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Abstract. Any theory of quantum gravity must ultimately be connected to observations.
This demand is difficult to be met due to the high energies at which we expect the quantum
nature of gravity to become manifest. Here we study, how viable quantum gravity proposals
can be restricted by investigating the interplay of gravitational and matter degrees of freedom.
Specifically we demand that a valid quantum theory of gravity must allow for the existence of
light (compared to the Planck scale) fermions, since we observe these in our universe. Within
the effective theory framework, we can thus show that UV completions for gravity are restricted,
regardless of the details of the microscopic theory. Specialising to asymptotically safe quantum
gravity, we find indications that universes with light fermions are favoured within this UV
completion for gravity.

1. How to connect quantum gravity to observations

In quantum gravity, the goal is the construction of an internally consistent theory, which can
then be tested against experiment. Since the typical scale of quantum gravity effects is generally
expected to be O(MPlanck), devising doable experiments that test the quantum nature of gravity
is highly challenging. Hence it is considerably simpler to indirectly test quantum gravity: Clearly
the observed low-energy properties of matter must be compatible with a quantum theory of
gravity, if it is to describe our universe. A particular quantity that can be sensitive to quantum
gravity fluctuations is constituted by fermion masses. Within the Standard Model, these arise
from chiral symmetry breaking (χSB), either induced by the strong interactions, or by the Higgs
sector. In a similar fashion, quantum gravity fluctuations might induce strong correlations in
the fermion sector and lead to χSB. In this case, the induced fermion masses would naturally
be O(MPlanck), analogously to QCD, where the fermion masses induced by χSB are comparable
to ΛQCD. Since our universe contains fermions which are considerably lighter than the Planck
scale, we conclude that any viable theory of quantum gravity must evade such a mechanism.

Here, we will show that this requirement allows to put restrictions on quantum gravity
theories. We first investigate generic UV completions for gravity by making use of the
framework of effective field theories: Irrespective of the UV completion for gravity, an effective
parameterisation of quantum gravity fluctuations in terms of metric fluctuations should hold on
scales up to a UV scale Λ �MPlanck. (This allows, e.g. to compute quantum corrections to the
Newtonian potential, see, e.g. [1].) Then the UV completion for gravity determines the values of
the couplings in the effective theory on the UV cutoff scale Λ. A Renormalisation Group (RG)
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study allows to investigate, whether the predicted values for the couplings are compatible with
the existence of light fermions on lower scales.

A parameterisation of quantum gravity fluctuations in terms of metric fluctuations is also
central to a specific UV completion for gravity, namely the asymptotic-safety scenario [2], where
the gravitational degrees of freedom are carried by the metric up to arbitrarily high momentum
scales. The far UV is then dominated by an interacting fixed point in the running couplings.
Evidence for the existence of this fixed point has been collected, e.g. in [3]; for reviews see [4].

The main difference between these two settings is, that in the latter case the requirement
of an interacting fixed point determines the UV behaviour at arbitrarily high momenta. In
the former setting, our analysis extends over a finite range of scales, only. The values of the
couplings at the finite UV-scale Λ are then not restricted by a fixed-point requirement, and are
determined by the microscopic theory.

2. How to investigate the existence of light fermions

Within the framework of the functional RG, χSB is signalled by divergent four-fermion
couplings. This connection arises as follows: Introducing composite bosonic degrees of freedom,

schematically φ ∼ ψ̄ψ, in the path integral, allows to rewrite a four-fermion coupling λ
(
ψ̄ψ

)2 ∼
φψ̄ψ+ 1

λ
φ2. Within the bosonic picture, the onset of spontaneous symmetry breaking is signalled

by the bosonic mass going to zero. Thus λ → ∞ signals the onset of spontaneous χSB in the
purely fermionic language, which we will use here2.

To investigate, whether the four-fermion couplings diverge, we study their β functions. We
use a functional RG equation, the Wetterich-equation [5] for the scale-dependent effective action
Γk, which is the generating functional of one-particle irreducible correlators that include all
fluctuations from the UV down to the infrared (IR) scale k. At k = 0, Γk coincides with the
standard effective action Γ = Γk=0. The scale derivative of Γk is given by

∂tΓk =
1

2
STr{[Γ(2)

k +Rk]
−1(∂tRk)}. (1)

Here, ∂t = k ∂k; Γ
(2)
k is the second functional derivative of Γk with respect to the fields, and

Rk is an IR regulator function. The supertrace STr contains a trace over the spectrum of the
full propagator (for reviews, see [6]). This equation is exact, and is applicable in perturbative
as well as non-perturbative settings, since its derivation does not rely on the existence of a
small parameter. Practical calculations do however usually require truncations of all possible
operators in the effective action to a, typically finite, subset.

In choosing an appropriate truncation it is crucial that we include all four-fermion couplings
compatible with the symmetries, since any of these might diverge and induce χSB. We thus
study a Fierz-complete basis of SU(Nf )L×SU(Nf )R symmetric four-fermion interactions, where
Nf is the number of fermions, and i, j = 1, ...,Nf .

ΓkF =
1

2

∫
d4x

√
g
[
λ̄−(k)(V −A) + λ̄+(k)(V +A)

]
, (2)

where V =
(
ψ̄iγμψ

i
) (
ψ̄jγμψj

)
, A = − (

ψ̄iγμγ
5ψi

) (
ψ̄jγμγ5ψj

)
.

Generically, the β functions of the dimensionless renormalised couplings λ± =
k2λ̄±
Zψ

read [7]

βλ± = (2 + ηψ)λ± + aλ2± + b λ±λ∓ + c λ2∓ + dλ± + e, (3)

2 The introduction of composite bosonic degrees of freedom becomes necessary only for an investigation of the
symmetry-broken regime. A purely fermionic formulation suffices to detect the onset of symmetry breaking, which
is all we will be interested in here.
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where ηψ = −∂t lnZψ is the fermionic anomalous dimension related to the wave-function
renormalisation, see below. Herein the first term arises from dimensional (and anomalous)
scaling and reflects the perturbative non-renormalisability of four-fermion couplings in four
dimensions. The quadratic contributions follow from a purely fermionic two-vertex diagram.
A tadpole contribution ∼ dλ± may also exist, as well as a λ±-independent part ∼ e resulting
from the coupling to other fields, e.g. to the metric, thus being decisive for the question of χSB.

The crucial observation is that whenever fixed points exist, initial conditions for the RG flow
can be found such that chiral symmetry breaking is avoided, see fig. 1.

Λ�

ΒΛ� Figure 1. In the absence of further interactions, the parabola-type
β function (solid blue line) exhibits two fixed points, the Gaußian
one at λ∗± = 0 and a non-Gaußian one at λ∗± = λ±,cr > 0. Arrows
indicate the RG flow towards the IR, and initial conditions to the
left of λ± = 0 lead to χSB. Further interactions can shift the
parabola (red dashed line) such that no fixed points exist. Such
a scenario typically occurs in QCD-like theories [8, 9, 10].

To evaluate the gravitational contribution to the β functions, we include terms carrying
dynamics for gravitational as well as fermionic degrees of freedom in the following truncation

Γk =
ZN (k)

16πGN

∫
d4x
√
g(−R+ 2λ̄(k)) + Γk gf +

∫
d4x
√
g iZψψ̄

iγμ∇μψ
i + ΓkF, (4)

Herein the bare Newton constant GN is related to the dimensionless renormalised Newton
coupling G(k) = k2ZN (k)GN and we have included a cosmological constant λ̄(k) = k2λ(k).
Γk gf denotes a standard gauge-fixing and ghost term in Landau deWitt background field gauge,
see, e.g. [11]. Our truncation is motivated by similar truncations in QCD, which allow for a
determination of the critical temperature for χSB [12]. The β functions for the Newton coupling
and the cosmological term have been analysed in this truncation (with Zψ = 1) in [13].

3. Restricting UV completions for gravity

The main question is whether quantum gravity fluctuations lead to fixed-point annihilation in
the β functions. As our main result we observe that this is not the case. We find that for
any {G > 0, λ,Nf} the system of β functions βλ± shows four fixed points (for details of the
calculation, see [7]). Thus metric fluctuations do not contribute strongly to λ±-independent
terms in Eq. (3), which could lead to fixed-point annihilation. Instead, we find that gravity
fluctuations mainly enhance anomalous scaling terms ∼ λ±. Thus our first conclusion is that,
although gravity is an attractive force, metric fluctuations do not automatically induce strong
fermionic correlations and lead to χSB and bound state formation.

Thus χSB is a question of initial conditions for the RG flow, cf. fig. 1. Here lies the main
difference between the asymptotic-safety scenario and other UV completions for gravity: In the
former, the system has to sit on a fixed point in the far UV. If there were no fixed points in βλ± ,
asymptotic safety could not constitute a UV completion for gravity with dynamical fermions.
Here, we have four fixed points with different universal properties at our disposal, which all define
a valid UV completion. The number of relevant couplings (connected to the free parameters of
the theory) is either zero, one or two, depending on the fixed point. Thus these fixed points
constitute UV completions with varying predictive power. Their existence entails that metric
fluctuations do not directly induce χSB and the scenario is compatible with observations.

In the case of other UV completions for gravity, there is no fixed-point requirement, and in
fact the initial conditions for the RG flow can lie anywhere in the space of all couplings. Here,
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the crucial observation is that unbroken chiral symmetry restricts the allowed initial conditions,
see fig. 2. We thus conclude that the existence of light fermions puts restrictions on any UV
completion for gravity.
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Figure 2. Flow towards the IR in the λ+, λ−-
plane for ηN = 0, ηψ = 0, G = 0.1, λ = 0.1 and
Nf = 6. For initial values to the right of the
red lines the chiral system is in the universality
class of the (shifted) Gaußian fixed point. Any
microscopic theory that would put the effective
quantum field theory to the left of the red lines
would generically not support light fermions; thus
the initial conditions are restricted to lie in the
basin of attraction of the Gaußian fixed point.

In conclusion, we have found - within a truncation of the full RG equations - that, although
gravity is an attractive force, even strong metric fluctuations do not directly lead to χSB and
bound state formation for fermions. This result applies to asymptotically safe quantum gravity,
as well as other UV completions, where we show that the requirement of unbroken χSB can be
used to restrict the space of couplings.
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