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Editorial on the Research Topic

Computational Modeling for Liver Surgery and Interventions

The liver is a major organ involved in the maintenance of whole body metabolic homeostasis. The
underlying metabolic endeavors are assigned to the parenchymal cells of the liver, the hepatocytes,
which cluster in so-called liver lobules. At the entrance side of the hepatic lobule, blood, rich in
nutrients, reaches the lobule from the intestine via the branches of the portal vein. At the exit side,
the blood leaves the lobules via the branches of the central vein. Hepatocytes lined up along this
blood axis, called hepatic sinusoid, are functionally different depending on nutrient, hormone and
morphogen gradients forming with the blood stream (Jungermann and Kietzmann, 1996; Gebhardt
and Matz-Soja, 2014).

The liver is a highly regenerative organ. Removal (resection) of even more than two thirds of the
liver due to tumor removal or living liver donation initiates the restoration of the complete liver
mass in 6 to 12 months. However, partial liver resection causes significant changes of the vascular
supply, which propagate from the macroscopic anatomical scale down to the cellular microscale
of the hepatic sinusoids. This has functional consequences facing the versatile range of hepatic
tasks. Describing the complex relation between changes in hepatic blood perfusion and forecast of
functional consequences is not trivial. Therefore, complex liver surgery still carries a not negligible
risk of post-surgery liver failure.

This Research Topic aims to integrate current knowledge on the understanding of the
correlation between hepatic flow changes and downstream functional changes in the context
of liver surgery and interventions. Scale-bridging computational models, which quantitatively
describe hepatic anatomical and biochemical data based on image or functional analysis, more
and more support understanding. They serve as a tool to relate structure and function and their
interdependent changes with the perspective to predict functional outcome after liver surgery
(Christ et al., 2017).

The article by Christ et al. summarizes imaging methods and functional assays currently
in use for pre-surgical planning. These essentially map selected data sets to whole organ
function, which might not be a valid approach due to the multiscale organization of the liver.
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The authors suggest to link multiscale computational models
and experimental and clinical patient data sets in combination
with uncertainty assessments in order to reliably predict
functional outcome after liver surgery. As one example, Köller,
Grzegorzewski, König integrated indocyanine green (ICG)
clearance assay data into a physiologically based pharmacokinetic
(PBPK)model to predict changes in ICG pharmacokinetics in the
cirrhotic liver and after liver resection. The ICG assay is regarded
to reflect overall liver function in general. It is highly dependent
on individual patient data like age, gender, body weight besides
others. Moreover, pathophysiologically relevant patient-specific
features like hepatic blood flow and volume, cardiac output, or
bile acid transporter abundance may have an impact on liver
function. Therefore, all these parameters were included into the
PBPK model of ICG clearance to tailor model predictions on
patients’ need of individual therapy stratification and surgery
planning. Indeed, their model allowed for the estimation of
individual patient survival. Perspectively, this model shall be
integrated into a software application to support pre-surgery
planning (Köller, Grzegorzewski, Tautenhahn et al.).

Patient-tailored surgical planning today mainly relies on the
determination of the liver volume computed from imaging
data, assuming that liver volume represents liver function.
This, however, may not meet reality. As mentioned above,
individual patient features may impact on liver function not
reflected by mere imaging data. Therefore, recent activities
increasingly aim to develop imaging technologies that allow
for insights into the hepatic structure-function relationships.
Two frequently used technologies, magnetic resonance imaging
(MRI) and elastography (MRE) are based on the evaluation of
biomechanical properties of the liver. They may unravel spatio-
temporal resolution of hepatic blood flow, volume and velocity
of flow (Bane et al., 2019).

MRI does not only allow for accurate reconstruction
of the actual healthy and diseased hepatic anatomical
architecture, but may also be used to parameterize continuum
biomechanical structure-function models. In particular, spatially
inhomogeneously distributed poro-viscoelasticity is an essential
mechanical parameter in this context. Still, the measurement
protocols as well as model assumptions are not standardized,
and a wide range of parameter assessments can be found in
the literature. Seyedpour et al. therefore designed a systematic
review to reflect the current status quo of MRI-based parameter
determinations. Along this line, mDIXONMRI fat quantification
data were translated into patient-tailored computational models
of the liver to simulate biophysical material (tissue) properties
and thermal dose application for patient-specific prediction of
microwave ablation therapy (Servin et al.).

Based on the versatile availability even in smaller hospitals,
computer tomography (CT) is a common modality to decipher
tissue abnormalities prior to liver surgery. Segmentation is used
to reconstruct 3D structures based on 2D image sections, which
today involves automated or semi-automated procedures (Christ
et al., 2017). This, however, may deliver incomplete or even
false information because of intra- and extrahepatic low contrast
differences. Jiřík et al. propose to include reliably segmentable
body key position points like, e.g., the spine and the body

surface into a convolutional neural network widely used for
image segmentation. The addition of positional information
thus improves organ boundary definition and in turn liver
segmentation of CT scans.

The liver is not an isolated organ, but communicates
with other organs via the vascular system. It is thus prone
to turbulences in blood pressure homeostasis. Consequently,
inclusion of the vasculature may reflect this inter-organ
communication. Modeling the hepatic vascular tree attempts
to relate flow changes to function, integrating a higher order
of systemic complexity. Torres Rojas et al. outline this by
presenting a model of the hepatic vasculature featuring a
deterministic architecture delineated from the constructal law of
design spanning from the macro to the microcirculation scale.
Based on a multi-organ ordinary differential equations model
of zonated hepatic energy substrate metabolism (Ashworth
et al., 2016), Verma et al. propose another higher level
of complexity. Their model includes regulation of glucose
metabolism by intrahepatic nerves and the extrahepatic central
nervous system in addition to cell-cell communication via
calcium, a major stimulant of glucose production from
hepatic glycogen.

In summary, mathematical modeling may capture liver
function on different scales ranging from intrahepatic molecular
clues to superordinate inter-organ communication resulting
in a systems view on liver function regulation. The papers
contributing to the Research Topic presented here give
an overview on approaches to assess liver function by
multidimensional model simulations. Inclusion of predictive
tools based on such models together with individual patient
data into the clinical pre-operative planning routine may
overcome the shortcomings of current options and may
represent a step forward to a personalized patient-tailored liver
surgery planning.
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