, and let y ∈ Un+1 \ Un. Then,
by definition, there exists y′ ∈ Un and G ∈ G such that y ∈ (y′ ‖ G). We
know, since y′ ∈ Un, there exists a sequence x = p0, . . . , pk = y′ in Un such
that k ≤ n and (x ‖ pi−1 t pi) ∈ G for all i ∈ {1 . . . , k}. Let y = pk+1.
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Then p0, . . . , pk ∈ Un ⊆ Un+1 by the inductive hypothesis, and pk+1 ∈ Un+1

by assumption. Furthermore k + 1 ≤ n + 1, since k ≤ n by the inductive
hypothesis. Finally (x ‖ pi−1 t pi) ∈ G for all i ∈ {1 . . . , k} by the inductive
hypothesis, and pk t pk+1 = y′ t y ‖ G ∈ G. Hence the statement follows by
induction.

2. U is a subspace.

We already know that all points of U are joinable to x in U by (1.), and
therefore joinable to each other in U through x. It remains to be shown
that for any two points y and z in U, we have y t z ⊆ U. Let y and z then
be two points in U. By (1.) there exist sequences x = p0, . . . , pn = y and
x = p′0, . . . , p

′
r = z such that Gi = (x ‖ pi−1 t pi) ∈ G for all i ∈ {1 . . . , n}

and G′j = (x ‖ p′j−1 t p′j) ∈ G for all j ∈ {1 . . . r}. Define G′ to be the set
{G1, . . . , Gn, G

′
1, . . . G

′
r}. By Corollary 3.32, 〈

⋃
G′〉 is a subspace.

We show that 〈
⋃

G′〉 ⊆ U. Let w be a point of 〈
⋃
G′〉, and suppose for

contradiction that w /∈ U. Then there is a (not necessarily unique) set Gw ⊆
G′ of minimal cardinality such that w ∈ 〈

⋃
Gw〉 (that is, if G ∈ Gw, then

w /∈ 〈
⋃

(Gw \ {G})〉. By the Well-Ordering Principle, we may assume that
w is a point with minimal |Gw| such that w /∈ U. Now, let G ∈ Gw. Then
w /∈ 〈(Gw \ {G})〉. Since 〈

⋃
(Gw \ {G})〉 is a subspace by Corollary 3.32,

we know that 〈
⋃

Gw〉 = 〈〈
⋃

(Gw \ {G})〉 ∪G〉 = 〈〈
⋃

(Gw \ {G})〉 , G〉 by
Theorem 3.30. Hence there exists w′ ∈ 〈

⋃
(Gw \ {G})〉 such that w ∈ (w′ ‖

G). But then, since w′ ∈ 〈
⋃

(Gw \ {G})〉, we know that |Gw′ | ≤ |Gw \
{G} | < |Gw|: hence, by minimality of |Gw| we have w′ ∈ U. Then w′ ∈ Um

for some m ∈ N∪ {0}. But w ∈ (w′ ‖ G). Therefore, since G ∈ Gw ⊆ G, we
know that w ∈ Um+1 ⊆ U — a contradiction, since it was assumed w /∈ U.
Hence we must have that 〈

⋃
G′〉 ⊆ U.

Next, we show that y ∈ 〈
⋃

G′〉. We show by induction that pi ∈ 〈
⋃
G′〉.

Obviously, p0 = x ∈
⋃

G′ ⊆ 〈
⋃
G′〉, which proves the base case. Suppose

then that pk ∈ 〈
⋃

G′〉 for some k ∈ {0, . . . , n− 1}. Then (pk ‖ Gk+1) ⊆
〈
⋃

G′〉 by Theorem 3.26. Since pk+1 ∈ (pk ‖ Gk+1), it follows pk+1 ∈ 〈
⋃
G′〉.

It follows by induction, for all i ∈ {0, . . . , n}, pi ∈ 〈
⋃
G′〉; in particular

y ∈ 〈
⋃

G′〉.

In an analogous way, we also have z ∈ 〈
⋃

G′〉. Now y, z ∈ 〈
⋃
G′〉, so that

y t z ⊆ 〈
⋃

G′〉 . Since 〈
⋃

G′〉 ⊆ U, we may conclude y t z ⊆ U.
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3. 〈G〉 = U.

(⊆) : This follows from the fact that U is a (weak) subspace containing
⋃
G.

(⊇) : We prove this inclusion by induction: for all n ∈ N ∪ {0}, Un ⊆ 〈G〉.
For the base case, note that U0 = {x} ⊆ 〈G〉. Suppose then that Uk ⊆ 〈G〉
for some k ∈ N ∪ {0}. Let y ∈ Uk+1 \ Uk. Then there exists some y′ ∈ Uk

and G ∈ G such that y ∈ (y′ ‖ G). We know G ⊆ 〈G〉 and y′ ∈ Uk ⊆ 〈G〉.
Furthermore, by (1.) we know that there exists a sequence of straight lines
joining x and y′ in Uk ⊆ 〈G〉. Now, note that x and y′ are joinable in
〈G〉. Furthermore, the straight line G ⊆ 〈G〉, therefore 〈〈G〉 ∪G〉 = 〈G〉,
and so we have by Corollary 3.31 that (y′ ‖ G) ⊆ 〈〈G〉 ∪G〉 = 〈G〉. Hence
y ∈ 〈G〉. It follows by induction that Un ⊆ 〈G〉 for all n ∈ N ∪ {0}, so that
U =

⋃
n∈N Un ⊆ 〈G〉.

Therefore 〈G〉 = U is a subspace. �

From now on, for a set G = {Gi | i ∈ I} of straight lines intersecting in a point,
we add the notation 〈G |G ∈ G〉 and 〈Gi | i ∈ I〉 to denote the subspace 〈G〉.

It is now clear that straight lines generate (at least some) subspaces, so the natural
next step is to add a notion of independence to them. For this, we define a matroid
on the set of straight lines through a given point. We make use of the following
definition.

Definition 3.34. Let x be a point of A. We define Gx to be the set of straight
lines through x.

Theorem 3.35. Let cl : P(Gx)→ P(Gx) be the map defined as follows,

cl (G) = {G ∈ Gx |G ⊆ 〈G〉} .

Then (Gx, cl) is a finitary matroid.

Proof. Let G,G′ ⊆ Gx and G,G′ ∈ Gx.

(E) If G ∈ G, then G ⊆ 〈G〉, so G ∈ cl(G). Hence G ⊆ cl(G).

(I) Suppose G ⊆ G′. Then
⋃
G ⊆

⋃
G′ ⊆ 〈G′〉. But 〈G〉 is the smallest weak

subspace containing
⋃

G, so 〈G〉 = 〈
⋃

G〉 ⊆ 〈G′〉 . Hence 〈G〉 ⊆ 〈G′〉 . It
follows, if G ∈ cl(G), then G ⊆ 〈G〉 ⊆ 〈G′〉, so that G ∈ cl(G′), and thus
cl(G) ⊆ cl(G′).
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(wI) We prove the stronger condition that cl is idempotent. Let G ∈ cl(cl(G)).
Then G ⊆ 〈cl(G)〉. But, since

⋃
cl(G) ⊆ 〈G〉, it follows that 〈cl(G)〉 =

〈
⋃

cl(G)〉 ⊆ 〈G〉. Hence G ⊆ 〈G〉, so that G ∈ cl(G). Hence cl(cl(G)) ⊆
cl(G), and using (E), cl(cl(G)) = cl(G).

(wE) Suppose G ∈ cl(G∪{G′})\cl(G). We know G′ /∈ cl(G): otherwise G′ ⊆ 〈G〉,
so that, by Lemma 3.13, 〈G ∪ {G′}〉 = 〈〈G〉 ∪G′〉 = 〈〈G〉〉 = 〈G〉. Hence
cl(G ∪ {G′}) \ cl(G) = ∅, contradicting that G ∈ cl(G ∪ {G′}) \ cl(G).
Therefore G′ 6⊆ 〈G〉, so that G′ intersects 〈G〉 in the point x.

It follows by Theorem 3.30 that 〈G ∪ {G′}〉 = 〈〈G〉 , G′〉. Now G 6⊆ 〈G〉
and G ⊆ 〈〈G〉 , G′〉. Let y ∈ G \ {x}, then y ∈ 〈〈G〉 , G′〉 and y /∈ 〈G〉
(otherwise x t y = G ⊆ 〈G〉). It follows that there exists y′ ∈ 〈G〉 such
that y ∈ (y′ ‖ G′). We know (y′ ‖ G′) ‖ G′, and, since G 6= G′ and G and
G′ intersect in the point x, we know that G and G′ are not parallel. Hence
y t y′ = (y′ ‖ G′) is not parallel to G, and therefore not equal to G = y t x.
Therefore, by (Pa), it follows (y′ ‖ G)∩G′ = (y′ ‖ ytx)∩(x ‖ yty′) 6= ∅. Let
z ∈ (y′ ‖ G) ∩ G′. Since z ∈ (y′ ‖ G) and y′ ∈ 〈G〉, it follows z ∈ 〈〈G〉 , G〉,
so that G′ = x t z ⊆ 〈〈G〉 , G〉. Furthermore 〈〈G〉 , G〉 = 〈G ∪ {G}〉 by
Theorem 3.30. Hence G′ ⊆ 〈G ∪ {G}〉, so that G′ ∈ cl(G ∪ {G}). Since
G′ /∈ cl(G), we may conclude G′ ∈ cl(G ∪ {G}) \ cl(G).

(F) Let G ∈ cl(G) and let y ∈ G \ {x}. Since G ∈ cl(G), it follows G ⊆ 〈G〉,
and in particular, y ∈ 〈G〉. From part 1 of the proof of Theorem 3.33, it
follows that there is a sequence x = p0, p1, . . . , pn = y of points in 〈G〉 such
that Gi = (x ‖ pi−1 t pi) ∈ G. Let G′ = {Gi | 1 ≤ i ≤ n}. We have that
G′ ⊆ G and that G′ is finite. Furthermore, pi ∈ 〈G′〉 for all i ∈ {0, . . . , n}:
if not, there would be a smallest j ∈ {0, . . . , n} such that pj /∈ 〈G′〉. But
x = p0 ∈ 〈G′〉, hence j > 0, and thus pj ∈ (pj−1 ‖ pjtpj−1) = (pj−1 ‖ Gj). By
Theorem 3.26, it follows (pj−1 ‖ Gj) ⊆ 〈G′〉, and so pj ∈ 〈G′〉, contradicting
that pj /∈ 〈G′〉. Hence pi ∈ 〈G〉 for all i ∈ {0 . . . , n}; in particular y = pn ∈
〈G′〉, hence G = x t y ⊆ 〈G′〉, and so G ∈ cl(G′).

The construction of a closure operator allows us to define independence, bases,
and dimension for the finitary matroid associated with the ground set Gx. It is a
well-known result that every independent set of a finitary matroid is contained in
a basis, and that every basis of a finitary matroid has the same cardinality (see
Section 2.3). Since the empty set is independent, we are assured of the existence
of a basis for our matroid.
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Theorem 3.36. Suppose x is a point of A. Let G be a basis for Gx. Then
〈G〉 = P, the point set of A.

Proof. Suppose not. Then 〈G〉 ( P. It follows there is some point p ∈ P such
that p /∈ 〈G〉. By (G2), the points x and p are joinable, say by x = p0, . . . pk = p.
Let Gi = (x ‖ pi−1 t pi), and let G′ = G ∪ {Gi | 1 ≤ i ≤ k}. Now, pi ∈ 〈G′〉 for all
i ∈ {0 . . . , k}. If not, since p0 = x ∈ G′, by the Well-Ordering Principle, there is
some pj with minimum index j such that pj /∈ 〈G′〉. But pj ∈ pj−1 t pj = (pj−1 ‖
Gj) ⊆ 〈G′〉 by Theorem 3.26, therefore pj ∈ 〈G′〉, contradicting our assumption.
Therefore, in particular, p = pk ∈ 〈G′〉. It follows that 〈G〉 ( 〈G′〉, and G ( G′.
Now, suppose G ∈ G′ \ G. Since G is a maximal independent set, we have that
G ∪ {G} is not independent. Therefore, G ∈ cl(G), and so G ⊆ 〈G〉. Hence⋃

G′ ⊆ 〈G〉, so that 〈G′〉 ⊆ 〈G〉 — a contradiction. Hence 〈G〉 = P. �

Corollary 3.37. Let U be a subspace of A containing at least one line. Let
x ∈ U . Then there exists a maximal independent subset of Gx of lines contained
in U . Moreover, this set generates U .

Proof. If U contains two lines, then U itself is a nearaffine space by Theorem 3.27.
Let

Gx,U = {G ∈ Gx |G ⊆ U} .

Let G be a basis for Gx,U . G is then a basis for the set of straight lines through x
contained in U , and so 〈G〉 = U by Theorem 3.36.

If U contains only one line, then, since U is a subspace, U is a straight line, and
so G = {U} is a set containing a straight line through x such that 〈G〉 = U . �

The following result for the finite dimensional case is given in [2] (Proposition 3.2,
p.86). Below a generalised proof is given.

Theorem 3.38. Let U be a subspace of a nearaffine space A of order greater than
or equal to 3. Let Gx,U = {G ∈ Gx |G ⊆ U} for any x ∈ U . Let x and y be
different points of U , and let G be a basis for Gx,U . Then G′ = {(y ‖ G) |G ∈ G}
is a basis for Gy,U .

Proof. Firstly, note that x ∈ 〈G′〉 (see part 1. of the proof of Theorem 3.33).
Therefore, since for each G ∈ G, G = (x ‖ G′) for some G′ ∈ G′, it follows
that G ⊆ 〈G′〉, hence U = 〈G〉 ⊆ 〈G′〉, and therefore G′ generates U . But if G′
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generates U , then for each G′ ∈ Gy,U , G′ ⊆ U = 〈G′〉, and so G′ ∈ cl(G′). Hence
Gy,U is generated by G′.

To show G′ is minimal, suppose G′′ ( G′ such that G′′ generates Gy,U . Then, if
G′′′ = {(x ‖ G′) |G′ ∈ G′′}, G′′′ generates Gx,U by the same argument as in the
above paragraph (switching x and y, G′ and G′′′, and G and G′′ respectively). But
G′′′ ⊆ G, contradicting the minimality of G. Hence G′ is a minimal generating set
of U . �

The above results allows us to define the notion of a basis and dimension for a
subspace.

Definition 3.39. Let U be a subspace of A. Let Gx,U = {G ∈ Gx |G ⊆ U} for
any x ∈ U . Let dimGx,U be the cardinality of a basis for U of straight lines
through x for any x ∈ U .

1. G ⊆ Gx,U is a said to be a basis for U if G is a basis for Gx,U .

2. The dimension of U is defined as follows:

dimU =


dimGx,U for any x ∈ U , if U contains a line.

0 if U = {x} for some point x.

−1 if U = ∅.

While André also defines independence, bases, and dimension for subspaces in [2],
he does so only for finite nearaffine spaces. It is routine to show that André’s
definitions coincide exactly with the ones given above when A is finite.

André proves the result below in the finite case in [2] (Proposition 3.3, p.86).
However, the proof does not rely on the fact that the nearaffine space is finite.
Therefore, a generalised version of the result is stated, and André’s proof is pre-
sented without alteration.

Theorem 3.40. Let U be a subspace of a nearaffine space A of order greater than
or equal to 3 containing at least one line. Let y be a point of A. For some basis
G for U , define

Uy = 〈(y ‖ G) |G ∈ G〉 .

Then either U = Uy or U ∩ Uy = ∅.

Proof. Suppose z ∈ U ∩ Uy. Then by Theorem 3.38, U = Uz = Uy. �
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The following definition is a useful shorthand.

Definition 3.41. ([2], p.90) Let L be a line and U be a subspace of a nearaffine
space A of order greater than or equal to 3. Then we say L ‖ U if (x ‖ L) ⊆ U

for every x ∈ U .

Lemma 3.42. ([2], p.88) Let H and H ′ be hyperplanes such that H ′ = Hx for
some point x of a nearaffine space A. Then if y ∈ Hx and L ⊆ H for some line L,
(y ‖ L) ⊆ Hx.

Lemma 3.43. Let U be a subspace, L be a line, and x be a point of a nearaffine
space A of order greater than or equal to 3. If L ‖ U , then L ‖ Ux.

Proof. If x ∈ U , then we are done by Theorem 3.40, so suppose not. Let x′ ∈ U ,
and let G = x t x′. Suppose first that G is straight. Let G be a basis for U
though x′, then clearly G ∪ {G} will be a basis for 〈U,G〉. But x ∈ G, so x ∈
〈U,G〉, hence {(x ‖ G′) |G′ ∈ G} ∪ {G} is a basis for 〈U,G〉 as well. Furthermore,
{(x ‖ G′) |G′ ∈ G} is a basis for Ux, so it follows 〈U,G〉 = 〈Ux, G〉. It follows U
and Ux are hyperplanes of 〈U,G〉. Let z ∈ U , then (z ‖ L) ⊆ U , since L ‖ U . It
follows by Lemma 3.42 that (x ‖ L) ⊆ Ux. Hence by Theorem 3.26, L ‖ Ux.

If G is not straight, let x′ = p0, . . . , pn = x be a sequence joining x and x′. Then
by inductively applying the above argument,

L ‖ Up0 ⇒ L ‖ Up1 ⇒ . . .⇒ L ‖ Upn .

Since U = Up0 and Ux = Upn , we may conclude L ‖ Ux. �

Lemma 3.44. ([2], p.88) Let H be a hyperplane and L be a line of a nearaffine
space A. Then either L ∩H 6= ∅ or L ‖ H.

To prove the final result in this section, we add the following definition.

Definition 3.45. Let U be a subspace of a nearaffine spaceA. Define dU : U2 → N
as the length n of the shortest sequence x = p0, . . . , pn = y joining x and y in U .

Note that dU is a metric on U .

Lemma 3.46. Let U be a finite dimensional subspace of a nearaffine space A. If
dimU = n, then for any x, y ∈ U , dU(x, y) ≤ n.

Proof. By induction on n. If dimU = 0, then U = {x} for some point x. Since
d(x, x) = 0 ≤ dimU , the theorem holds in the base case. Next, suppose that if
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dimU = k, then d(x, y) ≤ k for any x, y ∈ U . Let W be a (k + 1)-dimensional
subspace, and let x, y ∈ W . Let G be a straight line through x contained in W .
Then there exists a basis G1, . . . , Gk, G for W of straight lines through x. Let
W ′ = 〈G1, . . . , Gk〉. If y ∈ W ′, then we are done by the induction hypothesis.
If y /∈ W ′, then, since W = 〈W ′, G〉, there exists some y′ ∈ W ′ such that y ∈
(y′ ‖ G). Hence y′ t y ‖ G and is therefore straight. By the induction hypothesis,
dW ′(x, y

′) ≤ k, hence, since y′ t y is straight, dW (x, y) ≤ k + 1, and so the result
follows. �

The next theorem is proven for finite nearaffine spaces.

Theorem 3.47. ([2], p.91) Let A be a finite nearaffine space of order n ≥ 3 and
let U be a set of points. Then the following are equivalent.

(A) U is a weak subspace.

(B) U is a subspace.

(C) U is a flat, i.e. any line incident with x, y ∈ U , x 6= y, completely lies in U .

The argument presented in [2] for (A) ⇒ (B) contains a slight error, in that it
takes as a given that a weak subspace will contain a straight line (see part 3 of
the proof).

We present a new proof for a general (not necessarily finite) nearaffine space.
André notes that the proof he presents in [2] is due to Bachmann, and that he
was unable to prove the theorem himself without the assumption that all weak
subspaces are closed under parallelism. However, as already noted above, even
the proof given in [2] contains an implicit assumption.

The proof below shares similarity with that which appears in [2] in that both
are proofs by contradiction using a minimality argument — in [2] based on the
dimension of the nearaffine space and the cardinality of a weak subspace, and
below based on the minimal dimension of a certain subspace U , and dU(x, y) for
any two points in U .

The equivalence to (C) is left as work for a future addition.

Theorem 3.48. Let A be a nearaffine space of order n ≥ 3 and let U be a set of
points. Then the following are equivalent.

(A) U is a weak subspace.
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(B) U is a subspace.

Proof. (B) ⇒ (A) is trivial, so we prove (A) ⇒ (B). Suppose there exists a
nearaffine space A with a proper weak subspace W .

1. There exists a finite-dimensional subspace U containing a proper weak sub-
space.

W is a proper weak subspace of A, so it contains two points x and y which
are not joinable in W . It follows 〈x, y〉 ⊆ W is also a proper weak subspace.
Let x = p0, . . . , pn = y be a sequence joining x and y in A (this is possible
by (G2)). Let G1, . . . , Gn be such that Gi = (x ‖ pi−1 t pi). Define U =

〈G1, . . . , Gn〉. Then pi ∈ U for all i ∈ {0, . . . , n}: if not, let j ∈ {1, . . . , n}
be the smallest index for which pj /∈ U . Clearly p0 = x ∈ U . Note that
pj ∈ pj−1 t pj = (pj−1 ‖ Gj) ⊆ U by Theorem 3.26 — a contradiction.
Therefore pi ∈ U for all i ∈ {0 . . . , n}; in particular y = pn ∈ U . Hence
x, y ∈ U , and so, since U is a subspace containing x and y, 〈x, y〉 ⊆ U .
Furthermore, dimU ≤ n, since U = 〈G1, . . . , Gn〉.

Assume now that U is a finite-dimensional subspace with smallest dimension n

such that U contains a proper weak subspace. Obviously, n ≥ 2, else there would
be a proper weak subspace contained in a straight line, a point, or the empty set.
Let x, y ∈ U , x 6= y, with minimal dU(x, y) such that x and y are not joinable in
〈x, y〉, i.e. if dU(p, q) < dU(x, y), then p and q are joinable in 〈p, q〉.

2. dU(x, y) = n.

Let k = dU(x, y) and let x = p0, . . . , pk = y be a sequence joining x and y in
U . By Lemma 3.46, k ≤ n. Now, letGi = (x ‖ pi−1tpi) for all i ∈ {1, . . . , k}.
The argument in 1 shows that U ′ = 〈G1, . . . , Gk〉 is a subspace containing x
and y, and therefore also 〈x, y〉 ⊆ U ′. By the minimality of dimU , it follows
n = dimU ≤ dimU ′ ≤ k. Hence n = k.

3. 〈x, y〉 6⊆ 〈G1, . . . , Gn−1〉

This follows, since 〈G1, . . . , Gn−1〉 has dimension n − 1 < n, and so all its
weak subspaces are subspaces.

4. S = 〈x, y〉 ∩ 〈G1, . . . , Gn−1〉 is a strong subspace.

Suppose S is a proper weak subspace. We know S ⊆ 〈G1, . . . , Gn−1〉. But
dim 〈G1, . . . , Gn−1〉 = n−1 < n, contradicting the minimality of n = dimU .
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5. S contains a straight line G through x.

First, note x ∈ S. Let z ∈ xty \ytx. Clearly z ∈ 〈x, y〉, so ytz ⊆ 〈x, y〉 ⊆
U . Since 〈G1, . . . , Gn−1〉 is a hyperplane of U and y t z is contained in U , it
follows that either y t z ∩ 〈G1, . . . , Gn−1〉 6= ∅ or y t z ‖ 〈G1, . . . , Gn−1〉 by
Lemma 3.44.

If y t z ∩ 〈G1, . . . , Gn−1〉 6= ∅, then let p ∈ y t z ∩ 〈G1, . . . , Gn−1〉. If p = x,
then y t z = y t x, so that z ∈ y t x, contradicting our assumption that
z /∈ y t x. It follows that p 6= x and so S contains two distinct points.

If y t z ‖ 〈G1, . . . , Gn−1〉, then (x ‖ y t z) ⊆ 〈G1, . . . , Gn−1〉. Let x′ ∈ (x ‖
y t z) \ {x}. We know then that x t x′ ‖ y t z. It follows by (T) that
(y ‖ x t z) ∩ (z ‖ x′ t z) 6= ∅. Since x t z = x t y ‖ y t x, it follows
(y ‖ x t z) = y t x. Furthermore, since x′ t z ‖ z t x′, we have that
(z ‖ x′ t z) = z tx′. Hence (y tx)∩ (z tx′) 6= ∅. Let w ∈ (y tx)∩ (z tx′).
Then w ∈ y t x ⊆ 〈x, y〉 and so z t w ⊆ 〈x, y〉. But w ∈ z t x′, and so
z t x′ = z t w. Thus x′ ∈ z t w ⊆ 〈x, y〉. In addition, since x′ ∈ x t x′ =

(x ‖ y t z) ⊆ 〈G1, . . . , Gn−1〉, we have that x′ ∈ 〈x, y〉 ∩ 〈G1, . . . , Gn−1〉 = S.
Thus x and x′ are distinct points in S.

Hence, in all cases, we have that S is not a point. Since S is not a point,
but is a subspace, it must contain a straight line G′. Let G = (x ‖ G′), then
by Theorem 3.26, G ⊆ S.

6. Conclusion of proof

We have G ⊆ S ⊆ 〈x, y〉 ⊆ U . Because G ⊆ U , we know there ex-
ists a basis for U through x containing G, say G,G′2, . . . , G

′
n. Let V =

〈(y ‖ G′i) | i ∈ {2, . . . , n}〉. We know x /∈ V , since dU(x, y) = n > dimV .
But x ∈ U = Uy by Theorem 3.40 and Uy = 〈V, (y ‖ G)〉, so there exists
some q ∈ V such that x ∈ (q ‖ (y ‖ G)). Hence q t x ‖ (y ‖ G) ‖ G, and so
x t q = G by (P1). Since q ∈ G, it follows q ∈ 〈x, y〉, and so 〈q, y〉 ⊆ 〈x, y〉.
But dU(q, y) ≤ dV (q, y) ≤ dimV = n − 1 < n, so q and y are joinable in
〈q, y〉 ⊆ 〈x, y〉. But x t q is straight, so x and y are joinable in 〈x, y〉 — a
contradiction. Hence all weak subspaces are strong subspaces.

�

3.5 Geometry of near-vector spaces
We now return to near-vector spaces and look at their geometric structure.
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Definition 3.49. ([2], p.76) Let (V,A) be a near-vector space with dimension
greater than or equal to 2, and let L consist of all subsets of V of the form
xt y = A(y−x) +x for some x and y in V . We call L the set of lines and V to be
the set of points, with x ∈ V and L ∈ L being incident if x ∈ L. Together, (V,L)

form what is known as a nearfield space.

Definition 3.50. ([2], p.76) Let (V,L) be a nearfield space and let L and L′ be
lines of V . Then L ‖ L′ if there exists u, v, v′ ∈ V such that L = Au + v and
L′ = Au+ v′.

It is worth noting that if L = Au+ v and L′ = Au+ v′ for some u, v, v′ ∈ V , then
L = L′ − v′ + v, so that L′ is a translation of L.

The next result characterises straight lines.

Lemma 3.51. ([2], p.75) For all distinct x, y ∈ V , x t y = y t x if and only if
x− y ∈ Q(V )∗.

The next result shows the connection between nearfield spaces and nearaffine
spaces. The result is mentioned in [2] without a full proof, which has been added
here.

Theorem 3.52. ([2], p.76) A nearfield space (V,L) is a nearaffine space.

Proof. (L1) By definition, x t y contains all elements of the form α(y − x) + x

for some α ∈ A. By setting α = 0, we obtain x, and by setting α = 1, we
obtain y.

(L2) Suppose z ∈ (x t y) \ {x}. Then there exists some nonzero α ∈ A such
that z = α(y − x) + x. Since α is nonzero, it is invertible, and hence we
obtain y = α−1(z − x) + x. Suppose now that y′ ∈ x t y. Then there exists
some β ∈ A such that y′ = β(y − x) + x = β[(α−1(z − x) + x) − x] + x =

βα−1(z−x)+x ∈ xtz. Hence xty ⊆ xtz. Similarly, if y′ ∈ xtz, then there
exists some β ∈ A such that y′ = β(z−x) +x = β[(α(y−x) +x) +x] +x =

βα(y − x) + x ∈ x t y. Hence x t y = x t z.

Conversely, suppose xty = xtz. Then A(y−x)+x = A(z−x)+x. Therefore
for all α ∈ A there exists β ∈ A such that α(z − x) + x = β(y − x) + x. In
particular, if α = 1, then there exists β ∈ A such that z = β(y−x)+x ∈ xty,
as required.

(L3) Suppose xty = ytx = xtz. Then y−x ∈ Q(V ), so that xty ⊆ Q(V )+x.
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Therefore z ∈ Q(V ) + x, so z − x ∈ Q(V ). It follows x t z = z t x.

(P1) Let L = ut v and x ∈ V . Let z = x− u. We show that xt (v+ z) = L+ z.
Note that A(v − u) + u = A[(v + z)− (u + z)] + u, so that L + z = A[(v +

z)− (z+u)] +u+ z = A[(z+ v)− x] + x = xt (v+ z). It follows xt (v+ z)

is a translation of L, and is therefore parallel to L with base point x.

To prove uniqueness, suppose we have a line L and point x such that L ‖ xty
and L ‖ x t y′ for some y, y′ ∈ V . Then x t y ‖ x t y′, so there exists some
z ∈ V such that x t y = x t y′ + z. We now have that

x t y = x t y′ + z

= A(y′ − x) + x+ z

= A[(y′ + z)− (x+ z)] + (x+ z)

= (x+ z) t (y′ + z)

Likewise xt y′ = (x− z)t (y− z). From this, two cases arise: either x is the
unique base point of the line xty (in which case x = x+z, so that z = 0 and
xt y = xt y′), or all points on xt y are base points of the line, with x+ z ∈
x t y. In the latter case, suppose z 6= 0, else the result follows immediately.
Then x t y = x t (x + z) by (L2), so (−1)(x + z − x) + x = x− z ∈ x t y.
Hence xt y = xt (x− z), again by (L2). Furthermore, since z 6= 0, the base
point of the line x t y′ is not unique (since x t y′ = (x− z) t (y′ − z)), and
x− z ∈ xt y′. It follows once again by (L2) that xt y′ = xt (x− z). Hence
x t y = x t (x− z) = x t y′, as required.

(P2) Suppose xty ‖ x′ty′ and xty = ytx. Then we know that xty = x′ty′+z
for some z ∈ V . It follows x t y = x′ t y′ + z = (x′ + z) t (y′ + z) by the
same argument as in (P1). By (L1), y′ + z ∈ (x′ + z) t (y′ + z) = x t y, so
that x t y = x t (y′ + z) by (L2). By (L3), because y′ + z ∈ x t y = y t x,
we know that x t (y′ + z) = (y′ + z) t x, so that x t y = (y′ + z) t x.
But x′ + z ∈ (x′ + z) t (y′ + z) = x t y = (y′ + z) t x so that by (L2)
(y′ + z) t x = (y′ + z) t (x′ + z). Hence (x′ + z) t (y′ + z) = x t y =

(y′ + z) t x = (y′ + z) t (x′ + z), so that x′ t y′ + z = y′ t x′ + z, and so
x′ t y′ = y′ t x′.

(R) V has at least two basis vectors, say v1 and v2. Then 0 t vi = Avi for
i ∈ {1, 2}. Since v1 and v2 are independent, it follows Av1 6= Av2, so that
there are at least two distinct lines.
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(T) Suppose x, y, z ∈ V are pairwise different vectors, and x′, y′ ∈ V are different
vectors, with x t y ‖ x′ t y′, and let z′ ∈ V such that x′ = x + z′. We have
that

x′ t (z + z′) = (x+ z′) t (z + z′)

= A(z − x) + x+ z′

= (x t z) + z′.

Hence x′ t (z + z′) ‖ x t z. By (P1) we have (x′ ‖ x t z) = x′ t (z + z′).
Likewise, x′t (y+ z′) ‖ x′t y′, hence x′t y′ = x′t (y+ z′), again by (P1). It
follows that there is some α ∈ A∗ such that α(y′−x′)+x′ = y+z′. Therefore
y′ = α−1(y − x+ αx′), hence:

y′ t α−1(z − x+ αx′) = α−1(y − x+ αx′) t α−1(z − x+ αx′)

= A(α−1(z − y)) + α−1(y − x+ αx′)

= A(z − y) + y′

= (y t z) + (y′ − y)

It follows (y′ ‖ y t z) = y′ tα−1(z− x+αx′). Furthermore, note that, since
y′ = α−1(y − x + αx′), we have that y′ − α−1y = x′ − α−1x, hence we have
α−1(z − y) + y′ = α−1(z − x) + x′.

But

α−1(z − y) + y′ ∈ A(z − y) + y′ = y′ t α−1(z − x+ αx′) = (y′ ‖ y t z)

and

α−1(z − x) + x′ ∈ A(z − x) + x+ z′ = x′ t (z + z′) = (x′ ‖ x t z)

Hence (x′ ‖ x t z) ∩ (y′ ‖ y t z) 6= ∅ as required.

(P3) We have x t y = A(y − x) + x = A(x− y) + y + (x− y) = y t x+ (x− y),
hence x t y ‖ y t x as required.

(G1) Suppose G,L ∈ L such that G = Au + v is straight, G 6= L = Au′ + v′.
Furthermore, suppose G and L have two distinct intercepts, x = αu + v =

α′u′ + v′ and y = βu + v = β′u′ + v′. Since G is straight, by Lemma 3.51,
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u ∈ Q(V )∗. Furthermore, we may assume L is not straight: if L were
straight, then L = x t y = G, since G is straight. It follows u′ /∈ Q(V ).
But then u′ /∈ Au, since Au ⊆ Q(V ) by Lemma 2.5. Furthermore, from the
equalities

αu+ v = α′u′ + v′;

βu+ v = β′u′ + v′

we may conclude
αu− βu = α′u′ − β′u′

so that
αu− α′u′ = βu− β′u′.

Since u ∈ Q(V )∗ and u′ /∈ Au, this allows us to conclude α = β and α′ = β′

by Lemma 2.9. But then x = αu+v = βu+v = y — a contradiction, since x
and y are distinct. Hence G and L can have at most one intersection point.

(G2) To show that for any x, y ∈ V , x and y are joinable is equivalent to showing
for all x ∈ V , x and 0 are joinable. So assume now that x ∈ V , we will
show that x is joinable to 0. If x = 0, then we are done by definition, so
assume x 6= 0. Let x =

∑n
i=1 λiui, where u1, . . . , un ∈ B, a basis for V .

Let xk =
∑k

i=1 λiui for each k ∈ {1, . . . , n}, with x0 = 0. Then, for each
k ∈ {1, . . . , n}, we have that: xk − xk−1 = λkuk ∈ Q(V ), since uk ∈ B ⊆
Q(V ) and so λkuk ∈ Q(V ) by Lemma 2.5. Hence xk−1 t xk is straight. It
follows that 0 = x0, x1, . . . , xn = x is a finite set of points such that for all
i ∈ {0, . . . , n− 1}, xi t xi+1 is straight.

�

Note for the following two results, we assume that (V,A) is a near-vector space
with |A| ≥ 3: if A = 2, then V must be a vector space over Z2, since Z2 is the only
nearfield with two elements (see Van der Walt’s Theorem in Section 2.5). Hence,
in this case (V,L) would be an affine space over a vector space.

Since |A| ≥ 3, we know that the order of (V,L) will be greater than or equal to
3 by the fixed-point-free property, and so we may apply all of the results in the
previous section.

We now link the notion of a subspace of a nearaffine space to that of a subspace
of a near-vector space.
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Theorem 3.53. Let (V,A) be a near-vector space, and let U ⊆ V . Then U is a
non-empty subspace of the nearaffine space (V,L) if and only if there exists some
subspace (W,A) of (V,A) such that U is a coset of W .

Proof. Suppose U = x+W for some subspace W of (V,A). Then W is a subspace
of the nearfield space (V,L) with 0 as a point, since 0 ∈ W , and for any x, y ∈ W ,
x t y = A(y − x) + x ⊆ W . Let G = {Gi | i ∈ I} be a basis for W of straight
lines through 0, and let ui ∈ G∗i . It follows Gi = A(ui − 0) + 0 = Aui. Therefore
xt (x+ui) = Aui+x ‖ Gi, hence (x ‖ Gi) = Aui+x ⊆ x+W = U for each i ∈ I,
and thus Wx = 〈(x ‖ Gi) | i ∈ I〉 ⊆ U . Next, if u ∈ U \ {x}, then w = u− x ∈ W ,
so that 0 t w ⊆ W . But then 0 t w ‖ W by Theorem 3.26, and so 0 t w ‖ Wx by
Lemma 3.43. Furthermore 0 t w = Aw = A(u − x) ‖ A(u − x) + x = x t u. It
follows that x t u = (x ‖ 0 t w) ⊆ Wx, so that u ∈ Wx, and so U ⊆ Wx. Hence
U = Wx and is therefore a subspace of the nearfield space (V,L).

Conversely, suppose U be a subspace of the nearaffine space (V,L). Let x be a
point of U . If U is a point, then the result is trivial, so suppose dimU > 1.
Then by Corollary 3.37, there exists a basis for U of straight lines through x, say
G′ = {G′i | i ∈ I}. Let G = {Gi = (0 ‖ G′i) | i ∈ I}, and let ui ∈ G∗i for every i ∈ I.
Finally, let X = {ui | i ∈ I}.

For contradiction, assumeX is a dependent subset ofQ(V ). Let {u1, . . . , un} ⊆ X,
and suppose

∑n
j=1 λjuj = 0. We may assume λk 6= 0 for all k ∈ {1, . . . , n}

(otherwise, exclude each uk such that λk = 0). Consider the partial sums vk =∑k
j=1 λjuj, where k ∈ {1, . . . , n}, and set v0 = 0. Then vk−1t vk = A(vk− vk−1) +

vk = A(λkuk) + vk−1 = Auk + vk−1, since λk 6= 0 for all k ∈ {1 . . . , n}. But Gk =

0tuk = Auk, so Gk ‖ vk−1tvk, therefore vk−1tvk is straight for all k ∈ {1, . . . , n}.
Furthermore, vk ∈ 〈G1, . . . Gk〉 for all k ∈ {1, . . . , n}: if not, there is some vj with
smallest index j such that vj /∈ 〈G1, . . . , Gj〉. But vj ∈ vj t vj−1 = vj−1 t vj ‖ Gj.
Hence vj ∈ (vj−1 ‖ Gj). But vj−1 ∈ 〈G1, . . . Gj−1〉 ⊆ 〈G1, . . . Gj〉, so that by
Theorem 3.26, vj ∈ 〈G1, . . . Gj〉— a contradiction. In particular, this implies that
vn−1 ∈ 〈G1, . . . , Gn−1〉. But vn = 0 ∈ 〈G1, . . . , Gn−1〉, so vn t vn−1 = 0 t vn−1 ⊆
〈G1, . . . , Gn−1〉. Furthermore vn t vn−1 ‖ Gn, and so vn t vn−1 = Gn, since both
lines share the base point 0. Therefore Gn ⊆ 〈G1, . . . , Gn−1〉 — a contradiction,
since G1, . . . , Gn are independent. It follows λ1 = . . . = λn = 0, and so X is
independent.

Define W to be the subgroup generated by AX. Clearly (W,A) is a subspace
of the near-vector space (V,A) since X is an independent subset of Q(V ). Now,
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for any x, y ∈ W , x t y = A(y − x) + x ⊆ W , hence W is a weak subspace of
(V,L) and therefore a subspace of (V,L). Furthermore, W = U0: for each i ∈ I,
Gi = Aui ⊆ W , hence U0 = 〈Gi | i ∈ I〉 =

〈⋃
i∈I Gi

〉
⊆ W . Likewise if w ∈ W ,

then w =
∑n

j=1 λjuj for some u1 . . . , un ∈ X and λ1, . . . , λn ∈ A. The above
argument then shows that w =

∑n
j=1 λjuj ∈ 〈G1, . . . , Gn〉 ⊆ 〈Gi | i ∈ I〉 = U0, so

W ⊆ U0 and hence W = U0.

Now let w ∈ W . Then 0 t w = Aw ⊆ W , and therefore 0 t w ‖ W = U0 by
Theorem 3.26, hence 0tw ‖ U by Lemma 3.43. Furthermore xt(x+w) = Aw+x,
and so 0 tw ‖ x t (x+w), and thus, since 0 tw ‖ U , it follows x t (x+w) ⊆ U .
It follows x + w ∈ U , and so x + W ⊆ U . Conversely, if u ∈ U , then define
w = u− x. Then xt u = A(u− x) + x = Aw+ x ‖ Aw = 0tw. Since xt u ⊆ U ,
we know x t u ‖ U (again by Theorem 3.26), and so x t u ‖ U0 = W , again by
Lemma 3.43. It follows 0 t w ⊆ W , and so w ∈ W , thus u = x + w ∈ x + W . It
follows U ⊆ x+W , and hence U = x+W . �

A proof of the following result was given in [9]; however, the proof of the converse
was incomplete, as picked up by Sophie Marques in 2019, in that it was unclear
how the so-called quasi-kernel of the subset would generate the subset as a group
— a requirement for near-vector spaces. This was partially remedied in [10] by
Sophie Marques, where it was shown that the result holds in the specific case for
near-vector spaces over division rings. We now give a the proof of the general
result using the geometry we have developed.

Theorem 3.54. Let W ⊆ V for some near-vector space (V,A). Then (W,A) is a
subspace of (V,A) if and only if W is a subgroup of V and AW ⊆ W .

Proof. If dimV < 2, then the only subspaces of V are V itself and {0}, which
trivially satisfy the equivalence. Suppose therefore that dimV ≥ 2, then (V,L) is
a nearfield space, and therefore a nearaffine space by Theorem 3.52.

The forward direction follows directly from the definition of a subspace.

For the converse, suppose W is a subgroup of V and AW ⊆ W . Since W is a
subgroup of V , we know W is non-empty. Let x, y ∈ W . Then y − x ∈ W (since
W is a group), so α(y−x) ∈ AW ⊆ W for all α ∈ A. Therefore α(y−x) +x ∈ W
for all α ∈ A, since W is a group. Thus x t y = A(y − x) + x ⊆ W . It follows W
is a weak subspace of (V,L).

It follows by Theorem 3.48, since the order of (V,L) is greater than or equal to 3,
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W is a subspace of (V,L). Hence by Theorem 3.53, W is a coset of some subspace
V ′ of (V,A). But sinceW is a subgroup of V ,W = V ′. Hence (W,A) is a subspace
of (V,A). �

3.6 Projections of nearaffine spaces
In this section, we define projections of nearaffine spaces, in an analogous way to
how one would do for affine spaces. Inspiration is drawn from Ueberberg in [23]
(Chapter 3). We will only present an elementary introduction to this topic, and
leave further exploration for future research.

Definition 3.55. Let A be a nearaffine space of dimension at least 3, and let q be
an arbitrary fixed point of A. Then the projection of A, P = P (A), is a geometry
of rank 2 over the type set {point, line} where points and lines are defined as
follows.

(a) Points of P are the lines [x] = q t x for all points x 6= q of A.

(b) Lines of P are defined as follows: for any two distinct points [x] and [y]

[x][y] =
⋃
{(z ‖ q t x) | z ∈ q t y} .

(c) A point [z] and line [x][y] of P are incident if [z] ⊆ [x][y].

The following two results are useful in this section.

Theorem 3.56. Let P be the projection of nearaffine space A. For any distinct
points [x] and [y] of P, we have [x][y] = [y][x].

Proof. Let w ∈ [x][y]. Then there exists some z ∈ q t y such that w ∈ (z ‖ q t x),
i.e (z ‖ qtx) = ztw. By (L2), qty = qtz. Since [x] 6= [y], we know qtx 6= qty.
Since qtx and qty share a base point and are not equal, it implies that they are not
parallel. Therefore, since by (P3) ztq ‖ qtz = qty, and ztw = (z ‖ qtx) ‖ qtx,
we have that ztq and ztw are not parallel, and therefore not equal. Therefore, by
(Pa), (q ‖ ztw)∩(w ‖ ztq) 6= ∅. But (q ‖ ztw) = (q ‖ qtx) = qtx by (P1), and
(w ‖ z t q) = (w ‖ q t z) = (w ‖ q t y) by (P3). Hence (q t x) ∩ (w ‖ q t y) 6= ∅.
Now, let z′ ∈ (q t x) ∩ (w ‖ q t y). Since z′ ∈ (w ‖ q t y), we have that
w t z′ = (w ‖ q t y). Therefore z′ t w ‖ w t z′ = (w ‖ q t y) ‖ q t y. Hence
z′ t w = (z′ ‖ q t y), and thus w ∈ (z′ ‖ q t y), with z′ ∈ q t x. It follows that
w ∈ [y][x] so that [x][y] = [y][x]. �
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Theorem 3.57. Let P be the projection of an affine space A. Then z ∈ [x][y] if
and only if [z] ⊆ [x][y].

Proof. If [z] ⊆ [x][y], then clearly z ∈ [x][y]. Suppose then that z ∈ [x][y]. Then
there exists w ∈ q t x such that z ∈ (w ‖ q t y). Let z′ ∈ [z] = q t z. If z′ = q or
z′ = z, then we are done, so suppose not. By (L2), q t z = q t z′. Therefore by
(V), we know that (qtw)∩ (z′ ‖ ztw) 6= ∅. Let w′ ∈ (qtw)∩ (z′ ‖ ztw). Then
w′ t z′ ‖ z′ tw′ = (z′ ‖ z tw) ‖ z tw ‖ w t z = (w ‖ q t y) ‖ q t y. Furthermore,
w′ ∈ q t w = q t x. Hence z′ ∈ (w′ ‖ q t y), with w′ ∈ q t x, so that z′ ∈ [x][y].
Thus [z] ⊆ [x][y]. �

The next three results aim to show which axioms of a projective space are satisfied
by the projection of a nearaffine space. See [23], p.10 for more details.

Theorem 3.58. The projection P of a nearaffine space A satisfies the axiom of
Veblen-Young: If [p], [x], [y], [a], and [b] are five points of P such that the lines
[x][y] and [a][b] meet in a point [p], the lines [x][a] and [y][b] also meet in a point.

Proof. Since [p] ⊆ [x][y] = [y][x] and [p] ⊆ [a][b], we know that there exits w ∈ qty
and w′ ∈ q t a such that p ∈ (w ‖ q t x) ∩ (w′ ‖ q t b). By (L2) and (P1):
p t w ‖ w t p = (w ‖ q t x) ‖ q t x and p t w′ ‖ w′ t p = (w′ ‖ q t b) ‖ q t b.
Since p t w and p t w′ are not parallel, they are not equal, and so by (Pa) we
have (w′ ‖ p t w) ∩ (w ‖ p t w′) 6= ∅. Let z ∈ (w′ ‖ p t w) ∩ (w ‖ p t w′). But
p t w ‖ w t p = (w ‖ q t x) ‖ q t x, and p t w′ ‖ w′ t p = (w′ ‖ q t b) ‖ q t b.
Hence z ∈ (w′ ‖ q t x) ∩ (w ‖ q t b). Since w ∈ q t y and w′ ∈ q t a, it
follows z ∈ [a][x] = [x][a] and z ∈ [y][b]. Hence [z] ⊆ [x][a] and [z] ⊆ [y][b] by
Theorem 3.57, so that [x][a] and [y][b] intersect at [z]. �

Theorem 3.59. Let P be the projection of a nearaffine space A. Then every line
of P has at least three points.

Proof. Let [x][y] be an arbitrary line of P. Obviously [x] ⊆ [x][y] and [y] ⊆ [x][y].
Since qtx = [x] 6= [y] = qty, it follows by (Pa) that (x ‖ qty)∩ (y ‖ qtx) 6= ∅.
Let z ∈ (x ‖ qty)∩ (y ‖ qtx). Then, in particular, z ∈ (x ‖ qty) with x ∈ qtx,
hence z ∈ [x][y] so that [z] ⊆ [x][y] by Theorem 3.57. Thus [x], [y], and [z] are
three different points on the line [x][y], and so [x][y] contains three points. �

Theorem 3.60. Let P be the projection of a nearaffine space A. Then there are
at least two lines in P.
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Proof. Suppose P has only one line. Since the dimension of A is at least 3, there
are at least three independent straight lines through q in A, say q t x, q t y, q t z.
Since P has only one line, we may conclude [x][y] = [x][z]. Note the following.

[x][y] =
⋃
{(w ‖ q t x) |w ∈ q t y}

=
⋃

w∈qty

(w ‖ q t x)

= 〈q t y, q t x〉 .

Since [x][y] = [x][z], we know z ∈ [x][y], and so [z] ⊆ [x][y] by Theorem 3.57. It fol-
lows qtz ⊆ 〈q t y, q t x〉, so that qtz ∈ cl({q t x, q t y}) = cl({q t x, q t y, q t z}\
{q t z}) — a contradiction, since q t x, q t y, and q t z are independent. Hence
P has at least two lines. �

While the projections of nearaffine spaces come close to satisfying the requirements
of a projective space, they do not satisfy all of them. For example, if z ∈ [x][y],
then [x][y] 6= [x][z] in general, as will be illustrated in an example at the end of the
chapter, and hence [x] and [z] are incident to two distinct lines. However, we have
partial satisfaction of this requirement, as illustrated by the following results.

Theorem 3.61. Let P be the projection of a nearaffine space A, and suppose x is
a point of A such that qtx is straight. Then for any points y, z /∈ [x], if z ∈ [x][y],
then [x][y] = [x][z].

Proof. Suppose z ∈ [x][y] and that q t x is straight. We show [x][y] = [x][z].

(⊆) : Let w ∈ [x][y]. Then there exists some y′ ∈ q t y such that w ∈ (y′ ‖ q t x).
Therefore y′ tw ‖ q t x. Likewise, z ∈ [x][y], so there exists some y′′ ∈ q t y such
that z ∈ (y′′ ‖ q t x). Therefore y′′ t z ‖ q t x. It follows y′′ t z ‖ y′ t w.

Now, if y′ = y′′, then y′′ t z = y′ t w by (P1), and so w ∈ y′′ t z = z t y′′,
since by (P2), y′′ t z is straight. Therefore w ∈ (z ‖ q t x), and so w ∈ [x][z].
If y′ 6= y′′, then by (V), (q t z) ∩ (y′ t w) = (q t z) ∩ (y′ ‖ y′′ t z) 6= ∅. Let
z′ ∈ (qtz)∩(y′tw). We know y′tw is straight by (P2), and so, since z′, w ∈ y′tw,
We have z′ t w = y′ t w ‖ q t x. Hence w ∈ (z′ ‖ q t x), and so w ∈ [x][y].

(⊇) : Suppose w ∈ [x][z]. Then there exists z′ ∈ q t z such that w ∈ (z′ ‖ q t x),
hence z′ t w ‖ q t x. Since z ∈ [x][y], [z] ⊆ [x][y], and so z′ ∈ [x][y]. It follows
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that there exists y′ ∈ q t y such that z′ ∈ (y′ ‖ q t x), hence y′ t z′ ‖ q t x. But
y′tz′ = z′ty′ by (P2), hence z′tw = z′ty′ by (P1). Therefore w, y′ ∈ y′tz′, and
so, since z′ty′ is straight, it follows y′tw = y′tz′ ‖ qtx. Hence w ∈ (y′ ‖ qtx),
and so w ∈ [x][y]. �

Corollary 3.62. Let P be the projection of a nearaffine space A, and suppose x
and y are points of A such that qtx and qty are straight. Then, for all z ∈ [x][y],
[x][z] = [x][y] = [y][z].

Proof. We know [x][y] = [y][x] by Theorem 3.56, and so z ∈ [y][x]. Since q t x
is straight, [x][y] = [x][z], and since q t y is straight, [y][x] = [y][z]. Hence
[x][z] = [x][y] = [y][x] = [y][z]. �

The next natural step is to specify further, in the case where the nearaffine space
is a nearfield space.

Definition 3.63. Let (V,A) be a near-vector space of dimension greater than or
equal to 3. Then the projection of V, P = P (V ), is the projection of the nearfield
space induced by V , where q = 0.

Lemma 3.64. Let P be the projection of a near-vector space (V,A). Let x ∈ V ∗.
Then the point [x] of P is the set Ax.

Proof. [x] = 0 t x = A(x− 0) + 0 = Ax. �

Lemma 3.65. Let P be the projection of a near-vector space (V,A). Let [x] and
[y] be points of P. Then

[x][y] = Ax+ Ay.

Proof. Let z ∈ [x][y]. Then there exists w ∈ 0 t y = Ay such that z ∈ (w ‖
0 t x) = Ax+ w. Hence z ∈ Ax+ Ay.

Conversely, suppose z ∈ Ax+Ay. Then there exists α ∈ A such that z ∈ Ax+αy.
We know w = αy ∈ Ay = 0 t y. Hence z ∈ Ax + w = (w ‖ 0 t x), where
w ∈ Ay = 0 t y. It follows z ∈ [x][y]. �

In general, we do not have that that if [z] is incident to [x][y], then [x][y] = [x][z] =

[y][z]. This is illustrated with the following example.

Example 3.66. Let (V,A) = (R3,R), where α(x, y, z) = (αx, α3y, α3z). This is a
near-vector space by Van der Walt’s Theorem (see Section 2.5). Let x = (1, 1, 0)
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and y = (1, 0, 1). Then the line [x][y] contains z = 1(1, 1, 0) + 1(1, 0, 1) = (2, 1, 1).
By Theorem 3.57, we have that [z] is incident to [x][y].

Furthermore, we have w = 1(1, 1, 0) + 2(1, 0, 1) = (1, 1, 0) + (2, 0, 8) = (3, 1, 8) ∈
[x][y].

Suppose then that w ∈ [x][z]. Then (3, 1, 8) = α(1, 1, 0) + β(2, 1, 1) for some
α, β ∈ R. Then we have the following.

3 = α + 2β

1 = α3 + β3

8 = β3

The third equation clearly gives us that β = 2, hence 3 = α+2(2) so that α = −1.
However, (−1)3 + (2)3 = 7 6= 1, contradicting that α3 + β3 = 1. Therefore there
are no α, β ∈ R such that (3, 1, 1) = α(1, 1, 0)+β(2, 1, 1), and thus (3, 1, 1) ∈ [x][y]

but (3, 1, 1) /∈ [x][z].
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Chapter 4

Hyper Near-Vector Spaces

Hyper nearrings and hyper vector spaces have been defined and studied (see [5]
and [22], for example). Thus it is natural to progress to the notion of a hyper
near-vector space.

In this chapter we define and study hyper near-vector spaces that have similar
properties to André’s near-vector spaces. Important concepts including indepen-
dence, the notion of a basis, regularity and subhyperspaces are defined. We give
some interesting first examples of hyper near-vector spaces. Most notably, we
prove that there is a Decomposition Theorem for these spaces into maximal reg-
ular subhyperspaces.

4.1 Preliminary material on hyperstructures
Below we give the preliminary material we will need on hypergroups and hyper
vector spaces. For further reference, we refer the reader to [7].

Definition 4.1. Let J be a nonempty set. A mapping ◦ : J × J → P∗(J), where
P∗(J) is the set of all nonempty subsets of J, is called a hyperoperation on J .

From the above definition, if A and B are two nonempty subsets of J and x ∈ J,
then A ◦ B = ∪a∈Ab∈Ba ◦ b, x ◦ A = {x} ◦ A, A ◦ x = A ◦ {x} . From now on we
will write {x} and x interchangeably, when there is no room for confusion.

Definition 4.2. A quasicanonical hypergroup is a pair (H,+), where + is a hy-
peroperation on H satisfying the following.

1. (H,+) is a hypergroup, i.e.

(a) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ H ((H,+) is a semihypergroup)

54
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(b) a+H = H + a = H for all a ∈ H ((H,+) is a quasihypergroup)

2. H has a scalar identity, i.e. there exists 0 ∈ H such that, for all x ∈ H,
x+ 0 = {x}.

3. Every element has a unique inverse, i.e. for all x ∈ H, there exists a unique
−x ∈ H such that 0 ∈ x+ (−x).

4. H is reversible, i.e. if x ∈ y + z, then z ∈ (−y) + x.

If H is commutative, (i.e. a + b = b + a for all a, b ∈ H), then H is called a
canonical hypergroup.

Definition 4.3. A non-empty subsetK of a canonical hypergroupH is a canonical
subhypergroup if K is also a quasi-canonical hypergroup.

We note that it is well-known that canonical subhypergroups are closed under
intersection.

Definition 4.4. Let (H,+) and (K, ◦) be canonical hypergroups with scalar iden-
tities 0 and e respectively. Let f : H → K.

• f is a homomorphism if for all x, y ∈ H, f(x+y) ⊆ f(x)◦f(y) and f(0) = e.

• f is a good homomorphism if for all x, y ∈ H, we have f(x+y) = f(x)◦f(y)

and f(0) = e.

• f is an isomorphism if it is a homomorphism and its inverse f−1 is a homo-
morphism.

• f is an endomorphism if (K, ◦) = (H,+) and f is a homomorphism.

• f is an automorphism if it is an isomorphism and an endomorphism.

As with any algebraic structure, the automorphisms of a canonical hypergroup
form a group, which, for a hypergroup H we will denote Aut(H).

A proof in [7], p.44 is presented that shows a homomorphism is an isomorphism
if and only if it is bijective and good.

In 1990 [5], Dašić introduced the concept of hypernear-rings.

Definition 4.5. ([5], p.75) A triple (R,+, ·) is called a hypernear-ring if the fol-
lowing axioms hold.

• (R,+) is a quasicanonical hypergroup.
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• (R, ·) is a semigroup having 0 as a left absorbing element, i.e. x · 0 = 0 for
all x ∈ R.

• The multiplication · is distributive with respect to the hyperoperation + on
the left side, i.e. a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

If in addition, (R∗, ·) is a quasicanonical hypergroup, (R,+, ·) is called a hyper-
nearfield.

In 1990, Tallini [22] introduced the notion of a hyper vector space over a field,
while Vougiouklis [26] introduced weak hyper vector spaces. Recently in 2020, Al
Tahan and Davvaz [21] introduced a hyper vector space over a Krasner hyperfield.
This is the definition of a hyper vector space we focus on. We will see that it is
most fitting since we will show that every hyper vector space is a hyper near-vector
space.

Definition 4.6. ([16], p.307-308) A Krasner hyperring is an algebraic structure
(R,+, ·) which satisfies the following axioms for all x, y, z ∈ R.

1. (R,+) is a canonical hypergroup.

2. (R, ·) is a semigroup having zero as bilaterally absorbing element, i.e. x ·0 =

0 · x = 0.

3. x · (y + z) = x · y + x · z

4. (x+ y) · z = x · y + x · z

A commutative Krasner hyperring (R,+, ·) with identity 1 is a Krasner hyperfield
if (R∗, ·) is a group.

It is clear that a (R,+, ·) is a commutative Krasner hyperring if it is a hypernear-
ring with commutative + and ·.

Definition 4.7. ([21], p.62) Let F be a Krasner hyperfield. A canonical hyper-
group (V,+) together with a map · : F × V → V is called a hyper vector space
over F if for all a, b ∈ F and x, y ∈ V the following conditions hold.

1. a · (x+ y) = a · x+ a · y

2. (a+ b) · x = a · x+ b · x

3. a · (b · x) = (ab) · x

4. a · (−x) = (−a) · x = −(a · x)
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5. x = 1 · x

We will also need the definition of a weak hyper vector space.

Definition 4.8. ([21], p.62) Let F be a Krasner hyperfield. A canonical hyper-
group (V,+) together with a map · : F × V → V is called a weak hyper vector
space over F if for all a, b ∈ F and x, y ∈ V the following conditions hold.

1. a · (x+ y) ⊆ a · x+ a · y

2. (a+ b) · x ⊆ a · x+ b · x

3. a · (b · x) = (ab) · x

4. a · (−x) = (−a) · x = −(a · x)

5. x = 1 · x

Note that, given a weak hyper vector space V over a Krasner hyperfield F , one
may construct for each a ∈ F a map a : V → V such that a(v) = a · v, which by
the first property of a weak hyper vector space is a homomorphism of V . Now, if
a 6= 0, then it has an inverse a−1, since

a(a−1(v)) = a(a−1 · v) = a · (a−1 · v) = (aa−1) · v = 1 · v = v

for all v ∈ V . It follows that each nonzero a is an isomorphism, and is therefore a
good homomorphism. Hence a · (x + y) = a(x + y) = a(x) + a(y) = a · x + a · y.
Furthermore, 0 · (x + y) = 0 = 0 + 0 = 0 · x + 0 · y. It follows that, for all a ∈ F
and all x, y ∈ V , a · (x+ y) = a · x+ a · y.

4.2 Hyper near-vector spaces definition and

preliminary results
In this section we define our hyper near-vector space, give some examples and prove
our main results. In order to do this we begin by replacing the additive group
of vectors in [1] with a canonical hypergroup and define the scalar multiplication
as a group of endomorphisms as before. This is similar to how [21] generalises a
vector space. The notion of the quasi-kernel is generalised in a suitable way so
that its elements maintain the structural properties of André’s near-vector space.

Definition 4.9. A hyper near-vector space is a pair (V,A) which satisfies the
following conditions.
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1. (V,+) is a canonical hypergroup and A is a set of endomorphisms of V .

2. A contains the endomorphisms 0, 1 and −1.

3. A∗ is a subgroup of the group Aut(V ).

4. If αx = βx with x ∈ V and α, β ∈ A, then α = β or x = 0, i.e. A acts fixed
point free on V .

5. V = 〈Q(V )〉, i.e. V is generated additively by the quasi-kernel, Q(V ), where

Q(V ) = {x ∈ V | ∀α, β ∈ A, αx+ βx ⊆ Ax} .

Because A∗ is a set of isomorphisms, and 0 ∈ A is itself good, it follows each
endomorphism in A is good. We view A as the set of scalars of V .

In order to compare hyper near-vector spaces, we need the following definition.

Definition 4.10. Let (V,A1) and (W,A2) be hyper near-vector spaces over A.
Then maps φ : V → W and η : A1 → A2 form a homomorphism if η is a
semigroup isomorphism, φ(0) = 0 and for any x, y ∈ V and α ∈ A1 we have
φ(x + y) ⊆ φ(x) + φ(y) and φ(αx) = η(α)φ(x), and a good homomorphism if in
addition φ(x) + φ(y) ⊆ φ(x+ y).

We say that two hyper near-vector spaces (V,A) and (W,A) are isomorphic (writ-
ten (V,A) ∼= (W,A)) if there is a bijective good homomorphism φ : V → W .

If, in the definition above, we have that A1 = A2, often η is implicitly taken to be
the identity map on A, unless expressly otherwise stated.

It is known that every vector space is a near-vector space with the quasi-kernel
the entire space. We now prove the analogous result for hyper vector spaces.

Lemma 4.11. Every hyper vector space is a hyper near-vector space.

Proof. Let V be a hyper vector space over F .

1. By definition (V,+) is a canonical hypergroup and F is a set of endomor-
phisms of V.

2. F contains the endomorphisms 0, 1 and −1 by definition.

3. F ∗ is a subgroup of the group Aut(V ) since for any α, β−1 ∈ F ∗, αβ−1 ∈ F ∗

and it is not difficult to check that every α ∈ F ∗ is a bijection of (V,+).
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4. Suppose that αx = βx with x 6= 0. Then 0 ∈ αx − βx = (α − β)x so that
0 ∈ α− β. Thus −β = −α, so by the uniqueness of inverses, α = β. Thus F
acts fixed point free on V , as explained under Definition 4.8.

5. V = 〈Q(V )〉, where Q(V ) = V by Definition 4.7 (2).

�

Below we give a first example of a hyper near-vector space.

Example 4.12. Let V = {0, a, b, c} be a set with the hyperoperation ⊕ defined
as follows:

⊕ 0 a b c

0 0 a b c

a a {0, a} c {b, c}
b b c {0, b} {a, c}
c c {b, c} {a, c} V

Then (V,⊕) is a canonical hypergroup ([17], p.549). If we now take A = {0, 1} ,
then since −1 = 1, we have that (V,A) is a hyper near-vector space. A quick
check shows that Q(V ) = {0, a, b} . We note that (V,A) is also a weak hyper
vector space.

We now prove some useful properties of the quasi-kernel, as done in Section 2.1.

Lemma 4.13. Let (V,A) be a hyper near-vector space. The quasi-kernel Q has
the following properties.

(a) 0 ∈ Q.

(b) For u ∈ Q∗, if αu + βu = A′u ⊆ Au, then A′ is uniquely determined by α
and β.

(c) If u ∈ Q and λ ∈ A, then λu ∈ Q, i.e. Au ⊆ Q.

(d) If u ∈ Q and λi ∈ A, i = 1, 2, . . . , n, then
∑n

i=1 λiu = A′u ⊆ Q for some
A′ ⊆ A.

Proof.

(a) Let α, β ∈ A. Then α0 + β0 = 0 + 0 = {0} = A0. Thus 0 ∈ Q.

(b) Suppose that for all α, β ∈ A we have that αu+βu = A′u and αu+βu = A′′u,

where A′, A′′ ⊆ A. If α ∈ A′, then αu ∈ A′u and αu ∈ A′′u. Thus αu = α′u
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for some α′ ∈ A′′. Since u 6= 0, by the fixed point free property, we have
that α = α′. Thus A′ ⊆ A′′. Similarly, it can be shown that A′′ ⊆ A′, so that
A′ = A′′.

(c) Suppose u ∈ Q and λ ∈ A. There are two cases to consider:
Case 1: λ = 0

Then λu = 0u = 0 ∈ Q by (a).
Case 2: λ 6= 0

Let α, β be elements of A. Then

α(λu) + β(λu) = (αλ)u+ (βλ)u

= λ′u for some λ′ ∈ A since u ∈ Q.

Since λ 6= 0, λ′u = (λ′λ−1)λu. Thus λu ∈ Q, so Au ⊆ Q.

(d) We prove the result using induction on n. From (c), if u ∈ Q, λu ∈ Q for
λ ∈ A. Now suppose that

∑k
i=1 λiu ⊆ Au, say

∑k
i=1 λiu = A′u. Then

k∑
i=1

λiu = A′u+ λk+1u

=
⋃
λ∈A′

(λu+ λk+1u) ⊆ Au.

�

Lemma 4.14. Let (V,A) and (W,A) be hyper near-vector spaces over A and
φ : V → W be a good homomorphism. Then φ(Q(V )) ⊆ Q(W ).

Proof. Let u ∈ Q(V ) and α, β ∈ A. Then αu+βu ⊆ Au, so that αφ(u)+βφ(u) =

φ(αu+ βu) ⊆ φ(Au) = Aφ(u). It follows φ(u) ∈ Q(W ). �

4.3 An addition on A

As mentioned in Section 2.2, André introduced a special addition on the group of
scalars. We do the same below.
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Definition 4.15. Let (V,A) be a hyper near-vector space. For u ∈ Q∗, we define
an operation +u on A as follows. For all α, β ∈ A,

α +u β = A′,

where αu+ βu = A′u.

Example 4.16. Returning to Example 4.12 we have that for all α, β ∈ A,

α +a β = α +b β.

We now prove that the addition on A results in it having the structure of a
canonical hypergroup.

Lemma 4.17. Let (V,A) be a hyper near-vector space. Then (A,+u) is a canon-
ical hypergroup for each u ∈ Q∗.

Proof. By the uniqueness of A′ in Lemma 4.13, we have that +u is well-defined.
Let α, β, γ ∈ A. We verify each of the axioms for a canonical hypergroup.

1. (a) Let u ∈ Q∗. Then

(α +u (β +u γ))u = αu+ (β +u γ)u

= αu+ (βu+ γu)

= (αu+ βu) + γu (since V is a semihypergroup)

= ((α +u β) +u γ)u.

Since u 6= 0, by the fixed point free property, we have that

α +u (β +u γ) = (α +u β) +u γ.

(b)

(α +u A)u = αu+ Au

=
⋃
β∈A

(αu+ βu).

We want to show that α +u A = A. Since for all β ∈ A, we have that
αu+ βu ⊆ Au, we have that (α+u A)u =

⋃
β∈A(αu+ βu) ⊆ Au. Thus
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by the fixed point free property, α +u A ⊆ A. Now let λ ∈ A. Then

λu ∈ αu− αu+ λu = αu+ (−α +u λ)u

= (α +u A
′)u where A′ = −α +u λ.

Now we have that λu ∈ (α +u A
′)u where α +u A

′ ⊆ α +u A. Thus
λu ∈ (α+uA)u and by using the fixed point free property we have that
λ ∈ α +u A.

2.

(α +u β)u = αu+ βu

= βu+ αu (since (V,+) is commutative)

= (β +u α)u.

Hence, by the fixed point free property, α +u β = β +u α.

3. We claim 0 is the scalar identity of (A,+u).

(α +u 0)u = αu+ 0u

= αu+ 0

= {αu}

= {α}u

Hence, by the fixed point free property, α +u 0 = {α}.

4. We claim −α = (−1) ◦ α is the unique inverse of α in (A,+u).

(α +u (−α))u = αu+ (−1)(αu)

= αu− αu

Now, since −αu is the unique inverse of αu in (V,+), we have that 0u = 0 ∈
αu − αu = (α +u (−α))u. It follows that 0 ∈ α +u (−α) by the fixed point
free property. For uniqueness, suppose 0 ∈ α +u λ for some λ ∈ A. Then
0 = 0u ∈ (α+u λ)u = αu+ λu, hence, from the uniqueness of the inverse of
αu in (V,+), it follows that λu = −αu. By the fixed point free property, it
follows that λ = −α.

5. Suppose α ∈ β +u γ. Then αu ∈ (β +u γ)u = βu + γu. Since (V,+) is

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. HYPER NEAR-VECTOR SPACES 63

reversible, it follows γu ∈ −βu+ αu = (−β +u α)u, and so γ ∈ −β +u α by
the fixed point free property.

�

In fact, we can show more, i.e. we have a hyper-nearfield.

Lemma 4.18. Let u ∈ Q∗. Then (A,+u, ◦) is a hyper-nearfield.

Proof. Since (A,+u) is a canonical hypergroup, and (A∗, ◦) is a group by definition,
it remains to be shown that the left distributive law holds and that 0 ∈ A is
bilaterally absorbing. Let α, β, γ ∈ A, then

α ◦ (β +u γ)u = α(βu+ γu)

= (α ◦ β)u+ (α ◦ γ)u

= (α ◦ β +u α ◦ γ)u.

By the fixed point free property it follows that α ◦ (β +u γ) = α ◦ β +u α ◦ γ.
Furthermore (0 ◦ α)u = 0(αu) = 0 = 0u and (α ◦ 0)u = α(0u) = α0 = 0 = 0u,
hence by the fixed point free property, 0α = α0 = 0 for all α ∈ A. �

Next we show that for any nonzero element of the quasi-kernel, the hyper near-
field from the previous lemma is isomorphic to all of those where the addition is
defined in terms of scalar multiples of it.

Lemma 4.19. For every u ∈ Q∗ and λ ∈ A∗, (A,+u, ◦) ∼= (A,+λu, ◦).

Proof. Let u ∈ Q∗ and λ ∈ A∗. Define θ : (A,+λu, ◦) → (A,+u, ◦) so that
θ(α) = λ−1αλ. Let α, β ∈ A, then

θ(α +λu β)u = λ−1(α +λu β)λu

= λ−1(αλu+ βλu)

= λ−1αλu+ λ−1βλu

= θ(α)u+ θ(β)u

= (θ(α) +u θ(β))u.

Therefore θ(α+λuβ) = θ(α)+uθ(β) by the fixed point free property. Furthermore,
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θ(αβ) = λ−1αβλ

= λ−1α(λλ−1)βλ

= θ(α)θ(β).

Hence θ is a homomorphism. But λ(θ(α))λ−1 = λλ−1αλλ−1 = α, and θ(λαλ−1) =

λ−1(λαλ−1)λ = α, so that θ is invertible, with θ−1 : α 7→ λαλ−1. Hence θ is an
isomorphism. �

4.4 Independence and a basis for Q(V )

As noted in Section 2.3, André defined independence in terms of a dependence
relation in [1]. We follow the same route to defining independence.

Definition 4.20. Let (V,A) be a hyper near-vector space. We define a relation
between Q and P(Q) as follows:
v / M ⊆ Q if there exists n ∈ N, ui ∈ M for i ∈ {1, . . . , n}, and λ1, . . . , λn ∈ A
such that

v ∈
n∑
i=1

λiui.

Theorem 4.21. The relation defined in Definition 4.20 is a dependence relation.

Proof. (D1) Let v ∈M. Then since v ∈ {v} = v + 0v, we have that v / M.

(D2) Suppose that w / M and v / N for all v ∈ M, where M and N are subsets
of Q. Then w ∈

∑ni

i=1 λivi for some vi ∈ M and λi ∈ A, i ∈ {1, . . . , n}, and
so, for each i ∈ {1, . . . , n}, vi ∈

∑n
j=1 ηjiuji, where uij ∈ N and ηij ∈ A

for all j ∈ {1, . . . , ni}. Now λivi ∈ λi
∑ni

j=1 ηjiuji and thus
∑ni

i=1 λivi ⊆∑n
i=1 λi(

∑ni

j=1 ηjiuji).

Thus w ∈
∑n

i=1 λi(
∑ni

j=1 ηjiuji) =
∑n

i=1

∑ni

j=1 λiηjiuji, so that w / N .

(D3) Let v / M and v 6 M \ {u} . Then v ∈
∑n

i=1 λiui where ui ∈ M for i ∈
{1, . . . , n} . Since v 6 M \ {u} , we must have that u is equal to one of
the ui. To see this, suppose it is not the case, then {u1, . . . , un} ⊆ M \
{u} and v ∈

∑n
i=1 λiui, so v / M \ {u} , a contradiction. Suppose then,

without loss of generality, that u = u1. Then v ∈ λ1u +
∑n

i=2 λiui. So
there exists x ∈

∑n
i=2 λiui such that v ∈ λ1u + x = x + λ1u. Thus λ1u ∈

(−x) + v by the reversibility property. This implies that u ∈ λ−11 (−x+ v) ⊆
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λ−1(−
∑n

i=2 λiui+v) =
∑n

i=2−λ
−1
1 λiui+λ

−1
1 v. Thus {u2, . . . , un} ⊆M\{u} ,

so that {u2, . . . , un} ∪ {v} ⊆ (M \ {u}) ∪ {v} .

�

As in Section 2.3, we say that a subset M of Q is independent if and only if for all
x ∈M we have that x 6M \ {x} .

The next result will be useful.

Lemma 4.22. A subset M of Q is independent if and only if for all n ∈ N and
u1, . . . , un ∈M with ui 6= uj when i 6= j and λi ∈ A for i ∈ {1, . . . , n} if

0 ∈
n∑
i=1

λiui,

then λi = 0 for i ∈ {1, . . . , n} .

Proof. Suppose thatM ⊆ Q is independent and that 0 ∈
∑n

i=1 λiui where ui ∈M
and λi ∈ A for i ∈ {1, . . . , n} . Assume, without loss of generality, that λ1 6= 0.

Then 0 ∈ λ1u1 +
∑n

i=2 λiui. Thus −λ1u1 ∈
∑n

i=2 λiui, otherwise 0 /∈
∑n

i=1 λiui.

Then we have that u1 ∈ (−λ1)−1
∑n

i=2 λiui. Thus u1 ∈
∑n

i=2(−λ1)−1λiui, so that
u1 / M \ {u1} , a contradiction.
Conversely, suppose that M ⊆ Q such that for any u1, . . . , uj ∈ M with ui 6= uj

when i 6= j we have that 0 ∈
∑n

i=1 λiui implies that λi = 0 for i ∈ {1, . . . , n} . Let
x ∈ M and suppose that x / M \ {x} , then there exist u1, . . . , un ∈ M \ {x} and
λi ∈ A such that x ∈

∑n
i=1 λiui. Then 0 ∈

∑n
i=1 λiui − x =

∑n
i=1 λiui + (−1)x, a

contradiction since −1 6= 0. �

We define a basis for a hyper near-vector space in the standard way, as in Section
2.3, from the above dependence relation, i.e. it is an independent generating set
for the quasi-kernel. As for near-vector spaces, we show that every vector in the
hyper near-vector space has a unique representation in terms of the basis elements.

Lemma 4.23. Let (V,A) be a hyper near-vector space, and let B = {ui | i ∈ I}
be a basis of Q. Then each u ∈ V is an element of a unique linear combination of
elements of B, i.e. there exists λi ∈ F , with λi 6= 0 for at most a finite number of
i ∈ I, which are uniquely determined by u and B, such that

u ∈
∑
i∈I

λiui.
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Proof. Since 〈Q(V )〉 = V , we know that there exists x1, . . . , xn ∈ Q(V ) such that
u ∈

∑n
j=1 xj. Since B is a basis for Q(V ), it follows for all j ∈ {1, . . . , n}, xj / B,

so that xj ∈
∑

i∈I λijui, where λij ∈ A for all i ∈ I. It follows

u ∈
n∑
j=1

xj

u ∈
n∑
j=1

∑
i∈I

λijui

u ∈
∑
i∈I

(λi1ui + . . .+ λinui)

u ∈
∑
i∈I

(λi1 +ui . . .+ui λin)ui

It follows there exists ηi ∈ λi1 +ui . . .+ui λin such that u ∈
∑

i∈I ηiui.

For uniqueness, suppose that u ∈
∑

i∈I λiui =
∑

i∈I λ
′
iui for the index set I. Then

0 ∈ u+ (−u) ⊆
∑

i∈I λiui −
∑

i∈I λ
′
iui =

∑
i∈I Aiui where Ai = λi +ui (−λ′i) ⊆ A.

Thus there exists ηi ∈ Ai such that 0 ∈
∑

i∈I ηiui. This implies that ηi = 0 for all
i ∈ I. It follows for each i ∈ I, 0 ∈ λi +ui (−λ′i), i.e. −λ′i is the unique inverse of
λi. Thus for each i ∈ I, λi = λ′i. �

The unique linear combination above is referred to as the decomposition of u in
terms of a basis B of Q. A basis B of Q is referred to as a basis of V , as B
generates V . The following result is an analogue of Lemma 3.2 in [1].

Lemma 4.24. Let (V,A) be a hyper near-vector space with basis B = {bi | i ∈ I},
and let λi ∈ A∗ for all i ∈ I. Then B′ = {λibi | i ∈ I} is a basis of V .

Proof. Suppose there exists ηi ∈ A such that 0 ∈
∑

i∈I ηi(λibi) =
∑

i∈I(ηiλi)bi.
Then, since B is independent, ηiλi = 0 for all i ∈ I, and thus ηi = ηiλiλ

−1
i =

0λ−1i = 0 for all i ∈ I. Hence B′ is independent. Furthermore, if x ∈ Q has
decomposition x ∈

∑
i∈I αibi, then x ∈

∑
i∈I αi(λ

−1
i λi)bi =

∑
i∈I(αiλ

−1
i )λibi, so

that x / B′, hence B′ generates Q (and therefore V ). It follows B′ is a basis for
Q. �

In Section 2.5, it is mentioned that André showed that every near-vector space
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(V,A) with basis B = {bi | i ∈ I} is isomorphic to the set of families (xi)i∈I where
xi is in A for each i ∈ I and xi = 0 for some cofinite subset of I. We prove the
analogue in the next result.

Theorem 4.25. Let (V,A) be a hyper–near-vector space with basis B = {bi | i ∈ I}.
Let

A(I) = {(λi)i∈I |0 6= λi ∈ A for at most finitely many i ∈ I} .

For (αi)i∈I , (βi)i∈I ∈ A(I), define (αi)i∈I + (βi)i∈I = {(γi)i∈I | γi ∈ αi +bi βi} and
λ(αi)i∈I = (λαi)i∈I . Then V ∼= A(I).

Proof. Define φ : V → A(I) so that, if v ∈
∑

i∈I λibi, with at most finitely many λi’s
nonzero, then φ(v) = (λi)i∈I . Take v, w ∈ V with decompositions v ∈

∑
i∈I λibi

and w ∈
∑

i∈I ηibi. Let u ∈ v + w. Then u ∈
∑

i∈I λibi +
∑

i∈I ηibi =
∑

i∈I(λi +bi

ηi)bi, so that u ∈
∑

i∈I γibi, for some γi ∈ λi +bi ηi. It follows φ(u) = (γi)i∈I ∈
(λi)i∈I + (ηi)i∈I = φ(v) + φ(w), so that φ(v + w) ⊆ φ(v) + φ(w). Conversely,
suppose (γi)i∈I ∈ (λi)i∈I + (ηi)i∈I = φ(v) + φ(w). Then γi ∈ λi +bi ηi, so that∑

i∈I γibi ⊆
∑

i∈I(λi +bi ηi)bi = v + w. Let u ∈
∑

i∈I γibi. Then u ∈ v + w and
φ(u) = (γi)i∈I . It follows (γi)i∈I = φ(u) ∈ φ(v+w), so that φ(v)+φ(w) = φ(v+w).

Next, note that λw ∈ λ
∑

i∈I ηibi =
∑

i∈I ληibi, so that φ(λw) = (ληi)i∈I =

λ(ηi)i∈I = λφ(w).

Finally, to show φ is surjective, for any (αi)i∈I ∈ A(I), let u ∈
∑

i∈I αibi, then
φ(u) = (αi)i∈I . For injectivity, suppose φ(v) = φ(w). Then (0)i∈I ∈ φ(v)−φ(w) =

φ(v − w). Let x ∈ V \ {0}, then x =
∑

i∈I λibi such that λj 6= 0 for some j ∈ I.
It follows φ(x) = (λi)i∈I 6= (0)i∈I , since λj 6= 0. Therefore kerφ = {0}, so that
0 ∈ v − w, hence v = w. �

Corollary 4.26. Let (V,A) be a hyper–near-vector space with basisB = {bi | i ∈ I}.
Suppose x, y ∈ V such that x and y have the same decomposition in terms of B,
i.e. x, y ∈

∑
i∈I λibi for some λi ∈ A for each i ∈ I. Then x = y.

Proof. Take φ : V → A(I) from the previous theorem. Then φ(x) = φ(y) = (λi)i∈I .
Since φ is injective, this implies x = y. �

The above result reveals more: suppose U = {u1, . . . , un} is independent, and
consider the sum

∑n
i=1 λiui. Since U is independent, it is contained in a basis B

of Q, and hence
∑n

i=1 λiui is the decomposition of some unique element by the
corollary above, i.e.

∑n
i=1 λiui = {x}. It therefore is clear that any independent
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sum (a linear combination of independent elements of Q(V )) contains exactly one
element.

4.5 Compatibility and regularity
Regularity and compatibility are central to the study of near-vector spaces. We
define these below and develop the theory as André does in [1], and as explored
in Section 2.4.

Definition 4.27. Let (V,A) be a hyper near-vector space. The elements u, v of
Q∗ are called compatible (u cp v) if there exists a λ ∈ A∗ such that +u = +λv.

We note that for a near-vector space (V,A), two vectors u, v ∈ Q∗ are said to be
compatible if there exists a λ ∈ A∗ such that u + λv ∈ Q and it is shown that
this is equivalent to there existing a λ ∈ A∗ such that +u = +λv. This is not the
case for hyper near-vector spaces. Referring back to Example 4.12, a cp b, but
a ⊕ b = c /∈ Q∗, so we do not have the second statement. We will motivate our
choice of definition a bit later in the chapter.

Next we show that compatibility induces an equivalence relation on Q∗, a fact
that becomes central to the proof of the Decomposition Theorem, as we will see.

Lemma 4.28. The compatibility relation cp is an equivalence relation on Q∗.

Proof. (i) Reflexivity

It is clear that for all u ∈ Q∗, we have that +u = +1u.

(ii) Symmetry
Suppose that +u = +λv for λ ∈ A∗. Now let α, β ∈ A, then

(α +λ−1u β)λ−1u = αλ−1u+ βλ−1u

= (αλ−1 +u βλ
−1)u

= (αλ−1 +λv βλ
−1)u.

Thus, since u 6= 0, we have that (α +λ−1u β)λ−1 = αλ−1 +λv βλ
−1. Next we
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have,

(αλ−1 +λv βλ
−1)λv = αλ−1λv + βλ−1λv

= αv + βv

= (α +v β)v.

Thus by the fixed point free property, (αλ−1 +λv βλ
−1)λ = α+v β. Hence we

finally have that α+λ−1uβ = [(α+λ−1uβ)λ−1]λ = (αλ−1+λvβλ
−1)λ = α+vβ.

(iii) Transitivity
Suppose that +v = +λu and +u = +λ′w for λ, λ′ ∈ A∗. Then since +v = +λu,

we have that +λ−1v = +u = +λ′w, so that +v = +λλ′w.

�

We give a second example of a hyper near-vector space.

Example 4.29. Let X = {0, 1} with the hyperoperation +X defined as follows:

+X 0 1

0 0 1

1 1 X

It is not difficult to verify that (X,+X) is a canonical hypergroup.
Take V = X × Z2, with ⊕ defined for all (a, b), (a′, b′) ∈ V, by

(a, b)⊕ (a′, b′) = {(x, y)|x ∈ a+X a
′ and y ∈ b+Z2 b

′} .

We then have the following table for (V,⊕) :

⊕ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)

(1, 0) (1, 0) (1, 1) {(0, 0), (1, 0)} {(0, 1), (1, 1)}
(1, 1) (1, 1) (1, 0) {(0, 1), (1, 1)} {(1, 0), (0, 0)}

(V,⊕) is a canonical hypergroup and if we take A = {0, 1} , then since −1 =

1, we have that (V,A) is a hyper near-vector space. A quick check shows that
Q(V ) = {(0, 0), (0, 1), (1, 0)} . In addition, +(0,1) 6= +(1,0), since +(0,1) = +Z2 , while
+(1,0) = +X . Thus (0, 1) is not compatible with (1, 0). We note that (V,A) is not
a weak hyper vector space, and therefore also not a hyper vector space.
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Lemma 4.30. Let (V,A), (W,A) be hyper near-vector spaces and φ : V → W a
good homomorphism. Let u, v ∈ Q(V )∗. Then the following properties hold.

1. If W = V , then φ(u) cp u if and only if φ(u) 6= 0.

2. φ(u) cp φ(v) if and only if φ(u) 6= 0 6= φ(v) and u cp v.

Proof. By Lemma 4.14 we know φ(u), φ(v) ∈ Q(W ).

1. Suppose V = W , and suppose u cp φ(u). Then φ(u) 6= 0, since cp is an
equivalence relation on Q(V )∗. Conversely, suppose φ(u) 6= 0 and let α, β ∈
A. Then the following holds.

αu+ βu = (α +u β)u

φ(αu+ βu) = φ((α +u β)u)

αφ(u) + βφ(u) = (α +u β)φ(u)

(α +φ(u) β)φ(u) = (α +u β)φ(u)

Since φ(u) 6= 0, it follows by the fixed-point-free property that α +φ(u) β =

α +u β. Hence +φ(u) = +u, so that φ(u) cp u.

2. Suppose φ(u) cp φ(v). Then φ(u) 6= 0 6= φ(v), since cp is an equivalence
relation on Q(W )∗. Let λ ∈ A∗ such that +φ(u) = +λφ(v). Then by the same
argument as above we have +u = +φ(u) and +λv = +φ(λv) = +λφ(v), hence
+u = +λv so that u cp v.

Conversely, if u cp v and φ(u) 6= 0 6= φ(v), let λ ∈ A∗ such that +u = +λv.
Then once again we have +φ(u) = +u and +λφ(v) = +φ(λv) = +λv, hence
+φ(u) = +λφ(v). It follows that φ(u) cp φ(v).

�

The next result shows that each vector in the quasi-kernel is compatible with each
basis vector in its decomposition.

Lemma 4.31. Let (V,A) be a hyper near-vector space and let u1, . . . , un be
independent elements in Q. Let u ∈

∑n
i=1 λiui such that u ∈ Q for some

λ1, . . . , λn ∈ A∗. Then u cp ui for all i ∈ {1, . . . , n}.
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Proof. Let α, β ∈ A. Since u ∈ Q we know that there exists A′ ⊆ A such that
αu + βu = A′u. We know that, since λ1, . . . , λn are nonzero and u1, . . . , un are
independent, u is nonzero, so A′ = α +u β is uniquely defined by α and β. Now,
let γ ∈ A′, then:

γu ∈ αu+ βu

0 ∈ αu+ βu− γu

0 ∈ α
n∑
i=1

λiui + β

n∑
i=1

λiui − γ
n∑
i=1

λiui

0 ∈
n∑
i=1

(αλiui + βλiui − γλiui)

0 ∈
n∑
i=1

(α +λiui β +λiui (−γ))λiui

It follows that there exists η1, . . . , ηn ∈ A such that ηi ∈ (α +λiui β +λiui (−γ))

and 0 ∈
∑n

i=1 ηiλiui. But then ηiλi = 0 for each i ∈ {1, . . . , n} by Lemma 4.22,
and hence ηi = 0 for each i ∈ {1, . . . , n}. Now, since 0 ∈ (α+λiui β +λiui (−γ)), it
follows that γ ∈ α +λiui β for each i. Hence A′ ⊆ α +λiui β.

Conversely, suppose without loss of generality α +λ1u1 β 6⊆ A′. We know that
u ∈

∑n
i=1 λiui, so λ1u1 ∈

∑n
i=2 λiui−u. If {u2, . . . , un, u} is independent, it follows

that α+λ1u1 β ⊆ α+u β = A′, contradicting the assumption. Let η, η2 . . . , ηn ∈ A
such that 0 ∈ ηu+

∑n
i=2 ηiui. Then

0 ∈ ηu+
n∑
i=2

ηiui

0 ∈ η
n∑
i=1

λiui +
n∑
i=2

ηiui

0 ∈ ηλ1u1 +
n∑
i=2

(ηλiui + ηiui)

0 ∈ ηλ1u1 +
n∑
i=2

(ηλi +ui ηi)ui
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It follows there exist ξ2, . . . ξn ∈ A such that ξi ∈ ηλi+ui ηi for all i ∈ {2, . . . n} and
0 ∈ ηλ1u1+

∑n
i=2 ξiui. But since u1 . . . , un are independent, it follows ηλ1 = ξi = 0

for all i ∈ {2, . . . , n}, so that η = 0 and 0 ∈ ηλi +ui ηi = 0 +ui ηi = {ηi},
hence ηi = 0 for all i ∈ {2, . . . , n}. It follows u, u2, . . . , un are independent, so
α+λ1u1β ⊆ α+uβ = A′, a contradiction. Hence α+uβ = α+λiuiβ for all α, β ∈ A,
and so +u = +λiui for all i ∈ {1, . . . , n}, hence u cp ui for all i ∈ {1 . . . , n}. �

We now define regularity.

Definition 4.32. Let (V,A) be a hyper near-vector space. V is said to be regular
if every pair of nonzero elements of the quasi-kernel are compatible.

Example 4.33. Referring back to Example 4.12 and 4.29, Example 4.12 is regular
and Example 4.29 is non-regular.

As with near-vector spaces, we can prove that regularity is determined by the
regularity of the basis elements.

Theorem 4.34. A near vector space V is regular if and only if there exists a basis
which consists of mutually pairwise compatible vectors.

Proof. Suppose V is regular. Then, by definition, any two vectors of Q∗ are
compatible. Therefore, every basis of Q consists of mutually pairwise compatible
vectors.
Conversely, suppose there exists a basis B = {ui|i ∈ I} of mutually pairwise
compatible vectors. Let u, v ∈ Q∗, then u ∈

∑n
i=1 λiui with ui ∈ B for some

λ1, . . . , λn ∈ A and v ∈
∑n

i=1 ηiui with ui ∈ B for some η1, . . . , ηn ∈ A. Since
the ui for i ∈ {1, . . . , n} are independent, we can apply Lemma 4.31. Thus u is
compatible to each ui for i ∈ {1, . . . , n} . Similarly, v is compatible to each ui for
i ∈ {1, . . . , n} . Thus by the transitivity of the compatibility relation, we have that
u is compatible to v. �

The following result is an analogue of Theorem 4.2 in [1].

Theorem 4.35. Let (V,A) be a near-vector space and u ∈ Q∗. Let F be the
nearfield defined by (F,+, ·) = (A,+u, ◦). Then V is regular if and only if V ∼=
F (I), as defined in Theorem 4.25, with (αi)i∈I + (βi)i∈I = {(γi)i∈I | γi ∈ αi +u βi}
and λ(αi)i∈I = (λαi)i∈I .

Proof. Suppose V is regular, then there exists a basis B = {bi | i ∈ I} of V such
that u ∈ B. Since V is regular, u cp bi for all i ∈ I, therefore there exists
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λi ∈ A∗ such that +u = +λibi for all i ∈ I. Therefore by Theorem 4.25, V ∼= A(I)

with (αi)i∈I + (βi)i∈I = {(γi)i∈I | γi ∈ αi +λibi βi} for all (αi)i∈I + (βi)i∈I ∈ A(I).
But since +u = +λibi , it follows (αi)i∈I + (βi)i∈I = {(γi)i∈I | γi ∈ αi +u βi} for all
(αi)i∈I + (βi)i∈I ∈ A(I), so that A(I) = F (I), and so V ∼= F (I).

Conversely, suppose V ∼= F (I). Let φ : V 7→ F (I) be an isomorphism and let
bj = φ−1((δij)i∈I) for all j ∈ I, where δij is the Kronecker delta symbol. Then
bj ∈ Q(V ) and +bj = +u for all j ∈ I:

αbj + βbj = αφ−1((δij)i∈I) + βφ−1((δij)i∈I)

= φ−1(α(δij)i∈I) + φ−1(β(δij)i∈I)

= φ−1((αδij)i∈I + (βδij)i∈I)

= φ−1(αδij +u βδij)i∈I)

= φ−1(((α +u β)δij)i∈I) (Since δij ∈ {0, 1}, it satisfies the right distributive law.)

= φ−1((α +u β)(δij)i∈I)

= (α +u β)φ−1((δij)i∈I)

= (α +u β)bj.

Moreover, B = {bi | i ∈ I} is a basis for V . To see this, if 0 ∈
∑

j∈I λjbj, then
(0)j∈I = φ(0) ∈ φ(

∑
j∈I λjbj) =

∑
j∈I λjφ(bj) =

∑
j∈I λj(δij)i∈I) = {(λi)i∈I},

hence λj = 0 for all j ∈ I and B is independent. Furthermore, if x ∈ Q and
φ(x) = (ηi)i∈I , then φ(x) ∈

∑
j∈I ηj(δij)i∈I = φ(

∑
i∈I ηibi), and so x ∈

∑
i∈I ηibi,

since φ is injective. It follows x / B and thus B generates Q (and therefore V ).
Hence B is a basis consisting of mutually pairwise compatible vectors, so that V
is regular by Theorem 4.34. �

The above result motivates our choice of definition for compatibility. Referring
back to Example 4.12, we have a basis of mutually compatible vectors, namely
B = {a, b} . Should we have chosen the alternative definition, these two would
not be compatible and so the hyper near-vector space would not be regular. This
would not correspond to the above result, as V ∼= X2 where X is defined as in
Example 4.29.
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4.6 Subhyperspaces of V and the Decomposition

Theorem
Next we define the notion of a subhyperspace, the final missing requirement to
prove an analogue of the Decomposition Theorem.

Definition 4.36. If (V,A) is a hyper near-vector space and ∅ 6= V ′ ⊆ V is
such that V ′ is the canonical subhypergroup of (V,+) generated additively by
AX = {ax |x ∈ X, a ∈ A}, where X is an independent subset of Q(V ), then we
say that (V ′, A) is a subhyperspace of (V,A), or simply V ′ is a subhyperspace of V
if A is clear from the context.

If (V,+) is generated additively by AX, we will write V = 〈AX〉.

Lemma 4.37. Let (V,A) be a hyper near-vector space and V ′ be a subhyperspace
of V . Then Q(V ′) = V ′ ∩Q(V ).

Proof. Suppose v ∈ V ′ ∩ Q(V ), then v ∈ V ′ and v ∈ Q(V ), so that for all
α, β ∈ Q(V ), αv + βv ⊆ Av. It follows v ∈ Q(V ′).

Conversely, suppose v ∈ Q(V ′). Then v ∈ V ′ and for all α, β ∈ A, αv + βv ⊆ Av.
It follows v ∈ Q(V ) and so v ∈ Q(V ) ∩ V ′. �

Corollary 4.38. Let (V,A) be a hyper near-vector space, and suppose U and W
are subhyperspaces of V . Then U ⊆ W if and only if Q(U) ⊆ Q(W ).

Proof. Suppose U ⊆ W , then Q(V ) ∩ U ⊆ Q(V ) ∩ W , hence Q(U) ⊆ Q(W ).
Conversely, if Q(U) ⊆ Q(W ), let X ⊆ Q(V ) such that U = 〈AX〉. Then X ⊆
Q(V ) ∩ U = Q(U) ⊆ Q(W ), so that X is an independent subset of Q(W ). It
follows there exists a basis X ′ for Q(W ) such that X ⊆ X ′. Therefor AX ⊆ AX ′,
and hence U = 〈AX〉 ⊆ 〈AX ′〉 = W . �

In the next proposition we prove when the union of two subhyperspaces will be a
subhyperspace. The proof is by Howell and appearr as follows in [6].

Proposition 4.39. Let (V,A) be a hyper near-vector space and W1,W2 subhyper-
spaces of V. Then W1 ∪W2 is a subhyperspace of V if and only if W1 ⊆ W2 or
W1 ⊆ W2.

Proof. Suppose without loss of generality that W1 ⊆ W2, where W2 = 〈AX〉 with
X an independent subset of Q(V ). Then W1 ∪W2 = W2 so we are done.
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Conversely, suppose that W1 6⊆ W2 and W2 6⊆ W1. Then there exist x, y ∈ V

such that x ∈ W1, y ∈ W2, x /∈ W2, y /∈ W1. Since W1 ∪W2 is assumed to be a
subhyperspace, having x + y ⊆ W1 ∪W2 implies that for all z ∈ x + y, we have
z ∈ W1 ∪W2. Without loss of generality, suppose that z ∈ W1. Then z ∈ x + y

implies that y ∈ z − x ⊆ W1, a contradiction. �

We end off with the analogue of the Decomposition Theorem for hyper-near vec-
tor spaces. André proves in [1] that every near-vector space is isomorphic to the
direct sum of its maximal regular subspaces — this is the Decomposition Theo-
rem of Section 2.4. However, this result does not generalise to hyper near-vector
spaces; in fact, the direct sum of hyper near-vector spaces is not defined in the
category theoretical sense. Instead, we show that any finite-dimensional hyper
near-vector space can be expressed as the direct product of its maximal regular
subhyperspaces. This result does not generalise to arbitrary hyper near-vector
spaces as arbitrary direct products are not defined even for near-vector spaces.
First, we show that finite direct products are defined for hypersubspaces of hyper
near-vector spaces.

Theorem 4.40. Let (V,A) be a near-vector space, I = {1, . . . , n} and suppose
{Vi | i ∈ I} is a set of subhyperspaces of V . Define

n∏
i=1

Vi = {(vi)i∈I | ∀i ∈ I [vi ∈ Vi]} ,

with addition defined as (vi)i∈I+(wi)i∈I = {(ui)i∈I | ∀i ∈ I[ui ∈ vi + wi]} and scalar
multiplication defined componentwise. Then (

∏n
i=1 Vi, A) is a hyper near-vector

space, and it is a direct product of {Vi | i ∈ I}, with projection maps πj :
∏n

i=1 Vi →
Vj defined by πj((vi)i∈I) = vj for all j ∈ I.

Proof. It is routine to show
∏n

i=1 Vi is a hyper near-vector space with neutral
element (0)i∈I , and that πi is a good homomorphism for each i ∈ I. To show that∏n

i=1 Vi is indeed the direct product of {V1, . . . , Vn}, let W be a hyper near-vector
space, and let fi : W → Vi be homomorphisms. Define f : W →

∏n
i=1 Vi such that

f(w) = (fi(w))i∈I . Suppose for some x + y ∈ W that (ui)i∈I ∈ f(x + y). Then
there exists some w ∈ x+ y such that f(w) = (ui)i∈I . It follows that ui = fi(w) ∈
fi(x + y) ⊆ fi(x) + fi(y), so that (ui)i∈I ∈ f(x) + f(y). Furthermore, f(αw) =

(fi(αw))i∈I = (αfi(w))i∈I = α(fi(w))i∈I = αf(w) for all α ∈ A and w ∈ W . Hence
f is a homomorphism. Furthermore, (πj ◦ f)(w) = πj((fi(w))i∈I) = fj(w), so that
πj ◦ f = fj for all j ∈ I. Finally, to show uniqueness, suppose g : W →

∏n
i=1 Vi
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such thatπj ◦ g = fj for all j ∈ I. Then, for w ∈ W , g(w) = (fi(w))i∈I = f(w), so
that g = f . �

Theorem 4.41. Let (V,A) be a finite-dimensional hyper–near-vector space. Then
V is isomorphic to the direct product of maximal regular subhyperspaces, with each
u ∈ Q∗ being in exactly one of these maximal regular subhyperspaces.

Proof. Let {Qi | i ∈ I} be the partition of Q∗ into its compatible elements, and
define Bi = B ∩Qi, where B is a basis of V. Define Vi = 〈ABi〉. By definition Vi
is a subhyperspace of V with basis Bi. Since Bi ⊆ Qi, it follows that Bi consists
of mutally pairwise compatible vectors, so that Vi is a regular subhyperspace for
all i ∈ I. Furthermore, if Vi ⊂ W ⊆ V , where W is a regular subhyperspace of V ,
then W has a basis of mutually pairwise compatible vectors (by Theorem 4.34)
properly containing Bi and properly contained in B, a contradiction, since Bi

contains all vectors of B that lie in the partition Qi. Hence the Vi subhyperspaces
are maximal.

Let u ∈ Q∗. Then, since Q∗ is partitioned by Qi’s, i ∈ I, it follows that u ∈ Qj

for exactly one j ∈ I. We wish to show that u ∈ Vj. Let u ∈
∑n

i=1 λibi for
some b1, . . . , bn ∈ B and λ1, . . . , λn ∈ A∗. Then by Lemma 4.31, u cp bi for each
i ∈ {1, . . . , n}. It follows that bi ∈ Qj for each i ∈ {1, . . . , n}, so bi ∈ B ∩Qj = Bj

for all i ∈ {1, . . . , n}. It follows u ∈
∑n

i=1 λibi ⊆ 〈ABj〉 = Vj.

Now, suppose u ∈ Vk for some k ∈ I such that j 6= k. Then, because the
unique expression (by Lemma 4.23) for u in terms of the basis B is u ∈

∑n
i=1 λibi,

b1, . . . , bn ∈ Bk, we have that b1, . . . , bn ∈ Qk — a contradiction, since b1, . . . , bn ∈
Qj and Qj ∩Qk = ∅. Hence u lies in exactly one Vi, i ∈ I.

Define now f :
∏n

i=1 Vi → V such that f((ui)i∈I) ∈
∑

i∈I ui. Since V is finite-
dimensional, I is finite, so that the sum

∑
i∈I ui is defined. To show that f

is well-defined, note that, for each i ∈ I, ui is the unique element such that
ui ∈

∑
bij∈Bi

λijbij for some distinct bij ∈ Bi and λij ∈ A (see paragraph below
Corollary 4.26). It follows that

∑
i∈I ui =

∑
i∈I
∑

bij∈Bi
λijbij. But Bi∩Bk = ∅ for

all i, k ∈ I where i 6= k, so
∑

i∈I
∑

bij∈Bi
λijbij is a linear combination of distinct

basis elements and so contains only one element.

Now suppose x ∈ f((ui)i∈I + (vi)i∈I). It follows there exist xi ∈ ui + vi for
all i ∈ I such that x = f((xi)i∈I) ∈

∑
i∈I xi ⊆

∑
i∈I(ui + vi) =

∑
i∈I ui +∑

i∈I vi = f((ui)i∈I) + f((vi)i∈I). Conversely, if x ∈ f((ui)i∈I) + f((vi)i∈I), then
x ∈

∑
i∈I ui+

∑
i∈I vi =

∑
i∈I(ui+vi), therefore for all i ∈ I there exists xi ∈ ui+vi
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such that x ∈
∑

i∈I xi. But then x = f((xi)i∈I) ∈ f((ui)i∈I + (vi)i∈I). Finally,
f(α(ui)i∈I) = f((αui)i∈I) ∈

∑
i∈I αui = α

∑
i∈I ui. But αf((ui)i∈I) ∈ α

∑
i∈I ui,

so f(α(ui)i∈I) = αf((ui)i∈I), and so f is a good homomorphism.

Furthermore, f is bijective: if u ∈ V , suppose it has decomposition
∑

i∈I
∑

bij∈Bi
λijbij.

Define ui to be the unique element with decomposition
∑

bij∈Bi
λijbij. Then ui ∈

Vi, and f((ui)i∈I) ∈
∑

i∈I ui ⊆
∑

i∈I
∑

bij∈Bi
λijbij. But u ∈

∑
i∈I
∑

bij∈Bi
λijbij,

so u = f((ui)i∈I) and f is surjective. Furthermore, if f((ui)i∈I) = f((vi)i∈I),
then

∑
i∈I ui =

∑
i∈I vi, so that 0 ∈

∑
i∈I ui −

∑
i∈I vi =

∑
i∈I(ui − vi). It fol-

lows there exists wi ∈ ui − vi such that 0 ∈
∑

i∈I wi. Let wi have decomposition∑
bij∈Bi

λijbij. Then 0 ∈
∑

i∈I wi ⊆
∑

i∈I
∑

bij∈Bi
λijbij. It follows λij = 0 for all

i ∈ I and bij ∈ Bi. But then wi ∈
∑

bij∈Bi
= {0}, so wi = 0 for all i ∈ I. Hence

0 ∈ ui − vi, and so ui = vi for all i ∈ I. It follows (ui)i∈I = (vi)i∈I and hence f is
injective.

It follows f is bijective and a good homomorphism, so that f is an isomorphism.
Hence V ∼=

∏n
i=1 Vi.

�

The above decomposition is unique up to the order of the subhyperspaces, as will
be shown in the next result.

Theorem 4.42. Let V be a hyper near-vector space, and suppose

n∏
i=1

Vi ∼= V ∼=
m∏
j=1

V ′j

where Vi and V ′j are maximal regular subspaces for all i ∈ {1, . . . , n} and j ∈
{1 . . . ,m}. Then m = n and there exists σ ∈ Sn such that Vi = V ′σ(i).

Proof. Let I = {1, . . . , n} and J = {1, . . . ,m}, and let Qi = Q(Vi)
∗ for some

i ∈ I. Then Qi is a maximal set of compatible vectors of Q(V ). If not, there exists
u ∈ Q(V )∗\Qi such that u cp v for all v ∈ Qi. But then u /∈ Q(Vi) = Vi∩Q(V ), so
it follows u /∈ Vi. But then Vi = 〈Qi〉 ( 〈Qi ∪ {u}〉, contradicting its maximality.
It follows Qi ∈ Q∗/cp. To show {Qi | i ∈ I} = Q∗/cp, suppose u ∈ Q∗ such that
u /∈ Qi for any i ∈ {1, . . . , n}. Since V ∼=

∏n
i=1 Vi, it follows that there exists an

isomorphism φ : V →
∏n

i=1 Vi. Let φ(u) = (u1, . . . , un), then πi(φ(u)) = ui for all
i ∈ I.

Consider the sum
∑

i∈I vi for some vi ∈ Vi for each i ∈ {i . . . , n}. Suppose vi has
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decomposition
∑mi

j=1 λijbij where Bi = {bi1, . . . , bimi
} is some independent subset

of Q(Vi)
∗ = Qi. Then B = {bij | i ∈ I, 1 ≤ j ≤ mi} is independent. If not, then

there is some minimal dependent subset of B, say B′ = {bk | k ∈ K}, such that B′

is dependent. It follows that there exist k′ ∈ K such that bk′ /B′ \ {bk′}, i.e. there
exist some K ′ ⊆ K \{k′} and λk ∈ A∗ for each k ∈ K ′ such that bk′ ∈

∑
k∈K′ λkbk.

Since B′ is a minimally dependent set, {bk |, k ∈ K ′} is independent, so that
bk′ cp bk for each k ∈ K ′ by Lemma 4.31. It follows there is some i ∈ I such that
{bk | k ∈ K ′} ∪ {bk′} ⊆ Bi — a contradiction, since Bi is independent and there-
fore has no dependent subsets. Hence B is independent, and so

∑n
i=1

∑mi

j=1 λijbij

contains a unique element, say v. But
∑n

i=1 vi ⊆
∑n

i=1

∑mi

j=1 λijbij = {v}, so∑n
i=1 vi = {v}.

Define then the map f : V → V such that, if πi(φ(v)) = vi, then f(v) is the unique
element in

∑n
i=1 vi.

We show f is a good homomorphism. Let x, y, z ∈ V such that x ∈ y + z and
{f(x)} =

∑n
i=1 xi, {f(y)} =

∑n
i=1 yi and {f(z)} =

∑n
i=1 zi, where xi, yi, zi ∈ Vi

for each i ∈ {1, . . . , n}. Since x ∈ y + z, it follows xi = πi(φ(x)) ∈ πi(φ(y + z)) =

πi(φ(y)) + πi(φ(z)) = yi + zi. It follows {f(x)} =
∑n

i=1 xi ⊆
∑n

i=1(yi + zi) =∑n
i=1 yi +

∑n
i=1 zi = f(y) + f(z). It follows f(x) ∈ f(y) + f(z), so that f(y+ z) ⊆

f(y) + f(z).

Conversely, if x ∈ f(y)+f(z), with {f(y)} =
∑n

i=1 yi and {f(z)} =
∑n

i=1 zi, where
yi, zi ∈ Vi for each i ∈ {1, . . . , n}. Then x ∈

∑n
i=1 yi +

∑n
i=1 zi =

∑n
i=1(yi + zi). It

follows there exists xi ∈ yi + zi such that x ∈
∑n

i=1 xi. Since yi, zi ∈ Vi, it follows
xi ∈ Vi. Moreover, yi + zi = πi(φ(y)) + πi(φ(z)) = πi(φ(y + z)), since πi and φ

are good homomorphisms. It follows xi ∈ πi(φ(y + z)), so that {x} =
∑n

i=1 xi ⊆∑n
i=1 πi(φ(y+ z)) =

⋃
{
∑n

i=1 πi(φ(x′)) |x′ ∈ y + z} = {f(x′) |x′ ∈ y + z} = f(y+

z). Hence x ∈ f(y + z), and so f is a good homomorphism.

Consider now f(u). Since f is a good homomorphism, f(u) ∈ Q(V ). Suppose
f(u) 6= 0. Then u cp f(u) by Lemma 4.30. Let ui have decomposition

∑mi

j=1 λijbij

where each bij ∈ Vi. Then f(u) ∈
∑n

i=1

∑mi

j=1 λijbij. Since f(u) 6= 0, it follows
λij 6= 0 for at least one i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}. Therefore f(u) cp bij
by Lemma 4.31. But then u cp f(u) cp bij ∈ Q(Vi)

∗ = Qi, so that u ∈ Qi — a
contradiction. Suppose then that f(u) = 0. Then ui = 0 for each i ∈ {1, . . . , n},
so that φ(u) = (0, . . . , 0). It follows u = 0, since φ is an isomorphism — a
contradiction. Hence there is no element u ∈ Q(V )∗ such that u /∈ Qi for each
i ∈ {1, . . . , n}. It follows that {Qi |1 ≤ i ≤ n} = Q∗/cp.
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By a symmetric argument,
{
Q′j | j ∈ J

}
= Q∗/cp, so that {Qi | i ∈ I} =

{
Q′j | j ∈ J

}
.

It follows n = m and for each i ∈ I there is some j ∈ I such that Qi = Q′j, so that
Vi = 〈Qi〉 = 〈Q′j〉 = V ′j .

�

Example 4.43. Returning to Example 4.12 we have that V ∼= V (because V is
regular) while for Example 4.29, we have that V ∼= Z2 ×X.
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Conclusion

The expansion of the geometric theory behind André’s near-vector spaces has
answered a number of questions about the intuition behind these spaces that have
always lurked in the minds of those that have researched them, and at the same
time, has opened brand new avenues for research and exploration.

In the case of the nearaffine space, one problem that has as of yet not been
attempted, has been to answer whether every subspace of a nearaffine space also
meets the stronger condition of being a flat for a general nearaffine space — that
is, that for any two points x and y of the subspace, if L is a line such that x, y ∈ L,
then L is contained in the subspace, independently of whether either of the points
is a base point of L. The problem has been solved specifically for the finite case
in [2] by André. Of course, for the standard affine space, in which each line is
straight, this condition is certainly satisfied; however, the property is not trivial
when the proper lines of nearaffine spaces are considered. Undoubtably, any proof
that the condition holds would rest upon arguments unique to the geometry of
near-structures. The consequences of this property on the algebraic understanding
of near-vector spaces could also be worth examining.

Beyond this, the new geometries defined in Chapter 3, in particular the near-linear
space and the projections of nearaffine spaces, are themselves new topics worth
exploring. In the case of the latter, it has already been shown which properties
of a projective space these geometries capture and which they do not, and an
interesting future research project would be to axiomatise these properties as a
general definition of a near-projective space, with the inclusion of other potentially
necessary properties that the projection of a nearaffine space satisfy, but that are
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as of yet undiscovered. Whether these potential near-projective spaces satisfy the
necessary conditions to also then emit notions of independence, dimension, and a
basis are also of interest.

While the theory of hyper near-vector spaces has been developed to a degree in
this thesis, the mathematical structure remains in its infancy, and has a significant
potential for future research. In particular, an interesting question to ask about
these structures is whether a coherent notion of their geometry can be developed,
much in the same way as the geometry of near-vector spaces has been developed.

Algebraically, there is also possible avenues of exploration. In particular, it is
unknown whether the subspace test for vector spaces and near-vector spaces could
be generalised to these structures; that is, whether any canonical subhypergoup of
a hyper near-vector space (V,A) that is closed under scalar multiplication would
also be subhyperspace.

Furthermore, since there is more than one way to define the notion of a hyper
vector space; one further avenue for future exploration, would be to look at what
the corresponding near-vector spaces should be.
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