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Abstract

This note provides some new inequalities and approximations for beta distributions, including
tail inequalities, exponential inequalities of Hoeffding and Bernstein type, Gaussian inequalities and
approximations.
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1 Introduction

Beta distributions play an important role in statistics and probability theory (Gupta and Nadarajah,
2004), and they occur in various scientific fields (Skorski, 2021). A frequent obstacle in problems
involving beta distributions is the lack of analytic expressions for their distribution function, the
normalized incomplete beta function. Therefore one often resorts to inequalities and approxima-
tions, as, for example, in the proofs of Dimitriadis et al. (2022, Theorem 4.1) and Dümbgen and
Wellner (2022, Lemma S.8).

This paper provides some new inequalities for the beta distribution Beta(a, b) with parameters
a, b > 0, its distribution functionBa,b, survival function B̄a,b = 1−Ba,b and density function βa,b
on [0, 1]. The latter is given by

βa,b(x) := B(a, b)−1xa−1(1− x)b−1, x ∈ (0, 1),

wheere B(a, b) :=
∫ 1
0 x

a−1(1 − x)b−1 dx = Γ(a)Γ(b)/Γ(a + b), and Γ(·) denotes the gamma
function. In Section 2, we refine the lower and upper bounds for Ba,b and B̄a,b by Segura (2016)
which are particularly accurate in the tails of Beta(a, b). As a by-product we obtain refinements
of Segura’s (2014) bounds for the gamma distribution and survival functions. In Section 3 we
present new exponential inequalities which are stronger than previously known inequalities of

∗This is an extended version of the paper “Some New Inequalities for Beta Distributions”, published in Statistics &
Probability Letters 195 (2023)
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Dümbgen (1998), Marchal and Arbel (2017) and Skorski (2021). Section 4 presents inequalities
for Ba,b and B̄a,b in terms of Gaussian distribution functions. Finally, Section 5 discusses the
approximation of the symmetric distribution βa,a by Gaussian densities with mean 1/2 in the
spirit of Dümbgen et al. (2021). Most proofs are deferred to Section 6.

2 Sharp tail inequalities

In what follows, let p := a/(a+b), the mean of Beta(a, b). In a general setting including noncen-
tral beta distributions, Segura (2016, inequalities (27), (29), (30)) uses extensions of l’Hopital’s
rule to derive inequalities forBa,b and B̄a,b. For symmetry reasons, we only considerBa,b, because
B̄a,b(x) = Bb,a(1− x). We rephrase Segura’s inequalities in terms of the ratio

Qa,b(x) :=
Ba,b(x)

xa/[aB(a, b)]
.

This is motivated by the fact that βa,b(x) = B(a, b)−1xa−1(1 + O(x)) and thus Ba,b(x) =

xa/[aB(a, b)](1 + O(x)) as x → 0. The goal is to find upper and lower bounds for Qa,b(x)

approaching 1 as x→ 0. Now, for x ∈ (0, 1),

(1) (1− x)b(1 + ca,bx) ≤ Qa,b(x) ≤ (1− x)b

(1− x/p)+
,

where ca,b := (a + b)/(a + 1). Numerical examples reveal that these inequalities are rather
accurate unless x is close to or larger than p. Our first contribution is an improvement of Segura’s
bounds. In particular, the upper bound remains valid if x/p is replaced with the strictly smaller
term max{ca,b, 1}x. The results are stated in terms of the following auxiliary functions:

q
(1)
a,b(x) :=

(
1− ax

a+ 1

)b−1
,

q
(2)
a,b(x) :=

a(1− x)b−1 + 1

a+ 1
− a(b− 1)(b− 2)x2(1− x)(b−3)

+

2(a+ 1)(a+ 2)
,

q
(3)
a,b(x) :=

(1− x)b

(1− ca,bx)+
.

Theorem 1. For x ∈ (0, 1),

(1− x)b(1 + ca,bx) < QLa,b(x) ≤ Qa,b(x) ≤ QUa,b(x) ≤ (1− x)b

(1−max{ca,b, 1}x)+
,

where

QLa,b(x) :=

{
q
(1)
a,b(x) if b 6∈ (1, 2),

q
(2)
a,b(x) if b ∈ [1, 2],

QUa,b(x) :=


q
(2)
a,b(x) if b ≤ 1,

q
(1)
a,b(x) if b ∈ [1, 2],

min
{
q
(2)
a,b(x), q

(3)
a,b(x)

}
if b > 2.
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Figure 1: Inequalities for Ba,b when (a, b) = (4, 8) (upper panel) and (a, b) = (2, 0.5) (lower
panel). The green line shows Ba,b, the blue lines are Segura’s (2016) bounds resulting from (1),
and the black lines are the bounds via Theorem 1. The vertical line indicates the mean p.
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Figure 1 illustrates the bounds for Ba,b resulting from (1) and Theorem 1 in case of (a, b) =

(4, 8), (2, 0.5).

Remark 2. The new inequalites for Qa,b are equalities in the case of b ∈ {1, 2}, because
q
(1)
a,1(x) = q

(2)
a,1(x) = Qa,1(x) = 1 and q(1)a,2(x) = q

(2)
a,2(x) = Qa,2(x) = 1−ax/(a+ 1). Moreover,

the upper bound is exact for b = 3, because q(2)a,3(x) = Qa,3(x) = 1−2ax/(a+ 1) +ax2/(a+ 2).

Remark 3. Note that the ratioQa,b as well as the boundsQLa,b, Q
U
a,b are equal to 1−da,bx+O(x2)

as x→ 0, where da,b = (b− 1)a/(a+ 1). The lower bound in (1) has the same property, but the
upper bound does not.

Gamma distributions. There is a rich literature about inequalities for gamma distribution and
survival functions, see, for instance, Qi and Mei (1999), Neuman (2013), Segura (2014) and
Pinelis (2020). We just illustrate that our bounds in Theorem 1 yield a connection to that liter-
ature. It is well-known that for a random variable Xa,b ∼ Beta(a, b), the rescaled variable bXa,b

converges in distribution to a gamma random variable with shape parameter a and scale param-
eter 1 as b → ∞. Denoting the corresponding distribution and survival function with Ga and
Ḡa = 1 − Ga, respectively, we have Ga(x) = limb→∞Ba,b(x/b), and one can deduce from
Theorem 1 the following bounds.

Corollary 4. For a, x > 0,

xae−ax/(a+1)

aΓ(a)
≤ Ga(x) ≤ xa

aΓ(a)
·


ae−x + 1

a+ 1
− ax2e−x

2(a+ 1)(a+ 2)
,

e−x

(1− x/(a+ 1))+
,

(x+ 1[a6∈(1,2)])
a−1e−x

Γ(a)
≤ Ḡa(x) ≤



(x+ 1[a>1])
a−1e−x

Γ(a)
if a ≤ 2,

xae−x

Γ(a)(x− a+ 1)+
if a > 2,

e−x(x2/2 + x+ 1) if a = 3.

The lower bound for Ga(x) is already known from Neuman (2013, Theorem 4.1), and the
upper bounds for Ga(x) are a combination of Segura (2014, Theorem 10, part 3) and a slight
improvement of Neuman (2013, Theorem 4.1). The lower bounds for Ḡa(x) are equalities if
a ∈ {1, 2}, and the upper bounds if a ∈ {1, 2, 3}. Our lower bound for Ḡa(x) extends the lower
bound of Segura (2014, Theorem 10, part 4) to a < 1, and it is stronger than the latter for a > 2.
Our upper bound for Ḡa(x) extends the upper bound of Segura (2014, Theorem 10, part 6) to
a < 1, and it is stronger than the latter if 1 < a ≤ 2.

4



3 Exponential inequalities

Although the upper bounds in Theorem 1 are numerically rather accurate in the tails, they can
diverge to ∞ at x = p as a, b → ∞. Moreover, it is sometimes desirable to have bounds for
logBa,b(x) and log B̄a,b(x) in terms of simple, maybe rational, functions of x. Numerous expo-
nential tail inequalities for Ba,b and B̄a,b have been derived already. We start with one particular
result of Dümbgen (1998, Proposition 2.1). For x ∈ [0, 1] let

K(p, x) := p log
(p
x

)
+ (1− p) log

(1− p
1− x

)
∈ [0,∞].

This function K(p, ·) is strictly convex with minimum K(p, p) = 0. For arbitrary x ∈ [0, 1],

(2)
xa(1− x)b

pa(1− p)b
= exp

(
−(a+ b)K(p, x)

)
≥

{
Ba,b(x) if x ≤ p,
B̄a,b(x) if x ≥ p.

In case of a ≥ 1 or b ≥ 1, these inequalities can be improved as follows.

Theorem 5. Suppose that a ≥ 1. Then for pr := (a− 1)/(a+ b− 1) < p and x ∈ [pr, 1],

B̄a,b(x)


≤ xa−1(1− x)b

pa−1r (1− pr)b
= exp

(
−(a+ b− 1)K(pr, x)

)
,

≥ xa−1(1− x)b

bB(a, b)
.

Suppose that b ≥ 1. Then for p` := a/(a+ b− 1) > p and x ∈ [0, p`],

Ba,b(x)


≤ xa(1− x)b−1

pa` (1− p`)b−1
= exp

(
−(a+ b− 1)K(p`, x)

)
,

≥ xa(1− x)b−1

aB(a, b)
.

Remark 6. At first glance, the upper bounds in Theorem 5 seem to be weaker than the ones in
(2), at least in the tail regions, because the factor a + b − 1 is strictly smaller than a + b. But
elementary algebra reveals that in case of a ≥ 1,

(a+ b− 1)K(pr, x)− (a+ b)K(p, x)

= log
(x
p

)
+ (a+ b− 1) log

(
1 +

1

a+ b− 1

)
− (a− 1) log

(
1 +

1

a− 1

)
> 0 for x ∈ [p, 1),

because h(y) := y log(1 + 1/y) (with h(0) := 0) is strictly increasing in y ≥ 0. Analogously, if
b ≥ 1, then

(a+ b− 1)K(p`, x)− (a+ b)K(p, x)

= log
(1− x

1− p

)
+ (a+ b− 1) log

(
1 +

1

a+ b− 1

)
− (b− 1) log

(
1 +

1

b− 1

)
> 0 for x ∈ (0, p].

Thus the bounds in Theorem 5 are strictly smaller than the bounds in (2). This is illustrated in
Figure 2 for (a, b) = (4, 8).

5



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

B
a

, 
b
(x

)

Figure 2: Exponential tail inequalites for Beta(a, b) when (a, b) = (4, 8). The green line shows
B̄a,b, the black line is its upper bound from Theorem 5, and the blue line is its upper bound from
(2). One also sees the distribution function Ba,b and its bounds as dotted lines. The additional red
line is the upper bound (3) from Remark 7.

Remark 7. The upper bound for B̄a,b in Theorem 5 can be improved substantially if 1 ≤ a ≤ b.
Indeed, the proof of Theorem 5 shows that for arbitrary 0 < xo ≤ x ≤ 1,

B̄a,b(x) ≤
B̄a,b(xo)

xa−1o (1− xo)b
xa−1(1− x)b.

Specifically, it is well-known that Median(Beta(a, b)) ≤ p, see Groeneveld and Meeden (1977),
so B̄a,b(p) ≤ 1/2 and for x ∈ [p, 1],

(3) B̄a,b(x) ≤ xa−1(1− x)b

2pa−1(1− p)b
.

The latter bound is strictly smaller than the upper bound of Theorem 5 (restricted to x ∈ [p, 1]),
provided that 2pa−1(1 − p)b > pa−1r (1 − pr)b, and this is equivalent to h(a − 1) > h(a + b −
1) − log(2) with the increasing function h(y) = y log(1 + 1/y), y > 0. Since h(a + b − 1) <

limy→∞ h(y) = 1, a sufficient condition is that h(a − 1) ≥ 1 − log(2), which is fulfilled for
a ≥ 1.152.

The inequalities in Theorem 5 imply Bernstein and Hoeffding type exponential inequalities.
It follows from Dümbgen and Wellner (2022, Lemma S.12) and the well-known inequality z(1−
z) ≤ 1/4 for z ∈ R, that

(4) K(q, x) ≥ (x− q)2

2(2x/3 + q/3)(1− 2x/3− q/3)
≥ 2(x− q)2

6



for q, x ∈ [0, 1], where K(0, x) := − log(1 − x) and K(1, x) := − log(x). This leads to the
following inequalities:

Corollary 8. If a ≥ 1, then for x ∈ [pr, 1],

B̄a,b(x) ≤ exp
(
− (a+ b− 1)(x− pr)2

2(2x/3 + pr/3)(1− 2x/3− pr/3)

)
≤ exp

(
−2(a+ b− 1)(x− pr)2

)
.

If b ≥ 1, then for x ∈ [0, p`],

Ba,b(x) ≤ exp
(
−(a+ b− 1)

(x− p`)2

2(2x/3 + p`/3)(1− 2x/3− p`/3)

)
≤ exp

(
−2(a+ b− 1)(x− p`)2

)
.

Further tail and concentration inequalities for the Beta distribution have been derived by Mar-
chal and Arbel (2017) and Skorski (2021). Marchal and Arbel (2017) prove that Beta(a, b) is
subgaussian with a variance parameter that is the solution of an equation involving hypergeomet-
ric functions. An analytic upper bound for the variance parameter is (4(a + b + 1))−1, which
implies the tail inequalities

exp
(
−2(a+ b+ 1)(x− p)2

)
≥

{
Ba,b(x) if x ≤ p,
B̄a,b(x) if x ≥ p.

These bounds are weaker than the one-sided bounds in Corollary 8. For the right tails, the differ-
ence

(a+ b− 1)(x− pr)2 − (a+ b+ 1)(x− p)2

is strictly concave in x with value b2/[(a+ b)2(a+ b− 1)] > 0 for x ∈ {p, 1}. Analogously, for
the left tails, the difference

(a+ b− 1)(x− p`)2 − (a+ b+ 1)(x− p)2

is strictly concave in x with value a2/[(a + b)2(a + b − 1)] > 0 for x ∈ {0, p}. Skorski (2021)
derives a Bernstein type inequality. With the parameters

v2 :=
p(1− p)
a+ b+ 1

, c := max

(
|1− 2p|
a+ b+ 2

,

√
p(1− p)
a+ b+ 2

)
,

he shows that for X ∼ Beta(a, b) and ε ≥ 0,

P (±(X − p) ≥ ε) ≤ exp
(
− ε2

2(v2 + cε)

)
.

The next result shows that our bounds imply a stronger version of these inequalities if a, b ≥ 1.

Corollary 9. Let a, b ≥ 1. Then for x ∈ [p, 1],

B̄a,b(x) ≤ exp
(
− (a+ b+ 1)(x− p)2

2p(1− p) + (4/3)(1− 2p)(x− p)

)
,

7



and for x ∈ [0, p],

Ba,b(x) ≤ exp
(
− (a+ b+ 1)(x− p)2

2p(1− p) + (4/3)(2p− 1)(p− x)

)
.

With the notation of Skorski (2021), our upper bounds read

P (±(X − p) ≥ ε) ≤ exp
(
− ε2

2(v2 ± c̃ε)

)
with v2 as before and c̃ = (2/3)(1− 2p)/(a+ b+ 1). In particular,

|c̃| =
2(a+ b+ 2)

3(a+ b+ 1)

|1− 2p|
a+ b+ 2

≤ 2(a+ b+ 2)

3(a+ b+ 1)
c.

Since a, b ≥ 1, the factor 2(a + b + 2)/[3(a + b + 1)] is at most 8/9 and converges to 2/3 as
a+ b→∞.

4 Gaussian tail inequalities

Now suppose that a, b > 1. With po := (a − 1)/(a + b − 2) ∈ (0, 1), the density βa,b may be
written as

log βa,b(x) = log βa,b(po)− (a+ b− 2)K(po, x),

whereas the probability density φpo,σ of N (po, σ
2) with σ := (4(a+ b− 2))−1/2 satisfies

log φpo,σ(x) = log φpo,σ(po)− 2(a+ b− 2)(x− po)2.

In particular, ρ := log(βa,b/φpo,σ) satisfies

ρ′(x) = (a+ b− 2)(x− po)
(
4− 1/[x(1− x)]

)
,

and since x(1 − x) ≤ 1/4, ρ(x) is monotone decreasing in x ≥ po and monotone increasing in
x ≤ po, where βa,b := 0 on R \ (0, 1). Consequently, for x ≥ po,

B̄a,b(x) ≤
B̄a,b(x)

B̄a,b(po)

=

∫∞
x eρ(t)φpo,σ(t) dt∫ x

po
eρ(t)φpo,σ(t) dt+

∫∞
x eρ(t)φpo,σ(t) dt

≤
eρ(x)

∫∞
x φpo,σ(t) dt

eρ(x)
∫ x
po
φpo,σ(t) dt+ eρ(x)

∫∞
x φpo,σ(t) dt

=
N (po, σ

2)([x,∞))

N (po, σ2)([po,∞))

= 2Φ
(
−2
√
a+ b− 2(x− po)

)
.

Analogous arguments apply to Ba,b(x) for x ≤ po, and we obtain the following bounds.

Lemma 10. For a, b > 1 and po = (a− 1)/(a+ b− 2),

B̄a,b(x) ≤ 2Φ
(
−2
√
a+ b− 2(x− po)

)
for x ≥ po,

Ba,b(x) ≤ 2Φ
(
2
√
a+ b− 2(x− po)

)
for x ≤ po.

8



5 Gaussian approximation of Beta(a, a)

Inspired by Dümbgen et al. (2021), we want to compare the densities βa,a with the density φ1/2,σ
of N (1/2, σ2) for various choices of σ > 0, where a > 1. Precisely, we want to determine

R(σ) := max
x∈(0,1)

βa,a
φ1/2,σ

(x),

because for arbitrary Borel sets S ⊂ R,

Beta(a, a)(S) ≤ R(σ)N (1/2, σ2)(S)

and ∣∣Beta(a, a)(S)−N (1/2, σ2)(S)
∣∣ ≤ 1−R(σ)−1.

Moreover, we want to find σ > 0 such that this quantity is minimal.

To determine R(σ), note first that for fixed a and σ,

log
βa,a
φ1/2,σ

(x) = log
√

2πσ2 − logB(a, a) +
(x− 1/2)2

2σ2
+ (a− 1) log(x(1− x))

= log
√

2πσ2 − logB(a, a) +
(x− 1/2)2

2σ2
+ (a− 1) log

(
1/4− (x− 1/2)2

)
= const(a, σ) +

y

8σ2
+ (a− 1) log(1− y),

where y := (2x− 1)2 ∈ [0, 1). Since

d

dy

( y

8σ2
+ (a− 1) log(1− y)

)
=

1

8σ2
− a− 1

1− y
,

the maximum of log(βa,a/φ1/2,σ) is attained at x ∈ (0, 1) such that y =
(
1− 8σ2(a− 1)

)+, and
the resulting value of logR(σ) is

logR(σ) = log
√

2π − logB(a, a) + (a− 1) log(1/4)

+ log(σ2)/2 +
(
(8σ2)−1 − a+ 1

)+
+ (a− 1) log min{8σ2(a− 1), 1}

= log
√

2π − logB(a, a)− (2a− 1/2) log(2)

+ log(8σ2)/2 +
(
(8σ2)−1 − a+ 1

)+
+ (a− 1) log min{8σ2(a− 1), 1}.

This is strictly monotone increasing in 8σ2 ≥ (a − 1)−1, so we restrict our attention to values σ
in
(
0, (8(a− 1))−1/2

]
. Then,

logR(σ) = log
√

2π − logB(a, a)− (2a− 1/2) log(2)(5)

+ (8σ2)−1 + (a− 1/2) log(8σ2)− a+ 1 + (a− 1) log(a− 1).

Note also the Stirling type approximation

log Γ(y) = log
√

2π + (y − 1/2) log(y)− y + r(y),

9



where r(y) = 1/(12y)+O(y−2) as y →∞ (cf. Dümbgen et al. 2021, Lemma 10). Consequently,

log
√

2π − logB(a, a) = log
√

2π + log Γ(2a)− 2 log Γ(a)

= (2a− 1/2) log(2a)− 2(a− 1/2) log(a) + r(2a)− 2r(a)

= (2a− 1/2) log(2) + log(a)/2 + r̃(a),

with r̃(a) := r̃(2a)− 2r̃(a). This leads to

logR(σ) = r̃(a) + log(a)/2(6)

+ (8σ2)−1 + (a− 1/2) log(8σ2)− a+ 1 + (a− 1) log(a− 1).

For the particular choice of σ, there are at least three possibilities:

Moment matching. A first candidate for σ would be the standard deviation of Beta(a, a),

σ1(a) := (8(a+ 1/2))−1/2.

Local density matching. Since log βa,a(x)− log βa,a(1/2) equals −4(a− 1)(x− 1/2)2 plus a
remainder of order O((x− 1/2)4) as x→ 1/2, another natural choice would be

σ2(a) := (8(a− 1))−1/2.

Minimizing R(σ). Note that logR(σ) = const(a) + (a− 1/2) log(8σ2) + (8σ2)−1. Since

d

dy

(
(a− 1/2) log(y) + y−1

)
=

a− 1/2

y
− 1

y2
=

(a− 1/2)(y − (a− 1/2)−1)

y2
,

the optimal value of σ equals

σ3(a) := (8(a− 1/2))−1/2.

Numerical example. Figure 3 shows for a = 5 the beta density βa,a and the Gaussian approx-
imations φ1/2,σ, where σ = σ1(a), σ2(a), σ3(a). Figure 4 depicts the corresponding log-density
ratios log(βa,a/φ1/2,σ). The values of R(σ), rounded to four digits, are R(σ1(a)) = 1.1660,
R(σ2(a)) = 1.0905 and R(σ3(a)) = 1.0582.

Our specific values σj(a) are of the type σ = (8(a + δ))−1/2 for some δ ≥ −1. The next
lemma provides two important properties of the resulting value logR(σ).

Lemma 11. Let σ(a) := (8(a + δ))−1/2 for a > 1 with a fixed number δ ≥ −1. Then
logR(σ(a)) is strictly decreasing in a > 1, and

logR(σ) =
δ(δ + 1) + 3/4

2a
+O(a−2).

For our specific standard deviations σj(a) we obtain the limits

lim
a→∞

a logR(σj(a)) =


3/4 if j = 1,

3/8 if j = 2,

1/4 if j = 3.
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Remark 12. Similarly as in Section 4, we may conclude that for arbitrary x > 1/2 and σ =

(8(a+ δ))−1/2,

B̄a,a(x) ≤ R(σ)Φ
(
−x− 1/2

σ

)
≤ R(σ)

2
exp
(
−4(a+ δ)(x− 1/2)2

)
.

Even the latter bound is stronger than the bound exp
(
−4(a + 1/2)(x − 1/2)2

)
by Marchal and

Arbel (2017), as soon as δ ≥ 0.5 and R(σ) ≤ 2. For δ = 0.5, this is the case for a ≥ 1.4, and for
δ = 1, we only need a ≥ 1.9.

6 Proofs

Proof of Theorem 1. Note that

Qa,b(x) =
a

xa

∫ x

0
ua−1(1− u)b−1 du = a

∫ 1

0
wa−1(1− xw)b−1 dw.

Since d2(1 − xw)b−1/dw2 = (b − 1)(b − 2)x2(1 − xw)b−3, the function w 7→ (1 − xw)b−1 is
convex if b 6∈ (1, 2) and concave if b ∈ [1, 2]. Since a

∫ 1
0 w

a−1 dw = 1, it follows from Jensen’s
inequality that (

a

∫ 1

0
wa−1(1− xw) dw

)b−1
= q

(1)
a,b(x)

is a lower bound for Qa,b if b 6∈ (1, 2) and an upper bound if b ∈ [1, 2]. To compare Qa,b with
q
(2)
a,b , we use a well-known formula for linear interpolation of the function w 7→ (1− xw)b−1 with

second derivative (b− 1)(b− 2)x2(1− xw)b−3 on [0, 1], namely,

(1− xw)b−1 = 1− w + w(1− x)b−1 − w(1− w)(b− 1)(b− 2)x2(1− xw̃)b−3/2

for some w̃ = w̃(x,w) ∈ (0, 1). Note that

(b− 1)(b− 2)(1− xw̃)b−3


≥ (b− 1)(b− 2) if b ≤ 1,

≤ (b− 1)(b− 2) if b ∈ [1, 2],

≥ (b− 1)(b− 2)(1− x)(b−3)
+

if b ≥ 2.

Hence, with hb(w) := 1−w+w(1−x)b−1−w(1−w)(b− 1)(b− 2)x2(1−x)(b−3)
+
/2 we may

conclude that

a

∫ 1

0
wa−1hb(w) dw = q

(2)
a,b(x)

is an upper bound for Qa,b(x) if b 6∈ (1, 2) and a lower bound if b ∈ [1, 2].

Concerning alternative bounds for Qa,b, let Q : [0, xo] → (0,∞] be a continuous function
for some xo ∈ (0, 1]. Viewing Q as a bound of Qa,b, H(x) = xaQ(x)/[aB(a, b)] is a bound for
Ba,b(x). If Q is differentiable on (0, xo), then elementary calculus reveals that

H ′(x) = βa,b(x)J(x) with J(x) :=
Q(x) +Q′(x)x/a

(1− x)b−1
.
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If we can show that J ≥ 1 (or J ≤ 1) on (0, xo), we may conclude that Qa,b ≤ Q (or Qa,b ≥ Q)
on [0, xo]. For instance, letQ(x) := (1−x)b(1+cx) for some c > 0 and x ∈ [0, 1]. Then one can
show that J ≤ 1 on [0, 1], provided that c ≥ ca,b = (a+b)/(a+1). This yields the lower bound for
Qa,b in (1). Now, let Q(x) := (1−x)b/(1− cx) for some c > 0 and 0 ≤ x ≤ xo := min{c−1, 1}.
For 0 < x < xo,

J(x) = 1 +
x

a(1− cx)

(
c(a+ 1)− (a+ b) + (c− 1)

cx

1− cx

)
.

If c < 1, then the infimum of c(a + 1) − (a + b) + (c − 1)cx/(1 − cx) over all x ∈ (0, xo)

equals ca − (a + b) < 0. If c ≥ 1, that infimum equals c(a + 1) − (a + b) ≥ 0, provided that
c ≥ (a+ b)/(a+ 1). Consequently, J ≥ 1 on (0, xo) if c ≥ max{c`, 1}, and this yields the upper
bound in (1) as well as the upper bound q(3)a,b(x) for Qa,b(x) in case of b ≥ 1.

It remains to verify the additional inequalities for QLa,b, Q
U
a,b. Concerning the lower bound for

QLa,b, the inequality q(1)a,b(x) > (1− x)b(1 + ca,bx) is equivalent to(
1− x/(a+ 1− ax)

)−b
> 1 + bx/(a+ 1)− a(a+ b)x2/(a+ 1)2.

Indeed, by convexity of (1 − ·)−b, the left-hand side is larger than 1 + bx/(a + 1 − ax) >

1 + bx/(a+ 1). Now let b ≥ 1. For b ∈ [1, 2], q(2)a,b(x) ≥ (a(1−x)b−1 + 1)/(a+ 1), and the latter
term is strictly larger than (1− x)b(1 + ca,bx) if and only if

(1− x)−(b−1) > 1 + (b− 1)x− (a+ b)x2.

Indeed, since b− 1 ≥ 0, the left-hand side is not smaller than 1 + (b− 1)x.

Concerning the upper bound for QUa,b, if b ≤ 1, then ca,b ≤ 1 and (1 − x)b−1 ≥ 1, so

q
(2)
a,b(x) ≤ (a(1 − x)b−1 + 1)/(a + 1) ≤ (1 − x)b−1 = (1 − x)b/(1 − max{ca,b, 1}x)+. If

1 < b ≤ 2, then ca,b > 1, and the inequality q(1)a,b(x) < (1− x)b/(1− ca,bx)+ is equivalent to

(1− (b− 1)y)+(1 + y)b−1 < 1

with y := (a+ 1)−1x/(1− x) ∈ (0,∞). By concavity of (1 + ·)b−1, (1 + y)b−1 ≤ 1 + (b− 1)y,
whence (1− (b− 1)y)+(1 + y)b−1 ≤ (1− (b− 1)2y2)+ < 1.

Proof of Corollary 4. Recall Stirling’s approximation Γ(c) =
√

2πcc−1/2e−c(1 + o(1)) as c →
∞. This implies the following asymptotic expansions as b→∞:

1

B(a, b)
=

Γ(a+ b)

Γ(a)Γ(b)
=

ba(1 + a/b)a+b−1/2e−a(1 + o(1))

Γ(a)
=

ba(1 + o(1))

Γ(a)
.

Consequently,

Ga(x) = lim
b→∞

Ba,b(x/b) = lim
b→∞

(x/b)a

aB(a, b)
Qa,b(x/b) =

xa

aΓ(a)
lim
b→∞

Qa,b(x/b).
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Bounding Qa,b(x/b) in terms of q(`)a,b(x/b), 1 ≤ ` ≤ 3, as in Theorem 1, the asserted bounds for
Ga(x) follow immediately from the following limits:

q
(1)
a,b(x/b) =

(
1− ax

(a+ 1)b

)b−1
→ e−ax/(a+1),

q
(2)
a,b(x/b) =

a(1− x/b)b−1 + 1

a+ 1
− a(b− 1)(b− 2)x2(1− x/b)(b−3)+

2b2(a+ 1)(a+ 2)

→ ae−x + 1

a+ 1
− ax2e−x

2(a+ 1)(a+ 2)
,

q
(3)
a,b(x/b) =

(1− x/b)b(
1− [(a+ b)/b]x/(a+ 1)

)+ → e−x

(1− x/(a+ 1))+
.

As to Ḡa(x), we write Ḡa(x) = limb→∞ B̄a,b(x/b) = limb→∞Bb,a(1− x/b) and

Bb,a(1− x/b) =
(1− x/b)b

bB(a, b)
Qb,a(1− x/b) =

e−xba−1(1 + o(1))

Γ(a)
Qb,a(1− x/b),

so Ḡa(x) is e−x/Γ(a) times limb→∞ b
a−1Qb,a(1 − x/b). Bounding Qb,1(1 − x/b) in terms of

q
(`)
b,1(1 − x/b), 1 ≤ ` ≤ 3, as in Theorem 1, the asserted bounds for Ḡa(x) follow immediately

from the following limits:

ba−1q
(1)
b,a(1− x/b) = ba−1

(x+ 1

b+ 1

)a−1
→ (x+ 1)a−1,

ba−1q
(2)
b,a(1− x/b) =

bxa−1 + ba−1

b+ 1
− ba(a− 1)(a− 2)(1− x/b)2(x/b)(a−3)+

2(b+ 1)(b+ 2)

→


xa−1 if a < 2,

x+ 1 if a = 2,

∞ if a > 2, a 6= 3,

x2 + 2x+ 2 if a = 3,

ba−1q
(3)
b,a(1− x/b) = xa

/((a+ b)x− b(a− 1)

b+ 1

)+
→ xa

(x− a+ 1)+
.

Proof of Theorem 5. Since Ba,b(·) = B̄b,a(1− ·) and K(q, x) = K(1− q, 1− x) for q ∈ (0, 1)

and x ∈ [0, 1], it suffices to prove the result for B̄a,b(x), x ∈ [pr, 1].

In case of a = 1, the asserted bounds are sharp, becauseB(a, b) = 1/b, pr = 0 and B̄a,b(x) =

(1− x)b. In case of a > 1, the ratio

Q(x) :=
B̄a,b(x)

xa−1(1− x)b
=

B(a, b)−1

1− x

∫ 1

x

(u
x

)a−1(1− u
1− x

)b−1
du

is strictly decreasing in x ∈ (0, 1). Indeed, with w(u) := (1− u)/(1− x) ∈ (0, 1) for u ∈ (x, 1),
we have dw(u)/du = −1/(1− x), and u = 1− (1− x)w(u), so

Q(x) = B(a, b)−1
∫ 1

0

(
w +

1− w
x

)a−1
wb−1 dw,
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which is strictly decreasing in x ∈ (0, 1) with limit Q(1) = 1/[bB(a, b)]. Consequently, for
0 < xo ≤ x ≤ 1,

Q(1) ≤ Q(x) ≤ Q(xo).

Multiplying these inequalities with xa−1(1 − x)b and setting xo = pr yields the asserted bounds
for B̄a,b(x).

Proof of Corollary 9. For symmetry reasons, it suffices to derive the upper bound for B̄a,b(x). It
suffices to show that for x ∈ [p, 1],

(a+ b− 1)K(pr, x) ≥ (a+ b+ 1)(x− p)2

2p(1− p) + (4/3)(1− 2p)+(x− p)
.

To simplify notation, we writem := a+b, y := x−p ∈ [0, 1−p] and δ := p−pr = (1−p)/(m−1).
Then it follows from the first inequality in (4) that

(a+ b− 1)K(pr, x) ≥ (m− 1)(y + δ)2

2(p+ (2/3)y − δ/3)(1− p− (2/3)y + δ/3)
,

and we want to show that this is greater than or equal to

(m+ 1)y2

2[p(1− p) + (2/3)(1− 2p)y]
.

Note first that since (m− 1)δ = (1− p),

(m− 1)(y + δ)2 = (m− 1)y2 + 2(1− p)y + (1− p)δ

= (m+ 1)y2 + 2(1− p− y)y + (1− p)δ(7)

> (m+ 1)y2.

Furthermore,

(p+ (2/3)y − δ/3)(1− p− (2/3)y + δ/3)

= p(1− p) + (2/3)(1− 2p)y + (2p− 1)δ/3− (2y − δ)2/9,(8)

and in case of 0 < p ≤ 1/2, the right hand side is not larger than p(1− p) + (2/3)(1− 2p)y. This
proves our assertion in case of 0 < p ≤ 1/2 already, and it remains to treat the case 1/2 < p < 1.
To this end, we have to show that the ratio of (7) and (m+ 1)y2 is not smaller than the ratio of (8)
and p(1− p) + (2/3)(1− 2p)y. This assertion is equivalent to the inequality

2(1− p− y)y + (1− p)δ
(m+ 1)y2

≥ (2p− 1)δ/3− (2y − δ)2/9
p(1− p) + (2/3)(1− 2p)y

.

With λ := (m− 1)−1 and z := y/(1− p) ∈ [0, 1], the latter inequality is equivalent to

2(1− z)z + λ

(λ−1 + 2)z2
≥ (2p− 1)λ− (1− p)(2z − λ)2/3

3p+ 2(1− 2p)z
.
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Since the left-hand side is strictly positive and 3p + 2(1 − 2p)z ≥ 3p + 2(1 − 2p) = 2 − p, it
suffices to show that

(9)
(1− p)(2z − λ)2

3(2− p)
+

2(1/z − 1) + λ/z2

1 + 2λ
λ ≥ (2p− 1)

2− p
λ.

If z ≤ 2/3, the second summand on the left-hand side is at least

2(3/2− 1) + λ(3/2)2

1 + 2λ
λ =

1 + (9/4)λ

1 + 2λ
λ > λ >

2p− 1

2− p
λ.

Thus it suffices to consider z ≥ 2/3. It follows from 1 ≤ b = (1 − p)m that m ≥ 1/(1 − p),
whence λ ≤ (1− p)/p. Thus 2z − λ ≥ 2z − (1− p)/p > 0 and (1− p) ≥ pλ. Consequently, it
suffices to verify that

(10)
p(2z − (1− p)/p)2

3(2− p)
+

2(1/z − 1) + λ/z2

(1 + 2λ)
≥ (2p− 1)

2− p
.

The second summand on the left-hand side equals

1

2z2
4z(1− z) + 2λ

1 + 2λ
=

1

2z2

(
1− 1− 4z(1− z)

1 + 2λ

)
,

an increasing function of λ > 0 for any fixed z ∈ (0, 1]. Consequently, inequality (10) would be a
consequence of

p(2z − (1− p)/p)2

3(2− p)
+ 2(1/z − 1) ≥ (2p− 1)

2− p
.

Since 1/z − 1 = (1− z)/z ≥ 1− z, it even suffices to show that

(11) (p/3)(2z − (1− p)/p)2 + 2(2− p)(1− z) ≥ 2p− 1.

The minimiser of the left-hand side, as a function of z ∈ R, is given by

zo = 2/p− 5/4 > 3/4.

If p ≤ 8/9, then zo ≥ 1, so it suffices to verify (11) for z = 1. Indeed,

(p/3)(2− (1− p)/p)2) = (4/3)(2p− 1) + (1− p)2/(3p) > 2p− 1.

If 8/9 ≤ p < 1, then (11) is equivalent to

2p− 1 ≤ (p/3)(2zo − (1− p)/p)2 + 2(2− p)(1− zo) = 10− 5/p− (15/4)p.

But this inequality is equivalent to

(12) (23/4)p+ 5/p ≤ 11.

The left-hand side is convex in p, so it suffices to verify it for p = 8/9 and p = 1. The left-hand
side of (12) equals 46/9 + 45/8 = 10 + 1/9 + 5/8 < 11 if p = 8/9, and 10 + 3/4 < 11 if p = 1.
This concludes our proof of Corollary 9.
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Proof of Lemma 11. At first we analyze r̃(a). We use Binet’s fomula r(y) =
∫∞
0 e−ytw(t) dt

with a certain function w satisfying 12−1e−t/12 < w(t) < 12−1, see Dümbgen et al. (2021,
Lemma 10). Consequently, 2r(a)−r(2a) =

∫∞
0 (2e−at−e−2at)w(t) dt, and since 2e−at−e−2at =

e−at(2− e−at) > 0, we conclude that

2r(a)− r(2a)


<

1

12

∫ ∞
0

(2e−at − e−2at) dt =
1

8a
,

>
1

12

∫ ∞
0

(2e−(a+1/12)t − e−(2a+1/12)t) dt =
a+ 1/36

8(a+ 1/12)(a+ 1/24)
.

In particular, as a→∞,

(13) r̃(a) = − 1

8a
+O(a−2).

Moreover,

(14)
d

da
r̃(a) = 2

∫ ∞
0

t(e−at − e−2at)w(t) dt <
1

6

∫ ∞
0

t(e−at − e−2at) dt =
1

8a2
.

Next we verify that logR(σ(a)) is strictly decreasing in a > 1. It follows from representation
(6) that

logR(σ(a)) = r̃(a) + log(a)/2(15)

+ δ − (a− 1/2) log(a+ δ) + 1 + (a− 1) log(a− 1).

According to (14), the derivative of this with respect to a is not greater than

1

8a2
+

1

2a
− a− 1/2

a+ δ
− log(a+ δ) + log(a− 1) + 1.

For fixed a > 1, the derivative of this bound with respect to δ ≥ 1 equals −(δ + 1/2)/(a + δ)2,
so it is maximal for δ = −1/2. This leads to

d

da
logR(σ(a)) ≤ 1

8a2
+

1

2a
+ log

( a− 1

a− 1/2

)
=

1

8a2
+

1

2a
+ log

(
1− 1

2(a− 1/2)

)
<

1

8a2
+

1

2a
+ log

(
1− 1

2a

)
= −

∑
k≥3

(2a)−k/k < 0.

It remains to prove the expansion of logR(σ(a))) as a→∞. To this end, we rewrite (15) as

logR(σ(a)) = r̃(a) + δ − (a− 1/2) log(1 + δ/a) + (a− 1) log(1− 1/a).

Since log(1 + y) = y +O(y2) = y − y2/2 +O(y3) as y → 0,

δ − (a− 1/2) log(1 + δ/a) = δ − (a− 1/2)δ

a
+

(a− 1/2)δ2

2a2
+O(a−2)

=
δ(δ + 1)

2a
+O(a−2),

1 + (a− 1) log(1− 1/a) = 1− a− 1

a
− a− 1

2a2
+O(a−2)

=
1

2a
+O(a−2).

Combining these expansions with (13) leads to the desired expansion of logR(σ(a)).
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