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We consider the multidimensional Frenkel-Kontorova model with one degree of
freedom which is a variational problem for real functions on the lafiteFor
every vectora € R" there is a special class of minimal solutioms: Z" — R
lying in finite distance to the linear functiox™?! = ax with x € Z". Due to
periodicity properties of the variational problemis called the rotation vector of
these solutions. The average actia) of a minimal solutionu,, is obtained by
averaging the variational sum ov&FP. One shows that this average action is the
same for any minimal solution with finite distance to the linear funcitit = ax

with rotation vectora. Our main results concern the differentiability properties
of A(a) as a function of the rotation vector: Typically is not differentiable
at o € Q". This will be interpreted in a dual form as phase-locking. The phase
a(u) of u € R" is defined by the unique vector R" for which A(a) — a - 1 is
minimal. If one perturbs the variational principle by changing the parameter
the non-differentiability ofA at « € Q" forces the phase to be locked onto the
rational valuea(ps).

Introduction

The 1-dimensional Frenkel-Kontorova model originates in solid state physics and
describes the dislocation of a chain of atoms in a periodic potential with nearest
neighbor interactions, see e.g. [2]. Here we consider a generalization where the
chain is replaced by a lattice of atoms which have one degree of freedom. One
thinks of this degree of freedom as a coordinate describing the dislocations of the
atoms in vertical direction (Fig.1). The steady state positions of the atoms are
given by local minima of the Hamiltonian evaluated for each finite set of atoms.

This variational problem defines the multidimensional Frenkel-Kontorova model
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of one degree of freedom. Configurations which minimize the Hamiltonian on

each finite set are called minimal configurations or minimal solutions. To each
minimal configuration one assigns the minimal average action which is the mean
value of the Hamiltonian per atom. One shows that this minimal average action
in fact does only depend on the rotation vector of the minimal configuration.

The rotation vector is defined by the average increase in the vertical position of
atoms in the -th direction of the grid.

Given a Hamiltonian depending on some linear and nonlinear parameter we
search the rotation vector allowing for an absolute minimum of the minimal av-
erage action. This rotation vector at which the minimum is attained is called the
phase of the system. It of course depends on the parameters defining the Hamilto-
nian. Our procedure of finding the phase has two stages: We first fix the rotation
vector and look for a corresponding minimal configuration i.e. a configuration
which locally minimizes the Hamiltonian and which exhibits the prescribed rota-
tion vector in the large. Then we minimize the average action obtained this way
over all rotation vectors and identify the phase as the point where the minimum
of the action is reached. We now can ask for the dependency of the phase from
the parameters which originally defined the Hamiltonian. As we will show, the
phase may be locally constant while the Hamiltonian is tuned by the parameters.
We show that the phase typically is locked onto rational rotation vectors while
it immediately co-varies (without jump) with the parameters if the components
of the phase are rationally independent. The domains in the multidimensional
parameter space where phase-locking occur are known as Arnold tongues, cf.
Fig. 2. A cut through these tongues at a fixed level of the nonlinear parameter
may form an intriguing picture of fractal character as shown in Fig. 3. Consider-
ing a single component of the phase as a function of the linear parameter a devil
staircase may arise as depicted in Fig. 4.

The phenomenon of phase-locking may be explained by the non-differentiabi-
lity of the minimal average action at rational rotation vectors. Our main result
therefore concerns the differentiability properties of the minimal average action.
We show that at rational rotation vectors the minimal average action is typically
non-differentiable while is always differentiable at rationally independent rotation
vectors. In general, at some rotation vector the minimal average action is always
differentiable in directions where there exist no rational dependencies between
the components of the rotation vector while it is typically non-differentiable in
directions for which rational dependencies exist. In a dual setting the results
directly translate to the phase-locking on these rotation vectors for which the
minimal average action is not differentiable in any direction. Thus, phase-locking
can only occur on rational vectors. In combination with a result of Bangert [6]
one knows that for large perturbations of the Hamiltonian such a phase-locking
indeed will occur forany rational vector in some bounded domain.

The multidimensional Frenkel-Kontorova model with one degree of freedom
may be seen as a discrete version of Moser's variational problem om th&){
dimensional torus [15] where the discretization restricts to the riirgariables.

As long as one restricts to the 1-dimensional case, the minimal configurations
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may be characterized as particular orbits of a twist map of the annulus [14].
Within this setting J. Mather proved differentiability properties of the minimal
average action as a function of the rotation number [13]. Such differentiability
properties first were investigated by S. Aubry from a physical point of view [2].
V. Bangert obtained the same results from a more geometrical point of view [9].
We generalize these results to a variational problem for real functiorid"on
The proof of the differentiability properties in case of rational rotation vectors
is similar to Mather’s one fon = 1. In contrast, we deduce the differentiability
properties at irrational rotation vectors directly by continuity arguments. We give
an explicit formula for the directional derivatives of the minimal average action
which in casen = 1 is new for irrational rotation numbers. Our proof mainly
follows the one given in [19] for the variational problem on time+(1)-torus.

In Sect.1 we outline the general model and present the 2-dimensional non-
smooth example of F. Valle{21] as a particular case. His example of an exactly
calculable variational problem generalizes Aubry’s model in [3]. In Sect.2 we
briefly recapitulate the structure of the set of non-selfintersecting minimal solu-
tions with a given rotation vector. In Sect. 3 we state the differentiability results
of the minimal average action as a function of the rotation vector. In Sect. 4 we
interpret the non-differentiabilities as phase-locking in the Frenkel-Kontorova
model of one degree of freedom. The occurrence of Arnold tongues and devil’'s
staircases will be explained. The proof of the differentiability results is given in
Sect. 5.

Fig. 1. The particles of the infinite grid are seeking for an equilibrium position between nearest
neighbor interactions and the vertical periodic potential. The attractive forces between neighbors are
indirectly proportional to their distances. However, the particles are allowed to reduce the distances
only by moving in vertical direction.

1] would like to thank F. Vallet for the permission to enclose his figures 3 and 4.
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1 The multidimensional Frenkel-Kontorova model

We first describe a simple two dimensional model close to Vallet's numerical
example. Define the ‘Hamiltonia¥d : R® — R by

(1) H(UO UL 1) = St = w02 + 22— W2 +V (1)

with coupling constants;, ¢, > 0 and a smooth 1-periodic potentigl : R —
R. Given a functionu : Z2 — R describing the dislocation of the particles and
some finite set? c Z? we abbreviate

L, = > HUX),ux+er), u(x +e)),
x€N+{0,—e,—e}

wheree; ande, denote the standard basis elementgofA functionu : Z? -+ R
is called aminimal solution if L(u+¢, £2) > L(u, £2) for any finitely supported
function ¢ : 2 — R with £2 C Z2 For everya € R? there exist minimal
solutionsu, : Z? — R with sup.,2|U.(X) — ax| < co. Since for thei-th
component ofx one has

Ua(Me) — Ua(0)

ol = lim 2 TR e,
m—oo m

we call o the rotation vector of u,. Theminimal average actionis defined by

) 1 2
A(Oé)—rll[go m'—(umz nB),

whereB, denotes the Euclidean ball R? of radiusr and center 0.

If the periodic potential vanishe§/ = 0, the minimal solutionsl, with
a € R" are the affine functions, (x) = ax + ¢ on Z2 with ¢ € R. The minimal
average action in this trivial case M) = ci(al)? + cx(a?)?. In the example
of Vallet [21, Ch. 1ll] the non-smooth potentid in (1) consists of successive
parabolic curves with center at the integersit has the form

O

where p], v € R, denotes the largest integerv.

A generalization of the variational problem to higher dimensions with, how-
ever, smooth Hamiltonian is investigated in [10]. In the following we state weaker
conditions on the HamiltoniaH which still guarantee existence results for min-
imal solutions. The conditions are weak enough to include Vallet's example and
strong enough to enable to prove the ordering structures for the set of minimal
solutions as described in Sect. 2.

The HamiltonianH (1), u = (u°...,u"), is assumed to be a continuous
function onR"** which satisfies
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(H1) H@u+)=H@ YueR™ 1=(1,...,1),
(H 2) H(u)—>ooif02i1f'];1>g<n|ui—uj|—>oo,
(HC?) HeC*R™)
with DiDjH <0 andDiDoH <0 V1<i#j<n.

In order to include Vallet's non-smooth example we require a generalization
of Mather’s conditions fon =1 [11, 12]. Letey, €y, .. ., &, denote the standard
unit vectors inR"**, Instead of H C?) the following conditions may be imposed:

(H3) H(u+Xle +X\g)—-H(u+\e)-H(u+\g)+H(u) <0,

0<i #j <n. Thereisc > 0 such that for

1<i#j<n, A\, \ >0 andue R™

H(u+ Moy + \ig) — H(W+ Nogp) —H(u+ Aig) +H (W) < —XoAiC.
(H 4) There is# > 0 such that for any_& R""* and for 3 = &

or 8 € {0} x S" the function p — 6p> — H(u+ pB) is convex

Condition H 3) states, loosely speaking, tHdt(u) is growing if the differ-
ence|u®—u'| for some 1< i < nis growing. Condition i 4) states thatl does
not have convex corners on the radial lines. Moreoktkiis locally Lipschitz in
each componen#!, 0 < j < n, by the same reason that this holds for a convex
function [17, 10.4].

Put.2 = {0, —ey,...,—€,} and let2 +.72 denote the Minkowski sum of
.72 and {2 C Z". One looks fominimal solutions u : Z" — R which minimize
the sum

Lu,2)= ) HUX),ux+e),...ux+e))

XEN+ 72

on every finite set? C Z" with respect to arbitrary variations of on (2. Thus,
u is minimal if L(u + ¢, £2) > L(u, §2) for every ¢ : 2 — R on every finite
set2 C Z". A minimal solutionu is said to haveno selfintersectionif the set
{Teu k= (k, k™) € Z™1} with Tpu(x) = u(x — k) + k"™ is totally ordered. A
non-selfintersecting minimal solutianexhibits a uniqueotation vector o € R"
with the property sup.,. [u(x) — ax| < co. By .#4, we denote the set of non-
selfintersecting minimal solutions correspondingntolf u € .#, andx € Z"
put ux) = (U(X),u(x +ey),...,u(x + &) € R"™. As in the 2-dimensional
example, theminimal average actionis defined by

Ao) = lim S ZT0B)

= — H My
e NI, T > Hux), ue

XeZNNB;

whereB; denotes the ball of radius and center 0 irR". The existence of this

limit is not obvious. First one uses thik(u(x)) is bounded uniformly due to

the property sufu(x) — ax| < oo and the Lipschitz continuity oH . Then the
existence of the average is shown in the same way as in [18, Lemma 3.3]. Once
knowing that the limit exists, it is easy to show that it does not depend on the
minimal solutionu € .7, [18, Lemma 3.2].
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2 The set.#/, of non-selfintersecting minimal solutions

A minimal solutionu € .7, with arbitrary « € R" is said to bemaximally
periodic if Tru = u for everyk = (k, k") € Z"™?! with ka = k™1 By . ZZP®"
we denote the set of maximally periodice . #,,. One shows by a compactness
argument that#2,, # () for a € Q". To prove.Z, # () for « € R"\ Q" one
performs a limit process and uses the local Lipschitz continuitid ptompare
with the discrete 1-dimensional case [7, (3.3) and (3.17)].

By minimality arguments one shows tha#ZF®" is totally ordered, i.e. for
u,v € 268" we have eitheu < v or u > v or u = v, cf. [5]. One may think
of the graphsu € . ZP°" as ‘leaves’ lying inZ" x R. Two cases arise: either
the set.Z/P°" gives rise to a ‘foliation’ or to a ‘lamination’ (i.e. ‘foliations’
with gaps). Motivated from the continuous problem we say that the 48¢"
‘foliates’ Z" x R if for every (x,u,) € Z" x R there exists a unique € 2P
with u(x) = u,. .ZZP°" gives rise to a ‘lamination’ if there are gaps in the vertical
direction such that for some, € R one does not find € . ZP*" with u(x) = u,.
For the standard Hamiltonian, = 3||p||2 the set. Z%®" gives to a ‘foliation’ for
any o € R". According to Moser's stability result for the variational problem on
the torus [16] one knows that far € Q" ‘not too close toQ"’ the ‘foliation’
survives for small perturbations ¢,. If, however, the perturbation dfi, is
large enough the ‘foliation’ disintegrates, gaps occur arf" gives rise to a
‘lamination’ for every rationally dependentin some compact sé¢ c R". The
size of this seK of rotation vectorsy for which. 22" has gaps grows with the
size of the perturbation. For Moser’s variational principle on the torus this result
was proved by Bangert [6]. (Note that in general one only " O . /¢
where. Z'°¢ is defined as in [5].)

Let us describe the structure o#z,, if the subset ZF*" has gaps. We say
that e € R" \ Q" is rationally independent, if ka ¢ Z for all k € Z"\ {0}.
In case thaty is rationally independent one knows from the variational problem
on the torus that each non-selfintersecting minimal solution . Z2,, actually
is maximally periodic. Thus,Z,, = .Z/P°" and the set#, is totally ordered.
The situation is different ity is rationally dependent.

For everya € R" fix someu,, € .ZP*" and put

T ={u(0) :u € 2P} N [u(0) — 1,u,(0)] .

If « € R"\ Q" the setZ, C R has an interesting structure: it is either a closed
interval or it contains an infinity of gaps. This is due to the fact than &n. ZP*'
defining a boundary of a gap i%, would give rise to an infinity of further gaps
in the bounded se¥, by translatingu in directionsk € Z"*! with non-vanishing
componenk' for which o' is irrational. (In case that/ZPe" = . /4 the set7,
actually defines a Cantor set, i.e. a closed set of non-isolated points that does not
contain an interval (cf. [15, Ch. 6] or [8, (5.5)]). In case that, is a proper
supset of Z2<¢, however, this does not need to be true anymore.)

Let &, be the set of gaps o7, i.e. the set of open intervals ofif(0) —
1,u.(0)]\ .Z,. Suppose that is rationally dependent and tha#ZP¢" has gaps,
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i.e. &, £0. Let us moreover assume thalt € Q for some 1< i < n. For each
gapG = (G, G") € %, we denote byg, ug, the unique minimal solutions in
AP such thaluGi(O) =G=. Now, there are further minimal solutionsg ; + in
A, With ug < ug i+ < ug and converging taig andug in the directionse
and —e;, respectively. More precisely the solutiong;+ satisfy

(i) Ui+(0)eG,
(i) Ug,i+ IS maximally periodic up to the directiode , i.e. for all
k € Z™* with ak = k™! andk' = 0 one hasT Ug i+ = Ugi+ ,
(iii ) lim (u§ —ugi+)(x+meg)—0
m—o0
and lim (Ug,i+ —Ug)(X F mg) — 0
m—oo

uniformly for all x € Z" with x' = 0.

Any minimal solutionug ;4 satisfying () — (iii ) is said to beheteroclinic in

the directiont+g. As in the 1-dimensional case the existence e.gu®f.: is
guaranteed by Aubry’s construction taking a sequence of convergent minimal
solutionsug € . 2% with & — a andd' | o, see e.g. [7, Sect. 5].

Let us define by 7207, the set of maximally periodic solutions together with
all heteroclinic solutionsig j+ in the directione satisfying {) — (iii ) for some
gapG of _ZZP*". Another possibility to characterize this set is

.//fo{+ z{ue.#, : Tu=uforkel,
andTu <u fork € T, with k' > 0} .

In case that ZZP®" has gaps (and' € Q) the set #"°, is a proper supset of
/ZPS". Again by minimality arguments one shows that?", is totally ordered,

cf. [8, (6.13)]. However, by propertyiii) (where pairwise the upper and lower
signs belong together) the minimal solutiars; - andug ;+ ‘intersect’ and.Z,,
cannot be totally ordered, cf. [8, (4.8)]. This leads us to the general criterion for

the total ordering of 7,

Lemma 1 The setZ,, o € R", is totally ordered if and only if the se#ZP¢’
does not have gaps if « is rationally independent.

Put differently, #2,, is nottotally ordered if and only it is rationally dependent
and.ZZP*" has gaps.

3 Differentiability properties of the minimal average action

The first two theorems show how the differentiability Afo) generalizes from
the 1- to the multi-dimensional case.

Theorem 1 A is differentiable ate € R" if and only if the set#, of non-
selfintersecting minimal solutions with rotation vectors totally ordered.
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To investigate the case wheréZ,, is not totally ordered one has to consider
the subspac¥,, = span{k € Z" : ak € Z} of directions in whichx is rationally
dependent. One may think &f, as the projection to the first components of the
spaceV, = {k € Z"*' . @-k = 0} generated by the vectoksc Z"** orthogonal
to @ = (—a, 1). Let us denote by;- C R" the orthogonal complement &f,
with respect to the standard scalar producRih

Theorem 2 Supposex € R", 3 € R"\ {0} and. #,, is nottotally ordered. Then
A is differentiable atv € R" in the directiong if and only if 3 € V..

If « € R" with rational first component! € Q one could expect thah
is differentiable atv in the directione; if there are minimal solutions inZz,,
which ‘foliate’ Z" x R and which are periodic in the directiaa. However, this
turns out to be not true. The reason is that the existence of the ‘foliation’ defined
by a subset of #Z, does not imply the total ordering of the whole set,,. If
n > 2 and e.ga = (0, 0), there may bey-periodic solutions inZ2,, ‘foliating’
Z? x R and e;-heteroclinic solutions in#4, which intersect the periodic ones
(cf. [8, Thm. 1] and [19, Fig. 2]).

If € R"\ Q" is rationally independent the se¥Z, is always totally
ordered (Lemma 1) and amdis differentiable atn according to Theorem 1. If
a € Q" the set 2, is nottotally ordered for generic Hamiltoniad . Hence A
is genericallynot differentiable atx € Q". The situation forx € R"\ Q" is more
subtle. According to the stability result of Moser the ‘foliation’ disintegrates for
large perturbations oH, = %HpHZ and .74, is not totally ordered for every
rationally dependent. in some compact sé€ C R". Assuming such a large
perturbation, Theorem 2 states that the (convex) funcBorestricted to the
compact seK exhibits a maximal non-differentiability that a convex function
ever can have in a measure theoretic sense: The sesiofular points oAk is
the union of countable many compact sets of finite, non-vanishidignensional
Hausdorff measures(= 0, ...,n), cf. [1, (3.1)]. Recall thatx is ans-singular
point iff A is differentiable atv in at mosts linearly independent directions.

The following theorem estimates the difference of right- and left-sided deriva-
tive of A in the standard directions. It corresponds to the formula in [13], end
of Sect. 3, for the 1-dimensional case.

Theorem 3 If the i-the component of is rational anda' = g with ri € Z and
s' € N relatively prime, one estimates

1
0 < (Dg +D_g)A() < const: g

with some constant depending on H only and some compact set containing

Finally we mention that the minimal average actiéfw) is strictly convex
This is shown in the same way as the strict convexity is shown for the variational
principle on the f + 1)-dimensional torus [18].
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4 Phase-locking and the dual interpretation
If V € C3(R/Z) is some periodic potential we consider the Hamiltonian
c
HEAW?, - un) = SlpIP+AVUY) = pp, p= (Ul =%, U =),

depending on parameter valugse R" and A\,c > 0. The minimal average
action corresponding to the Hamiltoni&ty* is denoted byA**. Guided from
the physical background, the following dual problem arises:

Given parameterg:. and )\, determine the vectarr = a(u, ) € R" at
which the minimal average action‘A attains its minimum, i.e. such that

AN @) = min AL @) .
aeR"

Since the functiom (&) is convex ina” the minimum exists. Since the function
is strictly convex the minimum is attained for exactly amerid this is denoted
by a.

Motivated from the thermodynamical background we ealk a(u, \) the
phase of the system with parameter valugsand A. One is interested in the
phenomenon ophase-locking while the parameters and A vary, the phase
a = a(u, A) may be locally constant, i.e lock onto some valug € R". The
occurrence of phase-locking is typical for dynamical systems with an underlying
periodic structure. The usual way to represent the funetign A) is to subdivide
the parameter spacg,(\) € R" x R* into regions of constant phase, i.e. into
the subsetg (i, \) € R" X R* : a(u, \) = a6 } With oo € R".

In dynamical systems such a subset of constant phége)\) = o, € Q"
is known asArnold tongue. Decreasing the parametarof the periodic per-
turbation, A | O, the intersection of an Arnold tongue with the plaR® x {\}
gets smaller and smaller until the tongue meetsXferO the level R" x {0} at
some point f.,0) € Q" x {0}, see Fig. 2. Since the average activ© takes
its minimum ata(u.,0) = puo we conclude from the condition(u, \) = .
defining a tongue that, = «,. Conversely, increasing the parameier 0, one
expects that for any compact setc R" the Arnold tongues will fill up the set
2 x {\:} at some critical level\; > O up to measure zero. Indeed, this theo-
rem was proven by Aubry [4, Thm. 8] for the special case of the 1-dimensional
discrete variational problem corresponding to the standard twist map.

We now fix the nonlinearity parameter = A\, > 0. The differentiability
properties ofA(«) then determine the qualitative properties of the functi¢n) =
a(w, Ao). F. Vallet [21] calculated this function explicitly for the particular 2-
dimensional Frenkel-Kontorova model (cf. Sect. 1). Figure 3 shows a cut through
the Arnold tongues at levé®? x {\,} for different coupling constants. The white
convex regions in theu, up)-plane corresponds to the values wherg:) is
constant. A cut through the tongue witt{u, \.) = o, for somea, € Q2 will
lead to the set stab() = {u € R? : a(u) = oo}, one of the white regions in
Fig. 3. As we will see, this type of phase-locking calculated by Vallet is typical
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Fig. 2. The Arnold tongues comprising those parameter values) € R? x R* for which the phase
a(u, \) takes some fixed valua, € RZ2. A cut through the parameter space at lexel > 0 is
depicted in Fig. 3.

Fig. 3. The collection of subdifferential®A®(a), o € R?, for Vallet's discrete example. For any
parameten: = (u?, 2 lying within a white convex regio®A° (o) (= stabr)) the phasex(u) is
locked ontoas . (Fig. from [Val].)
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for our variational principle. The crucial step is to show that siap(is the
same as the subdifferentiA°(«.,). Thereto we need the

Lemma 2 Let A* denote the minimal average action with respect to the Hamil-
tonian

o c o — o o
Hu(u 7"'aun)=§HpH2+>\0V(u )7Mp) p_(ulfu 7"'7un7u )7

where V € C3(R/Z) and c,\, > 0. Then, the minimal average actiont*A
€ R", and A are related by

AYE)=AE) —pad YaeR".
Proof. Fix & € R". For anyu € Z" let u® be a minimal solution with respect
to H* satisfying sup.z» [u*)(x) — ax| < oo . By the minimality ofu® with
respect taH# we have

. 1 .
lim ————L*u®™,z"NB,) < lim LYu@,z"nB).
r—o0

1
r—oo |anBr| ‘anBr|

Using the boundness condition above ) with 1 = 0 and the regularity of
1

u©@ we obtain M _ e WZXGZ”ﬂBr p(o)(x) = & where p(o)(x) = (U(O)(X +
e1) —uOx),...,uOx +e,) —u@(x)). Thus, the right hand side above is equal
to

. 1 . -
lim ——L*u©®,z"nB) = lim L°w®,z"nB) — pé .
—00

1
r—oo |Z" N By |Z" N B |
Together with the inequality above we obtain the estimatéa) < A%(a&) — ud .
Interchanging thedle of u® andu(® gives the opposite inequality.
(Il

According to the lemma the phas€u) is defined by
A () = min A4(@) = min(A%(a) — pd)
aeR" aeR"

or, equivalently, byA%(&) > A%(a(w)) + - (& — a(p)) for all & € R". Therefore,
the set stah{,) = {¢z € R" : a(u) = a,} of all parameterg: with the same
phasen, € R" is characterized by

stabw) = 9A%a,) = { € R : A%&) > A%a) + - (& — ao) for all & € R"} .

The seidA%a) is called thesubdifferential of the convex functiod\’ at .. If
AV is differentiable at, the subdifferentiabA°(«) consists of the (sub)gradient
1= (DgAl), ..., Dg A(e)) only. The subdifferential is convex since the one-
sided directional derivative of a convex function at a given point is itself a convex
function of the direction [17, Thm. 23.2]. The diameter of the subdifferential
OA%(«) in the directions € S"~1 is given by Dg + D_35)A%«) > 0.
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ol

H1

Fig. 4. A plot of the phase functions' (t) = & -a(uo +ter) for Vallet's examplei( = 1, 2). The graphs

are obtained by varying on a horizontal line in Fig. 3. While the first componeri(t) represents

a monotone 1-dimensional devil's staircase, the second comparfént cannot be monotone on

a horizontal line. The terrace points of both functions are the same since they correspond to the
intersection of the horizontal line with the white convex regions in Fig. 3. (Fig. from [Val].)

Within this dual setting, the phenomenonpifase-lockingis identified with
the existence of nontrivial subdifferentials: if the subdifferentid®(«) is not just
a point, the phase(u) is locked ontow, for all 1 varying within the (convex)
setdA’(«). By Theorem 29A%a) may contain more than one point onlyf
is rationally dependent, i.e. ifk € Z for somek € Z"\ {0} . Moreover,0A%(«)
contains an open ball if and only i € Q" and.#, is not totally ordered.
As already mentioned the se¥Z,, is not totally ordered for any in a given
compact seK C R" if the Hamiltonian is perturbed enough [6]. Assuming this
situation, phase-locking will occur at least for anye K N Q".

Finally, let us point out the connection with the popular notion of the ‘devil’'s
staircase’. By an-dimensionaldevil's staircase one may define a continuous,
non-constant functiofi : 2 — R" on some compact domaif? C R" such that
for each rational value: € imf N Q" the pre-imagd ~%(&) is homeomorphic to
the unit ballB; = { € R" : ||u|| < 1}. Forn =1 this definition corresponds to
the usual one of a devil's staircase if one in addition requires monotonicity.

Now, consider the Hamiltoniand #, ; € R", and suppose that fqi = 0
the set.#; is not totally ordered for anyx ¢ K = [0,1]". Defining 2 =
Uaex OA%@) the phase functiom : 2 — R",  — o(u), is an-dimensional
devil's staircase. Indeed, for amy< K NQ" the subdifferentiabA%(&) = a~(&)
is homeomorphic to th@-dimensional unit balB]' according to Theorem 2.
Moreover, for any poinfu, € 2 there is a dense set of directiogse S"—!
such that the functioth — 3 - a(u, +t3) is a 1-dimensional (not necessarily
monotone) devil's staircase. Figure 4 shows the functiens e;a(u. +te;) for
Vallet's numerical example with = 2.

Actually, the family of level sets of.(u:) has more structure than required
by a devil's staircase. Let us assume the situation from above amdde{(a)
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denote the dimension &f5; = spag{k € Z" : 6k € Z} with a € K. According
to Theorem 2 for every: "€ K the subdifferentialdA%(a) = a~(a) at @ is
homeomorphic to the-dimensional unit balB; C R". The dual formulation
states thatis as-singular point of the minimal average acti8f(&), s=n—r.

The boundary structure @fA°() may be investigated iteratively by studying
secondary laminations defined by subsets 4f;. For instance )A%(&) has a
nontrivial ( — p)-dimensional face if Bg,,... 3, + Dg,,...—g,)A%&) > O with
linearly independent directions € V5. Now, this last inequality holds if and
only if the subset of minimal solutions iz which are ‘iteratively heteroclinic’
in the directionsfy, B, . . ., 8,, has gaps. For a more precise statement relating
the structure 0DA°(&) and. #2; we refer to [20, Ch. 4].

5 Proof of the differentiability properties of A(a)

We first state explicit formulas for the directional derivativesAgty) in the
standard unit directionse, 1 <i < n (Subsect. 5.1). Our main theorems then
may directly be inferred from these formulas (Subsect. 5.2). The proof of the
formulas itself is given in Subsect. 5.3.

5.1 The formula for the directional derivatives,DA(«)

Let o« € R" and suppose that the set of gags # 0. ForG € %, let ug,ug €
AP be the ‘bottom’ and ‘top’ solution limiting the ga@ (cf. Sect.?2). For
any G € &, and any subsef2? C Z" we abbreviate

Bo(2) =) H(Ug(x) — H(U5(x)) -

xXesn
Without loss of generality we assume that € R" is of the forma =
(b,...,a" o™ aM with ol ... ;0" € Qanda'™?,...,a" € R\ Q being
rationally independent.

A) Casea' € R\ Q,ie.r+1<i <n

As we will show the derivatives oA at « in the directionste with o/ € R\ Q
are given by

@) DoaA) =+ [ DHUOY + 3 Bo(zte)

GeY,

with Z*={0,1,2,...} andZ~ ={-1,-2,... }. The notation makes use of the
fact that for everyu® € .7, there is a uniquer € .ZZP*" with u(0) =u°. By an
argument of Mather the partial derivativBsH of H at u(0) exist due told 4)
and the minimality ofu, see [13, Sect.4]. To be precise, the sum in (2) is only
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defined fora with ol = 0 ( # i). In this caseZeg is a periodicity domain of

the solutions in.ZZF*". In the general cas®¢ has to be evaluated on half of a
periodicity domain ofu € .ZP*" and the sum ovefs, has to be restricted to
those gap$s which cannot be transfered into each other by integer translations
orthogonal tog . Thereto we defind, = {k € Z" : ka € Z} and we letE, be

a fundamental domain &" /I, of the form

E,.={0,1,...,s8 -1} x---x{0,1,...,8" =1} x 2",

wheredl = L (1<j <r)withri € Z ands € N in lowest terms. Il =0 set
s =1. Note thaE is a periodicity domain of any € .ZZP¢". For 1<i < n put
Eoi = {x €E, : ki =0}, E(ji =E;; +Z*eg andE,; = ESi +ZeI Let &,/ ~
be a system of representatives of the equivalence relation &, defined by

G1 ~ Gy ;<= Tk e z"™ with k' =0 such thatG; =G, — k .

Now, BG(Eii) = o Be/(Z* ) where the sum is taken over &l € &, with
G’ ~ G. Formula (2) reduces to

(3) DigAe) = + / DiH (u0))duw + > Be(EL))-

GEGy )~
The sum defininQBG(E;i) exists since, e+ Ug(X) — Ug (X) < 1 by the non-
selfintersection property aﬁé. Here we use the local Lipschitz-continuity of
H. The sum in (3) is absolutely convergent sinE}-Gega/N Y xege Us(X) —
Ug (x) < 1 and since by the following Lemma 3 one estimaf@@(Eim <
const: Ycg. (U3(X) — Ug ().

B) Casea) € Q,i.e. 1<i <r

In order to state the formula for the derivative in the directpmat oo € R" with
a' € Q we define the subsewzl; C .75, by

MO = AP U TG it 1 G € G, K € 28 +Zensa)

where for every gapG € ‘&, we take onlyone heteroclinic solutionug ; +
satisfying () — (iii ). Put Z,+ = {u(0) : u € .23} N [ua(0) — 1,u,(0)]
and let ¢,4+ denote the set of gaps oF,, i.e. the set of open intervals of
[u,(0) — 1,u,(0)] \ 7.+ . Now, the directional derivative®_ A(e) in case
o' € Q have the form

(4) Do Aa) = + / DHUOYC + 3 By(ES
T JEGo+ [/~

To prepare the proof of the theorems we rearrange the sum in a more con-
venient way. Note that every gab € &,/ ~ is - up to boundary points - the
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disjoint union of gaps) € <,1+/ ~. The sum over all thesd is a sum of
telescope and reduces to

(5) BE(Eai) = Y ByES)= D H(ug (X)) — HUS (X)),

JCG XEEq,i

which exists sincelg j+ andug ;— converge (due to the non-selfintersection prop-
erty quickly enough) tai andug in the directionsZ*e andZ e, respectively.
Formula (4) becomes

®) Diahl0) =% [ DHMONA + 37 BE(E).

Ho GEY, /~

In casen = 1 this variant of (4) corresponds to the formulakﬁ in [11, Sect. 3]
(where the + in front of the integral has to be replacedt)y

The following lemma shows how by minimality arguments the sﬂtp(lEofi)
over the domairEjfi =EZ; +Z*e may be reduced to a sum ovEf; only.

Lemma 3 Leta € R" be as abovel < i < n. Let the gap Ge &, (G €
“,+ incasel < i < r, respectively) be of the form G (u=(0), u*(0)) with
ut e AP (/5T respectively). Forr € Z put E7; = {x € Eoj 1 X' =7},
Elt ={x €Esi:x >7}and E[7 ={x € Eq,; : X' < 7}. SettingAg =
max{(u* —u7)(x):x €eEJ; orx € E]; +&,1<i < n} we have

(7) Bo(EZ) =+ > (U"(x) —u” ())DiH U (x — &)) + O((AE)) -
xeE7

Proof. Without loss of generality we set= 0 and we consider only the version
+. We define functions® : Z" — R by

v [UtX)  ifXxT <O . fux ifxi<o

v (X)‘{ u—(x) ifx >0 " (X)‘{ ut(x)  if xi >0
By minimality of u* one has> H (v*(x)) — H (ujf(x)) > 0 where the sum is
taken over allk € E ; . Sincev*(x) = uT(x) for x' > 0, the inequalities imply

DHW ) -HE(X) <Bs(Es) < Y HI (X) - HUX).

xeEg xeEZ;

We claim that lower and upper bound may be estimated by an expression differing
only of orderO((Ag)?). Taking e.g. the lower bound we show

> HW ) - HK (x) =
er;’)i

(8) =3 Y (A +g)DH U (X)) + O(A KX +6)%) ,

x€E2 , 0<j<n
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wheree, = 0 andA(x) = u*(x)—v~(x) = v*(x)—u~(x) for x € Z". Note that by
the Lipschitz property oH for each component' the partial derivatives exist
almost everywhere on intervals. Fpr=i the summation term in (8) vanishes
since A(x + &) = 0 by definition. Due to the periodicities off andH one has
forj #i

> Ax+e)DHU )= Y AMXDHU (X —§)).

XGE(‘;i XGE(‘;,i

Next we use that the discrete Euler equation arising from the condition
D%C,L(u*,x) =0 has t.he formzogjSn DjH (g*(x —g)) = 0. Both these facts
together reduce the first summation term in (8) to

= > ) Ax+g)DHU )= Y AMDHU (X —8)).

X€EQ, 0<j<n XEEQ

The second summation termin (8) is of orde) , (g0 > oj <, O(A(X+g )?) =
O((AL)?) sincereEwq AX) < 1lforanyr € Z and any 0<j < n. This
simplifies (8) to ’

@ D HU () —HW)= D> AXDHU (X —&)) +O(AZ) .

X€E2 | x€Ey ;

Since the corresponding equality holds for the upper bounthiE;’i) the
version + of the lemma is proved.
O

5.2 Proof of Theorem 1-3 via formula forg A(c)

Proof of Theorem 1 Suppose #,, is totally ordered and let us assume firstly
that the set ZP¢" does not have gaps (Lemma 1). By (3) and (4) we trivially
have Dg + D_g)A(e) =0 for 1 < i < n since %, = . By convexity of A we
conclude that is differentiable aix [17, Thm. 25.2].

Let us assume secondly tha#ZP¢" has gaps and that is rationally inde-
pendent. Adding the two versionss of (3) we get

Z Bs(E., ) +Ba(E,))
Gevy/~

Z BG(Ea,i) =0.

GE»‘&@/N

(De +D—e)A()

(10)

The second equality is due to the fact tiat; is the disjoint union ofE_;
and E;'yi. To prove the third equality we show thBg(E,,i) = 0 for everyG ¢
Y. Indeed,Bg(Ey i) = lim,¢z- BG(E(;’;) and by Lemma 3 the terBg(E,,;)
converges to 0 forr — —oo sinceug andug converge asymptotically in the
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directionZ~¢g. Thus,A is differentiable atv in the directionsg, 1 <i < n. By
convexity we again conclude thatis differentiable atx.

Suppose now thatZP*" has gaps and that is rationally dependent, thus
r > 1. Adding the two versiong of (6) we get

(11)  (Dg +D_g)A(@)= > BE(Eai)+BE(Eqi) > 0.
Gevy/~

The reason of the strict inequality is the same as in the 1-dimensional case:
Since the solutionsig j— and ug ;+ intersect transversally, their maximum and
minimum cannot be minimal due to the ‘maximum principle’: Since the func-
tion ug andug are minimal, and since max{ i, ug j+) and min(ig i, Ug j+)
converge in the directiong*e asymptotically tout andug, respectively, one
getsBS(E.i) + BS(E4,i) > 0. Here, condition Kl 3) comes in. The remaining
directionsZ*eg, j # i, do not disturb sinceis;_ and ug . either are peri-
odic or converge asymptotically in these directions. Since (11) establishes the
non-differentiability ato, Theorem 1 is proved.

U

Proof of Theorem 2 Suppose 7, is not totally ordered. According to the
Lemma 1 we may assume thatis rationally dependent and tha¥/F*" has
gaps. By convexity ofA, the set of directiong? € R" \ {0} in which A is
differentiable ata is - after addig 0 - alinear subspace dR". We therefore
restrict to the case that either lies inV, = spap{k € Z" : ok € Z} or in
V. Assuming the special coordinates ferwe puts = g and haves € V,, if
1<i<r,andge V(f if r+1<i <n.lIf g€V, inequality (11) states that
A'is not differentiable atv in the direction3 while in the case3 € V- equality
(10) states thaA is differentiable ato in the directions. This is exactly the
statement of Theorem 2.

O

The Proof of Theorem 3 is similar to the one in [19, p. 363] wity replaced
by AG.

5.3 Deduction of the formula for B, A(«)

Fora € Q" the formula for the directional derivative generalizes the one obtained

in the 1-dimensional case by Mather. We use this formula to deduce by a limit
process the formula for irrational rotation vectars R"\ Q". In casen = 1 our

limit process is simpler than Mather's method since we do not need to estimate
the convergence of the difference quotient quantitatively. Mather's argument
is replaced by the fact that the corresponding minimal laminations at rational
rotation vectors converge to the minimal lamination at the irrational rotation

vector.
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1) Evaluation of the difference quotient for rational

By convenience we restrict ourselves to the case0. The solutionsl € 2P
then are constant A" and formula (6) reduces to

12) D1aA0) =+ [ DHE)A + 3 BE(Ze)

7o GeY

with u® = (u°,...,u°) € R™ and B3(Ze) = 302 H (U . (v&)). Here we
normalizedA(0) = 0. This formula is exactly the one obtained by Mather in [13,
Sect. 3] for the 1-dimensional case. The idea of proof is to write the difference
quotient by means of appropriately defined functiarfswhich converge in the
limit o — oo either to some heteroclinic or periodice . Z,. Sincew?® does

not need to be minimal, the limit process actually leads only to a relaton

in (12). To assert the reverse inequality it is possible to estimate the ‘angle’
(Dg + D_g)A(0) of the tangent cone from below by the sum of the right-hand
side of (12). Thus, one estimates

(De +D-a)A0) = ) Bi(Ze)+ ) Bg(Ze)
Geny Gey
and concludes that actually the relation ‘=" in (12) holds. This idea is performed
for the variational problem on the torus in [19, Lemma 4 and 5] and is analogous
in the present discrete case. For a slight different proof in casel see also
[13].

2) Approximation of an irrational by rational one’s

In order to guarantee the formulas (3) and (4) to be trueofar R" \ Q" we
look for a sequencex = o with & € Q" such that left- and right-hand side
of (4) with & in place ofa converge separately to the corresponding sides of
(3) and (4), respectively. A first condition we impose on the sequenee &

is that lims_,, ﬁ = +¢. By convexity of A this condition implies that
the directional derivative® ¢ A(&) converge taD ¢ A(e), cf. [17, Thm. 24.6].

By B(«a,+t€e) we abbreviate the right-hand side of (3) and (4), respectively,
depending on whether' is irrational or not. We have to show the convergence
B(a,+g) — B(«a,teg) for an appropriate sequence—= «. The idea is that
everyu ¢ .Z4, occuring in the formula foB (o, +¢) is C1— approximated on
compact sets by functions € . #22*". To guarantee such @!— approximation

we have to impose additional conditions on the sequenee &. If o’ € R" put

T ={k=(k,k") e z": o'k =k"} andT,; ={k € I, : ke =0}.

2A) Casea € R"\ Q" anda' € R\ Q

The condition", C T'; ensures that € . %" at least has the same periodicity
asu € ZP°". Requiring this condition for every implies that each limit of
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0 € 28 with & — « lies in .Z,. Conversely, every € .Z/°°" may be
approximated by such & . ZE% for & — a.

The case thatZ; modZ converges ta7, modZ in measure
In this case, the proof of lig,, B(&,+€) = B(a, -6) splits into two parts
corresponding to the summation and integration term in (4) and (3), respectively.
First, if G — G for G € %, andG € %3, one has lim_,. Bs(E%;) =
Be(E, ;). If otherwise e.g. limsup_, , Bs(E3 ;) > Bs(E, ;) then eitherug or,
for & close toa, uz could not be minimal. Here we p@ = (ug (0), ug(0)) and
G = (uz (0), u%(0)) with some appropriate minimal solutiong andug .
Second, the approximation of the integration term is based on the convergence
of DiH (i(0)) to DiH (u(0)) for G — u with i € .ZE" andu € .ZP°". If we
do no more claim thal is C? this convergence is guaranteed by the convexity
condition H 4): By the same reason that the directional derivatives of a conver-
gent sequence of convex functions are upper semi-continuous [17, Thm. 24.5],
the derivativesD_oH are lower semi-continuous and lim,, Dy H (0i(0)) >
D4¢H (u(0)). But according to Mather’'s minimality argument the partial deriva-
tives DiH at @(0) and (0) exist and therefor®H = —D_gH (= DiH) at
these points. This is only possible if in fact lim, D¢ H (i(0)) = D¢ H (u(0)).

The case with measyr&;) = 0 while measure7,) = 1

This case occurs ifZE°" has gaps for every = as it generically happens for
rational rotation vectors - whileZZP®" with o € R"\ Q" ‘foliates’ Z" x R. The
right-hand side of (4) reduces to a pure sum and according to Lemma 3 one has

B(@.e)= Y Bg(E)= > (Ui(0)—ugz(0)DiH (Us(—e))+O((As)?)

GeSas/~ GeGan

with Ag = ma>@§,-§n(ué(e,)—ué((—:-J )). Since the interval& in <%, are collaps-
ing for & — « we get on account of the continuity propertiesiyH deduced
above and of Lebesgue’s dominated convergence theorem the limit

imB@.e)= [ DHU-a)dw = [ DHUO)A =Ba.e).

T T

The general case far' € R\ Q

Here, the arguments of the two preceding cases flow in. All one know in general
is that lim;_,, measure;) < measuref,) for our fixed sequence = «
satisfyingI', C I's (and e.g. ik, ﬁ = g). For everyalet us select

the subsets;, C ;. consisting of those gapé& € %, only which best
approximate the gaps € %, . Restricting to this subset we still have

(13) Jim Y Bs(Ei)= ) Boe(El).

Gewe [~ GEZy/~
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Since the remaining gaps € Gl = 9.\ <2 collapse fora™— «, the terms

Bz (EZ ;) with Ge G = 9.\ <5, may contribute in the limit™ « to the
integral term in (3). Taking into account these collapsing gaps one gets with the
same technique of Lemma 3

(14)lim /_ DHWO)w + > Bs(EL) | = /_ DiH (W(0))du® .

e Geh/~

Both formulas (13) and (14) together show that for our fixed sequence we have
lims_o B(a,+€) =B(«, £6) and formula (3) is proved.

2B) Casex € R"\ Q" anda' € Q

In casea' € Q we have to relax the conditioh, C I'; since the solutions
Usi+ € 2277 which are not periodic in the directiord™e have to be ap-
proximated as well. We require only that the approximating solutiogs 722

have to be periodic with respect to the sublatticelaf with kg = 0. We thus
impose the condition,; C T's together witha® > o' in case of approxi-
mating. 2253 andd' < o' in case of approximatingZz.". As in 2A) one

shows that for the two special assumptions on meas@e{reated there one

gets lins o B(a, &) = B(a, £&).

The general case far' € Q
If o e Q the inequality linx_,, measure@) < measuref,) needs not
to be true anymore. However, it is true if we add .fg, all points aris-
ing from heteroclinic solutions. One shows that 4im, . Z25°" = ,//szji: for
any sequencer — « satisfying',; C I's andd' > o'. (We still assume
lims_q ﬁ = g to guarantee in addition that limn,, Dg A(&) = Dg A() .)
Defining . 73" = {u(0) : u € .25, , U, —1 < u < u,} one therefore gets
lims_., measureZz2") < measurefZ").

If <3l denotes the gaps ofZ2' c R we claim that (4, version +) is
equivalent to

(19) De A(e) = /73.. DiH(uO)du + > By(Es;).

Jeg/~

Since £ C .. the sum in (4) in general extends over more gagpkan the
sum in (15) and one has to show how an expresBg(E,, ;) in (4) transforms

to a part of the integral in the new formula (15). Let us consider two heteroclinic
solutionsu™ < u* in /257, with limm .. (u* —u~)(me) = 0. PutJ* = u®(0)

and let us assume that for an§ € J = (J—,J") there is a further heteroclinic

u e . /5, with u(0) =u®, u~ < u < u*. By successive application of Lemma

3 it follows that
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S
By(E! ) = /J_ DiH (u(0)) du® .

Identifying B(@, ) andB(«, g) with the right-hand side of (15) (instead of
(4+)) for @ and«, respectively, the convergence lim, B(&, +¢) = B(«a, £€)
will be proven in exactly the same way as for the caSe R\ Q : Decomposing
gal = g0 ) %L one gets formula (13) wittz,2! in place of%, and likewise
formula (14) with.7Z3" and.Z32" in place of.7; and.7,, respectively. This
shows that ling_,, B(&, +€) = B(a, £6) in casea' € Q and formula (4) is

proved.
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