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Introduction: Traumatic brain injury (TBI) induces a cascade of cellular

alterations that are responsible for evolving secondary brain injuries. Changes

in brain structure and function after TBI may occur in concert with

dysbiosis and altered amino acid fermentation in the gut. Therefore, we

hypothesized that subacute plasma amino acid levels could predict long-term

microstructural outcomes as quantified using neurite orientation dispersion

and density imaging (NODDI).

Methods: Fourteen 8–10-week-old male rats were randomly assigned either

to sham (n = 6) or a single moderate-severe TBI (n = 8) procedure targeting

the primary somatosensory cortex. Venous blood samples were collected at

days one, three, seven, and 60 post-procedure and NODDI imaging were

carried out at day 60. Principal Component Regression analysis was used

to identify time dependent plasma amino acid concentrations after in the

subacute phase post-injury that predicted NODDI metric outcomes at day 60.

Results: The TBI group had significantly increased plasma levels of

glutamine, arginine, alanine, proline, tyrosine, valine, isoleucine, leucine,

and phenylalanine at days three-seven post-injury. Higher levels of several

neuroprotective amino acids, especially the branched-chain amino acids

(valine, isoleucine, leucine) and phenylalanine, as well as serine, arginine, and

asparagine at days three-seven post-injury were also associated with lower

isotropic diffusion volume fraction measures in the ventricles and thus lesser

ventricular dilation at day 60.

Discussion: In the first such study, we examined the relationship between

the long-term post-TBI microstructural outcomes across whole brain and

the subacute changes in plasma amino acid concentrations. At days three
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to seven post-injury, we observed that increased plasma levels of several

amino acids, particularly the branched-chain amino acids and phenylalanine,

were associated with lesser degrees of ventriculomegaly and hydrocephalus

TBI neuropathology at day 60 post-injury. The results imply that altered

amino acid fermentation in the gut may mediate neuroprotection in the

aftermath of TBI.

KEYWORDS

traumatic brain injury, brain microstructure, amino acids, diffusion magnetic
resonance imaging, neurite orientation dispersion and density imaging (NODDI)

Introduction

Traumatic brain injury (TBI) and its sequelae are a
major public health issue and a leading cause of mortality
and disability worldwide, with an estimated global annual
incidence of 295 per 100,000 population (Nguyen et al.,
2016). Effects of TBI on human brain structure and function
are inherently complex, with a broad range of causative
mechanisms, injury severity, and clinically diverse presentations
(William and Rajajee, 2022). Part of this complexity stems
from the distinction between the direct effects such as
contusion, hematoma, axonal integrity (Alves and Marshall,
2006), and the secondary brain injury, which manifests in
edema, increased intracranial pressure, mitochondrial and
metabolic dysfunction, excitotoxicity, oxidative stress, vascular
injury, neuroinflammation, perfusion changes, even extending
to apoptosis and necrosis (Kaur and Sharma, 2017). A wide
range of signaling pathways contribute to these secondary
processes, including ions such as Ca2+, K+, and Na+,
and also signaling molecules such as adenosine triphosphate
(ATP), neurotransmitters and their receptors, as well as
reactive oxygen species, amino acids, immune cytokines and
chemokines, and apoptosis regulators (Kaur and Sharma,
2017). Blood levels of many of these markers present
themselves as prognostic indicators of TBI outcome, notably
neuroinflammation modulators like tumor necrosis factor alpha
(TNFα), interleukins (Woodcock and Morganti-Kossmann,
2013), S100 astroglial calcium-binding protein beta (S100β),
glial fibrillary acidic protein (GFAP), neuronal specific enolase
(NSE), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) (Vos
et al., 2004; Chabok et al., 2012; Mercier et al., 2013; Zetterberg
and Blennow, 2016).

Amino acids are the building blocks of proteins, which
in their diverse forms, are key structural and functional
constituents of living cells (Dietzen, 2017). In the brain, amino
acids are involved in neurotransmission, and more generally in
the development, maintenance, repair, and recovery of neural
tissues; changes in the brain amino acid pools can contribute to
central nervous system pathologies (Kurbat and Lelevich, 2009).

Acute TBI can result in changes in the gut microbiota, which
may entail alterations in amino acid fermentation (Celorrio and
Friess, 2022). We therefore supposed that blood concentrations
of amino acids might bear some relation to the progression of
TBI, thus presenting a potential diagnostic or prognostic tool.
Indeed, several prior studies have examined changes in plasma
or serum amino acid levels after TBI in humans (Deutschman,
1987; Flakoll et al., 1995; Petersen et al., 1996; Vuille-Dit-Bille
et al., 2012; Jeter et al., 2013) and in animal models (Louin
et al., 2007; Zheng et al., 2017; Taraskina et al., 2022). In a piglet
TBI model, plasma levels of glycine, ornithine, and the non-
proteinogenic amino acid taurine at 24 h post-injury correlated
with central injury in a regression model (Hajiaghamemar et al.,
2020).

Traumatic axonal injuries (TAIs), or damage to the white
matter, are a common finding in TBI, which (once established)
can be detected using non-invasive neuroimaging techniques.
More specifically, large haemorrhagic TAIs can be detected
by computed tomography, smaller haemorrhagic TAIs by
susceptibility weighted magnetic resonance imaging (MRI),
and small non-haemorrhagic TAI by diffusion-weighted MR
or diffusion tensor MRI (Bruggeman et al., 2021). Neurite
orientation dispersion and density imaging (NODDI) is an
advanced MRI modality that extends upon the principles of
diffusion tensor imaging to provide greater specificity for
detecting microstructural changes in the brain (Zhang et al.,
2012). NODDI aims to separate the total water diffusion
signal into three different and non-exchanging diffusion
compartments: the isotropic free water (i.e., CSF), intra-neurite
(i.e., axons and dendrites), and extra-neurite (i.e., extracellular
water, neuronal cell bodies and glial cells) fractions, the
proportions of which may be significantly changed in brain
pathologies (Zhang et al., 2012). NODDI has already been
used to examine the microstructural changes after mild TBI
in humans (Churchill et al., 2017, 2019; Mayer et al., 2017;
Wu et al., 2018; Palacios et al., 2020) and moderate-severe
TBI in animal models (Mac Donald et al., 2007; Harris et al.,
2016; To et al., 2022). Overall, NODDI detects post-TBI
changes associated with neural plasticity (Harris et al., 2016;
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Churchill et al., 2017, 2019; Wu et al., 2018; To et al., 2022),
edema (Mayer et al., 2017; Palacios et al., 2020; To et al., 2022)
and axonal (Harris et al., 2016; Palacios et al., 2020) or neuronal
degeneration (To et al., 2022).

Given the reported associations between plasma amino
acid levels with post-TBI neuropathology and the ability of
NODDI to detect microstructural changes associated with TBI
pathologies, we hypothesized that TBI outcomes to NODDI
might be predicted from early changes in plasma amino acid
levels, conjecturally in response to alterations in the gut-brain
axis and amino acid fermentation. To test this hypothesis,
we undertook a prospective imaging study in rats with a
standard TBI model.

Materials and methods

Experimental design

The experiments received approval by the Animal Research
Ethics Committee (AEC) of the University of Queensland
(approval number: QBI/036/16/MAIC). Fourteen Sprague–
Dawley male rats (8–10 weeks old, 300–340 g) were obtained
from the Animal Resource Center (ARC, Western Australia)
and kept at the laboratory animal housing facility with a 12-h
light-dark cycle and free access to food and water. Rats were
randomly assigned to either sham surgery (n = 6) or TBI (n = 8)
groups. Blood samples were drawn from the tail vein and the
plasma fractions were separated and frozen for later analysis
on days one, three, seven, and 60 after the surgery, whereas
MRI scans, were conducted on day 60. We evaluated a plasma
amino acid panel at days one, three, seven, and 60 post-surgery.
Experimenters were not blinded to the animal’s experimental
conditions, but personnel conducting the data processing and
analysis were blinded (although TBI animals usually had
obvious and gross structural changes visible on structural MRIs).
All MRI data were processed semi-automatically through a
processing pipeline.

Controlled cortical impact (CCI)
traumatic brain injury model

The CCI procedure was as outlined in our previous
publications (Mohamed et al., 2021a; To et al., 2022). In brief,
rats under isoflurane anesthesia received a 5 mm diameter
craniotomy window over the right hemisphere centered at
2.5 mm posterior to bregma and 3 mm right lateral to the
sagittal suture to expose the brain. A controlled cortical impact
(CCI) (Osier and Dixon, 2016) was delivered to the animals
in the TBI group using a pneumatically driven impactor (TBI
0310, Precision System and Instrumentation, USA) with a
cylindrical 4 mm diameter tip with the following parameters:

impact velocity = 5 m/s, penetration depth = 2 mm, and dwell
time = 200 ms. Sham animals received the craniotomy but no
impact. Overall, no animals showed conspicuous signs motor
deficits after recovery from the procedure. After surgery, the
wound was sutured and, following a monitored acute recovery
interval, the animals were returned to their home cage. An
earlier manuscript using the same injury model indicated that
compared to sham animals, TBI group had slightly higher
weight loss at day 1 post-surgery but this difference was no
longer significant at day 3 post-injury (Mohamed et al., 2021a).
No animal died after the surgery or during the course of
the study, outside of planned perfusion-fixation and brain
harvesting.

Blood sample collection and
inflammatory marker quantification

Tail vein venepuncture was performed at each timepoint
(days one, three, seven, and 60 post-procedure) and blood was
collected into 1.5 ml Eppendorf tubes containing 8 µL of 0.5
M EDTA. Additional EDTA was added to the tube to achieve
a final concentration of 5 mM in the whole blood volume.
Blood samples were centrifuged at 3,000 rpm at 4◦C for 15 min,
and the resultant plasma was filtered through glass wool by re-
centrifugation at 3,000 rpm at 4◦C for 15 s, and then passed
through a 0.22-micron filtration column by centrifugation at
5,000 rpm at 4◦C for 60 s. The filtered plasma samples were
stored at−80◦C for further analysis.

On the day of analysis, plasma samples were thawed to
room temperature and then diluted 1:1 with 200 µM internal
standard (D,L-norvaline, Nva; Sigma-Aldrich). The solution
was deproteinated by ultrafiltration (13,800 g for 60 min at
5◦C) through a membrane filter with a nominal 10 kDa
molecular weight cut-off (Amicon R© Ultra Centrifugal Filters,
Merk Millipore). Twenty microliter (20 µL) portions of filtrate
were derivatized using the AccQ-Tag Ultra Derivatization
Kit (Waters Corp.,) following the supplier’s recommended
procedures. Standards for detection and quantitation of amino
acids were prepared using the Amino Acid Standard H kit
(Pierce; Thermo Fisher) with the addition of asparagine,
glutamine, and tryptophan (all from Sigma-Aldrich), with Nva
serving as the internal standard.

The concentrations of amino acids were determined using
pre-column derivatization amino acid liquid chromatography
with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate
followed by separation of the derivatives and quantification
by modified reversed phase ultra-performance binary gradient
liquid chromatography (UPLC; Waters Corporation; Milford,
MA, USA) (Cohen and Michaud, 1993; Cohen, 2000).
The column employed was an ACQUITY UPLC BEH C18
1.7 µm × 100 mm column (Waters Corp.,) with detection at
260 nm (UV) and delivery of mobile phase at a flow rate of
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0.7 mL/min (Cohen, 2000). This enabled a 12 min analysis time
per sample.

Using the Empower software (Waters Corporation)
we quantified the following amino acid concentrations:
histidine, asparagine, serine, glutamine, arginine, glycine,
aspartic acid, glutamic acid, threonine, alanine, proline,
cystine, lysine, tyrosine, methionine, valine, isoleucine, leucine,
phenylalanine, and tryptophan.

Magnetic resonance imaging (MRI)
procedure

Animal handling
Magnetic resonance imaging was performed on day 60 post-

surgery. Anesthesia was induced using isoflurane (4% induction,
1–2% during preparation, and 0–0.3% during concurrent
medetomidine infusion) in 40:60 O2 in medical air (2 L/min
flow rate). The rats anesthetized were positioned on an MRI-
compatible cradle (Bruker Biospin, Germany) with ear and
tooth bars in place to reduce head motion. Rectal temperature
and respiratory pattern and rates were monitored using a MR-
compatible monitoring and gating system for small animals
(Model 1030, Small Animal Instruments, New York, USA).
After positioning the animal inside the MRI scanner, we
administered the α2-agonist medetomidine through a peritoneal
catheter as a bolus (0.05 mg/kg), immediately followed by
continuous infusion (0.1 mg/kg/h). Respiration rate was in the
range of 60–95 breaths per minute. Rectal temperature was
maintained at 36 ± 1◦C by thermostatically controlled warm
water circulating in tubes embedded in the animal holding
cradle (SC100, Thermo Scientific, USA).

MRI scans and image processing
As described in our previous publications (Mohamed

et al., 2020, 2021a), MRI scans were acquired using a
9.4 T Bruker system (BioSpec 94/30USR, Bruker, Germany)
and the software Paravision 6.0.1 (Bruker, Germany), along
with a volume transmitter coil and a four-element array
receiver coil. Anatomical imaging was performed using T2-
weighted rapid-relaxation-with-enhancement (RARE) sequence
with the following parameters: repetition time (TR)/Echo Time
(TE) = 5900/65 ms, RARE factors = 8, number of averages = 2,
FOV = 25.6 × 32 mm, matrix size = 256 × 256 × 40,
and 0.5 mm-thick slices, giving an effective output spatial
resolution of 0.1× 0.125× 0.5 mm. Diffusion-weighted images
were collected using a spin-echo echo-planar imaging (EPI)
sequence with TR/TE = 10000/29 ms, FOV = 24.8 × 24.8 mm,
matrix size = 108 × 108 × 41, and 0.5 mm-thick slices with
0.1 mm slice gaps, giving effective output spatial resolution of
0.23 × 0.23 × 0.6 mm. Two b-value shells of 750, 1500 s/mm2,
with 32 diffusion-weighted directions per shell, and 4 volumes
of b = 0 s/mm2 were acquired.

Data from the MR scanner were exported in DICOM
format using Paravision 6.0.1 and converted to NIFTI data
format using MRIcron (Rorden and Brett, 2000). MRI images
were given a modified header file with voxel size ten times
larger than the original voxel size to adapt to image processing
tools originally developed for human brain (Bajic et al., 2017).
T2-weighted structural images were N4ITK (Tustison et al.,
2010) bias field corrected [as implemented in the Advanced
Normalization Tool (ANTs v.2.3.4) (Avants et al., 2014)]
and skull-stripped [using 3D pulse-coupled neural networks
(PCNN) (Chou et al., 2011) followed by manual editing].
Lesion-exclusion masks were created for animals in the TBI
group with the lesion defined as areas with obvious hyper-
or hypo-intensity and/or tissue loss on T2-weighted structural
images. The pre-processed and masked structural images of
the sham animals were then affine-registered to the masked
SIGMA in vivo rat brain template (Barrière et al., 2019), using
the FSL (v.6.0.4)1 program FLIRT (Smith et al., 2004). The
sham group’s registered images were then used for an iterative
non-linear image registration/template construction procedure
using the Advanced Normalization Tool [ANTS v.2.3.4 (Kim
et al., 2008). MultivarateTemplateConstruction2.sh] to create a
study-specific sham structural template.

Image registration of structural images of all animals to
the generated study-specific template was performed using the
constrained cost function masking (CCFM) approach (Brett
et al., 2001). This approach was implemented by registering
the study-specific sham template to each animals’ pre-processed
and masked structural images with an additional cost function
mask that included only the “normal” parts of the brain and
excluded the lesion area, using Symmetric Diffeomorphic Image
Registration with Cross-Correlation (SyN-CC) (Avants et al.,
2008), (implemented in ANTS). The inversion of the resulting
subject-specific warping fields allows for warping of images in
each subject’s structural image space to the study-specific sham
template, despite gross anatomic defects in the lesioned animals.

The four b = 0 volumes were averaged to generate the b = 0
spatial representation of diffusion MRI data. Motion and eddy
current corrections were performed on diffusion MRI data using
FSL’s eddy_correct with the b = 0 spatial representation serving
as the reference image. The representation was also N4ITK
bias field corrected. Affine registration of the inhomogeneity-
corrected b = 0 representation image to the inhomogeneity-
corrected T2-weighted structural images (neither was skull-
stripped) was performed as the inverse transformation was
used to resample the structural brain mask (lesion-included) to
the diffusion MRI space. Diffusion MRI data were fitted using
neurite orientation dispersion and density imaging (NODDI)
implemented in the NODDI MATLAB toolbox2 (Zhang et al.,
2012; Tariq et al., 2016). Intra-neurite diffusion in each voxel

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

2 https://www.nitrc.org/projects/noddi_toolbox
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was modeled as diffusion in zero radius cylinders, with the
assumption of no lateral diffusion occurring between the
neurites and a homogenous cell background; the neurite
“cylinders” orientation was modeled according to Watson’s
distribution and the NODDI algorithm used the tortuosity
model of Szafer et al. (1995) for randomly packed cylinders.
Fixed intrinsic diffusivity and fixed isotropic diffusivity were
assumed to be 1.4× 10−9 m2/s and 4× 10−9 m2/s, respectively.
Neurite density index (NDI), orientation dispersion index
(ODI), and isotropic diffusion volume fraction (fISO) were
obtained from the diffusion model fitting.

Each rat’s inhomogeneity-corrected and masked b = 0
representation was registered to their own pre-processed and
masked structural image (both with lesions included) using the
ANTS SyN-CC registration. The warping field from this step
was combined with the structural image to structural template
warping field to allow for warping of the NODDI metric images
(NDI, ODI, and fISO) to the study-specific sham template.

Statistical analysis

Group comparisons of amino acid levels
Shapiro–Wilk normality test confirmed that plasma amino

acid levels followed normal distributions. We undertook two-
way analysis of variance (ANOVA) with Geisser–Greenhouse
correction to examine the effect of timepoint and TBI and
their interaction on the variation in the concentrations of
each amino acid across all animals and measured timepoints.
Post-hoc testing to compare the difference in each amino acid
level between sham surgery and TBI groups was performed
using uncorrected Fisher’s least significant difference test, with
the statistical threshold set at P < 0.05. The aforementioned
statistical analysis was performed in Prism 9 (GraphPad Inc.,
CA, USA).

Regression analysis of diffusion MRI outcomes
at day 60 post-injury and TBI animals’ free
amino acid panel

Data reduction for the TBI group’s plasma amino acid
panel results at each timepoint was performed using principal
component analysis (PCA) implemented in Prism 9. In brief,
plasma levels of each amino acid across all TBI animals at each
timepoint were standardized and centered so that the mean was
zero and the standard deviation was one. Separate PCAs were
performed for each rat’s centered and standardized amino acid
levels at each time point. To minimize over-fitting, three of the
principal components (PCs) were extracted from each PCA for
subsequent regression analysis.

The extracted principal components values were used to
perform voxel-wise multiple linear regression with the day 60
post-injury NODDI metrics as outcome variables and each
TBI rat’s free amino acids panel results at the four time

points as the predictor variables. Voxel-wise multiple linear
regression analysis was performed by permutation inference for
the general linear model (Anderson and Robinson, 2001) as
implemented in FSL’s randomize (Winkler et al., 2014), with the
number of permutations set to 10,000 or exhaustive, whichever
was smaller. The resulting statistical maps were corrected
for multiple comparisons with mass-based FSL’s threshold-free
cluster enhancement (TFCE) (Smith and Nichols, 2009) and a
threshold was set at P-value < 0.05 (two-tailed).

The voxel-wise regression analysis identified several
NODDI metrics-of-interests in specific regions-of-interest
(ROIs) in the brain of injured animals that could be predicted
by the animals’ plasma amino acid panels early after the
injury. The NODDI metrics-of-interest values of TBI animals
were extracted from these ROIs, namely the NDI and fISO
in the internal capsule (ic) and the fISO in the ventricles and
ipsilateral impacted cortical area. Statistical map results of
voxel-wise regression analysis and the ROIs of the NODDI
metrics-of-interest are presented in Supplementary Figure 1.

TABLE 1 Summary of the principle components selected from the
amino acid panels at day one, three, seven, and sixty post-injury for
use in the voxel-wise regression analysis with neurite orientation
dispersion and density imaging (NODDI) metric maps obtained at day
60 post-injury in traumatic brain injured animals.

Day 1 post-injury amino acid levels

PC summary PC1 PC2 PC3

Eigenvalue 6.899 5.711 3.001

Proportion of variance 34.50% 28.56% 15.00%

Cumulative proportion of variance 34.50% 63.05% 78.06%

Day 3 post-injury amino acid levels

PC summary PC1 PC2 PC3

Eigenvalue 11.41 3.686 3.256

Proportion of variance 57.06% 18.43% 16.28%

Cumulative proportion of variance 57.06% 75.49% 91.77%

Component selection Selected Selected Selected

Day 7 post-injury amino acid levels

PC summary PC1 PC2 PC3

Eigenvalue 11.1 3.39 2.64

Proportion of variance 55.69% 16.95% 13.19%

Cumulative proportion of variance 55.69% 72.64% 85.83%

Component selection Selected Selected Selected

Day 60 post-injury amino acid levels

PC summary PC1 PC2 PC3

Eigenvalue 10.3 4.31 2.27

Proportion of variance 51.55% 21.55% 11.37%

Cumulative proportion of variance 51.55% 73.10% 84.47%

Component selection Selected Selected Selected
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Principal component regression (PCR) was performed using
Prism 9 (GraphPad Inc., CA, USA) to predict the NODDI
metrics-of-interests in the ROIs from the plasma inflammatory
panels of TBI animals at each timepoint. The percent variance
explained for the selected PCs are shown in Table 1.

Group comparisons of diffusion MRI metrics
Group comparisons of spatially normalized DTI, FA,

NODDI metrics (NDI, ODI, and fISO) were performed
using permutation inference for the general linear model
(Anderson and Robinson, 2001) as implemented in FSL’s
randomize (Winkler et al., 2014), with the number of
permutations set to 10,000 or exhaustive, whichever was
smaller. The resulting statistical maps were corrected
for multiple comparisons with the FSL mass-based
threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009) and a threshold was set at P < 0.05
(two-tailed).

The raw data supporting the conclusions of this article
will be made available upon reasonable request to the
corresponding author.

Results

Longitudinal changes in plasma amino
acid concentrations

Overall, we detected significant effects of TBI and
TBI× time effect on the plasma amino acid levels (Figures 1–3).
Post-hoc tests showed significantly increased levels of glutamine,
arginine (Figure 1), alanine, proline, the branched chain amino
acids valine, isoleucine, leucine, and the aromatic amino acids
tyrosine and phenylalanine (Figure 2) at days three-seven
post-injury in the TBI rats.

Correlation of plasma amino acid
levels with microstructural outcomes

PCRA showed that plasma amino acid levels at days three
and seven were significantly correlated with the microstructural
outcomes at day 60 post-injury. Day three asparagine, serine,
arginine, threonine, proline, methionine, valine, isoleucine,
leucine, and phenylalanine concentrations were negatively
correlated with fISO in the ventricle ROI. The regression
equation was significant (F(3,3) = 13.15, P-value = 0.0312) with
an adjusted R2 of 0.857, thus accounting for most of the variance
(Table 2). Day seven glutamine, lysine (positive estimates), and
aspartic acid, glutamic acid, alanine, proline, valine, isoleucine,
and leucine (negative estimates) were significantly correlated
with fISO in the ipsilateral cortical area. The regression
equation was significant (F(3,3) = 21.84, P = 0.0154) with an

adjusted R2 of 0.912 (Table 3). Day seven histidine, asparagine,
serine, threonine, methionine, leucine, and phenylalanine levels
were negatively correlated with fISO in the internal capsule
ROI. The regression equation was significant (F(3,3) = 15.17,
P = 0.0256) with an adjusted R2 of 0.876 (Table 4). Day
60 histidine, asparagine, serine, glutamine, alanine, proline,
and tryptophan (positive estimates) and arginine, glutamic
acid, lysine, methionine, leucine, and phenylalanine (negative
estimates) were significantly correlated with NDI in the
ipsilateral cortical area. The regression equation was significant
(F(3,3) = 54.13, P = 0.0182) with an adjusted R2 of 0.976
(Table 5). Day 60 arginine, lysine, and methionine, and
phenylalanine (positive estimates) and histidine, asparagine,
serine, glutamine, alanine, proline, and (negative estimates)
were significantly correlated with fISO in the ipsilateral cortical
area. The regression equation was significant (F(3,2) = 20.82,
P = 0.0462) with an adjusted R2 of 0.923 (Table 6).

Results of group comparison of registered NODDI metrics
of this cohort has been reported previously (To et al., 2022). Of
relevance to the correlations in this study, decreased NDI was
observed in the ipsilateral cortical area and increased fISO in the
ventricles and impacted cortical area.

Discussion

In this study we have shown that elevated plasma
concentrations of amino acids, specifically asparagine, serine,
arginine, proline, valine, leucine, isoleucine, and phenylalanine,
at day three post TBI were predictive of lower fISO measures
in the ventricles at day 60 post-injury. The lower fISO
measures were specifically indicative of lesser ventriculomegaly
pathology specifically, and possibly of lesser TBI pathology in
general. While we cannot draw causal inferences, we argue
that the elevated availability of these amino acids mediated
neuroprotective effects in the TBI injury model.

Neurite orientation dispersion and density imaging
separates the total water diffusion signal into three non-
exchanging diffusion compartments, one of which is the
isotropic diffusion fraction, which describes the fraction of
the total diffusion signal in a given voxel that is attributable
to isotropic diffusion characteristic of free water, i.e., the
cerebrospinal fluid in the ventricles (Zhang et al., 2012). The
increase fISO in the ventricles occurred in areas with significant
hyperintensities on T2-weighted images and ventricular volume
(To et al., 2022), where increased fISO in the ventricles is
an indication of edema and ventricular enlargement. In our
study, the sham animals, or lesioned animals with relatively
less ventriculomegaly or smaller ventricles had greater partial
volume effects. Hence, the surrounding non-ventricular tissue
contributed more non-ventricular diffusion signals to the
ventricular voxels, so that the apparent fISO in the ventricles
appear to be lower. In enlarged ventricles or oedemic lesions
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FIGURE 1

Plasma levels of amino acids: histidine, asparagine, serine, glutamine, arginine, glycine, aspartic acid, glutamic acid, and threonine of sham and
traumatic brain injured (TBI) animals at day one, three, seven, and sixty post-procedure. Asterisks (∗) next to sham/TBI legends, post-injury time
axis label, and interaction effect indicated statistically significant group, post-injury time, and group × post-injury time effects, respectively, in a
two-way repeated measures analysis of variance (ANOVA). ∗On the graph at each timepoint indicated significant difference between TBI and
sham animals at each timepoint, Fisher’s Least Squared Difference post-hoc test. ∗P-value < 0.05, ∗∗P-value < 0.01, ∗∗∗P-value < 0.001,
∗∗∗∗P-value < 0.0001.

with strong T2-weighted hyperintensities, there were lesser
partial volume effects, and the free water in the cerebral spinal
fluid consequently contributed more to the total diffusion
signal, such that the apparent fISO value approached the
“pure” isotropic diffusion fraction. Thus, the increased apparent
fISO signal is properly attributable to the enlargement of the
ventricles (in ventricular voxels) and/or edema (in voxels
that otherwise will be intact gray matter in the shams).
Ventriculomegaly and hydrocephalus are common findings in
animal (Dixon et al., 1999; Zhao et al., 2014; Mohamed et al.,
2021a) and human TBIs (Edna and Cappelen, 1987; Gale et al.,
1995; Anderson et al., 1996; Poca et al., 2005; Mohamed et al.,
2021b).

Amino acids in traumatic brain injury

In the rat group with the controlled cortical impact
model, we saw significantly increased plasma levels of, most
notably, arginine, alanine, proline, valine, isoleucine, leucine,
and phenylalanine during days 3–7 days post-injury. These
increases had normalized at day 60 post-injury, although there
remained certain correlations with structural markers. There
have been conflicting results from previous studies on this

topic; some studies reported subacute “nitrogen loss” (Flakoll
et al., 1995), namely a general decrease in the plasma levels
of the majority of the amino acids in humans (Flakoll et al.,
1995; Petersen et al., 1996; Yi et al., 2016) and in animal
models of TBI (Louin et al., 2007; Zheng et al., 2017; Taraskina
et al., 2022). Among the specific amino acids undergoing a
decline in previous studies were alanine (Deutschman, 1987),
arginine (Flakoll et al., 1995; Petersen et al., 1996), glutamine
(Deutschman, 1987; Flakoll et al., 1995; Petersen et al., 1996;
Yi et al., 2016), proline (Flakoll et al., 1995; Louin et al.,
2007; Zheng et al., 2017), serine (Flakoll et al., 1995; Yi et al.,
2016; Hajiaghamemar et al., 2020), taurine (Flakoll et al., 1995;
Hajiaghamemar et al., 2020), threonine (Flakoll et al., 1995;
Zheng et al., 2017), tryptophan (Flakoll et al., 1995; Taraskina
et al., 2022), and the branched-chain amino acids (BAA) leucine,
isoleucine, and valine (Vuille-Dit-Bille et al., 2012; Jeter et al.,
2013). On the other hand, a small number of other studies
have also shown a mixed pattern of increased and decreased
plasma amino acids, both in human TBI (Deutschman, 1987;
Flakoll et al., 1995; Vuille-Dit-Bille et al., 2012) and animal
models (Hajiaghamemar et al., 2020). The amino acids most
consistently found to be elevated in these studies were the
BAAs and phenylalanine (Deutschman, 1987; Flakoll et al.,
1995), which is consistent with our present results. On the

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1014081
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1014081 December 29, 2022 Time: 15:12 # 8

To et al. 10.3389/fnins.2022.1014081

FIGURE 2

Plasma levels of amino acids: alanine, proline, cystine, lysine, tyrosine, methionine, valine, isoleucine, and leucine of sham and TBI animals at
day one, three, seven, and sixty post-procedure. Asterisks (∗) next to sham/TBI legends, post-injury time axis label, and interaction effect
indicated statistically significant group, post-injury time, and group × post-injury time effects, respectively, in ANOVA. ∗On the graph at each
timepoint indicated significant difference between TBI and sham animals at each timepoint, Fisher’s Least Squared Difference post-hoc test.
∗P-value < 0.05, ∗∗P-value < 0.01, ∗∗∗P-value < 0.001, ∗∗∗∗P-value < 0.0001.

FIGURE 3

Plasma levels of amino acids: phenylalanine and tryptophan of sham and TBI animals at day one, three, seven, and sixty post-procedure.
Asterisks (∗) next to sham/TBI legends, post-injury time axis label, and interaction effect indicated statistically significant group, post-injury time,
and group × post-injury time effects, respectively, in ANOVA. ∗On the graph at each timepoint indicated significant difference between TBI and
sham animals at each timepoint, Fisher’s Least Squared Difference post-hoc test. ∗P-value < 0.05, ∗∗P-value < 0.01, ∗∗∗P-value < 0.001.

other hand, others have also found the opposite trends (Vuille-
Dit-Bille et al., 2012; Jeter et al., 2013). Administration of
BAA supplements post-TBI appeared to exert beneficial and
neuroprotective effects (Aquilani et al., 2008; Cole et al., 2010)
[for review, see Sharma et al., 2018]. Thus, the general increase
of plasma amino acids levels, especially BAA and phenylalanine,

appear to have been a beneficial part of the recovery process. To
resolve the contradiction between general trends of nitrogen loss
observed in human clinical studies (Deutschman, 1987; Flakoll
et al., 1995; Petersen et al., 1996; Vuille-Dit-Bille et al., 2012;
Jeter et al., 2013; Yi et al., 2016) and the overall increase in
plasma amino acid levels post-injury seen in this and other
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TABLE 2 Result of principal component regression (PCR) predicting the isotropic diffusion fraction (fISO) quantified from the ventricle ROI from
the plasma amino acid panel at day three post-injury.

Dependent variable: fISO in the ventricles ROI

Model

Analysis of variance SS DF MS F(DFn,DFd) P-value

Regression 2.62E−01 3 8.74E−02 F(3,3) = 13.15 P = 0.0312

Residual 1.99E−02 3 6.65E−03

Total 2.82E−01 6

Goodness of fit

DOF 3

Adjusted R squared 0.857

Day 3 plasma amino acids as variables Estimate 95% CI (asymptotic) |t| P-value

Intercept 2.79E + 00 1.41E + 00 to 4.17E + 00 6.444 0.0076 **

Histidine −3.32E−03 −2.84E−02 to 2.18E−02 0.4215 0.7018 ns

Asparagine −7.55E−03 −1.39E−02 to −1.25E−03 3.811 0.0318 *

Serine −6.19E−03 −9.81E−03 to −2.56E−03 5.432 0.0122 *

Glutamine −1.36E−03 −5.17E−03 to 2.44E−03 1.139 0.3373 ns

Arginine −4.57E−03 −8.09E−03 to −1.05E−03 4.128 0.0258 *

Glycine −3.36E−03 −6.98E−03 to 2.50E−04 2.962 0.0594 ns

Aspartic acid −2.37E−03 −1.66E−02 to 1.18E−02 0.5321 0.6316 ns

Glutamic acid −8.13E−04 −4.57E−03 to 2.95E−03 0.6883 0.5407 ns

Threonine −2.01E−03 −3.67E−03 to −3.55E−04 3.865 0.0306 *

Alanine 2.70E−04 −3.24E−03 to 3.78E−03 0.2447 0.8224 ns

Proline −2.88E−03 −5.55E−03 to −2.15E−04 3.438 0.0413 *

Lysine −2.55E−03 −8.82E−03 to 3.71E−03 1.298 0.2852 ns

Tyrosine −3.20E−03 −9.03E−03 to 2.63E−03 1.746 0.1792 ns

Methionine −1.55E−02 −2.46E−02 to −6.42E−03 5.424 0.0123 *

Valine −7.08E−03 −1.12E−02 to −2.97E−03 5.482 0.0119 *

Isoleucine −8.68E−03 −1.53E−02 to −2.02E−03 4.147 0.0255 *

Leucine −1.02E−02 −1.56E−02 to −4.92E−03 6.13 0.0087 **

Phenylalanine −1.88E−02 −3.27E−02 to −4.93E−03 4.312 0.023 *

Tryptophan 2.61E−02 −6.19E−02 to 1.14E−01 0.9436 0.415 ns

ns, not significant, *P-value < 0.05, and **P-value < 0.01.

studies, we invoke the differences in overall survival and well-
being of human TBI patients versus model animals. Moderate-
to-severe clinical TBIs often require intensive care (Stocker,
2019) including those seen in prior studies of post-TBI plasma
amino acids: the participants were hospitalized even in cases of
mild TBI (Jeter et al., 2013) and required ventilation (Flakoll
et al., 1995) or more often intensive care unit treatment
(Deutschman, 1987; Petersen et al., 1996; Vuille-Dit-Bille et al.,
2011, 2012). One study reported a 9% mortality in the TBI group
(Petersen et al., 1996). In contrast, our CCI procedure entails
a standardized and circumscribed percussion injury in free-
breathing anesthetized animals, the recovery process required

no mechanical ventilation, and no animal died from the injury,
as is typical in our hands. Nonetheless the CCI model of TBI
here utilized impact to moderate-severe severity and resulted in
significant and obvious brain tissue loss visible on MRI (To et al.,
2022). We suppose that this rat TBI model, despite the ostensibly
moderate-severe injury severity, does not translate to the life-
threating severity of the brain injuries in patients recruited in
clinical studies of amino acid concentrations.

These observations call for some speculation about the
mechanism whereby TBI might influence plasma amino acid
levels. There is an abundance of evidence that TBI has
effects on inflammatory pathways and the gut brain axis
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TABLE 3 Result of PCR predicting the fISO quantified from the ipsilateral cortex ROI from the plasma amino acid panel at day seven post-injury.

Dependent variable: fISO in the ipsilateral cortex ROI

Model

Analysis of variance SS DF MS F(DFn,DFd) P-value

Regression 5.28E−01 3 1.76E−01 F(3,3) = 21.84 P = 0.0154

Residual 2.42E−02 3 8.06E−03

Total 5.52E−01 6

Goodness of fit

DOF 3

Adjusted R squared 0.912

Day 7 plasma amino acids as variables Estimate 95% CI (asymptotic) |t| P-value

Intercept 9.99E−01 −1.31E + 00 to 3.31E + 00 1.375 0.2627 ns

Histidine 2.30E−03 −1.10E−02 to 1.56E−02 0.5505 0.6203 ns

Asparagine −4.28E−04 −1.02E−02 to 9.36E−03 0.1392 0.8981 ns

Serine −2.70E−03 −8.88E−03 to 3.48E−03 1.39 0.2586 ns

Glutamine 4.80E−03 7.63E−04 to 8.85E−03 3.783 0.0324 *

Arginine 6.08E−03 −1.29E−02 to 2.50E−02 1.021 0.3824 ns

Glycine −1.67E−03 −6.55E−03 to 3.21E−03 1.087 0.3564 ns

Aspartic acid −2.10E−02 −3.78E−02 to −4.18E−03 3.973 0.0285 *

Glutamic acid −7.91E−03 −1.42E−02 to −1.65E−03 4.02 0.0276 *

Threonine −1.59E−03 −5.28E−03 to 2.11E−03 1.365 0.2655 ns

Alanine −5.30E−03 −8.12E−03 to −2.48E−03 5.987 0.0093 **

Proline −5.49E−03 −7.97E−03 to −3.02E−03 7.069 0.0058 **

Lysine 3.45E−03 1.39E−03 to 5.50E−03 5.343 0.0128 *

Tyrosine −6.62E−03 −1.89E−02 to 5.70E−03 1.71 0.1859 ns

Methionine 1.28E−02 −2.45E−02 to 5.01E−02 1.093 0.3544 ns

Valine −1.26E−02 −1.93E−02 to −5.80E−03 5.911 0.0097 **

Isoleucine −1.37E−02 −1.96E−02 to −7.85E−03 7.418 0.0051 **

Leucine −1.11E−02 −1.56E−02 to −6.55E−03 7.772 0.0044 **

Phenylalanine −8.56E−03 −2.97E−02 to 1.26E−02 1.288 0.2882 ns

Tryptophan −1.69E−02 −6.86E−02 to 3.49E−02 1.037 0.3758 ns

ns, not significant, *P-value < 0.05, and **P-value < 0.01.

(Ferrara et al., 2022). In particular, TBI profoundly altered the
gut microbiome, and that transfer of fecal microbiota can
rescue some of the behavioral and brain structural effects of
TBI (Davis et al., 2022). Post-TBI changes in gut microbiota
composition were associated with alterations in the plasma
levels of citrulline (an arginine metabolite) and tryptophan
(Taraskina et al., 2022). A plausible causal mechanism for
such effects involves dysautonomia and systemic inflammation
after TBI, which propagate to gastrointestinal changes such
as dysmotility and increased mucosal permeability (Hanscom
et al., 2021). One of the limitations of the current study is the
absence of formal analysis of the rats’ microbiota post-TBI, such
that our proposed mechanism remains a speculation, albeit one
that had support in prior literature. Our interpretation is that the

observed changes in the plasma levels of BAAs and other amino
acids reflect altered amino acid fermentation in the gut. As such,
the alterations evident in the early days after rat TBI may be
surrogates for the severity of the injury or may conversely confer
protection from structural injury as manifest in the NODDI-MR
findings at day 60 after the injury.

Effects of sub-acute post-TBI changes
in amino acids on long-term
microstructural outcomes

As previously discussed, BAA supplementation has had
neuroprotective effects post-TBI in animal and human trials.
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TABLE 4 Result of PCR predicting the fISO quantified from the internal capsule ROI from the plasma amino acid panel at day seven post-injury.

Dependent variable: fISO in the internal capsule ROI

Model

Analysis of variance SS DF MS F(DFn,DFd) P-value

Regression 1.11E−03 3 3.75E−04 F(3,3) = 15.17 P = 0.0256

Residual 9.26E−05 3 2.47E−05

Total 1.20E−03 6

Goodness of fit

DOF 3

Adjusted R squared 0.876

Day 7 plasma amino acids as variables Estimate 95% CI (asymptotic) |t| P-value

Intercept 2.76E−01 1.48E−01 to 4.04E−01 6.86 0.0063 **

Histidine −7.52E−04 −1.49E−03 to −1.65E−05 3.25 0.0474 *

Asparagine −7.54E−04 −1.30E−03 to −2.12E−04 4.42 0.0214 *

Serine −4.62E−04 −8.04E−04 to −1.20E−04 4.3 0.0232 *

Glutamine −1.07E−04 −3.31E−04 to 1.17E−04 1.53 0.2246 ns

Arginine −1.04E−03 −2.09E−03 to 8.22E−06 3.16 0.051 ns

Glycine −1.69E−04 −4.39E−04 to 1.02E−04 1.99 0.1413 ns

Aspartic acid −6.36E−04 −1.57E−03 to 2.95E−04 2.17 0.1182 ns

Glutamic acid −2.07E−04 −5.54E−04 to 1.39E−04 1.9 0.1531 ns

Threonine −2.36E−04 −4.40E−04 to −3.08E−05 3.66 0.0352 *

Alanine −4.07E−05 −1.97E−04 to 1.15E−04 0.831 0.4671 ns

Proline −1.13E−04 −2.50E−04 to 2.36E−05 2.63 0.078 ns

Lysine 9.29E−06 −1.04E−04 to 1.23E−04 0.26 0.8118 ns

Tyrosine −4.69E−04 −1.15E−03 to 2.14E−04 2.19 0.1167 ns

Methionine −2.29E−03 −4.35E−03 to −2.18E−04 3.52 0.039 *

Valine −1.89E−04 −5.64E−04 to 1.85E−04 1.61 0.2063 ns

Isoleucine −3.13E−04 −6.40E−04 to 1.37E−05 3.05 0.0555 ns

Leucine −3.41E−04 −5.93E−04 to −9.00E−05 4.32 0.0228 *

Phenylalanine −1.69E−03 −2.86E−03 to −5.16E−04 4.58 0.0195 *

Tryptophan −7.66E−04 −3.63E−03 to 2.10E−03 0.851 0.4575 ns

ns, not significant, *P-value < 0.05, and **P-value < 0.01.

The benefits of elevated BAA levels were further evidenced by
present results showing higher plasma levels of BAAs at day
three post-injury among TBI animals, occurring in association
with lower fISO in the ventricles and less severe hydrocephalus
and ventriculomegaly at day 60 post-injury to NODDI-MR
examination. Day seven branched-chain amino acid levels,
although not significantly different in the TBI cohort compared
to shams, also negatively correlated with fISO measures in the
ipsilateral cortical area, meaning that the TBI animals with
higher levels of branched-chain amino acids suffered less edema
or tissue loss in the impacted cortical area. While this may
be further evidence for the neuroprotective role of BAAs, we
note that higher BAA plasma levels among human TBI patients

were associated with poorer clinical indicators, namely higher
intracranial pressure and lower cerebral oxygen consumption
(Vuille-Dit-Bille et al., 2012).

Present findings of day three-seven post injury elevations
of certain plasma amino acids proved to be associated with
less severe long-term microstructure outcomes, notably for
cases of serine, arginine, asparagine, and phenylalanine,
which are also known for their neuroprotective roles. Serine
reduces neuroexcitotoxicity, regulates microglia polarization,
decreases inflammation, improves cerebral blood flow
and promotes survival, proliferation, and differentiation
of neural stem cells (Ye et al., 2021). Arginine exerts
a neuroprotective effect by suppression of the hypoxia
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TABLE 5 Result of PCR predicting the neurite dispersion index (NDI) quantified from the ipsilateral cortex ROI from the plasma amino acid panel at
day sixty post-injury.

Dependent variable: NDI in the ipsilateral cortex ROI

Model

Analysis of variance SS DF MS F(DFn,DFd) P-value

Regression 1.06E−01 3 3.53E−02 F(3,3) = 54.13 P = 0.0182

Residual 1.30E−03 3 6.52E−04

Total 1.07E−01 6

Goodness of fit

DOF 3

Adjusted R squared 0.976

Day 60 plasma amino acids as variables Estimate 95% CI (asymptotic) |t| P−value

Intercept 7.90E−01 −2.54E−01 to 1.83E + 00 3.257 0.0827 ns

Histidine 4.06E−02 2.64E−02 to 5.47E−02 12.3 0.0065 **

Asparagine 6.11E−03 1.47E−03 to 1.07E−02 5.663 0.0298 *

Serine 1.06E−02 6.23E−03 to 1.50E−02 10.42 0.0091 **

Glutamine 4.60E−03 2.84E−03 to 6.37E−03 11.22 0.0078 **

Arginine −2.03E−02 −2.77E−02 to −1.28E−02 11.68 0.0073 **

Glycine 1.54E−03 −2.49E−03 to 5.57E−03 1.641 0.2424 ns

Aspartic acid 9.83E−04 −7.70E−03 to 9.67E−03 0.4867 0.6746 ns

Glutamic acid −5.86E−03 −9.32E−03 to −2.39E−03 7.275 0.0184 *

Threonine −6.18E−04 −2.56E−03 to 1.32E−03 1.373 0.3036 ns

Alanine 3.79E−03 2.29E−03 to 5.30E−03 10.87 0.0084 **

Proline 5.36E−03 2.89E−03 to 7.84E−03 9.314 0.0113 *

Lysine −7.29E−03 −9.81E−03 to −4.78E−03 12.47 0.0064 **

Tyrosine 8.19E−04 −6.20E−03 to 7.84E−03 0.5017 0.6657 ns

Methionine −2.51E−02 −4.25E−02 to −7.57E−03 6.166 0.0253 *

Valine −9.41E−04 −4.91E−03 to 3.03E−03 1.02 0.4151 ns

Isoleucine 1.80E−03 −4.58E−03 to 8.18E−03 1.212 0.3492 ns

Leucine −7.11E−03 −1.26E−02 to −1.61E−03 5.567 0.0308 *

Phenylalanine −5.13E−02 −7.43E−02 to −2.83E−02 9.582 0.0107 *

Tryptophan 2.70E−02 1.33E−02 to 4.08E−02 8.452 0.0137 *

ns, not significant, *P-value < 0.05, and **P-value < 0.01.

inducible factor 1α (HIF-1α)/lactate dehydrogenase (LDHA)-
mediated inflammatory response in the microglia (Chen
et al., 2020). Asparagine, while being a non-essential
amino acid, must be synthesized locally in the brain by
asparagine synthase via the ATP-dependent conversion of
aspartate and glutamate (Ruzzo et al., 2013; Sprute et al.,
2019), indicating its importance in brain development and
potentially in post-injury repair/recovery. Higher plasma
levels of phenylalanine were associated with lower intracranial
pressure and increased cerebral oxygen consumption post-TBI
(Vuille-Dit-Bille et al., 2012).

In conclusion, we found in this study a generalized increase
in the plasma levels of amino acids post-injury in a rat

model of moderate-severe open-head TBI. The effects were
most pronounced for amino acids with known neuroprotective
roles, i.e., serine, and arginine, and asparagine, and the BAAs
leucine, isoleucine, and valine. Injured animals with higher
plasma levels of these amino acids at days three-seven post
injury had lesser TBI pathologies at 60 days follow-up, namely
less severe ventriculomegaly and less edema or tissue loss in
the ipsilateral cortical area. Present results also highlighted a
potentially important difference or limitation of animal TBI
models in relation to clinical TBI: rats and rodents may
have inherently more robust or adaptive brain injury repair
and recovery as compared to humans faced with clinically
significant injury.
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TABLE 6 Result of PCR predicting the fISO quantified from the ipsilateral cortex ROI from the plasma amino acid panel at day sixty post-injury.

Dependent variable: fISO in the ipsilateral cortex ROI

Model

Analysis of variance SS DF MS F(DFn,DFd) P-value

Regression 4.92E−01 3 1.64E−01 F(3,2) = 20.82 P = 0.0462

Residual 1.58E−02 3 7.88E−03

Total 5.08E−01 6

Goodness of fit

DOF 3

Adjusted R squared 0.923

Day 60 plasma amino acids as variables Estimate 95% CI (asymptotic) |t| P-value

Intercept −5.07E−01 −4.14E + 00 to 3.12E + 00 0.6009 0.6089 ns

Histidine −8.95E−02 −1.39E−01 to −4.01E−02 7.802 0.016 *

Asparagine −1.93E−02 −3.54E−02 to −3.12E−03 5.136 0.0359 *

Serine −1.97E−02 −3.49E−02 to −4.48E−03 5.569 0.0308 *

Glutamine −8.81E−03 −1.50E−02 to −2.67E−03 6.173 0.0253 *

Arginine 4.27E−02 1.68E−02 to 6.87E−02 7.083 0.0194 *

Glycine 2.10E−03 −1.19E−02 to 1.61E−02 0.6439 0.5856 ns

Aspartic acid −1.56E−02 −4.58E−02 to 1.46E−02 2.218 0.1568 ns

Glutamic acid 1.15E−02 −5.32E−04 to 2.36E−02 4.113 0.0543 ns

Threonine 2.65E−03 −4.09E−03 to 9.39E−03 1.692 0.2328 ns

Alanine −8.55E−03 −1.38E−02 to −3.33E−03 7.045 0.0196 *

Proline −1.38E−02 −2.24E−02 to −5.18E−03 6.89 0.0204 *

Lysine 1.57E−02 6.97E−03 to 2.45E−02 7.729 0.0163 *

Tyrosine 5.37E−03 −1.91E−02 to 2.98E−02 0.9455 0.4442 ns

Methionine 6.25E−02 1.63E−03 to 1.23E−01 4.418 0.0476 *

Valine −4.08E−03 −1.79E−02 to 9.74E−03 1.269 0.3321 ns

Isoleucine −1.35E−02 −3.57E−02 to 8.72E−03 2.613 0.1206 ns

Leucine 7.18E−03 −1.19E−02 to 2.63E−02 1.616 0.2475 ns

Phenylalanine 1.08E−01 2.81E−02 to 1.88E−01 5.814 0.0283 *

Tryptophan −4.05E−02 −8.83E−02 to 7.41E−03 3.637 0.068 ns

ns, not significant, *P-value < 0.05.
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