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Crop Type Classification by DESIS Hyperspectral
Imagery and Machine Learning Algorithms

Nizom Farmonov , Khilola Amankulova , József Szatmári , Alireza Sharifi , Dariush Abbasi-Moghadam ,
Seyed Mahdi Mirhoseini Nejad , and László Mucsi

Abstract—Developments in space-based hyperspectral sensors,
advanced remote sensing, and machine learning can help crop
yield measurement, modelling, prediction, and crop monitoring
for loss prevention and global food security. However, precise
and continuous spectral signatures, important for large-area crop
growth monitoring and early prediction of yield production with
cutting-edge algorithms, can be only provided via hyperspectral
imaging. Therefore, this article used new-generation Deutsches
Zentrum für Luft- und Raumfahrt Earth Sensing Imaging Spec-
trometer (DESIS) images to classify the main crop types (hy-
brid corn, soybean, sunflower, and winter wheat) in Mezőhegyes
(southeastern Hungary). A Wavelet-attention convolutional neural
network (WA-CNN), random forest and support vector machine
(SVM) algorithms were utilized to automatically map the crops
over the agricultural lands. The best accuracy was achieved with
the WA-CNN, a feature-based deep learning algorithm and a com-
bination of two images with overall accuracy (OA) value of 97.89%
and the user’s accuracy producer’s accuracy was from 97% to
99%. To obtain this, first, factor analysis was introduced to decrease
the size of the hyperspectral image data cube. A wavelet transform
was applied to extract important features and combined with the
spectral attention mechanism CNN to gain higher accuracy in
mapping crop types. Followed by SVM algorithm reported OA of
87.79%, with the producer’s and user’s accuracies of its classes
ranging from 79.62% to 96.48% and from 79.63% to 95.73%,
respectively. These results demonstrate the potentiality of DESIS
data to observe the growth of different crop types and predict the
harvest volume, which is crucial for farmers, smallholders, and
decision-makers.

Index Terms—DLR earth sensing imaging spectrometer
(DESIS), hyperspectral remote sensing, random forest (RF),
spectral library, yield prediction.
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I. INTRODUCTION

THE major concerns of the modern society include crop and
food security, and crop production and management are

facing challenges due to population growth and environmental
changes [1], [2], [3]. Crop-type classification provides essential
information for various decision-making processes required to
manage agricultural resources [4]. Crop-type information makes
it possible to map agricultural land use intensity about crop
sequences. The duration and diversity of crop sequences directly
impact landscape complexity [5], [6] and can, consequently, lead
to a decline in yields as soils are depleted, pest infestations are
more likely, and pollinators or biological agents are deprived of
resources [7], [8], [9]. Reliable information must be available
on crops so that agricultural management can be improved, and
costs can be reduced. Studies to monitor agricultural produc-
tivity and assess food security depend on accurate and reliable
crop classification maps [10]. In order to develop strategies for a
sustainable agricultural industry, detailed maps of crop types are
required [11]. With advanced classification techniques, satellite
image processing can give timely and accurate data on crop
type and reliable yield estimation. Remote sensing has enabled
significant crop monitoring [12]; for example, the combination
of Landsat and Sentinel images has allowed increased temporal
resolution, which is essential for this application [13]. However,
spectral information, essential for crop classification, cannot be
obtained with multispectral sensors in many cases.

Hyperspectral (HS) images provides data in hundreds of
narrow bands, allowing advancement in the understanding
and classification of crop types [14], [15]. Effective features
derived from an HS image are quite important to improve the
classification performance. Between different image features
in classification tasks, the HA optimized by multiscale guided
filter (GF) is generated by integrating harmonic analysis (HA)
optimized by a multiscale GF with morphological operation
which are input to an ensemble learning (EL) for HS image
classification [16]. The HA has a suitable performance by con-
verting the spectral signatures into multiple frequency-domain
components and GF can preserve edge and reduce the presence
of noisy or redundant features [17]. The morphological opening
by reconstruction and closing by reconstruction lead to the
breakage of the outline shape and the mismatch of the target
in the HS image [18]. HS data have been used for several
studies, such as invasive species control [19], [20], biodiversity
assessment [21], vegetation/land-cover/plant-residue classifi-
cation [22], [23], modeling of biochemical properties [24],
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pollution assessment, and various agricultural applications [25].
Accurate spectral responses can be obtained from HS images
with more than 100 bands for determining subtle changes in the
Earth’s surface over time [14]. Nonetheless, since HS images
are not publicly available, they have not been widely used in
precision agriculture. Moreover, there are still challenges the
use of HS information is still somewhat limited by its large data
volume and dimensionality, as well as its complex analysis [26].
However, these issues can be overcome by utilizing advanced
machine learning (ML) techniques and big data analysis.

Deep learning methods such as two-dimensional (2-D) and
3-D convolutional neural network (CNN) have been widely used
recently for hyperspectral image (HSI) classification tasks [27].
Because of suitable efficiency of the methods, usage of both
models simultaneously has been represented in [14]. Fu-SE-Net
is another deep learning model revealed [28]. In [29], a 3-D-CNN
has been suggested which solves the complex feature map to
decrease the spatial affluence captured since applying a usual 3-
D-CNN for HSI classification. Authors in [30], applied pseudo-
3-D modules together with a dense connected model. Unlike
the common 3-D-CNN, the proposed pseudo-3-D modules can
take both spatial and spectral features at the same time. In [31],
3-D-CNN method has been used and the effects of reduction
of dimension has been investigated. It shows that the training
time reduced by about 60%. Although the 3-D and 2-D methods
can extract both spectral and spatial features for an HSI, the
model’s efficiency is limited when used on the huge datasets.
Additionally, the computational cost of the 3-D CNNs are much
higher than 2-D ones.

In order to analyze a signal/image in details, wavelet trans-
forms is a great choice. The time frequency window can be pro-
cessed by Wavelet which can receive lower and higher resolution
of the original signal. WT is strong instrument for magnifying
details of the image which is called mathematical magnifier.
These extraction ability of the WT is useful and significant
to resolve the above mentioned issues of the CNNs. WT can
easily learn some difficult features, by regulating the translations
and scales. Therefore, by joining the WT to the CNNs wealthy
features can be learned. The extension of the WT functions can
be controlled by changing the scale. The changing in the scale
parameters can led to changing in the information extraction
ability [32]. In [33], Hesser et al. proposed a model which con-
tains an inverse-wavelet-transform equipped skip connections
and a discrete-wavelet-transform reinforce feature reuse for bal-
ancing and development layers. The inverse-wavelet-transform
increases the feature delegation by wholly regain the missing
details within the down-sampling structure. To reducing the
computationals costs, element-wise aggregation was applied
for the skip connections. The two-level wavelet decomposi-
tion outcome presented that slightweight model without losing
remarkable efficaincy. The practical investigations result on
3-D estimation indicates that the current method surpass the
point-pillars-based model by about 14% while decreasing the
number of training parameters. Also, they indicated the usage
of Haar transforms for training the wavelet model.

In [34], Liu et al. showed a wavelet neural network adopts
the network structure of back propagation neural network to
achieve quicker training speeding time. The activation functions

are Wavelet functions in the Wavelet neural network to resolve
the issues regarding the local minimum. Liu et al. [35] indicated
that wavelet CNNs can gain higher precision in image processing
mission and texture classification comparing available models
while possess notably fewer parameters than traditional CNN.
Bastidas Rodriguez et al. [36] used Haar wavelet for down-
sampling and up-sampling in network which is the foremost
selection regarding numerical and comparative estimation. Haar
has equivalent tranning time with magnify CNN and U-net,
but get higher PSNR outcomes, which show the effectiveness
of MWCNN for tradeoff between performance and efficiency.
Yang et al. [37] applied FA in HSI. They believed using FA
in the preprocessing stage is sorely useful, since FA is capable
to explain the variableness between the several correlating and
overlapped spectrum bands, which support creating the model
categorize analogous example better. Besides, regularly used
Principal PCA based decrement does not straightly address this
target in HSI. PCA process an estimation to the essential agents
which do not help to differentiate similar examples that well.

Many spaceborne HS sensors have been recently developed,
including the project for onboard autonomy the hyperspectral
imager onboard the Indian microsatellite-1, the hyperspectral
infrared imager, the hyperspectral imager for the coastal ocean,
the Italian Precursore Iperspettrale della Missione Applicativa
(PRISMA), and the German Deutsches Zentrum für Luft- und
Raumfahrt (DLR) Earth Sensing Imaging Spectrometer (DE-
SIS) [14], [38]. Furthermore, the German Environmental Map-
ping and Analysis Program, the Israeli and Italian Spaceborne
Hyperspectral Applicative Land and Ocean Mission, and the
NASA Surface Biology and Geology mission will launch new
HS sensors. DESIS acquires information within the visible and
near-infrared wavelength range of 400–1000 nm and is inte-
grated into the multiuser system for earth sensing (MUSES)
platform onboard the International Space Station; it records HS
data by using 235 bands with an individual spectral resolution
of 2.5 nm [39].

Thanks to free data access and thanks to the instrument
characteristics, DESIS data can be used for many purposes, such
as medium- and long-term environmental monitoring in mining
areas, vegetation monitoring, soil degradation measurement, etc.
[40]. In fact, they have already served for agricultural crop
classification, forest health monitoring, grassland degradation
measurement, water quality mapping, and landscape archaeol-
ogy, but not for crop yield prediction, yet. Spectral libraries of
HS reflectance data have been widely utilized for automatic
crop identification and classification; thus, this application of
crop HS libraries is currently one of the main research areas
[41]. Several ML classification algorithms, such as pixel-based
supervised random forest (RF) and support vector machine
(SVM), and traditional methods, such as k-nearest neighbours,
maximum likelihood estimation, and unsupervised K-means and
ISODATA clustering, are available. Moreover, data on crop de-
velopment stages, crop classification, and early yield estimation
within the field variability are strategic interests of farmers,
cooperatives, and decision-makers.

Aneece and Thenkabail [42] classified five major world crops
(corn, soybean, winter wheat, rice, and cotton) and their growing
phase by using 99 Earth Observing-1 (EO-1) Hyperion HS
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Fig. 1. Study area: (a) administrative boundary of Hungary and (b) RGB Deutsches Zentrum für Luft- und Raumfahrt earth sensing imaging spectrometer image
of false colour composite acquired on June 16.

images based on the HS library of crops in the US. The classi-
fication algorithms were run on Google earth engine (GEE) by
using linear discriminant analysis and SVM; optimal HS nar-
row bands (HNBs) were obtained through principal component
analysis to reduce the large data dimensionality. They achieved
the best results when analyzing 15–20 HNBs with the SVM,
with an overall accuracy (OA) range of 75%–95%. Marshall
et al. [43] predicted biomass and yield for corn, rice, soybean,
and wheat by using PRISMA and Sentinel-2 data at the field
level. Their study consisted of three stages: determination of
two-band vegetation indices, performance estimation of partial
least squares regression, and RF run. They used normalized
difference vegetation indices derived from the two-band HNBs
of PRISMA and sentinel-2 spectral bands throughout the three
main growing stages (vegetative, reproductive, and maturity).
The PRISMA RF model achieved better performance with mean
root-mean-square error (RMSE) values of 0.42 and 0.17 kg/m2

for the biomass and yield, respectively, while the sentinel-2 RF
one provided corresponding mean RMSE values of 0.48 and
0.18 kg/m2.

Aneece and Thenkabail [42] compared two generations of
HS sensors, Hyperion and DESIS, by studying the classification
of three crops (corn, soybean, and winter wheat) in Ponca City
(Oklahoma, USA) with ML techniques run on GEE. Ten EO-1
Hyperion images from 2010 to 2013 and three DESIS images
from 2019 were used; they utilized 15 earlier established Hy-
perion optimal bands out of 242 for the crop-type mapping and
selected 29 DESIS HNBs based on lambda–lambda correlation
analysis. Overall, the best results were obtained with SVM and
RF by using both HS image types, with an OA range of 96%–
100% for Hyperion data with triple image sets and 67%–83% for
DESIS data with double image sets. This article presents several
important case studies that will increase the understanding of and
knowledge about HS data by testing how a narrow bandwidth

of 2.55 nm can help improve crop classification accuracy and
characterization, and how to reduce the large datasets to over-
come data redundancy and autocorrelations using deep learning
and ML algorithms.

In this article, a wavelet attention 2-D-CNN has been illus-
trated for HSI classification for crop-type mapping. A wavelet
transform was applied as a great feature extractor for classifica-
tion. Therefore, higher accuracy can be achieved via the com-
bination of the spectral attention CNN with wavelet transform
in classification. The spectral attention mechanism (AM) has
been added to increase the ability of the wavelet CNN network.
This part can concentrate on informative features and can extract
spatial and spectral correlation on the different types of features.
Factor Analysis has been used to diminish the dimension of
the HSI in the preprocessing stage. Wavelet transform also is
applied to extract spectra and then feed into the attention CNN.
In comparison to 3-D-CNN, the extracted features are easily
estimated by wavelets.

II. MATERIALS AND METHODS

A. Study Area

The study area (see Fig. 1) represents agricultural farmland
located in Mezőhegyes, Békés County, next to the Romanian
border (46°19′ N, 20°49′ E). Mezőhegyes is a town with a total
administrative area of 15 544 ha and a population of 4950. The
soil in its meadows and lowlands is mostly chernozem, which is
a very common soil type with high lime content that is excellent
for agriculture, especially for cereal and oilseed crops. There is
an experimental farm, Mezőhegyesi Ménesbirtok Zrt., that plays
an important role also in the neighboring settlements; it is one
of the strongest agricultural companies in Hungary, with a land
of 9862 ha.
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TABLE I
CHARACTERISTICS OF THE DESIS

TABLE II
TOTAL SAMPLES EXTRACTED FROM THE DESIS

According to climate records at the Mezőhegyes station (next
to the selected fields), the annual rainfall was 575 mm (458
mm in-crop) for the 2021 season. The main land use/land cover
(LULC) classes include hybrid corn, sunflower, wheat, soybean,
and noncrop classes such as grasslands, build-up areas, water
bodies, and forested areas. Additional crop types included in the
study area, that is, feed corn (for horses), silicone corn, barley,
lucerne, silage, and sorghum [44], were dissolved into other
classes in the classification procedure.

B. Satellite Data

DESIS data are primarily intended for commercial purposes.
Therefore, DESIS images can be obtained free of charge for
scientific and humanitarian purposes by presenting a proposal
to the DLR showing the intended use. Thus, DESIS imagery was
ordered from the DLR over the study area, and a Teledyne Brown
Engineering HS camera was installed onboard the Teledyne-
operated MUSES.

Two DESIS level 2A bottom of atmosphere reflectance im-
ages from June were downloaded from the EOWEB GeoPortal
(https://eoweb.dlr.de/egp/, accessed on May 25, 2021) and then
georeferenced in the ERDAS IMAGINE 2020 software. At the
nadir view, the ground sampling distance depends on the ISS
flight altitude and is around 30 m. DESIS covers an area of 30
km × 30 km (∼900 km2) [45]; its detailed characteristics are
given in Table I.

C. Field Data

A total of 5080 sample pixels were generated randomly in
the Point Sampling Tool of QGIS v3.16; they consisted of 1000
corn, 600 soybean, 820 sunflower, 860 winter wheat, and 1800
other crop samples for June (see Table II). DESIS samples
were randomly split into two subsets for training and valida-
tion. For the agricultural classification, 70:30 training/validation

Fig. 2. Spatial distribution of training and validation points.

Fig. 3. Reflectance spectra provided by the DESIS for various crop types.

splits were used (see Fig. 2). Reference data were compared
with high-resolution sentinel-2 and georeferenced Google earth
images based on ground truth. Finally, the samples were filtered
using the official crop plan map shaped as a mask layer, and
the samples outside that layer were deleted. At the end of the
growing season, the sunflower crop was harvested on September
26 with a John Deere W650i Combine harvester equipped with
a yield mapping system using the Green Star software, which
recorded crop yield data in a point shape format. Approximately
one yield record was obtained every 2 s, and it could be viewed
and manipulated in a geographic information system.

Crops are very sensitive to visible and near-infrared wave-
lengths. The DESIS spectral profiles showed distinct spectral
signatures according to the crop type (see Fig. 3). HS narrow-
bands and continuous spectral sampling, along with the strong
near-infrared reflection of vegetation, make it easy to distinguish
crop types from each other. For example, the reflectance value for
hybrid corn was very low because this crop was in the vegetative
period on June 16, and soybean also was in its mid-vegetative
phase, namely, additional trifoliate leaves were developing. In
contrast, the sunflower had reached its stem elongation and
flower bud development stage, and wheat had just entered its
ripening and maturation stage (see Fig. 4). The ground truth

https://eoweb.dlr.de/egp/
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Fig. 4. Photos of the main crop types in the study area, taken on June 14, 2021.

TABLE III
SAMPLE INFORMATION FOR EACH CLASS IN THE DATASET (1% SAMPLES FOR

TRANINING)

TABLE IV
SAMPLE INFORMATION FOR EACH CLASS IN THE DATASET (10% SAMPLES FOR

TRANINING)

contains five classes, and details of the samples are shown in
Tables III–V.

D. Methodology

The proposed method gains the advantage of the wavelet and
AM to extract valuable features. Initially, the HSI is dimension-
ally reduced by factor analysis. The model framework is made
of the wavelet transform, spectral attention, and CNN feature
extractor to enhance the ability of the model. The HSI with
W ×H ×M dimension, where W, H, and M are image dimen-
sions which stands for width, heights, and spectral bands, is
passed through the factor analysis to reduce the huge dimension
of the HSI spectral bands into W ×H × C. Where W and H
are the spatial dimensions of the input data and M is depicted
as spectral bands. It is confirmed that dimension reduction

dramatically decreases training time. The output has a K-labeled
vector which lifts certain classes from defined landcover classes.
Where those labels are {y1, y2, . . . , yL} ∈ R1×1×L, L is de-
noted as landcover classes. Factor Analysis maintains the HSI
dimensions W ×H , only spectrum bands diminished to C. By
using factor analysis, alterability can be demonstrated across the
various overlapping and highly correlated spectral bands. This
ability can extremely reduce noise and degrade spectrum bands
while emphasizing valuable features. Then, the input is patched
into 3-D dimensions of the size (NS ×D ×D × C). Where NS
is the number of samples,D ×D is the patch’s window size, and
C is the number of reduced bands. The patches then send to the
Haar wavelet transform which generates a pair of kernelsKh and
Kl. Where, Kh,t is shown as Haar wavelets and Kl,t depicted as
a scaling function. The Haar wavelet transforms are performed
in four kernels which are as (fHH, KLL,KLH , KHL).

fHH =

[
1 −1
−1 1

]
fLL =

[
1 1
1 1

]

fLH =

[−1 −1
1 1

]
fHL =

[−1 1
−1 1

]
.

(1)

It also can be shown (i, j) spectral place content as (1) when
patches are extracted from Haar wavelet transforms.

Haar (i, j) = x (2i− 1, 2j − 1) + x (2i− 1, 2j)

+ x (2i, 2j − 1) + x (2i, 2j) . (2)

Sublevels are created after passing the input patches through
the wavelet transforms. In fact, haar wavelet transforms de-
composes the input patches. The results of the four sublevels
are forwarded to CNN to extract spatial and spectral features.
The level-1 of the proposed model consists of two 2-D-CNN
with 3× 3 kernel size. After each convolution operation, the
spectral AMs are used to focus on spectral features. The attention
system is designed according to human visual understanding
which can focus on public and local features [15]. The goal
behind the attention system is to achieve a new agent relying on
the correlation features. In this article, the AM has been used
to develop the number of effective agents by preventing undue
features and highlighting the useful features which have been
showed in Fig. 5.

The output of level-1 and 2 are concatenated to maintain
extracted spectral and spatial features. While the model is ex-
tracting features from concatenated features from levels 1 and 2
with two 2-D-CNN and attention modules, the input patches are
then sent to level-3 and the results are combined with together.
Same operation is done for level-4. To reduce the feature size
after first convolution a stride 2 has been used. To prevent over-
fitting, mean-pooling is applied after each convolution layers
and 2 dropouts and rectified linear unit as activation function
alongside batch normalization has been also used. At the end of
the process fully connected layer with the SoftMax function is
utilized, which is consist of probability of each class.

As if, the highest value of the probability of each class will be
sorted as output. Cross entropy as a loss function is applied to
determine the compatibility of the model to predict new datasets.
Input tensor with 3-D shape is sent through the 2-D-CNN of
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TABLE V
SAMPLE INFORMATION FOR EACH CLASS IN THE DATASET (5% SAMPLES FOR TRANINING)

Fig. 5. Factor Analysis is applied on the HSI cube with W ×H ×C dimension to decrease the size of the spectral bands. Patches are then created and transmitted
as an entrance to the proposed method. Four-level decompositions are the results of the wavelet. The 2-dimensional convolution neural network has been used with
a size of 3× 3 as the kernel size, 1×1 padding, and AM are applied after each CNN. Stride 2 and padding 1 are utilized to decrease the feature maps.

Fig. 6. Architecture of the AM model. W, H and C are width, Height and numbers of bands, respectively. X, S, T, and Y are entrance data, part of entrance data,
attention-ed data and output data of the AM.

CF×B×B, where C×B×B is the size of each patch, and F shows
the number of output CNN named feature maps. The feature
maps of all channels in the spectral dimension were retrieved in
order to reshape a 2-D tensor CF×B×B as more modifying the
spatial-spectral properties. Each spectral band creates new bands
including various data after being processed by CNN. Weights
are then joined to bands to represent the correlation between the
bands and the main data. More relation is done via more weights,
and features from more relevant bands are extracted precisely by
the AM. The mechanism of attention has been shown in Fig. 6.

III. RESULTS

A. Implementation of Proposed Method

The model started with 2-D-CNN with a 3 × 3 as kernel size
and one as padding. Instead of the pooling layer, we applied
the CNNs with stride 2. To keep the model from overfitting,
various tools have been applied, such as global mean pooling,
and batch normalization. Some hyperparameters are also set to
reduce the chance of overfitting, including ReLU has been used
as the activation function. For using the wavelet transforms more
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Fig. 7. Effect of spatial size on overall accuracies on the HSI datasets.

effectively, dense layers are added which confirms that whole
extracted features pass through the model permanently. After
the end of each CNNs, spectral attention has been applied to
highlighted features to be focused. We run the model over 250
epochs and used the Stochastic gradient descent with 0.001 as the
learning rate. A fixed batch size has been used and was set to 30.
The proposed method is performed applying the various libraries
in the Colab environment. We measured the efficiency of the
model using the HSI dataset. The dataset is first preprocessed by
factor analysis to reduce the size of the HSI and then is separated
into test, train, and validation. Patches are then generated from
HSI with D×D×C size which C is denoted as the number
of factors and D×D is patch size. These parameters are very
effective in classification results. The ground truth includes five
categorries, and the information of the classifications are given
in Tables III–V.

1) Effect of Spatial Size on Classification Accuracy: Patches
are sent to the network as inputs. Here, various spatial size has
been tested to evaluate the classification efficacy [46]. Fig. 7 rep-
resent the impact of changing the patches’ size over the accuracy.
The model has tested with patches with 24×24, 48×48, 96×96,
and 192×192. It is clear that the accuracy showed an increasing
trend when the size of the spatial patches is increased. That is
because it provides less information when the size of patches is
small. On the other side, the larger patches include more data
with larger amounts of noise. It may directly have a negative
effect on accuracy. So, for the proposed dataset, by increasing
the spatial patches to 48×48, the performance of the network is
notably improved.

2) Effect of Factor Analysis on Classification Accuracy: Re-
ducing the size and difficulty of the HSI is one of the important
techniques. FA will extract the features which contain more
information and are valuable. The extracted features are unique
and uncorrelated with each other. Here, FA is used to reduce
the dimension of the input data. Different FA has been tested on
the 48×48 size to measure the best classification performance.
Fig. 8 illustrates the accuracies of the three sizes of the training
dataset. As can be seen, by increasing the FA number from 2

Fig. 8. Effect of FA on overall accuracies on the HSI datasets.

to 3, the OA will raise gradually and after that, the accuracy
increases slightly.

B. Implementation of ML Methods

To achieve better results with ML methods, only 29 earlier
established optimal DESIS bands were used for the classifi-
cation [41]. The selected bands fell within the 500–1000 nm
spectral range and were as follows: 41; 48; 52; 62; 69; 75;
80; 84; 90; 94; 98; 102; 111; 120; 126; 134; 143; 149; 156;
167; 179; 183; 191; 199; 204; 210; 214; 224; and 229. The
classification was performed with only the selected bands to
reduce the data dimensionality because optimal band selection
in imaging spectroscopy can improve the classification accuracy
[47]. Moreover, a spectral profile of the features of interest was
created and assessed the spectral response characteristics of each
class.

Single and double DESIS image sets were examined for the
crop classification; no triple image sets were realized due to
the cloud coverage of the image captured on June 6, which
was therefore not considered in this article. Since there were
no images for April, July, and August, those acquired in June
were utilized. On the one hand, the two most widely used
pixel-based supervised algorithms, RF and SVM, to classify
crops (e.g., hybrid corn, soybean, sunflower, wheat, and others)
were applied. RF is an EL method in ML proposed by Breiman
[48] that can be used for both classification and regression tasks.
This method is most commonly used in the remote sensing
community because of its high classification accuracy [49].
The classification was implemented using the random forest
package in R 4.2.1. The number of variables used for tree node
splitting (mtry) was set as the default value. An optimal number
of trees (ntree) was selected based on the relationship between
the decrease in out-of-bag error and the number of trees (see
Fig. 9); subsequently, ntree was set at 500. On other hand,
proposed model has been also comparied with two most recent
deep leaning algorithm named MSRN [50], and MDBRSSN
[51].
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Fig. 9. Relationship between out-of-bag error and the number of trees used in
the RF model.

Fig. 10. Parameter optimization through grid search in the SVM model.

SVM is an ML algorithm that constructs a hyperplane in mul-
tidimensional space to separate different classes [52]. Its main
advantage is that it can be utilized for both classification and
regression tasks. Several types of kernels have been developed,
and the most common one is the radial basis function (RBF).
Here, the SVM model was applied using the e1071 package in R
4.2.1, and the RBF was used. SVM requires two parameters, one
gamma γ and one cost C value. Finding the best hypermeters
is essential and the best combination cannot be estimated in
advance. Thus, through cross-validation, the OA values were
compared and the best parameters were determined based on a
trial-and-error plot (see Fig. 10). The regularization parameter
C and the Kernel parameter gamma γ were set at 64 and 0.0625,
respectively.

These distinct spectral patterns allowed discrimination among
the different crop types through RF and SVM classifications. The
classification was run two times for RF and SVM with single
and double DESIS image sets. When using a single image, the

SVM classifiers achieved an OA and κ of 85.23% and 0.80%,
respectively, while the RF classification obtained an OA of
83.3% and a κ of 0.78%. When using double image sets, the OA
and κ values increased, respectively, to 87.79% and 0.84% for
SVM and 86.28% and 0.82% for RF The results indicate that the
SVM algorithm outperformed the RF one with a small difference
in the OA of approximately +2% in both cases. However, two
last satae of art moel MSRN and MDBRSSN using models
applied new ideas, like 3-D-CNN, hybrid 2-D-3-D, skipped
connection, and densly connection, that developed classification
precision, and efficiency in comparison with traditional models.
The MSRN and MDBRSSN deep leaning models achieved an
OA and κ of 92.2%, 93.4%, and 0.90%, 0.91% respectively,
while the proposed model obtained an OA of 97.89% and a κ of
0.97% (see Table VI); the corresponding classified images are
displayed in Fig. 11.

According to the classification report, hybrid corn was the
most cultivated crop type in the study area with an area coverage
of 2464.29 ha, whereas other classes ranked second place with
an area coverage of 2340.99 ha, followed by wheat, soybean,
and sunflower. Based on these results and the average sunflower
yield, 4961.88 tons of grain are to be harvested from all the sun-
flower fields in 2021. The proposed simulated model has been
repeated 10 times for our dataset to achieve a higher accurate
estimation. Surely, SVM nad RF classifer does not performe
well due to our noisy and overlapping dataset in classes. It also
shows a poor performance in the imblanced datasets. However,
the MSRN and MDBRSSN have a deeper network structure and
using novel concepts, such as 3-D-2-D CNN, hybrid Models,
multiscale, skipped connections, and densely connection, which
growth classification efficancy. The PU (see Table VII), IP (see
Table VIII), and WHU-HI (see Table IX) datasets were tested
by MSRN and MDBRSSN methods and were at least 15%,
40%, and 7% performed better than the last greatest model
(SVM), respectively. The other method that has incremented
the efficiency of models which several scientists have recently
applied it in their models, is the AM. The proposed model also
used AM for classessification task received a better efficiency
than other methods. For instance, based on Tables VI–IX, AA
in the PU, IP, and WHU-HI datasets present that the proposed
method is 1.22%, 1.38%, and 0.85% outperform than the per-
formance of the MDBRSSN model, respectively. Our proposed
model, which extracting main features via wavelet, 3-D-CNN,
and AM with various kernel sizes, can identify, between classes.
The OA of the proposed model classification of 0.9%, 1%, and
0.75% of the superior accuracy between the models related
to MDBRSSN outperforms in the SA, PU, IP, and WHU-HI
datasets, respectively.

IV. DISCUSSION

The results indicated that the selection of effective and repre-
sentative HS bands is critical to overcoming data redundancy
and autocorrelation and reducing the computational time for
the potential real-time applications of imaging spectroscopy.
However, DESIS bands are less redundant and more informative
because of their narrow bandwidth (2.55 nm) compared with
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TABLE VI
PRECISION ACCURACY ASSESSMENT OF RESULTS OBTAINED FOR THE CROP-TYPE CLASSES FOR THE DATASET (10% SAMPLES FOR TRANINING)

Fig. 11. Classification map using SVM, RF, and wavelet attention CNN methods.

TABLE VII
ACCURACY ASSESSMENT OF RESULTS OBTAINED FOR THE CROP–TYPE CLASSES FOR THE UNIVERSITY OF PAVIA DATASET (10% SMAPLE FOR TRANING)



FARMONOV et al.: CROP-TYPE CLASSIFICATION BY DESIS HYPERSPECTRAL IMAGERY AND MACHINE LEARNING ALGORITHMS 1585

TABLE VIII
ACCURACY ASSESSMENT OF RESULTS OBTAINED FOR THE CROP-TYPE CLASSES FOR THE INDIAN PINES DATASET(10% SMAPLE FOR TRANING)

TABLE IX
ACCURACY ASSESSMENT OF RESULTS OBTAINED FOR THE CROP-TYPE CLASSES FOR THE WHU-HI-LONGKU DATASET (25% SMAPLE FOR TRANING)

other HS images (e.g., Hyperion) [42]. Here, 29 DESIS HBNs
were finally selected out of 235 within the 500–100 nm range.
The selected HBNs have already been used in many other
agricultural studies [53], [54], [55], including the prediction of
biophysical and biochemical parameters, such as leaf area index
(LAI), nitrogen, crop growth stage classification, biomass, yield
prediction, weed, disease detection, LULC classification, stress,
pigment, etc. For instance, the bands at about 504, 522, and 540
nm are good for disease, LAI, and stress applications, while
those at around 556 and 625 nm can be used to map the crop
growth stages. Moreover, the reflectance values at 648, 763,
778, 824, and 848 nm are important for biomass, yield, and crop
classification studies.

A dedicated DESIS HS library can easily differentiate the
crops based on their spectral profiles (see Fig. 5), improv-
ing the classification accuracy [56]. The results presented in
Tables VI–IX have demonstrated an increase in OA for crop
classification when using double image sets. The best results
in terms of OA and κ were obtained with the SVM algorithm.

Regarding the specific class ranks, wheat achieved the highest
user accuracy (UA) and producer accuracy (PA) ranging from
92.80% to 96.12% with both the RF and SVM models, while
soybean recorded the lowest UA with the two algorithms (64.9%
and 88.2%, respectively). This occurred because some soybean
pixels were misclassified as sunflower and vice versa. Due to
the spectral similarity of the pixels, the accuracy for soybean
and sunflower was therefore weakened. This result is in line
with those reported by Aneece and Thenkabail [41], who also
classified major crops in the USA by using DESIS data and ML
algorithms run in GEE and the R software; they classified three
leading world crops (corn, soybean, and winter wheat), obtaining
the highest accuracy when using the SVM model on June–
August images, with an OA of 85%. Several studies have shown
that SVM and RF techniques enhance classification accuracy
when using spaceborne HS sensors [44]. The wavelet attention
CNN method has been repeated ten times for every patch size
and various FA numbers to achieve a better accurate evalua-
tion of the outcome. The primary metrics and accuracy classes
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are registered in Table VI. The SVM classification method do
not preform probably, when the classes have overlapping, the
dataset are noisy, and in imbalanced datasets. The RF and SVM
showed worse performance compared with proposed model. The
results in Table VI showed that both classic models have worse
accuracy, and the OA in 10% of training dataset are 86.23%
and 82.34%, respectively. However, our proposed method has
improved significantly. The performance has great increasing
and the OA reached 97.89%. The proposed model used an AM
which led to a huge raise in performance. In comparison with
the classic classifiers SVM and RF models improved by 14.5%
and 18.6% in the case of the average accuracy (AA). The model
also has higher classification accuracy in all classes from 1 to 5.
The OA of the model classification 13.5% and 17.5% is higher
than the SVM and RF, respectively.

V. CONCLUSION

In this article, we examined the wavelet attention 2-D-CNN
on DESIS image classification for crop-type classification taking
into account image dimension reduction and spectral AM. By
using FA and Wavelet-attention to diminish the size of the
HSI, we could successfully filter out useless information in
the low-frequency domain. A 48x48 spatial patch size was
found the best on the HSI dataset and FA from 2 to 3 gave
the highest OA. The result proves that the newly developed
WA-CNN for crop-type mapping can incorporate the specific
details of features in the high-frequency domain, improving
CNN’s capacity to learn features for image categorization. A
DESIS HS library was established for four major crops (hybrid
corn, sunflower, wheat, and soybean). A total of 29 important
DESIS bands out of their total of 235 were selected based on
previously determined narrow bands as input for RF and SVM
models. Thanks to their high spectral resolution (2.55 nm),
these selected narrow bands can help the discrimination among
crops having similar spectral characteristics. The performance
of different ML algorithms, RF and SVM, in automatically clas-
sifying the target crops by using the established HS library was
investigated. This article is one of the few using DESIS HS data
since they became available only recently. The SVM-supervised
classifier was more robust in agricultural crop-type mapping
with an OA of 87.79% and a κ of 0.84%. The classification
accuracies (PA, PA, and UA) increased when two combined
images were utilized. However, the newly proposed method
based on a wavelet attention 2-D-CNN, feature-based algorithm
obtained higher accuracy in terms of OA and κ values of
97.28 and 97.89, respectively than traditional ML algorithms.
Overall, this article demonstrates how the very fine spectral
resolution of DESIS narrow bands can support the agricultural
crop classification and the identification of low-yield crops,
which is crucial and can improve food security in vulnerable
regions. Continuous spectral information from DESIS imagery
can better assess crop biophysical and biochemical parameters
that are necessary for yield mapping, measuring, monitoring, and
modeling.
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