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General Introduction

Commonly, the term "dynamical systems" refers to the active area of mathematics

that is at the intersection of topology, analysis, geometry, theory of measurement, and

probability and that aims to understand the dynamics of a system. This study�s nature

varies

depending on the dynamic system under investigation, and it also depends

on the techniques employed (analytical, geometric, or probabilistic).

In the past, when mechanics was taught alongside mathematics, the earliest inquiries

about dynamical systems involved mechanics. The stability of the solar system is one of

the main subjects that has driven mathematical research. The KAM theorem mirrors

Lagrange�s work on the subject, which consisted of interpreting the in�uence of bodies

other than the Sun on a planet as a series of little shocks (Kolmogorov-Arnold-Moser).

The Russian mathematician Alexander Lyapunov investigated the stability of motion

during the 19th century as well. It presents the concept of comparing two trajectories with

similar initial conditions and quantifying the di¤erence between them; when the di¤erence

grows exponentially, this concept is known as sensitivity to the initial conditions.

The work of Lyapunov, though forgotten at �rst, will turn out to be crucial

for understanding several parts of chaos theory. In order to anticipate meteorological

occurrences, meteorologist Edward Lorenz experimented with a technique in 1963 [34].

He discovered that a small alteration to the baseline data could signi�cantly alter the

�ndings entirely by accident. The phenomena of sensitivity to beginning conditions has

1



General Introduction

recently been identi�ed by Lorenz [34]. Some dynamic process models contain one or

more parameters but changing the parameters could lead to qualitative and quantitative

properties. This phenomenon is often called bifurcation. The additional bifurcations are

simply changes in the dynamics of the invariant attractive closed curve [46]. However,

with powerful resonances, multiple �xed or periodic points, including some saddle points,

appear before Hopf bifurcation. The invariant closed curve from the Hopf bifurcation

then interacts with the stable and unstable manifolds of the other �xed or periodic points.

As a result, the stable and unstable manifolds cross one another transversally, suggesting

chaotic behavior.

Systems with this property will be available starting in 1975 under the names: chaotic

systems. The recent rapid growth of nonlinear science includes chaos theory as

a key sub�eld. Chaos, a nonlinear deterministic system with complicated and unexpected

behavior, was initially identi�ed by Lorenz in 1963 [34]. Since its inception, chaos theory

has been studied and developed in great detail, and one of the current research directions

is the study and creation of novel chaotic systems. Three-dimensional self-excited chaotic

systems composed of ordinary di¤erential equations, such as the Lorenz, Rossler, and

Chen systems [37]-[45], and several other common three-dimensional chaotic systems, are

the systems that have received the most attention. Additionally, the control coe¢ cient

of the constant component can be adjusted to alter the kind of chaotic attractor. There

are many di¤erent types of 3D systems without equilibrium points that are enumerated

[37]-[69] ( and new 4D self-oscillation [5]), some of these systems were the subject of an

analysis of the dynamical properties. The linear coupling resistor of the three-dimensional

self-excited oscillation system is replaced by a voltage-controlled memristor. Finding and

researching uncommon simple chaotic systems with either no equilibria or with all

equilibria that are stable has recently attracted interest [48]-[54]. The term "chaotic system

with hidden attractors" means a system without an equilibrium point or a system with just

one stable equilibrium point. This new class of attractor has only recently been identi�ed

2



General Introduction

by Leonov et al.[31]. Any unstable equilibrium point is not next to its basin of attraction

[5]. The traditional attractor is de�ned as a self-excited attractor in order to distinguish

between the two types of attractors, whereas the hidden attractor is formed by a system

without equilibria. The attraction basin of a hidden attractor does not intersect with any

small neighborhood of any equilibrium point, whereas the attraction basin of a self-excited

attractor will intersect with some unstable equilibrium points. This is the key distinction

between hidden attractors and self-excited attractors [32]. As a result, the dynamic

properties of the concealed attractor and the self-excited attractor are entirely di¤erent.

A system�s parameters or initial circumstances can be altered to produce hidden attractors

with various topological structures. These are known as coexistence hidden attractors, and

they demonstrate the system�s rich and complex dynamic properties [32]-[31]-[5].

This thesis aims to study attractors and bifurcations of chaotic systems. It contains

�ve chapters.

In the �rst chapter, we give basic notions of the theory of dynamic systems (critical

points, attractors, notions of stability).

The second chapter, we took about bifurcation theory, as well as the characteristics

of chaotic systems and the di¤erent ways of transition to chaos.

The third chapter is devoted to the investigation of hidden attractors, in which

we introduce the concept of a self-excited attractor whose basin of attraction intersects

any open neighborhood of an unstable �xed point. We give a history of the self-excited

attractor, de�nitions, and some examples. Then we move to hidden oscillations (hidden

attractor). We also provide historical context and de�nitions for hidden attractor. Finally,

we present a method for detecting a hidden attractor and give a suitable example.

In the fourth chapter, the hidden modalities of spirals of chaotic attractor via

saturated function series and numerical results are discussed. First, the hidden bifurcation

3



General Introduction

in the chaotic attractor, generated by function series, is shown by applying the method

presented in the second chapter. Then we give the e¤ect of the integration duration

procedure on exposing hidden modalities of an odd number of spirals. Finally, we present

the numerical results.

Finally, the �fth chapter is devoted to symmetries in hidden bifurcation routes

to multiscroll chaotic attractors generated by saturated function series. This includes

examples and properties of bifurcation routes; contains a numerical computation of two

hidden bifurcation routes; and maximal attractor range extension and coding order of

spirals�appearance. Finally, we present the symmetries of the hidden bifurcation routes.

At the end, one �nds the bibliography used for this thesis.

4



Chapter 1

Dynamical Systems and Chaos

1.1 Introduction

Dynamical systems theory is a classical branch of mathematics introduced by Newton

around 1665. It provides mathematical models for systems evolving over time and following

rules generally expressed in analytical form as a system of ordinary di¤erential equations.

These models are called "dynamic systems continuous". In the 1880, Poincare found it

convenient to replace certain dynamical systems with discrete dynamical systems.

That is, systems in which time evolves by breaks in regular sequences. Thus, for more

than a hundred years, dynamical systems have been de�ned into two classes: continuous

and discrete systems. Historically, dynamical systems developed and specialized during

the 19th century.

Indeed, during the astronomical study of the three-body problem near the end of the

twentieth century, the French mathematician, physicist, and philosopher Henri Poincaré

had already highlighted the phenomenon of stability at the initial conditions. One or more

parameters may be present in some dynamic process models, but modifying the parameters

may result in qualitative and quantitative features. This occurrence is frequently known

as a bifurcation [46]-[22]. Lyapunov�s works, which were initially forgotten, will later be
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Chapitre 1. Dynamical systems and Chaos

very useful for studying certain aspects of chaos theory. In 1963, meteorologist Edward

Lorenz experimented with a method that allowed him to predict weather phenomena [34].

1.2 Important De�nitions and Notations

A dynamical system described by a mathematical function presents two types of vari-

ables: dynamic and static. Dynamic variables are fundamental quantities that change

over time; static variables, also called parameters of the system, are �xed.

De�nition 1.2.1 The vector �eld F , given in a region M of the space Rm, is the corres-

pondence which compares every point x 2 M with the vector F of the space Rm applied to

this point.

The system of di¤erential equations, corresponding to a vector �eld F; is

dx

dt
= F (x; �), x 2M � Rm; � 2 Rr; m et r 2 N: (1.1)

* where the point above the letter means di¤erentiation on t. Region M is called the

phase space of the system, and the direct product I � M the expanded phase space

where I is an interval of the real axis of time t. The system (1.1) is also called an

autonomous system of ordinary di¤erential equations.

* We can always transform a non-autonomous system into an autonomous system.

Example 1.2.1 We consider a system of di¤erential equations

8><>:
�
x = y

�
y = x� x3 � ay + b cos �s

; (x; y) 2 R2:

where the parametres a; b; �; are real physical.

6



Chapitre 1. Dynamical systems and Chaos

De�nition 1.2.2 In the case where time is discrete, the dynamical system is presented

by an application (iterative function)

xk+1 = F (xk; �); xk 2M � Rm; � 2 Rr k = 1; 2; 3; � � � (1.2)

Example 1.2.2 We consider the discrete dynamical system

xn+1 = rxn(1� xn); x 2 [0,1] :

1.2.1 Phase Space

We will always try to introduce the properties of dynamical system in geometrical

images since this smooths their understanding. The orbits in the state space of

a dynamical system F (x; �) and the phase portrait of these orbits are the basic

geometrical objects associated with it.

De�nition 1.2.3 A graph of a solution of a system of di¤erential equations is called its

integral curve, and a projection of an integral curve on phase space along the axis t is

called a phase curve (trajectory, orbit).

De�nition 1.2.4 A limit cycle is called orbitally asymptotically stable (or simply stable)

if for any reason in its small neighbourhood U; all trajectories beginning in a small neigh-

bourhood of the cycle do not leave in time and tend to the cycle when t! +1

De�nition 1.2.5 The phase curve (trajectory) of the periodic solution of the system (1.1)

is closed and called a cycle. Back, any cycle (the closed phase curve) of the systems (1.1)

de�nes the periodic solution of the system with some period.

7



Chapitre 1. Dynamical systems and Chaos

1.2.2 Conservative Systems and Dissipative Systems

For physicists, a conservative system is a system that conserves total energy. On the

other hand, a dissipative system is a system that dissipates energy. So the conservative

system has a �rst (or constant) integral of the motion, and the second has at least one

rate-dependent term. But let�s not forget that the systems considered are deterministic

systems. So to specify this de�nition, we arrive at saying that a deterministic system

is conservative if and only if the dynamics of the system is associated with each initial

condition x0 one and only one �nal state x(t). It is necessary that there exists a one-to-one

map ' of the phase space

' : X � R! X; (1.3)

(x; t)! 't(x) = '(x; t):

1.2.3 The Poincare Map

Probably the most basic tool for studying the stability and bifurcations of periodic

orbits is the Poincare map or �rst return map, de�ned by Henri Poincare in 1881. The idea

of the Poincare map is quite simple : If r is a periodic orbit of the system (1.1) through

the point x0 and
P
is a hyperplane perpendicular to r at x0, then for any point x 2

P
su¢ ciently near x0, the solution of (1.1) through x at t = 0, �t(x), will cross

P
again at

a point P (x) near x0 see �gure (1.1).

De�nition 1.2.6 The mapping x! P (x) is called the Poincare map.

1.2.4 Critical Points

De�nition 1.2.7 Let x0 is called a equilibrium point of a di¤erentiable vector �eld F (x)

so F (x0) = 0:

8



Chapitre 1. Dynamical systems and Chaos

Figure 1.1: The Poincare map.

De�nition 1.2.8 The singular point of a vector �eld is a point in phase space in which

the vector of a �eld vanishes.

De�nition 1.2.9 The periodic solution xt of an autonomous system of di¤erential equa-

tions (1.1) exists if there exists a constant T > 0; such that xt+T = xt for all t. The period

of the solution xt is named after the minimal such value T and the solution xt is called

T -periodic solution.

De�nition 1.2.10 The stationary solution of an autonomous system of di¤erential equa-

tions (the solution which is identically equal to a singular point) is called Lyapunov stable

if all solutions of this system with initial conditions from a su¢ ciently small neighbour-

hood of the singular point are de�ned on all positive semi-axis of time and uniformly on

time converge to the investigated stationary solution when the initial conditions tend to

the indicated singular point.

De�nition 1.2.11 The isolated closed trajectory is called a limit cycle of an autonomous

system of ordinary di¤erential equations.

9



Chapitre 1. Dynamical systems and Chaos

1.2.5 Attractors of Dissipative Systems

As it was already mentioned above, the basic distinctive property of a dissipative

system of ordinary di¤erential equations is the compression of its phase volume in time.

As a result, when t!1, all solutions of such a system or a part of solutions tend to some

compact (closed and limited) subset B of phase space M , named an attractor. Thus, the

attractor contains "the set of established regimes" of the system. Now there is no generally

accepted strict de�nition of "attractor". It is connected �rst of all with the reason that,

till now, it is not clear what an irregular (chaotic or any other)555555 attractor is and

how it is arranged.

De�nition 1.2.12 In relation to a �ow 't set B � M , compact invariant If there is an

attractive set in its neighbourhood U (the open set containing B) such, that B � !(U) and

for almost all

x 2 U;'t(x)! B when t!1(i:e:dist('t(x); B) = inf
y2B

't(x)� y
! 0 when t!1:

The greatest set, U; satisfying this de�nition, is called a attraction of �eld for B.

De�nition 1.2.13 A set is called indecomposable if for any disjiont subsets A, B � E

such that A [B we have Per(E) = Per(A) + Per(B) then either jAj = 0 or jBj = 0:

De�nition 1.2.14 The indecomposable attractive set is called an attractor.

Not all attractive sets are attractors, but only those of them which possess the property

of indecomposability into two separate compact invariant subsets.

Di¤erent Types of Attractors

There are two types of attractors: regular attractors and strange attractors, or chaotic

attractors.

10



Chapitre 1. Dynamical systems and Chaos

1. Regular Attractors

Regular attractors characterize the evolution of non-chaotic systems and can be of

three kinds.

� The Fixed Point

This is the most popular case and the simplest attractor, in which the system

evolves towards a point. Note that only the basins can be attractors. The other

types of �xed points indeed always have at least one "output trajectory" to each

eigenvalue of the Jacobian of the positive real part is associated an eigenvector

that points in a direction where the phase trajectory is moving away from the

�xed point.

� The Periodic Limit Cycle

It may happen that the phase trajectory closes in on herself. The temporal

evolution is then periodic, the system presenting permanent oscillations. In a

dissipative physical system, this requires the presence of a term of forcing in the

equations which comes to compensate on average for the losses by dissipation.

� The pseudo-Periodic Limit Cycle(Invariant Tori)

It is almost a special case of previous case. The system o¤ers at least two

simultaneous periods whose rate is irrational. The phase trajectory does not

close in on itself but wraps around a 2-dimensional manifold.

2. Strange Attractors

The surface containing the divergent trajectories is called an unstable manifold,

while the one containing convergent trajectories will be called a stable manifold. Note

that this cannot be conceived in a phase space of at least three dimensions. Strange

attractors are characteristics of the evolution of chaotic systems: after a certain

time, all the points in the phase space (and belonging to the basin of attraction of

the attractor) give trajectories that tend to form the strange attractor.
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Fixed point

limit cycle

A limit cycle in natural space Invariant tori

Lorenz Strange Attractor Rosler Strange Attractor
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1.3 Qualitative Study of Dynamic Systems

The qualitative study makes it possible to see the behavior of the solutions without

having to solve the di¤erential equation. In particular, it allows the local study of solutions

around equilibrium points. To have a complete study of a dynamic system, we are waiting

for, in general, from the environment, a stationary behavior. The latter will be presented

by the disappearance of transitional phenomena by canceling the function of transition or

vector �eld. In this case, the system will have one of the two states.

* The case of equilibrium (�xed points, periodic points).

* The case of chaotic

To make this study easier, the properties of linear algebra are used on equations

that describe our dynamic systems, but the majority of dynamic systems associated with

natural phenomena are not linear. For this purpose, we are obliged to linearize.

1.3.1 Linearization of Dynamic Systems

Consider the nonlinear dynamic system de�nes by:

�
X = F (X); X = (x1; x2; : : : ; xn); F = (f1; f2; : : : ; fn); (1.4)

where X0 a �xed point (equilibrium) of this system.

Suppose a small upset "(t) is applied in the neighborhood of the �xed point. The function

f can be developed in a series of Taylor in the neighborhood of point X0 as follows:

"(t) +X0 = F ("(t) +X0) ' F (X0) + JF (X):"(t); (1.5)

13
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with JF (X0) is the Jacobian matrix of the function F de�ned by

JF (X0) =

0BBBB@
@f1
@x1

@f1
@x2

� � � @f1
@xn

� � � � � � � � � � � �
@fn
@x1

@fn
@x2

� � � @fn
@xn

1CCCCA
X=X0

: (1.6)

As F (X0) = X0; then equation (1.5) becomes again:

"(t) = JF (X0):"(t): (1.7)

The writing (1.7) means that the system (1.4) is linearized.

1.3.2 Concept of Stability

Stability in The Sense of Lyapunov

Consider the following dynamic system:

dx

dt
= f(x; t); (1.8)

with f a nonlinear function

De�nition 1.3.1 The equilibrium point x0 of the system (1.8) is:

1. Stable if

8" > 0;9 � > 0 : kx(t0)� xk < � ) kx(t; x(t0))� x0k < ";8 t � t0: (1.9)

2. Asymptotically stable if:

9 � > 0 : kx(t0)� xk < � ) lim
t!1

kx(t; x(t0))� x0k = 0: (1.10)

14
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Figure 1.2: The di¤erent types of stability in the sense of Lyapunov

3. Exponentially stable if:

8" > 0;9 � > 0 : kx(t0)� xk < � ) kx(t; x(t0))� x0k < a exp(�bt); 8 t > t0:

(1.11)

4. Unstable if

9 " > 0; 8 � > 0 : kx(t0)� xk < � and kx(t; x(t0))� x0k > ";8 t � t0; (1.12)

wich mean that equation (1.9) is not satis�ed.

Lyapunov�s First Method (Indirect Method)

Lyapunov�s �rst method is based on examining the linearization around the equi-

librium point x0 of the system (1.8). More precisely, we examine the eigenvalues �i of

the Jacobian matrix evaluated at the equilibrium point. According to this method, the

properties of stability of x0 are expressed as follows:

1- If all the eigenvalues of the Jacobian matrix have a strictly negative real part, then x0

is exponentially stable.

15
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2- If the Jacobian matrix has at least one eigenvalue with a strictly positive real part, x0

is unstable.

Remark 1.3.1 This method does not allow us to say if the equilibrium is stable or unstable

when the matrix Jacobian has at least one zero eigenvalue and no eigenvalue with an exactly

positive real part. In this case, the trajectories of the system converge to a subspace (a

manifold) whose dimension is the number of zero eigenvalues of the Jacobian matrix and

the stability of the equilibrium can be studied in this subspace by the second method.

Lyapunov�s Second Method (Direct Method)

As we have seen, Lyapunov�s �rst method is simple to apply, but it allows us to analyze

the stability of equilibria only very partially. Besides, she gives no indication of the size

of the basins of attraction. The second method is more di¢ cult to implement, but, on the

other hand, it is far-reaching and more general. It is founded on the de�nition of a speci�c

function, denoted V (x) and known as the Lyapunov function, which decreases along the

trajectories of the system within the attraction basin. This theorem will summarize this

method.

Theorem 1.3.1 The system�s equilibrium point x0 (1.8) is stable if a function V (x) :

D ! R continuously di¤erentiable having the following properties :

1. D is an open of Rn and x0 2 D;

2. V (x) > V (x0) 8 x 6= x0 in D;

3.
�
V (x) � 0 8 x 6= x0 in D:

There is no method to �nd a Lyapunov function. But in mechanics and for electrical

systems, one can often use the total energy as a Lyapunov function.

16
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1.3.3 Hartmann-Grobman Theorem

Consider the dynamical system (1.4).

Let X0 be an equilibrium point of the system (1.4) and let JF (X) be the Jacobian matrix

at point X0.

The following theorem follows:

Theorem 1.3.2 If JF (X0) admits pure non-zero or imaginary eigenvalues, then there

exists a homeomorphism which transforms the orbits of the nonlinear �ow into those of

the �ow linear in some neighborhood U of X0. This theorem will allow us to link the

dynamics of the nonlinear system (1.4) to the dynamics of the linearized system (1.7) .

1.3.4 Central Manifold Theorem

Let�s
dx

dt
= f(x; c); (1.13)

a nonlinear dynamic system, x0 is a point of equilibrium which can be brought back to

the origin by the change of a variable :

% = x� x0;

and let J be the Jacobian matrix of order n associated with the system (1.13) after

its linearization in the neighborhood of the �xed point (after having considered a small

perturbation % in the neighborhood of the �xed point)

d%

dt
= J%:

Where :

- N s the vectorial subspace of dimension s is generated by f�1; �2 : : : ; �sg:

17
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- N i the vectorial subspace of dimension i is generated by fu1; u2; : : : ; ui g:

- N c the vectorial subspace of dimension c is generated by fs1; s2; : : : ; scg:

With

Nn = N s �N i �N c:

And where :

* �1; �2 : : : ; �s the eigenvalues of the Jacobian matrix J; whose part real is negative.

* u1; u2; : : : ; ui the eigenvalues of the Jacobian matrix J; whose real part is positive.

* s1; s2; : : : ; sc the eigenvalues whose real part is zero, with s+ i+ c = n:

We have the following theorem :

Theorem 1.3.3 There are manifolds of class Cr : T s stable, T i unstable and T c central

tangents respectively to N s; N i and N c in x0:These manifolds are invariant with respect

to the �ow system (1.13).

Figure 1.3: Characterization of the Global Center Manifold
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Central Manifold Depending on a Parameter

We apply a small perturbation � to the system (1.13), so the result will be a dynamical

system depending on a parameter �, and suppose that by a certain transformation we can

reduce the system (1.13) to a system of the form :

8>>>>>>><>>>>>>>:

:
x = A1x+ f(x; y; z; �);

:
y = A2y + g(x; y; z; �);

:
z = A3z + h(x; y; z; �);

:
� = 0:

(1.14)

The central manifold in the neighborhood of (0; 0; 0; 0) is then given by :

y = k1(x; �); z = k2(x; �):

After a simple calculation and after having applied the Taylor expansion on k1 and k2;

we can write the system (1.14) under the form :

8><>:
:
x = A1x+ f(x; k1(x; �); k2(x; �); �)

:
� = 0

(1.15)

The following theorem makes it possible to link the dynamics of the system (1.15) to that

of the system (1.14):

Theorem 1.3.4 If the origin x0 = 0, of the system (1.15) is asymptotically stable

(unstable), then the origin of the system (1.14) is also asymptotically stable (unstable).

Poincare Classi�cation of Fixed Points

It is about distingushing these �xed points by the nature of the eigenvalues of the

matrix Jacobian (1.6) of the linearized system (1.7) associated with the initial di¤erential

system (1.4) at this point.
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For this reason, we will assume that the eigenvalues of the matrix Jacobian (1.6) are

de�ned by:

�i = !i + j�i; i = 1; 2; : : : n:

During !i 6= 0 for i = 1; 2; : : : ; n the �xed point is said to be hyperbolic.

The solution "(t) of the linearized system is written on the basis of autonomous functions:

"(t) =

nX
i=1

Ci exp(�it):Vi: (1.16)

Where Vi represents the eigenvector associated with �i and Ci 2 R depends on the

initial conditions.

So the eigenvalues �i de�ne the state of stability.

And we will cite the nature of these �xed points by studying the nature of the �i:

1/ If !i < 0 for i = 1; 2; : : : ; n, the �xed point is asymptotically stable : lim y(t)
t!+1

= 0:

The point is said to be a focus if �i 6= 0 for i = 1; 2; : : : ; n, a node if �i = 0 for

i = 1; 2; : : : ; n:

2/ If !i > 0 for i = 1; 2; : : : ; n, the �xed point is unstable. We say that the point is a

source if �i 6= 0 for i = 1; 2; : : : n; and a node if �i = 0 for i = 1; 2; : : : ; n:

3/ If !j > 0 for j = 1; 2; : : : ; p with p < n and !j < 0 for i 6= j; the solution is unstable,

and the point is a saddle.

If there is no zero eigenvalue, we have a saddle point.
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Figure 1.4: Topological classi�cation of hyperbolic equilibria on the plane
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Chapter 2

Bifurcation Theory

2.1 Introduction

The case in which we are interested in this part is as follows: we consider a di¤erential

system depending on auxiliary parameters and we want to understand what modi�cations

of form undergo the portrait of phases when the parameters vary. This is the question that

the theory of disasters answers when we restrict ourselves to the framework of dissipative

systems depending on potential and when we only take into account as signi�cant

characteristics of the portrait of phases the positions of equilibria and their bifurcations.

For the values of the parameters at which such qualitative changes appear, so called

bifurcation values (see [22]), the construction of the phase portrait requires appropriate

tools. We are interested here in local bifurcations, relative to a point of equilibrium of

a continuous system, and the bifurcation diagram will help us geometrically with both

methods, which brings us back to the use of good coordinates:

* The method of the central sub-manifold makes it possible to isolate the non-hyperbolic

part, called the central, of the system.

* Only true nonlinearities, those that cannot be made to disappear by regular coordinate

changes, remain in Poincaré�s method of normal forms.
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De�nition 2.1.1 De�ning a nonlinear dynamic system

dx

dt
= g(x; t; �): (2.1)

Let x0 be the solution to the problem of dimension n and control parameter � .

A bifurcation is a qualitative change of the solution x0 of the system (2.1) when we modify

� , and more precisely, the disappearance or the change of stability and the appearance of

new solutions.

De�nition 2.1.2 The minimum number of parameters needed for a universal unfolding is

called the codimension of the singularity. The codimension of the bifurcation indicates how

many parameters the system of di¤erential equations should have on which the bifurcation

was exemplary. If codimension is greater than one, a bifurcation occurs that is more

irregular for the system.

De�nition 2.1.3 A bifurcation diagram is a portion of the parameter space on which all

the bifurcation points are represented.

2.2 Bifurcations in Codimension 1

We are talking here only about the bifurcation of codimension 1; and there are four

types of bifurcation of codimension 1, which all correspond to generic behaviors.

a- Saddle-Node Type Bifurcation

A linear function does not change the number of roots. The simplest polynomial which

changes the number of roots depending on the parameter � is the quadratic polynomial.

Consider the following one-dimensional dynamical system depending on one parameter:

g(x; �) = � � x2: (2.2)
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We call the function (2.2) the normal form of the saddle-node bifurcation.

We will investigate the behavior of this equation in relation to the control parameter � :

g(x; �) = 0() � � x2 = 0;

� � x2 = 0() � = x2:

1. If � < 0; the equation g(x; �) = 0; as no solution. So there is no point of equilibrium.

2. If � > 0; we have :

x2 = � ()

8><>: x1 =
p
� ;

x2 = �
p
� :

Therefore, equation (2.2) has two solutions, so there are two equilibrium points.

Their stability is determined by :

dg(x;�)
dx

= �2x so dg(x;�)
dx

jx1= �2
p
� < 0 and dg(x;�)

dx
jx2= 2

p
� > 0:

As a direct result, the signs dg(x;�)
dx

jx1;2 ; we see that :

8><>: x1 is stable,

x2 is is unstable.

Remark 2.2.1 Same study done when g(x; �) = �� � x2; g(x; �) = � + x2; g(x; �) =

�� + x2:

But in all cases, there is a transition at � = 0 between the existence of no �xed point and

the existence of two �xed points, one of which is stable and the other unstable.
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Figure 2.1: Bifurcation diagram saddle-node

b- Transcritical Type Bifurcation

If g is constrained to have no constant term, the bounded expansion leads to the

normal form of a transcritical bifurcati-on, which is the last stationary bifurcation in one

dimension:

g(x; �) = �x� x2: (2.3)

The usual analysis gives :

g(x; �) = 0() �x� x2 = 0() x(� � x) = 0:

8><>: x1 = 0;

x2 = �:

The equation g(x; �) = 0 admits two equilibrium points

dg(x; �)

dx
� � 2x so dg(x; �)

dx
jx1= � and

dg(x; �)

dx
jx2= ��:

So: the equilibrium point x1 = 0 stable for � < 0; unstable for � > 0 and x2 = �

and stable for � > 0; unstable for � < 0:
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Figure 2.2: Bifurcation diagram transcritical

c- Pitchfork Type Bifurcation

At the pitchfork bifurcation point, the stability of an equilibrium point changes in

favor of the birth of a pair of equilibrium points. There are two kinds of this bifurcation :

supercritical, having a normal form:

g(x; �) = �x� x3: (2.4)

And subcritical, having a normal form :

g(x; �) = �x+ x3:

We calculate the equilibrium points. In the case of a supercritical pitchfork bifurcation,

we have

g(x; �) = 0;

�x� x3 = 0, x(� � x2) = 0:
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()

8>>>><>>>>:
x = 0

ou

� � x2 = 0

()

8>>>><>>>>:
x = 0;

ou

x2 = �:

So, if � < 0; we have a single point of equilibrium at x = 0:

If � > 0; we have three equilibrium points

8><>: x1 = 0;

x2;3 = �
p
� :

We study the stability of these equilibrium points:

dg(x; �)

dx
= � � 3x2 so

8><>:
dg(x;�)
dx

jx1= �;

dg(x;�)
dx

jx2;3= �2�:

As a result :

� If � < 0 we have the only equilibrium point where x = 0 is stable.

� If � > 0 we have the equilibrium point:

8><>: x = 0 is unstable,

x = �
p
� is stable.

� if � = 0 we have a single point of equilibrium where x = 0 is semi-stable.

In the case of a subcritical pitchfork bifurcation, the same calculation yields

g(x; �) = 0;

�x+ x3 = 0, x(� + x2) = 0:
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()

8>>>><>>>>:
x = 0

ou

� + x2 = 0

()

8>>>><>>>>:
x = 0;

ou

x2 = ��:

So, if � > 0; we have a single point of equilibrium x = 0:

If � < 0; we have three equilibrium points

8><>: x1 = 0;

x2;3 = �
p
�� :

We study the stability of these equilibrium points :

dg(x; �)

dx
= � + 3x2 so

8><>:
dg(x;�)
dx

jx1= �;

dg(x;�)
dx

jx2;3= �2�:

As a result :

� If � > 0 we have the only equilibrium point where x = 0 is unstable.

� If � < 0 we have the equilibrium point:

8><>: x = 0 is stable,

x = �
p
� is unstable.
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Figure 2.3: Pitchfork type bifurcations : (a) supercritical and (b) subcritical

d- Hopf Type Bifurcation

While all the bifurcations we have described are stationary, the Hopf bifurcation gives

rise to oscillating solutions; the phase space now has two components and the shape is

written in the complex plane.

Consider the normal form of Hopf type bifurcation:

dZ

dt
= �Z � jZj2 Z: (2.5)

By asking � = �
0
+ i�

00
and Z = X exp(i�); we get:

8><>:
dX
dt
= �

0
X �X;

dX
dt
= �

00
:

We therefore obtain a pitchfork bifurcation for the amplitude while the phase rotates at

speed �
00
. The solution is therefore periodic, and the trajectories describe a spiral drawn

towards an asymptotic curve called the limit cycle. Naturally, the bifurcation of Hopf can

also be subcritical if the coe¢ cient of the term jZj2 Z has a positive sign, then a negative

term is needed in jZj4 Z to obtain a non-linear saturation.

29



Chapitre 2. Bifurcation Theory

Figure 2.4: Hopf diagram bifurcation

We will now focus on the step that follows the temporal regularity. According to

Landau the bifurcation of a point from a stationary behavior (equilibrium point) towards

a periodic behavior (limit cycle) and then biperiodic (a torus) constitutes the �rst stages

of the green transition turbulence. The latter presents a very interesting phenomenon

that we call chaos, which has long been synonymous with disorder and confusion and is

opposed to order and method. Many researchers in science have been interested in so-called

chaotic movements. They con�rmed that, contrary to what deterministic thought has

hammered home for ages, there could be equilibrium in the disequilibrium, organization

in the disorganization.

2.3 Chaos theory

Nonlinear, or simply piecewise linear, dynamic systems can exhibit completely un-

predictable behaviors, which may even seem random (although these are perfectly

deterministic systems). This unpredictability is called chaos. The branch of dynam-

ical systems that endeavors to de�ne and study chaos is called chaos theory. This

branch of mathematics qualitatively describes the long-term behaviors of dynamical

systems.
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2.3.1 Chaos Properties

1. Sensitivity to Initial Conditions

For a chaotic system, a very small error in the knowledge of the initial state x0 in

phase space will (almost always) be rapidly ampli�ed. From a mathematical point of

view, we say that the function f shows a sensitive dependence on initial conditions

when:

9� > 0; 8x 2M; 8" > 0; 9(y; q) 2M :

8><>: kx� yk < ";

kf q(x)� f q(y)k > �:
(2.6)

2. The Strange Attractor

A dissipative chaotic system has at least one attractor of a particular type called

a strange attractor, see [37]. Geometrically, such an attractor can be described as

the result of the stretching and folding operation of a phase space cycle, repeated

an in�nite number of times. The "length" of the attractor is in�nite, although it is

contained in a �nite space. So we can give this de�nition:

De�nition 2.3.1 A bounded subset H of the phase space is a strange or chaotic

attractor for a transformation P of the space if there exists a neighborhood G of H

that is, for every point of H there exists a ball containing this point and contained

in G satisfying the following properties.

a- Attraction: G is a capture zone, which means that any orbit by P whose initial

point is in G, is entirely contained in G. Moreover, any such orbit becomes

and remains as close to H as one wants.

b- It is contained in a �nite space. Its volume is zero. Its dimension is fractal (not

whole).
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c- Almost any trajectory on the attractor has the property of never passing twice

over the same point: each trajectory is almost surely aperiodic.

d- Two trajectories close at a time to see their distance locally increase at an expo-

nential rate (sensitivity to initial conditions).

3. The existence of broad spectra is an essential characteristic of the chaotic motions

of a system. The temporal evolution of a dynamic system is often represented by

the value of one of its variables at regular intervals. This is called the time series.

Chaotic behavior of the Lorenz system

Example of a sequence with

chaotic behavior:

2.3.2 Lyapunov�s Exponents

There are several methods that can be used to determine whether nonlinear systems

are chaotic or not. They are generally not very numerous nor spread over a su¢ ciently

long time on the scale of the system studied. We chose to implement two of the most

commonly used methods, which, moreover, are complementary: the fractal dimension and

the Lyapunov exponents. On October 12, 1892, Lyapunov defended a doctoral thesis

at the University of Moscow entitled: The General Problem of the Stability of Motion.

He introduces the idea of measuring the possible divergence between two orbits resulting
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from similar initial conditions. When this divergence increases exponentially with time for

almost all initial conditions close to a given point, we have the phenomenon of sensitivity

to the initial conditions, an idea to which the Lyapunov exponents are attached, which

gives a quantitative measure of this local exponential divergence and actually measures

the degree of sensitivity of a dynamic system.

2.3.3 Paths to Chaos

A dynamic system generally has one or more so-called "control" parameters, which act

on the characteristics of the transition function. Depending on the value of the control

parameter, the same initial conditions lead to trajectories corresponding to qualitatively

di¤erent dynamic regimes. The continuous modi�cation of the control parameters leads

in many cases to a progressive complexi�cation of the regime dynamic developed by the

system. There are several scenarios that describe the transition from a �xed point to chaos.

We note in all cases that the evolution from the �xed point to chaos is not progressive but

marked by discontinuous changes that we have already called bifurcations.

A bifurcation marks the sudden passage from one dynamic regime to another, qualit-

atively di¤erent one. Three scenarios of transition to chaos can be cited:

1. Intermittency Towards Chaos: a stable periodic movement is interrupted by

bursts of turbulence. As the control parameter is increased, the bursts of turbulence

become more and more frequent, and �nally, the turbulence dominates.

2. The Period-Doubling is characterized by a succession of bifurcations of forks.

As the stress increases, the period of a forced system is multiplied by two, then by

four, then by eight,..., these doublings of period are getting closer and closer; when

the period is in�nite, the system becomes chaotic.

3. Quasi-periodicity occurs when a second system disturbs an initially periodic system.

If the ratio of the periods of the two systems in the present is not rational, then the
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system is said to be quasiperiodic. In particular, Jean Christophe Yoccoz�s work on

dynamical systems earned him the Fields Medal in 1994.
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Chapter 3

Hidden Attractors

3.1 Introduction

The analysis and synthesis of oscillating systems, for which the problem of the exist-

ence of oscillations can be solved relatively easily, received a lot of attention during the

initial period of development of the theory of nonlinear oscillations in the �rst half of the

20th century. For example, [Andronov et al., 1966] [4], (at the end of the 19th century,

this research was started in Rayleigh�s (1877) [44]. The applied research on periodic os-

cillations in mechanics, electronics, chemistry, biology, and other �elds prompted these

investigations.

Numerous applied systems under consideration had structures that made the presence

of oscillations "almost obvious". The oscillations were sparked by an unstable equilib-

rium (called selfexcited oscillation). After that, in the middle of the 20th century, it

was discovered that numerically chaotic oscillations, aside from self-excited periodic os-

cillations, are also excited from an unstable equilibrium and can be calculated using the

standard computational method [ Lorenz, 1963] [34]. The computation and analysis of

self-excited chaotic oscillations have recently attracted thousands of publications. The

term "attractor" refers to an oscillation that attracts attention as well as a group of os-
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cillations that do the same. Here, self-excited attractors and computational mathematics

both naturally incorporate the ideology of transient processes from control theory. Mid-

way through the 20th century, good examples of periodic and chaotic oscillations of a

di¤erent sort, later referred to as "hidden oscillations" and "hidden attractors" [Leonov

et al., 2011] [27], were discovered. In these oscillations, the basin of attraction does not

coincide with small neighborhoods of equilibria. Since there is no way to employ equilibria

information to group related transient processes in the conventional computational tech-

nique, numerical localization, computing, and analytical examination of hidden attractors

are substantially more di¢ cult challenges. As a result, this common method cannot be

used to compute the hidden attractors. Additionally, since a basin of attraction might be

very small and the dimension of the hidden attractor itself can be considerably less than

the dimension, it is doubtful that the

integration of trajectories with random initial data can provide the localization of the

hidden attractor in this instance.

The issue of analyzing hidden oscillations originally appeared in Hilbert�s 16th problem

for two-dimensional polynomial systems in 1900, speci�cally in its second section [Hil-

bert, 1901 � 1902] [17]. The �rst challenging �ndings were found in Bautin�s writings

(1939; 1952)[7]-[8]-[9], which dealt with building nested limit cycles in quadratic systems

and demonstrated the importance of understanding hidden oscillations in order to solve

this issue. Later, di¢ culties with automatic control caused by engineering led to the issue

of analyzing concealed oscillations. Kapranov investigated [Kapranov,1956] [19] the qual-

itative behavior of PLL systems, which are often employed in modern telecommunications

and computing designs, and estimated stability domains. The issues raised spurred a wide

range of study in the latter half of the 20th century. The theory of normal forms and

bifurcation theory were both developed in response to Hilbert�s sixteenth issue, whereas

the idea of absolute stability was developed in response to the Aizerman problem [1].

The authors�Kuznetsov et al., 2010; Leonov et al., 2010 [28] (�rst-time) discovery of
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a chaotic hidden attractor in a generalized Chua�s circuit and subsequent discovery of a

chaotic hidden attractor in a classical Chua�s circuit [Leonov et al., 2011] [27], this greatly

encouraged further research into hidden oscillations. It needs to be noted that Chua�s

circuit and its numerous variations have received thousands of papers over the past thirty

years, in which a few hundred attractors were explored. These Chua�s attractors were

self-excited up until this point, though. The study of oscillations using some e¤ective

analytical and numerical approaches is the focus of the current survey. The current trends

in the synthesis of analytical and numerical methods are attempting to be re�ected in this.

3.2 Self-Excited Attractors

During the early stages of the foundation of the theory of nonlinear oscillations, which

took place in the �rst half of the twentieth century, the analysis and synthesis of oscillating

systems, in which the issue of the existence of oscillations could be resolved with relative

ease, received a lot of attention. This approach was backed by the study of periodic

oscillations in practical �elds, including mechanics, electronics, chemistry, and biology.

De�nition 3.2.1 An attractor is called a self-excited attractor if its basin of attraction

intersects with any open neighborhood of an unstable �xed point.

Moreover, in the middle of the twentieth century, except for self-excited periodic

oscillations in applied systems, chaotic oscillations were found numerically to be excited

from an unstable equilibrium and could be computed by the standard computational

procedure. Take a look at some traditional illustrations of self-excited oscillations.

Example 3.2.1 Rayleigh [1877] was the �rst to demonstrate that in a two-dimensional

nonlinear dynamical system undamped vibrations might emerge without external periodic

action while researching string oscillations (limit cycles).[32]
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Consider the limit cycle localization in the Rayleigh system

��
x� (�� �

�
x
2
)
�
x+ x = 0; (3.1)

for � = 1; � = 0:1: In �gure (3.1), a two trajectories (each starting in red and ending in

green) localize a limit cycle by drawing attention to it.

Figure 3.1: Localization of limit cycle in Rayleigh system

Example 3.2.2 Take into account electrical circuit oscillations, such as those produced

by the van der Pol oscillator [van der Pol, 1926].[32]

��
x+ a(x2 � 1) �x+ x = 0; (3.2)

where the result was found for a = 2:( see �gure (3.2))

3.3 Hidden Oscillations

David Hilbert was the �rst to evade the challenge of examining concealed oscillations

[17]. In relation to the degree of the polynomials under consideration, he introduced the
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Figure 3.2: Numerical localization of limit cycle in van der Pol oscillator

problem of the investigation of the number and potential arrangements of limit cycles in

two-dimensional polynomial systems in 1900.

According to the study, self-excited periodic and chaotic oscillations did not provide all

of the information regarding the potential types of oscillations. The models of periodic

and chaotic oscillations of di¤erent types were discovered in the middle of the 20th century.

Because the basin of attraction was not cut away with small neighborhoods of equilibria,

these models were dubbed "hidden oscillations" and "hidden attractors" in 2011 [30].

Therefore, the following de�nition should be supplied in order to allow for this class of

attractor.

De�nition 3.3.1 If an attractor�s basin of attraction is not cut o¤ by small regions of

equilibria (stable equilibria point), it is referred to as a "hidden attractor."

The di¢ culty of numerical localization and analytical examination of hidden attractors

has increased signi�cantly in recent years. This occurs because using equilibrium inform-

ation to organize identical passing processes according to the conventional computational

approach is not possible in this situation. As a result, this common method cannot be

used to compute the hidden attractors. Furthermore, since a basin of attraction can be so

small and the hidden attractor�s own dimension can be much smaller than the dimension
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of the considered system, it is not possible in this situation for the integration of trajector-

ies into random initial data to expand hidden attractor localization. Consider some good

examples of hidden attractors.

Example 3.3.1 In 1963, the Lorenz system was the �rst well-known example of a visu-

alization of a chaotic attractor in a dynamical system, corresponding to the excitation of

a chaotic attractor from unstable equilibria..[32]

Consider Lorenz system 8>>>><>>>>:
�
x = a(y � x);

�
y = x(c� z)� y;

�
z = xy � bz:

(3.3)

It�s simulation with standard parameters is a = 10; b = 8
3
; c = 28:(see �gure (3.3))

Figure 3.3: Numerical localization of chaotic attractor in Lorenz system

Example 3.3.2 Consider the behavior of the classical Chua circuit [Chua, 1992]. In the
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dimensionless coordinates, a dynamic model of this circuit is as follows: [32]

8>>>><>>>>:
�
x = a(y � x)� af(x);

�
y = x� y + z;

�
z = �(by + cz):

(3.4)

Here the function

f(x) = �1x+
1

2
(�0 � �1)(jx+ 1j � jx� 1j): (3.5)

For simulation of this system, we use the following parameters: a = 9:35; b = 14:79;

c = 0:016; �0 = �1:1384; �1 = 0:7225:(see �gure (3.4))

Figure 3.4: The numerical localization of chaotic attractor in Chua�s circuit.

Remark 3.3.1 The hidden vs. self-excited classi�cation of attractors was introduced in

connection with the discovery of the �rst hidden Chua attractor. [20]
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3.4 Analytical-Numerical Method for Hidden Attractor

Localization

Recently, new concepts such as self-excited and concealed attractors have been introduced

[28], [29] and [31]. If an attractor�s basin of attraction crosses over with the area around

an equilibrium point, it is referred to as a self-excited attractor; otherwise, it is referred

to as a hidden attractor. For systems with no equilibria, only one stable equilibrium, or

in�nitely many stable equilibriums, for instance, hidden attractors are attractors. It is

particularly challenging to locate a hidden attractor since its basin of attraction does not

overlap with any local communities of equilibrium points. This computational complexity

is where the name "hidden" originates. Leonov et al., [27], [30], and [31] discovered a way

to quantitatively prove their existence. They use this technique in particular for Chua

attractors.

The approach
dX

dt
= HX + �	(�TX); X 2 R3; (3.6)

were H is a constant (n � n)-matrix, �,� are constant n-dimensional vectors, T is a

transposition operation, 	(�) is a continuous piecewise-di¤erentiable scalar function, and

	(0) = 0. De�ne coe¢ cient k
0
of harmonic linearization in such way that the matrix

H0 = H + k
0
��T ; (3.7)

has a pair of purely imaginary eigenvalues �i!0 (!0 > 0) and the rest of its eigenvalues

have negative real parts. We assume that such k
0
exists. Rewrite system (3.6) as

dX

dt
= H0X + �'(�TX); (3.8)

were '(�) = 	(�)�k0�; and introduce a �nite sequence of functions '0(�); '1(�); � � � ; 'm(�)
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such that the graphs of neighboring function 'j(�) and 'j+1(�), (j = 0; � � � ;m� 1), di¤er

slightly from one another, were the function '0(�) is small, and 'm(�) = '(�): Using

a smallness of function, we can apply the method of harmonic linearization (describing

function method) for the system

dX

dt
= H0X + '0(�TX); (3.9)

and determine a stable nontrivial periodic solution X0(t):

For the localization of attractor of original system(3.8), we will follow numerically the

transformation of this periodic solution. All the points of this stable periodic solution are

located in the domain of attraction of the stable periodic solution X1(t) of the system

dX

dt
= H0X + 'j(�TX); (3.10)

With j = 1, or when passing from (3.9) to system (3.10) with j = 1, one can observe the

instability bifurcation destroying the periodic solution. In the �rst case, it is possible to

�nd X1(t) numerically, taking as initial condition of system (3.10) with j = 1, any point

of the stable periodic solution X0(t). Starting from this initial condition, after a transient

phase, the trajectory reaches the periodic solution X1(t). Then, after the computation

of X1(t), it is possible to obtain a periodic trajectory X2(t) of system (3.10) with j = 2

starting from any point of the stable periodic solution X1(t), and so on, to obtain a

periodic solution of system (3.8) if such solution exists.

Remark 3.4.1 In some cases, it is not possible to get such a solution because one observes

at a certain step an instability bifurcation destroying the periodic solution.

Remark 3.4.2 In the case of the Chua attractor, the periodic solution close to the har-

monic one is transformed into a chaotic attractor. This is also the case for multispiral

chaotic attractors from saturated function series, studied in this thesis.
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A linear nonsingular transformation S (X = SY ) can transform system (3.9) to the

form:

To determine the initial condition X0(0) of the periodic solution, a linear nonsingular

transformation S (X = SY ) can transform system (3.9) to the form:

8>>>><>>>>:
�
y1 = �!0y2 + v1'

0(y1 + uT3 Y3);

�
y2 = !0y1 + v2'

0(y1 + uT3 Y3);
�
Y3 = A3Y3 + V3'

0(y1 + uT3 Y3):

(3.11)

Here y1, y2 are scalar values; Y3 is an (n� 2)�dimensional vector, V3 et u3 (n� 2)�dimensional

vector, v1 and v2 are real numbers; A3 is an (n� 2)� (n� 2) matrix, where all of its ei-

genvalues have negative real parts. Without loss of generality, it can be assumed that for

the matrix A3 there exists a positive number d2 > 0 such that

Y t
3 (A3 + At3)Y3 � �2d2 jY3j

2 ; 8Y3 2 Rn�2: (3.12)

In the scalar case, let us introduce the describing function � of a real variable � :

� (�) =

2�=!0Z
0

'(cos(!0t)�) cos(!0t)dt: (3.13)

Theorem 3.4.1 [57]If a positive �0 such that

�(�0) = 0; v1
d�(�)

d�
j�=�0< 0; (3.14)

then for the initial condition of the periodic solution X0(0) = S(y1(0); y2(0); Y3(0))
T at

the �rst step of algorithm we have

y1(0) = �0 +O("); y2(0) = 0; Y3(0) = On�2("); (3.15)
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were On�2(�) is an (n� 2)�dimensional vector such that all its components are O("):

For the stability of X0(t) (where stability is de�ned in the sense that for all solutions with

the initial data su¢ ciently close to X0(0) the modulus of their di¤erence with X0(t) is

uniformly bounded for all t > 0) it is su¢ cient to require the following condition is true

b1
d�(�)
d�

j�=�0< 0.

In practice, to determine k
0
and !0 one uses the transfer functionW (�) of system (3.6) :

W (�) = �T (H � �I)�1�; (3.16)

where � is a complex variable. The number !0 is determined from the equation ImW (i!0) =

0 and k
0
is calculated then by the formula k

0
= �ReW (i!0)�1:

3.4.1 Example (Hidden Attractor for Chua�s System)

In Chua�s circuit, a hidden chaotic attractor was found for the �rst time in 2010

[Kuznetsov et al., 2011] [27]-[28], three-dimensional dynamical system�s description. The

application of the aforementioned approach to the localization of a hidden chaotic attractor

in Chua�s system will be shown below. The authors used the method above to discover a

hidden attractor. For this purpose, write Chua�s system (3.4-3.5) in the form (3.6)

dX

dt
= HX + �	(�TX); X 2 R3: (3.17)

Here,

H =

0BBBB@
�a(�1 + 1) a 0

1 �1 1

0 �b �c

1CCCCA ; � =

0BBBB@
�a

0

0

1CCCCA ; � =

0BBBB@
1

0

0

1CCCCA
and 	(�) = '(�):
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Introduce the coe¢ cent k
0
and small parameter ", and represent system (3.17) as

dX

dt
= H0X + �"'(�TX); (3.18)

where

H0 = H + k
0
��T =

0BBBB@
�a(�1 + 1 + k

0
) a 0

1 �1 1

0 �b �c

1CCCCA ; �H01;2 = �i!0; �H03 = �d;

By nonsingular linear transformation X = ZY system (3.18) is compressed into the form

dy

dt
= Py + v"'(uTY ); (3.19)

where

P =

0BBBB@
0 �!0 0

!0 0 0

0 0 �d

1CCCCA ; v =

0BBBB@
v1

v2

1

1CCCCA ; Y =

0BBBB@
y1

y2

Y3

1CCCCA and u =

0BBBB@
1

0

�h

1CCCCA
The transfer functionWP (�) of system (3.19) can be represented as

WP (�) =
�v1�+ v2!0
�2 + !20

+
h

�+ d
:

Further, using the equality of transfer functions of systems (3.18) and (3.19), we obtain

WP (�) = �T (H0 � �I)�1�:
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This implies the relations indicated below:

k
0
=

�a(�1+�1c+c)+!20�c�b
a(1+c)

;

d =
a+!20�b+1+c+c2

1+c
;

h = a(c+b�(1+c)d+d2)
!20+d

2 ;

b1 =
a(c+b�!2�(1+c)d)

!20+d
2 ;

b2 =
a((c+b)d+(1+c�d)!20)

!0(!20+d2)
:

(3.20)

Since system (3.18) can be reduced to the form (3.19) by the nonsingular linear

transformation X = ZY , for the matrix S the following relations

P = Z�1HZ, b = Z�1�; cT = �TS; (3.21)

are true. The entries of this matrix are obtained by solving these matrix equations:

Z =

0BBBB@
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

1CCCCA :

Here

Z11 = 1; Z12 = 0; Z13 = �h;

Z21 = �1 + 1 + k
0
; Z22 =

�!0
a
; Z23 = �

h(a(�1 + 1 + k
0
)� d

a
;

Z31 =
a(�1 + k

0
)� !20

a
; Z32 =

a(b+ c)(�1 + k
0
) + ab+�!20

a!0
;

Z33 = h
a(�1 + k

0
)(d� 1) + d(1 + a� d)

a
:

We determine initial data for the �rst step of a multistage localization procedure for small
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enough ", as

X(0) = ZY (0) = S

0BBBB@
�0

0

0

1CCCCA =

0BBBB@
�0Z11

�0Z21

�0Z31

1CCCCA : (3.22)

The starting condition for the system (3.4-3.5) is provided by this.

X0(0) = (x0(0) = �0; y
0(0) = �0(1 + �1 + k

0
); z0(0) = �0

a(1 + �1)� !20
a

): (3.23)

Consider system (3.18) with the parameters

a = 8:4562; b = 12:07:32; c = 0:0052; �0 = �0:1768; �1 = �1:1468: (3.24)

There are three equilibria in the system for the parameter values under consideration:

a locally stable zero equilibrium and two saddle equilibria. Let�s now employ the hidden

attractor localization process described above to Chua�s system (3.17) with parameters

(3.24). Calculate a beginning frequency and a harmonic linearization coe¢ cient for this.

!0 = 2:0392; k
0
= 0:2098: (3.25)

Then, we compute solutions of system (3.18) with the nonlinearity "(	(x)� k
0
x)

sequentially increasing " from the value "1 = 0:1 to "10 = 1 with step 0:1. By (3.20) and

(3.23), the initial data can be obtained

x(0) = 9:4287; y(0) = 0:5945; z(0) = �13:4705;

for the initial phase of a multi-stage process. For " = 0:1, the computation approaches the

beginning oscillation X1(t) following a transitory process. Additionally, the set a hidden

is calculated for the original Chua�s system (3.17) using numerical methods and the
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sequential transformation Xj(t) with increasing parameter "j. In Fig.(3.5) , this collection

is displayed.

Figure 3.5: Hidden attractor localization
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Chapter 4

Hidden Modalities of Spirals of

Chaotic Attractor via Saturated

Function Series and Numerical

Results

4.1 Introduction

In 2016, Menacer et al. [39] discovered a number of hidden bifurcations in the

multispiral Chua system using a di¤erent application of the Kuznetsov and Leonov tech-

nique.presenting a sine function (T.Menacer 2016) [39]. Within the system (4.1-4.2) shown

in [36], the two parameters p and q determine the number of spirals. according to the equa-

tion N = p + q + 2 . It is because p and q are integers. It is impossible to continuously

change it, making observation impossible. the attractors�bifurcation into m and m + 2

spirals when the parameters P and q shift. Additionally, non-integer real numbers cannot

be used for p and q.

When we �x p and q and introduce the new control parameter " the nonlinear part,
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in order to discover the hidden bifurcations, governed by a homotopy parameter " while

keeping p and q constant. This element when �uctuates between 0 and 1, when " takes a

value of 0 for the non-linear component of system (4.1-4.2) is unpaired, and a cycle-shaped

attractor is produced. However, if " equal to 1, we discover the original system�s attractor

(4.1-4.2), with spirals, where m = p + q + 2. The number of spirals increases in direct

proportion to the di¤erence between these two values of ". For each value discovered

the new parameter, a technique is used during the integration operation to have odd or

prior to locating the asymptotical attractor, for even numbers of spirals, the number of

spirals grows incrementally until it reaches the maximum number that matches. The value

guaranteed by " the unveiling of the modalities of an odd number spirals

4.2 1-D n-Scroll Chaotic Attractors From Saturated

Function Series

Among the various techniques for producing n�spiral (n � 3) chaotic attractors [49]-

[57], for the one in [36], which is based on saturated function series (Fig. (4.1)) a controller

is added to a linear system

8>>>><>>>>:
�
x = y;

�
y = z;

�
z = ��x� �y � z + r1f(x; k;h; p; q);

(4.1)

where

f(x; k;h; p; q) =

8>>>>>>><>>>>>>>:

y1;k if x > qh+ 1;

y2;k;i if jx� ihj � 1;�p � i � q;

y3;k;i if l1;i < x < l2;i and � p < i < q � 1;

y4;k if x < �qph� 1;

(4.2)

with
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Figure 4.1: Saturated function series with k = 9; h = 18; p = 2; q = 2

Figure 4.2: The 6-spiral attractor generated by Eqs.(4.1 )and (4.2) with k=9, h=18,
p=q=2 and a=b=c=d1=0,7

l1;i = ih+1 and l2;i = (i+ 1)�h�1; y1;k = (2q + 1) k; y2;k;i = k (x� ih) ; y3;k;i = (2i+ 1) k

and y4;k = �(2p+ 1)k:

Parameters p; q; h and k are integers, and �; �; ; r1 are real numbers.

Throughout this study, set the parameter values as � = � =  = r1 = 0:7. The number

m of spirals.

m = p+ q + 2 (4.3)

For k = 9; h = 18; p = q = 2, a 6-spirals attractor is generated as the asymptotic attractor

of system (4.1-4.2), see Fig. (4.2).

* Attraction Basin of the 6 Spirals Attractors

For our system (4.1-4.2) we have a 2(p+ q) + 3 equilibrium point are situated along
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the x�axis, and fall into two di¤erent categories.

Rx =

�
�(2p+ 1)r1k

�
;
(�2p+ 1)r1k

�
; : : : ;

(2q + 1)r1k

�

�
Sx =

�
�pkr1(h� 2)

kr1 � �
;
�(p+ 1)kr1(h� 2)

kr1 � �
; : : : ;

qkr1(h� 2)
kr1 � �

�

For all equilibria in tow sets Rx and Sx are unstable points (saddle points) (for more

information see [36]).

When we took p = q = 2 so we have a 11 equilibrium points

(�45; 0; 0); (�27; 0; 0); (�9; 0; 0); (0; 0; 0); (27; 0; 0);

(45; 0; 0); (74 : 667; 0; 0); (149; 334; 0; 0); (224; 0001; 0; 0)

(three double points), are saddle points.

If the attraction in the chaotic attractors�basin does not cross paths with the unbounded

neighborhood of equilibrium points, the chaotic attractors are known as hidden attractors.

Since all of the points in our system are unstable, we haven�t hidden attractors, thus the

attraction basin is what we�re interested in. We took six points because we saw that

the same outcomes appeared in all the �gures. The yellow region represents the chaotic

attractors�attraction basin, while the cyan region shows the motion that starts in these

initial state regions and will diverge from equilibrium points. This is seen in �gures below:
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Attraction basin of 6 spirals attractors cross

section passing through four equilibrium points

(45,0,0); (-45,0,0), (-9, 0,0),(27,0,0).

Attraction basin zooming in around (-9,0,0)

equilibrium point

1000)

27:jpg

Attraction basin zooming in around (224.0001,0,0)

equilibrium point

Attraction basin zooming in around (0; 0;

0) equilibrium point
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4.3 Recovering Hidden Bifurcation in a Multispiral

Chaotic Attractor

To prove this obstacle, Menacer et al. [39] presented a novel procedure for uncover-

ing hidden bifurcations based on the idea of Leonov and Kuznetsov [27] for investigating

hidden attractors (i.e. homotopy and numerical continuation, see chapter 2. This pro-

cedure is novelly applied to multi-scroll chaotic attractors from saturated function series.

We recall this procedure in this section in which the values of parameters are �xed at

a = b = c = d1 = 0:7; k = 9; h = 18.

Rewrite system (4.1-4.2) to the form

dX

dt
= HX + �	(�TX); X 2 R3: (4.4)

Here

H =

0BBBB@
0 1 0

0 0 1

�� �� �

1CCCCA ; � =

0BBBB@
0

0

r1

1CCCCA ; � =

0BBBB@
1

0

0

1CCCCA ;

and 	(�) = '(�):

Introduce the coe¢ cent k
0
and small parameter ", and represent system (4.4) as

dX

dt
= H0X + �"'(�TX); (4.5)

where

H0 = H + k
0
��T =

0BBBB@
0 1 0

0 0 1

k
0
d1 � � �� �

1CCCCA ; �H01;2 = �i!0; �H03 = �d;
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By nonsingular linear transformation X = ZY system (4.5) is compressed into the form

dy

dt
= Py + v"'(cTY ); (4.6)

where

A =

0BBBB@
0 �!0 0

!0 0 0

0 0 �d

1CCCCA ; v =

0BBBB@
v1

v2

1

1CCCCA ; Y =

0BBBB@
y1

y2

Y3

1CCCCA and c =

0BBBB@
1

0

�h

1CCCCA :

The transfer functionWP (�) of system (4.6) can be represented as

WP (�) =
�v1�+ v2!0
�2 + !20

+
h

�+ d
:

Further, using the equality of transfer functions of systems (4.5) and (4.6), we obtain

WP (�) = �T (H0 � �I)�1�:

This indicates the relationships listed below :

k
0
=

��!20d
r1

;

d = ;

h = �r1
!20+d

2 ;

v1 =
�r1
!20+d

2 ;

v2 =
�!20

!0(!20+d2)
:

(4.7)

Since system (4.5) can be reduced to the form (4.6) by the nonsingular linear

transformation X = ZY , for the matrix Z the following relations

P = Z�1HZ, v = Z�1�; cT = �TZ; (4.8)
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are true. The entries of this matrix are obtained by solving these matrix equations:

Z =

0BBBB@
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

1CCCCA :

Here

Z11 = 1; Z12 = 0; Z13 = h;

Z21 = 0; Z22 = �!0; Z23 = dh;

Z31 = �!30; Z32 = 0; Z33 = d2h:

For small enough " we determine initial data for the �rst step of multistage localization

procedure, as

X(0) = ZY (0) = S

0BBBB@
�0

0

0

1CCCCA =

0BBBB@
�0Z11

�0Z21

�0Z31

1CCCCA : (4.9)

The starting condition for the system (4.4) is provided by this.

X0(0) = (x0(0) = �0; y
0(0) = 0; z0(0) = ��0!30): (4.10)

4.3.1 Numerical Results of Hidden Bifurcations

One acquisition is required for the value of the parameters de�ned in this study :

k
0
= 0:3; d = 0:7; h

0
= �0:5882; v1 = �0:5882; v2 = �0:4901; so this is the matrix Z

Z =

0BBBB@
1 0 0:5882

0 �0:84 �0:41174

�0:5927 0 �0:2882

1CCCCA :
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Via theorem (3.4.1), for small enough " we computed initial data for the �rst step of the

multistage localization procedure.

X(0) = ZY (0) = Z

0BBBB@
�0

0

0

1CCCCA =

0BBBB@
�0Z11

�0Z21

�0Z31

1CCCCA : (4.11)

This provides the system�s (3.6) starting data.

X0(0) = x0(0) = �0; y
0(0) = 0; z0(0) = ��0!30: (4.12)

We now put the above-described localization process to use on the system (4.1-4.2) with

multiple spiral attractors. In order to do this, we compute the initial frequency shown

below !0 and a coe¢ cient of harmonic linearization:

!0 = 0:84; k
0
= 0:3: (4.13)

Then, starting with step 0:4, we calculate the solutions of system 4.5 with the non-

linearity "'(x) = "( (x)� k1x) by increasing " sequentially from " = 0:4 to " = 1. If

the stable periodic solution X1(t) corresponding to the small value " = 0:4 is also close

the harmonic one then, the solution X2(t) can be calculated numerically by seeking one

trajectory of system (3.6) with " = 0:4 picking as initial point X1(tmax) where tmax is the

recent value of the integration time. We survive by increasing the parameter " and using

the same numerical procedure to calculate X3(t); X4(t); X5(t); � � � ; X i(t) � � � ;, which are

system (4.1-4.2) solutions for speci�c initial data. We obtain detailed data for the solutions

for increasing values of " as shown in the tow tables (4.1-4.2).

So, from the tow tables (4.1-4.2), we obtain the solutions X1(0) with one spiral to

X4(0) (see �gures (4.3-4.4). In each �gure, there is a variant even number of spirals in the
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Table 4.1: : Initial data according to the values of epsilon for 6 spirals
Values of " X i(0) x0 y0 z0
0:4 X1(0) = X0(tmax) �0:8 0 0:4742
0:6 X2(0) = X1(tmax) �1:6412 �0:8137 �2:4791
0:95 X3(0) = X2(tmax) �11:8094 2:6215 4:3874
0:98 X4(0) = X3(tmax) 14:1195 2:3715 �4:0961
0:99 X5(0) = X4(tmax) 20:597 �2:8517 4:9190
1 X6(0) = X5(tmax) �0:5411 �0:2490 �6:2018

Table 4.2: : Initial data according to the values of epsilon for 4 spirals
Values of " X i(0) x0 y0 z0
0:4 X1(0) = X0(tmax) �1:78 0 1:253
0:6 X2(0) = X1(tmax) �0:6904 0:5262 �2:6066
0:95 X3(0) = X2(tmax) 4:8838 �3:3862 0:6216
0:98 X4(0) = X3(tmax) 18:5373 �0:3588 �1:7539
1 X5(0) = X4(tmax) �11:2090 �4:0556 1:1964

attractor. The number of spirals increases by two at each step, as shown on table (4.3)

from 1 to 6 spirals (respectively 4 spirals see the table (4.4) and �gure (4.3-4.4 ). The

values of " these two tables contain all of the bifurcation values.

Table 4.3: : Values of the parameter epsilon at the bifurcation points for p = q = 2
Values of " 0:4 0:6 0:95 0:98 0:99 1

Number of spirals 1 2 4 6 6 6
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Table 4.4: : Values of the parameter epsilon at the bifurcation points for p = q = 2
Values of " 0:4 0:6 0:95 0:98 1

Number of spirals 1 2 4 4 4

Figure 4.3: The bifurcation points for p = q = 2

4.3.2 The In�uence of the Integration Duration Procedure for

Unveiling Hidden Modalities of Odd Number of Spirals

We previously recalled in section 4 that the hidden bifurcation track�s attractors

process an even number of spirals. The hidden modalities of an odd number of spirals are

revealed using a novel technique that we describe in this section. The system (4.1-4.2)

integration time serves as the foundation for this methodology. Through the use of this

new method we have �xed " and replicated the integration time tmax. Before reaching the

even number of spirals asymptotical attractor, which is accessible during the integration

process. As soon as the number of spirals has multiplied to the highest number that

satis�es the value set by ", we stop.

To study the e¤ect of this integration duration on the base of this procedure, we repeat
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Figure 4.4: The bifurcation points for p = q = 1

the same procedure for all values of table (4.1), we are notice the change of spiral number

and we summarize our results in table (4.3.2) and �gures (numerical example 6 and 4

spirals) (4.5-4.6-4.7-4.8-4.9-4.10)
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Figure 4.5: 1 spiral for " = 0:4
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Figure 4.6: The increasing number of spirals for " = 0:6 and various values of tstepmax

Figure 4.7: The increasing number of spirals for " = 0:95 and various values of tstepmax
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Figure 4.8: The increasing number of spirals for " = 0:98 and various values of tstepmax
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Figure 4.9: The increasing number of spirals for " = 0:99 and various values of tstepmax
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Figure 4.10: The increasing number of spirals for " = 1 and various values of tstepmax
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Chapter 5

Symmetries in Hidden Bifurcation

Routes to Multiscroll Chaotic

Attractors Generated by Saturated

Function Series

5.1 Introduction

Due to its potential uses in numerous real-world technologies, the production

of multi-spiral chaotic attractors has received a great deal of attention over the last three

decades. For a survey, see [35]. Several techniques have been proposed for creating

multidirectional and multi-spiral chaotic attractors, including piecewise linear functions,

nonlinear modulating functions, and electronic circuits (step, hysteresis, and saturation

circuits). Even though the bulk of these multi-spiral generations have been known for a

long time, bifurcation theory ([35]-[39]) has only lately been used to study them. The

number of spirals (or scrolls) for any known multiscroll is a �xed integer that depends on

one or more discrete characteristics. No bifurcation has been studied thus far. Menacer et
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al. [39] introduced hidden bifurcations, yielding multispirals in a family of systems (4.6)

with a continuous bifurcation parameter, changing the paradigm of discrete parameters.

The study of multisprals can thus be conducted using all the established theories of

dynamical

systems and associated potent analytical techniques. The hidden attractor

theory developed by Leonov et al. ([27]-[28]) serves as the foundation for this hidden

bifurcation theory.

The investigation of hidden bifurcation paths in 1�D multi scroll chaotic attractors

produced by saturated function series is the main topic of this chapter. This chapter

investigates multi-spiral chaotic attractors produced by saturated function series via con-

cealed bifurcation paths. The approach used by Menacer et al. (2016) [39] for Chua

multi-spiral attractors to locate such hidden bifurcation routes (HBR) depends on two

parameters.

These HBR are distinguished by coding the sequence in which the spirals emerge under

the supervision of the two parameters and the maximum range extension of their attract-

ors. These HBR also exhibit intriguing symmetries with relation to the two parameters.

5.2 Models and Properties of Bifurcation Routes

5.2.1 Numerical Calculation of Two hidden Bifurcations Routes

This chapter aims to investigate the hidden bifurcation paths and symmetries of the

1 � D multispiral attractors proposed in chapter 3. First, two instances of these covert

bifurcation pathways are demonstrated, and the appearance of the spirals is made clear.

Consider the system (4.1-4.2) with parameter values

� = � =  = r1 = 0; 7:
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Now, the localization procedure described above is applied to system (4.1) with multiple

spiral attractors. For this purpose, the following starting frequency !0 and a coe¢ cient of

harmonic linearization k
0
are computed, as explained in the chapter 3 :

!0 = 0:8366; k
0
= 0:3:

Then, the solutions of system (4.5), with the nonlinearity "'(x) = "(	(x)� k
0
x)

are computed by increasing sequentially from the value " = 0:1 to " = 1, with step 0:1:

For p = 0; q = 4, h = 20 and k = 10, using (4.10), one obtains the initial conditions

x0(0) = 203:2; y0(0) = 0; z0(0) = �119:01;

whereas in the case of p = 2 and q = 3, with the same values of h and k the following

initial conditions are obtained :

x0(0) = 249; y0(0) = 0; z0(0) = �145:83:

The method outlined in section 3 produces the values of the parameter at the points

of bifurcation, where the attractor increases the number of spirals from 1 to 6 spirals

(7 spirals, respectively), as shown in tables 5.1 and 5.2. Be aware that instance 7 dif-

fers from case 6 in that the bifurcations appear in the following order 1; 2; 4; 6;and 7;

respectively depending on the values of ", as indicated in the images 5.2-5.3-5.4-5.5.

Table 5.1: : Values of the parameter epsilon at the bifurcation points for p = 0 and q =
4 (6 scrolls)

Values of " 0:41 0:6
Number of spirals 1 spiral 2 spirals
Values of " 0:95 0:985
Number of spirals 3 spirals 4 spirals
Values of " 0:988 0:99
Number of spirals 5 spirals 6 spirals
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Table 5.2: : Values of the parameter epsilion at the bifurcation points for p = 2 and q =
3 (7 scrolls)

Values of " 0:42 0:6
Number of spirals 1 spiral 2 spirals
Values of " 0:95 0:98
Number of spirals 4 spirals 6 spirals
Values of " 0:99
Number of spirals 7 spirals

5.2.2 Maximal Attractor Range Extension and Coding Order of

Spirals Appearance

Both tables (5.1) and (5.2) summarize the appearance of spirals versus the values of ":

�gs. 5.2 to 5.5 display some interesting information: the order of spiral appearance and

the maximal attractor range extension. In both routes, the parameter values of function

(4.2) are k = 10 and h = 20. These parameters play a signi�cant role in the sizes of the

attractors. The maximal attractor range extension (MAREp;q) is the size of the

x-projection of the considered attractor de�ned by parameter values p and q, when " = 1

and as t ! +1. For example, for the �rst route de�ned in (5.1), one can see from �g

5.4 that the minimum value of the range of the variable x of the attractor is �20, and

the maximum value is 100:Therefore, in this case, MARE0;4 = [�20; 100], and its length

is equal to 120 for 6 scrolls. For the second route in (5.2), the attractor spans between

�60 and 80 (5.5) having MARE2;3 = [�60; 80] with a length equal to 140 for 7 scrolls. In

both cases, the length of MARE is equal to the number of scrolls �20(i:e:(q+p+2)�20,

following (3)).

Moreover, when " increases (�gs 5.2 and 5.3), the size of each spiral is expanding.

It is approximatively equal to (17 � ") + 3. By de�ning the interval [v� 20; w� 20]f"g as

[v � 20; w � 20]f"g = [v � (17� "+ 3); w � (17� "+ 3)] (5.1)
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The initial spiral accomplishes the interval. [0; 20]f"g. The second scroll accomplishes

the interval and is symmetrical to the �rst. [�20; 20]f"g. Now, introduce the coding

[0; 20]f"g = L (L stands for the preceding interval�s left side.) to indicate the evolution of

such spiral look. The third spiral appears after the second one and is part of the interval

[20; 40]f"g, the fourth to the interval [40; 60]f"g, the �fth to the interval [60; 80]f"g, and the

last to the interval [80; 100]f"g.

The coding of this hidden bifurcation route (HBR), which ends with the interval

[�20; 100]f"g is HBR0;4 = [0; 20]f"g�L�R�R�R�R (R stands for the right of the pre-

vious interval).

As the value of " is not important for the search of symmetries of the hidden

bifurcation routes, it is omitted and denote simply HBR0;4 = [0; 20]f"g�L�R�R�R�R

by HBR0;4 = [0; 20]f"g�L�R�R�R�R.

The beginning of the second route (�gs. 5.4 and 5.5) is the same ([0; 20]f"g�L).

But the third and fourth spirals simultaneously appear, extending the interval. [�20; 20]f"g

to [�40; 40]f"g. Denote this expansion by [0; 20]f"g = L = 2Sym. The �fth and sixth spirals

reappear next to the preceding attraction in a symmetrical pattern. The �nal spiral is a

part of the interval. [60; 80]f"g.

The coding of this second route, which ends with the interval [�60; 80]f"g, is HBR2;3 =

[0; 20]f"g�L�2Sym�2Sym�R or simply HBR2;3 = [0; 20]�L�2Sym2�R.

5.3 Symmetries of the Hidden Bifurcation Routes

For the values of n in eq (4.3), take into account all possible values for p and q, ranging

from 3 to7, and some values of p and q for n between 8 and 12.
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5.3.1 Basic Cell

The numerical tests demonstrate that either the coding or the �rst two spirals come

�rst.

([0; 20]f"g�L)or([�20; 0]f"g�R);

as displayed in �gs. 5.6 and 5.7, for the same values of h and k. Therefore, it is called the

basic cell and denoted as B, either

([0; 20]f"g�L)or([�20; 0]f"g�R):

The generalized notations used for the coding are B and the following ones:

2syms = 2Sym�2Sym� � � ��2Sym; s times;

Lt = L�L : : :�L; t times;

Ru = R�R : : :�R; u times:

5.3.2 Symmetries

For all values of, the hidden bifurcation pathways have all been mathematically calcu-

lated. p and q, giving the values of n in eq. (4.3) ranging from 3 to 7. The results (MARE

and coded bifurcation routes) are displayed in black color in table 5.1. It was found that

MAREp;q = [�20� 20� p; 20 + 20� q]: (5.2)

Additionally, each hidden bifurcation route�s coding is provided by
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HBRp;q =

8>>>><>>>>:
B=2syms if p = q;

B=2syms=Lp�s if p > q;

B=2syms=Rq�s if p < q;

(5.3)

which formula controls how many spirals there are and how they appear in the order that

they do, where s = min(p; q):In table 5.1, HBRp;q and MAREp;q, which are highlighted

in red and match both of the previous formulations (5.2-5.3). It is evident from these

numerical �ndings that the �rst diagonal exhibits considerable symmetry. This symmetry

is de�ned for HBRp;q by the change of R to L when p is changed in q, and vice versa.

Moreover, if MAREp;q = [a
0
; b

0
] then MAREq;p = [b

0
; a

0
]:

Figure 5.1: Symmetries of the hidden bifurcation routes : HBRp;q andMAREp;q, numer-
ically computed black) and inferred from Eqs. (5.2) and (5.3)(red) }
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Figure 5.2: The increasing number of spirals of system (4.5) according to increasing "
values, when p = 0 and q = 4, k = 10 and h = 20. (a) : The �rst scroll for " = 0:41, (b) :
The second scroll on the left for " = 0:6; (c) : the third scroll on the right for " = 0:95:The
horizontal axis is the x-axis, the vertical axis is y-axis.
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Figure 5.3: The increasing number of spirals of system (4.5) according to increasing "
values, when p = 0 and q = 4, k = 10 and h = 20. (a) : The fourth scroll on the right
for " = 0:985, (b) : The �fth scroll on the right for " = 0:988; (c) : the sixth scroll on the
right for " = 0:99:The horizontal axis is the x-axis, the vertical axis is y-axis
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Figure 5.4: he increasing number of spirals of system (4.5) according to increasing "
values, when p = 2 and q = 3, k = 10 and h = 20. (a) : The �rst scroll on the right for
" = 0:42, (b) : The second scroll on the left for " = 0:6; (c) : the third and fourth scrolls :
two left-right symmetrical for " = 0:95:The horizontal axis is the x-axis, the vertical axis
is y-axis.
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Figure 5.5: The increasing number of spirals of system (4.5) according to increasing "
values, when p = 2 and q = 3, k = 10 and h = 20. (a) : The �fth and sixth scrolls : two
symmetrical left-right for " = 0:98, (b) : The seventh scroll on the right for " = 0:99: The
horizontal axis is the x-axis, the vertical axis is y-axis.
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Figure 5.6: he �rst scroll between �16 and 0 for the values of the parameters p = 0 and
q = 4 with the parameters values k = 9 and h = 18

Figure 5.7: The second scroll is in symmetry with the �rst one, generated between 0 and
20 (�20; 0) for the values of the parameters p = 0 and q = 4 with the parameters values
k = 9 and h = 18
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General Conclusion

We have seen in this thesis that attractors and bifurcations of chaotic systems, we

divided it into two parts, the �rst part consists of a preliminary and second chapter on

the basic notions of dynamical systems, bifurcation and chaos, a third chapter on hidden

attractor their historical, de�nitions, properties. After that, we presented Leonov method

for investigated hidden attractor where the method discovred in 2010. It ends with �rst

application in hidden attractor by Leonov, et al. in chua system. While the second

part was devoted to the study, a hidden bifurcation via saturated function serie, �rst ,

we presented in fourth chapter a new idea about hidden modalities of spirals of chaotic

attractor

where, the gap between these two values " of grows directly proportionate to the number of

spirals. Before �nding the asymptotical attractor, for even numbers of spirals, a strategy is

employed during the integration operation to have odd or gradually increase the number of

spirals until it reaches the maximum number that matches. The value " promised by the

disclosure of an odd number spirals�modalities.The second, we discussed a symmetries

in hidden bifurcation routes (HBR); the sequence in which the spirals arise under the

control of the two parameters and the maximum range extension of their attractors serve

as markers for these HBR. Interesting symmetries between the two parameters may be

seen in these HBR as well.

It can be concluded that ,hidden bifurcation a new and good idea for all study where

has several applications in various �elds such as biology, chemistry, telecommunications
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Conclusion

(information security) and physical sciences this has been widely studied in the last seven

years. We encoutered di¢ culties in proving our results especially numerical in code Matlap

but in last we found the results, it was a perfuct results.

Our next project and will be the study of the hidden bifurcation other systems and

particular the di¤erent systems with other methods.
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Annexe A: Program in MATLAB for

Hidden Bifurcation Saturated

Function Series.

function dy = Essa5i(~,y)

a=0.7;

b=0.7;

c=0.7;

d1=0.;

k=10;

p=2;

q=2;

h=20;

%s=14.0;

%a2=0.8;

%b2=0.72;

%c2=0.6;

k1=-0.33;

eps =1;

if y(1)<-p*h-1
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Annexe A : Program in MATLAB for Hidden bifurcation Saturated Function Series.

H= -(2*p+1)*k;

end

for i=-p: q-1

if (y(1)>i*h+1)& & (y(1)<(i+1)*h-1)

H= (2*i+1)*k;

end

end

for i=-p: q

if abs(y(1)-i*h)<=1

H= k*(y(1)-i*h)+2*i*k;

end

end

if y(1) > q*h+1

H=(2*q+1)*k;

end

dy = double(zeros(3,1)); % a column vector

dy(1) =y(2);

dy(2) =y(3);

dy(3) = -a*y(1)-b*y(2)-c*y(3)+k1*d1*y(1)+eps*d1*H-eps*k1*d1*y(1);

%dy(3) =-a*y(1)-b*y(2)-c*y(3)+d1*H;

end

%1/s*y

%(-x+r*y-r*y*z^2)/(1+w^2)

%-y-b*z+z*y

%-y-c*w+w*y
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clear all

close all

clc

options = odeset(�AbsTol�,1e-11,�RelTol�,1e-6);

%C=10a?=x?=39.97;y?=39.97�0:031084 = 1:2424; z? = 39:97� (�1:2946) = �51:745

%C=8a?=x?=31.99;y?=31.99�0:031084 = 0:99438; z? = 31:99� (�1:2946) = �41:414

%C=2a?=x?=8.13,y?=8.13�0:031084 = 0:25271z? = 8:13� (�1:2946) = �10:525

%C=4a?=x?=16.05;y?=16.05�0:031084 = 0:49890; z? = 16:05� (�1:2946) = �20:778

%c=1 (2-scroll),x(0)=4.22,y(0)=0.13117,z(0)=-5.4632

%C=3x(0)=12.09 ,y(0)=0.37581,z(o)=-15.652.

%c=6 (7-scroll) ? x(0)=24, y(0)=0.74602,z(0)=-31.07

%C=5a?=x?=20.02;y?=20.02�0:031084 = 0:6223; z? = 20:02� (�1:2946) = �25:918:

%C=7,C=x(0)=28 ,y(0)=0.87035,z(o)=-36.249.

%C=9,C=x(0)=36 ,y(0)=1.119,z(o)=-46.606.

%C=11a?=x?=43.95;y?=1.3661=,z?=-56.898

%C=12a?=x?=47.95;y?=47.95�0:031084 = 1:4905; z? = 47:95� (�1:2946) = �62:076

%[T1,Y] = ode45(@Chuanew3,[0 30000],[47.95 1.4905 -62.076],options);%c=12

%[T1,Y] = ode45(@Chuanew3,[0 100000],[39.97 1.2424 -51.745],options);%c=10

%[T1,Y] = ode45(@Chuanew3,[0 100000],[31.99 0.99438 -41.414],options);%c=8

%[T1,Y] = ode45(@Chuanew3,[0 100000],[24 0.74602 -31.07],options);%c=6

%[T1,Y] = ode45(@Chen3,[0 5000],[12.09 0.37581 -15.652],options);%c=3

%[T1,Y] = ode45(@Chuanew3,[0 50000],[16.05 0.49890 -20.778],options);%c=4

%[T1,Y] = ode45(@Chen3,[0 10000],[8.13 0.25271 -10.525],options);%c=2

%[T1,Y] = ode45(@Chuanew3,[0 350000],[43.95 1.3661 -56.898],options);%c=11

[T1,Y] = ode45(@Essa5i,[0 1500000],[10.8914 3.6739 -2.1975],options); %c==1

%[T1,Y] = ode45(@Chuanew3,[0 10000],[12.09 0.37581 -15.652],options);%c=6

%[T1,Y] = ode45(@Chuanew3,[0 10000],[20.02 0.6223 -25.918],options);%c=5
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%[T1,Y] = ode45(@Chuanew3,[0 100000],[28 0.87035 -36.249],options);%c=7

%[T1,Y] = ode45(@Chuanew3,[0 10000],[36 1.119 -46.606],options);%c=9

%plot(T2,YY(:,1),�-�,T,YY(:,2),�-.�,T,YY(:,3),�.�)

N=size(Y);

nn=round(9*N(1)/10);

for i=1:N(1)-nn

y1(i)=Y(i+nn,1);y2(i)=Y(i+nn,2);y3(i)=Y(i+nn,3);

end

yy=Y(N(1),:)

%�gure(1)D

%plot3(y1,y2,y3,�b�);grid

%�gure(2)

%for i=0:2

% xe1=4*1.3*i;

% ye1=0;

% ze1=-xe1;

%hold on

%plot(xe1,ye1,�*r�)

% xe2=-4*1.3*i;

%ye2=0;

%ze2=-xe2;

%hold on

%plot(xe2,ye2,�*r�)

%end

%hold on

%plot(y1,y2,�b�)% ��gure(3)

%plot(y1,y2,�r�)
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�gure(4)

plot(y1,y2,�b�)

�gure(5)

plot(y2,y3,�b�)

�gure(6)

plot3(y1,y2,y3,�b�)

�gure(8)

plot(y1,y3,�b�)

%�gure(3)

%plot(Y(:,1),Y(:,3),�b�);grid

%�gure(4)

%plot(Y(:,2),Y(:,3),�b�);grid
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Abstract 

The hidden bifurcation idea was discovered by the core idea of the 

Leonov and Kuznetsov method for searching hidden attractors (i.e., 

homotopy and numerical continuation) differently in order to uncover 
hidden bifurcations governed by a homotopy parameter ɛ while 

keeping the numbers of spirals. This idea was first discovered by 

Menacer et al. In 2016, in the multispiral Chua system,  

The first part of this thesis is devoted to providing a basic 
understanding of dynamic systems and chaos, followed by an 

introduction to the hidden attractors, history, and definitions. An 

effective procedure for the numerical localization of hidden attractors 
in multidimensional dynamical systems has been presented by Leonov 

et Kuznetsov. In this part, we end with the study of hidden attractors 

in the Chua system. 

The second part of the analysis consists of first, hidden modalities of 
spirals of chaotic attractor via saturated function series and numerical 

results. Before reaching the asymptotic attractor which possesses an 

even number of spirals, these latter are generated one after one until 
they reach their maximum number, matching the value fixed by ɛ. 

Then, we end up by symmetries in hidden bifurcation routes to multi-

scroll chaotic attractors generated by saturated function series. The 
method to find such hidden bifurcation routes (HBR) depends upon 

two parameters. 

Key-words 

Dynamical Systems, Chaos, Hidden attractors, Hidden bifurcation, 

modality of an odd number of spirals, Saturated function series, multi-spirals 

chaotic attractor, Symmetry. 

 



Résumé 
L'idée de bifurcation cachée a été découverte par l'idée centrale de la méthode de 

Leonov et Kuznetsov pour rechercher différemment les attracteurs cachés (c'est-à-

dire l'homotopie et la continuation numérique), afin de découvrir les bifurcations 

cachées, régies par un paramètre d'homotopie ε tout en gardant le nombre de 

spirales, cette idée a été découverte par Menacer et al. En 2016 dans le système 

Chua multispirale.  

La première partie de cette thèse est consacrée à fournir une compréhension de 

base des systèmes dynamiques et du chaos, suivie d'une introduction aux 

attracteurs cachés, à l'histoire et aux définitions. Une procédure efficace pour la 

localisation numérique des attracteurs cachés dans les systèmes dynamiques 

multidimensionnels a été présentée par Leonov et Kuznetsov. Dans cette partie, 

nous terminons par l'étude des attracteurs cachés dans le système Chua. 

La deuxième partie analyse, d'abord,  les modalités cachées des spirales d'attracteur 

chaotique via des séries de fonctions saturées et des résultats numériques c'est 

l'opération d'intégration, avant d'atteindre l'attracteur asymptotique qui possède un 

nombre pair de spirales, ces dernières sont générées une à une jusqu'à ce qu'elles 

atteignent leur nombre maximum correspondant à la valeur fixée par ε. et nous 

nous retrouvons par des symétries dans les routes de bifurcation cachées vers des 

attracteurs chaotiques multi-scroll générés par des séries de fonctions saturées, la 

méthode pour trouver de telles routes de bifurcation cachées (HBR) dépendant de 

deux paramètres. 

Mot clés : 

Systèmes dynamiques, Chaos, Attracteurs cachés, Bifurcation cachée, Modalité 

d'un nombre impair de spirales, Séries de fonctions saturées, Attracteur chaotique 

multi-spirales, Symétrie. 



 الملخص

تم اكتشاف فكرة التشعب المخفي من خلال الفكرة الأساسية لطريقة ليونوف وكوزنيتسوف  

للبحث عن الجاذبات المخفية )أي الاستمرارية العددية والتماثلية( بشكل مختلف ، من أجل  

مع الاحتفاظ بأعداد اللوالب ،   εالكشف عن التشعبات المخفية ، التي تحكمها معلمة تماثلية 

  Chuaفي نظام  2016. في عام Menacer et alشاف الفكرة لأول مرة بواسطة وهذا تم اكت

 متعدد الحلقات.  

تم تخصيص الجزء الأول من هذه الأطروحة لتوفير فهم أساسي للأنظمة الديناميكية والفوضى  

تليها مقدمة للجاذبين المخفيين والتاريخ والتعريفات. تم تقديم إجراء فعال للتوطين العددي  

في  .Leonov et Kuznetsovبات الخفية في الأنظمة الديناميكية متعددة الأبعاد بواسطة للجاذ

 هذا الجزء ، نختتم بدراسة الجاذبات الخفية في نظام تشوا. 

الجزء الثاني تحليل ، أولاً ، الطرائق المخفية للحلزونات من الجاذب الفوضوي عبر سلسلة  

لية التكامل ، قبل الوصول إلى الجاذب المقارب الذي  الوظائف المشبعة والنتائج العددية هي عم

يمتلك عددًا زوجياً من اللوالب ، يتم إنشاء هذه الأخيرة واحدة تلو الأخرى حتى تصل الحد  

. وننتهي من خلال التماثلات في مسارات  εالأقصى لعدد المطابقة للقيمة المحددة بواسطة  

ير تم إنشاؤها بواسطة سلسلة الوظائف المشبعة  التشعب المخفية لجاذبات فوضوية متعددة التمر

 ( اعتمادًا على معلمتين.HBR، وهي طريقة للعثور على مسارات التشعب المخفية )

 الكلمات المفتاحية 

الأنظمة الديناميكية ، الفوضى ، الجاذبات الخفية ، التشعب المخفي ، طريقة عدد فردي من  

 اذب الفوضوي متعدد التمرير ، التناظر. الحلزونات ، سلسلة الوظائف المشبعة ، الج 

 


