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We consider the multidimensional Frenkel-Kontorova model with one degree of
freedom which is a variational problem for real functions on the latticeZn. For
every vectorα ∈ Rn there is a special class of minimal solutionsuα : Zn → R
lying in finite distance to the linear functionxn+1 = αx with x ∈ Zn. Due to
periodicity properties of the variational problemα is called the rotation vector of
these solutions. The average actionA(α) of a minimal solutionuα is obtained by
averaging the variational sum overZn. One shows that this average action is the
same for any minimal solution with finite distance to the linear functionxn+1 = αx
with rotation vectorα. Our main results concern the differentiability properties
of A(α) as a function of the rotation vector: Typically,A is not differentiable
at α ∈ Qn. This will be interpreted in a dual form as phase-locking. The phase
α(µ) of µ ∈ Rn is defined by the unique vector inRn for which A(α) − α · µ is
minimal. If one perturbs the variational principle by changing the parameterµ,
the non-differentiability ofA at α ∈ Qn forces the phase to be locked onto the
rational valueα(µ).

Introduction

The 1-dimensional Frenkel-Kontorova model originates in solid state physics and
describes the dislocation of a chain of atoms in a periodic potential with nearest
neighbor interactions, see e.g. [2]. Here we consider a generalization where the
chain is replaced by a lattice of atoms which have one degree of freedom. One
thinks of this degree of freedom as a coordinate describing the dislocations of the
atoms in vertical direction (Fig. 1). The steady state positions of the atoms are
given by local minima of the Hamiltonian evaluated for each finite set of atoms.
This variational problem defines the multidimensional Frenkel-Kontorova model
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624 W. M. Senn

of one degree of freedom. Configurations which minimize the Hamiltonian on
each finite set are called minimal configurations or minimal solutions. To each
minimal configuration one assigns the minimal average action which is the mean
value of the Hamiltonian per atom. One shows that this minimal average action
in fact does only depend on the rotation vector of the minimal configuration.
The rotation vector is defined by the average increase in the vertical position of
atoms in thei -th direction of the grid.

Given a Hamiltonian depending on some linear and nonlinear parameter we
search the rotation vector allowing for an absolute minimum of the minimal av-
erage action. This rotation vector at which the minimum is attained is called the
phase of the system. It of course depends on the parameters defining the Hamilto-
nian. Our procedure of finding the phase has two stages: We first fix the rotation
vector and look for a corresponding minimal configuration i.e. a configuration
which locally minimizes the Hamiltonian and which exhibits the prescribed rota-
tion vector in the large. Then we minimize the average action obtained this way
over all rotation vectors and identify the phase as the point where the minimum
of the action is reached. We now can ask for the dependency of the phase from
the parameters which originally defined the Hamiltonian. As we will show, the
phase may be locally constant while the Hamiltonian is tuned by the parameters.
We show that the phase typically is locked onto rational rotation vectors while
it immediately co-varies (without jump) with the parameters if the components
of the phase are rationally independent. The domains in the multidimensional
parameter space where phase-locking occur are known as Arnold tongues, cf.
Fig. 2. A cut through these tongues at a fixed level of the nonlinear parameter
may form an intriguing picture of fractal character as shown in Fig. 3. Consider-
ing a single component of the phase as a function of the linear parameter a devil
staircase may arise as depicted in Fig. 4.

The phenomenon of phase-locking may be explained by the non-differentiabi-
lity of the minimal average action at rational rotation vectors. Our main result
therefore concerns the differentiability properties of the minimal average action.
We show that at rational rotation vectors the minimal average action is typically
non-differentiable while is always differentiable at rationally independent rotation
vectors. In general, at some rotation vector the minimal average action is always
differentiable in directions where there exist no rational dependencies between
the components of the rotation vector while it is typically non-differentiable in
directions for which rational dependencies exist. In a dual setting the results
directly translate to the phase-locking on these rotation vectors for which the
minimal average action is not differentiable in any direction. Thus, phase-locking
can only occur on rational vectors. In combination with a result of Bangert [6]
one knows that for large perturbations of the Hamiltonian such a phase-locking
indeed will occur forany rational vector in some bounded domain.

The multidimensional Frenkel-Kontorova model with one degree of freedom
may be seen as a discrete version of Moser’s variational problem on the (n + 1)-
dimensional torus [15] where the discretization restricts to the firstn variables.
As long as one restricts to the 1-dimensional case, the minimal configurations
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may be characterized as particular orbits of a twist map of the annulus [14].
Within this setting J. Mather proved differentiability properties of the minimal
average action as a function of the rotation number [13]. Such differentiability
properties first were investigated by S. Aubry from a physical point of view [2].
V. Bangert obtained the same results from a more geometrical point of view [9].
We generalize these results to a variational problem for real functions onZn.
The proof of the differentiability properties in case of rational rotation vectors
is similar to Mather’s one forn = 1. In contrast, we deduce the differentiability
properties at irrational rotation vectors directly by continuity arguments. We give
an explicit formula for the directional derivatives of the minimal average action
which in casen = 1 is new for irrational rotation numbers. Our proof mainly
follows the one given in [19] for the variational problem on the (n + 1)-torus.

In Sect. 1 we outline the general model and present the 2-dimensional non-
smooth example of F. Vallet1 [21] as a particular case. His example of an exactly
calculable variational problem generalizes Aubry’s model in [3]. In Sect. 2 we
briefly recapitulate the structure of the set of non-selfintersecting minimal solu-
tions with a given rotation vector. In Sect. 3 we state the differentiability results
of the minimal average action as a function of the rotation vector. In Sect. 4 we
interpret the non-differentiabilities as phase-locking in the Frenkel-Kontorova
model of one degree of freedom. The occurrence of Arnold tongues and devil’s
staircases will be explained. The proof of the differentiability results is given in
Sect. 5.

Fig. 1. The particles of the infinite grid are seeking for an equilibrium position between nearest
neighbor interactions and the vertical periodic potential. The attractive forces between neighbors are
indirectly proportional to their distances. However, the particles are allowed to reduce the distances
only by moving in vertical direction.

1 I would like to thank F. Vallet for the permission to enclose his figures 3 and 4.
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1 The multidimensional Frenkel-Kontorova model

We first describe a simple two dimensional model close to Vallet’s numerical
example. Define the ‘Hamiltonian’H : R3 → R by

H (u0, u1, u2)
.
=

c1

2
(u1 − u0)2 +

c2

2
(u2 − u0)2 + V (u0)(1)

with coupling constantsc1, c2 > 0 and a smooth 1-periodic potentialV : R →
R . Given a functionu : Z2 → R describing the dislocation of the particles and
some finite setΩ ⊂ Z2 we abbreviate

L(u, Ω)
.
=

∑
x∈Ω+{0,−e1,−e2}

H (u(x), u(x + e1), u(x + e2)) ,

wheree1 ande2 denote the standard basis elements ofZ2. A functionu : Z2 → R
is called aminimal solution if L(u +φ, Ω) ≥ L(u, Ω) for any finitely supported
function φ : Ω → R with Ω ⊂ Z2. For everyα ∈ R2 there exist minimal
solutionsuα : Z2 → R with supx∈Z2 |uα(x) − αx| < ∞ . Since for thei -th
component ofα one has

αi = lim
m→∞

uα(mei ) − uα(0)
m

, m ∈ N ,

we callα the rotation vector of uα. Theminimal average action is defined by

A(α)
.
= lim

r →∞
1

|Z2 ∩ Br |L(uα, Z2 ∩ Br ) ,

whereBr denotes the Euclidean ball inR2 of radiusr and center 0.
If the periodic potential vanishes,V ≡ 0, the minimal solutionsuα with

α ∈ Rn are the affine functionsuα(x) = αx + c on Z2 with c ∈ R. The minimal
average action in this trivial case isA(α) = c1(α1)2 + c2(α2)2 . In the example
of Vallet [21, Ch. III] the non-smooth potentialV in (1) consists of successive
parabolic curves with center at the integersZ. It has the form

V (u) =
1
2

(u − [u +
1
2

])2 ,

where [v], v ∈ R, denotes the largest integer≤ v.

A generalization of the variational problem to higher dimensions with, how-
ever, smooth Hamiltonian is investigated in [10]. In the following we state weaker
conditions on the HamiltonianH which still guarantee existence results for min-
imal solutions. The conditions are weak enough to include Vallet’s example and
strong enough to enable to prove the ordering structures for the set of minimal
solutions as described in Sect. 2.

The HamiltonianH (u
¯
) , u

¯
= (u0, . . . , un) , is assumed to be a continuous

function onRn+1 which satisfies



The multidimensional Frenkel-Kontorova model 627

(H 1) H (u
¯

+ 1
¯
) = H (u

¯
) ∀ u

¯
∈ Rn+1 , 1

¯
= (1, . . . , 1) ,

(H 2) H (u
¯
) −→ ∞ if max

0≤i ,j ≤n
|ui − uj | −→ ∞ ,

(H C2) H ∈ C2(Rn+1)

with Di Dj H ≤ 0 andDi D0H < 0 ∀ 1 ≤ i /= j ≤ n .

In order to include Vallet’s non-smooth example we require a generalization
of Mather’s conditions forn = 1 [11, 12]. Lete0, e1, . . . , en denote the standard
unit vectors inRn+1. Instead of (H C2) the following conditions may be imposed:

(H 3) H (u
¯

+ λi ei + λj ej ) − H (u
¯

+ λi ei ) − H (u
¯

+ λj ej ) + H (u
¯
) ≤ 0 ,

0 ≤ i /= j ≤ n . There isc > 0 such that for

1 ≤ i /= j ≤ n , λ1 , λi > 0 and u
¯

∈ Rn+1

H (u
¯

+ λ0e0 + λi ei ) − H (u
¯

+ λ0e0) − H (u
¯

+ λi ei ) + H (u
¯
) ≤ −λ0λi c .

(H 4) There isθ > 0 such that for any u
¯

∈ Rn+1 and forβ = e0

or β ∈ {0} × Sn the function ρ → θρ2 − H (u
¯

+ ρβ) is convex.

Condition (H 3) states, loosely speaking, thatH (u
¯
) is growing if the differ-

ence|u0−ui | for some 1≤ i ≤ n is growing. Condition (H 4) states thatH does
not have convex corners on the radial lines. Moreover,H is locally Lipschitz in
each componentuj , 0 ≤ j ≤ n, by the same reason that this holds for a convex
function [17, 10.4].

Put B = {0,−e1, . . . ,−en} and letΩ + B denote the Minkowski sum of
B andΩ ⊂ Zn. One looks forminimal solutions u : Zn → R which minimize
the sum

L(u, Ω)
.
=

∑
x∈Ω+B

H (u(x), u(x + e1), . . . , u(x + en))

on every finite setΩ ⊂ Zn with respect to arbitrary variations ofu on Ω. Thus,
u is minimal if L(u + φ, Ω) ≥ L(u, Ω) for every φ : Ω → R on every finite
setΩ ⊂ Zn. A minimal solutionu is said to haveno selfintersectionif the set
{Tku : k = (k, kn+1) ∈ Zn+1} with Tku(x)

.
= u(x − k) + kn+1 is totally ordered. A

non-selfintersecting minimal solutionu exhibits a uniquerotation vector α ∈ Rn

with the property supx∈Zn |u(x) − αx| < ∞. By Mα we denote the set of non-
selfintersecting minimal solutions corresponding toα. If u ∈ Mα and x ∈ Zn

put u
¯
(x)

.
= (u(x), u(x + e1), . . . , u(x + en)) ∈ Rn+1. As in the 2-dimensional

example, theminimal average action is defined by

A(α)
.
= lim

r →∞
L(u, Zn ∩ Br )

|Zn ∩ Br | = lim
r →∞

1
|Zn ∩ Br |

∑
x∈Zn∩Br

H (u
¯
(x)) , u ∈ Mα ,

whereBr denotes the ball of radiusr and center 0 inRn. The existence of this
limit is not obvious. First one uses thatH (u

¯
(x)) is bounded uniformly due to

the property sup|u(x) − αx| < ∞ and the Lipschitz continuity ofH . Then the
existence of the average is shown in the same way as in [18, Lemma 3.3]. Once
knowing that the limit exists, it is easy to show that it does not depend on the
minimal solutionu ∈ Mα [18, Lemma 3.2].



628 W. M. Senn

2 The setMα of non-selfintersecting minimal solutions

A minimal solutionu ∈ Mα with arbitrary α ∈ Rn is said to bemaximally
periodic if Tku = u for every k = (k, kn+1) ∈ Zn+1 with kα = kn+1. By Mper

α

we denote the set of maximally periodicu ∈ Mα. One shows by a compactness
argument thatMα /= ∅ for α ∈ Qn. To proveMα /= ∅ for α ∈ Rn \ Qn one
performs a limit process and uses the local Lipschitz continuity ofH , compare
with the discrete 1-dimensional case [7, (3.3) and (3.17)].

By minimality arguments one shows thatMper
α is totally ordered, i.e. for

u, v ∈ Mper
α we have eitheru < v or u > v or u ≡ v, cf. [5]. One may think

of the graphsu ∈ Mper
α as ‘leaves’ lying inZn × R. Two cases arise: either

the setMper
α gives rise to a ‘foliation’ or to a ‘lamination’ (i.e. ‘foliations’

with gaps). Motivated from the continuous problem we say that the setMper
α

‘ foliates’ Zn × R if for every (x, u◦) ∈ Zn × R there exists a uniqueu ∈ Mper
α

with u(x) = u◦. Mper
α gives rise to a ‘lamination’ if there are gaps in the vertical

direction such that for someu◦ ∈ R one does not findu ∈ Mper
α with u(x) = u◦.

For the standard HamiltonianH◦ = 1
2‖p‖2 the setMper

α gives to a ‘foliation’ for
anyα ∈ Rn. According to Moser’s stability result for the variational problem on
the torus [16] one knows that forα ∈ Qn ‘not too close toQn ’ the ‘foliation’
survives for small perturbations ofH◦. If, however, the perturbation ofH◦ is
large enough the ‘foliation’ disintegrates, gaps occur andMper

α gives rise to a
‘lamination’ for every rationally dependentα in some compact setK ⊂ Rn. The
size of this setK of rotation vectorsα for which Mper

α has gaps grows with the
size of the perturbation. For Moser’s variational principle on the torus this result
was proved by Bangert [6]. (Note that in general one only hasMper

α ⊇ Mrec
α

whereMrec
α is defined as in [5].)

Let us describe the structure ofMα if the subsetMper
α has gaps. We say

that α ∈ Rn \ Qn is rationally independent, if kα 6∈ Z for all k ∈ Zn \ {0}.
In case thatα is rationally independent one knows from the variational problem
on the torus that each non-selfintersecting minimal solutionu ∈ Mα actually
is maximally periodic. Thus,Mα = Mper

α and the setMα is totally ordered.
The situation is different ifα is rationally dependent.

For everyα ∈ Rn fix someuα ∈ Mper
α and put

Fα
.
= {u(0) : u ∈ Mper

α } ∩ [uα(0) − 1, uα(0)] .

If α ∈ Rn \ Qn the setFα ⊂ R has an interesting structure: it is either a closed
interval or it contains an infinity of gaps. This is due to the fact that anu ∈ Mper

α

defining a boundary of a gap inFα would give rise to an infinity of further gaps
in the bounded setFα by translatingu in directionsk ∈ Zn+1 with non-vanishing
componentki for which αi is irrational. (In case thatMper

α = Mrec
α the setFα

actually defines a Cantor set, i.e. a closed set of non-isolated points that does not
contain an interval (cf. [15, Ch. 6] or [8, (5.5)]). In case thatMα is a proper
supset ofMrec

α , however, this does not need to be true anymore.)
Let Gα be the set of gaps ofFα, i.e. the set of open intervals of [uα(0) −

1, uα(0)] \ Fα. Suppose thatα is rationally dependent and thatMper
α has gaps,
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i.e. Gα /= ∅. Let us moreover assume thatαi ∈ Q for some 1≤ i ≤ n. For each
gapG = (G−, G+) ∈ Gα we denote byu−

G , u+
G, the unique minimal solutions in

Mper
α such thatu±

G (0) = G±. Now, there are further minimal solutionsuG,i ± in
Mα with u−

G < uG,i ± < u+
G and converging tou−

G and u+
G in the directionsei

and−ei , respectively. More precisely the solutionsuG,i ± satisfy

(i ) uG,i ±(0) ∈ G ,

(ii ) uG,i ± is maximally periodic up to the directionZei , i.e. for all

k ∈ Zn+1 with αk = kn+1 andki = 0 one hasTkuG,i ± = uG,i ± ,

(iii ) lim
m→∞(u+

G − uG,i ±)(x ± mei ) → 0

and lim
m→∞(uG,i ± − u−

G )(x ∓ mei ) → 0

uniformly for all x ∈ Zn with xi = 0 .

Any minimal solutionuG,i ± satisfying (i ) − (iii ) is said to beheteroclinic in
the direction±ei . As in the 1-dimensional case the existence e.g. ofuG,i + is
guaranteed by Aubry’s construction taking a sequence of convergent minimal
solutionsuα̃ ∈ M

per
α̃ with α̃ → α and α̃i ↓ αi , see e.g. [7, Sect. 5].

Let us define byMper
α,i + the set of maximally periodic solutions together with

all heteroclinic solutionsuG,i + in the directionei satisfying (i ) − (iii ) for some
gapG of Mper

α . Another possibility to characterize this set is

M
per
α,i +

.
= {u ∈ Mα : Tku = u for k ∈ Γα,i

andTku ≤ u for k ∈ Γα with ki ≥ 0} .

In case thatMper
α has gaps (andαi ∈ Q) the setMper

α,i + is a proper supset of
Mper

α . Again by minimality arguments one shows thatM
per
α,i + is totally ordered,

cf. [8, (6.13)]. However, by property (iii ) (where pairwise the upper and lower
signs belong together) the minimal solutionsuG,i − anduG,i + ‘intersect’ andMα

cannot be totally ordered, cf. [8, (4.8)]. This leads us to the general criterion for
the total ordering ofMα:

Lemma 1 The setMα, α ∈ Rn, is totally ordered if and only if the setMper
α

does not have gapsor if α is rationally independent.

Put differently,Mα is not totally ordered if and only ifα is rationally dependent
and Mper

α has gaps.

3 Differentiability properties of the minimal average action

The first two theorems show how the differentiability ofA(α) generalizes from
the 1- to the multi-dimensional case.

Theorem 1 A is differentiable atα ∈ Rn if and only if the setMα of non-
selfintersecting minimal solutions with rotation vectorα is totally ordered.
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To investigate the case whereMα is not totally ordered one has to consider
the subspaceVα

.
= spanR{k ∈ Zn : αk ∈ Z} of directions in whichα is rationally

dependent. One may think ofVα as the projection to the firstn components of the
spaceV α

.
= {k ∈ Zn+1 : α · k = 0} generated by the vectorsk ∈ Zn+1 orthogonal

to α
.
= (−α, 1). Let us denote byV ⊥

α ⊆ Rn the orthogonal complement ofVα

with respect to the standard scalar product inRn.

Theorem 2 Supposeα ∈ Rn, β ∈ Rn \{0} andMα is not totally ordered. Then
A is differentiable atα ∈ Rn in the directionβ if and only ifβ ∈ V ⊥

α .

If α ∈ Rn with rational first componentα1 ∈ Q one could expect thatA
is differentiable atα in the directione1 if there are minimal solutions inMα

which ‘foliate’ Zn × R and which are periodic in the directione1. However, this
turns out to be not true. The reason is that the existence of the ‘foliation’ defined
by a subset ofMα does not imply the total ordering of the whole setMα. If
n ≥ 2 and e.g.α = (0, 0), there may bee1-periodic solutions inMα ‘foliating’
Z2 × R and e1-heteroclinic solutions inMα which intersect the periodic ones
(cf. [8, Thm. 1] and [19, Fig. 2]).

If α ∈ Rn \ Qn is rationally independent the setMα is always totally
ordered (Lemma 1) and andA is differentiable atα according to Theorem 1. If
α ∈ Qn the setMα is not totally ordered for generic HamiltonianH . Hence,A
is genericallynot differentiable atα ∈ Qn. The situation forα ∈ Rn \Qn is more
subtle. According to the stability result of Moser the ‘foliation’ disintegrates for
large perturbations ofH◦ = 1

2‖p‖2 and Mα is not totally ordered for every
rationally dependentα in some compact setK ⊂ Rn. Assuming such a large
perturbation, Theorem 2 states that the (convex) functionA restricted to the
compact setK exhibits a maximal non-differentiability that a convex function
ever can have in a measure theoretic sense: The set ofs-singular points ofA|K is
the union of countable many compact sets of finite, non-vanishings-dimensional
Hausdorff measure (s = 0, . . . , n), cf. [1, (3.1)]. Recall thatα is an s-singular
point iff A is differentiable atα in at mosts linearly independent directions.

The following theorem estimates the difference of right- and left-sided deriva-
tive of A in the standard directionsei . It corresponds to the formula in [13], end
of Sect. 3, for the 1-dimensional case.

Theorem 3 If the i -the component ofα is rational andαi = r i

si with r i ∈ Z and
si ∈ N relatively prime, one estimates

0 ≤ (Dei + D−ei )A(α) ≤ const· 1
si

,

with some constant depending on H only and some compact set containingα.

Finally we mention that the minimal average actionA(α) is strictly convex.
This is shown in the same way as the strict convexity is shown for the variational
principle on the (n + 1)-dimensional torus [18].
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4 Phase-locking and the dual interpretation

If V ∈ C3(R/Z) is some periodic potential we consider the Hamiltonian

H µ,λ(u◦, . . . , un) =
c
2
‖p‖2 + λV (u◦) − µ p , p = (u1 − u◦, . . . , un − u◦) ,

depending on parameter valuesµ ∈ Rn and λ, c > 0. The minimal average
action corresponding to the HamiltonianH µ,λ is denoted byAµ,λ. Guided from
the physical background, the following dual problem arises:

Given parametersµ and λ , determine the vectorα = α(µ, λ) ∈ Rn at
which the minimal average action Aµ,λ attains its minimum, i.e. such that

Aµ,λ(α) = min
α̃∈Rn

Aµ,λ(α̃) .

Since the functionAµ,λ(α̃) is convex inα̃ the minimum exists. Since the function
is strictly convex the minimum is attained for exactly one ˜α and this is denoted
by α.

Motivated from the thermodynamical background we callα = α(µ, λ) the
phase of the system with parameter valuesµ and λ. One is interested in the
phenomenon ofphase-locking: while the parametersµ and λ vary, the phase
α = α(µ, λ) may be locally constant, i.e lock onto some valueα◦ ∈ Rn. The
occurrence of phase-locking is typical for dynamical systems with an underlying
periodic structure. The usual way to represent the functionα(µ, λ) is to subdivide
the parameter space (µ, λ) ∈ Rn × R+ into regions of constant phaseα◦, i.e. into
the subsets{(µ, λ) ∈ Rn × R+ : α(µ, λ) = α◦ } with α◦ ∈ Rn .

In dynamical systems such a subset of constant phaseα(µ, λ) = α◦ ∈ Qn

is known asArnold tongue. Decreasing the parameterλ of the periodic per-
turbation,λ ↓ 0, the intersection of an Arnold tongue with the planeRn × {λ}
gets smaller and smaller until the tongue meets forλ = 0 the level Rn × {0} at
some point (µ◦, 0) ∈ Qn × {0}, see Fig. 2. Since the average actionAµ◦,0 takes
its minimum atα(µ◦, 0) = µ◦ we conclude from the conditionα(µ, λ) = α◦
defining a tongue thatµ◦ = α◦. Conversely, increasing the parameterλ > 0, one
expects that for any compact setΩ ⊂ Rn the Arnold tongues will fill up the set
Ω × {λc} at some critical levelλc > 0 up to measure zero. Indeed, this theo-
rem was proven by Aubry [4, Thm. 8] for the special case of the 1-dimensional
discrete variational problem corresponding to the standard twist map.

We now fix the nonlinearity parameterλ = λ◦ > 0. The differentiability
properties ofA(α) then determine the qualitative properties of the functionα(µ) =
α(µ, λ◦). F. Vallet [21] calculated this function explicitly for the particular 2-
dimensional Frenkel-Kontorova model (cf. Sect. 1). Figure 3 shows a cut through
the Arnold tongues at levelR2×{λ◦} for different coupling constants. The white
convex regions in the (µ1, µ2)-plane corresponds to the values whereα(µ) is
constant. A cut through the tongue withα(µ, λ◦) = α◦ for someα◦ ∈ Q2 will
lead to the set stab(α◦)

.
= {µ ∈ R2 : α(µ) = α◦} , one of the white regions in

Fig. 3. As we will see, this type of phase-locking calculated by Vallet is typical
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Fig. 2. The Arnold tongues comprising those parameter values (µ, λ) ∈ R2 ×R+ for which the phase
α(µ, λ) takes some fixed valueα◦ ∈ R2. A cut through the parameter space at levelλ◦ > 0 is
depicted in Fig. 3.

Fig. 3. The collection of subdifferentials∂A0(α), α ∈ R2, for Vallet’s discrete example. For any
parameterµ = (µ1, µ2) lying within a white convex region∂A◦(α◦) (= stab(α◦)) the phaseα(µ) is
locked ontoα◦ . (Fig. from [Val].)
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for our variational principle. The crucial step is to show that stab(α◦) is the
same as the subdifferential∂A0(α◦). Thereto we need the

Lemma 2 Let Aµ denote the minimal average action with respect to the Hamil-
tonian

H µ(u◦, . . . , un) =
c
2
‖p‖2 + λ◦V (u◦) − µp , p = (u1 − u◦, . . . , un − u◦) ,

where V ∈ C3(R/Z) and c, λ◦ > 0. Then, the minimal average action Aµ,
µ ∈ Rn, and A0 are related by

Aµ(α̃) = A0(α̃) − µα̃ ∀ α̃ ∈ Rn .

Proof. Fix α̃ ∈ Rn. For anyµ ∈ Zn let u(µ) be a minimal solution with respect
to H µ satisfying supx∈Zn |u(µ)(x) − α̃x| < ∞ . By the minimality ofu(µ) with
respect toH µ we have

lim
r →∞

1
|Zn ∩ Br |Lµ(u(µ), Zn ∩ Br ) ≤ lim

r →∞
1

|Zn ∩ Br |Lµ(u(0), Zn ∩ Br ) .

Using the boundness condition above foru(µ) with µ = 0 and the regularity of
u(0) we obtain limr →∞ 1

|Zn∩Br |
∑

x∈Zn∩Br
p(0)(x) = α̃ where p(0)(x) = (u(0)(x +

e1) − u(0)(x), . . . , u(0)(x + en) − u(0)(x)) . Thus, the right hand side above is equal
to

lim
r →∞

1
|Zn ∩ Br |Lµ(u(0), Zn ∩ Br ) = lim

r →∞
1

|Zn ∩ Br |L0(u(0), Zn ∩ Br ) − µα̃ .

Together with the inequality above we obtain the estimateAµ(α̃) ≤ A0(α̃)−µα̃ .
Interchanging the r̂ole of u(µ) andu(0) gives the opposite inequality.

�

According to the lemma the phaseα(µ) is defined by

Aµ(α(µ)) = min
α̃∈Rn

Aµ(α̃) = min
α̃∈Rn

(A0(α̃) − µα̃)

or, equivalently, byA0(α̃) ≥ A0(α(µ)) +µ · (α̃ −α(µ)) for all α̃ ∈ Rn. Therefore,
the set stab(α◦) = {µ ∈ Rn : α(µ) = α◦} of all parametersµ with the same
phaseα◦ ∈ Rn is characterized by

stab(α◦) = ∂A0(α◦)
.
= {µ ∈ Rn : A0(α̃) ≥ A0(α◦) +µ · (α̃−α◦) for all α̃ ∈ Rn} .

The set∂A0(α) is called thesubdifferential of the convex functionA0 atα. If
A0 is differentiable atα, the subdifferential∂A0(α) consists of the (sub)gradient
µ = (De1A(α), . . . , Den A(α)) only. The subdifferential is convex since the one-
sided directional derivative of a convex function at a given point is itself a convex
function of the direction [17, Thm. 23.2]. The diameter of the subdifferential
∂A0(α) in the directionβ ∈ Sn−1 is given by (Dβ + D−β)A0(α) ≥ 0.
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Fig. 4. A plot of the phase functionsαi (t)
.
= ei ·α(µ◦+te1) for Vallet’s example (i = 1, 2). The graphs

are obtained by varyingµ on a horizontal line in Fig. 3. While the first componentα1(t) represents
a monotone 1-dimensional devil’s staircase, the second componentα2(t) cannot be monotone on
a horizontal line. The terrace points of both functions are the same since they correspond to the
intersection of the horizontal line with the white convex regions in Fig. 3. (Fig. from [Val].)

Within this dual setting, the phenomenon ofphase-lockingis identified with
the existence of nontrivial subdifferentials: if the subdifferential∂A0(α) is not just
a point, the phaseα(µ) is locked ontoα◦ for all µ varying within the (convex)
set∂A0(α). By Theorem 2,∂A0(α) may contain more than one point only ifα
is rationally dependent, i.e. ifαk ∈ Z for somek ∈ Zn \ {0} . Moreover,∂A0(α)
contains an open ball if and only ifα ∈ Qn and Mα is not totally ordered.
As already mentioned the setMα is not totally ordered for anyα in a given
compact setK ⊂ Rn if the Hamiltonian is perturbed enough [6]. Assuming this
situation, phase-locking will occur at least for anyα ∈ K ∩ Qn.

Finally, let us point out the connection with the popular notion of the ‘devil’s
staircase’. By an-dimensionaldevil’s staircase one may define a continuous,
non-constant functionf : Ω → Rn on some compact domainΩ ⊂ Rn such that
for each rational value ˜α ∈ im f ∩ Qn the pre-imagef −1(α̃) is homeomorphic to
the unit ballB1 = {µ ∈ Rn : ‖µ‖ ≤ 1}. For n = 1 this definition corresponds to
the usual one of a devil’s staircase if one in addition requires monotonicity.

Now, consider the HamiltoniansH µ, µ ∈ Rn, and suppose that forµ = 0
the setMα̃ is not totally ordered for any ˜α ∈ K

.
= [0, 1]n. Defining Ω

.
=⋃

α∈K ∂A0(α̃) the phase functionα : Ω → Rn, µ → α(µ), is a n-dimensional
devil’s staircase. Indeed, for any ˜α ∈ K ∩Qn the subdifferential∂A0(α̃) = α−1(α̃)
is homeomorphic to then-dimensional unit ballBn

1 according to Theorem 2.
Moreover, for any pointµ◦ ∈ Ω there is a dense set of directionsβ ∈ Sn−1

such that the functiont 7−→ β · α(µ◦ + tβ) is a 1-dimensional (not necessarily
monotone) devil’s staircase. Figure 4 shows the functiont 7−→ e1α(µ◦ + te1) for
Vallet’s numerical example withn = 2.

Actually, the family of level sets ofα(µ) has more structure than required
by a devil’s staircase. Let us assume the situation from above and letr = r (α̃)
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denote the dimension ofVα̃ = spanR{k ∈ Zn : α̃k ∈ Z} with α̃ ∈ K . According
to Theorem 2 for every ˜α ∈ K the subdifferential∂A0(α̃) = α−1(α̃) at α̃ is
homeomorphic to ther -dimensional unit ballBr

1 ⊂ Rr . The dual formulation
states that ˜α is as-singular point of the minimal average actionA0(α̃), s = n − r .

The boundary structure of∂A0(α̃) may be investigated iteratively by studying
secondary laminations defined by subsets ofMα̃. For instance,∂A0(α̃) has a
nontrivial (r − ρ)-dimensional face if (Dβ1,...,βρ + Dβ1,...,−βρ)A0(α̃) > 0 with
linearly independent directionsβi ∈ Vα̃. Now, this last inequality holds if and
only if the subset of minimal solutions inMα̃ which are ‘iteratively heteroclinic’
in the directionsβ1, β2, . . . , βρ, has gaps. For a more precise statement relating
the structure of∂A0(α̃) andMα̃ we refer to [20, Ch. 4].

5 Proof of the differentiability properties of A(α)

We first state explicit formulas for the directional derivatives ofA(α) in the
standard unit directions±ei , 1 ≤ i ≤ n (Subsect. 5.1). Our main theorems then
may directly be inferred from these formulas (Subsect. 5.2). The proof of the
formulas itself is given in Subsect. 5.3.

5.1 The formula for the directional derivatives D±ei A(α)

Let α ∈ Rn and suppose that the set of gapsGα /= ∅. For G ∈ Gα let u−
G , u+

G ∈
Mper

α be the ‘bottom’ and ‘top’ solution limiting the gapG (cf. Sect. 2). For
any G ∈ Gα and any subsetΩ ⊆ Zn we abbreviate

BG(Ω)
.
=

∑
x∈Ω

H (u
¯
−
G (x)) − H (u

¯
+
G(x)) .

Without loss of generality we assume thatα ∈ Rn is of the form α =
(α1, . . . , αr , αr +1, . . . , αn) with α1, . . . , αr ∈ Q andαr +1, . . . , αn ∈ R \ Q being
rationally independent.

A) Caseαi ∈ R \ Q , i.e. r + 1 ≤ i ≤ n

As we will show the derivatives ofA at α in the directions±ei with αi ∈ R \ Q
are given by

D±ei A(α) = ±
∫

Fα

Di H (u
¯
(0))du◦ +

∑
G∈Gα

BG(Z±ei )(2)

with Z+ .
= {0, 1, 2, . . . } andZ− .

= {−1,−2, . . . }. The notation makes use of the
fact that for everyu◦ ∈ Fα there is a uniqueu ∈ Mper

α with u(0) = u◦. By an
argument of Mather the partial derivativesDi H of H at u

¯
(0) exist due to (H 4)

and the minimality ofu, see [13, Sect. 4]. To be precise, the sum in (2) is only
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defined forα with αj = 0 (j /= i ). In this caseZei is a periodicity domain of
the solutions inMper

α . In the general case,BG has to be evaluated on half of a
periodicity domain ofu ∈ Mper

α and the sum overGα has to be restricted to
those gapsG which cannot be transfered into each other by integer translations
orthogonal toei . Thereto we defineΓα

.
= {k ∈ Zn : kα ∈ Z} and we letEα be

a fundamental domain ofZn/Γα of the form

Eα = {0, 1, . . . , s1 − 1} × · · · × {0, 1, . . . , sr − 1} × Zn−r ,

whereαj = r j

sj (1 ≤ j ≤ r ) with r j ∈ Z andsj ∈ N in lowest terms. Ifr j = 0 set
sj = 1. Note thatEα is a periodicity domain of anyu ∈ Mper

α . For 1≤ i ≤ n put
E◦

α,i
.
= {x ∈ Eα : ki = 0}, E±

α,i
.
= E◦

α,i + Z±ei andEα,i
.
= E◦

α,i + Zei . Let Gα/ ∼
be a system of representatives of the equivalence relation∼ on Gα defined by

G1 ∼ G2 :⇐⇒ ∃ k ∈ Zn+1 with ki = 0 such thatG1 = G2 − k .

Now, BG(E±
α,i ) =

∑
G′ BG′ (Z±ei ) where the sum is taken over allG′ ∈ Gα with

G′ ∼ G. Formula (2) reduces to

D±ei A(α) = ±
∫

Fα

Di H (u
¯
(0))du◦ +

∑
G∈Gα/∼

BG(E±
α,i ) .(3)

The sum definingBG(E±
α,i ) exists since

∑
x∈E±

α,i
u+

G(x) − u−
G (x) ≤ 1 by the non-

selfintersection property ofu±
G . Here we use the local Lipschitz-continuity of

H . The sum in (3) is absolutely convergent since
∑

G∈Gα/∼
∑

x∈E◦
α,i

u+
G(x) −

u−
G (x) ≤ 1 and since by the following Lemma 3 one estimates|BG(E±

α,i )| ≤
const· ∑

x∈E◦
α,i

(u+
G(x) − u−

G (x)) .

B) Caseαi ∈ Q , i.e. 1≤ i ≤ r

In order to state the formula for the derivative in the directionei at α ∈ Rn with
αi ∈ Q we define the subsetMper

α± ⊆ M
per
α,i ± by

M
per
α±

.
= Mper

α ∪ {TkuG,i ± : G ∈ Gα, k ∈ Zei + Zen+1} ,

where for every gapG ∈ Gα we take onlyone heteroclinic solutionuG,i ±
satisfying (i ) − (iii ). Put Fα±

.
= {u(0) : u ∈ M

per
α±} ∩ [uα(0) − 1, uα(0)]

and let Gα± denote the set of gaps ofFα±, i.e. the set of open intervals of
[uα(0) − 1, uα(0)] \ Fα± . Now, the directional derivativesD±ei A(α) in case
αi ∈ Q have the form

D±ei A(α) = ±
∫

Fα

Di H (u
¯
(0))du◦ +

∑
J∈Gα±/∼

BJ (E±
α,i )(4)

To prepare the proof of the theorems we rearrange the sum in a more con-
venient way. Note that every gapG ∈ Gα/ ∼ is - up to boundary points - the



The multidimensional Frenkel-Kontorova model 637

disjoint union of gapsJ ∈ Gα±/ ∼. The sum over all theseJ is a sum of
telescope and reduces to

B±
G (Eα,i )

.
=

∑
J⊂G

BJ (E±
α,i ) =

∑
x∈Eα,i

H (u
¯G,±(x)) − H (u

¯
±
G (x)) ,(5)

which exists sinceuG,i + anduG,i − converge (due to the non-selfintersection prop-
erty quickly enough) tou+

G andu−
G in the directionsZ+ei andZ−ei , respectively.

Formula (4) becomes

D±ei A(α) = ±
∫

Fα

Di H (u
¯
(0))du◦ +

∑
G∈Gα/∼

B±
G (Eα,i ) .(6)

In casen = 1 this variant of (4) corresponds to the formula forK ±
I in [11, Sect. 3]

(where the + in front of the integral has to be replaced by±).

The following lemma shows how by minimality arguments the sumBG(E±
α,i )

over the domainE±
α,i = E◦

α,i + Z±ei may be reduced to a sum overE◦
α,i only.

Lemma 3 Let α ∈ Rn be as above,1 ≤ i ≤ n. Let the gap G∈ Gα (G ∈
Gα+ in case1 ≤ i ≤ r , respectively) be of the form G= (u−(0), u+(0)) with
u± ∈ Mper

α (Mper
α+ , respectively). Forτ ∈ Z put Eτ

α,i
.
= {x ∈ Eα,i : xi = τ} ,

Eτ+
α,i

.
= {x ∈ Eα,i : xi ≥ τ} and Eτ−

α,i
.
= {x ∈ Eα,i : xi < τ}. Setting4τ

G
.
=

max{(u+ − u−)(x) : x ∈ Eτ
α,i or x ∈ Eτ

α,i + ei , 1 ≤ i ≤ n} we have

BG(Eτ±
α,i ) = ±

∑
x∈Eτ

α,i

(u+(x) − u−(x))Di H (u
¯

+(x − ei )) + O((4τ
G)2) .(7)

Proof. Without loss of generality we setτ = 0 and we consider only the version
+. We define functionsv± : Zn → R by

v+(x)
.
=

{
u+(x) if xi ≤ 0
u−(x) if xi > 0

, v−(x)
.
=

{
u−(x) if xi ≤ 0
u+(x) if xi > 0

.

By minimality of u± one has
∑

H (v
¯
±(x)) − H (u

¯
±(x)) ≥ 0 where the sum is

taken over allx ∈ E+
α,i . Sincev±(x) = u∓(x) for xi > 0, the inequalities imply

∑
x∈E◦

α,i

H (u
¯
−(x)) − H (v

¯
+(x)) ≤ BG(E+

α,i ) ≤
∑

x∈E◦
α,i

H (v
¯
−(x)) − H (u

¯
+(x)) .

We claim that lower and upper bound may be estimated by an expression differing
only of orderO((4τ

G)2). Taking e.g. the lower bound we show
∑

x∈E◦
α,i

H (u
¯
−(x)) − H (v

¯
+(x)) =

−
∑

x∈E◦
α,i

∑
0≤j ≤n

(4(x + ej )Dj H (u
¯

+(x)) + O(4(x + ej )
2)) ,(8)
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wheree◦
.
= 0 and4(x)

.
= u+(x)−v−(x) = v+(x)−u−(x) for x ∈ Zn. Note that by

the Lipschitz property ofH for each componentui the partial derivatives exist
almost everywhere on intervals. Forj = i the summation term in (8) vanishes
since4(x + ei ) = 0 by definition. Due to the periodicities ofu± andH one has
for j /= i

∑
x∈E◦

α,i

4(x + ej )Dj H (u
¯

+(x)) =
∑

x∈E◦
α,i

4(x)Dj H (u
¯

+(x − ej )) .

Next we use that the discrete Euler equation arising from the condition
∂

∂u◦ L(u+, x) = 0 has the form
∑

0≤j ≤n Dj H (u
¯

+(x − ej )) = 0 . Both these facts
together reduce the first summation term in (8) to

−
∑

x∈E◦
α,i

∑
0≤j ≤n

4(x + ej )Dj H (u
¯

+(x)) =
∑

x∈E◦
α,i

4(x)Di H (u
¯

+(x − ei )) .

The second summation term in (8) is of order−∑
x∈E◦

α,i

∑
0≤j ≤n O(4(x+ej )2) =

O((4τ
G)2) since

∑
x∈Eτ

α,i +ej
4(x) ≤ 1 for any τ ∈ Z and any 0≤ j ≤ n. This

simplifies (8) to
∑

x∈E◦
α,i

H (u
¯
−(x)) − H (v

¯
+(x)) =

∑
x∈E◦

α,i

4(x)Di H (u
¯

+(x − ei )) + O(42
G) .(9)

Since the corresponding equality holds for the upper bound ofBG(E+
α,i ) the

version + of the lemma is proved.
�

5.2 Proof of Theorem 1–3 via formula for D±ei A(α)

Proof of Theorem 1 SupposeMα is totally ordered and let us assume firstly
that the setMper

α does not have gaps (Lemma 1). By (3) and (4) we trivially
have (Dei + D−ei )A(α) = 0 for 1 ≤ i ≤ n sinceGα = ∅. By convexity ofA we
conclude thatA is differentiable atα [17, Thm. 25.2].

Let us assume secondly thatMper
α has gaps and thatα is rationally inde-

pendent. Adding the two versions± of (3) we get

(Dei + D−ei )A(α) =
∑

G∈Gα/∼
BG(E+

α,i ) + BG(E−
α,i )

=
∑

G∈Gα/∼
BG(Eα,i ) = 0 .(10)

The second equality is due to the fact thatEα,i is the disjoint union ofE−
α,i

andE+
α,i . To prove the third equality we show thatBG(Eα,i ) = 0 for everyG ∈

Gα. Indeed,BG(Eα,i ) = limτ∈Z− BG(Eτ+
α,i ) and by Lemma 3 the termBG(Eα,i )

converges to 0 forτ → −∞ sinceu−
G and u+

G converge asymptotically in the
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directionZ−ei . Thus,A is differentiable atα in the directionsei , 1 ≤ i ≤ n. By
convexity we again conclude thatA is differentiable atα.

Suppose now thatMper
α has gaps and thatα is rationally dependent, thus

r ≥ 1. Adding the two versions± of (6) we get

(Dei + D−ei )A(α) =
∑

G∈Gα/∼
B+

G(Eα,i ) + B+
G(Eα,i ) > 0 .(11)

The reason of the strict inequality is the same as in the 1-dimensional case:
Since the solutionsuG,i − and uG,i + intersect transversally, their maximum and
minimum cannot be minimal due to the ‘maximum principle’: Since the func-
tion u−

G and u+
G are minimal, and since max(uG,i −, uG,i +) and min(uG,i −, uG,i +)

converge in the directionsZ±ei asymptotically tou+
G andu−

G , respectively, one
getsB+

G(Eα,i ) + B+
G(Eα,i ) > 0. Here, condition (H 3) comes in. The remaining

directions Z±ej , j /= i , do not disturb sinceuG,i − and uG,i + either are peri-
odic or converge asymptotically in these directions. Since (11) establishes the
non-differentiability atα, Theorem 1 is proved.

�

Proof of Theorem 2 SupposeMα is not totally ordered. According to the
Lemma 1 we may assume thatα is rationally dependent and thatMper

α has
gaps. By convexity ofA, the set of directionsβ ∈ Rn \ {0} in which A is
differentiable atα is - after adding 0 - a linear subspace ofRn. We therefore
restrict to the case thatβ either lies inVα = spanR{k ∈ Zn : αk ∈ Z} or in
V ⊥

α . Assuming the special coordinates forα we putβ = ei and haveβ ∈ Vα if
1 ≤ i ≤ r , andβ ∈ V ⊥

α if r + 1 ≤ i ≤ n. If β ∈ Vα inequality (11) states that
A is not differentiable atα in the directionβ while in the caseβ ∈ V ⊥

α equality
(10) states thatA is differentiable atα in the directionβ. This is exactly the
statement of Theorem 2.

�

The Proof of Theorem 3 is similar to the one in [19, p. 363] withωt
G replaced

by 4τ
G.

5.3 Deduction of the formula for D±ei A(α)

Forα ∈ Qn the formula for the directional derivative generalizes the one obtained
in the 1-dimensional case by Mather. We use this formula to deduce by a limit
process the formula for irrational rotation vectorsα ∈ Rn \Qn. In casen = 1 our
limit process is simpler than Mather’s method since we do not need to estimate
the convergence of the difference quotient quantitatively. Mather’s argument
is replaced by the fact that the corresponding minimal laminations at rational
rotation vectors converge to the minimal lamination at the irrational rotation
vector.
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1) Evaluation of the difference quotient for rationalα

By convenience we restrict ourselves to the caseα = 0. The solutionsu ∈ Mper
α

then are constant onZn and formula (6) reduces to

D±ei A(0) = ±
∫

F0

Di H (u
¯
◦) du◦ +

∑
G∈G0

B±
G (Zei )(12)

with u
¯
◦ = (u◦, . . . , u◦) ∈ Rn+1 and B±

G (Zei ) =
∑∞

ν=−∞ H (u
¯G,±(νei )) . Here we

normalizedA(0) = 0. This formula is exactly the one obtained by Mather in [13,
Sect. 3] for the 1-dimensional case. The idea of proof is to write the difference
quotient by means of appropriately defined functionswσ which converge in the
limit σ → ∞ either to some heteroclinic or periodicu ∈ Mα. Sincewσ does
not need to be minimal, the limit process actually leads only to a relation ‘≤’
in (12). To assert the reverse inequality it is possible to estimate the ‘angle’
(Dei + D−ei )A(0) of the tangent cone from below by the sum of the right-hand
side of (12). Thus, one estimates

(Dei + D−ei )A(0) ≥
∑

G∈G0

B+
G(Zei ) +

∑
G∈G0

B−
G (Zei )

and concludes that actually the relation ‘=’ in (12) holds. This idea is performed
for the variational problem on the torus in [19, Lemma 4 and 5] and is analogous
in the present discrete case. For a slight different proof in casen = 1 see also
[13].

2) Approximation of an irrationalα by rational one’s

In order to guarantee the formulas (3) and (4) to be true forα ∈ Rn \ Qn we
look for a sequence ˜α → α with α̃ ∈ Qn such that left- and right-hand side
of (4) with α̃ in place ofα converge separately to the corresponding sides of
(3) and (4), respectively. A first condition we impose on the sequence ˜α → α
is that limα̃→α

α̃−α
‖α̃−α‖ = ±ei . By convexity of A this condition implies that

the directional derivativesD±ei A(α̃) converge toD±ei A(α), cf. [17, Thm. 24.6].
By B(α,±ei ) we abbreviate the right-hand side of (3) and (4), respectively,
depending on whetherαi is irrational or not. We have to show the convergence
B(α̃,±ei ) −→ B(α,±ei ) for an appropriate sequence ˜α → α. The idea is that
everyu ∈ Mα occuring in the formula forB(α,±ei ) is C1− approximated on
compact sets by functions ˜u ∈ M

per
α̃ . To guarantee such aC1− approximation

we have to impose additional conditions on the sequence ˜α → α. If α′ ∈ Rn put
Γα′

.
= {k = (k, kn+1) ∈ Zn+1 : α′k = kn+1} andΓα′,i

.
= {k ∈ Γα′ : kei = 0}.

2A) Caseα ∈ Rn \ Qn andαi ∈ R \ Q

The conditionΓα ⊆ Γ α̃ ensures that ˜u ∈ M
per
α̃ at least has the same periodicity

as u ∈ Mper
α . Requiring this condition for every ˜α implies that each limit of
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ũ ∈ M
per
α̃ with α̃ → α lies in Mα. Conversely, everyu ∈ Mper

α may be
approximated by such ˜u ∈ M

per
α̃ for α̃ → α.

The case thatFα̃ modZ converges toFα modZ in measure
In this case, the proof of lim̃α→α B(α̃,±ei ) = B(α,±ei ) splits into two parts
corresponding to the summation and integration term in (4) and (3), respectively.

First, if G̃ → G for G ∈ Gα and G̃ ∈ Gα̃+, one has lim̃α→α BG̃(E+
α̃,i ) =

BG(E+
α,i ). If otherwise e.g. lim sup̃α→α BG̃(E+

α̃,i ) > BG(E+
α,i ) then eitheru+

G or,
for α̃ close toα, u−

G̃
could not be minimal. Here we putG = (u−

G (0), u+
G(0)) and

G̃ = (u−
G̃

(0), u+
G̃

(0)) with some appropriate minimal solutionsu±
G andu±

G̃
.

Second, the approximation of the integration term is based on the convergence
of Di H (ũ

¯
(0)) to Di H (u

¯
(0)) for ũ → u with ũ ∈ M

per
α̃ and u ∈ Mper

α . If we
do no more claim thatH is C2 this convergence is guaranteed by the convexity
condition (H 4): By the same reason that the directional derivatives of a conver-
gent sequence of convex functions are upper semi-continuous [17, Thm. 24.5],
the derivativesD±ei H are lower semi-continuous and limα̃→α D±ei H (ũ

¯
(0)) ≥

D±ei H (u
¯
(0)). But according to Mather’s minimality argument the partial deriva-

tives Di H at ũ
¯
(0) and u

¯
(0) exist and thereforeDei H = −D−ei H (= Di H ) at

these points. This is only possible if in fact limα̃→α D±ei H (ũ
¯
(0)) = D±ei H (u

¯
(0)).

The case with measure(Fα̃) = 0 while measure(Fα) = 1
This case occurs ifMper

α̃ has gaps for every ˜α - as it generically happens for
rational rotation vectors - whileMper

α with α ∈ Rn \ Qn ‘foliates’ Zn × R. The
right-hand side of (4) reduces to a pure sum and according to Lemma 3 one has

B(α̃, ei ) =
∑

G̃∈Gα̃+/∼
BG̃(E+

α̃,i ) =
∑

G̃∈Gα̃+

(u+
G̃(0) − u−

G̃
(0))Di H (u

¯
+
G̃(−ei )) + O((4G̃)2)

with 4G̃
.
= max0≤j ≤n(u+

G̃
(ej )−u−

G̃
(ej )). Since the intervals̃G in Gα̃+ are collaps-

ing for α̃ → α we get on account of the continuity properties ofDi H deduced
above and of Lebesgue’s dominated convergence theorem the limit

lim
α̃→α

B(α̃, ei ) =
∫

Fα

Di H (u
¯
(−ei )) du◦ =

∫
Fα

Di H (u
¯
(0))du◦ = B(α, ei ) .

The general case forαi ∈ R \ Q
Here, the arguments of the two preceding cases flow in. All one know in general
is that limα̃→α measure(Fα̃) ≤ measure(Fα) for our fixed sequence ˜α → α
satisfyingΓα ⊆ Γ α̃ (and e.g. lim̃α→α

α̃−α
‖α̃−α‖ = ei ). For every ˜α let us select

the subsetG ◦
α̃+ ⊆ Gα̃+ consisting of those gaps̃G ∈ Gα̃+ only which best

approximate the gapsG ∈ Gα. Restricting to this subset we still have

lim
α̃→α

∑
G̃∈G ◦

α̃+/∼
BG̃(E+

α̃,i ) =
∑

G∈Gα/∼
BG(E+

α,i ) .(13)
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Since the remaining gaps̃G ∈ G 1
α̃+

.
= Gα̃+ \ G ◦

α̃+ collapse for ˜α → α, the terms
BG̃(E+

α̃,i ) with G̃ ∈ G 1
α̃+ = Gα̃+ \ G ◦

α̃+ may contribute in the limit ˜α → α to the
integral term in (3). Taking into account these collapsing gaps one gets with the
same technique of Lemma 3

lim
α̃→α


∫

Fα̃

Di H (u
¯
(0))du◦ +

∑
G̃∈G 1

α̃+/∼
BG̃(E+

α̃,i )


 =

∫
Fα

Di H (u
¯
(0))du◦ .(14)

Both formulas (13) and (14) together show that for our fixed sequence we have
limα̃→α B(α̃,±ei ) = B(α,±ei ) and formula (3) is proved.

2B) Caseα ∈ Rn \ Qn andαi ∈ Q

In caseαi ∈ Q we have to relax the conditionΓα ⊆ Γ α̃ since the solutions
uG,i ± ∈ M

per
α± which are not periodic in the directionsZ±ei have to be ap-

proximated as well. We require only that the approximating solutionsu ∈ M
per
α̃

have to be periodic with respect to the sublattice ofΓ α̃ with kei = 0. We thus
impose the conditionΓα,i ⊆ Γ α̃ together with ˜αi > αi in case of approxi-
mating M

per
α+ and α̃i < αi in case of approximatingMmp

α−. As in 2A) one
shows that for the two special assumptions on measure(Fα̃) treated there one
gets limα̃→α B(α̃,±ei ) = B(α,±ei ).

The general case forαi ∈ Q
If αi ∈ Q the inequality lim̃α→α measure(Fα̃) ≤ measure(Fα) needs not
to be true anymore. However, it is true if we add toFα all points aris-
ing from heteroclinic solutions. One shows that limα̃→α M

per
α̃ = M

per
α,i + for

any sequence ˜α → α satisfying Γα,i ⊆ Γ α̃ and α̃i > αi . (We still assume
limα̃→α

α̃−α
‖α̃−α‖ = ei to guarantee in addition that lim̃α→α Dei A(α̃) = Dei A(α) .)

Defining F all
α+

.
= {u(0) : u ∈ M

per
α,i + , uα − 1 ≤ u ≤ uα} one therefore gets

limα̃→α measure(F all
α̃+ ) ≤ measure(F all

α+ ).
If G all

α+ denotes the gaps ofF all
α+ ⊂ R we claim that (4, version +) is

equivalent to

Dei A(α) =
∫

F all
α+

Di H (u
¯
(0))du◦ +

∑
J∈G all

α+ /∼
BJ (E+

α,i ) .(15)

SinceG all
α+ ⊆ Gα+ the sum in (4) in general extends over more gapsJ than the

sum in (15) and one has to show how an expressionBJ (E+
α,i ) in (4) transforms

to a part of the integral in the new formula (15). Let us consider two heteroclinic
solutionsu− < u+ in M

per
α,i + with limm→∞(u+ − u−)(mei ) = 0. PutJ± .

= u±(0)
and let us assume that for anyu◦ ∈ J

.
= (J−, J +) there is a further heteroclinic

u ∈ M
per
α,i + with u(0) = u◦, u− < u < u+. By successive application of Lemma

3 it follows that
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BJ (E+
α,i ) =

∫ J +

J−
Di H (u

¯
(0))du◦ .

Identifying B(α̃, ei ) andB(α, ei ) with the right-hand side of (15) (instead of
(4+)) for α̃ andα, respectively, the convergence limα̃→α B(α̃,±ei ) = B(α,±ei )
will be proven in exactly the same way as for the caseαi ∈ R\Q : Decomposing

G all
α̃+ = G ◦

α̃+

·∪ G 1
α̃+ one gets formula (13) withG all

α+ in place ofGα and likewise
formula (14) with F all

α̃+ and F all
α+ in place of Fα̃ and Fα, respectively. This

shows that lim̃α→α B(α̃,±ei ) = B(α,±ei ) in caseαi ∈ Q and formula (4) is
proved.
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versit́e Paris 6, 1986


	1

