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1. Introduction
The prediction of the free energy for the binding of a small ligand to a macromolecule is 

undoubtedly one of the most important challenges of computational chemistry. If the affinity 
of any ligand could be predicted with good accuracy, enormous amounts of money could be 
saved in pharmaceutical industry because the number of drug candidates synthesised could be
strongly reduced. Consequently, many methods have been developed with this aim, ranging 
from methods based on statistical mechanics and a physical formulation of the problem, e.g. 
free-energy perturbations and thermodynamic integration to methods based on a statistical 
analysis of available experimental data.[1] 

Owing to the size of the macromolecule, the physical methods have normally been based 
on a molecular-mechanics (MM) description of the molecules, i.e. by treating molecules as a 
collection of balls, interacting with each other by an empirical potential, a force field. 
Typically, such a force field for a macromolecule includes terms for bonded interactions 
(bonds, angles, and dihedral angles), as well as electrostatic and van der Waals interactions 
between non-bonded atoms. This provides a classical-mechanics description of the system 
and treats the electrons only implicitly. The advantage of MM methods is their speed – the 
energy of a biomacromolecule, including the ligand and several thousands of water 
molecules, can be calculated within seconds. The disadvantages are that the force field is an 
approximation with a limited accuracy[2] and that you need to determine the force field for all 
molecules of interest (typically at least two parameters for each bond and angle, three for each
dihedral, two for each pair of non-bonded atoms, and a charge on every atom), a very 
significant task, especially as drug candidates often show a great variation in their chemistry. 
In addition, some molecules, e.g. metal complexes, are hard to treat with MM methods.

These disadvantages of MM can be cured by using quantum mechanics (QM) methods: 
They do not require any parametrisation and they are applicable to any type of ligand or 
macromolecule. On the other hand, they are computationally much more demanding. 
Unfortunately, the Schrödinger equation (which is the basis of QM) cannot be solved 
analytically for systems with more than one electron. Therefore, a large number of QM 
methods have been developed that solves this equation approximately, having varying 
computational demands and accuracies, ranging from semiempirical methods (which require 
parametrisation, but can treat a full macromolecule), via Hartree–Fock (HF) and density 
functional theory (DFT), to high-level correlated methods, e.g. Møller–Plesset perturbation 
theory and coupled-cluster methods (which may give an accuracy similar to experiments but 
are applicable only for small molecules).[3]

Lately, there has been a great interest in using QM methods in structure-based ligand 
design.[4,5,6,7,8,9] In this chapter, we review such efforts. The subject is wide and QM methods in
some way are now used in most projects of computational drug design. Therefore, we will 
focus on methods to calculate binding affinities (scoring), whereas studies of structures[10] and 
reaction mechanisms,[5,11,12] as well as the use of QM methods to obtain QSAR 
descriptors[4,13,14,15] are excluded.

2. Three MM-based methods
Before turning to the QM-based methods, we will shortly describe three commonly used 

MM approaches for ligand binding, because they nicely introduce the problems encountered 
in binding-affinity calculations and they are the basis of many QM approaches. 

The physically most strict method to obtain binding affinities is free-energy perturbation 
(FEP),[16] in which the binding affinity is calculated by converting one ligand to another or to 
nothing by several small steps involving non-physical intermediate states. For each state, 
extensive sampling is performed by either molecular dynamics (MD) or Monte Carlo 
simulations. Consequently, the method is computationally expensive and therefore little used 
in drug design. Instead, methods based on sampling only of the end-states (the complex, the 
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free macromolecule, and the free ligand) have been more popular. 
For example, Kollman and coworkers have developed the MM/PBSA method,[17] in which

the free energy of a system is estimated from 

G = E int  Eele  EvdW  Gsolv  Gnp − TS (1)

where the three first terms on the right-hand side are the internal (i.e. bonds, angles, and 
dihedrals), electrostatic, and van der Waals energies, calculated at the molecular-mechanics 
(MM) level, Gsolv is the polar solvation energy, calculated either with the Poisson–Boltzmann 
(PB) or the generalised Born (GB; giving the MM/GBSA approach) continuum-solvation 
methods, Gnp is the non-polar solvation energy, estimated from a linear relation to the solvent-
accessible surface area (SASA), and the last term is the product of the absolute temperature 
and the entropy, estimated from vibrational frequencies calculated at the MM level. All these 
energy terms are typically averaged over a MD simulation and the binding free energy is 
estimated from the difference in free energy of the complex, the free macromolecule and the 
free ligand. Normally, only the complex is simulated, in which case the internal energy 
cancels. 

Åqvist has developed another end-point approach, the linear interaction energy (LIE) 
method,[18] in which the binding affinity of a ligand is estimated from 

Gbind=〈Eel
L−S 〉bound−〈Eel

L−S〉 free 〈EvdW
L−S〉bound−〈EvdW

L−S 〉free (2)
 
where 〈Eel

L− S 〉  and 〈E vdW
L−S 〉  are the electrostatic and van der Waals interaction energy 

between the ligand and the surroundings (macromolecule and solvent), averaged over MD 
simulations of the ligand free in solution or bound to the macromolecule. a and b are 
parameters; b should be 0.5 according to linear-response theory, but has later been shown to 
depend on the functional groups of the ligand.[18,19] a was originally found to be 0.18, but it 
seems to depend on the system and is often treated as a fitting parameter.[18] Later, this 
approach has been extended by additional terms (and fitting parameters), making it approach 
the quantitative structure–activity relationship (QSAR) methods.[20] 

3. QM-based force fields
The first step towards the use of QM methods for drug design is to perform the 

calculations at the MM level, but employing QM calculations in the parametrisation of the 
MM force field. In fact, essentially all modern MM force fields are based at least partly on 
QM calculations and most studies of the binding of drug candidates employ charges of the 
ligand calculated with QM. However, three potentials stand out by being specifically 
developed to give close agreement with QM methods with a minimum of fitted parameters: 
SIBFA (sum of interactions between fragments ab initio computed),[21] EFP (effective 
fragment potential),[22] and NEMO.[23] SIBFA has been extensively used for protein–ligand 
interactions, especially for metalloproteins.[21]

Moreover, in a several studies, QM calculations have been used to obtain specific MM 
parameters for certain macromolecule–ligand complexes. For example, Hayes and coworkers 
have shown that predictions of ligand-binding energies can be improved by reparametrisation 
of the charges and torsion parameters, based on QM calculations.[24]

Curioni et al. have developed a method to improve the MM charges in MD simulations of
protein–ligand complexes.[25] They recalculated the charges for the ligand and possibly the 
closest residues by fitting them to the electrostatic potential (ESP), including a harmonic 
restraint to the original MM charges. These QM-refined charges improved the correlation 
between averaged MM protein–ligand interaction energies and experimental binding affinities

3



for 36 inhibitors to HIV-1 protease. This method has also been used for the scoring of 38 
inhibitors of cyclin-dependent kinase 2 using an extended LIE approach.[26] The QM charges 
gave slightly improved results over other scoring functions.

Likewise, Friesner and coworkers have developed a docking strategy in which the ligand 
charges are updated by a QM/MM calculation (see below).[27] They include only the ligand in 
the QM system and treat it at the B3LYP/6-31G* level. They demonstrate that the QM/MM 
charges in many cases give clear improvements in the docking accuracy. This approach, 
called QM-polarised ligand docking (QPLD), is now a standard tool in the Schrödinger 
software package and it has been employed in many studies.[28,29,30,31,32,33,34,35] For metal-binding
ligands, the metal and all its ligating groups need to be included in the QM system. [36,37,38] This
approach has also been used to obtain charges for MM/GBSA calculations of binding 
affinities of two DNA-binding ligands.[39] It was shown that the QM/MM charges perform 
better than standard MM charges for both the root-mean-squared deviation (RMSD) during 
MD simulations and the calculated binding affinities. 

Reynolds and coworkers have made a systematic investigation of how the docking of 
twelve ligands change when the charges were recalculated by QM methods.[40] They compared
the results of Gasteiger, Amber, and QM charges for the ligand, the latter obtained both in 
vacuum or polarised by the surrounding protein. Moreover, they also tested to change the 
charges of all amino acids within 5.5 Å of the ligand (polarised by the ligand and the protein),
both from a single-point calculation and after an iterative procedure. They did not observe any
consistent improvement in the docked poses when the charges were improved. 

A few groups have tried to recalculate all charges in the protein and ligand with QM 
methods. For example, Fischer et al. used the FMO method (see below) at the HF/6-31G* 
level.[41] Using a simple scoring function with Coulomb, Lennard-Jones, and hydrogen-bond 
interaction energies for single docked structures, they obtained good correlations between 
calculated and experimental affinities for both the binding of eleven ligands to the human 
oestrogen a receptor and four ligands to the human retinoic acid g receptor (r2 = 0.66 and 
0.90, respectively). 

A similar approach has been developed for the MFCC method (see below), in which 
charges are calculated iteratively for the whole protein in a PB continuum solvent. This 
approach has been applied to the binding of biotin and an analogue to avidin using the 
MM/PBSA approach, indicating that the calculated difference in the binding affinity is 
improved with the polarised charges.[42] 

 Menikarachchi and Gascón have evaluated the effect of using polarised charges obtained 
for the whole protein by a moving-domain QM/MM approach, in which QM charges are 
iteratively calculated for each amino acid in turn with an updated point-charge model of the 
remaining protein.[8] They studied the docking of a ligand to the catalytic zinc ion of carbonic 
anhydrase and obtained improved results compared to a fixed-charge model.

We have recalculated charges of all atoms in 20 snapshots from MD simulations of seven 
biotin analogues to avidin by QM methods (HF/6-31G*).[43] The charges were used in a 
MM/PBSA calculation, but no improvement in the correlation between calculated and 
experimental affinities were found and they gave rise to unstable MD trajectories. Further 
analyses showed that the electrostatic interaction energy between the protein and the ligands 
differ by 43 and 8 kJ/mol on average between QM charges calculated for the correct 
conformation and standard MM charges for charged and neutral ligands, respectively, 
illustrating the conformational dependence of the charges.[44] Fortunately, this difference is 
reduced by 7 and 3 kJ/mol when solvation effects are included. For accurate results, QM 
charges need to be recalculated for all residues within 7 Å of the ligand. 

Moreover, the instability of MD simulations can be avoided by averaging the QM charges
over the snapshots or over all residues of the same type in the protein.[44] This represents an 
alternative approach to the restrained ESP method used to obtain MM charges in the AMBER 
force fields,[45] avoiding the arbitrary restraint used in that approach. Such charges are 
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transferable between different proteins and gave slightly improved correlation for MM/GBSA 
binding affinities of two different proteins (avidin and factor Xa).[46]

A full NEMO potential, i.e. multipoles up to quadrupoles and anisotropic polarisabilities 
in all atoms and bond midpoints, has also been calculated at the B3LYP/6-31G* level for ten 
MD snapshots.[47] It was combined with standard MM/PBSA van der Waals, SASA, and 
entropy terms, as well as a polarised continuum model (PCM) solvation energies to give 
complete binding affinities for the same seven biotin analogues, but still no significant 
improvement was seen compared to a standard MM force field.

4. QM calculations of ligand-binding sites
Another possible use of QM methods is to study only the ligand and the closest protein 

residues. The advantages with such an approach is that no force-field parameters are needed 
and that electronic polarisation is included in the calculation. The disadvantage is of course 
that parts of the macromolecule are ignored. Moreover, entropic and dynamic effects are 
typically ignored. 

Several investigations have had this aim. The simplest approach is to compare the raw 
QM energies directly to experimental binding affinities.[48,49,50,51] However, it is more common 
to include solvation, either in the way of a number of explicit water molecules [52,53,54] or by a 
continuum-solvation method.[55,56] Unfortunately, including solvation does not always lead to a
consistent improvement in the predicted affinities.[55] Peräkylä & Pekkanen went one step 
further by including also MM electrostatic interaction energy between the ligand and the rest 
of the protein,[57,58] thereby approaching a QM/MM approach. Rogachev and coworkers used 
the QM stacking energies (including a continuum-solvent correction) to enhance a normal 
docking score.[59]

Most studies have employed the ligand and a rather small number of nearby residues 
(typically within 4–5 Å, 100–200 atoms). DeChancie and Houk even truncated the ligand.[56] 
However, Nikita et al. use up to 450 atoms[52] and Thirot & Monard up to over 700 atoms.[51] 
In one case, the calculations were performed for the ligand and one amino-acid model at turn, 
i.e. a fractionation approach.[48] Most of the studies have been performed at the semiempirical 
level (AM1 or PM3), especially with the larger QM systems.[51,52,53,54,55] A few studies were 
performed at the Hartree–Fock (HF) level with small basis sets (3-21G or 6-31G),[57,58] 
whereas most recent studies are performed with DFT and basis sets of DZP quality.[48,49,50,56] 
Only a few studies have been performed at the MP2 level,[56,59] at which dispersion effects are 
included. However, the basis sets are still too small (6-31G* or 6-31+G**) to give any 
quantitative results. For example, it has been shown that the interaction energy between biotin
and avidin changes by 160 kJ/mol if the basis set is increased from 6-31G* to aug-cc-pVTZ.
[60]

Another important effect that needs to be considered in QM binding calculations is the 
basis-set superposition error. For the binding of drug-like ligands with medium-sized basis 
sets, this effect is very significant, being 105 and 214 kJ/mol for the binding of biotin to 
avidin calculated with the 6-31G* basis set at the HF and MP2 levels, respectively.[2] 
Unfortunately, only a few studies correct for this error.[50,56,57,58]

This approach is often used for metal ligands, because it is likely that the binding affinity 
is dominated by the metal–ligand interaction, whereas interactions with the surrounding 
protein may be less important. Then, it is enough to include in the calculations the ligand, the 
metal, and the other ligating groups. For example, many theoretical studies have been 
performed on the structure, binding, reactivity, and toxicity of cisplatin and similar anti-cancer
drugs.[61,62,63] Likewise this approach has been tested for the binding of M-arene-PTA ligands 
to cathepsin B (M = RuII, OsII, RhIII, or IrIII).[63,64,65] It was shown that a correlation of r2 = 0.52 
could be obtained between calculated and experimental affinities, including only the first-
sphere ligands of the metal. The best results were obtained without any continuum solvation, 
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but with zero-point, thermal, and entropic corrections to the Gibbs free energy included (from 
a frequency calculation). The results were also improved by a conformational search of the 
orientation of the arene ligand.

QM calculations have mainly been used to estimate ligand-binding affinities, but Thirot 
and Monard have developed a genetic algorithm for protein–ligand docking using 
semiempirical calculations.[51] Moreover, Zhou & Caflisch have devised an approach to 
perform extensive virtual screening with semiempirical QM calculations. [66] They calculate 
interaction energies between small models of polar groups in the binding site and the ligands 
of interest. Using only five such groups as a model of the human hepatocellular carcinoma 
receptor B4, they screen ~100 million poses of 2.7 million commercially available 
compounds, obtained from high-throughput docking. Supplementing the QM energy with 
hydrophobic matching and ligand-strain calculations, a micromolar inhibitor was obtained 
after experimental tests of only 23 molecules.

5. QM/MM calculations
At the next level of approximation, the whole macromolecule is included in the 

calculations by treating the most interesting parts by QM methods, whereas the surroundings 
are treated by MM methods, the QM/MM approach, which has received much interest in the 
study of biochemical reactions.[67,68] Often only the ligand is included in the QM system,
[35,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83] but for metalloproteins, it is necessary to include all first-sphere 
ligands of the metal in the QM system.[65,84,85,86] At the highest level of QM/MM 
approximation, several groups close to the ligand are also included in the QM system.
[49,87,88,89,90,91,92,93,94,95,96] 

The focus of the QM/MM investigations have varied between polarisation,[71] structures,
[78,91] docking (rescoring),[70,79,80,89,90] and affinity estimation.[35,65,72,73,74,75,76,77,81,87,95,96] Only two 
studies[87,88] used QM methods (MP2/6-31G* or BLYP-D) that includes dispersion, whereas 
the other studies were performed at the semiempirical (AM1 or sometimes PM3),
[69,70,71,72,73,74,75,77,81,91,92,95] DFT,[35,49,65,76,78,79,80,82,84,85,86,90,91,93,94,96] or HF levels.[89,90,93] However, if only
the ligand is included in the QM system, the interaction between the ligand and the 
surroundings is treated by MM, in which dispersion is properly included. 

Alzate-Morales et al. used a non-standard approach, in which most of the ligand and four 
amino-acid side chains were treated by B3LYP/6-31G*, the rest of the ligand was treated with
HF/3-21G, whereas ~10 additional residues were treated at the PM3 level (i.e. a three-layer 
QM/QM/QM approach)[97] 

Many studies have considered only the pure QM/MM energies. However, single 
minimised QM/MM structures will miss effects from dynamics and entropy, and the solvation
and long-range electrostatics may be misleading because the systems are truncated after a few
layers of water molecules and the outer atoms typically have fixed positions. 

Several studies have addressed these problems. Ideally, they should be solved by 
performing QM/MM FEP, as was done in a study of the relative free energy of binding for 
five AMP analogues to fructose-1,6-bisphosphatase at the AM1/MM level.[75] They reproduce 
experimental observations within 1 kJ/mol, but FEPs at the MM level give the same results 
(within the statistical uncertainty). Essex and coworkers have used QM/MM calculations to 
improve the results of FEPs at the MM level. They do this by also performing one-step FEPs 
from the MM to the QM/MM description.[83]

Balaz and coworkers[84,85,86] have instead developed a QM/MM variant of the extended 
LIE approach with two or three terms, using single-point calculations on averaged MD 
structures.

Several groups[65,72,76,81,96,98] have used QM/MM calculations in the MM/PBSA approach, 
by replacing the first three terms in Eqn. 1 with the QM/MM interaction energy. The 
advantage with this approach is that is does not contain any adjustable parameters and 
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includes a proper solvation, involving both polar and non-polar terms, as well as entropy and 
some dynamic effects. The results of the QM/MM-PBSA approaches have been varying. For 
example, no consistent improvement has been observed compared to a pure DFT study for the
binding of seven RuII-arene-PTA ligands to cathepsin B.[65]

6. QM calculations of entire proteins
Finally, the whole protein can be treated by QM methods. The advantage of this approach 

is that polarisation of both the ligand and the macromolecule is treated at equal footing and 
that the calculations allow charge transfer between the macromolecule and the ligand. 
However, despite the recent progress in computer technology and parallelisation techniques, a
standard QM calculation of a full protein-ligand system is technically impossible, but also 
unnecessary, because electron correlation is a local effect.

Many approximate methods have been developed that take advantage of the locality of 
QM. Normally, these are referred to as either linear-scaling methods, if they compute the 
electron density for the full system, or fragmentation methods, if they combine independent 
calculations of smaller subsystems to directly compute the quantities of interest. Linear-
scaling methods have been recently reviewed,[99] so we will only mention some applications to
ligand binding, whereas the fragmentation methods will be somewhat more thoroughly 
described. It should be noted that some of the linear-scaling methods, such as the divide and 
conquer (D&C) approach,[100] also use fragmentation as part of their solution. 

6.1. Linear-scaling methods
Although it is possible to study at least small proteins with DFT methods,[101] all linear-

scaling whole-protein studies of ligand binding have been performed at the semiempirical 
level, AM1, PM3, PM5, or PM6-DH2.[102,103,104,105,106,107,108,109,110,111,112] This approach was 
pioneered by Merz and coworkers. They studied 18 carbonic anhydrase and 5 
carboxypeptidase inhibitors with the AM1 method, using their D&C approach.[102] They 
supplemented the QM energy by the dispersive part of the Amber MM potential, a PB-based 
continuum-solvation energy, a non-polar solvation term based on the surface area burial for 
heavy atoms, as well as an entropy term, calculated from the number of degrees of freedom 
that was lost in the protein and the ligand upon binding. Thus, this approach already included 
most important terms for ligand binding, except dynamic sampling. The authors obtained 
correlation coefficients (r2) of 0.69 or 0.80 without or after fitting a single weight factor 
before the SASA term. In a later study, the same approach (QMScore) was applied to 165 
protein–ligand complexes and 49 metalloenzyme complexes, giving r2 = 0.48 and 0.55 
without and with fitting of weights of each of the five terms in the energy function. [105] They 
have also devised a method for pairwise decomposition of the observed interaction energies to
understand the observed differences.[113]

The same group has also developed a more MM/PBSA-like version of this method, in 
which the QM energies (calculated at the AM1 and PM3 levels) are supplemented by a 
dispersive term, PB polar solvation, SASA non-polar solvation, and an entropy term from the 
MM vibrational frequencies, calculated for a truncated model.[104] They compared the binding 
of a penicillin and a celphalosporin to the TEM-1 b-lactamase. Unfortunately, the standard 
deviations of the QM/PBSA estimates (20–36 kJ/mol) were too large to give any significant 
difference in the binding energy between the two substrates.

QMScore has also been used to study the binding of 45 inhibitors to protein kinase B with
reasonable results (r2 = 0.68).[111] However, the main aim of that study was to improve this 
model by the QSAR-like comparative binding energy approach.

Pichierri has studied the binding of a phosphotyrosyl peptide to the SH2 domain of Lck 
kinase.[103] He only studied a single complex and included continuum-solvation, but no 
dispersion, non-polar solvation, entropy, or dynamic effects. Consequently, he reports an 
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unrealistic binding energy of ~800 kJ/mol.
Sakurai et al. have studied how the binding of an antigen to the 48G7 is improved during 

maturation.[106] They enhance the QM energies with COSMO continuum-solvation, a non-
polar SASA term, and an MM entropy term from an earlier study. 

Anikin et al. have developed a semiempirical QM approach to study the special case 
when many ligands are docked to a fixed protein structure, using a fixed density of the 
protein.[107] Using only the pure QM energy, they dock 1783 ligands with 30–144 atoms to the 
FKBP-12 protein with an average time consumption of only 5 minutes per ligand. With a 
similar approach, 200 000 poses of 20 000 ligands were docked to the p56 LCK SH2 domain.
[109]

Zhou and coworkers have tested semiempirical QM calculations in a LIE-like approach.
[108] They supplement the QM energy with a PB continuum-solvation term and a van der Waals
energy term, all calculated for minimised structures. They fit three multiplicative parameters 
to the experimental data and compare the QM results to standard LIE calculations (also with a
continuum-solvation term). For the binding of 44 peptidic inhibitors to West Nile virus NS3 
serine protease, the QM approach gave slightly better results than conventional MM 
calculations (the RMS error decreased from 4 to 3 kJ/mol), whereas for the binding of 24 
peptidic inhibitors to HIV-1 protease and 73 neutral inhibitors to human cyclin-dependent 
kinase 2, both approaches showed a similar accuracy.

Li & Reynolds have used the PM5 method to estimate the affinities of six stromelysin-1 
inhibitors with two different zinc-binding groups (carboxylate or hydroxamate).[110] They 
supplemented the QM energies with a COSMO continuum-solvation energy and a SASA 
term, but ignored dispersion, entropy, and dynamics. They obtain an excellent correlation 
between calculated and experimental affinities (r2 = 0.95), although the calculated relative 
energies are almost ten times larger than the experimental ones.

Finally, Hobza and coworkers have employed the recent PM6 method, combined with 
corrections for dispersion and hydrogen bonding.[112] They include entropies calculated from 
vibrational frequencies calculated at the MM level, as well as deformation and continuum-
solvation energies of the ligand. They study the binding of 22 inhibitors of HIV-1 protease 
and are able to distinguish between binders and non-binders in a docking rescoring, in 
contrast to conventional DOCK calculation. 

6.2. Fragmentation methods
Two types of fragmentation methods have been used for ligand binding. The first aims at 

calculating the total energy for any system, whereas the second type only calculates binding 
energies, assuming that the geometry of the macromolecule and the ligand do not change 
upon binding (as in MM/PBSA). Of course, the former methods are more general and 
versatile, whereas the latter typically are more effective and faster. 

The fragment molecular orbital (FMO) method is probably the most developed and used 
approach of the first type.[114] For a cluster of n molecules, FMO first optimises the 
wavefunction of each monomer in separate calculations, including the electrostatic potential 
from the n – 1 other fragments as a fixed external potential. This has to be done iteratively, 
approximating the potential from distant fragments, e.g. by a point-charge model. Next, the 
energy of each pair of fragments (dimers) is computed, using the electrostatic potential from 
the n – 2 other fragments as external potential (taken from the converged monomer stage, so 
no iterations are needed). If greater accuracy is needed, the procedure can be continued by 
also computing trimers (the FMO3 method), which has been shown to give essentially exact 
results (cf. Table 1), but to a much higher cost. 

If the fragments are connected with covalent bonds, each nucleus and electron pair are 
assigned to one fragment using chemistry-based rules. The monomer calculation of a given 
fragment is then performed in the basis set spanned by its assigned nuclei and if the fragment 
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has a dangling-bond, the valence orbital of the missing atom is included in the basis set by a 
projection operator.[114] 

FMO formulations for many QM methods have been developed, out of which MP2 is 
most relevant for ligand binding. However, it should be noted that the electron correlation is 
not treated self-consistently (it is only a dimer energy correction) and thus normally gives a 
larger error than at the HF level.[115] Recently, the FMO method has been interfaced with the 
EFP force field[116] and with two implicit solvent models: PCM[117] and PB.[118] However, FMO 
has two problems relevant to ligand-binding energies. Due to the neglect of Pauli effects, [119] 
the method does not work well with large and diffuse basis sets, which are needed for a 
quantitative account of e.g. dispersion. Moreover, no rigorous correction for the basis set 
superposition error has been presented.

Nevertheless, there have been several applications of FMO to ligand binding. For human 
oestrogen receptor with eleven ligands, it was found that raw FMO-HF/STO-3G binding 
energies were much better correlated to experiment (r2 = 0.70) than binding energies from a 
standard force field.[120] Similarly, a good correlation (r2 = 0.83) was obtained for progesterone
receptor with eight ligands.[121] On the other hand, for the FK506 binding protein, studied with
a higher level of theory (MP2/6-31G*) and including solvent effects, no correlation with 
experimental values was found.[122] This demonstrates the significant system-dependence of 
performances and highlights that it is impossible to assess a theoretical method using only one
target. A more pragmatic way is to use FMO interaction energies as a QSAR descriptor, as 
was done for HIV-1 protease with twelve ligands.[123,124] A simple model using the interaction 
energy and SASA as descriptors gave r2 = 0.85. 

Other complexes studied with FMO include the catabolite activator protein with cAMP,
[125] vitamin D receptor with 1α,25-dihydroxyvitamin D3,[126, 127] avian influenza A virus 
hemagglutinin with human and avian receptors,[128,129,130,131] peroxisome proliferator-activated 
receptor-gamma with rosiglitazone and farglitazar,[132] cyclic AMP receptor protein with cyclic
AMP bound to DNA[133] (for which the interactions were quite different between FMO and 
MM), and retinoid X receptor with steroid receptor coactivating factor-1 coactivator. [134] 
Several of these studies were performed at the MP2 level.[127,132,133,134,122,130,131] In most studies, it
was assumed that differences in vacuum interaction energy correlates with the binding free 
energy in water. However, two of the studies included solvation through the PCM 
method[130,131] and only one of them[130] shows such a correlation. FMO has also been used as 
an integrated tool for drug development in the visualized cluster analysis of the protein-ligand
interaction.[135]

The simplest fragmentation methods of the other type, aiming at calculating binding 
energies, rely on the approximate atom-wise additivity of interaction energies. For a polymer 
P1P2..Pn (of monomers Pi) interacting with a ligand L, the total interaction energy is related to 
the sum of Pi–L interactions, but the problem is that the subsystems Pi are not closed-shell 
systems and thus the Pi–L interaction energies have no meaning. The basic idea of the 
fragmentation reconstruction method is to cap each Pi system, compute the interaction 
energies, sum them, and then correct for the artificial introduction of caps. [136] In the original 
formulation, the correction was done atom-wise, but Zhang and Zhang introduced the notion 
of conjugate caps,[137] which are simply two neighbouring caps joined together, as is illustrated
in Figure 1. By subtracting all interaction energies involving conjugate caps, the effect of the 
caps is eliminated to a first order. This approach is called the molecular fractionation with 
conjugate caps (MFCC). 

Applications of MFCC to ligand binding include streptavidin with biotin, [137] adipocyte 
lipid-binding protein with propanoic acid,[138] b-trypsin with benzamidine,[139] HIV-1 protease 
with various ligands,[140,141] HIV-1 reverse transcriptase with efivarenz and nevirapine,[142,143] a-
thrombin with various ligands,[144,145] and p53 with MDM2.[146] Most of these studies employed
the very approximate HF/3-21G level of theory, but some have used B3LYP/6-31G* to assess 
correlation effects.[140,144,145] Several studies have used MP2/6-31G*[142,143] or MP2/6-
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31+G*[141,144,145] to get a more quantitative account of the most important interactions, and one 
study adds bond-centred basis functions to test the limitations of a small basis set.[146] Only 
one investigation (addressing the interaction energy with a specific water molecule) includes 
solvation effects through a PCM model,[141] and none of the studies attempts to do any 
quantitative comparison to experimental binding affinities.

Similar add-and-subtract schemes can also be used to compute total energies. For 
example, the systematic fragmentation method (SFM)[147] uses classical expressions for well-
separated dimers, most recently the EFP expressions.[148] Bettens and Lee adapted the SFM 
method for protein–ligand interaction energies,[149] by ignoring intra-protein fragment dimers 
and improved the level of theory to MP2/6-311(+)G(2d,p). They studied the binding of an 
inhibitor to neuraminidase.

The polarisable multipole interaction with supermolecular pairs (PMISP) method[2,60] 
combines the MFCC approach for short-range interactions with the NEMO polarisable 
multipole description for long-range electrostatics and many-body polarisation of the whole 
system. The method can also be seen as a limiting case of a polarisable force field, in which 
the short-range terms are computed directly by fragmented QM on the fly. The same idea but 
implemented using another force field (EFP) is used in the EFMO method.[150]

The accuracy of this approach was tested for a set of ligands binding to avidin[2] and 
compared to the standard MFCC approach, the electrostatically embedded pairwise additive 
(EE-PA) model,[151] and the FMO method. As can be seen from Table 1, the inclusion of 
many-body effects significantly reduces the errors compared to the MFCC model. In fact, the 
accuracy of the PMISP method is better than that of the computationally more expensive EE-
PA and FMO methods, unless trimers are explicitly included. The remaining error for charged 
ligands (11 kJ/mol) comes from the difficulty of the polarisable multipole model to treat 
strong interactions and can be reduced by combining the model with an embedding approach.
[2] 

The PMISP method has been used to compute protein–ligand interaction energies at a 
high level of theory, MP2/aug-cc-pVTZ.[60] We also investigated the distance-dependence of 
various approximations to the energy, showing that the explicit QM dimer calculations can be 
replaced by a sum of a polarisable multipole model and a standard Lennard-Jones term for 
distances greater than 6 Å, whereas the use of standard MM also for the classical terms has a 
much more long-range effect, 15–20 Å.

The PMISP method has been interfaced with PCM to provide self-consistent solvation 
energies and used in an MM/PBSA-like approach to compute binding free energies for seven 
ligands to avidin at the MP2/cc-pVTZ level using ten MD snapshots per ligand.[47] 
Unfortunately, no significant improvement was obtained compared to a standard force field, 
probably because the remaining terms, in particular the non-polar solvation energy, were not 
simultaneously improved.[152]

7. Concluding remarks
In this paper, we have reviewed various approaches to improve calculated ligand-binding 

estimates by the use of QM methods. QM methods have many attractive characteristics, e.g. 
that the accuracy can be systematically improved, that there is no need of any 
parameterisation, that any systems can be modelled, including metal complexes or systems 
where covalent bonds are formed or broken, and that polarisation and charge-transfer effects 
are explicitly accounted for. Moreover, many interesting properties are only available from 
QM methods. On the other hand, QM methods are time-consuming.

The most important lesson from the applications of QM methods to ligand binding is that 
even if a method works for one target, it might fail for another. Of course, this type of varying
performance is what one would like to avoid by using QM methods. In fact, it has not yet 
been clearly demonstrated that QM gives better binding free energies than MM, despite the 
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greater computational cost. 
For the simplest QM methods (e.g. semiempirical methods and HF or DFT with small 

basis sets), this is understandable, because it is not evident that the QM calculations give more
accurate interaction energies than well-calibrated MM force fields. Moreover, we have 
pointed out that dispersion is missing in all QM methods currently used for ligand binding, 
except MP2 and that large basis sets (at least TZP) are needed to get near-quantitative results. 
Very few studies have been performed at this level.[47,60,149] It is also important that the basis-
set superposition error is properly treated.

However, as has been discussed above, many other terms contribute to the ligand binding,
besides the macromolecule–ligand interaction energy, e.g. polar and non-polar solvation, 
entropy, dynamic effects, and geometric reorganisation. It is most likely that ligand-binding 
predictions in many cases are limited by these terms rather than the interaction energy. This 
may explain the varying performance of QM-based ligand-affinity estimates. Although many 
QM methods include continuum-solvation effects, it is mainly the QM extensions of the LIE 
and MM/PBSA approaches that include all relevant terms for ligand binding.
[47,65,72,76,81,84,85,86,96,102,104,105] Unfortunately, it seems that even methods like LIE and MM/PBSA 
have problems to provide accurate and consistent binding affinities for all types of 
macromolecules, probably because of the limitations in the end-point or continuum 
approximations.[1,16,17,18,99,152,153] The only method that is guaranteed to give correct results (with
perfect interaction potentials and sampling) is FEP, which has so far been used only once with
a QM potential.[75]

The main problem with the QM methods is the cost of the calculations in terms of 
computer time, which makes proper sampling problematic. It is interesting to note that the 
only QM-based method that has reached a wide use for ligand binding also outside the 
developers is the QPLD method,[27] i.e. the recalculation of the ligand charges by single-point 
QM/MM calculations during a docking procedure. This is probably because these calculations
are rather fast and automatic. However, it also indicates that there are some gain of using QM 
charges that are obtained for the correct conformation of the ligand, polarised by the 
surrounding protein. 

Thus, even if it yet has not been shown that the expense of QM approaches is offset by 
improved accuracy in drug design applications,[4,6,9] we can most likely expect an increasing 
use of QM methods in structure-based drug discovery the coming years. In the nearest future, 
the largest gain may come from improving the MM description by QM calculations, but at the
end we will probably see more and more pure QM calculations, based on combinations of 
various methods (like QM/MM and PMISP) and perhaps within the FEP approach.
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Table 1. Mean absolute errors in kJ/mol for interaction energies between a 216-atom model of
avidin and three charged ligands (12 structures) or four neutral ligands (4 structures), 
respectively, relative to the exact HF/6-31G* results.[2]

Method Charged Neutral

MFCC 29.4 6.2

EE-PA 14.2 4.2

FMO 12.1 3.8

FMO3 0.9 0.3

PMISP 11.0 1.1
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Figure 1. The cutting scheme used for a polypeptide in e.g. the MFCC and PMISP methods, 
giving two capped fragments (middle row) and a conjugated caps fragment (lower row), the 
interactions of which are subtracted instead of added.
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