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Abstract 

Cell migration is a pivotal biological process, whose dysregulation is found in many diseases including inflammation 
and cancer. Advances in microscopy technologies allow now to study cell migration in vitro, within engineered micro-
environments that resemble in vivo conditions. However, to capture an entire 3D migration chamber for extended 
periods of time and with high temporal resolution, images are generally acquired with low resolution, which poses 
a challenge for data analysis. Indeed, cell detection and tracking are hampered due to the large pixel size (i.e., cell 
diameter down to 2 pixels), the possible low signal-to-noise ratio, and distortions in the cell shape due to changes in 
the z-axis position. Although fluorescent staining can be used to facilitate cell detection, it may alter cell behavior and 
it may suffer from fluorescence loss over time (photobleaching).

Here we describe a protocol that employs an established deep learning method (U-NET), to specifically convert 
transmitted light (TL) signal from unlabeled cells imaged with low resolution to a fluorescent-like signal (class 1 prob-
ability). We demonstrate its application to study cancer cell migration, obtaining a significant improvement in tracking 
accuracy, while not suffering from photobleaching. This is reflected in the possibility of tracking cells for three-fold 
longer periods of time. To facilitate the application of the protocol we provide WID-U, an open-source plugin for FIJI 
and Imaris imaging software, the training dataset used in this paper, and the code to train the network for custom 
experimental settings.
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Introduction
The regulation of many biological processes is mediated 
by the migration of cells from one anatomical location 
to another to exert their function. For example, primor-
dial germ cell migration in zebrafish is essential to ensure 
the correct organ development [1]. Moreover, the cor-
rect development of proper immune responses requires a 
fine-tuned regulation of leukocyte trafficking and migra-
tion [2–4].

Amongst the mechanisms involved in cell migration, 
chemotaxis polarizes cells and controls the direction 
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of migration toward favorable locations [5, 6]. Hence, 
several studies focus on the knowledge of the molecu-
lar mechanisms and signaling pathways that regulate 
chemotaxis in vitro and in vivo. However, the directional 
movement of cells is regulated not only by the type of sol-
uble cues diffused into and retained by the environment 
but also by the environment itself [7, 8].

Therefore, engineered microenvironments are essen-
tial to study cell migration in  vitro. Amongst these, 3D 
migration is a setting where cells are embedded in colla-
gen-like fibers to mimic the extracellular matrix (ECM) 
in vitro [6, 9] (Fig.  1A). Widefield Microscopy (WM) is 
an established technique to perform long-term imag-
ing studies in large migration chambers. This technique 
can be applied by recording the fluorescence intensity or 
the intensity of the light transmitted through the sample, 
without necessarily requiring fluorescent staining. In this 
imaging modality, the acquired data consists of a series of 
2D grayscale images captured over time.

However, when WM is applied to study the migra-
tion of motile cells in large 3D migration chambers, the 
analysis of the acquired series of images presents specific 

challenges. Indeed, the classical analysis pipeline involves 
three steps: cell detection, cell tracking, and computa-
tion of motility measures [10, 11]. The application of such 
a pipeline is hampered at the first step, due to drastic 
changes in cell shape that introduce cell detection errors. 
These changes are associated with the frequent squeezing 
of the cytoskeleton while migrating through dense ECM 
[6], or introduced as an artifact during the migration 
along the z-axis. In the last case, cells are imaged outside 
the focal plane, leading to blurred and enlarged shapes in 
the acquired images.

Additionally, depending on the experimental settings, 
cells can require a long period to exert a directional 
movement. Hence, long acquisition times are needed. 
Long-time acquisitions may prevent the usage of fluo-
rescent staining (used to facilitate cell detection) due 
to photobleaching or phototoxicity. Hence, imaging of 
unlabeled cells using transmitted light (TL) is neces-
sary. Lastly, analysis of cells following long tracks (i.e., 
> 150 μm), demands a large field of acquisition and neces-
sitates low magnification (i.e. 4X objective). Therefore, 

Fig. 1 Widefield microscopy in wide 3D migration chambers. (A). Representation of a wide migration chamber for chemotaxis assays. (B). Widefield 
image of VAL cells scattered in the field of view using TL. i-iii challenges for the automatic analysis: (i) large pixel size associated with a limited 
number of pixels per cell, (ii) appearance of cells similar to the background associated with a low signal to noise ratio, and (iii) different appearance 
of cells according to the position along the z-axis with respect to the focal plane
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the resolution is another challenge for cell detection and 
subsequently compromises tracking (Fig. 1B).

Recent advances in artificial intelligence methods 
applied to bioimage analysis remarkably improved the 
accuracy of cell detection and subsequently tracking [12–
14]. Amongst these, end-to-end neuronal networks with 
convolutional layers such as the U-NET [15] and its vari-
ants that transform an input image into another image 
as output, improved the segmentation of complex struc-
tures with respect to single pixel classifiers [16], gaining 
application in both biomedical imaging for cell detec-
tion, counting, and morphological analysis [17, 18]. The 
usage of U-NET was also demonstrated to improve cell 
and tracking due to the increased robustness of object 
detection on binary masks rather than on original images 
which may suffer from non-uniform illumination or poor 
signal to noise ratio [19–22].

Although U-NET was applied to many different imag-
ing modalities and cell types, a pipeline to specifically 
analyze time-lapse images of unlabeled cells acquired 
with low magnification via brightfield microscopy in 3D 
migration chambers is still missing.

Therefore, we propose WID-U (U-NET for WIDe 
migration chambers), a plugin for common bioimaging 
software such as Imaris (Oxford instruments) and FIJI, 
that converts the TL signal from brightfield microscopy 
into a fluorescent like signal (pseudofluorescence) corre-
sponding to the class 1 probability from the U-NET. The 
signal generated by WID-U yielded an efficient detection 
of the cells using standard spot-detection methods availa-
ble in TrackMate [23, 24] and Imaris, which subsequently 
improved cell tracking accuracy in images with low reso-
lution from 3D in vitro environments.

Results
Pipeline to convert TL to pseudo‑fluorescence
To convert the TL signal from unlabeled cells to 
pseudo-fluorescence, we developed an image process-
ing pipeline based on deep learning. Such a pipeline 
is specifically developed to face the challenges arising 
when images of cells are acquired in large 3D migration 
chambers, at low magnification (4x) and large fields of 
view (2 mm × 2 mm). To account for such low magnifica-
tion and large fields of view, images are processed with 
a sliding window of 56 × 56 pixels (~ 92 μm × 92 μm) 
(Fig.  2A, red square). Subsequently, each window is 
upscaled by a factor of 4 to 224 × 224 pixels, and pro-
cessed via a patch classifier based on the U-NET archi-
tecture [17]. (Fig.  2B). Such architecture receives as 
input the upscaled TL images (Fig. 2B, grayscale image), 
and generates as output an image where the intensity of 
each pixel is the class-1 probability, or pseudofluores-
cence (Fig.  2B, magenta-colored image). The output of 

the U-NET is then downscaled and reassembled as a new 
imaging channel of the original image (Fig. 2C). To train 
the network, datasets consisting of upscaled image pairs 
were manually created using a custom tool that virtually 
zooms-in on selected areas of different videos and at dif-
ferent time points. This allowed  examples of cells lying at 
different focal planes, and in areas with different illumi-
nation, conferring to the trained network robustness to 
brightness/contrast changes (Fig. S1).

Enhanced cell detection and tracking of B cell lymphoma 
in 3d migration chambers
We applied the proposed pipeline to analyze videos of 
VAL cells (a Germinal Center-derived B cell lymphoma), 
acquired in 3D microenvironments. A dataset of 150 
image pairs was used to train the network (Fig.  3A). 
Then, we compared the quality of the pseudofluorescence 
signal with respect to TL, or real fluorescence emitted by 
cyan fluorescent protein positive (CFP+) cells. The pro-
posed pipeline yielded a significant improvement in the 
signal-to-noise ratio (SNR) with respect to TL images 
(Fig. 3B), and a higher but not significantly improvement 
in SNR with respect to real fluorescence (CFP). In con-
trast to CFP, the intensity of the pseudo-fluorescent sig-
nal did not suffer from photobleaching (Fig. 3C). Despite 
noise was introduced by the automatic adjustment of 
focal plane at each time point, the mean intensity of the 
pseudo-fluorescent cells never decreased below 80% of 
the intensity at the initial time point.

Moreover, the proposed pipeline increased the visibility 
of cells, which were out of focus or with deformed shapes 
(Fig. 3D). Altogether, these properties make pseudofluo-
rescence similar to real fluorescence, but with increased 
stability over time.

To validate the effect of pseudofluorescence on the 
quality of cell tracking, we performed automatic cell 
tracking using TL, real fluorescence (CFP+ cells), or 
pseudofluorescence signals. Pseudofluorescence yielded 
significantly more accurate tracks than the original TL 
signal, with an average three-fold increase in the track 
duration (Fig. 3E). In comparison with real fluorescence, 
track duration was longer, especially in the late time 
points when the fluorescent signal was fading (Fig.  3B-
E). In general, pseudofluorescence decreased the number 
of tracking errors, resulting in fewer interrupted tracks 
(Fig. 3F) and fewer glitches when cells were in close prox-
imity (Fig. 3G), facilitating the automatic tracking of cells 
using pseudofluorescence in large 3D microenviron-
ments (Fig. 3H, Fig. S2).

Additionally, we manually tracked 195 cells from three 
different experiments corresponding to 23,991 spots 
(all the cells in the field of view were tracked, respec-
tively 40, 96, 59 tracks, and 5182, 10,117, 8692 spots) and 
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Fig. 2 Pipeline to convert TL to pseudofluorescence. (A). TL image obtained by widefield microscopy. The red square represents a sliding window 
of 56 × 56 pixels used for image processing. (B). Patch classifier, which employs a U-NET architecture with five fully convolutional layers. An upscaled 
window (224px x 224px) is used as input. The class-one probability is used to generate a pseudofluorescent image as output (magenta colored). 
(C). The output is then downscaled and combined with the original imaging data to create a virtual imaging channel with pseudo-fluorescence 
(magenta)

(See figure on next page.)
Fig. 3 Enhanced cell tracking of VAL cells in 3d migration chambers using pseudofluorescence. (A). Representative image pairs from the dataset 
used for training, including TL images (up), and manually annotated binary masks (bottom) (n of images included = 159). (B). Comparison 
of the signal-to-noise ratio (SNR) between cells observed via TL, CFP labeled cells (CFP), and pseudofluorescence (PF). The SNR value of each 
population derives from the mean of three independent observations. (C). Comparison of the intensity variation (intensity at time t / intensity 
at time 0, average of all the cells) over time of pseudofluorescence (magenta) and CFP (blue), showing the effect of photobleaching on CFP. (D). 
Representative micrographs showing the transformation into pseudofluorescence of cells which are poorly visible in TL and outside the focal 
plane. (E). Comparison of automatic tracking accuracy (Track duration) using TL, pseudo-fluorescence, CFP-labeled cells and pseudofluoresence 
calculated on the CFP positive cells. Values of each population were calculated from the mean of three independent observations. Track duration 
is expressed in % w.r.t the total video duration. (F). Representative micrographs showing tracks of cells obtained using PF (magenta lines) and CFP 
signals (cyan lines). Red arrow indicates a cell not detected using CFP due to photobleaching. (G). Representative micrograph showing tracking 
errors (red arrow, glitch between cells in close proximity) when using PF with respect to TL. (H). Results obtained on a 3D migration chamber 
(color-coded tracks, blue = 0 s, red = 8 hours). (I). Visual comparison between manually tracked cells (black lines), and automatically tracked cells 
using pseudofluorescence channel (magenta lines). num. Tracks = 40, 96, 59. (J). Quantitative evaluation of multiple object tracking accuracy. 
Statistics performed with Mann-Whitney t-test relative to FP as control, * = P < 0.05 *** = P < 0.001
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Fig. 3 (See legend on previous page.)
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compared these tracks with the ones obtained by apply-
ing the proposed pipeline (Fig. 3I). The true positive rate 
of spot detection was greater than 95%, while  the false 
positive rate was lower than 17% and a false negative rate 
lower than 5%. To evaluate the accuracy of cell tracking 
instead (i.e. penalizing track switch errors), we performed 
a multi-object tracking analysis (MOTA) [25] obtaining a 
MOTP score greater than 0.74 (Fig. 3J).

Enhanced cell detection and tracking of MDA‑MB231 
breast cancer cells with heterogeneous shapes
To validate the applicability of the pipeline to track cell 
types with substantially different morphologies, we 
performed chemotaxis assays using MDA-MB-231, a 

human breast cancer cell line established from a pleural 
effusion of a 51-year-old Caucasian female with meta-
static mammary adenocarcinoma. These are epithelial 
adherent cancer cells with a heterogeneous morphol-
ogy, either spindle-shaped (long and thin) or rounded. A 
dataset with 73 image pairs from 3 independent experi-
ments depicting cells with both morphologies was gen-
erated (Fig. 4A). Then, the network was re-trained and 
applied to convert the TL signal to pseudofluorescence. 
The computed class-1 probability was used as input 
to a tracking algorithm based on threshold detection 
and linking, obtaining significantly longer tracks with 
respect to the ones obtained using the raw TL signal 
(Fig. 4B-C).

Fig. 4 Enhanced tracking of MDA-MB-231 breast cancer cells with heterogeneous shapes (A). Representative micrographs of the image pairs 
used to train the network. (B). Micrographs representing images of cells with heterogeneous shapes (round, or thin-elongated) in transmitted 
light, pseudofluorescence, and merged. (C). Comparison between tracks obtained using transmitted light (left) or pseudofluorescence (right). 
Arrows indicate tracking errors obtained using the transmitted light signal only. (D). Comparison in track duration using transmitted light vs 
pseudofluorescence signal with the proposed protocol. n = 76 cells (TL), 80 cells (PF). Statistics performed with Mann-Whitney t-test, *** = P < 0.001
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WID‑U plugin
To facilitate the execution of the pipeline for TL to flu-
orescence conversion, a plugin for the Imaris (Oxford 
instruments), and a plugin for FIJI bioimaging software 
have been developed. The protocol that makes use of the 
plugin to enhance cell tracking is summarized in (Fig. 5). 
Briefly, it will be sufficient to load the image sequence in 
the preferred imaging software, then launch the WID-U 
plugin to transform the TL signal into a new channel with 
pseudofluorescence. Finally, automated cell tracking can 
be performed on the generated new channel. Regarding 
the installation, the software comes with three different 
parts: the plugin itself, the program to re-train, if needed, 
the network for custom cell types, and the program that 
performs the computations using deep learning. These 
last two programs can be either installed on the same 
machine where FIJI/Imaris is installed or configured on 
a remote machine dedicated to computation (a CUDA-
enabled machine is recommended to speed up the execu-
tion). To configure the connection to such a machine, it 
will be sufficient to configure the IP address in the plugin 
(Fig. S3). Instructions are included in the README 
file. Additionally, to use WID-U without a GPU-ena-
bled machine, we made available a macro to export the 
images, process them on a  remote machine (i.e.  , a free 
online deep learning platform such as Google COLAB), 
and a macro to import the results in the desired software 
(Fig. S3).

Materials and methods
Cell line and cultures
VAL cells were cultured in  RPMI-1640 medium sup-
plemented with 10% heat-inactivated fetal bovine 

serum (FBS), 1% Penicillin/Streptomycin, 1% Glu-
taMAX,  1% NEAA, 1% sodium-pyruvate, and 50 μM 
β-mercaptoethanol. CFP+ cells were cloned as described 
previously [26]. MDA-MB-231 cells were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM) containing 
D-glucose 4.5 g L1, and glutaMAX (619650–026, GIBCO, 
ThermoFisher Scientific, Switzerland) supplemented 
with fetal bovine serum 10% (16000–044, GIBCO, Ther-
moFisher), and penicillin-streptomycin 1% (15,070,063, 
GIBCO, ThermoFisher Scientific). Cells were incubated 
under standard culture conditions (CO2 5%, O2 95%, 
37 °C).

Migration assays
3D migration of VAL cells was performed using the 3D 
chamber μ-Slide from Ibidi as described by  Antonello 
et  al. https:// doi. org/ 10. 3389/ fimmu. 2022. 10678 85. 
Briefly, cells were embedded in a collagen matrix formed 
by 1.6 mg/mL PureCol (Collagen, Sigma-Aldrich), 0.36% 
PBS supplemented with 0.36% FBS, 0.036% P/S, 1.5 μg/
mL recombinant human ICAM-1/CD54 Fc chimera 
(R&D systems) at 4 °C. The temperature was slowly 
raised over 45 min to 37 °C to induce a homogeneous 
collagen fiber polymerization. Complete medium was 
added to both side reservoirs. After 24 hours, 15 μL of 
400 nM CXCL12 were added to one of the reservoirs 
and time-lapse video microscopy was performed for 
6 hours at 20 seconds time intervals using an ImageX-
press® (Molecular Devices) high throughput micro-
scope, equipped with an incubation system set to  CO2 
5%,  O2 95%, 37 °C, with a Nikon Plan Apo 4x / NA 0.2 
and 20 mm working distance objective. CFP was excited 
with a Lumencore LED lamp, excitation band 438/24, 

Fig. 5 Usage workflow. Summary of the protocol to follow to enhance cell tracking using WID-U

https://doi.org/10.3389/fimmu.2022.1067885
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collection band 483/32. For brightfield imaging, the con-
denser was set to Koehler illumination. Collection was 
performed with an Andor Zyla sCMOS camera. Migra-
tion assays of MDA-MB-231 cells were performed using 
the μ-Slide chemotaxis chambers from Ibidi, according 
to the manufacturer’s instructions. Briefly, cells were 
resuspended at 3 ×  106 cells  ml− 1 in Dulbecco’s Modified 
Eagle Medium (DMEM) and glutaMAX (619650–026, 
GIBCO, ThermoFisher Scientific, Switzerland) supple-
mented with fetal bovine serum 1% (16000–044, GIBCO, 
ThermoFisher). The observation area of the chamber was 
filled with cells, and the chamber was placed in the incu-
bator  (CO2 5%,  O2 95%, 37 °C) for 1 h to allow cell adher-
ence. Time-lapse video microscopy images were recorded 
for 18 h with a time interval of 600 seconds using the 
ImageXpress as described above.

Transformation of TL images into pseudofluorescence
TL images were converted into pseudofluorescence by 
employing an end-to-end neural network with convo-
lutional layers based on the U-NET architecture [17]. A 
dataset with pairs of TL and pseudofluorescence (binary 
masks) was created manually drawing the contour of 
cells. Such dataset included 150 images of 56 × 56 pixels 
(91 × 91 μm) from different experiments. These images 
were upscaled to 224 × 224 pixels to facilitate annotation 
then downscaled to 112 × 112 pixels for training and aug-
mented to 15′000 images. The trained network was then 
applied to convert images of size > = 1000 × 500 pixels, 
to pseudofluorescence by classifying a moving window 
of 56 × 56 pixels. The class-1 probability computed by 
the U-NET was used as pseudofluorescence. Hyperpa-
rameters on training can be found in the code in Supple-
mentary material. Briefly, Adam optimizer, loss = binary 
cross-entropy, initial learning rate =  10− 4, batch size = 2, 
epochs = 60. Data augmentation was performed using 
Keras image generators, with rotation range = 0.5, zoom 
range = 0.5, vertical and horizontal shift = 0.5, shear 
range = 0.2, horizontal and vertical flip, and zero filling.

Cell tracking
Initially, TL images were transformed into pseudofluo-
rescence images. Then, cells were detected and tracked 
using the Spots tracking functionality of the Imaris soft-
ware (Oxford Instruments, v.7.7.2) in the original TL 
channel, in the imaging channel capturing fluorescence, 
and in the pseudofluorescence channel. In all cases, an 
estimated spot diameter of 8 um was selected and back-
ground subtraction was enabled to account for non-
uniform illumination. Tracking was performed using an 
autoregressive motion model, with a maximum distance 
of 20 μm, and a maximum gap size of 0. Tracks shorter 
than 300 seconds were excluded from the analysis. Tracks 

were divided into two classes (WT and CFP+ cells), 
based on the mean fluorescence intensity of the imaging 
channel centered on CFP. Finally, the duration of each 
track was computed. Tracks outside the migration chan-
nel were deleted manually.

Automatic tracking was also performed using Track-
Mate in FIJI [23] using the LoG spot detector or auto-
matic thresholding, and Simple Lap tracker for spot 
tracking. The same threshold described before for the 
tracking in Imaris were used also for the tracking in 
TrackMate.

Image and tracking measures
Track measures were exported from Imaris or TrackMate 
and processed in Matlab to compute track duration, fluo-
rescence decay and SNR. SNR was estimated as [avg (FG) 
– avg. (BG)] / std. (BG) where FG is the intensity of the 
pixels in the foreground and BG pixels in the background 
as previously described [12].

Statistics
SNR and Track duration values were analyzed with 
PRISM software. Statistics performed with ONE WAY 
ANOVA * P < 0.05, **P < 0.01 ****P < 0.0001.

Discussion
The application of deep learning to in  vitro time-lapse 
imaging improved the tracking accuracy of cancer cells 
in large 3D migration microenvironments. In this paper, 
this was achieved by training a U-NET architecture with 
a custom dataset for B cell lymphoma (globular shapes) 
and a custom dataset for breast cancer cells (heterogene-
ous shapes). To apply our pipeline to other cell types or 
other imaging modalities, the network can be re-trained. 
In the cases included in this paper, 70 to 150 image pairs 
with data augmentation were sufficient to improve track-
ing accuracy. However, to enhance the robustness of cell 
detection, image pairs included in the training set should 
be representative of cells in different areas of the micro-
environment. The creation of the training set was facili-
tated by upscaling. This is associated with an increased 
precision during the manual annotation when cells had a 
small area (i.e., 4 pixels), and was completed by an imag-
ing expert in less than 6 hours for both cases. However, 
to minimize the number of training examples required, 
we recommend the usage of transfer learning approaches 
[17].

The tracking was improved mainly as a consequence 
of more accurate spot detection. Several tools based on 
supervised machine learning are nowadays available 
for cell segmentation. However, to track cell centroids 
over time, accurate shape reconstruction may not be 
required. Indeed, the class-1 probability generated by 
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the U-NET, which decreases towards the borders of the 
cells (Fig. S4), demonstrated particularly appropriate for 
the subsequent application with a variety of spot detec-
tion methods as previously demonstrated [19–22], and 
allows the user to select more or less detected objects 
by defining an intensity threshold, in line with the most 
common tracking pipelines. In this study, we tested 
two approaches typically used in bioimaging: water-
shed with background subtraction (Imaris) and LoG 
detector (FIJI/TrackMate). In both cases, performances 
improved. Performances increased also when automatic 
thresholding (FIJI/TrackMate) was used for spot detec-
tion. This suggests that pseudofluorescence is uniform 
across the field of view and spot detection based on 
intensity becomes possible. Our protocol facilitates the 
computation of this signal systematically, either auto-
matically sending data from FIJI/Imaris to a cluster with 
a GPU or allowing export/import data to be processed 
on free deep learning resources such as Google COLAB.

The multi-object tracking analysis revealed a MOTP 
score of 0.74 when a simple LAP tracking algorithm 
was used [23]. This suggests that the method can be 
applied to automatize the analysis, despite further 
improvements can be obtained by more advanced link-
ing algorithms, or manual post-correction. To further 
enhance accuracy, pseudofluorescence can be used in 
combination with recently developed methods for cell 
detection, such as those based on geometric properties 
and deep learning [27].

In conclusion, the proposed pipeline allowed cell 
tracking in large 3D migration chambers over extended 
periods of time, retaining the simplicity of cell detec-
tion as when real fluorescence is used, but avoiding 
photobleaching and other side effects of cell labeling.
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Additional file 1: Supplementary Fig. 1. Benchmark in response to 
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(below)

Additional file 3: Supplementary Fig. 3. Usage workflow. The pipeline 
to convert low-resolution TL images to pseudofluorescence is made 
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as Google COLAB (top). For routine uses the tool can be easily installed on 

a GPU-enabled machine or on same computer by using a virtual machine. 
In Imaris, once installed and configured for communication with a deep 
learning-enabled machine, the user can launch the plugin and use the 
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